WO2012001924A1 - 情報記録媒体用ガラス基板の製造方法 - Google Patents

情報記録媒体用ガラス基板の製造方法 Download PDF

Info

Publication number
WO2012001924A1
WO2012001924A1 PCT/JP2011/003604 JP2011003604W WO2012001924A1 WO 2012001924 A1 WO2012001924 A1 WO 2012001924A1 JP 2011003604 W JP2011003604 W JP 2011003604W WO 2012001924 A1 WO2012001924 A1 WO 2012001924A1
Authority
WO
WIPO (PCT)
Prior art keywords
base plate
glass base
glass substrate
mass
glass
Prior art date
Application number
PCT/JP2011/003604
Other languages
English (en)
French (fr)
Inventor
葉月 中江
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012501476A priority Critical patent/JP4993046B2/ja
Priority to US13/807,797 priority patent/US8585463B2/en
Publication of WO2012001924A1 publication Critical patent/WO2012001924A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers

Definitions

  • the present invention relates to a method for producing a glass substrate for an information recording medium.
  • Patent Document 1 discloses a polishing liquid containing colloidal silica. A polishing apparatus for use in circulation is disclosed.
  • An object of the present invention is to prevent the number of times that the cyclic use can be repeated when the glass base plate containing cerium oxide in the composition is precision-polished and used as a polishing material.
  • An object of the present invention is to provide a method for producing a glass substrate for information recording medium, which can obtain a glass substrate for information recording medium with good flatness.
  • the present invention provides a glass for an information recording medium having a chemically strengthened layer formed using a chemical strengthening treatment liquid on the surface of a disk-shaped glass base plate containing 0.01% by mass to 2% by mass of cerium oxide.
  • a rough polishing step and a precision polishing step By polishing the surface of the substrate by a rough polishing step and a precision polishing step, when the radius of the outer periphery of the glass base plate is r1, the circumferential direction at a position of 0.75 ⁇ r1 from the center of the glass base plate
  • the glass base plate is roughly polished, and in the precision polishing step, the glass base plate after rough polishing is precisely polished using an abrasive containing silica-based abrasive grains, and before the precision polishing step, On the glass substrate surface
  • the glass base plate after the rough polishing step is washed so that the amount of cerium oxide is 0.125 ng / cm 2 or less.
  • colloidal silica when circulating using a polishing liquid containing colloidal silica as an abrasive, colloidal silica aggregates over time, making it difficult to use as an abrasive. There's a problem.
  • this technique when the agglomerated colloidal silica is smaller than the filter, it passes through the filter, so that the effect is hardly reflected.
  • recent colloidal silica is about 20 nm in size, it is difficult to remove agglomerated colloidal silica.
  • cerium oxide has a polishing mechanism and is used as an abrasive.
  • cerium oxide is replaced with Si—O bonds, which are the main composition, on the surface of the glass base plate, and Ce—O bonds occur. This Ce—O bond is immediately cut off, but the broken Ce does not bond again. Polishing is performed by repeating these substitutions and bonds.
  • cerium oxide when cerium oxide is present during polishing performed with silica-based abrasive grains, cerium bonds with the hydroxyl groups of the silica-based abrasive grains and the dispersibility of the silica-based abrasive grains decreases. .
  • This is considered to be because the above polishing mechanism of cerium oxide occurs in the same manner with silica-based abrasive grains (and sludge).
  • the polishing liquid slurry liquid
  • the aggregation of silica-based abrasive grains increases, which adversely affects the smoothness of the glass substrate.
  • cerium oxide accumulates in the polishing machine, the adverse effect of smoothness is further increased.
  • cerium oxide remains until reaching the final step, so that it deeply penetrates into the glass base plate and adversely affects the cleanliness of the final glass substrate.
  • cerium oxide eluted from the glass base plate during polishing becomes a problem in the same manner as cerium oxide used as an abrasive in rough polishing.
  • the cerium oxide contained as a glass composition and eluted during polishing has various sizes and electronic states, and it is assumed that colloidal silica is more likely to aggregate. Therefore, in the polishing of the glass base plate containing cerium oxide, the colloidal silica aggregates more remarkably, so that the number of times of circulation use is further limited. It is also known that TIR deteriorates if there is colloidal silica aggregation.
  • TIR Total Indicated Runout
  • TIR Total Indicated Runout
  • the TIR has a composition that can keep the TIR low, and the TIR is greatly improved by suppressing the gelation or aggregation of the colloidal silica.
  • the disk device When the manufactured glass substrate for an information recording medium is mounted on the disk device, the disk device This can contribute to a reduction in the flying height of the provided magnetic head, and can increase the capacity of the glass substrate for information recording media.
  • the present invention has been made based on the results of such studies.
  • the manufacturing method of the glass substrate for information recording media of this embodiment includes a disk processing step, a lapping step, a rough polishing step (primary polishing step), a cleaning step, a chemical strengthening step, and a precision polishing step (secondary).
  • a polishing step) and a final cleaning step which are manufactured through these steps.
  • the glass base plate to be used is SiO 2 : 55 to 75% by mass, Al 2 O 3 : 5 to 18% by mass, Li 2 O: 1 to 10% by mass, Na 2 O based on oxide. : 3-15% by mass, K 2 O: 0.1-5% by mass, provided that the total amount of Li 2 O + Na 2 O + K 2 O: 10-25% by mass, MgO: 0.1-5% by mass, CaO: 0 0.1 to 5 mass%, CeO: 0.01 to 2 mass%, ZrO 2 : 0 to 8 mass%, and the mass ratio of (MgO + CaO) to (Li 2 O + Na 2 O + K 2 O) is 0.10 ⁇
  • a glass material having a glass composition in the range of (MgO + CaO) / (Li 2 O + Na 2 O + K 2 O) ⁇ 0.80 is used.
  • the disk processing step is a step of processing the glass base plate 10 formed into a plate shape from the glass material into a disk-shaped glass base plate having a through hole 10a (shown in FIG. 4).
  • this disk processing step for example, it is formed on a disk-shaped glass base plate having an outer diameter of 2.5 inches, 1.8 inches, 1 inch, 0.8 inches, etc., and a thickness of 2 mm, 1 mm, 0.63 mm, etc.
  • the size and thickness of the glass base plate formed in the disk processing step are not particularly limited.
  • the lapping step is a step of processing the glass base plate into a predetermined plate thickness. In this embodiment, it is comprised from two processes, a 1st lapping process and a 2nd lapping process.
  • both sides of the glass base plate are ground (lapping), and the overall shape of the glass base plate, that is, the parallelism, flatness and thickness of the glass base plate are preliminarily adjusted.
  • both surfaces of the glass base plate are ground again to finely adjust the parallelism, flatness and thickness of the glass base plate.
  • the surface of the glass base plate after the lapping step is subjected to rough polishing.
  • This rough polishing process is intended to remove scratches and distortions remaining in the lapping process described above, and is performed using a polishing apparatus.
  • the polishing apparatus 1 uses an apparatus capable of simultaneous grinding on both sides as shown in FIG.
  • the grinding apparatus 1 includes an apparatus main body 1a and a polishing liquid supply unit 1b that supplies a polishing liquid to the apparatus main body 1a.
  • the apparatus main body 1a includes a disk-shaped upper surface plate 2 and a lower surface plate 3 that are spaced apart from each other so as to be parallel to each other, and rotate in opposite directions.
  • a polishing pad for polishing both the front and back surfaces of the glass base plate 10 is attached to the opposing surfaces of the upper and lower surface plates 2 and 3.
  • a polishing pad used in this rough polishing step for example, a hard polishing pad made of polyurethane is used.
  • a plurality of rotatable carriers 5 are provided between the upper and lower surface plates 2 and 3.
  • the carrier 5 is provided with a plurality of base plate holding holes 51, and the glass base plate 10 is fitted and disposed in the base plate holding holes 51.
  • the carrier 5 is configured such that 100 glass base plates 10 can be fitted and arranged, and 100 glass base plates 10 can be processed in one process (one batch). ing. Further, the upper and lower surface plates 2 and 3 can be operated by separate driving.
  • the carrier 5 sandwiched between the surface plates 2 and 3 via the polishing pad is the same as the lower surface plate 3 with respect to the rotation center of the surface plates 2 and 3 while rotating while holding the plurality of glass base plates 10. Revolve in the direction.
  • the polishing liquid 7 slurry liquid
  • the polishing liquid 7 is supplied between the upper surface plate 2 and the glass base plate 10 and between the lower surface plate 3 and the glass base plate 10.
  • the polishing liquid supply unit 1 b includes a liquid storage unit 11 and a liquid recovery unit 12.
  • the liquid reservoir 11 includes a liquid reservoir main body 11a and a liquid supply pipe 11b having a discharge port 11e extending from the liquid reservoir main body 11a to the apparatus main body 1a.
  • the liquid recovery part 12 is extended from the liquid recovery part main body 12a, the liquid recovery pipe 12b extended from the liquid recovery part main body 12a to the apparatus main body 1a, and from the liquid recovery part main body 12a to the polishing liquid supply part 1b. And a liquid return pipe 12c.
  • the polishing liquid 7 put in the liquid storage unit main body 11a is supplied to the apparatus main body 1a from the discharge port 11e of the liquid supply pipe 11b, and the liquid recovery unit main body 12a from the apparatus main body 1a through the liquid recovery pipe 12b. To be recovered.
  • the recovered polishing liquid 7 is returned to the liquid storage part 11 via the liquid return pipe 12c, and can be supplied again to the apparatus main body part 1a.
  • the polishing liquid 7 includes a rare earth oxide having a fluorine content of 5% by mass or less, that is, a polishing material containing cerium oxide as a main component in the rough polishing step.
  • the average particle size of the abrasive used in the rough polishing step is preferably 1 ⁇ m.
  • the glass base plate after the rough polishing with the cerium abrasive is cleaned by a cleaning process. For example, first, the glass base plate is rinsed by washing with an alkaline detergent having a pH of 13 or higher. Subsequently, the glass base plate is washed and rinsed with an acid detergent having a pH of 1 or less, and finally washed with a hydrofluoric acid (HF) solution. Regarding cerium oxide, it is most efficient to perform cleaning in the order of alkali cleaning, acid cleaning, and HF. In this method, the abrasive is first dispersed and removed with an alkaline detergent, and then the abrasive is dissolved and removed with an acid detergent. Finally, the glass base plate is etched with HF to remove the abrasive deeply stuck in the glass base plate. .
  • an alkaline detergent having a pH of 13 or higher.
  • an acid detergent having a pH of 1 or less
  • HF hydrofluoric acid
  • the glass substrate after the rough polishing is cleaned so that the amount of cerium oxide on the surface of the glass substrate is 0.125 ng / cm 2 or less. This is because if the amount of cerium oxide on the surface of the glass base plate exceeds 0.125 ng / cm 2 , the flatness of the glass base plate after precision polishing in the subsequent precision polishing step cannot be improved. More specifically, if it exceeds 0.125 ng / cm 2 , the outer peripheral TIR, which is the flatness in the circumferential direction in the glass base plate after precision polishing, is 0.7 ⁇ m or less, and the inner peripheral TIR is 0.5 ⁇ m or less. It is because it becomes impossible.
  • the outer circumference TIR of the finally obtained information recording medium substrate is 0.7 ⁇ m or less and the inner circumference TIR is 0.5 ⁇ m or less, when the information recording medium substrate is mounted on a disk device, for example, a disc
  • a crash contact between the magnetic head provided in the apparatus and the information recording medium substrate can be reduced.
  • the cleaning of the glass base plate after the rough polishing is set so that the amount of cerium oxide on the surface of the glass base plate is 0.125 ng / cm 2 or less.
  • the glass base plate is immersed in a chemical strengthening solution to form a chemical strengthening layer on the glass base plate.
  • a chemical strengthening solution to form a chemical strengthening layer on the glass base plate.
  • This chemical strengthening step involves immersing the glass base plate in a heated chemical strengthening treatment solution to convert alkali metal ions such as lithium ions and sodium ions contained in the glass base plate into alkali ions such as potassium ions having a larger ion radius. This is performed by an ion exchange method in which metal ions are substituted. Due to the strain caused by the difference in ion radius, compressive stress is generated in the ion-exchanged region, and the surface of the glass base plate is strengthened.
  • (MgO + CaO) / (Li 2 O + Na 2 O + K 2 O) is a glass base plate in the range of 0.1 ⁇ (MgO + CaO) / (Li 2 O + Na 2 O + K 2 O) ⁇ 0.80. Therefore, the glass base plate has appropriate heat resistance and can suppress thermal deformation during the chemical strengthening process. In addition, the ion exchange is uniformly performed during the chemical strengthening step, and a uniform compressive stress can be applied to the surface of the glass base plate, so that the flatness of the glass base plate can be suppressed.
  • the glass base plate can be performed with a substantially uniform machining allowance over the whole, and the flatness after precision polishing can be improved.
  • the precision polishing process maintains a flat and smooth main surface obtained in the above-described rough polishing process, and finishes a smooth mirror surface having a maximum surface roughness (Rmax) of about 6 nm or less, for example. Polishing process.
  • This precision polishing step is performed, for example, using a polishing apparatus similar to that used in the rough polishing step, and replacing the polishing pad from a hard polishing pad to a soft polishing pad.
  • the abrasive used in the precision polishing step is an abrasive containing silica-based abrasive grains (colloidal silica) having a particle diameter lower than that of the cerium-based abrasive in the coarse polishing step and an average particle size of 20 nm.
  • an abrasive containing colloidal silica is used.
  • a polishing liquid (slurry liquid) containing the abrasive is supplied to the glass base plate, and the polishing pad and the glass base plate are relatively slid to polish the surface of the glass base plate.
  • the amount polished by precision polishing is 0.2 ⁇ m to 2 ⁇ m, preferably 0.3 ⁇ m to 1.5 ⁇ m. If the amount to be polished is too small, flat smoothness cannot be ensured, and if it is too large, the amount of cerium will increase. When polishing is performed at 0.3 ⁇ m to 1.5 ⁇ m, flat smoothness and sustainability (circulation use) can be secured.
  • the slurry liquid is circulated and used, for example, by the polishing liquid supply unit 1b of the grinding apparatus 1.
  • the volume of the slurry liquid is (a) liter
  • the number of glass base plates to be polished is (b)
  • the cerium oxide content of the glass base plate is (X) mass%.
  • Each item is managed so that In a certain aspect, when the capacity
  • the glass substrate after the precision polishing process is cleaned as follows. First, the glass base plate that has been subjected to the precision polishing step is stored in water without being dried (including natural drying), and is transported to the next cleaning step in a wet state. This is because if the glass base plate is dried with the polishing residue remaining, it may be difficult to remove the abrasive (colloidal silica) by the cleaning treatment. It is necessary to remove the abrasive without exposing the surface of the mirror-finished glass base plate.
  • abrasive colloidal silica
  • the cleaning liquid has an etching action or a leaching action on the glass base plate
  • the glass surface that is intentionally mirror-finished is roughened, resulting in a satin-finished finish surface.
  • the flying height of the magnetic head cannot be reduced sufficiently on the finished surface of the pear-like surface.
  • this cleaning liquid has no etching action or leaching action with respect to glass, and is configured as a cleaning liquid having selective dissolution performance with respect to a silica-based abrasive. That is, it is preferable to select a composition that does not contain hydrofluoric acid (HF) or silicic acid (H 2 SiF 6 ), which is a factor for etching glass, as the cleaning liquid.
  • HF hydrofluoric acid
  • H 2 SiF 6 silicic acid
  • washing with an alkaline detergent having a pH of 13 and rinsing are performed. Subsequently, it is washed and rinsed with a pH 0 acid detergent (nitric acid), and finally washed with HF (0.1% solution).
  • a pH 0 acid detergent nitric acid
  • cerium oxide it is most efficient to perform cleaning in the order of alkali cleaning, acid cleaning, and HF. This is because the abrasive is first dispersed and removed with an alkaline detergent, and then the abrasive is dissolved and removed with an acid detergent. Finally, the glass is etched with HF to remove the abrasive that is deeply stuck. In addition, each detergent is degassed and washed while applying ultrasonic waves. By performing deaeration, it becomes possible to remove cerium oxide that is strongly attached.
  • ultrasonic waves increases the effect of cavitation and increases the dispersion effect of the alkaline detergent.
  • Application conditions are 40 kHz for an alkaline detergent, 80 kHz for an acid detergent, and 170 kHz for an HF detergent.
  • 80 kHz for an acid detergent solubility for small adhesion is improved.
  • HF it is preferable to apply an ultrasonic wave of 170 kHz. In that case, finer cerium oxide can be removed.
  • the chemical strengthening process is performed after the rough polishing process and before the precision polishing process.
  • the present invention is not limited to this configuration and can be changed as appropriate.
  • the chemical strengthening step may be performed before the rough polishing step or after the precise polishing step.
  • the chemical strengthening step is performed before the rough polishing step, the chemical strengthening layer formed in the chemical strengthening step may be thinned or eliminated.
  • the chemical strengthening step is performed after the precision polishing step, the flatness may decrease due to thermal deformation in the chemical strengthening step. Therefore, it is preferable to perform the chemical strengthening step after the rough polishing step and before the precise polishing step as in the above embodiment.
  • Example 1 Using the glass base plate A, a disk processing step, an end mirror polishing step, and a lapping step were performed by a known method. Thereafter, a glass base plate that has been subjected to the lapping process (hereinafter, the glass base plate that has been subjected to the lapping process is referred to as a glass substrate precursor) and a polishing apparatus 1 shown in FIG. A rough polishing step was carried out using this.
  • the rough polishing step supplies cerium oxide having a fluorine content of 5% by mass or less as a main component and an abrasive having an average particle diameter of 1 ⁇ m to the glass substrate precursor, and relatively compares the hard polishing pad and the glass base plate.
  • the main surface of the glass substrate precursor was roughly polished.
  • the substrate was rinsed with a pH 13 alkaline detergent. Subsequently, the substrate was washed with an acid detergent (nitric acid) having a pH of 0, rinsed, and finally washed with HF (0.1% solution).
  • the application conditions are 40 kHz for alkaline detergents, 80 kHz for acid detergents, and 170 kHz for HF detergents.
  • the chemical strengthening process was performed by immersing the glass base plate in the heated chemical strengthening treatment solution.
  • a precision polishing process was performed.
  • this precision polishing step 30 liters of a slurry liquid containing colloidal silica having a particle size lower than that of the cerium-based abrasive in the rough polishing step and an average particle size of 20 nm was circulated.
  • This slurry liquid was supplied to the glass substrate precursor after completion of the cleaning step, and the polishing pad and the glass substrate precursor were slid relative to each other to mirror-polish the surface of the glass substrate precursor.
  • the machining allowance (Y) polished by precision polishing at this time was 0.8 ⁇ m.
  • Circulating and using the slurry liquid in the precision polishing step 20 times (100 glass substrate precursors to be polished at one time) were performed, and the quality at the fifth, seventh and twentieth times was evaluated as ⁇ , ⁇ , ⁇ , Evaluation was made in four stages. Evaluation is performed by the surface roughness Ra at each circulation number (5th, 7th, 20th).
  • the surface roughness Ra is the surface roughness of a square area of 5 ⁇ m in length and 5 ⁇ m in width of the main surface of the glass substrate after the final cleaning treatment, and 10 glass substrates are observed with an atomic force microscope (AFM).
  • AFM atomic force microscope
  • the outer peripheral TIR and inner peripheral TIR of the main surface of the glass substrate after the final cleaning treatment were measured.
  • one of the outer circumference TIR and inner circumference TIR of the fifth, seventh and twentieth times was measured, and the average value was shown in FIG.
  • the outer periphery TIR is a TIR in the circumferential direction at a position satisfying 0.75 ⁇ r1, where r1 is the radius of the information recording medium glass substrate 100 (glass base plate 10). Is measured for one track.
  • the inner circumference TIR is the radius of the information recording medium glass substrate 100 (glass base plate 10) r1, and the radius of the through hole 10a of the information recording medium glass substrate 100 (glass base plate 10).
  • the TIR in the circumferential direction is measured for one track at a position satisfying (2 ⁇ r2 + r1) / 3.
  • Example 2 Using the glass base plate B, a disk processing step, an end face mirror polishing step, and a lapping step were performed by a known method to obtain a glass substrate precursor.
  • This glass substrate precursor was subjected to the rough polishing step and the cleaning step of Example 1, and the amount of cerium oxide adhering to the surface of the glass substrate precursor was measured after the cleaning in the same manner as in Example 1 above. .
  • Example 1 Thereafter, a chemical strengthening step was performed, and the machining allowance (Y) of Example 1 was changed to 1.9, and a precision polishing step was performed.
  • the specifications for the circulation use were set so that (c) was 1.7 under the above conditions.
  • the outer periphery TIR and inner periphery TIR of the main surface of a glass substrate were measured. It was measured.
  • Example 3 Using the glass base plate C, a disk processing step, an end mirror polishing step, and a lapping step were performed by a known method to obtain a glass substrate precursor.
  • This glass substrate precursor was subjected to the rough polishing step and the cleaning step of Example 1, and the amount of cerium oxide adhering to the surface of the glass substrate precursor was measured after the cleaning in the same manner as in Example 1 above. .
  • Example 1 After that, a chemical strengthening process was performed, and the machining allowance (Y) of Example 1 was changed to 1.0, and a precision polishing process was performed. In the cleaning process, the specifications for the circulation use were set so that (c) was 1.8 under the above conditions. And like the said Example 1, while measuring and evaluating the surface roughness Ra in each circulation frequency (5th time, 7th time, 20th time), the outer periphery TIR and inner periphery TIR of the main surface of a glass substrate were measured. It was measured.
  • Example 4 A glass substrate precursor was obtained by performing a disk processing step, an end mirror polishing step, and a lapping step by a known method using the glass base plate D. This glass substrate precursor was subjected to the rough polishing step and the cleaning step of Example 1, and the amount of cerium oxide adhering to the surface of the glass substrate precursor was measured after the cleaning in the same manner as in Example 1 above. .
  • Example 1 After that, a chemical strengthening process was performed, and the machining allowance (Y) of Example 1 was changed to 0.7, and a precision polishing process was performed. In the washing process, the specifications for circulation use were set so that (c) was 2.5 under the above conditions. And like the said Example 1, while measuring and evaluating the surface roughness Ra in each circulation frequency (5th time, 7th time, 20th time), the outer periphery TIR and inner periphery TIR of the main surface of a glass substrate were measured. It was measured.
  • Example 5 A glass substrate precursor was obtained by performing a disk processing step, an end mirror polishing step, and a lapping step by a known method using the glass base plate D. This glass substrate precursor was subjected to a rough polishing step and a cleaning step under the same conditions as in Example 1, and the amount of cerium oxide attached to the surface of the glass substrate precursor was measured. Thereafter, the chemical strengthening step and the precision polishing step were performed under the same conditions as in Example 1, and the surface roughness Ra at each circulation number (5th time, 7th time, 20th time) as in Example 1. Were measured and evaluated, and the outer peripheral TIR and inner peripheral TIR of the main surface of the glass substrate were measured.
  • Example 6 A glass substrate precursor was obtained by performing a disk processing step, an end mirror polishing step, and a lapping step by a known method using the glass base plate D. A rough polishing step was performed on the glass substrate precursor under the same conditions as in Example 1. Next, a cleaning process was performed under the following conditions.
  • the glass substrate precursor after the rough polishing step was washed in the order of alkaline detergent, nitric acid, alkaline detergent, and HF.
  • the ultrasonic waves applied at the time of each cleaning were alkaline detergent (US 40 kHz), nitric acid (US 80 kHz), alkaline detergent (950 kHz), and HF (170 kHz), respectively.
  • Each tank, particularly an ultrasonic tank of an alkaline detergent (950 kHz) was deaerated and cleaned.
  • the amount of cerium oxide adhering to the surface of the glass substrate precursor was measured. Thereafter, the chemical strengthening step and the precision polishing step were performed in the same manner as in Example 1, and the surface roughness Ra was measured and evaluated at each circulation number (5th, 7th, 20th) as in Example 1. In addition, the outer circumference TIR and the inner circumference TIR of the main surface of the glass substrate were measured.
  • Examples 7 to 11 Using the glass base plate C, a disk processing step, an end mirror polishing step, and a lapping step were performed by a known method to obtain a glass substrate precursor. The rough polishing process and the cleaning process of Example 1 were performed on the glass substrate precursor, and the amount of cerium oxide attached to the surface of the glass substrate precursor was measured. Thereafter, a chemical strengthening step was performed under the same conditions as in Example 1.
  • the value of (c) is set to 2.7 ⁇ m (Example 7), 2.1 ⁇ m (Example 8), 1.4 ⁇ m (Example 9), 0 under the above conditions. 0.9 (Example 10) and 0.4 (Example 11), the machining allowance (Y) is 1.5 ⁇ m (Example 7), 1.2 ⁇ m (Example 8), and 0.8 ⁇ m (respectively).
  • the precision polishing step was carried out by changing to Example 9), 0.5 ⁇ m (Example 10), and 0.2 ⁇ m (Example 11).
  • each circulation number (fifth, 7 In addition to measuring and evaluating the surface roughness Ra in the first and twentieth times, the outer periphery TIR and inner periphery TIR of the main surface of the glass substrate were measured.
  • Example 1 A glass substrate precursor was obtained by performing a disk processing step, an end mirror polishing step, and a lapping step by a known method using the glass base plate D.
  • the amount of cerium oxide adhered to the surface of the rough polishing step and the cleaning step glass substrate precursor was measured under the same conditions as in Example 1.
  • Example 2 instead of the cleaning step of Example 1, a cleaning liquid in which citric acid, sulfamic acid, and HF were mixed was used, and cleaning was performed by applying an ultrasonic wave of 120 kHz to obtain a comparative example.
  • the specifications for circulation use were set so that (c) was 2.9 under the above conditions. And the adhesion amount of the cerium oxide adhering to the surface of a glass substrate precursor was measured.
  • Example 1 a precision polishing step was performed under the same conditions as in Example 1 above, and the surface roughness Ra was measured at each number of circulations (5th, 7th, 20th) as in Example 1. While evaluating, the outer periphery TIR and inner periphery TIR of the main surface of the glass substrate were measured.
  • a chemical strengthening treatment liquid is used on the surface of a disk-shaped glass base plate containing 0.01% by mass to 2% by mass of cerium oxide.
  • the glass base plate is roughly polished using a polishing material mainly composed of cerium oxide, and the glass base plate after the rough polishing is precisely polished using an abrasive containing silica-based abrasive grains in the precision polishing step.
  • the precision laboratory Before performing the polishing step, the glass base plate after the rough polishing step is washed
  • TIR refers to an index representing the flatness (waviness) of a glass base plate (glass substrate for information recording medium), and the highest point and the lowest point from the least square plane of the evaluation surface (substrate surface). This is the total distance.
  • the glass base plate after the rough polishing is washed so that the cerium adhering to the glass base plate is 0.125 ng / cm 2 or less before performing the precision polishing step, It is possible to increase the number of times the material is recycled and to improve productivity. In addition, the smoothness and flatness of the final glass substrate are improved. Further, even when a glass base plate containing 0.01% by mass to 2% by mass of cerium oxide is used, aggregation of the abrasive in the precision polishing process can be suppressed. Therefore, it is possible to improve productivity even when using environmentally friendly materials. In addition, cleanliness of the final glass substrate can be ensured, and even if a strong acid is used, the smoothness of the glass substrate is not adversely affected.
  • the present invention it is possible to ensure high smoothness, high cleanliness, and high environmental conservation, and in addition, when grinding a glass base plate containing cerium oxide in its composition, a silica-based abrasive is used. The number of times that the grains can be recycled can be increased, so that the productivity can be remarkably increased.
  • colloidal silica is used as the silica-based abrasive
  • the machining allowance in the precision polishing step is 0.2 ⁇ m to 2 ⁇ m
  • the volume of the slurry liquid containing the abrasive used in the precision polishing step is (a) liter
  • the number of the glass base plates to be polished is (b)
  • the cerium oxide content of the glass base plate is (X) mass.
  • the glass base plate has a through-hole at the center thereof, and the radius of the through-hole is r2, and the glass base plate
  • the glass base plate is precisely polished so that the TIR for one round in the circumferential direction at a position of (2 ⁇ r2 + r1) / 3 from the center of the substrate becomes 0.5 ⁇ m or less.
  • the magnetic head of the disk device when a glass substrate for an information recording medium is mounted on a disk device, the magnetic head of the disk device can be easily lowered and cope with high-speed rotation, and recording and reproduction can be performed stably. Therefore, it is possible to reduce the risk of recording and reproduction errors due to contact between the magnetic head and the glass substrate for information recording medium.
  • the glass base plate is composed of SiO 2 : 55 to 75% by mass, Al 2 O 3 : 5 to 18% by mass, Li 2 O: 1. To 10% by mass, Na 2 O: 3 to 15% by mass, K 2 O: 0.1 to 5% by mass, provided that the total amount of Li 2 O + Na 2 O + K 2 O: 10 to 25% by mass, MgO: 0.1 To 5 mass%, CaO: 0.1 to 5 mass%, CeO: 0.01 to 2 mass%, ZrO 2 : 0 to 8 mass% (including 0), (Li 2 O + Na 2 O + K 2 O) (MgO + CaO) with a glass composition having a mass ratio of 0.10 ⁇ (MgO + CaO) / (Li 2 O + Na 2 O + K 2 O) ⁇ 0.80, It is formed on the surface of a glass base plate. .
  • the glass base plate has appropriate heat resistance and can suppress thermal deformation during the chemical strengthening process.
  • the ion exchange is uniformly performed during the chemical strengthening step, and a uniform compressive stress can be applied to the surface of the glass base plate, so that a decrease in flatness of the glass base plate can be suppressed. Therefore, for example, when polishing is performed after the chemical strengthening step, it is possible to prevent the flatness from being deteriorated due to the balance of the chemical strengthening layer (compressive stress layer) being lost due to the polishing.
  • the glass base plate containing cerium oxide in the composition when the glass base plate containing cerium oxide in the composition is precisely polished, it is possible to prevent the number of times that the circulating use can be limited when the silica-based abrasive is used as a polishing material. A glass substrate for an information recording medium with good flatness can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本発明は、酸化セリウムを組成に含むガラス素板を精密研磨加工する際に、シリカ系砥粒を研磨材として循環使用するに当たり、循環使用できる回数が制限されることを防ぎ、しかも、平坦度の良好な情報記録媒体用ガラス基板を得ることができる情報記録媒体用ガラス基板の製造方法を提供することを目的とする。本発明の情報記録媒体用ガラス基板の製造方法は、粗研磨工程で、研磨装置1と酸化セリウムを主成分とした研磨材を含む研磨液7とを用いてガラス素板10を粗研磨した後、ガラス素板表面の酸化セリウム量が0.125ng/cm以下となるようにガラス素板を洗浄する。その後、精密研磨工程で、コロイダルシリカを含む研磨材を用いて粗研磨後のガラス素板を精密研磨する。

Description

情報記録媒体用ガラス基板の製造方法
 本発明は、情報記録媒体用ガラス基板の製造方法に関する。
 ハードディスクは大容量化、低コスト化が求められており、その中でガラス基板としては高い平滑性、高い清潔度を有し、且つ生産性の向上も求められている。高い平滑性を達成する方法としてコロイダルシリカを研磨材にした最終研磨に使用する方法が知られているが、同時に生産性を向上させる手段として、例えば特許文献1に、コロイダルシリカを含む研磨液を循環させて使う研磨装置が開示されている。
特開2008-246645号公報
 本発明の目的は、酸化セリウムを組成に含むガラス素板を精密研磨加工する際に、シリカ系砥粒を研磨材として循環使用するに当たり、循環使用できる回数が制限されることを防ぐことができ、平坦度の良好な情報記録媒体用ガラス基板を得ることができる情報記録媒体用ガラス基板の製造方法を提供することである。
 すなわち、本発明は、酸化セリウムを0.01質量%~2質量%含有する円板状のガラス素板の表面に、化学強化処理液を用いて形成した化学強化層を有する情報記録媒体用ガラス基板であって粗研磨工程及び精密研磨工程によって前記表面を研磨することにより、前記ガラス素板の外周の半径をr1としたとき、ガラス素板の中心から0.75×r1の位置における周方向1周分のTIRが0.7μm以下の情報記録媒体用ガラス基板を製造する情報記録媒体用ガラス基板の製造方法であって、前記粗研磨工程で、酸化セリウムを主成分とした研磨材を用いて前記ガラス素板を粗研磨し、前記精密研磨工程で、シリカ系砥粒を含む研磨材を用いて粗研磨後の前記ガラス素板を精密研磨し、前記精密研磨工程を行う前に、前記ガラス素板表面の酸化セリウム量が0.125ng/cm以下となるように粗研磨工程後の前記ガラス素板を洗浄することを特徴とする。
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。
本発明の製造方法における粗研磨工程及び精密研磨工程で用いる研磨装置の一実施形態の説明図である。 実施例で用いたガラス素板A~D夫々の組成を示す図表である。 実施例1~11及び比較例1夫々の粗研磨後のCe付着量、精密研磨後の表面粗さに基づく評価、外周TIR、内周TIR等の測定値を表した図表である。 内周TIR及び外周TIRを説明する際の説明図である。
 本発明者の検討によれば、コロイダルシリカを研磨材として含む研磨液を使用して循環させた場合、時間経過を経るごとにコロイダルシリカが凝集してしまうため、研磨材として使用し難くなるという問題がある。この場合に、フィルタにて凝集したコロイダルシリカを取り除くことにより、循環使用期間を長くする技術が存在する。しかしながら、この技術では、凝集したコロイダルシリカがフィルタよりも小さい場合、フィルタを通過してしまうため、その効果は反映されにくい。特に、最近のコロイダルシリカは20nm程度の大きさのものを使用しているため、凝集したコロイダルシリカを取り除きにくい。
 また、酸化セリウムについても研磨メカニズミを有しており、研磨材として使用される。この研磨メカニズムにおいては、圧力を受けた際にガラス素板の表面で主な組成であるSi-Oの結合に酸化セリウムが置き換わり、Ce-Oという結合が起こる。このCe-O結合はすぐに切り離されるが、切れたCeは再度結合することはない。これらの置換、結合を繰り返すことにより研磨が行われる。
 また、本発明者の検討によれば、酸化セリウムがシリカ系砥粒で行う研磨の際に存在した場合、セリウムはシリカ系砥粒の水酸基と結合し、シリカ系砥粒の分散性が低下する。これは酸化セリウムの上記研磨メカニズムがシリカ系砥粒(およびスラッジ)でも同様に起こるためであると考えられる。それにより、研磨液(スラリー液)を循環使用していくとシリカ系砥粒の凝集が大きくなり、ガラス基板の平滑性に悪影響を及ぼす。また、研磨機に酸化セリウムがたまっていくため、平滑性の悪影響はさらに大きくなる。しかも、酸化セリウムは、最終工程に至るまで残存することで深くガラス素板に浸透し、最終のガラス基板の清潔性に悪影響を及ぼす。
 また、環境対策のためにガラス組成に酸化セリウムを含むガラス素板において、研磨時にガラス素板から溶出する酸化セリウムは、粗研磨で研磨材として使用される酸化セリウムと同様に問題となる。これらガラス組成として含まれて研磨時に溶出する酸化セリウムは様々な大きさ、電子状態のものがあり、コロイダルシリカが、より凝集し易い状況になってしまうと推測される。よって、酸化セリウムが含まれるガラス素板の研磨においてはコロイダルシリカの凝集がより顕著に表れるため、循環使用する回数がより制限されてしまう。また、コロイダルシリカの凝集があるとTIRも悪化することも知られている。TIR(Total Indicated Runout)とは、ガラス基板(ガラス素板)の平坦度を示す指標であり、特に周方向のTIRを小さくすることが重要である。
 精密研磨工程の前に、化学強化処理液を用いて化学強化層を形成する場合、化学強化処理の際のイオン交換の均一性が十分でないと、表面に働く圧縮応力のバランスが崩れて平坦度が悪化し、周方向のTIRを十分に小さくすることが困難であるという問題もある。
 このため、TIRを低く抑え得る組成を有し、コロイダルシリカのゲル化または凝集を抑えることによってTIRが大きく改善され、製造した情報記録媒体用ガラス基板をディスク装置に装着した場合に、ディスク装置に設けられた磁気ヘッドの浮上量の低減に寄与することができ、情報記録媒体用ガラス基板の大容量化を実現できるようになる。
 本発明は、このような検討の結果に基づいてなされたものである。
 以下に、本発明の好ましい実施の形態並びに実施例について説明する。しかしながら、本発明は、以下に説明する実施形態や実施例の製造方法に限られているわけではない。
 この実施形態の情報記録媒体用ガラス基板の製造方法は、円盤加工工程と、ラッピング工程と、粗研磨工程(1次研磨工程)と、洗浄工程と、化学強化工程と、精密研磨工程(2次研磨工程)と、最終洗浄工程とを含み、これらの工程を経て製造される。
 使用するガラス素板は、この実施形態では、酸化物基準で、SiO:55~75質量%、Al:5~18質量%、LiO:1~10質量%、NaO:3~15質量%、KO:0.1~5質量%、但し、LiO+NaO+KOの総量:10~25質量%、MgO:0.1~5質量%、CaO:0.1~5質量%、CeO:0.01~2質量%、ZrO:0~8質量%であり、(LiO+NaO+KO)に対する(MgO+CaO)の質量比が、0.10≦(MgO+CaO)/(LiO+NaO+KO)≦0.80の範囲にあるガラス組成のガラス素材が用いられる。
 円盤加工工程は、上記ガラス素材から板状に形成したガラス素板10を、貫通孔10aを有する(図4に図示)円盤形状のガラス素板に加工する工程である。この円盤加工工程で、例えば、外径が2.5インチ、1.8インチ、1インチ、0.8インチ等で、厚みが2mm、1mm、0.63mm等の円盤状のガラス素板に形成されるが、円盤加工工程で形成されるガラス素板の大きさや厚さは特に限定されない。
 ラッピング工程は、上記ガラス素板を所定の板厚に加工する工程である。この実施形態では、第1ラッピング工程と、第2ラッピング工程との2つの工程から構成されている。
 第1ラッピング工程は、ガラス素板の裏表の両面を研削(ラッピング)加工し、ガラス素板の全体形状、すなわちガラス素板の平行度、平坦度および厚みを予備調整する。
 第2ラッピング工程は、更に、ガラス素板の両表面を再び研削加工して、ガラス素板の平行度、平坦度および厚みを微調整する。
 粗研磨工程は、ラッピング工程を終えたガラス素板の表面に粗研磨を施す。この粗研磨工程は、上述したラッピング工程で残留した傷や歪みの除去を目的とするもので、研磨装置を用いて実施する。
 研磨装置1は、この実施形態では、例えば図1に示すような両面同時研削可能な装置を使用する。この研削装置1は、装置本体部1aと、装置本体部1aに研磨液を供給する研磨液供給部1bとを備えている。
 装置本体部1aは、互いに平行になるように上下に間隔を隔てて配置された円盤状の上定盤2と下定盤3とを備えており、互いに逆方向に回転する。
 この上下の定盤2、3の対向するそれぞれの面にガラス素板10の表裏の両面を研磨するための研磨パッドが貼り付けられている。この粗研磨工程で使用する研磨パッドは、例えばポリウレタン製の硬質研磨パッドが用いられる。また、上下の定盤2、3の間には、回転可能な複数のキャリア5が設けられている。
 このキャリア5には、複数の素板保持用孔51が設けられており、この素板保持用孔51にガラス素板10をはめ込んで配置する。この実施形態では、キャリア5は、100枚のガラス素板10をはめ込んで配置できるように構成されており、一回の処理(1バッチ)で100枚のガラス素板10を処理できるようになっている。また、上下の定盤2、3は別駆動で動作することができる。
 研磨パッドを介して定盤2、3に挟まれているキャリア5は、複数のガラス素板10を保持した状態で、自転しながら定盤2,3の回転中心に対して下定盤3と同じ方向に公転する。このように動作している研削装置1において、研磨液7(スラリー液)を上定盤2とガラス素板10との間、及び下定盤3とガラス素板10との間、夫々に供給することでガラス素板10の粗研磨を行うことができる。
 研磨液供給部1bは、液貯留部11と液回収部12とを備えている。液貯留部11は、液貯留部本体11aと、液貯留部本体11aから装置本体部1aに延ばされた吐出口11eを有する液供給管11bとを備えている。
 液回収部12は、液回収部本体12aと、液回収部本体12aから装置本体部1aに延ばされた液回収管12bと、液回収部本体12aから研磨液供給部1bに延ばされた液戻し管12cとを備えている。
 そして、液貯留部本体11aに入れられた研磨液7は、液供給管11bの吐出口11eから装置本体部1aに供給され、装置本体部1aから液回収管12bを介して液回収部本体12aに回収される。
 また、回収された研磨液7は、液戻し管12cを介して液貯留部11に戻され、再度、装置本体部1aに供給可能とされている。
 研磨液7は、粗研磨工程では、フッ素含有量が5質量%以下である希土類酸化物、すなわち酸化セリウムを主成分とする研磨材を含むものが用いられる。また、粗研磨工程で使用する研磨材の平均粒径は1μmが好ましい。
 セリウム研磨材による粗研磨後のガラス素板は、洗浄工程によって洗浄される。例えばまず、pH13以上のアルカリ洗剤で洗浄を行い、ガラス素板にリンスを行う。続いてpH1以下の酸系洗剤でガラス素板を洗浄、リンスし、最後にフッ化水素酸(HF)溶液による洗浄を行う。酸化セリウムに関しては、アルカリ洗浄、酸洗浄、HFの順で洗浄を行うことが最も効率的である。これはまずアルカリ洗剤で研磨材を分散除去し、続いて酸洗剤で研磨材を溶解除去、最後にHFによってガラス素板をエッチングし、ガラス素板に深く刺さっている研磨材を除去するのである。
 このとき、これらを単一の槽で用いて洗浄した場合には、効率的な洗浄ができない。特に、酸洗剤とHFを同一槽に入れた場合、HFのエッチング速度は、研磨材の多い場所で低下するため、基板内を均一にエッチングできなくなるからである。また、各洗浄の後にリンス槽を用いることが好ましい。これらの洗剤には、場合によって界面活性剤、分散材、キレート剤、還元材などを添加しても良い。また、各洗浄槽には、超音波を印加し、それぞれの洗剤には脱気水を使用することが好ましい。上記に加え、ラッピング工程(内径加工、外径加工)中に酸化セリウムを使用している場合は、それら各工程後にHF洗浄を行うことが好ましい。
 また、この粗研磨後のガラス素板の洗浄は、ガラス素板表面の酸化セリウム量が0.125ng/cm以下となるように行なわれる。ガラス素板表面の酸化セリウム量が0.125ng/cmを超えると後の精密研磨工程による精密研磨後のガラス素板の平坦度を良好にできないからである。より詳しくは、上記0.125ng/cmを超えると、精密研磨後のガラス素板における周方向の平坦度である外周TIRが0.7μm以下で、内周TIRが0.5μm以下にすることができなくなるからである。
 最終的に得られた情報記録媒体用基板の外周TIRが0.7μm以下で、内周TIRが0.5μm以下であれば、その情報記録媒体用基板をディスク装置に装着した場合に、例えばディスク装置に設けられた磁気ヘッドと情報記録媒体用基板とのクラッシュ(接触)の危険性を少なくできる。
 そこで、本実施形態では、粗研磨後のガラス素板の洗浄を、ガラス素板表面の酸化セリウム量が0.125ng/cm以下となるように設定している。
 化学強化工程は、化学強化液にガラス素板を浸漬してガラス素板に化学強化層を形成する。化学強化層を形成することで耐衝撃性、耐振動性及び耐熱性等を向上させることができる。
 この化学強化工程は、加熱された化学強化処理液にガラス素板を浸漬することによってガラス素板に含まれるリチウムイオン、ナトリウムイオン等のアルカリ金属イオンをそれよりイオン半径の大きなカリウムイオン等のアルカリ金属イオンによって置換するイオン交換法によって行われる。イオン半径の違いによって生じる歪みにより、イオン交換された領域に圧縮応力が発生し、ガラス素板の表面が強化される。
 この実施形態では、(MgO+CaO)/(LiO+NaO+KO)が、0.1≦(MgO+CaO)/(LiO+NaO+KO)≦0.80の範囲のガラス素板ものを用いて行なうため、ガラス素板が適度な耐熱性を持ち、化学強化工程中における熱変形を抑えることができる。しかも、化学強化工程中におけるイオン交換が均一に行なわれ、ガラス素板表面に均等な圧縮応力を働かせることが出来、ガラス素板の平坦度を抑えることができる。
 従って、この実施形態のように、化学強化工程の後に精密研磨を行なっても、ガラス素板を全体に渡って略均一な取り代で行なうことができ、精密研磨後の平坦性を良好にできる。
 次に、精密研磨工程について説明する。精密研磨工程は、上述した粗研磨工程で得られた平坦平滑な主表面を維持しつつ、例えば主表面の表面粗さの最大高さ(Rmax)が6nm程度以下である平滑な鏡面に仕上げる鏡面研磨処理である。この精密研磨工程は、例えば上記粗研磨工程で使用したものと同様の研磨装置を用い、研磨パッドを硬質研磨パッドから軟質研磨パッドに取り替えて行なわれる。
 また、精密研磨工程で用いる研磨材は、粗研磨工程のセリウム系研磨材より粒子径が低い、平均粒子径が20nmの、シリカ系の砥粒(コロイダルシリカ)を含む研磨材を用いる。この実施形態では、コロイダルシリカを含む研磨材が用いられる。
 そして、上記研磨材を含む研磨液(スラリー液)をガラス素板に供給し、研磨パッドとガラス素板とを相対的に摺動させて、ガラス素板の表面を鏡面研磨する。このとき精密研磨で研磨される量(取り代)は0.2μm~2μm、好ましくは0.3μm~1.5μmである。研磨される量は、少なすぎると平坦平滑性が確保できず、多すぎるとセリウム量が多くなってしまう。0.3μmから1.5μmで研磨を行うと平坦平滑性と持続性(循環使用)が確保できるのである。
 スラリー液は、例えば、上記研削装置1の研磨液供給部1bによって循環使用される。スラリー液を循環利用する際には、スラリー液の容量を(a)リットル、研磨されるガラス素板の枚数を(b)枚、ガラス素板の酸化セリウム含有量を(X)質量%、取り代を(Y)μmとし、
  Z=Y×基板面積(cm)×基板密度(g/cm) ・・・(1)
とすると、
  (X×Z)×b÷a<3(μg/リットル)     ・・・(2)
になるように各諸元が管理される。ある態様では、スラリー液の容量(a)が30リットルのとき、ガラス素板の枚数(b)は、100枚位となる。
 精密研磨工程を終えたガラス素板の洗浄処理を、例えば下記の通りに行う。まず、精密研磨工程を終えたガラス素板を乾燥(自然乾燥を含む)させることなく、水中で保管し、湿潤状態のまま次の洗浄工程へ搬送する。研磨残渣が残った状態のままガラス素板を乾燥させてしまうと、洗浄処理により研磨材(コロイダルシリカ)を除去することが困難になる場合があるからである。鏡面仕上げされたガラス素板の表面をあらすことなく、研磨材を除去する必要がある。
 例えば、洗浄液がガラス素板に対してエッチング作用やリーチング作用を有している場合には、敢えて鏡面仕上げを施したガラス表面が荒らされてしまい、梨子地状の仕上げ表面となってしまう。梨子地状の仕上げ表面では、磁気ヘッドの浮上量を十分に低減させることができない。
 したがって、この洗浄液はガラスに対して、エッチング作用やリーチング作用を有せず、シリカ系の研磨材に対して選択的溶解性能を備える洗浄液として組成されることが好ましい。すなわち、ガラスをエッチングする要因であるフッ化水素酸(HF)やケイフッ酸(HSiF)等を含まない組成を洗浄液として選定することが好ましい。この最終洗浄工程を経て、情報記録媒体用ガラス基板が製造される。
 好適な例としては、pH13のアルカリ洗剤で洗浄し、リンスを行うことである。続いて、pH0の酸系洗剤(硝酸)で洗浄、リンスし最後にHF(0.1%液)による洗浄を行う。
 酸化セリウムに関してはアルカリ洗浄、酸洗浄、HFの順で洗浄を行うことが最も効率的である。これはまずアルカリ洗剤で研磨材を分散除去し、続いて酸洗剤で研磨材を溶解除去、最後にHFによってガラスをエッチングし深く刺さっている研磨材を除去できるからである。また各洗剤は、脱気されたものを使用し、超音波を印加しながら洗浄を行う。脱気を行うことにより強力に付着している酸化セリウムを除去できるようになる。
 また、超音波を使用することによりキャビテーションの効果が増し、アルカリ洗剤による分散効果が増す。印加条件としては、アルカリ洗剤では40kHz、酸洗剤では80kHz、HF洗剤では170kHzである。特に、酸洗剤で80kHzの超音波を印加することにより、小さい付着に対する溶解性が向上する。最後にHFでは、170kHzの超音波を印可することが好ましい。その場合には、さらに細かい酸化セリウムが除去できる。
 なお、上記実施形態では、化学強化工程を、粗研磨工程よりも後であって精密研磨工程よりも前に行なっているが、この形態のものに限らず、適宜変更できる。例えば化学強化工程を、粗研磨工程よりも先に行ない、あるいは、精密研磨工程よりも後に行なってよい。
 ただし、化学強化工程を、粗研磨工程よりも先に行うと、化学強化工程で形成した化学強化層が薄くまたは無くなるおそれが生じる。一方、化学強化工程を、精密研磨工程よりも後に行なうと、化学強化工程での熱変形によって平坦度が低下するおそれが生じる。従って、上記実施形態のように、化学強化工程を、粗研磨工程よりも後であって精密研磨工程よりも前に行なうことが好ましい。
 以下に、具体的に実施例を挙げて、本発明を更に詳しく説明する。図2に示す組成を有する4種類のガラス素板A~Dを用意した。
 (実施例1)
 ガラス素板Aを用いて、公知の方法により、円盤加工工程、端面鏡面研磨工程、ラッピング工程を施した。その後、ラッピング工程を終えたガラス素板(以下、ラッピング工程を終えたガラス素板をガラス基板前駆体という)に、図1に示した研磨装置1にポリウレタン製の硬質研磨パッドを装着したものを用いて粗研磨工程を実施した。粗研磨工程は、フッ素含有量が5質量%以下である酸化セリウムを主成分とし、平均粒径が1μmの研磨材をガラス基板前駆体に供給し、硬質研磨パッドとガラス素板とを相対的に移動させて、当該ガラス基板前駆体の主表面を粗研磨した。
 次に、洗浄工程を実施した。この洗浄工程では、pH13のアルカリ洗剤で洗浄し、リンスを行った。続いて、pH0の酸系洗剤(硝酸)で洗浄して、リンスし、最後にHF(0.1%液)による洗浄を行った。印加条件は、アルカリ洗剤では40kHz、酸洗剤では80kHz、HF洗剤では170kHzである。
 洗浄後、ガラス基板前駆体の表面に付着している酸化セリウム付着量を測定した。尚、この測定は、高周波誘導結合プラズマ質量分析装置(ICP-MS)で計測し、10枚分の平均値を、図3に表記した。
 洗浄工程の後、加熱された化学強化処理液にガラス素板を浸漬することによって化学強化工程を実施した。
 また、その化学強化工程の後、精密研磨工程を実施した。この精密研磨工程では、粗研磨工程のセリウム系研磨材より粒子径が低い、平均粒子径が20nmのコロイダルシリカを含むスラリー液30リットルを循環使用した。このスラリー液を洗浄工程終了後のガラス基板前駆体に供給し、研磨パッドとガラス基板前駆体とを相対的に摺動させて、ガラス基板前駆体の表面を鏡面研磨した。このとき精密研磨で研磨される取り代(Y)は0.8μmとした。また、上記(2)式の左辺(X×Z)×b÷aを(c)とした場合、ガラス基板前駆体やスラリー液の組成の比率と取り代(Y)とのバランスを考慮し、上記条件で(c)が2.9となるように循環使用の諸元を設定した。
 精密研磨工程でのスラリー液の循環使用を20回(1回で研磨処理するガラス基板前駆体は100枚)実行し、5回目、7回目、20回目のときの良否を◎、○、△、×の四段階で評価した。評価は、各循環回数(5回目、7回目、20回目)での表面粗さRaで行う。
 表面粗さRaは、最終の洗浄処理を終えたガラス基板の主表面の縦5μm、横5μmの正方形領域の表面粗さであり、原子間力顕微鏡(AFM)で10枚のガラス基板を観察し、平均のRaが0.3Å以上1.0Å未満のとき◎、1Å以上1.5Å未満のとき○、1.5Å以上2.0Å未満のとき△、2.0Å以上のとき×とした。
 また、最終の洗浄処理を終えたガラス基板の主表面の外周TIR及び内周TIRを測定した。また、この測定は、上記5回目と7回目と20回目との夫々の内の1枚の外周TIR及び内周TIRを測定してその平均値を図3に表記した。ここで、外周TIRとは、図4に示すように、情報記録媒体用ガラス基板100(ガラス素板10)の半径をr1としたときに、0.75×r1を満たす位置で周方向のTIRをトラック1周分測定したものである。
 内周TIRとは、図4に示すように情報記録媒体用ガラス基板100(ガラス素板10)の半径をr1、情報記録媒体用ガラス基板100(ガラス素板10)の貫通穴10aの半径をr2としたときに、(2×r2+r1)/3を満たす位置で周方向のTIRをトラック1周分測定したものである。
 (実施例2)
 ガラス素板Bを用いて、公知の方法により、円盤加工工程、端面鏡面研磨工程、ラッピング工程を施して、ガラス基板前駆体を得た。このガラス基板前駆体に対し、実施例1の粗研磨工程、洗浄工程を施し、上記実施例1と同様に、洗浄後、ガラス基板前駆体の表面に付着している酸化セリウム付着量を測定した。
 その後、化学強化工程を施し、さらに実施例1の取り代(Y)を1.9に変更して精密研磨工程を実施した。また、洗浄工程では、上記条件で(c)が1.7となるように循環使用の諸元を設定した。そして、上記実施例1と同様に、各循環回数(5回目、7回目、20回目)での表面粗さRaを測定して評価するとともに、ガラス基板の主表面の外周TIR及び内周TIRを測定した。
 (実施例3)
 ガラス素板Cを用いて、公知の方法により、円盤加工工程、端面鏡面研磨工程、ラッピング工程を施して、ガラス基板前駆体を得た。このガラス基板前駆体に対し、実施例1の粗研磨工程、洗浄工程を施し、上記実施例1と同様に、洗浄後、ガラス基板前駆体の表面に付着している酸化セリウム付着量を測定した。
 その後、化学強化工程を施し、さらに実施例1の取り代(Y)を1.0に変更して精密研磨工程を実施した。また、洗浄工程では、上記条件で(c)が1.8となるように循環使用の諸元を設定した。そして、上記実施例1と同様に、各循環回数(5回目、7回目、20回目)での表面粗さRaを測定して評価するとともに、ガラス基板の主表面の外周TIR及び内周TIRを測定した。
 (実施例4)
 ガラス素板Dを用いて、公知の方法により、円盤加工工程、端面鏡面研磨工程、ラッピング工程を施して、ガラス基板前駆体を得た。このガラス基板前駆体に対し、実施例1の粗研磨工程、洗浄工程を施し、上記実施例1と同様に、洗浄後、ガラス基板前駆体の表面に付着している酸化セリウム付着量を測定した。
 その後、化学強化工程を施し、さらに実施例1の取り代(Y)を0.7に変更して精密研磨工程を実施した。また、洗浄工程では、上記条件で(c)が2.5となるように循環使用の諸元を設定した。そして、上記実施例1と同様に、各循環回数(5回目、7回目、20回目)での表面粗さRaを測定して評価するとともに、ガラス基板の主表面の外周TIR及び内周TIRを測定した。
 (実施例5)
 ガラス素板Dを用いて、公知の方法により、円盤加工工程、端面鏡面研磨工程、ラッピング工程を施して、ガラス基板前駆体を得た。このガラス基板前駆体に対し、実施例1と同じ条件で粗研磨工程、洗浄工程を施し、ガラス基板前駆体の表面に付着している酸化セリウム付着量を測定した。また、その後、上記実施例1と同じ条件で、化学強化工程、精密研磨工程を実施し、実施例1と同様に、各循環回数(5回目、7回目、20回目)での表面粗さRaを測定して評価するとともに、ガラス基板の主表面の外周TIR及び内周TIRを測定した。
 (実施例6)
 ガラス素板Dを用いて、公知の方法により、円盤加工工程、端面鏡面研磨工程、ラッピング工程を施して、ガラス基板前駆体を得た。このガラス基板前駆体に対し、実施例1と同じ条件で粗研磨工程を実施した。次いで、以下の条件で洗浄工程を実施した。
 粗研磨工程後のガラス基板前駆体をアルカリ洗剤、硝酸、アルカリ洗剤、HFの順で洗浄した。各洗浄時において印可した超音波は、それぞれアルカリ洗剤(US40kHz)、硝酸(US80kHz)、アルカリ洗剤(950kHz)、HF(170kHz)とした。各槽、特に、アルカリ洗剤(950kHz)の超音波槽は、脱気を行い、洗浄した。
 洗浄後、ガラス基板前駆体の表面に付着している酸化セリウム付着量を測定した。その後、実施例1と同様に化学強化工程、精密研磨工程を実施し、実施例1と同様に、各循環回数(5回目、7回目、20回目)での表面粗さRaを測定して評価するとともに、ガラス基板の主表面の外周TIR及び内周TIRを測定した。
 (実施例7~11)
 ガラス素板Cを用いて、公知の方法により、円盤加工工程、端面鏡面研磨工程、ラッピング工程を施して、ガラス基板前駆体を得た。このガラス基板前駆体に対し、実施例1の粗研磨工程、洗浄工程を施し、ガラス基板前駆体の表面に付着している酸化セリウム付着量を測定した。また、その後、上記実施例1と同じ条件で、化学強化工程を施した。
 また、(2)式の効果を確認するため、(c)の値を上記条件で2.7μm(実施例7)、2.1μm(実施例8)、1.4μm(実施例9)、0.9(実施例10)、0.4(実施例11)となるように、取り代(Y)をそれぞれ1.5μm(実施例7)、1.2μm(実施例8)、0.8μm(実施例9)、0.5μm(実施例10)、0.2μm(実施例11)に変更して精密研磨工程を実施し、実施例1と同様に、夫々の各循環回数(5回目、7回目、20回目)での表面粗さRaを測定して評価するとともに、ガラス基板の主表面の外周TIR及び内周TIRを測定した。
 (比較例1)
 ガラス素板Dを用いて、公知の方法により、円盤加工工程、端面鏡面研磨工程、ラッピング工程を施して、ガラス基板前駆体を得た。このガラス基板前駆体に対し、実施例1と同じ条件で粗研磨工程、洗浄工程ガラス基板前駆体の表面に付着している酸化セリウム付着量を測定した。
 次いで、実施例1の洗浄工程に代えて、クエン酸、スルファミン酸、HFを混合した洗浄液を使用し、120kHzの超音波を印可して洗浄し、比較例とした。また、洗浄工程では、上記条件で(c)が2.9となるように循環使用の諸元を設定した。そして、ガラス基板前駆体の表面に付着している酸化セリウム付着量を測定した。
 その後、上記実施例1と同じ条件で、精密研磨工程を実施し、実施例1と同様に、夫々の各循環回数(5回目、7回目、20回目)での表面粗さRaを測定して評価するとともに、ガラス基板の主表面の外周TIR及び内周TIRを測定した。
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 本発明の一態様に係る情報記録媒体用ガラス基板の製造方法は、酸化セリウムを0.01質量%~2質量%含有する円板状のガラス素板の表面に、化学強化処理液を用いて形成した化学強化層を有する情報記録媒体用ガラス基板であって粗研磨工程及び精密研磨工程によって前記表面を研磨することにより、前記ガラス素板の外周の半径をr1としたとき、ガラス素板の中心から0.75×r1の位置における周方向1周分のTIRが0.7μm以下の情報記録媒体用ガラス基板を製造する情報記録媒体用ガラス基板の製造方法であって、前記粗研磨工程で、酸化セリウムを主成分とした研磨材を用いて前記ガラス素板を粗研磨し、前記精密研磨工程で、シリカ系砥粒を含む研磨材を用いて粗研磨後の前記ガラス素板を精密研磨し、前記精密研磨工程を行う前に、前記ガラス素板表面の酸化セリウム量が0.125ng/cm以下となるように粗研磨工程後の前記ガラス素板を洗浄することを特徴とする。
 ここに、TIRとは、ガラス素板(情報記録媒体用ガラス基板)の平坦度(うねり量)を表す指標をいい、評価面(基板表面)の最小二乗平面からの最高点と最低点との距離の合計のことをいう。
 この構成によれば、精密研磨工程を行う前に、ガラス素板に付着しているセリウムが0.125ng/cm以下となるように粗研磨後のガラス素板を洗浄しているので、研磨材の循環使用回数を増加し、生産性を向上することが可能となる。また、最終品であるガラス基板の平滑性、平坦度が向上する。さらに、酸化セリウムを0.01質量%から2質量%含有するガラス素板を用いても、精密研磨工程での研磨材の凝集を抑制することができる。従って、環境に配慮した素材を用いても、生産性の向上を高めることが可能になる。加えて、最終のガラス基板の清潔性を確保することができ、強い酸を使用しても、ガラス基板の平滑性に悪影響を及ぼすこともない。従って、本発明によれば、高い平滑性、高い清潔性、並びに高い環境保全性を確保することができ、しかも、酸化セリウムを組成に含むガラス素板を精密研磨加工する際に、シリカ系砥粒を循環使用できる回数を増加し、もって生産性を格段に高めることができるという顕著な効果を奏する。
 他の一態様では、上述の情報記録媒体用ガラス基板の製造方法において、前記シリカ系砥粒として、コロイダルシリカを用い、前記精密研磨工程での取り代を、0.2μm~2μmとし、かつ前記精密研磨工程に使用される研磨材を含むスラリー液の容量を(a)リットル、研磨される前記ガラス素板の枚数を(b)枚、前記ガラス素板の酸化セリウム含有量を(X)質量%、前記取り代を(Y)μmとし、Z=Y×基板面積(cm)×基板密度(g/cm)とすると、前記精密研磨工程で、(X×Z)×b÷a<3(μg/リットル)になるように研磨することを特徴とする。
 この態様では、精密研磨工程で研磨材を含むスラリー液の循環使用回数を管理するに当たり、研磨されるガラス素板の酸化セリウムにも配慮して、好適な最大の循環使用回数を求めることが可能になる。
 他の一態様では、上述の情報記録媒体用ガラス基板の製造方法において、前記ガラス素板は、その中心部に貫通孔を有し、前記貫通孔の半径をr2としたとき、前記ガラス素板の中心から(2×r2+r1)/3の位置における周方向1周分のTIRが、0.5μm以下になるように、前記ガラス素板を精密研磨することを特徴とする。
 この構成によれば、情報記録媒体用ガラス基板をディスク装置に装着した場合において、ディスク装置の磁気ヘッドの低浮上化、高速回転への対応が容易になり、安定して記録及び再生を行なうことができ、磁気ヘッドと情報記録媒体用ガラス基板との接触による記録及び再生のエラーの危険性の少ないものにできる。
 他の一態様では、上述の情報記録媒体用ガラス基板の製造方法において、前記ガラス素板として、SiO:55~75質量%、Al:5~18質量%、LiO:1~10質量%、NaO:3~15質量%、KO:0.1~5質量%、但し、LiO+NaO+KOの総量:10~25質量%、MgO:0.1~5質量%、CaO:0.1~5質量%、CeO:0.01~2質量%、ZrO:0~8質量%(0を含む)であり、(LiO+NaO+KO)に対する(MgO+CaO)の質量比が、0.10≦(MgO+CaO)/(LiO+NaO+KO)≦0.80の範囲にあるガラス組成のものを用い、前記化学強化層を、前記組成のガラス素板の表面に形成することを特徴とする。
 この構成によれば、ガラス素板が適度な耐熱性を持ち、化学強化工程中における熱変形を抑えることができる。しかも、化学強化工程中におけるイオン交換が均一に行なわれ、ガラス素板表面に均等な圧縮応力を働かせることが出来、ガラス素板の平坦度の低下を抑えることができる。従って、例えばこの化学強化工程後に研磨加工する場合に、研磨加工により化学強化層(圧縮応力層)の平衡がくずれて平坦度が低下するのを抑えることができる。
 この出願は、2010年6月29日に出願された日本国特許出願特願2010-147404を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明によれば、酸化セリウムを組成に含むガラス素板を精密研磨加工する際に、シリカ系砥粒を研磨材として循環使用するに当たり、循環使用できる回数が制限されることを防ぎ、しかも、平坦度の良好な情報記録媒体用ガラス基板を得ることができる。
 
 

Claims (4)

  1.  酸化セリウムを0.01質量%~2質量%含有する円板状のガラス素板の表面に、化学強化処理液を用いて形成した化学強化層を有する情報記録媒体用ガラス基板であって粗研磨工程及び精密研磨工程によって前記表面を研磨することにより、前記ガラス素板の外周の半径をr1としたとき、ガラス素板の中心から0.75×r1の位置における周方向1周分のTIRが0.7μm以下の情報記録媒体用ガラス基板を製造する情報記録媒体用ガラス基板の製造方法であって、
     前記粗研磨工程で、酸化セリウムを主成分とした研磨材を用いて前記ガラス素板を粗研磨し、
     前記精密研磨工程で、シリカ系砥粒を含む研磨材を用いて粗研磨後の前記ガラス素板を精密研磨し、
     前記精密研磨工程を行う前に、前記ガラス素板表面の酸化セリウム量が0.125ng/cm以下となるように粗研磨工程後の前記ガラス素板を洗浄することを特徴とする情報記録媒体用ガラス基板の製造方法。
  2.  請求項1記載の情報記録媒体用ガラス基板の製造方法において、
     前記シリカ系砥粒として、コロイダルシリカを用い、
     前記精密研磨工程での取り代を、0.2μm~2μmとし、かつ前記精密研磨工程に使用される研磨材を含むスラリー液の容量を(a)リットル、研磨される前記ガラス素板の枚数を(b)枚、前記ガラス素板の酸化セリウム含有量を(X)質量%、前記取り代を(Y)μmとし、
       Z=Y×基板面積(cm)×基板密度(g/cm)      ・・・(1)
     とすると、前記精密研磨工程で、
       (X×Z)×b÷a<3(μg/リットル)           ・・・(2)
     になるように研磨することを特徴とする情報記録媒体用ガラス基板の製造方法。
  3.  請求項1または2記載の情報記録媒体用ガラス基板の製造方法において、
     前記ガラス素板は、その中心部に貫通孔を有し、
     前記貫通孔の半径をr2としたとき、前記ガラス素板の中心から(2×r2+r1)/3の位置における周方向1周分のTIRが、0.5μm以下になるように、前記ガラス素板を精密研磨することを特徴とする情報記録媒体用ガラス基板の製造方法。
  4.  請求項1~3のいずれか一項に記載の情報記録媒体用ガラス基板の製造方法において、
     前記ガラス素板として、SiO:55~75質量%、Al:5~18質量%、LiO:1~10質量%、NaO:3~15質量%、KO:0.1~5質量%、但し、LiO+NaO+KOの総量:10~25質量%、MgO:0.1~5質量%、CaO:0.1~5質量%、CeO:0.01~2質量%、ZrO:0~8質量%(0を含む)であり、(LiO+NaO+KO)に対する(MgO+CaO)の質量比が、0.10≦(MgO+CaO)/(LiO+NaO+KO)≦0.80の範囲にあるガラス組成のものを用い、
     前記化学強化層を、前記組成のガラス素板の表面に形成することを特徴とする情報記録媒体用ガラス基板の製造方法。
PCT/JP2011/003604 2010-06-29 2011-06-23 情報記録媒体用ガラス基板の製造方法 WO2012001924A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012501476A JP4993046B2 (ja) 2010-06-29 2011-06-23 情報記録媒体用ガラス基板の製造方法
US13/807,797 US8585463B2 (en) 2010-06-29 2011-06-23 Process for producing glass substrate for information recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-147404 2010-06-29
JP2010147404 2010-06-29

Publications (1)

Publication Number Publication Date
WO2012001924A1 true WO2012001924A1 (ja) 2012-01-05

Family

ID=45401667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003604 WO2012001924A1 (ja) 2010-06-29 2011-06-23 情報記録媒体用ガラス基板の製造方法

Country Status (3)

Country Link
US (1) US8585463B2 (ja)
JP (1) JP4993046B2 (ja)
WO (1) WO2012001924A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138151A (ja) * 2010-12-27 2012-07-19 Asahi Glass Co Ltd 情報記録媒体用ガラス基板の製造方法
JP2016523792A (ja) * 2013-04-30 2016-08-12 コーニング インコーポレイテッド ガラス基板洗浄方法
WO2023189233A1 (ja) * 2022-03-30 2023-10-05 古河電気工業株式会社 磁気ディスク及び磁気ディスク用基板
CN117340689A (zh) * 2023-11-03 2024-01-05 湖南普照信息材料有限公司 一种玻璃基板的抛光方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5333656B2 (ja) * 2010-03-29 2013-11-06 コニカミノルタ株式会社 情報記録媒体用ガラス基板の製造方法
WO2012042735A1 (ja) * 2010-09-30 2012-04-05 コニカミノルタオプト株式会社 情報記録媒体用ガラス基板の製造方法
MY180533A (en) * 2014-03-17 2020-12-01 Shinetsu Chemical Co Methods for working synthetic quartz glass substrate having a mirror-like surface and method for sensing synthetic quartz glass substrate
US11097974B2 (en) 2014-07-31 2021-08-24 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
JP6923555B2 (ja) 2016-01-12 2021-08-18 コーニング インコーポレイテッド 薄厚熱強化及び化学強化ガラス系物品
US11795102B2 (en) * 2016-01-26 2023-10-24 Corning Incorporated Non-contact coated glass and related coating system and method
WO2021025981A1 (en) 2019-08-06 2021-02-11 Corning Incorporated Glass laminate with buried stress spikes to arrest cracks and methods of making the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311336A (ja) * 1999-04-28 2000-11-07 Nippon Sheet Glass Co Ltd 磁気ディスク用基板の作製方法、その方法により得られた磁気ディスク用基板及び磁気記録媒体
WO2007111167A1 (ja) * 2006-03-24 2007-10-04 Hoya Corporation 磁気ディスク用ガラス基板の製造方法および磁気ディスクの製造方法
JP2009193608A (ja) * 2008-02-12 2009-08-27 Konica Minolta Opto Inc 情報記録媒体用ガラス基板の製造方法、情報記録媒体用ガラス基板及び磁気記録媒体
WO2010038741A1 (ja) * 2008-09-30 2010-04-08 Hoya株式会社 磁気ディスク用ガラス基板及び磁気ディスク

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6553788B1 (en) 1999-02-23 2003-04-29 Nippon Sheet Glass Co., Ltd. Glass substrate for magnetic disk and method for manufacturing
WO2002076675A1 (fr) * 2001-03-27 2002-10-03 Nippon Sheet Glass Co., Ltd. Substrat pour support d'enregistrement d'informations et procede de production dudit substrat, support d'enregistrement d'informations et feuille de verre ebauche
JP4234991B2 (ja) * 2002-12-26 2009-03-04 Hoya株式会社 情報記録媒体用ガラス基板の製造方法及びその製造方法によって製造される情報記録媒体用ガラス基板
JP2008246645A (ja) 2007-03-30 2008-10-16 Konica Minolta Opto Inc 研磨装置
SG183091A1 (en) * 2011-01-07 2012-09-27 Asahi Glass Co Ltd Glass substrate for information recording media, process for its production, and magnetic recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311336A (ja) * 1999-04-28 2000-11-07 Nippon Sheet Glass Co Ltd 磁気ディスク用基板の作製方法、その方法により得られた磁気ディスク用基板及び磁気記録媒体
WO2007111167A1 (ja) * 2006-03-24 2007-10-04 Hoya Corporation 磁気ディスク用ガラス基板の製造方法および磁気ディスクの製造方法
JP2009193608A (ja) * 2008-02-12 2009-08-27 Konica Minolta Opto Inc 情報記録媒体用ガラス基板の製造方法、情報記録媒体用ガラス基板及び磁気記録媒体
WO2010038741A1 (ja) * 2008-09-30 2010-04-08 Hoya株式会社 磁気ディスク用ガラス基板及び磁気ディスク

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138151A (ja) * 2010-12-27 2012-07-19 Asahi Glass Co Ltd 情報記録媒体用ガラス基板の製造方法
JP2016523792A (ja) * 2013-04-30 2016-08-12 コーニング インコーポレイテッド ガラス基板洗浄方法
WO2023189233A1 (ja) * 2022-03-30 2023-10-05 古河電気工業株式会社 磁気ディスク及び磁気ディスク用基板
CN117340689A (zh) * 2023-11-03 2024-01-05 湖南普照信息材料有限公司 一种玻璃基板的抛光方法

Also Published As

Publication number Publication date
US20130102229A1 (en) 2013-04-25
JP4993046B2 (ja) 2012-08-08
JPWO2012001924A1 (ja) 2013-08-22
US8585463B2 (en) 2013-11-19

Similar Documents

Publication Publication Date Title
JP4993046B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP4209316B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP4115722B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP2006324006A (ja) 情報記録媒体用ガラス基板の製造方法及び情報記録媒体用ガラス基板
JP4713064B2 (ja) 情報記録媒体用ガラス基板の製造方法及びその製造方法で製造された情報記録媒体用ガラス基板
JP5906823B2 (ja) 磁気記録媒体用ガラス基板の製造方法
JP5333656B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP2007102843A (ja) 磁気記録媒体用ガラス基板および磁気ディスク
JP6419578B2 (ja) ハードディスク用ガラス基板の製造方法
JP4723341B2 (ja) 磁気記録媒体用ガラス基板および磁気ディスクの製造方法
JP5083477B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP6034580B2 (ja) Hdd用ガラス基板の製造方法
WO2012042735A1 (ja) 情報記録媒体用ガラス基板の製造方法
JP2012079365A (ja) 情報記録媒体用ガラス基板の製造方法
JP5636243B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP5719833B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP5719030B2 (ja) 研磨パッドおよび該研磨パッドを用いたガラス基板の製造方法
JP5731245B2 (ja) 磁気ディスク用ガラス基板の製造方法
WO2013099083A1 (ja) Hdd用ガラス基板の製造方法
JP5722618B2 (ja) 磁気情報記録媒体用ガラス基板の製造方法
JP2010080026A (ja) 磁気ディスク用基板の製造方法
WO2012133373A1 (ja) 磁気ディスク用ガラス基板の製造方法
JP2013025841A (ja) ガラス基板の製造方法
JP2015069673A (ja) 情報記録媒体用ガラス基板の製造方法
JP2015069667A (ja) 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012501476

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13807797

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11800395

Country of ref document: EP

Kind code of ref document: A1