WO2012026193A1 - 有機電界発光用基板及び有機電界発光装置 - Google Patents

有機電界発光用基板及び有機電界発光装置 Download PDF

Info

Publication number
WO2012026193A1
WO2012026193A1 PCT/JP2011/064170 JP2011064170W WO2012026193A1 WO 2012026193 A1 WO2012026193 A1 WO 2012026193A1 JP 2011064170 W JP2011064170 W JP 2011064170W WO 2012026193 A1 WO2012026193 A1 WO 2012026193A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
substrate
organic electroluminescent
compound
Prior art date
Application number
PCT/JP2011/064170
Other languages
English (en)
French (fr)
Inventor
飛世 学
慎一郎 園田
静波 李
英正 細田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012026193A1 publication Critical patent/WO2012026193A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic electroluminescent substrate and an organic electroluminescent device using the organic electroluminescent substrate.
  • Organic electroluminescent devices are self-luminous display devices and are expected to be used for displays and lighting.
  • an organic electroluminescent display has advantages in display performance such as higher visibility than conventional CRTs and LCDs and no viewing angle dependency.
  • the display can be made lighter and thinner.
  • organic electroluminescence lighting can be reduced in weight and thickness, it has the potential to realize illumination in a shape that could not be realized by using a flexible substrate. Yes.
  • Patent Document 1 proposes a light emitting device having a barrier layer on one surface of a base material and a high refractive index uneven layer on the other surface of the base material.
  • Paragraph [0008] of this proposal states that the high refractive index uneven layer may be a fine particle layer.
  • the proposed high refractive index uneven layer has little angle dependency of chromaticity change, and cannot sufficiently suppress spectrum modulation and angle dependency.
  • a simple uneven layer is less effective, there is a variation in the formation of the uneven layer, and there is a possibility that the light extraction efficiency and the angle dependency of chromaticity change may also vary.
  • this proposal since the outermost surface on the light extraction side is not flat, there is a problem that foreign matter is easily attached, and light extraction efficiency is reduced due to shielding by the foreign matter.
  • a fine particle layer is provided on one surface of a substrate, spectrum modulation due to interference of a barrier layer provided on the other surface of the substrate, surface position dependency of chromaticity, and angle dependency of chromaticity. It is an object of the present invention to provide an organic electroluminescence substrate capable of suppressing the property and increasing the light extraction efficiency, and an organic electroluminescence device having the organic electroluminescence substrate.
  • An organic electroluminescence substrate comprising at least a barrier layer having a thickness unevenness of 10 nm to 1,000 nm and a fine particle layer containing fine particles.
  • the barrier layer has a multilayer structure in which an organic layer made of an organic material and an inorganic layer made of an inorganic material are alternately laminated.
  • the organic electroluminescent substrate according to ⁇ 2> wherein the total number of stacked organic layers and inorganic layers is 2 or more.
  • ⁇ 4> The organic electroluminescent element substrate according to any one of ⁇ 1> to ⁇ 3>, wherein the fine particles have an average particle diameter of 0.5 ⁇ m to 10 ⁇ m.
  • ⁇ 5> The organic electroluminescent substrate according to any one of ⁇ 1> to ⁇ 4>, wherein the fine particle distribution density in the fine particle layer is 30% to 80%.
  • ⁇ 6> The organic electroluminescence substrate according to any one of ⁇ 1> to ⁇ 5>, wherein the light emission surface of the fine particle layer is flat or has a planarization layer on the light emission surface of the fine particle layer.
  • An organic electroluminescent device comprising the organic electroluminescent substrate according to any one of ⁇ 1> to ⁇ 7>.
  • the chromaticity of the organic electroluminescence substrate before the fine particle layer is provided in the CIE color system in which the chromaticity x is 0.01 to 0.05 and the chromaticity y is 0.00 from the target chromaticity.
  • the emission spectrum from the organic electroluminescent layer provided on the barrier layer is modulated, and in particular, multilayering In the barrier layer, the modulation is strong and the chromaticity may change.
  • the chromaticity shifts between batches.
  • the chromaticity changes depending on the light emission location.
  • a change in chromaticity may increase due to a change in interference length due to angle dependency.
  • the organic electroluminescent device of the present invention by using an organic electroluminescent substrate having at least a barrier layer having a thickness unevenness of 10 nm to 1,000 nm and a fine particle layer containing fine particles, Spectral modulation due to interference of the barrier layer provided on one surface, surface position dependency of chromaticity, and angle dependency of chromaticity can be suppressed, and light extraction efficiency provided on the other surface of the substrate can be improved. Can do.
  • a fine particle layer is provided on one surface of a base material, and spectrum modulation and chromaticity surface position due to interference of a barrier layer provided on the other surface of the base material. It is possible to provide an organic electroluminescence substrate capable of suppressing the dependency and the angle dependency of chromaticity and increasing the light extraction efficiency, and an organic electroluminescence device having the organic electroluminescence substrate.
  • FIG. 1 is a schematic view showing an organic electroluminescent device of Example 1.
  • FIG. 2 is a schematic view showing an organic electroluminescent device of Example 2.
  • FIG. 3 is a schematic view showing an organic electroluminescent device of Example 3.
  • FIG. 4 is a schematic view showing an organic electroluminescent device of Example 4.
  • FIG. 5 is a schematic view showing an organic electroluminescent device of Comparative Example 1.
  • FIG. 6 is a schematic view showing an organic electroluminescent device of Comparative Example 2.
  • FIG. 7 is a schematic view showing an organic electroluminescent device of Comparative Example 3.
  • FIG. 8 is a schematic view showing an organic electroluminescent device of Comparative Example 4.
  • FIG. 9 is a schematic view showing an organic electroluminescent device of Comparative Example 5.
  • FIG. 1 is a schematic view showing an organic electroluminescent device of Example 1.
  • FIG. 2 is a schematic view showing an organic electroluminescent device of Example 2.
  • FIG. 3 is a schematic view showing an organic electrolum
  • FIG. 10 is a schematic view showing an organic electroluminescent device of Application Example 1.
  • FIG. 11 is a schematic view showing an organic electroluminescent device of Application Example 2.
  • FIG. 12 is a graph showing an emission spectrum without a barrier layer (Comparative Example 1).
  • FIG. 13 is a graph showing an emission spectrum with a barrier layer (Comparative Example 4).
  • FIG. 14 is a graph showing an emission spectrum of a barrier layer and a concavo-convex layer (Comparative Example 5).
  • FIG. 15 is a graph showing an emission spectrum of a barrier layer and a fine particle layer (Example 4).
  • FIG. 16 is a graph showing the difference in emission spectrum between Comparative Example 4-1 and Comparative Example 4-2, which are organic electroluminescence devices having the same configuration as Comparative Example 4 and simultaneously manufactured with a barrier layer.
  • FIG. 17 is a diagram illustrating a state in which a substrate with a barrier layer is cut and a sample is manufactured in the example.
  • the substrate for organic electroluminescence of the present invention has at least a barrier layer and a fine particle layer, and has a base material and, if necessary, other layers.
  • the organic electroluminescence substrate examples include a base material, a mode having a barrier layer on one surface of the base material, and a fine particle layer on the other surface of the base material, that is, the barrier layer is a base material. It is preferable to be provided on the surface of the organic electroluminescent layer, and the fine particle layer is provided on the surface of the substrate on the light emission side.
  • the barrier layer has a thickness unevenness of 10 nm to 1,000 nm, and preferably 10 nm to 800 nm. If the thickness unevenness is less than 10 nm, the change in chromaticity of the organic electroluminescence device due to the thickness unevenness becomes almost inconspicuous, and the effect of averaging the chromaticity by the fine particle layer may not appear. On the other hand, if the thickness unevenness exceeds 1,000 nm, it exceeds the wavelength of visible light emitted from the organic electroluminescent layer, and chromaticity change due to the interference effect is less likely to occur, as in the case where the thickness unevenness is less than 10 nm.
  • the uneven thickness of the barrier layer means a maximum height difference in the thickness direction of the barrier layer on one substrate.
  • the thickness unevenness is about 60 nm
  • the barrier layer is an inorganic layer formed by vapor deposition or sputtering of an inorganic material
  • the thickness unevenness is about 15 nm.
  • the average thickness of the barrier layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the organic layer is preferably 300 nm to 2,000 nm, and more preferably 800 nm to 1,500 nm.
  • the inorganic layer 10 nm to 200 nm is preferable, and 30 nm to 150 nm is more preferable.
  • the thickness unevenness of the barrier layer can be determined, for example, by cutting a part of the produced barrier layer and measuring the thickness with a scanning electron microscope (S-3400N, manufactured by Hitachi High-Tech Co., Ltd.).
  • the barrier layer may be an organic layer made of an organic material alone or an inorganic layer made of an inorganic material alone, but a multilayer in which organic layers made of an organic material and inorganic layers made of an inorganic material are alternately laminated. It is preferable to have a structure in terms of preventing peeling due to stress relaxation of the inorganic layer, filling pinholes generated in the inorganic layer, and preventing an increase in moisture permeability and oxygen permeability.
  • the total number of stacked and the organic layer and the inorganic layer is preferably more than one layer, four layers and 11 layers and more preferably. When the total number of stacked layers is less than 2, the barrier layer has increased water permeability and oxygen permeability due to pinholes, affecting the organic electroluminescent device, and generating dark spots, in the worst case May not be lit.
  • the inorganic layers is preferably composed of two or more kinds of metal oxides.
  • Such inorganic layers can be formed by co-deposition on the film two or more kinds of metal oxides.
  • the metal oxide include, but are not limited to, oxides such as Si, Al, In, Sn, Zn, Ti, Cu, Ce, and Ta. From light transmittance aspect when forming the cost and film, preferably, silicon oxide and aluminum oxide.
  • the reactive sputtering method for example, metal targets of Si and Al are installed on two electrodes, respectively, and a rare gas such as argon and oxygen gas are introduced in a high vacuum, while metal atoms are introduced by DC plasma and high frequency plasma. It is a method of knocking out and co-depositing while reacting metal atoms and oxygen on the film surface.
  • the electron beam heating vapor deposition method is a method in which a crucible containing Si or SiOx and a crucible containing Al or Al 2 Ox are placed in a vacuum chamber, heated and evaporated by an electron beam, and co-deposited on the film surface. It is.
  • oxygen gas may or may not flow depending on the degree of oxidation of the material placed in the crucible and the target degree of oxidation of the film.
  • the ratio of the two metals in the co-deposited oxide thin film can be arbitrarily set, but is preferably in the range of 1/9 to 9/1.
  • the Si / Al ratio is preferably in the range of 7/3 to 2/8.
  • the ratio of each metal atom and oxygen atom is arbitrary, but when the oxygen atom ratio is extremely small from the stoichiometric ratio of the oxide, the transparency of the film is lowered or coloring occurs. It is not preferable. If the contrary is an oxygen atom too many also not preferable because the barrier is lowered density of the film is lowered.
  • the value of x is particularly preferably 1.5 to 1.8.
  • the value of x is particularly preferably 1.0 to 1.4. If the thickness of the inorganic layer is too thin, the barrier property becomes insufficient. Conversely, if the thickness is too thick, the barrier property is remarkably impaired by cracking or breaking when bent. Therefore, the appropriate thickness of the inorganic layer is preferably 5 nm to 1,000 nm, more preferably 10 nm to 1000 nm, and still more preferably 10 nm to 200 nm.
  • Organic layer can be any polymer. Examples of preferable organic layers and methods for forming the organic layers will be described below.
  • Polysiloxane A vapor obtained by heating and evaporating hexamethyldisiloxane is introduced into a parallel plate type plasma device using an RF electrode to cause a polymerization reaction in the plasma and deposited as a polysiloxane thin film on the film substrate.
  • a parallel plate type plasma device using an RF electrode to cause a polymerization reaction in the plasma and deposited as a polysiloxane thin film on the film substrate.
  • Polyaddition polymer It is a polymer that can be obtained by repeated addition polymerization of two types of A and B monomers evaporated in a vacuum alternately in A and B. For example, low molecules such as water and alcohol are not desorbed unlike polycondensation, which is basically excellent as a method for forming a barrier film in a vacuum as in the present invention.
  • the polyaddition polymer include polyurethane (diisocyanate / glycol), polyurea (diisocyanate / diamine), polythiourea (dithioisocyanate / diamine), polythioether urethane (bisethyleneurethane / dithiol), and polyimine.
  • polyurea is particularly preferable in consideration of transparency, material cost, and the like.
  • the acrylic polymer has characteristics such as high curing speed, easy curing at room temperature, and high transparency, and is preferably used as the organic layer.
  • the acrylate monomer there are monofunctional, bifunctional, and polyfunctional, and any of them can be used, but blending is preferable in order to obtain an appropriate evaporation rate, degree of curing, curing rate, and the like.
  • the monofunctional acrylate include aliphatic, alicyclic, ether-based, cyclic ether-based, aromatic-based, hydroxyl group-containing, and carboxy group-containing, and any of them can be used.
  • Photocationic curing polymer The cationic polymerization system is characterized by being less irritating compared to the same photocurable acrylate.
  • ring-opening polymerization types such as epoxy-based and oxetane-based are particularly preferable in the present invention because the volumetric shrinkage during curing is small and the internal stress is small and the adhesiveness is excellent.
  • the epoxy system an alicyclic epoxy system is particularly preferable, and a bifunctional monomer, a polyfunctional oligomer, or a mixture thereof can be preferably used.
  • the oxetane is preferably a monofunctional oxetane, a bifunctional oxetane, an oxetane having a silsesquioxane structure, or the like. However, a mixture thereof, a mixture to which a glycidyl ether compound is added, or a mixture with an epoxy compound is also preferred.
  • a photocationically curable polymer a photocurable latent curing agent that initiates a curing reaction using light as a trigger may be included.
  • a photoacid generator is usually preferred.
  • aryl diazonium salts, diaryl iodonium salts and the like are known, and triarylsulfonium salts are the most common.
  • generates a photoradical as a sensitizer is preferable.
  • the sensitizer include aromatic ketone, phenothiazine, diphenylanthracene, rubrene, xanthone, thioxanthone derivatives, and chlorothioxanthone. Among these, thioxanthone derivatives are preferable.
  • the fine particle layer contains at least a polymer and fine particles, and further contains other components as necessary.
  • the fine particles are not particularly limited as long as the refractive index is different from the refractive index of the polymer of the fine particle layer, and can scatter light, and can be appropriately selected according to the purpose. It may be inorganic fine particles, and preferably contains two or more fine particles. Hereinafter, it may be referred to as scattering fine particles.
  • Examples of the organic fine particles include polymethyl methacrylate beads, acrylic-styrene copolymer beads, melamine beads, polycarbonate beads, polystyrene beads, cross-linked polystyrene beads, polyvinyl chloride beads, benzoguanamine-melamine formaldehyde beads, and the like.
  • Examples of the inorganic fine particles include ZrO 2 , TiO 2 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , and the like. Among these, TiO 2 , ZrO 2 , ZnO, and SnO 2 are particularly preferable.
  • the refractive index of the fine particles is not particularly limited as long as it is different from the refractive index of the polymer of the fine particle layer, and can be appropriately selected according to the purpose, but is preferably 1.55 to 2.6. 58 to 2.1 is more preferable.
  • the refractive index of the fine particles is determined by measuring the refractive index of the refractive liquid using, for example, an automatic refractive index measuring device (KPR-2000, manufactured by Shimadzu Corporation), and then using a precision spectrometer (GMR-1DA, Shimadzu Corporation). (Manufactured by Seisakusho Co., Ltd.) and can be measured by the Shribsky method.
  • the average particle size of the fine particles is preferably 0.5 ⁇ m to 10 ⁇ m, and more preferably 0.5 ⁇ m to 6 ⁇ m.
  • the average particle diameter of the fine particles exceeds 10 ⁇ m, most of the light is forward scattered, and the ability to convert the angle of light by the fine particles for scattering may be reduced.
  • the average particle size of the fine particles is less than 0.5 ⁇ m, the wavelength becomes smaller than the wavelength of visible light, Mie scattering changes to the Rayleigh scattering region, the wavelength dependency of the scattering efficiency of the fine particles increases, and light emission It is expected that the chromaticity of the element will change greatly and the light extraction efficiency will decrease.
  • the average particle diameter of the fine particles can be measured, for example, by an apparatus using a dynamic light scattering method such as Nanotrack UPA-EX150 manufactured by Nikkiso Co., Ltd., or by image processing of an electron micrograph.
  • the volume filling rate of the fine particles in the fine particle layer is preferably 30% to 80%, more preferably 40% to 70%. If the volume filling factor is less than 30%, the probability that the light incident on the fine particle layer is scattered by the fine particles is small, and the ability to convert the light angle of the fine particle layer is small. If it is not thickened, the light extraction efficiency may decrease. Further, increasing the thickness of the fine particle layer leads to an increase in cost, resulting in a large variation in the thickness of the fine particle layer, which may cause a variation in the scattering effect in the light emitting surface. On the other hand, when the volume filling rate exceeds 80%, the surface of the fine particle layer is greatly roughened, and cavities are generated inside, whereby the physical strength of the fine particle layer may be lowered.
  • the volume filling rate of the fine particles in the fine particle layer can be measured, for example, by a gravimetric method.
  • the specific gravity of the particles is measured with a particle specific gravity measuring device (MARK3, manufactured by Union Engineering Co., Ltd.), and the weight of the fine particles is measured with an electronic balance (FZ-3000i, manufactured by A & D).
  • FZ-3000i manufactured by A & D
  • a part of the produced fine particle layer is cut out, and the thickness of the fine particle layer is measured with a scanning electron microscope (S-3400N, manufactured by Hitachi High-Tech Co., Ltd.) to obtain the volume filling rate of the fine particles in the fine particle layer. it can.
  • the high refractive index fine particles preferably have a refractive index of 2.0 or more, more preferably 2.4 to 3.0.
  • the average primary particle size is preferably 0.5 nm to 100 nm, more preferably 1 nm to 80 nm, and even more preferably 1 nm to 50 nm. If the refractive index of the high refractive index fine particles is 2.0 or more, the refractive index of the layer can be effectively increased, and if the refractive index is 3.0 or less, there is no inconvenience such as coloring of the particles. Therefore, it is preferable.
  • the average particle diameter of the primary particles of the high refractive index fine particles is 100 nm or less, it is preferable because the haze value of the formed fine particle layer is increased and the transparency of the layer is not impaired. It is preferable because a high refractive index is maintained.
  • Particle diameter of the high refractive index fine particles are expressed as the average primary particle diameter with transmission electron microscope (TEM) photograph.
  • the average primary particle diameter is expressed as an average value of the maximum diameters of the respective fine particles.
  • the average value of the major axis diameters of the respective fine particles is defined as the average primary particle diameter.
  • the high refractive index fine particles include Ti, Zr, Ta, In, Nd, Sn, Sb, Zn, La, W, Ce, Nb, V, Sm, Y, and other oxides or composite oxides, sulfides.
  • grains which have as a main component are mentioned.
  • the main component means a component having the largest content (mass%) among the components constituting the particles.
  • More preferable high refractive index fine particles in the present invention are particles mainly composed of an oxide or composite oxide containing at least one metal element selected from Ti, Zr, Ta, In, and Sn.
  • the high refractive index fine particles may contain various elements in the particles (hereinafter, such elements may be referred to as containing elements).
  • the contained element include Li, Si, Al, B, Ba, Co, Fe, Hg, Ag, Pt, Au, Cr, Bi, P, and S.
  • a contained element such as Sb, Nb, P, B, In, V, or halogen in order to increase the conductivity of the particles, and in particular, antimony oxide is contained in an amount of 5% by mass to 20%. Most preferred is a composition containing 1% by mass.
  • the high refractive index fine particles are inorganic fine particles mainly composed of titanium dioxide containing at least one element selected from Co, Zr, and Al as contained elements (hereinafter also referred to as “specific oxide”). Is mentioned. Among these, Co is particularly preferable.
  • the total content of Co, Al, and Zr is preferably 0.05% by mass to 30% by mass with respect to Ti, more preferably 0.1% by mass to 10% by mass, and 0.2% by mass to 7% by mass. More preferably, 0.3% by mass to 5% by mass is particularly preferable, and 0.5% by mass to 3% by mass is most preferable.
  • the contained elements Co, Al, Zr is present in or on the high refractive index fine particle mainly comprising titanium dioxide. It is more preferable that it exists in the high refractive index fine particle mainly composed of titanium dioxide, and it is more preferable that it exists in both the inside and the surface. Among these contained elements, the metal element may exist as an oxide.
  • composite oxidation of titanium element and at least one metal element selected from metal elements whose oxide has a refractive index of 1.95 or more.
  • the composite oxide includes inorganic fine particles doped with at least one metal ion selected from Co ions, Zr ions, and Al ions (sometimes referred to as “specific multi-oxide”).
  • metal element having a refractive index of the oxide of 1.95 or higher include Ta, Zr, In, Nd, Sb, Sn, and Bi. Among these, Ta, Zr, Sn, and Bi are particularly preferable.
  • the content of the metal ions doped in the specific composite oxide is within a range not exceeding 25 mass% with respect to the total amount of metal [Ti + Met] constituting the composite oxide. From 0.05% by weight to 10% by weight, more preferably from 0.1% by weight to 5% by weight, and particularly preferably from 0.3% by weight to 3% by weight.
  • the doped metal ion may exist as a metal ion or in any form of a metal atom, and may appropriately exist from the surface to the inside of the composite oxide. It is preferable to exist both on the surface and inside of the composite oxide.
  • the high refractive index fine particles preferably have a crystal structure.
  • the crystal structure is preferably composed mainly of rutile, a mixed crystal of rutile / anatase, and anatase, particularly preferably a rutile structure.
  • the high refractive index fine particles of the specific oxide or the specific double oxide have a refractive index of 1.9 to 2.8, which is preferable.
  • the refractive index is more preferably 2.1 to 2.8, still more preferably 2.2 to 2.8.
  • a conventionally known method can be used as a method of doping the specific metal element or metal ion described above.
  • methods described in JP-A-5-330825, JP-A-11-263620, JP-A-11-512336, European Patent No. 0335773, etc . ion implantation methods (for example, Shunichi Gonda, Ishikawa Junzo, Eiji Kamijo, “Ion Beam Applied Technology” CMC Co., Ltd., published in 1989, Yasushi Aoki, “Surface Science” 18 (5), 262, 1998, Shoichi Anbo, “Surface Science” 20 (2), 60 pages, 1999, etc.].
  • the high refractive index fine particles may be surface treated.
  • the surface treatment is a modification of the surface of the particles using an inorganic compound and / or an organic compound, whereby the wettability of the surface of the high refractive index fine particles is adjusted, and the fine particles are formed in an organic solvent. Dispersibility and dispersion stability in the layer composition are improved.
  • inorganic compounds adsorbed physicochemically on the particle surface include silicon-containing inorganic compounds (such as SiO 2 ), aluminum-containing inorganic compounds [Al 2 O 3 , Al (OH) 3, etc.], and cobalt.
  • organic compound used for the surface treatment conventionally known surface modifiers of inorganic fillers such as metal oxides and inorganic pigments can be used. For example, it is described in “Pigment Dispersion Stabilization and Surface Treatment Technology / Evaluation”, Chapter 1 (Technical Information Association, published in 2001).
  • an organic compound having a polar group having an affinity for the surface of the high refractive index fine particles, and a coupling compound can be mentioned.
  • the polar group having affinity with the surface of the high refractive index fine particles include a carboxy group, a phosphono group, a hydroxy group, a mercapto group, a cyclic acid anhydride group, an amino group, and the like.
  • Compounds containing seeds are preferred.
  • long chain aliphatic carboxylic acids eg, stearic acid, lauric acid, oleic acid, linoleic acid, linolenic acid, etc.
  • polyol compounds eg, pentaerythritol triacrylate, dipentaerythritol pentaacrylate, ECH (epichlorohydrin) modified glycerol Triacrylate, etc. ⁇
  • phosphono group-containing compounds ⁇ for example, EO (ethylene oxide) modified phosphoric triacrylate, etc. ⁇ , alkanolamines ⁇ ethylenediamine EO adduct (5 mol), etc. ⁇ .
  • Examples of the coupling compound include conventionally known organometallic compounds, and include silane coupling agents, titanate coupling agents, aluminate coupling agents, and the like. Silane coupling agents are most preferred. Specific examples include compounds described in paragraph numbers [0011] to [0015] of JP-A Nos. 2002-9908 and 2001-310423. Two or more kinds of compounds used for these surface treatments can be used in combination.
  • the high refractive index fine particles are also preferably fine particles having a core / shell structure in which a shell made of another inorganic compound is formed using the high refractive index fine particles as a core.
  • the shell is preferably an oxide composed of at least one element selected from Al, Si, and Zr. Specifically, for example, the contents described in JP-A-2001-166104 can be mentioned.
  • the shape of the high refractive index fine particles is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a rice granular shape, a spherical shape, a cubic shape, a spindle shape or an indefinite shape is preferable.
  • the high refractive index fine particles may be used alone or in combination of two or more.
  • the content of the high refractive index fine particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably in the range where the refractive index of the polymer can be 1.55 to 1.95.
  • the polymer is preferably at least one of (A) an organic binder, (B) an organometallic compound containing a hydrolyzable functional group, and a partial condensate of this organometallic compound.
  • organic binder As the organic binder (A), (1) a conventionally known thermoplastic resin, (2) A combination of a conventionally known reactive curable resin and a curing agent, or (3) a combination of a binder precursor (a curable polyfunctional monomer or polyfunctional oligomer described below) and a polymerization initiator. Binders to be used.
  • a fine particle layer composition containing the organic binder (1), (2) or (3), the fine particles, and the highly refractive fine particles is prepared.
  • This fine particle layer composition is coated on a support to form a coating film, and then cured by a method according to the binder component to form a fine particle layer.
  • the curing method is appropriately selected depending on the type of the binder component.
  • the crosslinking reaction or polymerization reaction of a curable compound for example, a polyfunctional monomer, a polyfunctional oligomer, etc.
  • the method of raising is mentioned.
  • cured the crosslinking reaction or the polymerization reaction of the curable compound by irradiating light using the combination of said (3) is preferable.
  • the dispersing agent contained in the fine particle dispersion is subjected to a crosslinking reaction or a polymerization reaction simultaneously with or after the coating of the fine particle layer composition.
  • the binder in the cured film produced in this way is, for example, a curable polyfunctional monomer or polyfunctional oligomer that is a precursor of the dispersant and a precursor of the binder undergoes a crosslinking or polymerization reaction, and the binder has an anion of the dispersant. It becomes a form in which a sex group is incorporated. Furthermore, since the binder in the cured film has a function of maintaining the dispersion state of the high refractive index fine particles, the crosslinked or polymerized structure imparts a film forming ability to the binder and contains the high refractive index fine particles. The physical strength, chemical resistance, and weather resistance in the cured film can be improved.
  • thermoplastic resin (A-1) There is no restriction
  • thermosetting resin a thermosetting resin and / or an ionizing radiation curable resin.
  • thermosetting resin a thermosetting resin
  • examples thereof include resins, amino alkyd resins, melamine-urea cocondensation resins, silicon resins, polysiloxane resins, and the like.
  • the ionizing radiation curable resin is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a radical polymerizable unsaturated group ⁇ (meth) acryloyloxy group, vinyloxy group, styryl group, vinyl group, etc.
  • a resin having a functional group such as a cationically polymerizable group (epoxy group, thioepoxy group, vinyloxy group, oxetanyl group, etc.), for example, a relatively low molecular weight polyester resin, polyether resin, (meth) acrylic resin, Examples thereof include epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, and polythiol polyene resins.
  • a crosslinking agent for example, an epoxy compound, a polyisocyanate compound, a polyol compound, a polyamine compound, a melamine compound, etc.
  • a polymerization initiator for example, an azobis compound, an organic peroxide compound
  • curing agents such as organic halogen compounds, onium salt compounds, and UV photoinitiators such as ketone compounds
  • polymerization accelerators organic metal compounds, acid compounds, basic compounds, etc.
  • the functional group of the photocurable polyfunctional monomer or polyfunctional oligomer that is the precursor of the binder may be any of a radical polymerizable functional group and a cationic polymerizable functional group.
  • radical polymerizable functional group examples include an ethylenically unsaturated group such as a (meth) acryloyl group, a vinyloxy group, a styryl group, and an allyl group.
  • a (meth) acryloyl group is particularly preferable, and a polyfunctional monomer containing two or more radically polymerizable groups in the molecule is particularly preferable.
  • the radical polymerizable polyfunctional monomer is preferably selected from compounds having at least two terminal ethylenically unsaturated bonds.
  • a compound having 2 to 6 terminal ethylenically unsaturated bonds in the molecule is preferable.
  • Such compounds are widely known in the polymer material field, in the present invention, they can be used without any particular limitation. These can have chemical forms such as monomers, prepolymers (ie, dimers, trimers and oligomers) or mixtures thereof, and copolymers thereof.
  • radical polymerizable monomer examples include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), esters thereof, amides, and the like.
  • unsaturated carboxylic acids for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.
  • esters thereof esters thereof, amides, and the like.
  • an ester of an unsaturated carboxylic acid and an aliphatic polyhydric alcohol compound, and an amide of an unsaturated carboxylic acid and an aliphatic polyamine compound are particularly preferable.
  • a dehydration condensation reaction product with an acid or the like is also preferably used.
  • a reaction product of an unsaturated carboxylic acid ester or amide having an electrophilic substituent such as an isocyanate group or an epoxy group with a monofunctional or polyfunctional alcohol, amine or thiol is also suitable.
  • a compound group in which an unsaturated phosphonic acid, styrene, or the like is substituted for the unsaturated carboxylic acid may be used.
  • Examples of the aliphatic polyhydric alcohol compound include alkanediol, alkanetriol, cyclohexanediol, cyclohexanetriol, inositol, cyclohexanedimethanol, pentaerythritol, sorbitol, dipentaerythritol, tripentaerythritol, glycerin, diglycerin and the like. .
  • Polymerizable ester compounds (monoesters or polyesters) of these aliphatic polyhydric alcohol compounds and unsaturated carboxylic acids for example, as described in paragraphs [0026] to [0027] of JP-A-2001-139663, for example The compound of this is mentioned.
  • polymerizable esters include, for example, vinyl alcohol, allyl methacrylate, allyl acrylate, aliphatic alcohols described in JP-B-46-27926, JP-B-51-47334, JP-A-57-196231, and the like. Those having an aromatic skeleton described in JP-A-2-226149 and those having an amino group described in JP-A-1-165613 are also preferably used.
  • polymerizable amides formed from aliphatic polyvalent amine compounds and unsaturated carboxylic acids include methylene bis (meth) acrylamide, 1,6-hexamethylene bis (meth) acrylamide, and diethylenetriamine tris (meth) acrylamide. And xylylene bis (meth) acrylamide, and those having a cyclohexylene structure described in JP-B-54-21726.
  • vinyl urethane compounds containing two or more polymerizable vinyl groups in one molecule Japanese Patent Publication No. 48-41708, etc.
  • urethane acrylates Japanese Patent Publication No. 2-16765, etc.
  • ethylene oxide skeleton Urethane compounds having a characteristic Japanese Patent Publication No. 62-39418, etc.
  • polyester acrylates Japanese Patent Publication No. 52-30490, etc.
  • Photocurable monomers and oligomers can also be used. Two or more kinds of these radical polymerizable polyfunctional monomers may be used in combination.
  • a cationically polymerizable group-containing compound (hereinafter, also referred to as “cationic polymerizable compound” or “cationic polymerizable organic compound”) that can be used for forming the binder of the fine particle layer will be described.
  • any compound that undergoes a polymerization reaction and / or a crosslinking reaction when irradiated with an active energy ray in the presence of an active energy ray-sensitive cationic polymerization initiator can be used.
  • examples thereof include a compound, a cyclic thioether compound, a cyclic ether compound, a spiro orthoester compound, a vinyl hydrocarbon compound, and a vinyl ether compound.
  • One or more of the cationically polymerizable organic compounds may be used.
  • the number of cation polymerizable groups in one molecule is preferably 2 to 10, more preferably 2 to 5.
  • the average molecular weight of the compound is preferably 3,000 or less, more preferably 200 to 2,000, and still more preferably 400 to 1,500. If the average molecular weight is not less than the lower limit, there will be no inconvenience such as volatilization in the film formation process. If the average molecular weight is not more than the upper limit, the compatibility with the composition for the fine particle layer will not occur. This is preferable because it does not cause problems such as deterioration.
  • Examples of the epoxy compound include aliphatic epoxy compounds and aromatic epoxy compounds.
  • aliphatic epoxy compounds examples include polyglycidyl ethers of aliphatic polyhydric alcohols or alkylene oxide adducts thereof, polyglycidyl esters of aliphatic long-chain polybasic acids, glycidyl acrylate, homopolymers and copolymers of glycidyl methacrylate, and the like. be able to.
  • epoxy compounds for example, monoglycidyl ethers of higher aliphatic alcohols, glycidyl esters of higher fatty acids, epoxidized soybean oil, butyl epoxy stearate, octyl epoxy stearate, epoxidized linseed oil, epoxidized polybutadiene And so on.
  • the alicyclic epoxy compound include polyglycidyl ethers of polyhydric alcohols having at least one alicyclic ring, or unsaturated alicyclic rings (for example, cyclohexene, cyclopentene, dicyclooctene, tricyclodecene, etc. ) Cyclohexene oxide or cyclopentene oxide-containing compound obtained by epoxidizing the containing compound with a suitable oxidizing agent such as hydrogen peroxide or peracid.
  • a suitable oxidizing agent such as hydrogen peroxide or peracid.
  • aromatic epoxy compound examples include mono- or polyglycidyl ethers of monovalent or polyvalent phenols having at least one aromatic nucleus, or alkylene oxide adducts thereof.
  • aromatic epoxy compounds examples include compounds described in paragraphs [0084] to [0086] of JP-A No. 11-242101 and paragraphs [0044] to [0046] of JP-A No. 10-158385. And the compounds described.
  • epoxy compounds aromatic epoxides and alicyclic epoxides are preferable, and alicyclic epoxides are particularly preferable in consideration of fast curability.
  • One of the epoxy compounds may be used alone, or two or more may be used in appropriate combination.
  • the cyclic thioether compound, in place of the epoxy ring of the epoxy compound include compounds having a thioepoxy ring.
  • the compound containing an oxetanyl group as the cyclic ether compound include compounds described in paragraphs [0024] to [0025] in JP-A No. 2000-239309. These compounds are preferably used in combination with an epoxy group-containing compound.
  • Examples of the spiro ortho ester compound include compounds described in JP 2000-506908 A.
  • vinyl hydrocarbon compounds examples include styrene compounds, vinyl group-substituted alicyclic hydrocarbon compounds (vinyl cyclohexane, vinyl bicycloheptene, etc.), compounds described in the above radical polymerizable monomers, propenyl compounds ⁇ "J.
  • the polyfunctional compound is preferably a compound containing in the molecule at least one selected from the radical polymerizable group and the cationic polymerizable group. Examples thereof include compounds described in paragraph numbers [0031] to [0052] in JP-A-8-277320, compounds described in paragraph number [0015] in JP-A 2000-191737, and the like. The compounds used in the present invention are not limited to these.
  • the radical polymerizable compound and the cation polymerizable compound described above are preferably contained in a mass ratio of radical polymerizable compound: cation polymerizable compound in a ratio of 90:10 to 20:80, and 80:20 More preferably, it is contained in a ratio of ⁇ 30: 70.
  • the polymerization initiator examples include a thermal polymerization initiator and a photopolymerization initiator.
  • the polymerization initiator by light and / or heat radiation is preferably a compound which generates a radical or an acid.
  • the photopolymerization initiator preferably has a maximum absorption wavelength of 400 nm or less. Thus the absorption wavelength in the ultraviolet region, can be implemented to handle under white light. A compound having a maximum absorption wavelength in the near infrared region can also be used.
  • the compound that generates radicals refers to a compound that generates radicals by irradiation with light and / or heat, and initiates and accelerates polymerization of a compound having a polymerizable unsaturated group.
  • a known polymerization initiator, a compound having a bond having a small bond dissociation energy, and the like can be appropriately selected and used.
  • produces a radical can be used individually or in combination of 2 or more types.
  • Examples of the compound that generates radicals include conventionally known organic peroxide compounds, thermal radical polymerization initiators such as azo polymerization initiators, organic peroxide compounds (Japanese Patent Laid-Open No. 2001-139663, etc.), amine compounds ( JP-B-44-20189), metallocene compounds (described in JP-A-5-83588, JP-A-1-304453, etc.), hexaarylbiimidazole compounds (US Pat. No. 3,479,185, etc.) And photo radical polymerization initiators such as disulfone compounds (JP-A-5-239015, JP-A-61-166544, etc.), organic halogenated compounds, carbonyl compounds, and organic boric acid compounds.
  • thermal radical polymerization initiators such as azo polymerization initiators, organic peroxide compounds (Japanese Patent Laid-Open No. 2001-139663, etc.), amine compounds ( JP-B-44-20189), metallocene compounds
  • organic halogenated compound examples include Wakabayashi et al., “Bull. Chem. Soc Japan”, Vol. 42, page 2924 (1969), US Pat. 27830, M.M. P. Hutt, “J. Heterocyclic Chemistry”, Vol. 1 (No. 3), (1970) ”and the like, and in particular, an oxazole compound substituted with a trihalomethyl group: an s-triazine compound. More preferred are s-triazine derivatives in which at least one mono-, di- or trihalogen-substituted methyl group is bonded to the s-triazine ring.
  • Examples of the carbonyl compound include, for example, “Latest UV Curing Technology”, pages 60 to 62 (published by Technical Information Association, 1991), paragraph numbers [0015] to [0016] of JP-A-8-134404, Examples thereof include compounds described in paragraph numbers [0029] to [0031] of Kaihei 11-217518.
  • benzoin compounds such as acetophenone, hydroxyacetophenone, benzophenone, thioxan, benzoin ethyl ether, benzoin isobutyl ether, benzoic acid ester derivatives such as ethyl p-dimethylaminobenzoate, ethyl p-diethylaminobenzoate, benzyldimethyl
  • benzoic acid ester derivatives such as ethyl p-dimethylaminobenzoate, ethyl p-diethylaminobenzoate, benzyldimethyl
  • benzoic acid ester derivatives such as ethyl p-dimethylaminobenzoate, ethyl p-diethylaminobenzoate, benzyldimethyl
  • benzoic acid ester derivatives such as ethyl p-dimethylaminobenzoate, ethyl p-die
  • organic borate compound examples include, for example, Japanese Patent Nos. 2764769 and 2002-116539, and Kunz, Martin, “Rad. Tech'98. Proceeding April 19-22, 1998, Chicago”. And the organic borates described in the above. For example, compounds described in the JP-2002-116539 paragraphs JP [0022] ⁇ [0027].
  • organic boron compounds examples include JP-A-6-348011, JP-A-7-128785, JP-A-7-140589, JP-A-7-306527, and JP-A-7-292014. Specific examples include organoboron transition metal coordination complexes.
  • radical generating compounds may be added alone or in combination of two or more.
  • the addition amount is preferably 0.1% by mass to 30% by mass, more preferably 0.5% by mass to 25% by mass, and still more preferably 1% by mass to 20% by mass with respect to the total amount of the radical polymerizable monomer. In the range of the addition amount, the temporal stability of the composition for the fine particle layer becomes highly polymerizable without any problem.
  • photoacid generator that can be used as a photopolymerization initiator
  • examples of the photoacid generator include known compounds such as photoinitiators for photocationic polymerization, photodecolorants for dyes, photochromic agents, or known photoacid generators used in microresists, and the like. And the like.
  • examples of the photoacid generator include organic halogenated compounds, disulfone compounds, onium compounds, and the like. Among these, organic halogenated compounds and disulfone compounds are particularly preferable. Specific examples of the organic halogen compound and the disulfone compound are the same as those described for the compound generating the radical.
  • onium compounds examples include diazonium salts, ammonium salts, iminium salts, phosphonium salts, iodonium salts, sulfonium salts, arsonium salts, selenonium salts, and the like.
  • paragraph numbers [0058] of JP-A-2002-29162 are listed. ] To [0059], and the like.
  • an onium salt is particularly preferably used, and among them, a diazonium salt, an iodonium salt, a sulfonium salt, and an iminium salt are preferable from the viewpoint of photosensitivity at the start of photopolymerization, material stability of the compound and the like.
  • the onium salt include, for example, an amylated sulfonium salt described in paragraph No. [0035] of JP-A-9-268205 and paragraph Nos. [0010] to [0010] of JP-A No. 2000-71366.
  • photoacid generator examples include organic acids / organic halides described in JP-A-2002-29162, paragraphs [0059] to [0062], and photoacids having an o-nitrobenzyl type protecting group.
  • examples thereof include compounds such as a generator and a compound that generates photosulfonic acid to generate sulfonic acid (such as iminosulfonate).
  • the addition amount of the acid generator is preferably 0.1% by mass to 20% by mass, more preferably 0.5% by mass to 15% by mass, and more preferably 1% by mass to 10% by mass with respect to the total mass of the total cationically polymerizable monomer. % Is more preferable.
  • the addition amount is preferable in the above range from the viewpoint of stability of the composition for fine particle layer, polymerization reactivity, and the like.
  • the radical polymerization initiator is 0.5% by mass to 10% by mass or the cationic polymerization initiator is 1% by mass to 10% by mass with respect to the total mass of the radical polymerizable compound or the cationic polymerizable compound.
  • % Preferably 1% to 5% by weight of radical polymerization initiator, or more preferably 2% to 6% by weight of cationic polymerization initiator.
  • a conventionally known ultraviolet spectral sensitizer or chemical sensitizer may be used in combination.
  • these sensitizers include Michler's ketone, amino acids (for example, glycine), organic amines (for example, butylamine, dibutylamine), and the like.
  • the near-infrared spectral sensitizer used in combination may be a light-absorbing substance having an absorption band in at least a part of the wavelength region of 700 nm or more, and a compound having a molecular extinction coefficient of 10,000 or more is preferable. Further, it is preferable that the absorption is in the region of 750 nm to 1,400 nm and the molecular extinction coefficient is 20,000 or more. Further, it is more preferable that there is an absorption valley in the visible light wavelength region of 420 nm to 700 nm, and it is optically transparent.
  • near infrared spectral sensitizer various pigments and dyes known as near infrared absorbing pigments and near infrared absorbing dyes can be used. Among these, it is preferable to use a conventionally known near-infrared absorber.
  • Commercial dyes and literature ⁇ for example, “Chemical Industry”, May 1986, pages 45-51 “Near-infrared absorbing dyes”, “Development and market trends of functional dyes in the 1990s”, Chapter 2.3. (1990) CMC, “Special Function Dye” (edited by Ikemori and Pilatani, 1986, issued by CMC Corporation), J. Am. FABIAN, “Chem. Rev.”, Vol. 92, pp. 1197-1226 (1992) ⁇ , a catalog published in 1995 by Nippon Sensitive Dye Research Institute, and Exciton Inc. Can be used as well as known dyes described in laser dye catalogs and patents issued in 1989.
  • organometallic compound examples include compounds composed of Si, Ti, Zr, Al, and the like.
  • hydrolyzable functional group examples include an alkoxy group, an alkoxycarbonyl group, a halogen atom, and a hydroxyl group. Among these, a methoxy group, an ethoxy group, a propoxy group, an alkoxy group or a butoxy group are particularly preferred.
  • a preferred organometallic compound is an organosilicon compound represented by the following general formula (2) or a partial hydrolyzate (partial condensate) thereof. In addition, it is a well-known fact that the organosilicon compound represented by the general formula (2) is easily hydrolyzed and subsequently undergoes a dehydration condensation reaction.
  • R 21 represents a substituted or unsubstituted aliphatic group having 1 to 30 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • Y 21 represents a halogen atom (for example, chlorine atom, bromine atom, etc.), OH group, OR 22 group, OCOR 22 group.
  • R 22 represents a substituted or unsubstituted alkyl group.
  • represents an integer of 0 to 3, preferably 0, 1 or 2, particularly preferably 1. However, when ⁇ is 0, Y 21 represents an OR 22 group or an OCOR 22 group.
  • the aliphatic group represented by R 21 preferably has 1 to 18 carbon atoms (for example, methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, decyl, dodecyl, hexadecyl, octadecyl, benzyl).
  • the substituent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • halogen eg, fluorine, chlorine, bromine, etc.
  • hydroxyl group eg., mercapto group
  • carboxyl group e.g., epoxy group, alkyl group ( For example, methyl, ethyl, i-propyl, propyl, t-butyl etc.), aryl group (eg phenyl, naphthyl etc.), aromatic heterocyclic group (eg furyl, pyrazolyl, pyridyl etc.), alkoxy group (eg Methoxy, ethoxy, i-propoxy, hexyloxy etc.), aryloxy (eg phenoxy etc.), alkylthio group (eg methylthio, ethylthio etc.), arylthio group (eg phenylthio etc.), alkenyl group (eg vinyl, 1 -Propeny
  • substituents more preferred are a hydroxyl group, a mercapto group, a carboxyl group, an epoxy group, an alkyl group, an alkoxysilyl group, an acyloxy group, and an acylamino group, and particularly preferred are an epoxy group and a polymerizable acyloxy group ⁇ ( (Meth) acryloyl ⁇ , a polymerizable acylamino group (for example, acrylamino, methacrylamino, etc.). These substituents may be further substituted.
  • R 22 represents a substituted or unsubstituted alkyl group, and the alkyl group is not particularly limited, and examples thereof include the same as the aliphatic group of R 21 , and the explanation of the substituent in the alkyl group is R 21 .
  • the content of the compound of the general formula (2) is preferably 10% by mass to 80% by mass, more preferably 20% by mass to 70% by mass, and more preferably 30% by mass to 50% by mass of the total solid content of the composition for fine particle layer. More preferred is mass%.
  • Examples of the compound of the general formula (2) include compounds described in paragraph numbers [0054] to [0056] of JP-A No. 2001-166104.
  • the organic binder preferably has a silanol group.
  • binder has a silanol group, the physical strength of the particle layer, chemical resistance, weather resistance is further improved, which is preferable.
  • the silanol group for example, as a binder forming component constituting the fine particle layer composition, a binder precursor (such as a curable polyfunctional monomer or polyfunctional oligomer), a polymerization initiator, a dispersion contained in a fine particle dispersion
  • An organic silicon compound represented by the general formula (2) having a crosslinking or polymerizable functional group is blended with the fine particle layer composition together with the agent, and the fine particle layer composition is applied onto the transparent support.
  • the dispersant, the polyfunctional monomer, the polyfunctional oligomer, and the organosilicon compound represented by the general formula (2) can be introduced into the binder by a crosslinking reaction or a polymerization reaction.
  • the hydrolysis / condensation reaction for curing the organometallic compound is preferably performed in the presence of a catalyst.
  • the catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid; organic acids such as oxalic acid, acetic acid, formic acid, trifluoroacetic acid, methanesulfonic acid, and toluenesulfonic acid; sodium hydroxide, potassium hydroxide, ammonia, and the like Inorganic bases; organic bases such as triethylamine and pyridine; metal alkoxides such as triisopropoxyaluminum, tetrabutoxyzirconium and tetrabutoxytitanate; metal chelate compounds such as ⁇ -diketones or ⁇ -ketoesters .
  • inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid
  • organic acids such as oxalic acid, acetic acid, formic acid, triflu
  • the ratio of these catalyst compounds in the composition is preferably 0.01% by mass to 50% by mass, more preferably 0.1% by mass to 50% by mass, and more preferably 0.5% by mass to 10 mass% is still more preferable.
  • reaction conditions are suitably adjusted with the reactivity of an organometallic compound.
  • the matrix preferably has a specific polar group.
  • specific polar group include an anionic group, an amino group, and a quaternary ammonium group.
  • Specific examples of the anionic group, amino group, and quaternary ammonium group include the same as those described for the dispersant.
  • the solvent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • alcohols for example, methanol, ethanol, propanol, butanol, benzyl alcohol, ethylene glycol, propylene glycol, ethylene glycol monoacetate, etc.
  • ketone for example, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methylcyclohexanone, etc.
  • Esters eg, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, ethyl formate, propyl formate, butyl formate, ethyl lactate, etc.
  • aliphatic hydrocarbons eg, hexane, cyclohexane
  • a coating solvent system mainly comprising a ketone solvent (for example, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.) is also preferably used.
  • the content of the ketone solvent is preferably 10% by mass or more, more preferably 30% by mass or more, and still more preferably 60% by mass or more of the total solvent contained in the fine particle layer composition.
  • the matrix having a specific polar group is, for example, a binder precursor having a specific polar group (curable polyfunctional monomer or polyfunctional oligomer having a specific polar group) as a cured film forming component in the composition for a fine particle layer. Etc.) and a polymerization initiator, and at least one of the organosilicon compounds represented by the general formula (2) having a specific polar group and having a crosslinkable or polymerizable functional group, and, if desired, A monofunctional monomer having a specific polar group and a crosslinkable or polymerizable functional group is blended, and the coating composition is applied on a transparent support, and the dispersant, monofunctional monomer, or polyfunctional monomer is applied. It is obtained by crosslinking or polymerizing a polyfunctional oligomer and / or an organosilicon compound represented by the general formula (2).
  • the monofunctional monomer having the specific polar group is preferable because it can function as a fine particle dispersion aid in the fine particle layer composition. Furthermore, after coating, a dispersing agent, polyfunctional monomer, polyfunctional oligomer and cross-linking reaction or polymerization reaction to form a binder to maintain good and uniform dispersibility of the fine particles in the fine particle layer, physical strength, resistance A fine particle layer excellent in chemical properties and weather resistance can be produced.
  • the fine particle layer composition is formed on the transparent substrate by, for example, a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, a micro gravure coating method, an extrusion coating. It can be prepared by applying by a known thin film forming method such as a method and drying, irradiating with light and / or heat. Preferably, curing by light irradiation is advantageous from rapid curing. Furthermore, it is also preferable to perform heat treatment in the latter half of the photocuring treatment.
  • the light source for light irradiation may be any ultraviolet light region or near-infrared light source, and ultra-high pressure, high pressure, medium pressure, low pressure mercury lamps, chemical lamps, carbon arc lamps, metal halide lamps may be used as ultraviolet light sources. Xenon lamps, sunlight, etc.
  • Various available laser light sources having wavelengths of 350 nm to 420 nm may be irradiated in a multi-beam form.
  • examples of the near-infrared light source include a halogen lamp, a xenon lamp, and a high-pressure sodium lamp.
  • Various available laser light sources having a wavelength of 750 nm to 1,400 nm may be irradiated in a multi-beam form.
  • radical photopolymerization by light irradiation it can be carried out in air or in an inert gas, but in order to shorten the polymerization induction period of the radically polymerizable monomer or sufficiently increase the polymerization rate, etc. It is preferable that the atmosphere has a reduced oxygen concentration. Irradiation intensity of ultraviolet irradiation is preferably about 0.1mW / cm 2 ⁇ 100mW / cm 2, irradiation amount on the coating film surface is 100mJ / cm 2 ⁇ 1,000mJ / cm 2 is preferred.
  • the temperature distribution of the coating film in the light irradiation step is preferably as uniform as possible, preferably within ⁇ 3 ° C., and more preferably controlled within ⁇ 1.5 ° C. In this range, the polymerization reaction in the in-plane and in-layer depth directions of the coating film proceeds uniformly, which is preferable.
  • the average thickness of the fine particle layer is preferably 5 ⁇ m to 200 ⁇ m, and more preferably 5 ⁇ m to 50 ⁇ m. When the average thickness is less than 5 ⁇ m, there is no sufficient light angle conversion by the fine particle layer, and sufficient light extraction efficiency may not be obtained. When the average thickness exceeds 200 ⁇ m, light is scattered too much, and backscattering Light increases, more light returns to the inside of the organic electroluminescent layer, light extraction efficiency decreases, and the thick fine particle layer leads to high cost, and the variation in the thickness of the fine particle layer increases, and the light emitting surface There is a risk that the scattering effect will vary.
  • the average thickness can be determined, for example, by cutting a part of the fine particle layer and measuring with a scanning electron microscope (S-3400N, manufactured by Hitachi High-Tech Co., Ltd.).
  • the light emitting surface of the fine particle layer is flat, or preferably have a planarizing layer on the light emitting surface of the particulate layer.
  • an increase in backscattering can be suppressed even if the density of the fine particles is increased.
  • foreign matter adhesion is prevented by flattening.
  • the surface (particulate layer side) is flat, so that there is an advantage that even when it is in contact with the back surface (barrier layer), it is not damaged.
  • Examples of the method for flattening the light emitting surface of the fine particle layer include a method of laminating a material obtained by removing the scattering fine particles from the material used for forming the fine particle layer, and laminating the cured fine particle layer on the fine particle layer. .
  • the planarizing layer preferably has a composition that does not contain the scattering fine particles in the fine particle layer, and can be formed in the same manner as the fine particle layer.
  • the thickness of the planarizing layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 ⁇ m to 50 ⁇ m. When the thickness of the flattening layer is less than 5 ⁇ m, the surface of the protruding original fine particle layer cannot be flattened, and when it exceeds 50 ⁇ m, the light extraction ability is reduced due to light absorption of the flattening layer. Sometimes.
  • the shape, structure, size, material and the like of the substrate are not particularly limited and can be appropriately selected according to the purpose. Examples of the shape include a flat plate shape, and the like.
  • the structure may be a single layer structure or a laminated structure, and the size may be appropriately selected according to the size of the low refractive index layer transfer sheet.
  • the material for the base material is not particularly limited and may be appropriately selected depending on the intended purpose.
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polycarbonate, and polyimide resin (PI).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PI polyimide resin
  • a polyester resin is preferable, and polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are particularly preferable from the viewpoint of applicability with a roll.
  • the surface of the substrate is preferably subjected to a surface activation treatment in order to improve the adhesion between the barrier layer and the fine particle layer provided thereon. Examples of the surface activation treatment include glow
  • the base material may be appropriately synthesized or a commercially available product may be used. There is no restriction
  • the moisture permeability of the organic electroluminescent substrate is preferably 1 ⁇ 10 ⁇ 3 g / m 2 / day or less, and more preferably 1 ⁇ 10 ⁇ 4 g / m 2 / day or less.
  • the moisture permeability can be measured, for example, by the method described in G. NISATO, PCPBOUTEN, PJSLIKKERVEER et al., SID Conference Record of the International Display Research Conference, pages 1435-1438 (measurement method using calcium).
  • the oxygen permeability of an organic light emitting substrate is preferably not more than 1cc / m 2 / day, more preferably not more than 0.1cc / m 2 / day.
  • the oxygen permeability can be measured by, for example, an oxygen permeability measuring device (manufactured by MOCON, MOCON oxygen permeability measuring device, OX-TRAN 1 / 50A).
  • the organic electroluminescence substrate of the present invention can suppress spectrum modulation due to interference of the barrier layer, surface position dependency of chromaticity, and angle dependency of chromaticity, and can improve light extraction efficiency.
  • it can be used for an electroluminescent device or the like, it is particularly preferably used for the organic electroluminescent device of the present invention described below.
  • the organic electroluminescent device of the present invention includes at least the organic electroluminescent substrate of the present invention, and includes an organic electroluminescent layer and, if necessary, other members.
  • the organic electroluminescent layer has a pair of electrodes, that is, an anode and a cathode, and a light emitting layer between both electrodes.
  • Examples of the functional layer other than the light emitting layer that can be disposed between both electrodes include a hole transport layer, an electron transport layer, a hole block layer, an electron block layer, a hole injection layer, and an electron injection layer.
  • the organic electroluminescent layer preferably has a hole transport layer between the anode and the light emitting layer, and preferably has an electron transport layer between the cathode and the light emitting layer.
  • a hole injection layer may be provided between the hole transport layer and the anode, or an electron injection layer may be provided between the electron transport layer and the cathode.
  • a hole transporting intermediate layer (electron blocking layer) may be provided between the light emitting layer and the hole transporting layer, and an electron transporting intermediate layer (hole blocking layer) is provided between the light emitting layer and the electron transporting layer. Layer) may be provided.
  • Each functional layer may be divided into a plurality of secondary layers.
  • These functional layers including the light emitting layer can be suitably formed by any of a dry film forming method such as a vapor deposition method and a sputtering method, a wet coating method, a transfer method, a printing method, and an ink jet method.
  • a dry film forming method such as a vapor deposition method and a sputtering method
  • a wet coating method such as a transfer method, a printing method, and an ink jet method.
  • the light-emitting layer receives holes from an anode, a hole injection layer, or a hole transport layer when an electric field is applied, receives electrons from a cathode, an electron injection layer, or an electron transport layer, and recombines holes and electrons. It is a layer having a function of providing a field to emit light.
  • the light emitting layer includes a light emitting material.
  • the light emitting layer may be composed of only a light emitting material, or may be a mixed layer of a host material and a light emitting material (in the latter case, the light emitting material may be referred to as a “light emitting dopant” or “dopant”).
  • the light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, and two or more kinds may be mixed.
  • the host material is preferably a charge transport material.
  • the host material may be one type or two or more types.
  • the light emitting layer may contain a material that does not have charge transporting properties and does not emit light.
  • the thickness of the light emitting layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 2 nm to 500 nm, more preferably 3 nm to 200 nm, and further preferably 5 nm to 100 nm from the viewpoint of external quantum efficiency. . Further, the light emitting layer may be a single layer or two or more layers, and each layer may emit light in different emission colors.
  • Luminescent material As the light emitting material, a phosphorescent light emitting material, a fluorescent light emitting material, or the like can be preferably used.
  • the luminescent dopant in the present invention has an ionization potential difference ( ⁇ Ip) and an electron affinity difference ( ⁇ Ea) of 1.2 eV> ⁇ Ip> 0.2 eV and / or 1.2 eV> with respect to the host compound. It is ⁇ Ea> 0.2 eV dopants satisfying the relationship is preferable in view of driving durability.
  • the light-emitting dopant in the light-emitting layer is contained in the light-emitting layer in an amount of 0.1% by mass to 50% by mass with respect to the total compound mass generally forming the light-emitting layer. 1% to is preferably contained 50 wt% in view, it is more preferably contained 2 wt% to 50 wt%.
  • examples of the phosphorescent material include complexes containing a transition metal atom or a lanthanoid atom.
  • the transition metal atom is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include ruthenium, rhodium, palladium, tungsten, rhenium, osmium, iridium, gold, silver, copper, and platinum. , more preferably, rhenium, iridium, and platinum, more preferably iridium or platinum.
  • Examples of the ligand of the complex include G.I. Wilkinson et al., Comprehensive Coordination Chemistry, Pergamon Press, Inc. 1987, H. Listed by Yersin, "Photochemistry and Photophysics of Coordination Compounds", published by Springer-Verlag, 1987, Akio Yamamoto, “Organic Metal Chemistry-Fundamentals and Applications,” published by Yukabosha, 1982, etc. .
  • the complex may have one transition metal atom in the compound or may be a so-called binuclear complex having two or more. Different metal atoms may be contained at the same time.
  • phosphorescent materials for example, US6303238B1, US6097147, WO00 / 57676, WO00 / 70655, WO01 / 08230, WO01 / 39234A2, WO01 / 41512A1, WO02 / 02714A2, WO02 / 15645A1, WO02 / 44189A1, WO05 / 19373A2, WO2004 / 108857A1, WO2005 / 042444A2, WO2005 / 042550A1, JP2001-247859, JP2002-302671, JP2002-117978, JP2003-133074, JP2002-1235076, JP2003-123982, JP2002-170684, EP121257, JP2002-226495, JP2002 234894, JP 2001-247659, JP 2001-298470, JP 2002-173675, JP 2002-203678, JP 2002-203679, JP 2004-357791, JP 2006-93542,
  • Ir complex, Pt complex, Cu complex, Re complex, W complex, Rh complex, Ru complex, Pd complex, Os complex, Eu complex, Tb complex, Gd complex, Dy complex, and Ce complex are preferable, and Ir complex , Pt complex, or Re complex is more preferable, and Ir complex, Pt complex, or Re complex including at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond, metal-sulfur bond is further included.
  • an Ir complex, a Pt complex, or an Re complex containing a tridentate or higher polydentate ligand is particularly preferable.
  • phosphorescent material examples include the following compounds, but are not limited thereto.
  • the fluorescent material is not particularly limited and can be appropriately selected according to the purpose.
  • a hole-transporting host material having excellent hole-transporting property may be described as a hole-transporting host
  • an electron-transporting host compound having excellent electron-transporting property (described as an electron-transporting host) May be used).
  • Hole-transporting host material examples include the following materials. Pyrrole, indole, carbazole, azaindole, azacarbazole, triazole, oxazole, oxadiazole, pyrazole, imidazole, thiophene, polyarylalkane, pyrazoline, pyrazolone, phenylenediamine, arylamine, amino-substituted chalcone, styrylanthracene, fluorenone Hydrazone, stilbene, silazane, aromatic tertiary amine compound, styrylamine compound, aromatic dimethylidin compound, porphyrin compound, polysilane compound, poly (N-vinylcarbazole), aniline copolymer, thiophene oligomer, Examples thereof include conductive polymer oligomers such as polythiophene, organic silanes, carbon films, or derivatives thereof.
  • indole derivatives carbazole derivatives, aromatic tertiary amine compounds, thiophene derivatives, and those having a carbazole group in the molecule are preferred, and compounds having a t-butyl substituted carbazole group are more preferred.
  • Electrode transporting host material examples include pyridine, pyrimidine, triazine, imidazole, pyrazole, triazole, oxazole, oxadiazol, fluorenone, anthraquinodimethane, anthrone, diphenylquinone, thiopyran dioxide, Carbodiimide, fluorenylidenemethane, distyrylpyrazine, fluorine-substituted aromatic compounds, heterocyclic tetracarboxylic anhydrides such as naphthaleneperylene, phthalocyanines, or derivatives thereof (may form condensed rings with other rings), Examples thereof include metal complexes of 8-quinolinol derivatives, various metal complexes represented by metal complexes having metal phthalocyanine, benzoxazole, and benzothiazol as ligands.
  • a metal complex compound is preferable from the viewpoint of durability, and a metal complex having a ligand having at least one nitrogen atom, oxygen atom, or sulfur atom coordinated to a metal is more preferable.
  • the metal complex electron transporting host include Japanese Patent Application Laid-Open No. 2002-235076, Japanese Patent Application Laid-Open No. 2004-214179, Japanese Patent Application Laid-Open No. 2004-221106, Japanese Patent Application Laid-Open No. 2004-221665, and Japanese Patent Application Laid-Open No. 2004-221068. And compounds described in JP-A-2004-327313.
  • hole transporting host material and the electron transporting host material include the following compounds, but are not limited thereto.
  • Hole injection layer, hole transport layer-- The hole injection layer or the hole transport layer is a layer having a function of receiving holes from the anode or the layer on the anode side and transporting them to the cathode side.
  • the hole injecting material and hole transporting material used for these layers may be a low molecular compound or a high molecular compound.
  • pyrrole derivatives carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styryl Anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidin compounds, phthalocyanine compounds, porphyrin compounds, thiophene derivatives, organosilane derivatives, carbon, etc. It is preferable that it is a layer containing.
  • the hole injection layer or the hole transport layer may contain an electron accepting dopant.
  • an inorganic compound or an organic compound can be used as long as it has an electron accepting property and oxidizes an organic compound.
  • the inorganic compound include metal halides such as ferric chloride, aluminum chloride, gallium chloride, indium chloride, and antimony pentachloride, and metal oxides such as vanadium pentoxide and molybdenum trioxide.
  • a compound having a nitro group, halogen, cyano group, trifluoromethyl group or the like as a substituent, a quinone compound, an acid anhydride compound, fullerene, or the like can be preferably used.
  • These electron-accepting dopants may be used alone or in combination of two or more.
  • the amount of the electron-accepting dopant used varies depending on the type of material, but is preferably 0.01% by mass to 50% by mass, more preferably 0.05% by mass to 20% by mass with respect to the hole transport layer material. 1% by mass to 10% by mass is particularly preferable.
  • the hole injection layer or the hole transport layer may have a single layer structure composed of one or more of the materials described above, or a multilayer structure composed of a plurality of layers having the same composition or different compositions. Also good.
  • Electron injection layer, electron transport layer-- The electron injection layer or the electron transport layer is a layer having a function of receiving electrons from the cathode or a layer on the cathode side and transporting them to the anode side. Electron injection material used in these layers, an electron transport material may be a polymer compound may be a low molecular compound.
  • pyridine derivatives quinoline derivatives, pyrimidine derivatives, pyrazine derivatives, phthalazine derivatives, phenanthroline derivatives, triazine derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone Derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, aromatic ring tetracarboxylic acid anhydrides such as naphthalene and perylene, phthalocyanine derivatives, metal complexes of 8-quinolinol derivatives, Various metal complexes represented by metal complexes having metal phthalocyanine, benzoxazole and benzothiazole as ligands, and organosi
  • the electron injection layer or the electron transport layer may contain an electron donating dopant.
  • the electron-donating dopant introduced into the electron-injecting layer or the electron-transporting layer is not limited as long as it has an electron-donating property and has a property of reducing an organic compound.
  • Alkali metals such as Li and alkaline earths such as Mg Metals, transition metals including rare earth metals, reducing organic compounds, and the like are preferably used.
  • the metal a metal having a work function of 4.2 eV or less can be preferably used. Specifically, Li, Na, K, Be, Mg, Ca, Sr, Ba, Y, Cs, La, Sm, Gd , And Yb.
  • Examples of the reducing organic compound include nitrogen-containing compounds, sulfur-containing compounds, and phosphorus-containing compounds. These electron donating dopants may be used alone or in combination of two or more.
  • the amount of the electron-donating dopant varies depending on the type of material, but is preferably 0.1% by mass to 99% by mass, more preferably 1.0% by mass to 80% by mass with respect to the electron transport layer material. 0% by mass to 70% by mass is particularly preferable.
  • the electron injection layer or the electron transport layer may have a single layer structure composed of one or more of the above-described materials, or a multilayer structure composed of a plurality of layers having the same composition or different compositions. Good.
  • the hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side, and is usually provided as an organic compound layer adjacent to the light emitting layer on the cathode side.
  • the electron blocking layer is a layer having a function of preventing electrons transported from the cathode side to the light emitting layer from passing to the anode side, and is usually provided as an organic compound layer adjacent to the light emitting layer on the anode side.
  • Examples of the compound constituting the hole blocking layer include aluminum complexes such as BAlq, triazole derivatives, phenanthroline derivatives such as BCP, and the like.
  • the compound constituting the electron blocking layer for example, those mentioned as the hole transport material described above can be used.
  • the thickness of the hole blocking layer and the electron blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and still more preferably 10 nm to 100 nm.
  • the hole blocking layer and the electron blocking layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions. .
  • the organic electroluminescent element includes a pair of electrodes, that is, an anode and a cathode.
  • at least one of the anode and the cathode is preferably transparent.
  • the anode only needs to have a function as an electrode for supplying holes to the organic compound layer
  • the cathode only needs to have a function as an electrode for injecting electrons into the organic compound layer.
  • the shape, structure, size, and the like are not particularly limited, and can be appropriately selected from known electrode materials according to the use and purpose of the light-emitting element.
  • a material which comprises an electrode, a metal, an alloy, a metal oxide, an electroconductive compound, or a mixture thereof etc. are mentioned suitably, for example.
  • the electrode is not particularly limited and may be appropriately selected depending on the purpose. It is preferable that the anode and the cathode constitute the reflective metal and the translucent metal as the translucent member.
  • the material constituting the anode include, for example, antimony, fluorine-doped tin oxide (ATO, FTO), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), zinc oxide indium (IZO).
  • Conductive metal oxides metals such as gold, silver, chromium, nickel, and mixtures or laminates of these metals and conductive metal oxides, inorganic conductive materials such as copper iodide and copper sulfide, Examples thereof include organic conductive materials such as polyaniline, polythiophene, and polypyrrole, and laminates of these with ITO.
  • conductive metal oxides are preferable, and ITO is particularly preferable from the viewpoints of productivity, high conductivity, transparency, and the like.
  • Examples of the material constituting the cathode include alkali metals (eg, Li, Na, K, Cs, etc.), alkaline earth metals (eg, Mg, Ca, etc.), gold, silver, lead, aluminum, sodium-potassium. alloy, a lithium - aluminum alloy, a magnesium - silver alloy, indium, and rare earth metals such as ytterbium. These may be used alone, but two or more can be suitably used in combination from the viewpoint of achieving both stability and electron injection. Among these, an alkali metal and an alkaline earth metal are preferable from the viewpoint of electron injection properties, and a material mainly composed of aluminum is preferable from the viewpoint of excellent storage stability.
  • alkali metals eg, Li, Na, K, Cs, etc.
  • alkaline earth metals eg, Mg, Ca, etc.
  • gold silver, lead, aluminum, sodium-potassium. alloy
  • a lithium - aluminum alloy e.g, a magnesium - silver alloy
  • the material mainly composed of aluminum is aluminum alone, an alloy of aluminum and 0.01% by mass to 10% by mass of alkali metal or alkaline earth metal, or a mixture thereof (for example, lithium-aluminum alloy, magnesium-aluminum alloy). Etc.).
  • the method for forming the electrode is not particularly limited, and can be performed according to a known method.
  • a material constituting the electrode from a wet method such as a printing method, a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as CVD or plasma CVD method.
  • the film can be formed on the substrate according to an appropriately selected method.
  • ITO is selected as the anode material
  • it can be formed according to a direct current or high frequency sputtering method, a vacuum deposition method, an ion plating method, or the like.
  • a metal or the like is selected as the cathode material, one or more of them can be formed simultaneously or sequentially according to a sputtering method or the like.
  • patterning when forming the electrode, it may be performed by chemical etching such as photolithography, or may be performed by physical etching such as laser, or vacuum deposition with a mask overlapped. It may be performed by sputtering or the like, or may be performed by a lift-off method or a printing method.
  • the front chromaticity changes greatly. This is because light of all angles (chromaticity varies depending on the angle dependency) gathers due to the diffusion effect. Basically it moves from red to blue (in the direction of increasing color temperature). Therefore, it is preferable to set the color temperature slightly lower. For example, if the aim is (0.31, 0.31) (white) in the (x, y) chromaticity notation of the CIE color system, the chromaticity of the organic electroluminescent device alone is (0.34, 0.
  • the chromaticity x and chromaticity y in the vicinity are set to higher values, and designed and manufactured, it is predicted that they will come near the target (0.31, 0.31) with the fine particle layer attached. . Therefore, the chromaticity of the organic electroluminescence substrate before the fine particle layer is provided is 0.01 to 0.05, and the chromaticity y is 0.01 to 0.05 from the target chromaticity in the CIE color system. It is preferable to set it to be higher by 0.05.
  • FIG. 1 is a schematic view showing an example of the organic electroluminescent device of the present invention.
  • the organic electroluminescent device of FIG. 1 includes an organic electroluminescent substrate having a barrier layer 3 on the surface of the base material 1 on the organic electroluminescent layer side and a fine particle layer 2 on the light output surface side of the base material 1.
  • Have An electrode (ITO) 4, an organic layer 5, and an electrode 6 are provided on the barrier layer 3 of the organic electroluminescence substrate, and these are sealed with a sealing can 7.
  • the organic electroluminescent device can be configured as a device capable of displaying in full color.
  • the three primary colors blue (B) , Green color (G), red color (R), each of which emits light corresponding to a three-color light emission method in which a layer structure for emitting light corresponding to green (G) and red (R)) is arranged on a substrate.
  • a white method, a color conversion method for converting blue light emission by a blue light emission layer structure into red (R) and green (G) through a fluorescent dye layer, and the like are known.
  • a planar light source having a desired emission color can be obtained.
  • a white light-emitting light source combining blue and yellow light-emitting elements a white light-emitting light source combining blue (B), green (G), and red (R) organic electroluminescent elements.
  • the organic electroluminescent device is, for example, a lighting device, a computer, an on-vehicle display, an outdoor display, a home device, a business device, a home appliance, a traffic display, a clock display, a calendar display, a luminescence. It can be suitably used in various fields including cent screens, audio equipment and the like.
  • Preparation Example 2 ⁇ Preparation of mixed coating solution 2> 59 parts by mass of a surfactant (manufactured by Sanyo Chemical Industries, Ltd., trade name: NAROACTY CL-95), 992 parts by mass of aqueous polyurethane (manufactured by Mitsui Chemicals, Takelac series W-6010, solid content 33% by mass), Then, 59 parts by mass of a curing agent (Nisshinbo Co., Ltd., V-02-L2, solid content: 40% by mass) was mixed to prepare a mixed coating solution 2.
  • a surfactant manufactured by Sanyo Chemical Industries, Ltd., trade name: NAROACTY CL-95
  • 992 parts by mass of aqueous polyurethane manufactured by Mitsui Chemicals, Takelac series W-6010, solid content 33% by mass
  • 59 parts by mass of a curing agent Neshinbo Co., Ltd., V-02-L2, solid content: 40% by mass
  • Example 1 Fabrication of organic electroluminescence substrate-
  • An attached film substrate was produced.
  • the mixed coating solution 1 was applied to the other surface of the PET film with a wire bar, and was cured by heating at 130 ° C. for 2 minutes.
  • the mixed coating solution 1 was applied thereon, and again heat-cured at 130 ° C. for 2 minutes to prepare a fine particle layer having a thickness of 15 ⁇ m.
  • an organic electroluminescence substrate of Example 1 was produced.
  • the thickness unevenness of the barrier layer was measured for the produced organic electroluminescence substrate as follows, the average thickness was ⁇ 7 nm, and the thickness unevenness was 14 nm.
  • the thickness unevenness of the barrier layer was measured with a scanning electron microscope (S-3400N, manufactured by Hitachi High-Tech Corporation). In addition, the value of thickness unevenness was shown by the average value of nine places measurement.
  • an ITO (Indium Tin Oxide) film was formed on the barrier layer of the organic electroluminescence substrate of Example 1 to a thickness of 100 nm by sputtering.
  • 4,4 ′, 4 ′′ -tris (N, N- (2-naphthyl) -phenylamino) triphenylamine (2-TNATA) represented by the following structural formula has the following structure: A hole injection layer doped with 0.3% by mass of F4-TCNQ represented by the formula was co-evaporated to a thickness of 150 nm.
  • ⁇ -NPD Bis [N- (1-naphthyl) -N-phenyl] benzidine
  • BAlq (Bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolate) -aluminum (III)) represented by the following structural formula is formed on the white light-emitting layer as an electron transporting layer with a thickness of 39 nm. Vacuum deposition was performed so that
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • LiF was deposited as a buffer layer on the electron injection layer to a thickness of 1 nm
  • aluminum was deposited thereon as an electrode layer to a thickness of 100 nm.
  • the produced laminated body is moved from a vacuum to a room under a nitrogen atmosphere and sealed with a sealing can. A hygroscopic material was previously pasted inside the sealing can.
  • the organic electroluminescent device of Example 1 shown in FIG. 1 was produced.
  • Example 2 -Fabrication of organic electroluminescence substrate- On one surface of a polyethylene terephthalate (PET) film having a thickness of 100 ⁇ m, a composition comprising a polymerizable compound shown in Table 1 below (total 20 parts by mass) and a polymerization initiator (Lamberti, Ezacure KTO46).
  • a film was prepared by using methyl ethyl ketone so as to have a dry average thickness of 1,000 nm, and cured by irradiation with an ultraviolet ray irradiation amount of 1.2 J / cm 2 in an oxygen 100 ppm atmosphere to prepare an organic layer.
  • An inorganic layer (Al 2 O 3 ) was formed on the organic layer by sputtering so that the average thickness was 50 nm, and a film substrate with a barrier layer having a barrier property against water and oxygen was produced.
  • the mixed coating solution 1 was applied to the other surface of the PET film with a wire bar and cured by heating at 130 ° C. for 2 minutes.
  • the mixed coating solution 1 was applied thereon and cured by heating at 130 ° C. for 2 minutes to prepare a fine particle layer having a thickness of 15 ⁇ m.
  • an organic electroluminescent substrate of Example 2 was produced.
  • the thickness unevenness of the barrier layer was measured in the same manner as in Example 1.
  • the inorganic layer had an average thickness of ⁇ 7 nm, the thickness unevenness of 14 nm was generated, and the organic layer had an average thickness of ⁇
  • the thickness was 20 nm, and the thickness unevenness of 40 nm was generated.
  • As a whole barrier layer the thickness unevenness of 42 nm was generated.
  • an organic electroluminescent layer is formed on the barrier layer of the organic electroluminescent substrate of Example 2 produced in the same manner as in Example 1 to produce the organic electroluminescent device of Example 2 shown in FIG. did.
  • Example 3 -Fabrication of organic electroluminescence substrate- On one surface of a polyethylene terephthalate (PET) film having a thickness of 0.1 mm, in the same manner as in Example 2, an organic layer / inorganic layer / organic layer / inorganic layer / organic layer / inorganic layer / organic layer / inorganic layer / organic
  • an organic layer / inorganic layer / organic layer / inorganic layer / organic layer / inorganic layer / organic in the same manner as in Example 2, an organic layer / inorganic layer / organic layer / inorganic layer / organic layer / inorganic layer / organic
  • a barrier layer was formed, and a film substrate with a barrier layer having a barrier property against water and oxygen was produced.
  • the mixed coating solution 1 was applied to the other surface of the PET film with a wire bar, and was cured by heating at 130 ° C. for 2 minutes.
  • the mixed coating solution 1 was applied thereon and cured by heating at 130 ° C. for 2 minutes to prepare a fine particle layer having a thickness of 15 ⁇ m.
  • an organic electroluminescence substrate of Example 3 was produced.
  • substrate when the thickness nonuniformity of the barrier layer was measured like Example 1, the thickness nonuniformity of 94 nm had arisen as the whole barrier layer.
  • Example 4 -Fabrication of organic electroluminescence substrate- On one surface of a polyethylene terephthalate (PET) film having a thickness of 0.1 mm, in the same manner as in Example 2, an organic layer / inorganic layer / organic layer / inorganic layer / organic layer / inorganic layer / organic layer / inorganic layer / organic
  • an organic layer / inorganic layer / organic layer / inorganic layer / organic layer / inorganic layer / organic in the same manner as in Example 2, an organic layer / inorganic layer / organic layer / inorganic layer / organic layer / inorganic layer / organic
  • a barrier layer was formed, and a film substrate with a barrier layer having a barrier property against water and oxygen was produced.
  • the mixed coating solution 1 was applied to the other surface of the PET film with a wire bar, and was cured by heating at 130 ° C. for 2 minutes.
  • the mixed coating solution 1 was applied thereon and cured by heating at 130 ° C. for 2 minutes to form a fine particle layer having a thickness of 15 ⁇ m. Further, the mixed coating solution 2 was coated on the fine particle layer with a wire bar, and cured by heating at 130 ° C. for 2 minutes. The mixed coating solution 2 was applied thereon and cured by heating at 130 ° C. for 2 minutes to form a planarization layer having a thickness of 12.5 ⁇ m.
  • substrate when the thickness nonuniformity of the barrier layer was measured like Example 1, the thickness nonuniformity of 101 nm had arisen as the whole barrier layer.
  • an organic electroluminescent layer is formed on the barrier layer of the produced organic electroluminescent substrate of Example 4 in the same manner as in Example 1 to produce the organic electroluminescent device of Example 4 shown in FIG. did.
  • Example 1 (Comparative Example 1) -Fabrication of organic electroluminescence device- In Example 1, it replaced with the organic electroluminescent board
  • Comparative Example 2 (Comparative Example 2) -Fabrication of organic electroluminescent substrate and organic electroluminescent device-
  • the organic electroluminescence substrate of Comparative Example 2 was produced in the same manner as in Example 1 except that the fine particle layer was not formed.
  • substrate when the thickness nonuniformity of the barrier layer was measured like Example 1, the thickness nonuniformity of 15 nm had arisen.
  • Comparative Example 2 shown in FIG. 6 was performed in the same manner as Example 1 except that the organic electroluminescent substrate of Comparative Example 2 was used instead of the organic electroluminescent substrate of Example 1.
  • An organic electroluminescent device was prepared.
  • Example 3 (Comparative Example 3) -Fabrication of organic electroluminescent substrate and organic electroluminescent device-
  • the organic electroluminescence substrate of Comparative Example 3 was produced in the same manner as in Example 2 except that the fine particle layer was not formed.
  • substrate when the thickness nonuniformity of the barrier layer was measured like Example 1, the thickness nonuniformity of 41 nm had arisen as the whole barrier layer.
  • the organic electroluminescence substrate of Comparative Example 3 shown in FIG. 7 was used in the same manner as in Example 2 except that the organic electroluminescence substrate of Comparative Example 3 was used instead of the organic electroluminescence substrate of Example 2.
  • a light emitting device was manufactured.
  • Example 4 (Comparative Example 4) -Fabrication of organic electroluminescent substrate and organic electroluminescent device-
  • an organic electroluminescence substrate of Comparative Example 4 was produced in the same manner as in Example 3 except that the fine particle layer was not formed.
  • the thickness of the barrier layer was measured for the produced organic electroluminescent substrate in the same manner as in Example 1, the thickness of the entire barrier layer was found to be 98 nm.
  • the organic electroluminescence substrate of Comparative Example 4 shown in FIG. 8 was used in the same manner as in Example 3 except that the organic electroluminescence substrate of Comparative Example 4 was used instead of the organic electroluminescence substrate of Example 3.
  • a light emitting device was manufactured.
  • a PET film for stamping foil (Lumirror X44, manufactured by Toray Industries, Inc.) was bonded and cured by UV irradiation.
  • the PET film was peeled from the substrate to form a concavo-convex layer having a thickness of 2 ⁇ m (refractive index (n D ) of the concavo-convex layer 1.65, average roughness 260 nm).
  • ⁇ Measurement of light distribution angle dependency of front luminance and chromaticity> Using a source measure unit type 2400 manufactured by Toyo Technica Co., Ltd., a constant DC voltage was applied to each organic electroluminescent device to emit light. The front luminance was measured by using a spectral radiance meter (SR-3, manufactured by Topcon) at a current value of 10 mA / cm 2 at the center of the light emitting surface. For the light distribution during substrate rotation, a spectral luminance meter (CS-2000, manufactured by Konica Minolta Co., Ltd.) was used to measure the light distribution and spectrum during light distribution measurement.
  • SR-3 spectral radiance meter
  • the rotation stage which sets an organic electroluminescent apparatus at the time of light distribution measurement used the handmade thing which rotates automatically.
  • a constant current amount (10 mA / cm 2 ) is passed through the substrate to emit light, while the direction perpendicular to the substrate (light emitting surface) is set to 0 °, and the range of ⁇ 80 ° is set to the spectroluminometer in 5 ° steps.
  • the light intensity distribution and spectrum were measured.
  • the chromaticity x value and y value at 0 ° and 80 ° are calculated from the obtained spectrum, and the amount of change in chromaticity x value and y value from 0 ° to 80 ° ( ⁇ x, ⁇ y) was determined.
  • ⁇ Chromaticity variation due to machine difference (substrate surface position difference)> Since the barrier layer has uneven thickness in the substrate surface, the thickness of the barrier layer varies depending on the cut-out position of the substrate with the barrier layer. For this reason, there is a possibility that the organic electroluminescence device has different chromaticity (variation in machine difference) due to machine difference (positional difference on the substrate surface). Then, as shown in FIG. 17, the board
  • the measurement was performed using an oxygen permeability measuring device (MOCON oxygen permeability measuring device OX-TRAN 1 / 50A manufactured by MOCON).
  • OX-TRAN 1 / 50A oxygen permeability measuring device manufactured by MOCON.
  • the oxygen permeability is 0.1 cc / m 2 / day, which is the measurement limit.
  • SR-3 spectral radiance meter
  • FIG. 16 shows emission spectra in Comparative Example 4-1 and Comparative Example 4-2, which are organic electroluminescent devices having the same configuration as Comparative Example 4 and simultaneously manufactured and having a barrier layer. From the results of FIG. 16, the emission spectrum shape of the organic electroluminescence device with a barrier layer of Comparative Example 4 is the same as in Comparative Example 4-1 and Comparative Example 4-2. In spite of this, it was recognized that the shape of the emission spectrum was changed due to the uneven thickness of the barrier layer, and the chromaticity was caused to vary by machine difference (maximum machine difference chromaticity).
  • the organic electroluminescent device of Example 1 has a front luminance of 2,360 cd / m 2 at a current value of 10 mA / cm 2 at the center of the light emitting surface, and the organic of Comparative Example 2 without a fine particle layer. It was found that the luminance was increased by about 50% compared to the electroluminescent device. Further, the change in chromaticity ( ⁇ x, ⁇ y) during rotation of the substrate in Example 1 was much smaller than that in Comparative Example 2.
  • the maximum machine-difference chromaticity ( ⁇ x ′, ⁇ y ′), which is the distribution of chromaticity in the substrate surface, is smaller than that of Comparative Example 2, and the chromaticity difference due to the uneven thickness of the barrier layer is suppressed.
  • the organic electroluminescent device of Example 2 has a luminance value of 2,365 cd / m 2 at a current value of 10 mA / cm 2 at the center of the light emitting surface, and compared with the organic electroluminescent device of Comparative Example 3 having no fine particle layer. It was found that the luminance increased by about 50%. Further, the change in chromaticity ( ⁇ x, ⁇ y) during rotation of the substrate in Example 2 was much smaller than that in Comparative Example 3.
  • the maximum machine-difference chromaticity ( ⁇ x ′, ⁇ y ′), which is the distribution of chromaticity in the substrate surface, is smaller than that of Comparative Example 3, and the chromaticity difference due to the uneven thickness of the barrier layer is suppressed.
  • the organic electroluminescent device of Example 3 has a luminance value of 2,362 cd / m 2 at a current value of 10 mA / cm 2 at the center of the light emitting surface, and has no fine particle layer, as compared with the organic electroluminescent device of Comparative Example 4. It was found that the luminance increased by about 50%. In addition, the change in chromaticity ( ⁇ x, ⁇ y) during rotation of the substrate in Example 3 was much smaller than that in Comparative Example 4.
  • the maximum machine-difference chromaticity ( ⁇ x ′, ⁇ y ′), which is the distribution of chromaticity in the substrate surface, is smaller than that of Comparative Example 4, and the chromaticity difference due to the uneven thickness of the barrier layer is suppressed.
  • the organic electroluminescent device of Example 4 has a front luminance of 2,722 cd / m 2 at a current value of 10 mA / cm 2 at the center of the light emitting surface, and is smaller than the organic electroluminescent device of Comparative Example 4 having no fine particle layer. About 70% of the brightness increased. In addition, the change in chromaticity ( ⁇ x, ⁇ y) during substrate rotation was much smaller than that in Comparative Example 4.
  • the maximum machine-difference chromaticity ( ⁇ x ′, ⁇ y ′), which is the distribution of chromaticity in the substrate surface, is smaller than that of Comparative Example 4, and the chromaticity difference due to the uneven thickness of the barrier layer is suppressed.
  • the organic electroluminescence devices of Comparative Examples 2 to 4 have substantially the same luminance at the same current value as that of Comparative Example 1, but Comparative Examples 2 to 4 have a large chromaticity angle dependency of the light distribution.
  • the maximum machine-difference chromaticity ( ⁇ x ′, ⁇ y ′) that is the in-plane distribution of the substrate is also larger than that of Comparative Example 1.
  • the organic electroluminescent device of Comparative Example 5 has a luminance of 1,884 cd / m 2 at the same current value, and the extraction efficiency is slightly lower than 20%. The result is inferior. Further, the chromaticity angle dependency ( ⁇ x, ⁇ y) of light distribution and the maximum machine difference chromaticity ( ⁇ x ′, ⁇ y ′) are also smaller than those of the comparative example 4, but compared to the examples 3 and 4. The effect of suppressing the chromaticity angle dependency of light distribution and the maximum machine difference chromaticity is small.
  • the organic electroluminescent substrate and the organic electroluminescent device of the present invention are, for example, various types of lighting, computers, in-vehicle displays, outdoor displays, household equipment, commercial equipment, home appliances, traffic-related displays, and clock displays. Can be suitably used in various fields including a display device, a calendar display device, a luminescent screen, and an acoustic device.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

 基材の一の面に微粒子層を設けると共に、基材の他の面に設けたバリア層の干渉によるスペクトル変調、色度の面位置依存性、及び色度の角度依存性を抑制でき、かつ光取り出し効率を高めることができる有機電界発光用基板及び該有機電界発光用基板を有する有機電界発光装置を得ることを目的とする。このため、厚みむらが10nm以上1,000nm以下であるバリア層と、微粒子を含有する微粒子層とを少なくとも有する有機電界発光用基板を提供する。

Description

有機電界発光用基板及び有機電界発光装置
 本発明は、有機電界発光用基板、及び該有機電界発光用基板を用いた有機電界発光装置に関する。
 有機電界発光装置は、自発光型の表示装置であり、ディスプレイ、照明の用途に期待されている。例えば、有機電界発光ディスプレイは、従来のCRT、LCDと比較して視認性が高く、視野角依存性がない等の表示性能上の利点を有している。また、ディスプレイを軽量化、薄層化できる利点もある。その一方、有機電界発光照明は、軽量化、薄層化が可能であるとの利点に加え、フレキシブルな基板を用いることでこれまで実現できなかった形状の照明を実現できる可能性を有している。
 このような有機電界発光装置において、光取り出し効率を向上させるため、光取り出し層を設けることが数多く提案されている。
 例えば特許文献1には、基材の一の面にバリア層と、基材の他の面に高屈折率凹凸層とを有する発光装置が提案されている。この提案の段落〔0008〕には、高屈折率凹凸層が微粒子層であってもよいと記載されている。
 しかし、この提案の高屈折率凹凸層は、色度変化の角度依存性が小さく、スペクトルの変調、角度依存性を十分に抑制することができない。また、光取り出しにおいても単純な凹凸層では効果が小さく、凹凸層の形成され方にバラツキがあり、光取り出し効率及び色度変化の角度依存性についてもバラツキが生じるおそれがある。更に、この提案では、光取り出し側の最表面が平坦でないため、異物が付き易く、前記異物による遮蔽等により光取り出し効率が低下してしまうという問題がある。
 したがって、基材の一の面に微粒子層を設けると共に、基材の他の面に設けたバリア層の干渉によるスペクトル変調、色度の面位置依存性、及び色度の角度依存性を抑制でき、かつ光取り出し効率を高めることができる有機電界発光用基板及び該有機電界発光用基板を有する有機電界発光装置の提供が望まれているのが現状である。
特開2004-20746号公報
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、基材の一の面に微粒子層を設けると共に、基材の他の面に設けたバリア層の干渉によるスペクトル変調、色度の面位置依存性、及び色度の角度依存性を抑制でき、かつ光取り出し効率を高めることができる有機電界発光用基板、及び該有機電界発光用基板を有する有機電界発光装置を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 厚みむらが10nm以上1,000nm以下であるバリア層と、微粒子を含有する微粒子層と、を少なくとも有することを特徴とする有機電界発光用基板である。
 <2> バリア層が、有機材料からなる有機層と、無機材料からなる無機層とを交互に積層した多層構造を有する前記<1>に記載の有機電界発光用基板である。
 <3> 有機層と無機層との合計積層数が2層以上である前記<2>に記載の有機電界発光用基板である。
 <4> 微粒子の平均粒径が0.5μm~10μmである前記<1>から<3>のいずれかに記載の有機電界発光素子用基板である。
 <5> 微粒子層における微粒子の分布密度が30%~80%である前記<1>から<4>のいずれかに記載の有機電界発光用基板である。
 <6> 微粒子層の光出射面が平坦であるか、又は微粒子層の光出射面に平坦化層を有する前記<1>から<5>のいずれかに記載の有機電界発光用基板である。
 <7> 更に基材を有してなり、該基材の材質が、ポリエチレンテレフタレート及びポリエチレンナフタレートのいずれかである前記<1>から<6>のいずれかに記載の有機電界発光用基板である。
 <8> 前記<1>から<7>のいずれかに記載の有機電界発光用基板を有することを特徴とする有機電界発光装置である。
 <9> 有機電界発光用基板における微粒子層を設ける前の状態での色度を、CIE表色系で、目標色度より色度xが0.01~0.05、色度yが0.01~0.05大きくなるように設定する前記<8>に記載の有機電界発光装置である。
 基材上に設けたバリア層の干渉効果(特にバリア層と基材の屈折率が異なる場合)によって、バリア層上に設けた有機電界発光層からの発光スペクトルに変調が生じ、特に多層化されたバリア層では、その変調が強く、色度が変化するおそれがある。このようなバリア層の厚みむらがバッチ間で生じるとバッチによって色度にずれが生じる。また、バリア層の厚みむら(位置依存性)がある場合には、発光場所によって色度が変化する状況となる。
 一方、角度依存性による干渉長の変化により色度の変化が大きくなることがある。特に白色発光の場合には、色バランスが変わることで、白色が大きく変化し角度によって見え方が変化して、違和感が生じる。このような角度依存性についてもバリア層の影響が加わった場合、更に色度の変化が大きくなる可能性がある。
 そこで、本発明の有機電界発光装置においては、厚みむらが10nm以上1,000nm以下であるバリア層と、微粒子を含有する微粒子層と、を少なくとも有する有機電界発光用基板を用いることにより、基材の一の面に設けたバリア層の干渉によるスペクトル変調、色度の面位置依存性、及び色度の角度依存性を抑制でき、かつ基材の他の面に設けた光取り出し効率を高めることができる。
 本発明によると、従来における問題を解決することができ、基材の一の面に微粒子層を設けると共に、基材の他の面に設けたバリア層の干渉によるスペクトル変調、色度の面位置依存性、及び色度の角度依存性を抑制でき、かつ光取り出し効率を高めることができる有機電界発光用基板及び該有機電界発光用基板を有する有機電界発光装置を提供することができる。
図1は、実施例1の有機電界発光装置を示す概略図である。 図2は、実施例2の有機電界発光装置を示す概略図である。 図3は、実施例3の有機電界発光装置を示す概略図である。 図4は、実施例4の有機電界発光装置を示す概略図である。 図5は、比較例1の有機電界発光装置を示す概略図である。 図6は、比較例2の有機電界発光装置を示す概略図である。 図7は、比較例3の有機電界発光装置を示す概略図である。 図8は、比較例4の有機電界発光装置を示す概略図である。 図9は、比較例5の有機電界発光装置を示す概略図である。 図10は、応用例1の有機電界発光装置を示す概略図である。 図11は、応用例2の有機電界発光装置を示す概略図である。 図12は、バリア層無し(比較例1)の発光スペクトルを示すグラフである。 図13は、バリア層有り(比較例4)の発光スペクトルを示すグラフである。 図14は、バリア層と凹凸層を有するもの(比較例5)の発光スペクトルを示すグラフである。 図15は、バリア層と微粒子層を有するもの(実施例4)の発光スペクトルを示すグラフである。 図16は、比較例4と同構成でかつ同時に作製されたバリア層有りの有機電界発光装置である比較例4-1及び比較例4-2における発光スペクトルの差異を示すグラフである。 図17は、実施例において、バリア層付きの基板をカットし、サンプル作製する状態を示す図である。
(有機電界発光用基板)
 本発明の有機電界発光用基板は、バリア層と、微粒子層とを少なくとも有し、基材、更に必要に応じてその他の層を有してなる。
 前記有機電界発光用基板としては、例えば、基材と、該基材の一の面にバリア層と、前記基材の他の面に微粒子層とを有する態様、即ち、バリア層が、基材の有機電界発光層側の面に設けられ、微粒子層が、基材の光出射側の面に設けられることが好ましい。
<バリア層>
 前記バリア層は、厚みむらが10nm以上1,000nm以下であり、10nm~800nmが好ましい。前記厚みむらが、10nm未満であると、前記厚みむらによる前記有機電界発光装置の色度の変化が殆ど目立たなくなり、前記微粒子層による色度の平均化効果が現れにくいことがある。一方、前記厚みむらが、1,000nmを超えると、有機電界発光層から発する可視光の波長を上回り、干渉効果による色度変化が起き難くなり、前記厚みむらが、10nm未満の場合と同様、前記微粒子層による色度の平均化効果が現れにくいことがある。
 ここで、前記バリア層の厚みむらとは、1枚の基板上での前記バリア層の厚み方向の最大高低差を意味する。
 前記バリア層が有機材料を塗布することにより形成される有機層である場合には厚みむらは60nm程度であり、前記バリア層が無機材料を蒸着法、スパッタ法により形成される無機層である場合には、厚みむらは15nm程度である。
 前記バリア層の平均厚みは、特に制限はなく、目的に応じて適宜選択することができるが、前記有機層であれば300nm~2,000nmが好ましく、800nm~1,500nmがより好ましい。前記無機層であれば10nm~200nmが好ましく、30nm~150nmがより好ましい。
 前記バリア層の厚みむらは、例えば、作製した前記バリア層の一部を切り取って、走査型電子顕微鏡(S-3400N、日立ハイテク株式会社製)などにより厚みを測定することにより求めることができる。
 前記バリア層としては、有機材料からなる有機層単独、又は無機材料からなる無機層単独であってもよいが、有機材料からなる有機層と、無機材料からなる無機層とを交互に積層した多層構造を有することが、前記無機層の応力緩和による剥離防止、前記無機層に発生したピンホールを埋め、水分透過率及び酸素透過率の上昇を防ぐ点で好ましい。
 前記有機層と前記無機層との合計積層数は、2層以上が好ましく、4層~11層がより好ましい。前記合計積層数が、2層未満であると、前記バリア層がピンホールにより水分透過率及び酸素透過率が上昇し、前記有機電界発光装置に影響を及ぼし、ダークスポットの発生、最悪の場合には点灯できなくなることがある。
-無機層-
 前記無機層の少なくとも1層は、2種以上の金属酸化物より構成されることが好ましい。
 このような無機層は、2種以上の金属酸化物を同時にフィルム上に堆積させることにより形成することができる。
 前記金属酸化物としては、例えば、Si、Al、In、Sn、Zn、Ti、Cu、Ce、Ta等の酸化物が挙げられるが、これらに限定されない。コスト及び膜を形成した際の光線透過性の観点から、好ましくは、酸化珪素と酸化アルミニウムである。
 これらの酸化物薄膜を形成する方法としては、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法、プラズマCVD法等の公知の方法を用いることができるが、2種の酸化物を割合を制御しながら同時に堆積させる点で、反応性スパッタ法、電子線加熱蒸着法及びそれらの組み合わせた方法が特に好ましい。
 反応性スパッタ方式は、例えば、2つの電極上にそれぞれSiとAlの金属ターゲットを設置し、高真空中でアルゴン等の希ガスと酸素ガスを導入しながら、DCプラズマ、高周波プラズマによって金属原子を叩き出し、フィルム表面上で金属原子と酸素を反応させつつ共堆積させる方法である。
 また、電子線加熱蒸着法は、Si又はSiOxの入った坩堝とAl又はAlOxの入った坩堝を真空チャンバー中に設置し、それぞれ電子線によって加熱蒸発させ、フィルム面上に共堆積させるものである。この場合、坩堝に入れた材料の酸化度と目標とする膜の酸化度に応じて酸素ガスを流してもよいし流さなくてもよい。
 共堆積された酸化物薄膜中の2種の金属の比率は任意に設定することができるが、1/9~9/1の範囲が好ましい。酸化珪素と酸化アルミニウムの場合、Si/Alの比率は7/3~2/8の範囲が好ましい。
 また、各々の金属原子と酸素原子の比率も任意であるが、酸素原子の比率が酸化物の化学量論的な比率から極端に少ない場合は、膜の透明度が低下したり、着色が起こったりして好ましくない。逆に酸素原子が多すぎる場合にも、膜の緻密性が低下してバリア性が低下するため好ましくない。SiOxの場合にはxの値は1.5~1.8が特に好ましい。また、AlOxの場合、xの値は1.0~1.4が特に好ましい。
 前記無機層の厚みは、薄すぎるとバリア性が不十分となり、逆に厚すぎると曲げた際にクラックが入ったり、割れたりしてバリア性を著しく損なう。そこで、前記無機層の適正な厚みとしては、5nm~1,000nmが好ましく、10nm~1000nmがより好ましく、10nm~200nmが更に好ましい。
-有機層-
 前記有機層は、いずれのポリマーでも使用することができる。以下に好ましい有機層の例とその成膜方法について示す。
(1)ポリシロキサン
 RF電極を用いた平行平板型のプラズマ装置にヘキサメチルジシロキサンを加熱蒸発させた蒸気を導入し、プラズマ中で重合反応を起こさせ、フィルム基材上にポリシロキサン薄膜として堆積させる。成膜速度が速いこと、重合開始剤が不要なこと、酸素プラズマ等で容易に親水化できるのでその後に付ける無機層との密着性が良好であること、積層バリア膜とした時の曲げ耐性に優れることなどの特徴があり、特に好ましいものである。
(2)ポリパラキシリレン
 高真空中で原料のジパラキシリレンを加熱蒸発させ、この蒸気を650℃~700℃で加熱することで熱分解させて熱ラジカルを発生させる。このラジカルモノマー蒸気をチャンバー内に導くと、フィルム基材への吸着と同時にラジカル重合反応が進行し、ポリパラキシリレンとして堆積する。この膜の特徴は、機械的、熱的、化学的な強度に優れた膜が形成されることであり、この方法も本発明には好ましい方法である。
(3)重付加ポリマー
 真空中で蒸発させたA,B二種のモノマーがA,B交互に繰り返し付加重合することでできるポリマーである。例えば、重縮合のように水、アルコールなどの低分子が脱離することはなく、本発明のような真空中でバリア膜を成膜する方法として基本的に優れている。
 前記重付加ポリマーとしては、例えば、ポリウレタン(ジイソシアナート/グリコール)、ポリ尿素(ジイソシアナート/ジアミン)、ポリチオ尿素(ジチオイソシアナート/ジアミン)、ポリチオエーテルウレタン(ビスエチレンウレタン/ジチオール)、ポリイミン(ビスエポキシ/第一アミン)、ポリペプチドアミド(ビスアゾラクトン/ジアミン)、ポリアミド(ジオレフィン/ジアミド)などが挙げられる。これらの中でも、透明性、材料コスト等を考慮すると、ポリ尿素が特に好ましい。
(4)アクリル系ポリマー
 前記アクリル系ポリマーは、硬化速度が速いこと、室温での硬化が容易であること、透明性が高いなどの特徴があり、前記有機層として好ましく用いられる。
 アクリレートモノマーとしては、単官能、2官能、多官能があり、いずれも用いることができるが、これらの中から適当な蒸発速度、硬化度、硬化速度等を得るためにブレンドすることが好ましい。単官能アクリレートしては、脂肪族、脂環式、エーテル系、環状エーテル系、芳香族系、水酸基含有、カルボキシ基含有等があり、いずれも用いることができる。
(5)光カチオン硬化ポリマー
 カチオン重合系は同じ光硬化型であるアクリレートと比べ低刺激性であるという特徴を有する。特に、エポキシ系、オキセタン系のような開環重合タイプは、硬化時の体積収縮が少ないため内部応力が小さく密着性に優れるため、本発明では特に好ましい。
 前記エポキシ系としては、脂環式エポキシ系が特に好ましく、2官能性モノマー、多官能性オリゴマー、それらの混合物を好ましく用いることができる。
 前記オキセタン系としては、単官能オキセタン、2官能オキセタン、シルセスキオキサン構造を有するオキセタン等が好ましいが、これらの混合物、あるいはグリシジルエーテル化合物を加えた混合物、更にはエポキシ化合物との混合物も好ましい。
 光カチオン硬化ポリマーの場合、光をトリガーとして硬化反応を開始させる光硬化型潜在性硬化剤を含むことができる。エポキシ系、オキセタン系の場合、通常、光酸発生剤が好ましい。前記光酸発生剤としては、アリールジアゾニウム塩、ジアリールヨードニウム塩などが知られているが、トリアリールスルホニウム塩が最も一般的である。
 また、増感剤として光ラジカル生成する化合物の併用が好ましい。増感剤としては、例えば、芳香族ケトン、フェノチアジン、ジフェニルアントラセン、ルブレン、キサントン、チオキサントン誘導体、クロロチオキサントンなどが挙げられる。これらの中でも、チオキサントン誘導体が好ましい。
<微粒子層>
 前記微粒子層は、ポリマーと、微粒子とを少なくとも含有し、更に必要に応じてその他の成分を含有してなる。
<<微粒子>>
 前記微粒子としては、屈折率が微粒子層のポリマーの屈折率と異なり、光を散乱可能なものであれば特に制限はなく、目的に応じて適宜選択することができ、有機微粒子であっても、無機微粒子であってもよく、2種以上の微粒子を含有することが好ましい。以下、散乱用微粒子と称することもある。
 前記有機微粒子としては、例えば、ポリメチルメタクリレートビーズ、アクリル-スチレン共重合体ビーズ、メラミンビーズ、ポリカーボネートビーズ、ポリスチレンビーズ、架橋ポリスチレンビーズ、ポリ塩化ビニルビーズ、ベンゾグアナミン-メラミンホルムアルデヒドビーズ、などが挙げられる。
 前記無機微粒子としては、例えば、ZrO、TiO、Al、In、ZnO、SnO、Sb、などが挙げられる。これらの中でも、TiO、ZrO、ZnO、SnOが特に好ましい。
 前記微粒子の屈折率は、前記微粒子層のポリマーの屈折率と異なるものであれば特に制限はなく、目的に応じて適宜選択することができるが、1.55~2.6が好ましく、1.58~2.1がより好ましい。
 前記微粒子の屈折率は、例えば、自動屈折率測定器(KPR-2000、株式会社島津製作所製)を用い、屈折液の屈折率を測定してから、精密分光計(GMR-1DA、株式会社島津製作所製)で、シュリブスキー法により測定することができる。
 前記微粒子の平均粒径は、0.5μm~10μmが好ましく、0.5μm~6μmがより好ましい。前記微粒子の平均粒径が、10μmを超えると、光の殆どが前方散乱になり、散乱用微粒子による光の角度を変換する能力が低下してしまうことがある。一方、前記微粒子の平均粒径が、0.5μm未満であると、可視光の波長より小さくなり、ミー散乱がレーリー散乱の領域に変化し、微粒子の散乱効率の波長依存性が大きくなり、発光素子の色度が大きく変わってしまったり、光取り出し効率が低下することが予想される。
 前記微粒子の平均粒径は、例えば、日機装株式会社製ナノトラックUPA-EX150等の動的光散乱法を利用した装置、電子顕微鏡写真の画像処理により測定することができる。
 前記微粒子層における微粒子の体積充填率は、30%~80%が好ましく、40%~70%がより好ましい。前記体積充填率が、30%未満であると、微粒子層に入射してきた光が微粒子に散乱される確率が小さく、微粒子層の光角度を変換する能力が小さいので、微粒子層の厚みを充分に厚くしないと光取出し効率が低下することがある。また、前記微粒子層の厚みを厚くすることはコストの増加に繋がり、前記微粒子層の厚みのバラツキが大きくなり、発光面内の散乱効果にバラツキが生じるおそれがある。一方、前記体積充填率が、80%を超えると、前記微粒子層の表面が大きく荒れ、内部にも空洞が生じることで、前記微粒子層の物理的強度が低下することがある。
 前記微粒子層における微粒子の体積充填率は、例えば重量測定法により測定することができる。まず、粒子比重測定装置(MARK3、株式会社ユニオン・エンジニアリング製)で粒子の比重を測定して、電子天秤(FZ-3000i、エー・アンド・デイ社製)で微粒子の重量を測定する。次に、作製した微粒子層の一部を切り取って、走査型電子顕微鏡(S-3400N、日立ハイテク株式会社製)で微粒子層の厚みを測定し、微粒子層における微粒子の体積充填率を求めることができる。
-高屈折率微粒子-
 前記高屈折率微粒子としては、屈折率が2.0以上が好ましく、2.4~3.0がより好ましい。;一次粒子の平均粒径が0.5nm~100nmが好ましく、1nm~80nmがより好ましく、1nm~50nmが更に好ましい。
 前記高屈折率微粒子の屈折率が2.0以上であれば、層の屈折率を効果的に高めることができ、前記屈折率が3.0以下であれば粒子が着色するなどの不都合がないので好ましい。また高屈折率微粒子の一次粒子の平均粒径が100nm以下であれば、形成される微粒子層のヘイズ値が高くなって層の透明性を損なうなどの不都合が生じないので好ましく、0.5nm以上であれば高い屈折率が保持されるので好ましい。
 前記高屈折率微粒子の粒子径は、透過型電子顕微鏡(TEM)写真による平均一次粒子径で表す。平均一次粒子径はそれぞれの微粒子の最大径の平均値で表し、長軸径と短軸径を有する場合、各微粒子の長軸径の平均値を平均一次粒子径とする。
 前記高屈折率微粒子としては、例えば、Ti、Zr、Ta、In、Nd、Sn、Sb、Zn,La、W、Ce、Nb、V、Sm、Y等の酸化物又は複合酸化物、硫化物を主成分とする粒子が挙げられる。ここで、主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。本発明でより好ましい高屈折率微粒子はTi、Zr、Ta、In、及びSnから選ばれる少なくとも1種の金属元素を含む酸化物もしくは複合酸化物を主成分とする粒子である。
 前記高屈折率微粒子には、粒子の中に種々の元素が含有されていても構わない(以下このような元素を含有元素ということがある)。
 前記含有元素としては、例えば、Li、Si、Al、B、Ba、Co、Fe、Hg、Ag、Pt、Au、Cr、Bi、P、Sなどが挙げられる。酸化錫、酸化インジウムにおいては粒子の導電性を高めるために、Sb、Nb、P、B、In、V、ハロゲンなどの含有元素を含有させることが好ましく、特に、酸化アンチモンを5質量%~20質量%含有させたものが最も好ましい。
 前記高屈折率微粒子は、含有元素としてCo、Zr、及びAlから選ばれる少なくとも1つの元素を含有する二酸化チタンを主成分とする無機微粒子(以下、「特定の酸化物」と称することもある)が挙げられる。これらの中でも、Coが特に好ましい。
 Co、Al、及びZrの総含有量は、Tiに対し0.05質量%~30質量%が好ましく、0.1質量%~10質量%がより好ましく、0.2質量%~7質量%が更に好ましく、0.3質量%~5質量%が特に好ましく、0.5質量%~3質量%が最も好ましい。
 前記含有元素Co、Al、Zrは、二酸化チタンを主成分とする高屈折率微粒子の内部又は表面に存在する。二酸化チタンを主成分とする高屈折率微粒子の内部に存在することがより好ましく、内部と表面の両方に存在することが更に好ましい。これらの含有元素のうち金属元素は、酸化物として存在してもよい。
 他の好ましい高屈折率微粒子としては、チタン元素と、酸化物が屈折率1.95以上となる金属元素から選ばれる少なくとも1種の金属元素(以下、「Met」とも略称する)との複合酸化物の粒子で、かつ該複合酸化物はCoイオン、Zrイオン及びAlイオンから選ばれる金属イオンの少なくとも1種がドープされてなる無機微粒子(「特定の複酸化物」と称することもある)が挙げられる。ここで、前記酸化物の屈折率が1.95以上となる金属元素としては、例えば、Ta、Zr、In、Nd、Sb、Sn、Biなどが挙げられる。これらの中でも、Ta、Zr、Sn、Biが特に好ましい。
 前記特定の複合酸化物にドープされる金属イオンの含有量は、複合酸化物を構成する全金属[Ti+Met]量に対して、25質量%を超えない範囲で含有することが屈折率維持の観点から好ましく、0.05質量%~10質量%がより好ましく、0.1質量%~5質量%が更に好ましく、0.3質量%~3質量%が特に好ましい。
 ドープされた金属イオンは、金属イオンとして、又は金属原子のいずれの形態で存在してもよく、前記複合酸化物の表面から内部まで適宜に存在することができる。複合酸化物の表面と内部との両方に存在することが好ましい。
 前記高屈折率微粒子は結晶構造を有することが好ましい。前記結晶構造は、ルチル、ルチル/アナターゼの混晶、アナターゼが主成分であることが好ましく、特にルチル構造が主成分であることが好ましい。このことにより、前記特定の酸化物又は特定の複酸化物の高屈折率微粒子は、屈折率が1.9~2.8を有することになり、好ましい。前記屈折率は、2.1~2.8がより好ましく、2.2~2.8が更に好ましい。このことにより、二酸化チタンが有する光触媒活性を抑えることができ、微粒子層自身並びに微粒子層と接する上/下の両層のそれぞれの耐候性を著しく改良することができる。
 上記した特定の金属元素又は金属イオンをドープする方法は、従来公知の方法を用いることができる。例えば、特開平5-330825号公報、特開平11-263620号公報、特表平11-512336号公報、ヨーロッパ公開特許第0335773号公報等に記載の方法;イオン注入法〔例えば、権田俊一、石川順三、上条栄治編「イオンビーム応用技術」株式会社シ-エムシー、1989年刊行、青木康、「表面科学」18巻(5)、262頁、1998、安保正一等、「表面科学」20巻(2)、60頁、1999等記載〕などに従って製造できる。
 前記高屈折率微粒子は表面処理してもよい。前記表面処理とは、無機化合物及び/又は有機化合物を用いて該粒子表面の改質を実施するもので、これにより高屈折率微粒子表面の濡れ性が調整され有機溶媒中での微粒子化、微粒子層用組成物中での分散性及び分散安定性が向上する。粒子表面に物理化学的に吸着させる無機化合物としては、例えば、ケイ素を含有する無機化合物(SiO等)、アルミニウムを含有する無機化合物[Al、Al(OH)等]、コバルトを含有する無機化合物(CoO、Co23,Co34等)、ジルコニウムを含有する無機化合物[ZrO2、Zr(OH)4等]、鉄を含有する無機化合物(Fe23等)、などが挙げられる。
 前記表面処理に用いる有機化合物としては、従来公知の金属酸化物、無機顔料等の無機フィラー類の表面改質剤を用いることができる。例えば、「顔料分散安定化と表面処理技術・評価」第一章(技術情報協会、2001年刊行)等に記載されている。
 具体的には、高屈折率微粒子表面と親和性を有する極性基を有する有機化合物、カップリング化合物が挙げられる。前記高屈折率微粒子表面と親和性を有する極性基としては、例えば、カルボキシ基、ホスホノ基、ヒドロキシ基、メルカプト基、環状酸無水物基、アミノ基等が挙げられ、これらを分子中に少なくとも1種を含有する化合物が好ましい。例えば、長鎖脂肪族カルボン酸(例えば、ステアリン酸、ラウリン酸、オレイン酸、リノール酸、リノレイン酸等)、ポリオール化合物{例えば、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート、ECH(エピクロルヒドリン)変性グリセロールトリアクリレート等}、ホスホノ基含有化合物{例えば、EO(エチレンオキシド)変性リン酸トリアクリレート等}、アルカノールアミン{エチレンジアミンEO付加体(5モル)等}が挙げられる。
 前記カップリング化合物としては、従来公知の有機金属化合物が挙げられ、シランカップリング剤、チタネートカップリング剤、アルミネートカップリング剤等が含まれる。シランカップリング剤が最も好ましい。具体的には、例えば、特開2002-9908号公報、特開2001-310423号公報の段落番号〔0011〕~〔0015〕に記載の化合物等が挙げられる。これらの表面処理に用いる化合物は、2種類以上を併用することもできる。
 前記高屈折率微粒子は、これをコアとして他の無機化合物からなるシェルを形成したコア/シェル構造の微粒子であることも好ましい。前記シェルとしては、Al、Si、及びZrから選ばれる少なくとも1種の元素からなる酸化物が好ましい。具体的には、例えば特開2001-166104号公報記載の内容が挙げられる。
 前記高屈折率微粒子の形状は、特に制限はなく、目的に応じて適宜選択することができるが、例えば、米粒状、球形状、立方体状、紡錘形状又は不定形状が好ましい。前記高屈折率微粒子は単独で用いてもよいが、2種類以上を併用して用いることもできる。
 前記高屈折率微粒子の含有量は、特に制限はなく、目的に応じて適宜選定することができるが、ポリマーの屈折率を1.55~1.95とすることができる範囲が好ましい。
<<ポリマー>>
 前記ポリマーとしては、(A)有機バインダー、並びに(B)加水分解性官能基を含有する有機金属化合物及びこの有機金属化合物の部分縮合物、の少なくともいずれかであることが好ましい。
-(A)有機バインダー-
 前記(A)の有機バインダーとしては、(1)従来公知の熱可塑性樹脂、
(2)従来公知の反応性硬化性樹脂と硬化剤との組み合わせ、又は
(3)バインダー前駆体(後述する硬化性の多官能モノマー、多官能オリゴマーなど)と重合開始剤との組み合わせ、から形成されるバインダーが挙げられる。
 前記(1)、(2)又は(3)の有機バインダーと、前記微粒子と、前記高屈折微粒子とを含有する微粒子層用組成物が調製されることが好ましい。この微粒子層用組成物は、支持体上に塗布され、塗膜が形成された後、バインダー成分に応じた方法で硬化されて微粒子層が形成される。硬化方法は、バインダー成分の種類に応じて適宜選択され、例えば、加熱及び光照射の少なくともいずれかの手段により、硬化性化合物(例えば、多官能モノマー、多官能オリゴマーなど)の架橋反応又は重合反応を生起させる方法が挙げられる。なかでも、前記(3)の組み合わせを用いて光照射することにより硬化性化合物を架橋反応又は重合反応させて硬化したバインダーを形成する方法が好ましい。
 更に、微粒子層用組成物を塗布と同時又は塗布後に、微粒子の分散液に含有される分散剤を架橋反応又は重合反応させることが好ましい。
 このようにして作製した硬化膜中のバインダーは、例えば、前記分散剤とバインダーの前駆体である硬化性の多官能モノマー、多官能オリゴマーとが、架橋又は重合反応し、バインダーに分散剤のアニオン性基が取りこまれた形となる。更に、硬化膜中のバインダーは、アニオン性基が高屈折率微粒子の分散状態を維持する機能を有するので、架橋又は重合構造がバインダーに皮膜形成能を付与して、高屈折率微粒子を含有する硬化膜中の物理強度、耐薬品性、耐候性を改良することができる。
{熱可塑性樹脂(A-1)}
 前記(1)の熱可塑性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリスチレン樹脂、ポリエステル樹脂、セルロース樹脂、ポリエーテル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、塩化ビニル-酢酸ビニル共重合体樹脂、ポリアクリル樹脂、ポリメタアクリル樹脂、ポリオレフィン樹脂、ウレタン樹脂、シリコーン樹脂、イミド樹脂、などが挙げられる。
{反応性硬化性樹脂と硬化剤との組み合わせ(A-2)}
 前記(2)の反応性硬化性樹脂としては、熱硬化型樹脂及び/又は電離放射線硬化型樹脂を使用することが好ましい。
 前記熱硬化型樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えばフェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、メラミン-尿素共縮合樹脂、珪素樹脂、ポリシロキサン樹脂などが挙げられる。
 前記電離放射線硬化型樹脂には、特に制限はなく、目的に応じて適宜選択することができ、例えば、ラジカル重合性不飽和基{(メタ)アクリロイルオキシ基、ビニルオキシ基、スチリル基、ビニル基等}及び/又はカチオン重合性基(エポキシ基、チオエポキシ基、ビニルオキシ基、オキセタニル基等)の官能基を有する樹脂で、例えば、比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、(メタ)アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂などが挙げられる。
 これらの反応性硬化性樹脂に必要に応じて、架橋剤(例えば、エポキシ化合物、ポリイソシアネート化合物、ポリオール化合物、ポリアミン化合物、メラミン化合物等)、重合開始剤(例えば、アゾビス化合物、有機過酸化化合物、有機ハロゲン化合物、オニウム塩化合物、ケトン化合物等のUV光開始剤等)等の硬化剤、重合促進剤(有機金属化合物、酸化合物、塩基性化合物等)等の従来公知の化合物を加えて使用する。具体的には、例えば、山下普三、金子東助「架橋剤ハンドブック」(大成社、1981年刊)記載の化合物が挙げられる。
{バインダー前駆体と重合開始剤との組み合わせ(A-3)}
 以下、硬化したバインダーの好ましい形成方法である前記(3)の組み合わせを用いて、光照射により硬化性化合物を架橋又は重合反応させて硬化したバインダーを形成する方法について、主に説明する。
 前記バインダーの前駆体である光硬化性の多官能モノマー、多官能オリゴマーの官能基としては、ラジカル重合性官能基、及びカチオン重合性官能基のいずれでもよい。
 前記ラジカル重合性官能基としては、例えば、(メタ)アクリロイル基、ビニルオキシ基、スチリル基、アリル基等のエチレン性不飽和基などが挙げられる。これらの中でも、(メタ)アクリロイル基が特に好ましく、分子内に2個以上のラジカル重合性基を含有する多官能モノマーを含有することが特に好ましい。
 前記ラジカル重合性多官能モノマーとしては、末端エチレン性不飽和結合を少なくとも2個有する化合物から選ばれることが好ましい。好ましくは、分子中に2~6個の末端エチレン性不飽和結合を有する化合物である。このような化合物群はポリマー材料分野において広く知られるものであり、本発明においては、これらを特に限定なく用いることができる。これらは、例えば、モノマー、プレポリマー(即ち2量体、3量体及びオリゴマー)又はそれらの混合物、及びそれらの共重合体などの化学的形態をもつことができる。
 前記ラジカル重合性モノマーとしては、例えば不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等)、そのエステル類、アミド類などが挙げられる。これらの中でも、不飽和カルボン酸と脂肪族多価アルコール化合物とのエステル、不飽和カルボン酸と脂肪族多価アミン化合物とのアミド類が特に好ましい。
 また、ヒドロキシル基、アミノ基、メルカプト基等の求核性置換基を有する不飽和カルボン酸エステル類、アミド類と、単官能もしくは多官能イソシアネート類、エポキシ類との付加反応物、多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアナート基、エポキシ基等の親電子性置換基を有する不飽和カルボン酸エステル又はアミド類と単官能もしくは多官能のアルコール類、アミン類及びチオール類との反応物も好適である。更に別の例として、前記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン等に置き換えた化合物群を使用することも可能である。
 脂肪族多価アルコール化合物としては、例えば、アルカンジオール、アルカントリオール、シクロヘキサンジオール、シクロヘキサントリオール、イノシットール、シクロヘキサンジメタノール、ペンタエリスリトール、ソルビトール、ジペンタエリスリトール、トリペンタエリスリトール、グリセリン、ジグリセリン等が挙げられる。これら脂肪族多価アルコール化合物と、不飽和カルボン酸との重合性エステル化合物(モノエステル又はポリエステル)、例として、例えば、特開2001-139663号公報の段落番号〔0026〕~〔0027〕に記載の化合物が挙げられる。
 その他の重合性エステルとしては、例えば、ビニルメタクリレート、アリルメタクリレート、アリルアクリレート、特公昭46-27926号公報、特公昭51-47334号公報、特開昭57-196231号公報等に記載の脂肪族アルコール系エステル類、特開平2-226149号公報等に記載の芳香族系骨格を有するもの、特開平1-165613号公報に記載のアミノ基を有するもの等も好適に用いられる。
 更に脂肪族多価アミン化合物と不飽和カルボン酸とから形成される重合性アミドの具体例としては、メチレンビス(メタ)アクリルアミド、1,6-ヘキサメチレンビス(メタ)アクリルアミド、ジエチレントリアミントリス(メタ)アクリルアミド、キシリレンビス(メタ)アクリルアミド、特公昭54-21726号公報記載のシクロヘキシレン構造を有するもの等を挙げることができる。
 更にまた、1分子中に2個以上の重合性ビニル基を含有するビニルウレタン化合物(特公昭48-41708号公報等)、ウレタンアクリレート類(特公平2-16765号公報等)、エチレンオキサイド系骨格を有するウレタン化合物(特公昭62-39418号公報等)、ポリエステルアクリレート類(特公昭52-30490号公報等)、更に、日本接着協会誌20巻7号 300~308頁(1984年)に記載の光硬化性モノマー及びオリゴマーも使用することができる。これらラジカル重合性の多官能モノマーは、2種類以上を併用してもよい。
 次に、前記微粒子層のバインダーの形成に用いることができるカチオン重合性基含有の化合物(以下、「カチオン重合性化合物」又は「カチオン重合性有機化合物」とも称する)について説明する。
 前記カチオン重合性化合物は、活性エネルギー線感受性カチオン重合開始剤の存在下に活性エネルギー線を照射したときに重合反応及び/又は架橋反応を生ずる化合物のいずれもが使用でき、代表例としては、エポキシ化合物、環状チオエーテル化合物、環状エーテル化合物、スピロオルソエステル化合物、ビニル炭化水素化合物、ビニルエーテル化合物などを挙げることができる。前記カチオン重合性有機化合物のうちの1種を用いても2種以上を用いてもよい。
 前記カチオン重合性基含有化合物としては、1分子中のカチオン重合性基の数は2~10個が好ましく、2~5個がより好ましい。前記化合物の平均分子量は3,000以下が好ましく、200~2,000がより好ましく、400~1,500が更に好ましい。前記平均分子量が該下限値以上であれば、皮膜形成過程での揮発が問題となるなどの不都合が生じることがなく、また該上限値以下であれば、微粒子層用組成物との相溶性が悪くなるなどの問題を生じないので好ましい。
 前記エポキシ化合物としては、例えば、脂肪族エポキシ化合物、芳香族エポキシ化合物が挙げられる。
 前記脂肪族エポキシ化合物としては、例えば、脂肪族多価アルコール又はそのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジルアクリレート、グリシジルメタクリレートのホモポリマー、コポリマーなどを挙げることができる。更に、前記のエポキシ化合物以外にも、例えば、脂肪族高級アルコールのモノグリシジルエーテル、高級脂肪酸のグリシジルエステル、エポキシ化大豆油、エポキシステアリン酸ブチル、エポキシステアリン酸オクチル、エポキシ化アマニ油、エポキシ化ポリブタジエンなどを挙げることができる。また、脂環式エポキシ化合物としては、少なくとも1個の脂環族環を有する多価アルコールのポリグリシジルエーテル、又は不飽和脂環族環(例えば、シクロヘキセン、シクロペンテン、ジシクロオクテン、トリシクロデセン等)含有化合物を過酸化水素、過酸等の適当な酸化剤でエポキシ化して得られるシクロヘキセンオキサイド又はシクロペンテンオキサイド含有化合物などを挙げることができる。
 前記芳香族エポキシ化合物としては、例えば、少なくとも1個の芳香核を有する1価もしくは多価のフェノール、又はそのアルキレンオキサイド付加体のモノもしくはポリグリシジルエーテルを挙げることができる。これらのエポキシ化合物として、例えば、特開平11-242101号公報中の段落番号〔0084〕~〔0086〕に記載の化合物、特開平10-158385号公報中の段落番号〔0044〕~〔0046〕に記載の化合物等が挙げられる。
 これらのエポキシ化合物のうち、速硬化性を考慮すると、芳香族エポキシド及び脂環式エポキシドが好ましく、特に脂環式エポキシドが好ましい。前記エポキシ化合物の1種を単独で使用してもよいが、2種以上を適宜組み合わせて使用してもよい。
 環状チオエーテル化合物としては、前記エポキシ化合物のエポキシ環の代わりに、チオエポキシ環を有する化合物が挙げられる。
 環状エーテル化合物としてのオキセタニル基を含有する化合物としては、具体的には、例えば特開2000-239309号公報中の段落番号〔0024〕~〔0025〕に記載の化合物等が挙げられる。これらの化合物は、エポキシ基含有化合物と併用することが好ましい。
 スピロオルソエステル化合物としては、例えば、特表2000-506908号公報等に記載の化合物を挙げることができる。
 ビニル炭化水素化合物としては、例えば、スチレン化合物、ビニル基置換脂環炭化水素化合物(ビニルシクロヘキサン、ビニルビシクロヘプテン等)、前記ラジカル重合性モノマーで記載の化合物、プロペニル化合物{"J.Polymer Science:Part A:Polymer Chemistry",32巻2895頁(1994年)記載等}、アルコキシアレン化合物{"J.Polymer Science:Part A:Polymer Chemistry",33巻2493頁(1995年)記載等}、ビニル化合物{"J.Polymer Science:Part A:Polymer Chemistry",34巻1015頁(1996年)、特開2002-29162号公報等記載}、イソプロペニル化合物{"J.Polymer Science:Part A:Polymer Chemistry",34巻2051頁(1996年)記載等}等を挙げることができる。これらは2種以上を適宜組み合わせて使用してもよい。
 また、前記多官能性化合物は、前記のラジカル重合性基及びカチオン重合性基から選ばれる少なくとも各1種を少なくとも分子内に含有する化合物を用いることが好ましい。例えば、特開平8-277320号公報中の段落番号〔0031〕~〔0052〕に記載の化合物、特開2000-191737号公報中の段落番号〔0015〕に記載の化合物等が挙げられる。本発明に供される化合物は、これらに限定されるものではない。
 以上述べたラジカル重合性化合物とカチオン重合性化合物とを、ラジカル重合性化合物:カチオン重合性化合物の質量比率で、90:10~20:80の割合で含有していることが好ましく、80:20~30:70の割合で含有していることがより好ましい。
 次に、前記(3)の組み合わせにおいて、バインダー前駆体と組み合わせて用いられる重合開始剤について詳述する。
 前記重合開始剤としては、熱重合開始剤、光重合開始剤などが挙げられる。
 前記重合開始剤は、光及び/又は熱照射により、ラジカルもしくは酸を発生する化合物であることが好ましい。前記光重合開始剤は、極大吸収波長が400nm以下であることが好ましい。このように吸収波長を紫外線領域にすることにより、取り扱いを白灯下で実施することができる。また、近赤外線領域に極大吸収波長を持つ化合物を用いることもできる。
 前記ラジカルを発生する化合物は、光及び/又は熱照射によりラジカルを発生し、重合性の不飽和基を有する化合物の重合を、開始、促進させる化合物を指す。公知の重合開始剤、結合解離エネルギーの小さな結合を有する化合物などを、適宜、選択して用いることができる。また、ラジカルを発生する化合物は、単独で又は2種以上を併用して用いることができる。
 前記ラジカルを発生する化合物としては、例えば、従来公知の有機過酸化化合物、アゾ系重合開始剤等の熱ラジカル重合開始剤、有機過酸化化合物(特開2001-139663号公報等)、アミン化合物(特公昭44-20189号公報記載)、メタロセン化合物(特開平5-83588号公報、特開平1-304453号公報等記載)、ヘキサアリールビイミダゾール化合物(米国特許第3,479,185号明細書等記載)、ジスルホン化合物(特開平5-239015号公報、特開昭61-166544号公報等)、有機ハロゲン化化合物、カルボニル化合物、有機ホウ酸化合物等の光ラジカル重合開始剤が挙げられる。
 前記有機ハロゲン化化合物としては、具体的には、若林等の"Bull.Chem.Soc Japan",42巻2924頁(1969年)、米国特許第3,905,815号明細書、特開平5-27830号公報、M.P.Hutt,"J.Heterocyclic Chemistry",1巻(3号)、(1970年)」等に記載の化合物が挙げられ、特に、トリハロメチル基が置換したオキサゾール化合物:s-トリアジン化合物が挙げられる。より好適には、少なくとも一つのモノ、ジ又はトリハロゲン置換メチル基がs-トリアジン環に結合したs-トリアジン誘導体が挙げられる。
 前記カルボニル化合物としては、例えば、「最新 UV硬化技術」60ページ~62ページ〔株式会社技術情報協会刊、1991年〕、特開平8-134404号公報の段落番号〔0015〕~〔0016〕、特開平11-217518号公報の段落番号〔0029〕~〔0031〕に記載の化合物などが挙げられる。また、アセトフェノン系、ヒドロキシアセトフェノン系、ベンゾフェノン系、チオキサン系、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル等のベンゾイン化合物、p-ジメチルアミノ安息香酸エチル、p-ジエチルアミノ安息香酸エチル等の安息香酸エステル誘導体、ベンジルジメチルケタール、アシルフォスフィンオキサイドなどが挙げられる。
 前記有機ホウ酸塩化合物としては、例えば、特許第2764769号、特開2002-116539号等の各公報、及び、Kunz,Martin,"Rad.Tech'98.Proceeding April 19~22,1998,Chicago"等に記載される有機ホウ酸塩記載される化合物が挙げられる。例えば、前記特開2002-116539号公報の段落番号〔0022〕~〔0027〕に記載の化合物が挙げられる。またその他の有機ホウ素化合物としては、特開平6-348011号公報、特開平7-128785号公報、特開平7-140589号公報、特開平7-306527号公報、特開平7-292014号公報等の有機ホウ素遷移金属配位錯体等が具体例として挙げられる。
 これらのラジカル発生化合物は、1種のみを添加しても、2種以上を併用してもよい。添加量としては、ラジカル重合性モノマー全量に対し、0.1質量%~30質量%が好ましく、0.5質量%~25質量%がより好ましく、1質量%~20質量%が更に好ましい。前記添加量の範囲において、微粒子層用組成物の経時安定性が問題なく高い重合性となる。
 次に、光重合開始剤として用いることができる光酸発生剤について詳述する。
 前記光酸発生剤としては、光カチオン重合の光開始剤、色素類の光消色剤、光変色剤、又はマイクロレジスト等に使用されている公知の光酸発生剤等、公知の化合物及びそれらの混合物等が挙げられる。また、前記光酸発生剤としては、例えば、有機ハロゲン化化合物、ジスルホン化合物、オニウム化合物などが挙げられる。これらの中でも、有機ハロゲン化化合物、ジスルホン化合物が特に好ましい。前記有機ハロゲン化合物、ジスルホン化合物の具体例は、前記ラジカルを発生する化合物の記載と同様のものが挙げられる。
 前記オニウム化合物としては、例えば、ジアゾニウム塩、アンモニウム塩、イミニウム塩、ホスホニウム塩、ヨードニウム塩、スルホニウム塩、アルソニウム塩、セレノニウム塩等が挙げられ、例えば、特開2002-29162号公報の段落番号〔0058〕~〔0059〕に記載の化合物、などが挙げられる。
 前記酸発生剤としては、オニウム塩が特に好適に用いられ、中でも、ジアゾニウム塩、ヨードニウム塩、スルホニウム塩、イミニウム塩が、光重合開始の光感度、化合物の素材安定性等の点から好ましい。
 前記オニウム塩の具体例としては、例えば、特開平9-268205号公報の段落番号〔0035〕に記載のアミル化されたスルホニウム塩、特開2000-71366号明細書の段落番号〔0010〕~〔0011〕に記載のジアリールヨードニウム塩又はトリアリールスルホニウム塩、特開2001-288205号公報の段落番号〔0017〕に記載のチオ安息香酸S-フェニルエステルのスルホニウム塩、特開2001-133696号公報の段落番号〔0030〕~〔0033〕に記載のオニウム塩等が挙げられる。
 前記光酸発生剤の他の例としては、特開2002-29162号公報の段落番号〔0059〕~〔0062〕に記載の有機金属/有機ハロゲン化物、o-ニトロベンジル型保護基を有する光酸発生剤、光分解してスルホン酸を発生する化合物(イミノスルフォネート等)等の化合物が挙げられる。
 これらの酸発生剤は、1種のみをそれぞれ単独で用いてもよいし、2種以上を併用してもよい。前記酸発生剤の添加量は、全カチオン重合性モノマーの全質量に対し0.1質量%~20質量%が好ましく、0.5質量%~15質量%がより好ましく、1質量%~10質量%が更に好ましい。前記添加量が、前記範囲において、微粒子層用組成物の安定性、重合反応性等から好ましい。
 前記微粒子層用組成物は、ラジカル重合性化合物又はカチオン重合性化合物の合計質量に対して、ラジカル重合開始剤を0.5質量%~10質量%又はカチオン重合開始剤を1質量%~10質量%の割合で含有していることが好ましく、ラジカル重合開始剤を1質量%~5質量%、又はカチオン重合開始剤を2質量%~6質量%の割合で含有することがより好ましい。
 前記微粒子層用組成物には、紫外線照射により重合反応を行う場合、従来公知の紫外線分光増感剤、化学増感剤を併用してもよい。これらの増感剤としては、例えば、ミヒラーズケトン、アミノ酸(例えば、グリシン等)、有機アミン(例えば、ブチルアミン、ジブチルアミン等)などが挙げられる。
 また、近赤外線照射により重合反応を行う場合には、近赤外線分光増感剤を併用することが好ましい。併用する近赤外線分光増感剤は、700nm以上の波長域の少なくとも一部に吸収帯を有する光吸収物質であればよく、分子吸光係数が10,000以上の値を有する化合物が好ましい。更には、750nm~1,400nmの領域に吸収を有し、かつ分子吸光係数が20,000以上の値が好ましい。また、420nm~700nmの可視光波長域に吸収の谷があり、光学的に透明であることがより好ましい。
 前記近赤外線分光増感剤は、近赤外線吸収顔料及び近赤外線吸収染料として知られる種々の顔料及び染料を用いることができる。その中でも、従来公知の近赤外線吸収剤を用いることが好ましい。市販の染料並びに、文献{例えば、「化学工業」1986年5月号45~51頁の「近赤外吸収色素」、「90年代機能性色素の開発と市場動向」第2章2.3項(1990年)シーエムシー、「特殊機能色素」〔池森・柱谷編集、1986年、株式会社シーエムシー発行〕、J.FABIAN,"Chem.Rev.",92巻1197~1226頁(1992年)}、日本感光色素研究所が1995年に発行したカタログ、並びにExciton Inc.が1989年に発行したレーザー色素カタログ及び特許に記載されている公知の染料が利用できる。
(B)加水分解性官能基を含有する有機金属化合物又はこの有機金属化合物の部分縮合物
 前記マトッリクスとして、加水分解可能な官能基を含有する有機金属化合物を用いて、ゾル/ゲル反応により塗布膜形成後に硬化された膜を形成することも好ましい。
 前記有機金属化合物としては、例えば、Si、Ti、Zr、Al等からなる化合物が挙げられる。
 前記加水分解可能な官能基な基としては、例えば、アルコキシ基、アルコキシカルボニル基、ハロゲン原子、水酸基などが挙げられる。これらの中でも、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等のアルコキシ基が特に好ましい。好ましい有機金属化合物は、下記一般式(2)で表される有機ケイ素化合物又はその部分加水分解物(部分縮合物)である。なお、一般式(2)で表される有機ケイ素化合物は、容易に加水分解し、引き続いて脱水縮合反応が生じることはよく知られた事実である。
 一般式(2):(R21β-Si(Y214-β
 ただし、前記一般式(2)中、R21は、置換もしくは無置換の炭素数1~30脂肪族基又は炭素数6~14のアリール基を表す。Y21は、ハロゲン原子(例えば、塩素原子、臭素原子等)、OH基、OR22基、OCOR22基を表す。ここで、R22は置換もしくは無置換のアルキル基を表す。βは0~3の整数を表し、好ましくは0、1又は2、特に好ましくは1である。ただし、βが0の場合は、Y21はOR22基又はOCOR22基を表す。
 前記一般式(2)において、R21の脂肪族基としては、好ましくは炭素数1~18(例えば、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、オクチル、デシル、ドデシル、ヘキサデシル、オクタデシル、ベンジル基、フェネチル基、シクロヘキシル基、シクロヘキシルメチル、ヘキセニル基、デセニル基、ドデセニル基等)が挙げられる。より好ましくは炭素数1~12、特に好ましくは1~8のものである。R21のアリール基としては、フェニル、ナフチル、アントラニル等が挙げられ、好ましくはフェニル基である。
 置換基としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、ハロゲン(例えば、フッ素、塩素、臭素等)、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基(例えば、メチル、エチル、i-プロピル、プロピル、t-ブチル等)、アリール基(例えば、フェニル、ナフチル等)、芳香族ヘテロ環基(例えば、フリル、ピラゾリル、ピリジル等)、アルコキシ基(例えば、メトキシ、エトキシ、i-プロポキシ、ヘキシルオキシ等)、アリールオキシ(例えば、フェノキシ等)、アルキルチオ基(例えば、メチルチオ、エチルチオ等)、アリールチオ基(例えば、フェニルチオ等)、アルケニル基(例えば、ビニル、1-プロペニル等)、アルコキシシリル基(例えば、トリメトキシシリル、トリエトキシシリル等)、アシルオキシ基{例えば、アセトキシ、(メタ)アクリロイル等}、アルコキシカルボニル基(例えば、メトキシカルボニル、エトキシカルボニル等)、アリールオキシカルボニル基(例えば、フェノキシカルボニル等)、カルバモイル基(例えば、カルバモイル、N-メチルカルバモイル、N,N-ジメチルカルバモイル、N-メチル-N-オクチルカルバモイル等)、アシルアミノ基(例えば、アセチルアミノ、ベンゾイルアミノ、アクリルアミノ、メタクリルアミノ等)などが好ましい。
 これらの置換基のうちで、更に好ましくは水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基、アルコキシシリル基、アシルオキシ基、アシルアミノ基であり、特に好ましくはエポキシ基、重合性のアシルオキシ基{(メタ)アクリロイル}、重合性のアシルアミノ基(例えば、アクリルアミノ、メタクリルアミノ等)である。またこれら置換基は更に置換されていてもよい。
 前記のようにR22は置換もしくは無置換のアルキル基を表し、アルキル基は特に限定はないが、例えばR21の脂肪族基と同じものが挙げられ、アルキル基中の置換基の説明はR21と同じである。
 前記一般式(2)の化合物の含有量は、前記微粒子層用組成物の全固形分の10質量%~80質量%が好ましく、20質量%~70質量%がより好ましく、30質量%~50質量%が更に好ましい。
 前記一般式(2)の化合物としては、例えば特開2001-166104号公報の段落番号〔0054〕~〔0056〕に記載の化合物が挙げられる。
 前記微粒子層用組成物において、前記有機バインダーは、シラノール基を有するものであることが好ましい。バインダーがシラノール基を有することで、微粒子層の物理強度、耐薬品性、耐候性が更に改良され、好ましい。前記シラノール基は、例えば、微粒子層用組成物を構成するバインダー形成成分として、バインダー前駆体(硬化性の多官能モノマー、多官能オリゴマーなど)、重合開始剤、微粒子の分散液に含有される分散剤と共に、架橋又は重合性官能基を有する一般式(2)で表される有機ケイ素化合物を該微粒子層用組成物に配合し、この微粒子層用組成物を透明支持体上に塗布して、前記の分散剤、多官能モノマー、多官能オリゴマー、一般式(2)で表される有機ケイ素化合物を架橋反応又は重合反応させることによりバインダーに導入することができる。
 前記の有機金属化合物を硬化させるための加水分解・縮合反応は、触媒存在下で行われることが好ましい。前記触媒としては、例えば、塩酸、硫酸、硝酸等の無機酸類;シュウ酸、酢酸、ギ酸、トリフルオロ酢酸、メタンスルホン酸、トルエンスルホン酸等の有機酸類;水酸化ナトリウム、水酸化カリウム、アンモニア等の無機塩基類;トリエチルアミン、ピリジン等の有機塩基類;トリイソプロポキシアルミニウム、テトラブトキシジルコニウム、テトラブトキシチタネート等の金属アルコキシド類;β-ジケトン類又はβ-ケトエステル類の金属キレート化合物類などが挙げられる。具体的には、例えば特開2000-275403号公報中の段落番号〔0071〕~〔0083〕に記載の化合物等が挙げられる。
 これらの触媒化合物の組成物中での割合は、有機金属化合物に対し、0.01質量%~50質量%が好ましく、0.1質量%~50質量%がより好ましく、0.5質量%~10質量%が更に好ましい。なお、反応条件は有機金属化合物の反応性により適宜調節されることが好ましい。
 前記微粒子層用組成物において、マトリックスは特定の極性基を有することも好ましい。前記特定の極性基としては、例えば、アニオン性基、アミノ基、及び四級アンモニウム基が挙げられる。前記アニオン性基、アミノ基及び四級アンモニウム基の具体例としては、前記分散剤について述べたものと同様のものが挙げられる。
-溶媒-
 前記溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルコール類、ケトン類、エステル類、アミド類、エーテル類、エーテルエステル類、炭化水素類、ハロゲン化炭化水素類などが挙げられる。具体的には、アルコール(例えば、メタノール、エタノール、プロパノール、ブタノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、エチレングリコールモノアセテート等)、ケトン(例えば、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン等)、エステル(例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル、乳酸エチル等)、脂肪族炭化水素(例えば、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例えば、メチルクロロホルム等)、芳香族炭化水素(例えば、ベンゼン、トルエン、キシレン等)、アミド(例えば、ジメチルホルムアミド、ジメチルアセトアミド、n-メチルピロリドン等)、エーテル(例えば、ジオキサン、テトラハイドロフラン、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル等)、エーテルアルコール(例えば、1-メトキシ-2-プロパノール、エチルセルソルブ、メチルカルビノール等)が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ブタノールが特に好ましい。また、ケトン溶媒(例えば、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等)を主にした塗布溶媒系も好ましく用いられる。
 前記ケトン系溶媒の含有量は、前記微粒子層用組成物に含まれる全溶媒の10質量%以上が好ましく、30質量%以上がより好ましく、60質量%以上が更に好ましい。
 特定の極性基を有するマトリックスは、例えば、微粒子層用組成物に、硬化膜形成成分として、特定の極性基を有するバインダー前駆体(特定の極性基を有する硬化性の多官能モノマー、多官能オリゴマーなど)と重合開始剤の組み合わせ、及び特定の極性基を有し、かつ架橋又は重合性官能基を有する一般式(2)で表される有機ケイ素化合物の少なくともいずれかを配合し、更に所望により、特定の極性基及び、架橋又は重合性の官能基を有する単官能性モノマーを配合し、該塗布組成物を透明支持体上に塗布して前記の分散剤、単官能性モノマー、多官能モノマー、多官能オリゴマー及び/又は一般式(2)で表される有機ケイ素化合物を架橋又は重合反応させることにより得られる。
 前記特定の極性基を有する単官能性モノマーは、微粒子層用組成物の中で微粒子の分散助剤として機能することができ、好ましい。更に、塗布後、分散剤、多官能モノマー、多官能オリオリゴマーと架橋反応、又は、重合反応させてバインダーとすることで微粒子層における微粒子の良好な均一な分散性を維持し、物理強度、耐薬品性、耐候性に優れた微粒子層を作製することができる。
 前記微粒子層用組成物を、前記透明基板上に、例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、マイクログラビアコート法、エクストルージョンコート法等の公知の薄膜形成方法で塗布し、乾燥、光及び/又は熱照射することにより作製することができる。好ましくは、光照射による硬化が、迅速硬化から有利である。更には、光硬化処理の後半で加熱処理することも好ましい。
 光照射の光源は、紫外線光域又は近赤外線光のものであればいずれでもよく、紫外線光の光源として、超高圧、高圧、中圧、低圧の各水銀灯、ケミカルランプ、カーボンアーク灯、メタルハライド灯、キセノン灯、太陽光等が挙げられる。波長350nm~420nmの入手可能な各種レーザー光源をマルチビーム化して照射してもよい。また、近赤外光光源としてはハロゲンランプ、キセノンランプ、高圧ナトリウムランプが挙げられ、波長750nm~1,400nmの入手可能な各種レーザー光源をマルチビーム化して照射してもよい。
 光照射による光ラジカル重合の場合は、空気又は不活性気体中で行うことができるが、ラジカル重合性モノマーの重合の誘導期を短くするか、又は重合率を十分に高める等のために、できるだけ酸素濃度を少なくした雰囲気とすることが好ましい。照射する紫外線の照射強度は、0.1mW/cm~100mW/cm程度が好ましく、塗布膜表面上での光照射量は100mJ/cm~1,000mJ/cmが好ましい。また、光照射工程での塗布膜の温度分布は、均一なほど好ましく、±3℃以内が好ましく、更には±1.5℃以内に制御されることが好ましい。この範囲において、塗布膜の面内及び層内深さ方向での重合反応が均一に進行するので好ましい。
 前記微粒子層の平均厚みは、5μm~200μmが好ましく、5μm~50μmがより好ましい。前記平均厚みが、5μm未満であると、微粒子層による十分な光角度変換がなく、十分な光取出し効率が得られないことがあり、200μmを超えると、光が散乱されすぎて、後方散乱の光が増え、有機電界発光層内部に戻る光が多くなり、光取出し効率が低下する、また、前記微粒子層が厚いことは高コストに繋がり、前記微粒子層の厚みのバラツキが大きくなり、発光面内の散乱効果にバラツキが生じるおそれがある。
 前記平均厚みは、例えば、微粒子層の一部を切り取り、走査型電子顕微鏡(S-3400N、日立ハイテク株式会社製)で測定し、微粒子層の厚みを求めることができる。
 前記微粒子層の光出射面が平坦であるか、又は前記微粒子層の光出射面に平坦化層を有すること好ましい。これにより、微粒子の密度を増加させても後方散乱の増加を抑制できる。また、平坦化することで異物付着が防止される。更に、ロール状に巻き取った場合、表面(微粒子層側)が平坦であるため、裏面(バリア層)と当接した場合でも傷付けることがないという利点がある。
 前記微粒子層の光出射面を平坦にする方法としては、例えば前記微粒子層の形成に使用した材料から前記散乱用微粒子を取り除いたものを硬化後した前記微粒子層上に積層する方法などが挙げられる。
 前記平坦化層としては、前記微粒子層において前記散乱用微粒子を含まない組成であることが好ましく、前記微粒子層と同様にして形成することができる。
 前記平坦化層の厚みは、特に制限はなく、目的に応じて適宜選択することができるが、5μm~50μmが好ましい。前記平坦化層の厚みが、5μm未満であると、突出した元の微粒子層の表面を平坦化できず、50μmを超えると、前記平坦化層の光の吸収により光取り出し能が低下してしまうことがある。
-基材-
 前記基材としては、その形状、構造、大きさ、材料等については、特に制限はなく、目的に応じて適宜選択することができ、前記形状としては、例えば、平板状などが挙げられ、前記構造としては、単層構造であってもよいし、積層構造であってもよく、前記大きさとしては、前記低屈折率層転写シートの大きさ等に応じて適宜選択することができる。
 前記基材の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリカーボネート、ポリイミド樹脂(PI)、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、スチレン-アクリロニトリル共重合体などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、ポリエステル樹脂が好ましく、ロールでの塗布適性の観点からポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)が特に好ましい。
 前記基材の表面には、その上に設けるバリア層及び微粒子層との密着性を向上させるため、表面活性化処理を行うことが好ましい。前記表面活性化処理としては、例えばグロー放電処理、コロナ放電処理などが挙げられる。
 前記基材は、適宜合成したものであってもよいし、市販品を使用してもよい。
 前記基材の厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、10μm以上が好ましく、50μm以上がより好ましい。
 前記有機電界発光用基板の水分透過度は、1×10-3g/m/day以下が好ましく、1×10-4g/m/day以下がより好ましい。
 前記水分透過度は、例えば、G.NISATO、P.C.P.BOUTEN、P.J.SLIKKERVEERらSID Conference Record of the International Display ResearchConference 1435-1438頁に記載の方法(カルシウムを用いた測定法)により測定することができる。
 前記有機電界発光用基板の酸素透過度は、1cc/m/day以下が好ましく、0.1cc/m/day以下がより好ましい。
 前記酸素透過度は、例えば、酸素透過率測定装置(MOCON社製、MOCON酸素透過率測定装置、OX-TRAN 1/50A)により測定することができる。
 本発明の有機電界発光用基板は、バリア層の干渉によるスペクトル変調、色度の面位置依存性、及び色度の角度依存性を抑制でき、かつ光取り出し効率を高めることができるので、各種有機電界発光装置などに用いることができるが、以下の本発明の有機電界発光装置に用いることが特に好ましい。
(有機電界発光装置)
 本発明の有機電界発光装置は、本発明の前記有機電界発光用基板を少なくとも有し、有機電界発光層、更に必要に応じてその他の部材を有してなる。
-有機電界発光層-
 前記有機電界発光層としては、一対の電極、即ち、陽極と陰極とを有し、両電極の間に発光層を有する。両電極間に配置されうる、発光層以外の機能層としては、正孔輸送層、電子輸送層、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層等の各層が挙げられる。
 前記有機電界発光層は、陽極と発光層との間に正孔輸送層を有することが好ましく、陰極と発光層との間に電子輸送層を有することが好ましい。更に、正孔輸送層と陽極との間に正孔注入層を設けてもよく、電子輸送層と陰極との間に電子注入層を設けてもよい。
 また、前記発光層と正孔輸送層との間に正孔輸送性中間層(電子ブロック層)を設けてもよく、発光層と電子輸送層との間に電子輸送性中間層(正孔ブロック層)を設けてもよい。各機能層は複数の二次層に分かれていてもよい。
 前記発光層を含むこれらの機能層は、蒸着法、スパッタ法等の乾式製膜法、湿式塗布方式、転写法、印刷法、インクジェット方式等のいずれによっても好適に形成することができる。
--発光層--
 前記発光層は、電界印加時に、陽極、正孔注入層、又は正孔輸送層から正孔を受け取り、陰極、電子注入層、又は電子輸送層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
 前記発光層は、発光材料を含む。前記発光層は発光材料のみで構成されていてもよいし、ホスト材料と発光材料の混合層でもよい(後者の場合、発光材料を「発光性ドーパント」もしくは「ドーパント」と称する場合がある)。前記発光材料は蛍光発光材料でも燐光発光材料であってもよく、2種以上が混合されていてもよい。ホスト材料は電荷輸送材料であることが好ましい。ホスト材料は1種であっても2種以上であってもよい。更に、発光層中に電荷輸送性を有さず、発光しない材料を含んでいてもよい。
 前記発光層の厚みは、特に制限はなく、目的に応じて適宜選択することができるが、2nm~500nmが好ましく、外部量子効率の観点で、3nm~200nmがより好ましく、5nm~100nmが更に好ましい。また、発光層は1層であっても2層以上であってもよく、それぞれの層が異なる発光色で発光してもよい。
---発光材料---
 前記発光材料は、燐光発光材料、蛍光発光材料等いずれも好適に用いることができる。本発明における発光性ドーパントは、ホスト化合物との間で、イオン化ポテンシャルの差(ΔIp)と電子親和力の差(ΔEa)が、1.2eV>△Ip>0.2eV、及び/又は1.2eV>△Ea>0.2eVの関係を満たすドーパントであることが、駆動耐久性の観点で好ましい。
 前記発光層中の発光性ドーパントは、発光層中に一般的に発光層を形成する全化合物質量に対して、0.1質量%~50質量%含有されるが、耐久性、外部量子効率の観点から1質量%~50質量%含有されることが好ましく、2質量%~50質量%含有されることがより好ましい。
<燐光発光材料>
 前記燐光発光材料としては、一般に、遷移金属原子又はランタノイド原子を含む錯体を挙げることができる。
 前記遷移金属原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ルテニウム、ロジウム、パラジウム、タングステン、レニウム、オスミウム、イリジウム、金、銀、銅、白金などが挙げられ、より好ましくは、レニウム、イリジウム、及び白金であり、更に好ましくはイリジウム、白金である。
 前記錯体の配位子としては、例えば、G.Wilkinson等著,Comprehensive Coordination Chemistry, Pergamon Press社1987年発行、H.Yersin著,「Photochemistry and Photophysics of Coordination Compounds」 Springer-Verlag社1987年発行、山本明夫著「有機金属化学-基礎と応用-」裳華房社1982年発行等に記載の配位子などが挙げられる。
 前記錯体は、化合物中に遷移金属原子を一つ有してもよいし、また、2つ以上有するいわゆる複核錯体であってもよい。異種の金属原子を同時に含有していてもよい。
 これらの中でも、燐光発光材料としては、例えば、US6303238B1、US6097147、WO00/57676、WO00/70655、WO01/08230、WO01/39234A2、WO01/41512A1、WO02/02714A2、WO02/15645A1、WO02/44189A1、WO05/19373A2、WO2004/108857A1、WO2005/042444A2、WO2005/042550A1、特開2001-247859、特開2002-302671、特開2002-117978、特開2003-133074、特開2002-235076、特開2003-123982、特開2002-170684、EP1211257、特開2002-226495、特開2002-234894、特開2001-247859、特開2001-298470、特開2002-173674、特開2002-203678、特開2002-203679、特開2004-357791、特開2006-93542、特開2006-261623、特開2006-256999、特開2007-19462、特開2007-84635、特開2007-96259等の各公報に記載の燐光発光化合物などが挙げられる。これらの中でも、Ir錯体、Pt錯体、Cu錯体、Re錯体、W錯体、Rh錯体、Ru錯体、Pd錯体、Os錯体、Eu錯体、Tb錯体、Gd錯体、Dy錯体、Ce錯体が好ましく、Ir錯体、Pt錯体、又はRe錯体がより好ましく、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含むIr錯体、Pt錯体、又はRe錯体が更に好ましく、発光効率、駆動耐久性、色度等の観点で、3座以上の多座配位子を含むIr錯体、Pt錯体、又はRe錯体が特に好ましい。
 前記燐光発光材料の具体例として、以下の化合物を挙げることができるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
<蛍光発光材料>
 前記蛍光発光材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ベンゾオキサゾール、ベンゾイミダゾール、ベンゾチアゾール、スチリルベンゼン、ポリフェニル、ジフェニルブタジエン、テトラフェニルブタジエン、ナフタルイミド、クマリン、ピラン、ペリノン、オキサジアゾール、アルダジン、ピラリジン、シクロペンタジエン、ビススチリルアントラセン、キナクリドン、ピロロピリジン、チアジアゾロピリジン、シクロペンタジエン、スチリルアミン、芳香族ジメチリディン化合物、縮合多環芳香族化合物(アントラセン、フェナントロリン、ピレン、ペリレン、ルブレン、又はペンタセンなど)、8-キノリノールの金属錯体、ピロメテン錯体、希土類錯体に代表される各種金属錯体、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン、又はこれらの誘導体などを挙げることができる。
---ホスト材料---
 前記ホスト材料としては、正孔輸送性に優れる正孔輸送性ホスト材料(正孔輸送性ホストと記載する場合がある)及び電子輸送性に優れる電子輸送性ホスト化合物(電子輸送性ホストと記載する場合がある)を用いることができる。
<正孔輸送性ホスト材料>
 前記正孔輸送性ホスト材料としては、例えば、以下の材料を挙げることができる。即ち、ピロール、インドール、カルバゾール、アザインドール、アザカルバゾール、トリアゾール、オキサゾール、オキサジアゾール、ピラゾール、イミダゾール、チオフェン、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、又はそれらの誘導体等が挙げられる。
 これらの中でも、インドール誘導体、カルバゾール誘導体、芳香族第三級アミン化合物、チオフェン誘導体、分子内にカルバゾール基を有するものが好ましく、t-ブチル置換カルバゾール基を有する化合物がより好ましい。
<電子輸送性ホスト材料>
 前記電子輸送性ホスト材料としては、例えば、ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾ-ル、オキサゾ-ル、オキサジアゾ-ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、又はそれらの誘導体(他の環と縮合環を形成してもよい)、8-キノリノ-ル誘導体の金属錯体、メタルフタロシアニン、ベンゾオキサゾ-ル、ベンゾチアゾ-ルを配位子とする金属錯体に代表される各種金属錯体等を挙げることができる。これらの中でも、耐久性の点から金属錯体化合物が好ましく、金属に配位する少なくとも1つの窒素原子又は酸素原子又は硫黄原子を有する配位子をもつ金属錯体がより好ましい。前記金属錯体電子輸送性ホストとしては、例えば特開2002-235076号公報、特開2004-214179号公報、特開2004-221062号公報、特開2004-221065号公報、特開2004-221068号公報、特開2004-327313号公報等に記載の化合物が挙げられる。
 前記正孔輸送性ホスト材料、電子輸送性ホスト材料の具体例として、以下の化合物を挙げることができるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
--正孔注入層、正孔輸送層--
 前記正孔注入層、又は前記正孔輸送層は、陽極又は陽極側の層から正孔を受け取り陰極側に輸送する機能を有する層である。これらの層に用いられる正孔注入材料、正孔輸送材料は、低分子化合物であっても高分子化合物であってもよい。具体的には、ピロール誘導体、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、チオフェン誘導体、有機シラン誘導体、カーボンなどを含有する層であることが好ましい。
 前記正孔注入層、又は前記正孔輸送層には、電子受容性ドーパントを含有させることができる。前記正孔注入層、又は正孔輸送層に導入する電子受容性ドーパントとしては、電子受容性で有機化合物を酸化する性質を有すれば、無機化合物でも有機化合物でも使用できる。
 具体的には、無機化合物は塩化第二鉄、塩化アルミニウム、塩化ガリウム、塩化インジウム、五塩化アンチモン等のハロゲン化金属、五酸化バナジウム、三酸化モリブデン等の金属酸化物などが挙げられる。有機化合物の場合は、置換基としてニトロ基、ハロゲン、シアノ基、トリフルオロメチル基などを有する化合物、キノン系化合物、酸無水物系化合物、フラーレンなどを好適に用いることができる。
 これらの電子受容性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。電子受容性ドーパントの使用量は、材料の種類によって異なるが、正孔輸送層材料に対して0.01質量%~50質量%が好ましく、0.05質量%~20質量%が更に好ましく、0.1質量%~10質量%が特に好ましい。
 前記正孔注入層、又は正孔輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
--電子注入層、電子輸送層--
 前記電子注入層、又は前記電子輸送層は、陰極又は陰極側の層から電子を受け取り陽極側に輸送する機能を有する層である。これらの層に用いる電子注入材料、電子輸送材料は低分子化合物であっても高分子化合物であってもよい。
 具体的には、ピリジン誘導体、キノリン誘導体、ピリミジン誘導体、ピラジン誘導体、フタラジン誘導体、フェナントロリン誘導体、トリアジン誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体、メタルフタロシアニン、ベンゾオキサゾール、ベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、シロールに代表される有機シラン誘導体、等を含有する層であることが好ましい。
 前記電子注入層、又は電子輸送層には、電子供与性ドーパントを含有させることができる。前記電子注入層、又は電子輸送層に導入される電子供与性ドーパントとしては、電子供与性で有機化合物を還元する性質を有していればよく、Li等のアルカリ金属、Mg等のアルカリ土類金属、希土類金属を含む遷移金属、還元性有機化合物などが好適に用いられる。金属としては、特に仕事関数が4.2eV以下の金属が好適に使用でき、具体的には、Li、Na、K、Be、Mg、Ca、Sr、Ba、Y、Cs、La、Sm、Gd、及びYbなどが挙げられる。また、還元性有機化合物としては、例えば、含窒素化合物、含硫黄化合物、含リン化合物などが挙げられる。
 これらの電子供与性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。電子供与性ドーパントの使用量は、材料の種類によって異なるが、電子輸送層材料に対して0.1質量%~99質量%が好ましく、1.0質量%~80質量%が更に好ましく、2.0質量%~70質量%が特に好ましい。
 前記電子注入層、又は前記電子輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
--正孔ブロック層、電子ブロック層--
 前記正孔ブロック層は、陽極側から発光層に輸送された正孔が陰極側に通り抜けることを防止する機能を有する層であり、通常、発光層と陰極側で隣接する有機化合物層として設けられる。
 一方、前記電子ブロック層は、陰極側から発光層に輸送された電子が陽極側に通り抜けることを防止する機能を有する層であり、通常、発光層と陽極側で隣接する有機化合物層として設けられる。
 前記正孔ブロック層を構成する化合物の例としては、BAlq等のアルミニウム錯体、トリアゾール誘導体、BCP等のフェナントロリン誘導体、等が挙げられる。電子ブロック層を構成する化合物の例としては、例えば前述の正孔輸送材料として挙げたものが利用できる。
 前記正孔ブロック層及び電子ブロック層の厚みは、1nm~500nmが好ましく、5nm~200nmがより好ましく、10nm~100nmが更に好ましい。また正孔ブロック層及び電子ブロック層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
--電極--
 前記有機電界発光素子は、一対の電極、即ち、陽極と陰極とを含む。発光素子の性質上、陽極及び陰極のうち少なくとも一方の電極は透明であることが好ましい。
 通常、陽極は有機化合物層に正孔を供給する電極としての機能を有していればよく、陰極は有機化合物層に電子を注入する電極としての機能を有していればよい。その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。電極を構成する材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物等が好適に挙げられる。
 前記電極としては、特に制限はなく、目的に応じて適宜選択することができるが、その陽極、陰極において、前記反射金属、前記半透明部材としての半透明金属を構成することが好ましい。
 前記陽極を構成する材料の具体例としては、例えば、アンチモン、フッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属、更にこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITOとの積層物などが挙げられる。この中で好ましいのは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からはITOが好ましい。
 前記陰極を構成する材料としては、例えば、アルカリ金属(例えば、Li、Na、K、Cs等)、アルカリ土類金属(例えば、Mg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム-カリウム合金、リチウム-アルミニウム合金、マグネシウム-銀合金、インジウム、及びイッテルビウム等の希土類金属などが挙げられる。これらは、1種単独で使用してもよいが、安定性と電子注入性とを両立させる観点からは、2種以上を好適に併用することができる。これらの中でも、電子注入性の点で、アルカリ金属、アルカリ土類金属が好ましく、保存安定性に優れる点で、アルミニウムを主体とする材料が好ましい。アルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01質量%~10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム-アルミニウム合金、マグネシウム-アルミニウム合金など)をいう。
 前記電極の形成方法については、特に制限はなく、公知の方法に従って行うことができる。例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、前記電極を構成する材料との適性を考慮し、適宜選択した方法に従って前記基板上に形成することができる。例えば、陽極の材料としてITOを選択する場合には、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って形成することができる。陰極の材料として金属等を選択する場合には、その1種又は2種以上を同時又は順次にスパッタ法等に従って形成することができる。
 なお、前記電極を形成する際にパターニングを行う場合は、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、また、マスクを重ねて真空蒸着、スパッタ等をして行ってもよいし、リフトオフ法、印刷法によって行ってもよい。
 本発明の有機電界発光装置のように微粒子層等の拡散効果のある層を基板上に設けた場合、正面の色度が大きく変化する。拡散効果によりあらゆる角度の光(角度依存性により色度が異なる)が集まるためである。基本的には赤色から青色(色温度が上がる方向)に動く。よって、少し色温度を低めに設定することが好ましい。例えば、CIE表色系の(x,y)の色度表記で(0.31、0.31)(白)狙いであれば、有機電界発光装置単独の色度を(0.34、0.33)付近の色度x、色度yを高めの値に設定して、設計、作製すると、微粒子層を付けた状態では狙いの(0.31、0.31)付近に来ると予測される。
 したがって、有機電界発光用基板における微粒子層を設ける前の状態での色度を、CIE表色系で、目標色度より色度xが0.01~0.05、色度yが0.01~0.05高くなるように設定することが好ましい。
 ここで、図1は、本発明の有機電界発光装置の一例を示す概略図である。この図1の有機電界発光装置は、基材1の有機電界発光層側の面にバリア層3と、基材1の光出射面側の面に微粒子層2とを有する有機電界発光用基板を有し、
 この有機電界発光用基板のバリア層3上に、電極(ITO)4と、有機層5と、電極6とを有し、これらが封止缶7で封止されたものである。
 前記有機電界発光装置は、フルカラーで表示し得る装置として構成することができる。
 前記有機電界発光装置をフルカラータイプのものとする方法としては、例えば、「月刊ディスプレイ」、2000年9月号、33~37ページに記載されているように、色の3原色(青色(B)、緑色(G)、赤色(R))に対応する光をそれぞれ発光する層構造を基板上に配置する3色発光法、白色発光用の層構造による白色発光をカラーフィルタ層を通して3原色に分ける白色法、青色発光用の層構造による青色発光を蛍光色素層を通して赤色(R)及び緑色(G)に変換する色変換法、などが知られている。
 この場合は、青色(B)、緑色(G)、赤色(R)の画素ごとにレーザーパワー、厚みを適宜調整することが好ましい。
 また、上記方法により得られる異なる発光色の層構造を複数組み合わせて用いることにより、所望の発光色の平面型光源を得ることができる。例えば、青色及び黄色の発光素子を組み合わせた白色発光光源、青色(B)、緑色(G)、及び赤色(R)の有機電界発光素子を組み合わせた白色発光光源、等である。
 前記有機電界発光装置は、例えば、照明機器、コンピュータ、車載用表示器、野外表示器、家庭用機器、業務用機器、家電用機器、交通関係表示器、時計表示器、カレンダ表示器、ルミネッセントスクリーン、音響機器等をはじめとする各種分野において好適に使用することができる。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
(調製例1)
<混合塗布液1の調製方法>
 蒸留水179質量部、界面活性剤(三洋化成工業株式会社製、商品名:ナロアクティーCL-95)46質量部、ナノサイズの微粒子(日産化学株式会社製、スノーテックスZL、固形分40質量%)114質量部、平均粒径2μmの微粒子(日産化学株式会社製、オプトビーズ2000M、固形分100質量%)275質量部、水性ポリウレタン(三井化学株式会社製、タケラックシリーズW-6010、固形分33質量%)359質量部、及び硬化剤(日清紡績株式会社製、V-02-L2、固形分40質量%)27質量部を混合し、スターラーを用い攪拌して、混合塗布液1を調製した。
(調製例2)
<混合塗布液2の調製>
 界面活性剤(三洋化成工業株式会社製、商品名:ナロアクティーCL-95)59質量部、水性ポリウレタン(三井化学株式会社製、タケラックシリーズW-6010、固形分33質量%)992質量部、及び硬化剤(日清紡績株式会社製、V-02-L2、固形分40質量%)59質量部を混合して、混合塗布液2を調製した。
(実施例1)
-有機電界発光用基板の作製-
 厚み0.1mmのポリエチレンテレフタレート(PET)フィルムの一の面に、平均厚みが50nmとなるようにAlを真空スパッタ法で成膜して、水、及び酸素に対するバリア性を有するバリア層付きフィルム基板を作製した。
 前記PETフィルムの他方の面に、前記混合塗布液1をワイヤーバーで塗布し、130℃で2分間加熱硬化させた。その上に前記混合塗布液1を塗布し、再度130℃で2分間加熱硬化させ、厚み15μmの微粒子層を作製した。
 以上により、実施例1の有機電界発光用基板を作製した。
 作製した有機電界発光用基板について、以下のようにして、バリア層の厚みむらを測定したところ、平均厚み±7nmとなり、14nmの厚みむらが生じていた。
<バリア層の厚みむらの測定>
 バリア層の厚みむらは、走査型電子顕微鏡(S-3400N、日立ハイテク株式会社製)で測定した。なお、厚みむらの値は9箇所測定の平均値で示した。
-有機電界発光装置の作製-
 まず、作製した実施例1の有機電界発光用基板のバリア層上に、スパッタ法によりITO(Indium Tin Oxide)を厚みが100nmとなるように成膜した。
 次に、前記ITO上に、下記構造式で表される4,4’,4”-トリス(N,N-(2-ナフチル)-フェニルアミノ)トリフェニルアミン(2-TNATA)に、下記構造式で表されるF4-TCNQを0.3質量%ドープした正孔注入層を厚みが150nmになるように共蒸着した。
Figure JPOXMLDOC01-appb-C000007

Figure JPOXMLDOC01-appb-C000008
 次に、前記正孔注入層上に、正孔輸送層としてα-NPD(Bis[N-(1-naphthyl)-N-phenyl]benzidine)を厚みが7nmとなるように真空蒸着法にて形成した。
 次に、前記正孔輸送層上に、下記構造式で表される有機材料Aを真空蒸着して、厚み3nmの第2の正孔輸送層を形成した。
Figure JPOXMLDOC01-appb-C000009
 次に、第2の正孔輸送層上に、ホスト材料として下記構造式で表される有機材料Bと、該有機材料Bに対して40質量%の燐光発光材料である下記構造式で表される発光材料Aをドープした発光層を30nmの厚みに真空蒸着した。

Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 次に、白色発光層上に電子輸送層として下記構造式で表されるBAlq(Bis-(2-methyl-8-quinolinolato)-4-(phenyl-phenolate)-aluminium(III))を厚みが39nmとなるように真空蒸着した。
Figure JPOXMLDOC01-appb-C000012
 次に、電子輸送層上に、下記構造式で表されるBCP(2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン)を電子注入層として、厚みが1nmとなるように蒸着した。
Figure JPOXMLDOC01-appb-C000013
 次に、電子注入層上にバッファ層としてLiFを厚みが1nm、その上にアルミニウムを電極層として厚みが100nmとなるように蒸着した。
 作製した積層体を、真空から窒素雰囲気下の部屋に移し、封止缶にて封止する。なお、封止缶の内側には予め吸湿材を貼っておいた。以上により、図1に示す実施例1の有機電界発光装置を作製した。
(実施例2)
-有機電界発光用基板の作製-
 厚み100μmのポリエチレンテレフタレート(PET)フィルムの一の面に、下記表1に示した重合性化合物(合計20質量部)と、重合開始剤(ランベルティ社製、エザキュアKTO46)とからなる組成物を乾燥平均厚みが1,000nmとなるようにメチルエチルケトンで調製して製膜し、酸素100ppm雰囲気下で紫外線照射量1.2J/cmで照射して硬化させ、有機層を作製した。
 前記有機層上に無機層(Al)を平均厚みが50nmとなるようにスパッタ法により成膜し、水、及び酸素に対するバリア性を有するバリア層付きフィルム基板を作製した。
Figure JPOXMLDOC01-appb-T000014
<重合性化合物F-1>
Figure JPOXMLDOC01-appb-C000015
<重合性化合物F-2>
Figure JPOXMLDOC01-appb-C000016
<重合性化合物F-3>
Figure JPOXMLDOC01-appb-C000017
<重合性化合物F-4>
Figure JPOXMLDOC01-appb-C000018
 次に、前記PETフィルムの他方の面に、前記混合塗布液1をワイヤーバーで塗布し、130℃で2分間加熱硬化させた。その上に前記混合塗布液1を塗布し、130℃で2分間加熱硬化させ、厚み15μmの微粒子層を作製した。
 以上により、実施例2の有機電界発光用基板を作製した。
 作製した有機電界発光用基板について、実施例1と同様にして、バリア層の厚みむらを測定したところ、無機層では平均厚み±7nmとなり、14nmの厚みむらが発生し、有機層では平均厚み±20nmとなり、40nmの厚みむらが生じており、バリア層全体としては、42nmの厚みむらが生じていた。
-有機電界発光装置の作製-
 次に、作製した実施例2の有機電界発光用基板のバリア層上に、実施例1と同様にして、有機電界発光層を形成し、図2に示す実施例2の有機電界発光装置を作製した。
(実施例3)
-有機電界発光用基板の作製-
 厚み0.1mmのポリエチレンテレフタレート(PET)フィルムの一の面に、実施例2と同様にして、有機層/無機層/有機層/無機層/有機層/無機層/有機層/無機層/有機層の順に9層を塗布法と、スパッタ法により成膜し、バリア層を形成し、水、及び酸素に対するバリア性を有するバリア層付きフィルム基板を作製した。
 前記PETフィルムの他方の面に、前記混合塗布液1をワイヤーバーで塗布し、130℃で2分間加熱硬化させた。その上に前記混合塗布液1を塗布し、130℃で2分間加熱硬化させ、厚み15μmの微粒子層を作製した。
 以上により、実施例3の有機電界発光用基板を作製した。
 作製した有機電界発光用基板について、実施例1と同様にして、バリア層の厚みむらを測定したところ、バリア層全体としては、94nmの厚みむらが生じていた。
-有機電界発光装置の作製-
 作製した実施例3の有機電界発光用基板のバリア層上に、実施例1と同様にして、有機電界発光層を形成し、図3に示す実施例3の有機電界発光装置を作製した。
(実施例4)
-有機電界発光用基板の作製-
 厚み0.1mmのポリエチレンテレフタレート(PET)フィルムの一の面に、実施例2と同様にして、有機層/無機層/有機層/無機層/有機層/無機層/有機層/無機層/有機層の順に9層を塗布法とスパッタ法により成膜し、バリア層を形成し、水、及び酸素に対するバリア性を有するバリア層付きフィルム基板を作製した。
 前記PETフィルムの他方の面に、前記混合塗布液1をワイヤーバーで塗布し、130℃で2分間加熱硬化させた。その上に前記混合塗布液1を塗布し、130℃で2分間加熱硬化させ、厚み15μmの微粒子層を形成した。
 更に、前記微粒子層上に、前記混合塗布液2をワイヤーバーで塗布し、130℃で2分間加熱硬化させた。その上に前記混合塗布液2を塗布し、130℃で2分間加熱硬化させ、厚み12.5μmの平坦化層を形成した。
 作製した有機電界発光用基板について、実施例1と同様にして、バリア層の厚みむらを測定したところ、バリア層全体としては、101nmの厚みむらが生じていた。
-有機電界発光装置の作製-
 次に、作製した実施例4の有機電界発光用基板のバリア層上に、実施例1と同様にして、有機電界発光層を形成し、図4に示す実施例4の有機電界発光装置を作製した。
(比較例1)
-有機電界発光装置の作製-
 実施例1において、実施例1で作製した有機電界発光用基板の代わりにガラス基板(コーニング社製、ガラス基板Eagle XG(厚み0.7mm))を用いた以外は、実施例1と同様にして、図5に示す比較例1の有機電界発光装置を作製した。
(比較例2)
-有機電界発光用基板及び有機電界発光装置の作製-
 実施例1における有機電界発光用基板の作製において、微粒子層を形成しない以外は、実施例1と同様にして、比較例2の有機電界発光用基板を作製した。
 作製した有機電界発光用基板について、実施例1と同様にして、バリア層の厚みむらを測定したところ、15nmの厚みむらが生じていた。
 次に、実施例1において、実施例1の有機電界発光用基板の代わりに比較例2の有機電界発光用基板を用いた以外は、実施例1と同様にして、図6に示す比較例2の有機電界発光装置を作製した。
(比較例3)
-有機電界発光用基板及び有機電界発光装置の作製-
 実施例2における有機電界発光用基板の作製において、微粒子層を形成しない以外は、実施例2と同様にして、比較例3の有機電界発光用基板を作製した。
 作製した有機電界発光用基板について、実施例1と同様にして、バリア層の厚みむらを測定したところ、バリア層全体としては、41nmの厚みむらが生じていた。
 実施例2において、実施例2の有機電界発光用基板の代わりに比較例3の有機電界発光用基板を用いた以外は、実施例2と同様にして、図7に示す比較例3の有機電界発光装置を作製した。
(比較例4)
-有機電界発光用基板及び有機電界発光装置の作製-
 実施例3の有機電界発光用基板の作製において、微粒子層を形成しない以外は、実施例3と同様にして、比較例4の有機電界発光用基板を作製した。
 作製した有機電界発光用基板について、実施例1と同様にして、バリア層の厚みむらを測定したところ、バリア層全体としては、98nmの厚みむらが生じていた。
 実施例3において、実施例3の有機電界発光用基板の代わりに比較例4の有機電界発光用基板を用いた以外は、実施例3と同様にして、図8に示す比較例4の有機電界発光装置を作製した。
(比較例5)
<有機電界発光装置の作製>
 実施例3の有機電界発光用基板の代わりに、以下のようにしてバリア層と凹凸層を形成した基板を用いた以外は、実施例3と同様にして、図9に示す比較例5の有機電界発光装置を作製した。
 作製した有機電界発光用基板について、実施例1と同様にして、バリア層の厚みむらを測定したところ、バリア層全体としては、95nmの厚みむらが生じていた。
-凹凸層を形成した基板の作製-
 ポリエーテルサルホンフィルム(厚み100μm)を基材として前記基材の一方の面上に、実施例3と同様に9層のバリア層を形成した。
 前記基材の他方の面に、ビス(4-メタクリロイルチオ-3,5-フェニル)スルフィド(住友精化株式会社製、MPSMA)13質量部、エポキシアクリレート(昭和高分子株式会社製、VR-60-LAV)6質量部、ジエチレングリコール54質量部、酢酸エチル26質量部、及び光開始剤(チバ・スペシャルティ・ケミカルズ社製、IRGACURE907)1質量部からなる均一な混合コート液を塗布し、120℃、10分間で加熱乾燥後、スタンピングホイル用PETフィルム(東レ株式会社製、ルミラーX44)を貼り合わせ、UV照射で硬化させた。
 このPETフィルムを前記基材から剥がすことによって、厚み2μmの凹凸層を形成した(凹凸層の屈折率(n)1.65、平均粗さ260nm)。
 次に、実施例1~4及び比較例1~5の有機電界発光装置について、以下のようにして、正面輝度及び色度の配光角度依存性、機差(基板面位置差)による色度バラツキ、水分透過度、並びに酸素透過度を測定した。結果を表2に示す。
<正面輝度及び色度の配光角度依存性の測定>
 東陽テクニカ株式会社製ソースメジャーユニット2400型を用いて、直流定電圧を各有機電界発光装置に印加して発光させた。正面輝度は、発光面中心で10mA/cmの電流値で分光放射輝度計(トプコン社製、SR-3)を用いて測定した。
 基板回転時の配光分布については、分光輝度計(コニカミノルタ社製、CS-2000)を用い、配光測定時の光量分布、スペクトルを測定した。なお、配光測定時に有機電界発光装置をセットする回転ステージは自動的に回転する手製のものを使用した。一定の電流量(10mA/cm)を前記基板に流し、発光させながら、基板(発光面)に鉛直な方向を0°とし、±80°の範囲を5°ステップで、前記分光輝度計にて光量分布及びスペクトルを測定した。得られたスペクトルからCIE表色系を用い、0°と80°それぞれの色度x値とy値を算出し、0°から80°での色度x値、y値の変化量(Δx、Δy)を求めた。
<機差(基板面位置差)による色度バラツキ>
 バリア層は基板面内に厚みむらがあるため、バリア層付きの基板の切り出し位置によってバリア層の厚みが異なる。このため、有機電界発光装置は機差(基板面での位置差)により色度が異なる(機差バラツキ)可能性がある。そこで、図17に示すように、バリア層付きの基板をカットし、何点かのサンプル(例えば図17中A、B、C、D)を作製し、機差バラツキについて測定を行った。測定は正面輝度の測定と同様にして行った。各有機電界発光装置の得られたスペクトルからCIE表色系を用い、それぞれの色度x値とy値を算出し、色度x値、y値の機差が最大となる値Δx’、Δy’(最大機差色度とおく)を求めた。
<水分透過度の測定>
 G.NISATO、P.C.P.BOUTEN、P.J.SLIKKERVEERら、SID Conference Record of the International Display Research Conference1435-1438頁に記載の方法(カルシウムを用いた測定法)を用い、温度は40℃、相対湿度は90%中で測定した。
 本測定方法では、水分透過度が1.0×10-5g/m/day以下の場合には数値精度に問題が生じるおそれがあるので、<1.0×10-5と表記した。
<酸素透過度の測定>
 酸素透過率測定装置(MOCON社製、MOCON酸素透過率測定装置 OX-TRAN 1/50A)を用い、測定した。
 本測定方法では、酸素透過度が0.1cc/m/dayが測定限度であり、測定限界以下の場合には、<0.1と表記した。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
<バリア層、凹凸緩和層、又は微粒子層を設けたことによる発光スペクトルの形状変化>
 図12~図15に、比較例1、比較例4、比較例5、及び実施例4の有機電界発光装置での発光スペクトルを示す。発光スペクトルは、前記正面輝度の測定と同様に、東陽テクニカ株式会社製ソースメジャーユニット2400型を用いて、直流定電圧を各有機電界発光装置に印加して発光させ、発光面中心で10mA/cmの電流値で分光放射輝度計(トプコン社製、SR-3)により測定した。
 これらの結果から、バリア層によって変調した発光スペクトル(比較例1→比較例4)が、凹凸緩和層によって緩和され(比較例4→比較例5)、更に、微粒子層ではほぼ完全に変調成分が除去される(比較例5→実施例4)ことが認められた。
 また、図16では、比較例4と同構成でかつ同時に作製されたバリア層有りの有機電界発光装置である比較例4-1と比較例4-2における発光スペクトルを示した。図16の結果から、比較例4のバリア層付き有機電界発光装置の発光スペクトル形状は、比較例4-1と比較例4-2のように同時に成膜したため基板以外の全ての構成が同一であるのにも関わらず、バリア層の厚みむらによって、発光スペクトルの形状が変化し、色度に機差によるばらつき(最大機差色度)が発生することが認められた。
 表2の結果から、実施例1の有機電界発光装置は、発光面中心で10mA/cmの電流値で2,360cd/mの正面輝度が得られ、微粒子層の無い比較例2の有機電界発光装置に比べて約50%程度輝度が上昇していることが分かった。また、実施例1の基板回転時の色度の変化(Δx、Δy)は比較例2に比べて非常に小さくなった。また、色度の基板面内分布となる最大機差色度(Δx’、Δy’)も比較例2に比べて小さくなり、バリア層の厚みむらによる色度差が抑制されている。
 実施例2の有機電界発光装置は、発光面中心で10mA/cmの電流値で2,365cd/mの輝度が得られ、微粒子層の無い、比較例3の有機電界発光装置に比べて約50%程度輝度が上昇していることが分かった。また、実施例2の基板回転時の色度の変化(Δx、Δy)は比較例3に比べて非常に小さくなった。また、色度の基板面内分布となる最大機差色度(Δx’、Δy’)も比較例3に比べて小さくなり、バリア層の厚みむらによる色度差が抑制されている。
 実施例3の有機電界発光装置は、発光面中心で10mA/cmの電流値で2,362cd/mの輝度が得られ、微粒子層の無い、比較例4の有機電界発光装置に比べて約50%程度輝度が上昇していることが分かった。また、実施例3の基板回転時の色度の変化(Δx、Δy)は比較例4に比べて非常に小さくなった。また、色度の基板面内分布となる最大機差色度(Δx’、Δy’)も比較例4に比べて小さくなり、バリア層の厚みむらによる色度差が抑制されている。
 実施例4の有機電界発光装置は、発光面中心で10mA/cmの電流値で2,722cd/mの正面輝度が得られ、微粒子層の無い、比較例4の有機電界発光装置に比べて約70%程度の輝度が上昇していた。また、基板回転時の色度の変化(Δx、Δy)は比較例4に比べて非常に小さくなった。また、色度の基板面内分布となる最大機差色度(Δx’、Δy’)も比較例4に比べて小さくなり、バリア層の厚みむらによる色度差が抑制されている。
 比較例2~4の有機電界発光装置は、比較例1と同じ電流値では輝度はほぼ同等であるが、比較例2~4では配光の色度角度依存性が大きくなり、また、色度の基板面内分布となる最大機差色度(Δx’、Δy’)も比較例1に比べて大きくなっている。ガラス基板には無かった、バリア層の干渉と厚みむらによる影響と推定する。
 比較例5の有機電界発光装置は、比較例4との比較で、輝度は同電流値で1,884cd/mで取り出し効率は20%弱大きくなっているが、実施例3及び4に比べて劣る結果となっている。また、配光の色度角度依存性(Δx、Δy)、最大機差色度(Δx’、Δy’)も比較例4との比較では小さくなっているが、実施例3及び4に比べて配光の色度角度依存性、最大機差色度の抑制効果は小さい結果となっている。
(応用例1)
-フレキシブルな有機電界発光パネルの作製-
 実施例4における有機電界発光装置の作製において、アルミニウム蒸着後の積層体をCVD装置に移し、無機封止層11としてのSiN膜を厚みが3μmとなるように成膜した。成膜後、窒素雰囲気下のグローブボックスに積層体を移し、SiN膜上に固体接着層12を貼り付け、熱圧着し、更に固体接着層12上に厚み100μmのPETフィルム13を貼り付けた。固体接着層を加熱にて硬化させて、図10に示すフレキシブルな有機電界発光パネルを作製した。
(応用例2)
-フレキシブルな有機電界発光パネルの作製-
 実施例4における有機電界発光装置の作製において、アルミニウム蒸着後の積層体を窒素雰囲気下のグローブボックスに移し、積層体、電極上付近中央に充填材16、基板周囲に封止材15を塗布し、更にその上に、実施例4で作製した基板と同じ有機層と無機層が合計9層積層されたバリア層14の付いたPETフィルム(微粒子層無し)13を、バリア層側を充填材16、及び封止材15塗布側に向けて貼り付けた。充填材16、及び封止材15をUV照射及び加熱にて固化させることで、図11に示すフレキシブルな有機電界発光パネルを作製した。
 本発明の有機電界発光用基板及び有機電界発光装置は、例えば、各種照明、コンピュータ、車載用表示器、野外表示器、家庭用機器、業務用機器、家電用機器、交通関係表示器、時計表示器、カレンダ表示器、ルミネッセントスクリーン、音響機器等をはじめとする各種分野において好適に使用することができる。
   1   基材
   2   微粒子層
   3   バリア層
   4   電極
   5   有機層
   6   電極
   7   封止缶
   8   平坦化層
   9   凹凸層
  10   ガラス基板
  11   無機封止層
  12   接着層
  13   基材(PET)
  14   バリア層
  15   封止材
  16   乾燥剤入り充填材

Claims (9)

  1.  厚みむらが10nm以上1,000nm以下であるバリア層と、微粒子を含有する微粒子層と、を少なくとも有することを特徴とする有機電界発光用基板。
  2.  バリア層が、有機材料からなる有機層と、無機材料からなる無機層とを交互に積層した多層構造を有する請求項1に記載の有機電界発光用基板。
  3.  有機層と無機層との合計積層数が2層以上である請求項2に記載の有機電界発光用基板。
  4.  微粒子の平均粒径が0.5μm~10μmである請求項1から3のいずれかに記載の有機電界発光素子用基板。
  5.  微粒子層における微粒子の体積充填率が30%~80%である請求項1から4のいずれかに記載の有機電界発光用基板。
  6.  微粒子層の光出射面が平坦であるか、又は微粒子層の光出射面に平坦化層を有する請求項1から5のいずれかに記載の有機電界発光用基板。
  7.  更に基材を有してなり、該基材の材質が、ポリエチレンテレフタレート及びポリエチレンナフタレートのいずれかである請求項1から6のいずれかに記載の有機電界発光用基板。
  8.  請求項1から7のいずれかに記載の有機電界発光用基板を有することを特徴とする有機電界発光装置。
  9.  有機電界発光用基板における微粒子層を設ける前の状態での色度を、CIE表色系で、目標色度より色度xが0.01~0.05、色度yが0.01~0.05大きくなるように設定する請求項8に記載の有機電界発光装置。
PCT/JP2011/064170 2010-08-23 2011-06-21 有機電界発光用基板及び有機電界発光装置 WO2012026193A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010186534 2010-08-23
JP2010-186534 2010-08-23
JP2011-134988 2011-06-17
JP2011134988A JP5912306B2 (ja) 2010-08-23 2011-06-17 有機電界発光用基板及び有機電界発光装置

Publications (1)

Publication Number Publication Date
WO2012026193A1 true WO2012026193A1 (ja) 2012-03-01

Family

ID=45723207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064170 WO2012026193A1 (ja) 2010-08-23 2011-06-21 有機電界発光用基板及び有機電界発光装置

Country Status (2)

Country Link
JP (1) JP5912306B2 (ja)
WO (1) WO2012026193A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140267A1 (ja) * 2015-03-04 2016-09-09 株式会社 きもと 有機el用散乱フィルムおよびそれを用いた有機el発光装置
CN114144823A (zh) * 2019-07-26 2022-03-04 住友化学株式会社 光学层叠体及其制造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6200778B2 (ja) * 2013-10-30 2017-09-20 富士フイルム株式会社 有機電界発光装置
US10128444B2 (en) * 2014-05-30 2018-11-13 Nissan Chemical Industries, Ltd. Thin-film planarization method, planarized thin-film formation method, and thin-film formation varnish
JP6640450B2 (ja) * 2015-01-26 2020-02-05 パイオニア株式会社 発光装置
CN107852789A (zh) * 2015-07-23 2018-03-27 夏普株式会社 电致发光装置
JPWO2017154482A1 (ja) 2016-03-07 2019-01-24 パイオニア株式会社 封止構造及び発光装置
CN112838174A (zh) * 2019-11-22 2021-05-25 纳晶科技股份有限公司 发光器件、具有其的显示装置及照明装置
JP2020053409A (ja) * 2019-12-26 2020-04-02 パイオニア株式会社 発光装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296429A (ja) * 2003-03-07 2004-10-21 Nitto Denko Corp 有機エレクトロルミネッセンス素子とこの素子を用いた面光源および表示装置
JP2005353500A (ja) * 2004-06-11 2005-12-22 Dainippon Printing Co Ltd 電子表示媒体用ガスバリア膜
JP2006286616A (ja) * 2005-03-11 2006-10-19 Mitsubishi Chemicals Corp エレクトロルミネッセンス素子及び照明装置
JP2009206010A (ja) * 2008-02-29 2009-09-10 Fujifilm Corp 有機el表示装置用光散乱性フィルム、及びそれを用いた有機el表示装置
WO2009116531A1 (ja) * 2008-03-18 2009-09-24 旭硝子株式会社 電子デバイス用基板、有機led素子用積層体及びその製造方法、有機led素子及びその製造方法
JP2010045011A (ja) * 2008-07-15 2010-02-25 Fujifilm Corp 発光装置及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076207A (ja) * 2005-09-15 2007-03-29 Fujifilm Corp ガスバリアフィルム、並びに、これを用いた有機エレクトロルミネッセンス素子および画像表示素子
JP2007090803A (ja) * 2005-09-30 2007-04-12 Fujifilm Corp ガスバリアフィルム、並びに、これを用いた画像表示素子および有機エレクトロルミネッセンス素子
JP2008207401A (ja) * 2007-02-23 2008-09-11 Fujifilm Corp 積層体、その製造方法、それを用いた配線基板及び表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296429A (ja) * 2003-03-07 2004-10-21 Nitto Denko Corp 有機エレクトロルミネッセンス素子とこの素子を用いた面光源および表示装置
JP2005353500A (ja) * 2004-06-11 2005-12-22 Dainippon Printing Co Ltd 電子表示媒体用ガスバリア膜
JP2006286616A (ja) * 2005-03-11 2006-10-19 Mitsubishi Chemicals Corp エレクトロルミネッセンス素子及び照明装置
JP2009206010A (ja) * 2008-02-29 2009-09-10 Fujifilm Corp 有機el表示装置用光散乱性フィルム、及びそれを用いた有機el表示装置
WO2009116531A1 (ja) * 2008-03-18 2009-09-24 旭硝子株式会社 電子デバイス用基板、有機led素子用積層体及びその製造方法、有機led素子及びその製造方法
JP2010045011A (ja) * 2008-07-15 2010-02-25 Fujifilm Corp 発光装置及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140267A1 (ja) * 2015-03-04 2016-09-09 株式会社 きもと 有機el用散乱フィルムおよびそれを用いた有機el発光装置
CN114144823A (zh) * 2019-07-26 2022-03-04 住友化学株式会社 光学层叠体及其制造方法
CN114144823B (zh) * 2019-07-26 2024-04-19 住友化学株式会社 光学层叠体及其制造方法

Also Published As

Publication number Publication date
JP5912306B2 (ja) 2016-04-27
JP2012069507A (ja) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5912306B2 (ja) 有機電界発光用基板及び有機電界発光装置
JP5754912B2 (ja) 光取り出しシート、有機電界発光装置及びその製造方法
JP5698993B2 (ja) 光拡散層形成材料、及び光取り出し部材、並びに有機電界発光装置及びその製造方法
JP5913938B2 (ja) 光拡散性転写材料、光拡散層の形成方法、及び有機電界発光装置の製造方法
JP5898933B2 (ja) 積層体、及び有機電界発光装置
JP5670178B2 (ja) 有機電界発光装置
JP6042103B2 (ja) 有機電界発光素子
JP5990049B2 (ja) 有機電界発光素子
JP5578987B2 (ja) 微粒子層転写材料、並びに有機電界発光素子及びその製造方法
JP5676214B2 (ja) 有機電界発光装置
JP6200777B2 (ja) 光取り出し部材、及び有機電界発光装置
JP2004303562A (ja) 有機エレクトロルミネッセント素子用基板
JP2008021575A (ja) 有機エレクトロルミネッセンス素子および該素子の製造方法
JP5948276B2 (ja) 積層体、及び有機電界発光装置
JP5295913B2 (ja) 有機電界発光装置及びその製造方法
JP6085408B2 (ja) 有機電界発光装置
JP5973812B2 (ja) 有機電界発光素子、面光源、及び照明装置
JP6049925B2 (ja) 有機電界発光装置
JP5934777B2 (ja) 有機電界発光装置
JP6200778B2 (ja) 有機電界発光装置
JP6130629B2 (ja) 有機電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819665

Country of ref document: EP

Kind code of ref document: A1