WO2011148693A1 - 建設機械の油圧駆動装置 - Google Patents

建設機械の油圧駆動装置 Download PDF

Info

Publication number
WO2011148693A1
WO2011148693A1 PCT/JP2011/055550 JP2011055550W WO2011148693A1 WO 2011148693 A1 WO2011148693 A1 WO 2011148693A1 JP 2011055550 W JP2011055550 W JP 2011055550W WO 2011148693 A1 WO2011148693 A1 WO 2011148693A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
valve
control
differential pressure
flow rate
Prior art date
Application number
PCT/JP2011/055550
Other languages
English (en)
French (fr)
Inventor
和繁 森
釣賀 靖貴
高橋 究
圭文 竹林
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to EP11786393.6A priority Critical patent/EP2578890A4/en
Priority to US13/641,571 priority patent/US9200431B2/en
Priority to CN201180025533.XA priority patent/CN102933857B/zh
Publication of WO2011148693A1 publication Critical patent/WO2011148693A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/163Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for sharing the pump output equally amongst users or groups of users, e.g. using anti-saturation, pressure compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/25Pressure control functions
    • F15B2211/253Pressure margin control, e.g. pump pressure in relation to load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/30535In combination with a pressure compensating valve the pressure compensating valve is arranged between pressure source and directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/635Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements
    • F15B2211/6355Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements having valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7135Combinations of output members of different types, e.g. single-acting cylinders with rotary motors

Definitions

  • the present invention relates to a hydraulic drive device for a construction machine equipped with a traveling motor such as a hydraulic excavator, and more particularly to a hydraulic drive device for a construction machine that can improve energy efficiency during traveling of a hydraulic mini-excavator.
  • the hydraulic drive device that controls the discharge flow rate of the hydraulic pump so that the discharge pressure of the hydraulic pump (main pump) is higher than the maximum load pressure of the plurality of actuators by the target differential pressure is called a load sensing system.
  • the differential pressure across the flow control valves is held at a predetermined differential pressure by a pressure compensation valve, and the flow control valve is opened regardless of the load pressure during combined operation in which multiple actuators are driven simultaneously.
  • Pressure oil can be supplied at a ratio according to the area.
  • differential pressure PLS the differential pressure between the discharge pressure of the hydraulic pump and the maximum load pressure of a plurality of actuators
  • a differential pressure reducing valve that outputs a differential pressure PLS between a discharge pressure of a hydraulic pump and a maximum load pressure of a plurality of actuators as an absolute pressure is provided.
  • the output pressure is guided to a plurality of pressure compensation valves, and each target compensation differential pressure is set.
  • a differential pressure reducing valve that outputs the pressure that depends on the engine speed that drives the hydraulic pump as an absolute pressure, and the output pressure of this differential pressure reducing valve is led to the load sensing control regulator, and the target difference in load sensing control is set.
  • the pressure is set as a variable value that depends on the engine speed.
  • the hydraulic pump discharge flow rate is controlled so that the discharge pressure of the hydraulic pump is higher by the same target differential pressure than the maximum load pressure of the actuator.
  • a differential pressure PLS between the discharge pressure of the pump and the maximum load pressure is guided to the pressure compensation valve, and control is performed so that the differential pressure before and after the flow control valve is maintained at the same differential pressure PLS.
  • This holding of the front-rear differential pressure PLS of the flow control valve is necessary for distributing a flow rate corresponding to the opening area ratio of the flow control valve to each actuator having a different load pressure during a complicated combined operation.
  • the differential pressure PLS becomes a loss of energy during the traveling operation.
  • the travel motor has a smaller maximum flow rate than other actuators.
  • the travel motor since the differential pressure across all flow control valves was controlled to be the same, in order to reduce the maximum flow required by the traction motor from the maximum flow required by other actuators, The maximum opening area of the valve was set smaller than the flow control valve of other actuators. In this case, since the maximum opening area is large in actuator operations other than traveling, the required maximum flow rate can be supplied to the actuator via the flow rate control valve with a relatively small pressure loss, and the required actuator speed can be obtained.
  • the pressure compensation valve by controlling the differential pressure across the flow control valve using the pressure compensation valve, it is possible to distribute the flow according to the opening area ratio of the flow control valve to each actuator with different load pressures during complex operation, and perform smooth operations. be able to.
  • the maximum opening area of the flow control valve is smaller than that of other actuators, so the maximum opening area is reduced when pressure oil is supplied to the running motor via the flow control valve. Therefore, the internal pressure loss of the flow control valve increases and the energy loss increases.
  • the purpose of the present invention is to provide the required maximum flow rate and obtain the required actuator speed as usual in actuator operations other than traveling, and to open the flow control valve to each actuator with different load pressures during combined operation.
  • the present invention provides a hydraulic drive device for a construction machine that can distribute a flow rate according to an area ratio, reduce energy loss in traveling operation, and improve energy efficiency.
  • the present invention provides an engine, a variable displacement main pump driven by the engine, and a traveling hydraulic motor driven by pressure oil discharged from the main pump.
  • a plurality of flow control valves including a flow control valve for traveling that controls the flow rate of pressure oil supplied from the main pump to the plurality of actuators, and a difference between before and after the plurality of flow control valves
  • a plurality of pressure compensation valves that respectively control the pressure, and a pump control device that performs load sensing control of the displacement of the main pump so that the discharge pressure of the main pump is higher than the maximum load pressure of the plurality of actuators by a target differential pressure.
  • the plurality of pressure compensation valves have a differential pressure across the flow control valve that is different from the discharge pressure of the main pump and the plurality of actuators.
  • a travel detection that detects whether the travel motor is driven or not
  • a target differential pressure of the load sensing control is set to a first specified value when not in the traveling operation, and a target difference of the load sensing control is in the traveling operation based on a detection result of the device and the traveling detection device.
  • a setting changing device for setting the pressure to a second specified value smaller than the first specified value.
  • the travel detection device and the setting change device are provided, and the target differential pressure of the load sensing control is set to the first specified value when not in the traveling operation, and the target differential pressure of the load sensing control is set to the first specified value during the traveling operation.
  • the second specified value smaller than the value, in the actuator operation other than traveling, the first specified value is set as the target differential pressure of the load sensing control, and the required maximum flow rate is supplied and the required actuator as usual.
  • Speed can be obtained, and the flow rate according to the opening area ratio of the flow control valve can be distributed to each actuator with different load pressures during combined operation by controlling the differential pressure across the flow control valve with the pressure compensation valve. .
  • the second specified value smaller than the first specified value is set as the target differential pressure of the load sensing control, and accordingly, the differential pressure across the flow control valve for traveling controlled by the pressure compensation valve accordingly. And the internal pressure loss of the flow control valve is reduced. As a result, energy loss can be reduced and energy efficiency can be improved.
  • the setting change device generates a first absolute pressure corresponding to the first specified value and outputs it as a signal pressure when not in the travel operation, and the travel operation
  • a signal pressure generating device that generates a second absolute pressure corresponding to the second specified value and outputs it as a signal pressure
  • the pump control device uses the signal pressure output from the signal pressure generating device as the signal pressure. It is set as the target differential pressure for load sensing control, and the displacement of the main pump is controlled.
  • the signal pressure generating device generates and outputs a pressure dependent on the number of revolutions of the engine that drives the main pump as the first absolute pressure.
  • a pressure reducing device that reduces the pressure of a pilot hydraulic pressure source to generate and output the second absolute pressure, and outputs the first absolute pressure as the signal pressure when the traveling operation is not performed, Has a switching device for switching to output the second absolute pressure as the signal pressure.
  • the entire signal pressure generating device can be hydraulically configured, and the signal pressure generating device can be configured at low cost.
  • the pressure reducing device is a pressure reducing valve for reducing the pressure of the pilot hydraulic power source to generate and output the second absolute pressure.
  • the pressure reducing device is a pilot operated pressure reducing valve that reduces the pressure of the pilot hydraulic power source to generate and output the second absolute pressure.
  • the pressure reducing device includes a variable throttle element, and is a voltage dividing circuit that divides the pressure of the pilot hydraulic power source to generate and output the second absolute pressure.
  • the signal pressure generating device is installed in a pilot pump driven by the engine and an oil passage through which a discharge oil of the pilot pump passes, and according to a passing flow rate.
  • a flow rate detection valve that changes the front-rear differential pressure; and a differential pressure reducing valve that generates and outputs the front-rear differential pressure of the flow rate detection valve as the first absolute pressure.
  • a pressure receiving portion that acts in a direction to open the variable throttle portion of the flow rate detecting means when the control pressure is guided, and the differential pressure reducing valve guides the control pressure to the pressure receiving portion when not in the running operation.
  • a differential pressure before and after the flow rate detection valve that has not been generated is generated and output as the first absolute pressure, and during the traveling operation, a differential pressure across the flow rate detection valve in which the control pressure is guided to the pressure receiving portion. Generated as the second absolute pressure Forces.
  • the signal pressure generator receives a detection signal of the travel detection device, determines whether the travel operation is in progress based on the detection signal, and the travel operation A control device that sometimes outputs an electrical signal for control, and when the control electrical signal is not output from the control device, the first absolute pressure is generated and output; And an electromagnetic proportional pressure reducing valve that generates and outputs the second absolute pressure.
  • the electric signal for control can be arbitrarily changed by the arithmetic processing of the control device, and the second absolute pressure can be freely adjusted.
  • the required maximum flow rate can be supplied and the required actuator speed can be obtained as before, and the flow control valve is opened to each actuator having a different load pressure during combined operation.
  • the flow control valve is opened to each actuator having a different load pressure during combined operation.
  • FIG. 1 shows the relationship between the control pilot pressure (traveling pilot pressure) at the time of operation of the operation lever apparatus for driving
  • FIG. 1 shows the structure of the hydraulic drive device of the construction machine concerning the 2nd Embodiment of this invention.
  • FIG. 1 shows the structure of the hydraulic drive device of the construction machine concerning the 3rd Embodiment of this invention.
  • FIG. 1 shows the structure of the hydraulic drive device of the construction machine concerning the 4th Embodiment of this invention.
  • FIG. 1 shows the structure of the hydraulic drive device of the construction machine concerning the 5th Embodiment of this invention.
  • FIG. 1 and 2 show a configuration of a hydraulic drive device for a construction machine according to a first embodiment of the present invention.
  • FIG. 1 is a diagram showing a portion other than the control valve of the hydraulic drive device
  • FIG. 2 is a diagram showing a control valve portion of the hydraulic drive device. ing.
  • the hydraulic drive apparatus in the present embodiment includes an engine 1, a main hydraulic pump (hereinafter referred to as a main pump) 2 driven by the engine 1, a pilot pump 3 driven by the engine 1 in conjunction with the main pump 2, A plurality of actuators 5, 6, 7, 8, 9, 10, 11, 12 driven by pressure oil discharged from the main pump 2 and a control valve 4 are provided.
  • a main pump main hydraulic pump
  • a pilot pump 3 driven by the engine 1 in conjunction with the main pump 2
  • a plurality of actuators 5, 6, 7, 8, 9, 10, 11, 12 driven by pressure oil discharged from the main pump 2 and a control valve 4 are provided.
  • the construction machine is, for example, a hydraulic excavator
  • the actuator 5 is a swing motor of the hydraulic excavator
  • the actuators 6 and 8 are left and right traveling motors
  • the actuator 7 is a blade cylinder
  • the actuator 9 is a swing cylinder.
  • the actuators 10, 11, and 12 are a boom cylinder, an arm cylinder, and a bucket cylinder, respectively.
  • the control valve 4 is connected to the supply oil passage 2a of the main pump 2, and has a plurality of valve sections 13, 14, 15, 16, 17 for controlling the direction and flow rate of the pressure oil supplied from the main pump 2 to each actuator. , 18, 19, 20 and a plurality of actuators 5, 6, 7, 8, 9, 10, 11, 12 and the highest load pressure (hereinafter referred to as the maximum load pressure) PLmax is selected as the signal oil.
  • a plurality of shuttle valves 22a, 22b, 22c, 22d, 22e, 22f, and 22g that are output to the passage 21 and the supply oil passage 2a of the main pump 2 are provided to limit the maximum discharge pressure (maximum pump pressure) of the main pump 2.
  • a differential pressure PLS between d and the maximum load pressure PLmax exceeds a certain fixed value set by the spring 25a, a part of the discharge flow rate of the main pump 2 is returned to the tank T, and the differential pressure PLS is set by the spring 25a.
  • an unload valve 25 that keeps the value below a certain value. Outlets of the unload valve 25 and the main relief valve 23 are connected to the tank oil passage 29 in the control valve 2 and connected to the tank T.
  • the valve section 13 includes a flow rate control valve (main spool) 26a and a pressure compensation valve 27a
  • the valve section 14 includes a flow rate control valve (main spool) 26b and a pressure compensation valve 27b
  • the valve section 15 controls the flow rate.
  • the valve section 16 is composed of a flow control valve (main spool) 26d and a pressure compensation valve 27d
  • the valve section 17 is composed of a flow control valve (main spool) 26e.
  • the valve section 18 is composed of a flow control valve (main spool) 26f and a pressure compensation valve 27f
  • the valve section 19 is composed of a flow control valve (main spool) 26g and a pressure compensation valve 27g.
  • the valve section 20 is composed of a flow control valve ( And a in-spool) 26h and the pressure compensating valve 27h.
  • the flow control valves 26a to 26h control the direction and flow rate of the pressure oil supplied from the main pump 2 to the actuators 5 to 12, respectively.
  • the pressure compensation valves 27a to 27h are differential pressures before and after the flow control valves 26a to 26h. To control each.
  • the pressure compensating valves 27a to 27h have valve-opening side pressure receiving portions 28a, 28b, 28c, 28d, 28e, 28f, 28g, and 28h for setting a target differential pressure.
  • the pressure receiving portions 28a to 28h include a differential pressure reducing valve 24.
  • the target compensation differential pressure is set by the absolute pressure of the differential pressure PLS between the hydraulic pump pressure Pd and the maximum load pressure PLmax (hereinafter referred to as the absolute pressure PLS).
  • the absolute pressure PLS the absolute pressure of the differential pressure PLS between the hydraulic pump pressure Pd and the maximum load pressure PLmax
  • Control is performed so as to be equal to the differential pressure PLS with respect to the load pressure PLmax.
  • the discharge flow rate of the main pump 2 is distributed according to the opening area ratio of the flow rate control valves 26a to 26h regardless of the load pressure of the actuators 5 to 12. Combined operability can be ensured.
  • the differential pressure PLS decreases according to the degree of supply shortage, and the pressure compensation valves 27a to 27h control accordingly.
  • the discharge flow rate of the main pump 2 can be distributed to ensure composite operability.
  • the hydraulic drive device is connected to the supply oil passage 3 a of the pilot pump 3, and includes an engine speed detection valve device 30 that outputs an absolute pressure according to the discharge flow rate of the pilot pump 3, and an engine speed detection valve device 30.
  • a pilot hydraulic power source 33 having a pilot relief valve 32 that is connected to the downstream side and keeps the pressure of the pilot oil passage 31 constant, and a flow control valve 26a that is connected to the pilot oil passage 31 and uses the hydraulic pressure of the pilot hydraulic power source 32 as a source pressure.
  • a remote control valve for generating control pilot pressures a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p for operating up to 26h
  • the engine speed detection valve device 30 includes an oil passage 30e that connects the supply oil passage 3a of the pilot pump 3 to the pilot oil passage 31, a throttle element (fixed throttle) 30f provided in the oil passage 30e, and an oil passage 30e. And a flow rate detecting valve 30a connected in parallel to the throttle element 30f and a differential pressure reducing valve 30b.
  • the input side of the flow rate detection valve 30 a is connected to the supply oil passage 3 a of the pilot pump 3, and the output side of the flow rate detection valve 30 a is connected to the pilot oil passage 31.
  • the flow rate detection valve 30a has a variable throttle portion 30c that increases the opening area as the passing flow rate increases, and the discharge oil of the pilot pump 3 passes through both the throttle element 30f and the variable throttle portion 30c of the flow rate detection valve 30a. Flow to the pilot oil passage 31 side. At this time, a differential pressure increases and decreases as the passing flow rate increases in the throttle element 30f and the variable throttle portion 30c of the flow rate detection valve 30a, and the differential pressure reducing valve 30b outputs the differential pressure as the absolute pressure Pa. To do. Since the discharge flow rate of the pilot pump 3 varies depending on the rotation speed of the engine 1, the discharge flow rate of the pilot pump 3 can be detected by detecting the differential pressure across the throttle element 30f and the variable throttle portion 30c.
  • variable throttle portion 30c increases the opening area as the passing flow rate increases (as the front-rear differential pressure increases), so that the degree of increase in the front-rear differential pressure becomes milder as the passing flow rate increases. It is configured as follows.
  • the main pump 2 is a variable displacement hydraulic pump and includes a pump control device 35 for controlling the tilt angle (capacity) thereof.
  • the pump control device 35 includes a horsepower control tilt actuator 35a, an LS control valve 35b, and an LS control tilt actuator 35c.
  • the horsepower control tilt actuator 35a reduces the tilt angle of the main pump 2 when the discharge pressure of the main pump 2 increases, and limits the input torque of the main pump 2 so as not to exceed a preset maximum torque. This limits the horsepower consumed by the main pump 2 and prevents the engine 1 from being stopped (engine stall) due to overload.
  • the LS control valve 35b has pressure receiving portions 35d and 35e facing each other, and the pressure receiving portion 35d has an absolute pressure Pa (first pressure) generated by the differential pressure reducing valve 30b of the engine speed detection valve device 30 through the oil passage 40. Stipulated value) is introduced as the target differential pressure (target LS differential pressure) of the load sensing control, the absolute pressure PLS generated by the differential pressure reducing valve 24 is guided to the pressure receiving portion 35e, and the absolute pressure PLS is greater than the absolute pressure Pa. When it becomes higher (PLS> Pa), the pressure of the pilot hydraulic power source 33 is guided to the LS control tilt actuator 35c to reduce the tilt angle of the main pump 2, and when the absolute pressure PLS becomes lower than the absolute pressure Pa (PLS ⁇ Pa).
  • the LS control tilt actuator 35c is communicated with the tank T to increase the tilt angle of the main pump 2, so that the discharge pressure Pd of the main pump 2 is higher than the maximum load pressure PLmax by the absolute pressure Pa (target differential pressure). Become Controlling the tilting amount of the main pump 2 (displacement) in the.
  • the control valve 35b and the LS control tilting actuator 35c are configured so that the discharge pressure Pd of the main pump 2 is higher than the maximum load pressure PLmax of the plurality of actuators 5, 6, 7, 8, 9, 10, 11, and 12.
  • a load sensing type pump control means for controlling the tilting of the main pump 2 so as to increase by the differential pressure is configured.
  • the absolute pressure Pa is a value that changes according to the engine speed
  • the absolute pressure Pa is used as the target differential pressure of the load sensing control
  • the target compensated differential pressure of the pressure compensating valves 27a to 27h is used for the main pump 2.
  • the actuator speed can be controlled according to the engine speed.
  • the variable throttle portion 30c of the flow rate detection valve 30a of the engine speed detection valve device 30 is configured such that the degree of increase in the front-rear differential pressure becomes gentle as the passing flow rate increases.
  • the set pressure of the spring 25a of the unload valve 25 is the absolute pressure Pa (target difference of load sensing control) generated by the differential pressure reducing valve 30b of the engine speed detecting valve device 30 when the engine 1 is at the rated maximum speed. Pressure).
  • the hydraulic drive device of the present embodiment has a characteristic configuration in the oil passage 40 that guides the absolute pressure Pa output from the differential pressure reducing valve 30b to the pressure receiving portion 35d of the LS control valve 35b as a target LS differential pressure.
  • the provided switching valve 39 and the oil passage 41 connecting the pilot hydraulic source 33 to the switching valve 39 are provided to reduce the pressure oil of the pilot hydraulic source 33 to reduce the absolute pressure Pa ′ (second lower than the first specified value).
  • a pressure-reducing valve 42 that outputs a specified value).
  • the hydraulic drive device is provided at the discharge port of the remote control valves 34b1, 34b2 and 34d1, 34d2 of the operating lever devices 34b, 34d for traveling, and the control generated by the remote control valves 34b1, 34b2, 34d1, 34d2 for traveling operation.
  • a shuttle valve 37a, 37b, 37c assembled in a tournament type that outputs the highest pressure among the pilot pressures c, d, g, h to the signal oil passage 38 as a traveling signal pressure is provided. From the shuttle valves 37a, 37b, 37c The output traveling signal pressure is guided to the pressure receiving portion 39a of the switching valve 39 through the oil passage 38.
  • the switching valve 39 has two switching positions, i.e., position I and position II, and neither of the operating lever devices 34b and 34d for traveling operation is operated, and the traveling signal pressure is not guided to the pressure receiving portion 39a. Sometimes it is in position I. At this position I, the first hydraulic circuit is formed, and the absolute pressure Pa generated by the differential pressure reducing valve 30b is guided to the pressure receiving portion 35d of the LS control valve 35b as the target LS differential pressure. When the operating lever devices 34b and 34d for traveling operation are operated and the traveling signal pressure is guided to the pressure receiving portion 39a, the switching valve 39 is switched from the position I to the position II. At position II, a second hydraulic circuit is formed, and the absolute pressure Pa 'generated from the pressure oil of the pilot hydraulic source 33 via the pressure reducing valve 42 is guided to the pressure receiving portion 35d of the LS control valve 35b as the target LS differential pressure.
  • Figure 3 shows the external appearance of the hydraulic excavator.
  • the hydraulic excavator includes an upper swing body 300, a lower traveling body 301, and a swing-type front work machine 302, and the front work machine 302 includes a boom 306, an arm 307, and a bucket 308.
  • the upper swing body 300 can swing the lower traveling body 301 by the rotation of the swing motor 5.
  • a swing post 303 is attached to the front portion of the upper swing body 300, and a front work machine 302 is attached to the swing post 303 so as to move up and down.
  • the swing post 303 can be rotated in the horizontal direction with respect to the upper swing body 300 by expansion and contraction of the swing cylinder 9, and the boom 306, the arm 307, and the bucket 308 of the front work machine 302 are the boom cylinder 10, the arm cylinder 11, and the bucket cylinder.
  • the lower traveling body 301 includes a central frame 304, and a blade 305 that moves up and down by the expansion and contraction of the blade cylinder 7 is attached to the central frame 304.
  • the lower traveling body 301 travels by driving the left and right crawler belts 310 and 311 by the rotation of the traveling motors 6 and 8.
  • the upper swing body 300 has a driver's cab 312, and operating lever devices 34 b and 34 d (only one side is shown in FIG. 3) in the driver's cab 312, a lever for turning, a boom, an arm, and a bucket.
  • Devices 34a, 34f to 34h (only part of which are shown in FIG. 3), blade operation lever device 34c (not shown in FIG. 3), and swing operation lever device 34e (not shown in FIG. 3) are installed. ing.
  • FIG. 4 shows the opening area characteristics of the flow control valves 26b and 26d in the travel valve sections 14 and 16 for controlling the flow rate of the pressure oil supplied to the travel motors 6 and 8.
  • Ma is the opening area characteristic of the flow control valves 26b and 26d in the present embodiment
  • Mb is the conventional opening area characteristic.
  • the target compensation differential pressure of the traveling pressure compensating valves 27b and 27d is reduced from the pressure Pa to Pa ′, as described later, and the flow rate is increased.
  • the differential pressure across the control valves 26b and 26d is similarly reduced, and the flow rate of the pressure oil supplied to the traveling motors 6 and 8 is reduced as compared with the conventional case. Therefore, in order to ensure the flow rate of the pressure oil supplied to the traveling motors 6 and 8 as usual, the opening areas of the flow control valves 26b and 26d are set to be large as the target compensation differential pressure (front-rear differential pressure) decreases. ing.
  • the opening area of the flow control valves 26b and 26d in the present embodiment is Aa
  • the opening area of the conventional flow control valve as a comparative example is Ab
  • the flow required for traveling is Qt
  • c Flow coefficient ⁇ : Hydraulic oil density
  • Aa Ab ⁇ (Pa / Pa ′)
  • the opening area Aa of the flow control valves 26b and 26d in the present embodiment needs to be ⁇ (Pa / Pa ′) times the opening area Ab of the conventional flow control valve, and the flow control valves 26b and 26d
  • Such an opening area characteristic is set.
  • an auxiliary flow control valve is arranged in parallel with the conventional flow control valve, and the total flow rate is set to the flow rate of the conventional flow control valve. May be the same. Further, when the flow rate of the pressure oil supplied to the traveling motors 6 and 8 does not have to be the same as the conventional one, the opening areas of the traveling flow control valves 26b and 26d should be set so that the required flow rate can be obtained. That's fine.
  • the shuttle valves 37a, 37b, and 37c constitute a travel detection device that detects whether the travel motors 6 and 8 are in a travel operation, and the engine speed including the flow rate detection valve 30a and the differential pressure reducing valve 30b.
  • the detection valve device 30, the switching valve 39, the pressure reducing valve 42, and the pressure receiving portion 35 d of the LS control valve 35 b are based on the detection result of the travel detection device, and the target differential pressure for load sensing control is not during the travel operation. Is set to the first specified value (absolute pressure Pa), and the setting change device is configured to set the target differential pressure of the load sensing control to the second specified value (absolute pressure Pa ′) smaller than the first specified value during traveling operation. To do.
  • the engine speed detection valve device 30 including the flow rate detection valve 30a and the differential pressure reducing valve 30b, the switching valve 39, and the pressure reducing valve 42 are provided with a first absolute pressure corresponding to the first specified value when not running.
  • a signal pressure generating device that generates (absolute pressure Pa) and outputs it as a signal pressure, and generates a second absolute pressure (absolute pressure Pa ′) corresponding to the second specified value and outputs it as a signal pressure during traveling operation.
  • the pump control device 35 is configured to set the signal pressure output from the signal pressure generating device as the target differential pressure of the load sensing control, and control the displacement of the main pump 2.
  • the pressure reducing valve 42 constitutes a pressure reducing device for reducing the pressure of the pilot hydraulic power source 33 to generate and output the second absolute pressure (absolute pressure Pa ′).
  • a switching device is configured to output the first absolute pressure (absolute pressure Pa) as a signal pressure and to output the second absolute pressure (absolute pressure Pa ′) as the signal pressure during a traveling operation.
  • the remote control valve When the remote control valve is operated by operating the operation lever of the boom operation lever device 34f in the left direction in the drawing in order to perform an operation other than traveling of the hydraulic excavator, for example, to raise the boom, the pressure oil of the pilot hydraulic power source 33 is used. Based on this, a control pilot pressure k is generated, the control pilot pressure k is guided to the pressure receiving portion on the left end side in the figure of the flow control valve 26f, and the flow control valve 26f is switched to the position on the left side in the figure. At this time, since the operating lever devices 34b and 34d for running operation are not operated, the switching valve 39 is at the position I, the first hydraulic circuit is formed, and the differential pressure reducing valve to the pressure receiving portion 35d of the LS control valve 35b.
  • the absolute pressure Pa generated in 30b is introduced as the target LS differential pressure.
  • the tilt amount (displacement volume) of the main pump 2 is controlled so that the discharge pressure Pd of the main pump 2 becomes higher than the maximum load pressure PLmax by the absolute pressure Pa (target LS differential pressure).
  • the pressure oil thus supplied is supplied to the bottom side of the actuator 10 (boom cylinder) via the flow control valve 26f switched as described above, and the boom 306 (FIG. 3) operates in the raising direction.
  • the target compensation differential pressure of the boom pressure compensation valve 27f is set by the absolute pressure PLS that is the output pressure of the differential pressure reducing valve 24.
  • a state (saturation) where the discharge flow rate of the pump is insufficient may occur.
  • the discharge pressure of the main pump 2 is lowered, and the absolute pressure PLS that is the output pressure of the differential pressure reducing valve 24 is the absolute pressure as the target LS differential pressure.
  • All the pressure compensation valves related to the composite operation are the pressures lower than Pa (absolute pressure PLS ⁇ Pa).
  • the flow rate ratio corresponding to the opening area ratio of a plurality of flow rate control valves (for example, the flow rate control valve 26f for the boom and the flow rate control valve 26g for the arm) is maintained, and the lever operation amount of the operation lever device Smooth compound operation according to the ratio can be performed.
  • control pilot pressures d and h are generated, the control pilot pressures d and h are guided to the pressure receiving portion on the right end side of the flow control valves 26b and 26d, and the flow control valves 26b and 26d are on the right side of the drawing. Switch to position.
  • control pilot pressures d and h of the remote control valves 34b2 and 34d2 are guided to the shuttle valves 37a, 37b and 37c assembled in a tournament shape, and the highest pressure among the control pilot pressures d and h passes through the oil passage 38.
  • the travel signal pressure is guided to the pressure receiving portion 39a of the switching valve 39, and the switching valve 39 is switched from the position I to the position II.
  • the oil passage 40 is closed and the oil passage 41 communicates to form a second hydraulic circuit, which is generated by reducing the pressure oil of the pilot hydraulic power source 33 to the pressure receiving portion 35d of the LS control valve 35b by the pressure reducing valve 42.
  • the absolute pressure Pa ′ is guided to the pressure receiving portion 35d of the LS control valve 35b as the target LS differential pressure.
  • the absolute pressure Pa ′ generated by the pressure reducing valve 42 is set to a pressure lower than the absolute pressure Pa generated by the differential pressure reducing valve 30b.
  • the target differential pressure (target LS differential pressure) of the load sensing control is set.
  • the absolute pressure Pa decreases to the absolute pressure Pa ′.
  • FIG. 5 shows the relationship between the control pilot pressures d and h (traveling pilot pressure) and the change in the target LS differential pressure at that time.
  • circled number 1 is when the operating lever device for driving is neutral (when driving remote control valve is neutral)
  • rounded number 2 is when operating the operating lever device for driving (when operating the remote control valve for driving). It is.
  • the traveling pilot pressure is at P0 corresponding to the tank pressure
  • the target LS differential pressure is at the absolute pressure Pa generated by the differential pressure reducing valve 30b.
  • the absolute pressure Pa is, for example, about 2 MPa.
  • the traveling pilot pressure increases from P0 to P1, and at the same time, the target LS differential pressure decreases from the absolute pressure Pa to the absolute pressure Pa 'which is the output pressure of the pressure reducing valve 42.
  • the traveling pilot pressure P1 is about 4 MPa, for example, and the absolute pressure Pa 'is about 0.7 Mpa, for example.
  • the LS control valve 35b becomes open compared to the case where the target differential pressure of the load sensing control is the absolute pressure Pa ′, and the pilot hydraulic power source
  • the pressure 33 is led to the LS control tilt actuator 35c more, the tilt angle of the main pump 2 is reduced, and the discharge flow rate of the main pump 2 is reduced.
  • the discharge flow rate of the main pump 2 decreases, the discharge pressure of the main pump 2 becomes lower, and the differential pressure between the discharge pressure Pd of the main pump 2 and the maximum load pressure PLmax becomes an absolute pressure Pa ′ corresponding to the target LS differential pressure. descend.
  • the pressure oil discharged from the main pump 2 is supplied to the traveling motors 6 and 8 through the flow control valves 26b and 26d switched as described above, and the crawler belts 310 and 311 (FIG. 3) of the lower traveling body 301 are supplied. Driven and run.
  • the operation lever device 34b, 34d for traveling is operated with a different operation amount for the purpose of turning the hydraulic excavator, the operation lever device 34b for traveling is intended for the reverse travel of the hydraulic excavator.
  • the operation of the operation lever 34d in the right direction in the figure is the same as the operation of the operation lever devices 34b and 34d for traveling intended to travel straight, and the absolute pressure PLS is changed from Pa to Pa '.
  • the differential pressure across the flow control valves 26b, 26d for travel is reduced to the absolute pressure Pa ', and pressure oil is supplied to the travel motors 6, 8 with the reduced differential pressure across the flow control valves 26b, 26d. And can be run as intended. Further, since the differential pressure across the flow control valves 26b, 26d for traveling is reduced to the absolute pressure Pa ', the internal pressure loss of the control valve 4 is reduced, and the energy loss during traveling operation is improved.
  • the absolute pressure Pa is set as the target differential pressure of the load sensing control. It is possible to obtain a speed and control the differential pressure across the flow control valves 26a, 26c, 26e to 26h by the pressure compensation valves 27a, 27c, 27e to 27h. The flow rate according to the opening area ratio can be distributed. Further, during the traveling operation, the target differential pressure of the load sensing control is decreased from the absolute pressure Pa to the absolute pressure Pa ′, and the discharge flow rate of the main pump 2 is reduced. The differential pressure across the flow control valves 26b and 26d for traveling controlled by 27b and 27d is reduced to the absolute pressure Pa ′, and the internal pressure loss of the control valve 4 is reduced.
  • FIG. 6 is a view similar to FIG. 1 showing a configuration of a hydraulic drive device for a construction machine according to a second embodiment of the present invention.
  • the control valve portion in the present embodiment is the same as that shown in FIG.
  • the pressure reducing valve 42 in the second hydraulic circuit is changed to a pilot-actuated pressure reducing valve 43.
  • the hydraulic drive device of the present embodiment is provided in the switching valve 39 and the oil passage 41 that connects the pilot hydraulic source 33 to the switching valve 39. And a pilot-actuated pressure reducing valve 43 that outputs a pressure Pa ′.
  • the absolute pressure Pa generated by the differential pressure reducing valve 30b is set as a target LS differential pressure to the pressure receiving portion 35d of the LS control valve 35b.
  • the pilot-actuated pressure reducing valve 43 has a pressure receiving portion 43a that acts to weaken the spring setting (spring force), and the pressure receiving portion 43a travels from shuttle valves 37a, 37b, and 37c assembled in a tournament shape.
  • the oil pressure 38 is connected to the oil passage 38 that guides the signal pressure to the pressure receiving portion 39a of the switching valve 39 via the oil passage 38a, and the traveling signal pressure from the remote control valves 34b1, 34b2, 34d1, and 34d2 for traveling operation is guided to the pressure receiving portion 43a.
  • the pressure receiving portion 43a is connected to the tank T via a throttle element 43b.
  • the pressure oil of the pilot hydraulic source 33 is used.
  • the control pilot pressures d and h are generated based on the control pressures, and the control pilot pressures d and h are guided to the pressure receiving portion on the right end side of the flow rate control valves 26b and 26d. Can be switched.
  • control pilot pressures d and h of the remote control valves 34b2 and 34d2 are guided to the shuttle valves 37a, 37b and 37c assembled in a tournament shape, and the highest pressure among the control pilot pressures d and h passes through the oil passage 38.
  • the travel signal pressure is guided to the pressure receiving portion 39a of the switching valve 39, and the switching valve 39 is switched from the position I to the position II.
  • the oil passage 40 is closed and the oil passage 41 is communicated to form a second hydraulic circuit, and the pressure oil in the pilot hydraulic power source 33 is reduced to the pressure receiving portion 35d of the LS control valve 35b by the pilot operated pressure reducing valve 43.
  • the absolute pressure Pa ′ generated in this way is guided to the pressure receiving portion 35d of the LS control valve 35b as the target LS differential pressure.
  • the absolute pressure Pa ′ generated by the pilot operated pressure reducing valve 43 is set to a pressure lower than the absolute pressure Pa generated by the differential pressure reducing valve 30b, and the target LS differential pressure is changed from the absolute pressure Pa to the absolute pressure Pa ′. descend.
  • the discharge flow rate of the main pump 2 controlled by the LS control valve 35b and the LS control tilt actuator 35c decreases, the discharge pressure of the main pump 2 becomes lower, the discharge pressure Pd of the main pump 2 and the maximum load pressure PLmax. Is reduced to the absolute pressure Pa ′.
  • the absolute pressure PLS which is the output pressure of the differential pressure reducing valve 24, decreases to Pa '
  • the target compensation differential pressure of the travel pressure compensation valves 27b, 27d also decreases to Pa'
  • the travel flow control valve 26b. , 26d is maintained at the reduced absolute pressure Pa '.
  • the flow rate ratio corresponding to the opening area ratio of the travel flow control valves 26b and 26d is maintained, so that stable straight traveling can be performed and the travel flow control valve is used. Since the differential pressure before and after 26b and 26d is reduced to the absolute pressure Pa ′, the internal pressure loss of the control valve 4 is reduced, and the energy loss during the traveling operation is reduced.
  • the traveling signal pressures of the traveling operation remote control valves 34b2 and 34d2 are guided to the pressure receiving portion 43a of the pilot operated pressure reducing valve 43, and the pressure acts in the direction of weakening the spring setting (spring force).
  • the travel signal pressure acting on the pressure receiving portion 43a gently weakens the spring setting (spring force) by the action of the throttle 43b provided on the outlet side of the pressure receiving portion 43a. It is possible to moderate the decrease in the target differential pressure of control and improve the driving operability.
  • FIG. 7 is a view similar to FIG. 1, showing a configuration of a hydraulic drive device for a construction machine according to a second embodiment of the present invention.
  • the control valve portion in the present embodiment is the same as that shown in FIG.
  • the pressure reducing valve 42 in the second hydraulic circuit is changed to a voltage dividing circuit 44.
  • the hydraulic drive apparatus of this embodiment is provided in the aforementioned switching valve 39 and the oil passage 41 that connects the pilot hydraulic source 33 to the switching valve 39. And a pressure dividing circuit 44 for outputting the pressure Pa ′.
  • the switching valve 39 By switching the switching valve 39, the absolute pressure Pa generated by the differential pressure reducing valve 30b is guided to the pressure receiving portion 35d of the LS control valve 35b as the target LS differential pressure.
  • 1 hydraulic circuit and a second hydraulic circuit that guides the pressure oil of the pilot hydraulic power source 33 to the pressure receiving portion 35d of the LS control valve 35b using the absolute pressure Pa ′ generated through the voltage dividing circuit 44 as a target LS differential pressure.
  • a circuit is selectively formed.
  • the voltage dividing circuit 44 includes a fixed throttle element 44a positioned in the oil passage 41 and a variable throttle element 44b positioned in the oil path 44c branched from the downstream side of the fixed throttle element 44a. Is connected to the tank T, and is configured to output an intermediate pressure divided by the fixed throttle element 44a and the variable throttle element 44b as an absolute pressure Pa '.
  • the flow rate discharged to the tank T is determined by the throttle diameter (opening area) of the variable throttle element 44b, the ratio of the partial pressure by the fixed throttle element 44a and the variable throttle element 44b is determined, and the intermediate pressure (absolute pressure Pa, which is the output pressure). ') Is decided.
  • variable throttle element 44b is provided with an operation unit such as a set screw, for example, and the operator operates the operation unit from the outside with a screwdriver or the like to change the throttle diameter (opening area) of the variable throttle element 44b, and the ratio of the partial pressure And the output pressure (absolute pressure Pa ′) can be changed.
  • operation unit such as a set screw, for example, and the operator operates the operation unit from the outside with a screwdriver or the like to change the throttle diameter (opening area) of the variable throttle element 44b, and the ratio of the partial pressure And the output pressure (absolute pressure Pa ′) can be changed.
  • the pressure oil of the pilot hydraulic source 33 is used.
  • the control pilot pressures d and h are generated based on the control pressures, and the control pilot pressures d and h are guided to the pressure receiving portion on the right end side of the flow rate control valves 26b and 26d. Can be switched.
  • control pilot pressures d and h of the remote control valves 34b2 and 34d2 are guided to the shuttle valves 37a, 37b and 37c assembled in a tournament shape, and the highest pressure among the control pilot pressures d and h passes through the oil passage 38.
  • the travel signal pressure is guided to the pressure receiving portion 39a of the switching valve 39, and the switching valve 39 is switched from the position I to the position II.
  • the oil passage 40 is closed and the oil passage 41 communicates to form a second hydraulic circuit, which is generated by dividing the pressure oil of the pilot hydraulic power source 33 to the pressure receiving portion 35d of the LS control valve 35b by the pressure dividing circuit 44.
  • the absolute pressure Pa ′ thus obtained is guided to the pressure receiving portion 35d of the LS control valve 35b as the target LS differential pressure.
  • the absolute pressure Pa ′ generated by the voltage dividing circuit 44 is set to a pressure lower than the absolute pressure Pa generated by the differential pressure reducing valve 30b, and the target LS differential pressure decreases from the absolute pressure Pa to the absolute pressure Pa ′. .
  • the discharge flow rate of the main pump 2 controlled by the LS control valve 35b and the LS control tilt actuator 35c decreases, the discharge pressure of the main pump 2 becomes lower, the discharge pressure Pd of the main pump 2 and the maximum load pressure PLmax. Is reduced to the absolute pressure Pa ′.
  • the absolute pressure PLS which is the output pressure of the differential pressure reducing valve 24, decreases to Pa '
  • the target compensation differential pressure of the travel pressure compensation valves 27b, 27d also decreases to Pa'
  • the travel flow control valve 26b. , 26d is maintained at the reduced absolute pressure Pa '.
  • the flow rate ratio corresponding to the opening area ratio of the travel flow control valves 26b and 26d is maintained, so that stable straight traveling can be performed and the travel flow control valve is used. Since the differential pressure before and after 26b and 26d is reduced to the absolute pressure Pa ′, the internal pressure loss of the control valve 4 is reduced, and the energy loss during the traveling operation is improved.
  • the voltage dividing circuit 44 can increase the pressure reduction amount by changing the throttle diameter (opening area) of the variable throttle element 44b, and can freely set the absolute pressure Pa ′ that is the output pressure. Can be adjusted.
  • FIG. 8 is a view similar to FIG. 1, showing the configuration of the hydraulic drive device for a construction machine according to the fourth embodiment of the present invention.
  • the control valve portion in the present embodiment is the same as that shown in FIG.
  • the flow rate detection valve 30a has the function of the pressure reducing valve 42 in the second hydraulic circuit, and the first hydraulic circuit also has the function of the second hydraulic circuit.
  • the flow rate detection valve 30 a has a pressure receiving portion 30 h that acts in the direction in which the variable throttle portion 30 c opens, and the traveling signal pressure output from the shuttle valves 37 a, 37 b, and 37 c detects the flow rate via the signal oil passage 45. It is guided to the pressure receiving part 30h of the valve 30a.
  • the traveling signal pressure guided to the pressure receiving portion 30h acts in the direction in which the variable throttle portion 30c of the flow rate detection valve 30a opens, and accordingly, the differential pressure across the variable throttle portion 30c of the flow rate detection valve 30a decreases accordingly.
  • the pressure reducing valve 30b outputs the reduced pressure difference before and after as an absolute pressure Pa ′.
  • the absolute pressure Pa ' is guided to the pressure receiving portion 35d of the LS control valve 35b through the oil passage 40 as a target LS differential pressure.
  • the pressure oil of the pilot hydraulic source 33 is operated.
  • the control pilot pressures d and h are generated based on the control pressures, and the control pilot pressures d and h are guided to the pressure receiving portion on the right end side of the flow rate control valves 26b and 26d. Can be switched.
  • control pilot pressures d and h of the remote control valves 34b2 and 34d2 are guided to the shuttle valves 37a, 37b and 37c assembled in a tournament shape, and the highest pressure among the control pilot pressures d and h passes through the oil passage 45.
  • the travel signal pressure is guided to the pressure receiving portion 30h of the flow rate detection valve 30a, the opening area of the variable throttle portion 30c increases, and the differential pressure across the variable throttle portion 30c decreases accordingly.
  • the absolute pressure Pa generated by the differential pressure reducing valve 30b is reduced to the absolute pressure Pa ′, and the absolute pressure Pa ′ is set as the target LS differential pressure of the LS control valve 35b.
  • the target LS differential pressure decreases from the absolute pressure Pa to the absolute pressure Pa ′.
  • FIG. 9 shows a change in the target LS differential pressure when the traveling operation lever device is neutral (when the traveling remote control valve is neutral) and when the traveling operation lever device is operated (when the traveling remote control valve is operated).
  • the horizontal axis represents the engine speed.
  • the target LS differential pressure increases as the engine speed increases, and becomes the absolute pressure Pa that is the output pressure of the differential pressure reducing valve 30b at the rated speed Nrate (engine speed detection valve). Function of device 30).
  • the rate of increase of the target LS differential pressure is reduced from the middle of the engine speed increase compared to when the travel remote control valve is neutral, and the target LS differential pressure is Pa ′ lower than Pa at the rated speed Nrate. (Effect of guiding the traveling signal pressure to the flow rate detection valve 30a).
  • the absolute pressure PLS which is the output pressure of the differential pressure reducing valve 24
  • the travel pressure compensation valve 27b also decreases to Pa ′, and the differential pressure across the flow control valves 26b, 26d for traveling is maintained at the reduced absolute pressure Pa ′.
  • the flow rate ratio corresponding to the opening area ratio of the travel flow control valves 26b and 26d is maintained, so that stable straight traveling can be performed and the travel flow control valve is used. Since the differential pressure before and after 26b and 26d is reduced to the absolute pressure Pa ′, the internal pressure loss of the control valve 4 is reduced, and the energy loss during the traveling operation is improved.
  • the absolute pressure is reduced from the absolute pressure Pa only by introducing the running signal pressure (control pressure) to the flow rate detection valve 30a without providing any special pressure reducing means or switching valve as in the above-described embodiment. Since it can be changed to Pa ′, the signal pressure generating device (setting changing device) can be configured with a small number of parts.
  • FIG. 10 is a view similar to FIG. 1 showing a configuration of a hydraulic drive device for a construction machine according to a fifth embodiment of the present invention.
  • the control valve portion in the present embodiment is the same as that shown in FIG.
  • the functions of the pressure reducing valve 42 and the switching valve 39 in the second hydraulic circuit are realized by using electric control, and the first hydraulic circuit is also provided with the function of the second hydraulic circuit. is there.
  • the hydraulic drive device of this embodiment includes a pressure sensor 46 that detects a travel signal pressure output from shuttle valves 37 a, 37 b, and 37 c, a control device 47, and an electromagnetic proportional pressure reducing valve 48.
  • the control device 47 inputs the detection signal of the pressure sensor 46, monitors whether or not the traveling signal pressure has increased from the tank pressure P0 to the pressure P1 when operating the remote control valve. When the traveling signal pressure increases from P0 to P1, the traveling operation is performed. It is determined that it is time, and an electric signal for control is output to the electromagnetic proportional pressure reducing valve 48.
  • the electromagnetic proportional pressure reducing valve 48 is disposed in the oil passage 40 that guides the absolute pressure Pa output from the differential pressure reducing valve 30b to the pressure receiving portion 35d of the LS control valve 35b, and operates when an electric signal for control is input from the control device 47.
  • the absolute pressure Pa output from the differential pressure reducing valve 30b is reduced to the absolute pressure Pa ′ and output.
  • the target LS differential pressure decreases from the absolute pressure Pa to the absolute pressure Pa ′ when the travel operation lever device is operated (when the travel remote control valve is operated), and the travel Since the target compensation differential pressure of the pressure compensation valves 27b and 27d is also reduced to Pa ', the flow rate ratio corresponding to the opening area ratio of the travel flow control valves 26b and 26d is maintained, and stable straight traveling can be performed. At the same time, since the differential pressure across the flow control valves 26b, 26d for traveling is reduced to the absolute pressure Pa ′, the internal pressure loss of the control valve 4 is reduced, and the energy loss during traveling operation is reduced.
  • the control device 47 and the electromagnetic proportional pressure reducing valve 48 are used to generate the absolute pressure Pa ′ that is the second specified value.
  • the absolute pressure Pa ′ can be freely adjusted.
  • the output pressure of the differential pressure reducing valve 24 (the absolute pressure PLS of the differential pressure between the pump pressure Pd and the maximum load pressure PLmax) is led to the pressure receiving portions 28a to 28h of the pressure compensating valves 27a to 27h.
  • the pressure compensation valves 27a to 27h are provided with pressure receiving portions, and the pump pressure Pd and the maximum load pressure PLmax are individually guided to these pressure receiving portions to set the target compensation differential pressure. Good.
  • the pressure that depends on the engine speed output from the differential pressure reducing valve 30b is used as the absolute pressure Pa as the first specified value, but the engine speed is kept constant during the running operation. Since the vehicle normally travels, the pressure of the pilot hydraulic pressure source 33 may be reduced to generate the absolute pressure Pa, and the absolute pressure Pa may be used as the first specified value.
  • the construction machine is a hydraulic excavator.
  • the construction machine for example, a hydraulic crane, a wheeled excavator, etc.
  • the construction machine for example, a hydraulic crane, a wheeled excavator, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 シャトル弁37a,37b,37cにより走行動作時かどうかを検出する走行検出装置を構成し、差圧減圧弁30bを含むエンジン回転数検出弁装置30、切換弁39、減圧弁42及びLS制御弁35bの受圧部35dにより、走行動作時でないときはロードセンシング制御の目標差圧を絶対圧Paに設定し、走行動作時はロードセンシング制御の目標差圧を絶対圧Paより絶対圧Pa'に設定する設定変更装置を構成する。これによって、走行以外のアクチュエータ動作では、従来通り、必要な最大流量を供給して必要なアクチュエータ速度を得ることができ、かつ複合操作時に負荷圧の異なる各アクチュエータに流量制御弁の開口面積比に応じた流量を分配することができるとともに、走行動作ではエネルギーのロスを低減し、エネルギ効率の向上を可能とする。

Description

建設機械の油圧駆動装置
 本発明は油圧ショベル等の走行モータを備えた建設機械の油圧駆動装置に係わり、特に、油圧式ミニショベルの走行時のエネルギ効率を向上することができる建設機械の油圧駆動装置に関する。
 油圧ポンプ(メインポンプ)の吐出圧が複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるよう油圧ポンプの吐出流量を制御する油圧駆動装置はロードセンシングシステムと呼ばれている。このロードセンシングシステムでは、複数の流量制御弁の前後差圧をそれぞれ圧力補償弁により所定差圧に保持し、複数のアクチュエータを同時に駆動する複合操作時に負荷圧の大小に係わらず流量制御弁の開口面積に応じた比率で圧油を供給できるようにしている。
 このようなロードセンシングシステムでは、油圧ポンプの吐出圧と複数のアクチュエータの最高負荷圧との差圧(以下差圧PLSという)を圧力補償弁に導き、圧力補償弁のそれぞれの目標補償差圧を差圧PLSにより設定して、流量制御弁の前後差圧をその差圧PLSに保持するよう制御することが行われており、これにより複数のアクチュエータを同時に駆動する複合動作時に、油圧ポンプの吐出流量が不足するサチュレーション状態になったとき、サチュレーションの程度に応じて差圧PLSが低下し、圧力補償弁の目標補償差圧すなわち流量制御弁の前後差圧が小さくなるため、油圧ポンプの吐出流量をそれぞれのアクチュエータが要求する流量の比に再分配することができる。
 このようなロードセンシングシステムにおいて、特許文献1では、油圧ポンプの吐出圧と複数のアクチュエータの最高負荷圧との差圧PLSを絶対圧として出力する差圧減圧弁を設け、この差圧減圧弁の出力圧を複数の圧力補償弁に導いて、それぞれの目標補償差圧を設定している。また、油圧ポンプを駆動するエンジンの回転数に依存する圧力を絶対圧として出力する差圧減圧弁を設け、この差圧減圧弁の出力圧をロードセンシング制御レギュレータに導き、ロードセンシング制御の目標差圧をエンジンの回転数に依存する可変値として設定している。
特開2001-193705号公報
 従来のロードセンシングシステムにおいては、駆動するアクチュエータの種類に係わらず、油圧ポンプの吐出圧力がアクチュエータの最高負荷圧に対して、同じ目標差圧だけ高くなるように油圧ポンプ吐出流量を制御し、油圧ポンプの吐出圧と最高負荷圧との差圧PLSを圧力補償弁に導き、流量制御弁の前後差圧が同じ差圧PLSに保持されるように制御している。この流量制御弁の前後差圧PLSの保持は、複雑な複合操作時に、負荷圧の異なる各アクチュエータに流量制御弁の開口面積比に応じた流量を分配するために必要なものである。しかし、アクチュエータが走行モータである場合は、走行動作時にその差圧PLSがエネルギのロスになってしまう。
 すなわち、走行モータが必要とする最大流量とブームシリンダ、アームシリンダ等の他のアクチュエータが必要とする最大流量を比べた場合、走行モータの方が他のアクチュエータよりも最大流量が少ないという関係にある。従来は、全ての流量制御弁の前後差圧を同じに制御していたため、走行モータが必要とする最大流量を他のアクチュエータが必要とする最大流量よりも少なくするために、走行用の流量制御弁の最大開口面積を他のアクチュエータの流量制御弁よりも小さく設定していた。この場合、走行以外のアクチュエータ動作では、最大開口面積が大きいため、比較的少ない圧損で流量制御弁を介してアクチュエータに必要な最大流量を供給し、必要なアクチュエータ速度を得ることができる。また、圧力補償弁による流量制御弁の前後差圧の制御で、複合操作時に負荷圧の異なる各アクチュエータに流量制御弁の開口面積比に応じた流量を分配することができ、円滑な作業を行うことができる。しかし、走行動作の場合は、流量制御弁の最大開口面積が他のアクチュエータのものよりも小さいため、流量制御弁を介して走行モータに圧油が供給されるとき、最大開口面積が小さくなった分、流量制御弁の内部圧損が増加し、エネルギロスが増加する。
 本発明の目的は、走行以外のアクチュエータ動作では、従来通り、必要な最大流量を供給して必要なアクチュエータ速度を得ることができ、かつ複合操作時に負荷圧の異なる各アクチュエータに流量制御弁の開口面積比に応じた流量を分配することができるとともに、走行動作ではエネルギーのロスを低減し、エネルギ効率の向上を可能とする建設機械の油圧駆動装置を提供することである。
 (1)本発明は、上記課題を解決するために、エンジンと、このエンジンにより駆動される可変容量型のメインポンプと、このメインポンプから吐出された圧油により駆動される走行用の油圧モータを含む複数のアクチュエータと、前記メインポンプから前記複数のアクチュエータに供給される圧油の流量を制御する走行用の流量制御弁を含む複数の流量制御弁と、前記複数の流量制御弁の前後差圧をそれぞれ制御する複数の圧力補償弁と、前記メインポンプの吐出圧が前記複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるようメインポンプの押しのけ容積をロードセンシング制御するポンプ制御装置とを備え、前記複数の圧力補償弁は、前記流量制御弁の前後差圧が前記メインポンプの吐出圧と前記複数のアクチュエータの最高負荷圧との差圧に保持されるようにそれぞれの流量制御弁の前後差圧を制御する建設機械の油圧駆動装置において、前記走行モータが駆動される走行動作時かどうかを検出する走行検出装置と、前記走行検出装置の検出結果に基づいて、前記走行動作時でないときは前記ロードセンシング制御の目標差圧を第1規定値に設定し、前記走行動作時は前記ロードセンシング制御の目標差圧を前記第1規定値より小さい第2規定値に設定する設定変更装置とを備えるものとする。
 このように走行検出装置と設定変更装置を設け、走行動作時でないときはロードセンシング制御の目標差圧を第1規定値に設定し、走行動作時はロードセンシング制御の目標差圧を第1規定値より小さい第2規定値に設定することにより、走行以外のアクチュエータ動作では、ロードセンシング制御の目標差圧として第1規定値が設定され、従来通り、必要な最大流量を供給して必要なアクチュエータ速度を得ることができ、かつ圧力補償弁による流量制御弁の前後差圧の制御で、複合操作時に負荷圧の異なる各アクチュエータに流量制御弁の開口面積比に応じた流量を分配することができる。また、走行動作では、ロードセンシング制御の目標差圧として第1規定値より小さい第2規定値が設定されるため、それに応じて圧力補償弁により制御される走行用の流量制御弁の前後差圧も小さくなり、流量制御弁の内部圧損が低減する。その結果、エネルギーのロスを低減し、エネルギ効率の向上が可能となる。
 (2)上記(1)において、好ましくは、前記設定変更装置は、前記走行動作時でないときは前記第1規定値に対応する第1絶対圧を生成して信号圧力として出力し、前記走行動作時は前記第2規定値に対応する第2絶対圧を生成して信号圧力として出力する信号圧力生成装置を有し、前記ポンプ制御装置は、前記信号圧力生成装置が出力する前記信号圧力を前記ロードセンシング制御の目標差圧として設定し、前記メインポンプの押しのけ容積を制御する。
 これによりポンプ制御装置を油圧的に構成することができ、ポンプ制御装置を安価に構成することができる。
 (3)上記(2)において、好ましくは、前記信号圧力生成装置は、前記メインポンプを駆動する前記エンジンの回転数に依存する圧力を前記第1絶対圧として生成して出力する差圧減圧弁と、パイロット油圧源の圧力を減圧して前記第2絶対圧を生成して出力する減圧装置と、前記走行動作時でないときは前記第1絶対圧を前記信号圧力として出力し、前記走行動作時は前記第2絶対圧を前記信号圧力として出力するよう切り換える切換装置とを有する。
 これにより信号圧力生成装置の全体を油圧的に構成することができ、信号圧力生成装置を安価に構成することができる。
 (4)上記(3)において、好ましくは、前記減圧装置は、前記パイロット油圧源の圧力を減圧して前記第2絶対圧を生成し出力する減圧弁である。
 これにより安価な油圧部品である減圧弁を用いて減圧装置を構成することができる。
 (5)上記(3)において、また好ましくは、前記減圧装置は、前記パイロット油圧源の圧力を減圧して前記第2絶対圧を生成し出力するパイロット作動形減圧弁である。
 これにより走行操作開始時の走行操作開始時のロードセンシング制御の目標差圧の減少を緩やかにし、走行操作性を向上することができる。
 (6)上記(3)において、更に好ましくは、前記減圧装置は、可変絞り要素を含み、前記パイロット油圧源の圧力を分圧して前記第2絶対圧を生成し出力する分圧回路である。
 これにより可変絞り要素の絞り径を変更することにより第2絶対圧を自由に調整することができ、設計の自由度を増すことができる。
 (7)上記(2)において、また好ましくは、前記信号圧力生成装置は、前記エンジンにより駆動されるパイロットポンプと、前記パイロットポンプの吐出油が通過する油路に設置され、通過流量に応じて前後差圧を変化させる流量検出弁と、前記流量検出弁の前後差圧を前記第1絶対圧として生成して出力する差圧減圧弁とを有し、前記流量検出弁は、前記走行動作時に制御圧力が導かれて前記流量検出手段の可変絞り部を開く方向に作用する受圧部を有し、前記差圧減圧弁は、前記走行動作時でないときは、前記受圧部に前記制御圧が導かれていない前記流量検出弁の前後差圧を前記第1絶対圧として生成して出力し、前記走行動作時は、前記受圧部に前記制御圧が導かれた前記流量検出弁の前後差圧を前記第2絶対圧として生成して出力する。
 これにより流量検出弁に制御圧力を導くだけで第1絶対圧から第2絶対圧に切り換えることができるので、信号圧力生成装置を少ない部品点数で構成することができる。
 (8)上記(2)において、また好ましくは、前記信号圧力生成装置は、前記走行検出装置の検出信号を入力し、この検出信号に基づいて前記走行動作時かどうかを判断し、前記走行動作時に制御用の電気信号を出力する制御装置と、前記制御装置から前記制御用の電気信号が出力されていないときは、前記第1絶対圧を生成して出力し、前記制御装置から前記制御用の電気信号が出力されたときは、前記第2絶対圧を生成して出力する電磁比例減圧弁とを有する。
 これにより制御装置の演算処理により制御用の電気信号を任意に変更することができ、第2絶対圧を自由に調整することができる。
 本発明によれば、走行以外のアクチュエータ動作では、従来通り、必要な最大流量を供給して必要なアクチュエータ速度を得ることができ、かつ複合操作時に負荷圧の異なる各アクチュエータに流量制御弁の開口面積比に応じた流量を分配することができるとともに、走行動作ではエネルギーのロスを低減し、エネルギ効率を向上することができる。
本発明の第1の実施形態に係わる建設機械の油圧駆動装置の構成を示す図であり、油圧駆動装置のコントロールバルブ以外の部分を示す図である。 本発明の第1の実施形態に係わる建設機械の油圧駆動装置の構成を示す図であり、油圧駆動装置のコントロールバルブの部分を示す図である。 油圧ショベルの外観を示す図である。 走行モータに供給される圧油の流量を制御する走行用のバルブセクションにおける流量制御弁の開口面積特性を示す図である。 走行用の操作レバー装置の操作時の制御パイロット圧(走行パイロット圧)と目標LS差圧の変化の関係を示す図である。 本発明の第2の実施形態に係わる建設機械の油圧駆動装置の構成を示す、図1と同様な図である。 本発明の第3の実施形態に係わる建設機械の油圧駆動装置の構成を示す、図1と同様な図である。 本発明の第4の実施形態に係わる建設機械の油圧駆動装置の構成を示す、図1と同様な図である。 走行用の操作レバー装置の中立時(走行用リモコン弁中立時)と走行用の操作レバー装置の操作時(走行リモコン弁操作時)の目標LS差圧の変化を示す図である。 本発明の第5の実施形態に係わる建設機械の油圧駆動装置の構成を示す、図1と同様な図である。
 以下、本発明の実施の形態を図面に従い説明する。
<第1の実施の形態>
 図1及び図2に本発明の第1の実施形態に係わる建設機械の油圧駆動装置の構成を示す。図1は油圧駆動装置のコントロールバルブ以外の部分を示す図であり、図2は油圧駆動装置のコントロールバルブの部分を示す図であり、両者の接続関係を丸数字の1,2及び3で示している。
 本実施例における油圧駆動装置は、エンジン1と、エンジン1によって駆動されるメインの油圧ポンプ(以下メインポンプという)2と、メインポンプ2と連動してエンジン1により駆動されるパイロットポンプ3と、メインポンプ2から吐出された圧油により駆動される複数のアクチュエータ5,6,7,8,9,10,11,12と、コントロールバルブ4とを備えている。
 本実施形態に係わる建設機械は例えば油圧ショベルであり、アクチュエータ5は油圧ショベルの旋回モータであり、アクチュエータ6,8は左右の走行モータであり、アクチュエータ7はブレードシリンダであり、アクチュエータ9はスイングシリンダであり、アクチュエータ10,11,12はそれぞれブームシリンダ、アームシリンダ、バケットシリンダである。
 コントロールバルブ4は、メインポンプ2の供給油路2aに接続され、メインポンプ2から各アクチュエータに供給される圧油の方向と流量をそれぞれ制御する複数のバルブセクション13,14,15,16,17,18,19,20と、複数のアクチュエータ5,6,7,8,9,10,11,12の負荷圧のうち最も高い負荷圧(以下、最高負荷圧という)PLmaxを選択して信号油路21に出力する複数のシャトル弁22a,22b,22c,22d,22e,22f,22gと、メインポンプ2の供給油路2aに設けられ、メインポンプ2の最高吐出圧(最高ポンプ圧)を制限するメインリリーフ弁23と、メインポンプ2の吐出圧(ポンプ圧)Pdと最高負荷圧PLmaxとの差圧PLSを絶対圧として出力する差圧減圧弁24と、ポンプ圧Pdと最高負荷圧PLmaxとの差圧PLSがバネ25aにより設定されたある一定値を超えたときにメインポンプ2の吐出流量の一部をタンクTに戻し、差圧PLSをバネ25aにより設定された一定値以下に保つアンロード弁25とを有している。アンロード弁25及びメインリリーフ弁23の出側はコントロールバルブ2内でタンク油路29に接続され、タンクTに接続されている。
 バルブセクション13は流量制御弁(メインスプール)26aと圧力補償弁27aとから構成され、バルブセクション14は流量制御弁(メインスプール)26bと圧力補償弁27bとから構成され、バルブセクション15は流量制御弁(メインスプール)26cと圧力補償弁27cとから構成され、バルブセクション16は流量制御弁(メインスプール)26dと圧力補償弁27dとから構成され、バルブセクション17は流量制御弁(メインスプール)26eと圧力補償弁27eとから構成され、バルブセクション18は流量制御弁(メインスプール)26fと圧力補償弁27fとから構成され、バルブセクション19は流量制御弁(メインスプール)26gと圧力補償弁27gとから構成され、バルブセクション20は流量制御弁(メインスプール)26hと圧力補償弁27hとから構成されている。
 流量制御弁26a~26hは、メインポンプ2からそれぞれのアクチュエータ5~12に供給される圧油の方向と流量をそれぞれ制御し、圧力補償弁27a~27hは流量制御弁26a~26hの前後差圧をそれぞれ制御する。
 圧力補償弁27a~27hは目標差圧設定用の開弁側受圧部28a,28b,28c,28d,28e,28f,28g,28hを有し、この受圧部28a~28hには差圧減圧弁24の出力圧が導かれ、油圧ポンプ圧Pdと最高負荷圧PLmaxとの差圧PLSの絶対圧(以下絶対圧PLSという)により目標補償差圧が設定される。このように流量制御弁26a~26hの前後差圧を同じ差圧PLSという値に制御することにより、圧力補償弁27a~27hは流量制御弁26a~26hの前後差圧が油圧ポンプ圧Pdと最高負荷圧PLmaxとの差圧PLSに等しくなるように制御する。これにより複数のアクチュエータを同時に駆動する複合操作時は、アクチュエータ5~12の負荷圧の大小に係わらず、流量制御弁26a~26hの開口面積比に応じてメインポンプ2の吐出流量を分配し、複合操作性を確保することができる。また、メインポンプ2の吐出流量が要求流量に満たないサチュレーション状態になった場合は、差圧PLSはその供給不足の程度に応じて低下し、これに応じて圧力補償弁27a~27hが制御する流量制御弁26a~26hの前後差圧が同じ割合で低下して流量制御弁26a~26hの通過流量が同じ割合で減少するため、この場合も流量制御弁26a~26hの開口面積比に応じてメインポンプ2吐出流量を分配し、複合操作性を確保することができる。
 また、油圧駆動装置は、パイロットポンプ3の供給油路3aに接続され、パイロットポンプ3の吐出流量に応じて絶対圧を出力するエンジン回転数検出弁装置30と、エンジン回転数検出弁装置30の下流側に接続され、パイロット油路31の圧力を一定に保つパイロットリリーフ弁32を有するパイロット油圧源33と、パイロット油路31に接続され、パイロット油圧源32の油圧を元圧として流量制御弁26a~26hを操作するための制御パイロット圧a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,pを生成するためのリモコン弁を備えた操作レバー装置34a、34b,34c,34d,34e,34f,34g,34hとを備えている。
 エンジン回転数検出弁装置30は、パイロットポンプ3の供給油路3aをパイロット油路31に接続する油路30eと、この油路30eに設けられた絞り要素(固定絞り)30fと、油路30e及び絞り要素30fに並列に接続された流量検出弁30aと、差圧減圧弁30bとを有している。流量検出弁30aの入力側はパイロットポンプ3の供給油路3aに接続され、流量検出弁30aの出力側はパイロット油路31に接続されている。流量検出弁30aは通過流量が増大するにしたがって開口面積を大きくする可変絞り部30cを有し、パイロットポンプ3の吐出油は絞り要素30f及び流量検出弁30aの可変絞り部30cの両方を通過してパイロット油路31側へと流れる。このとき、絞り要素30fと流量検出弁30aの可変絞り部30cには通過流量が増加するにしたがって大きくなる前後差圧が発生し、差圧減圧弁30bはその前後差圧を絶対圧Paとして出力する。パイロットポンプ3の吐出流量はエンジン1の回転数によって変化するため、絞り要素30f及び可変絞り部30cの前後差圧を検出することにより、パイロットポンプ3の吐出流量を検出することができ、エンジン1の回転数を検出することができる。また、可変絞り部30cは、通過流量が増大するにしたがって(前後差圧が高くなるにしたがって)開口面積を大きくすることにより、通過流量が増大するにしたがって前後差圧の上昇度合いが緩やかになるように構成されている。
 メインポンプ2は可変容量型の油圧ポンプであり、その傾転角(容量)を制御するためのポンプ制御装置35を備えている。ポンプ制御装置35は馬力制御傾転アクチュエータ35aと、LS制御弁35b及びLS制御傾転アクチュエータ35cとを有している。
 馬力制御傾転アクチュエータ35aはメインポンプ2の吐出圧が高くなるとメインポンプ2の傾転角を減らして、メインポンプ2の入力トルクが予め設定した最大トルクを越えないように制限するものであり、これによりメインポンプ2の消費馬力を制限し、過負荷によるエンジン1の停止(エンジンストール)を防止する。
 LS制御弁35bは対向する受圧部35d,35eを有し、受圧部35dには油路40を介してエンジン回転数検出弁装置30の差圧減圧弁30bで生成された絶対圧Pa(第1規定値)がロードセンシング制御の目標差圧(目標LS差圧)として導かれ、受圧部35eに差圧減圧弁24で生成された絶対圧PLSが導かれ、絶対圧PLSが絶対圧Paよりも高くなると(PLS>Pa)、パイロット油圧源33の圧力をLS制御傾転アクチュエータ35cに導いてメインポンプ2の傾転角を減らし、絶対圧PLSが絶対圧Paよりも低くなると(PLS<Pa)、LS制御傾転アクチュエータ35cをタンクTに連通してメインポンプ2の傾転角を増やし、これによりメインポンプ2の吐出圧Pdが最高負荷圧PLmaxよりも絶対圧Pa(目標差圧)だけ高くなるようにメインポンプ2の傾転量(押しのけ容積)を制御する。制御弁35b及びLS制御傾転アクチュエータ35cは、メインポンプ2の吐出圧Pdが複数のアクチユエータ5,6,7,8,9,10,11,12の最高負荷圧PLmaxよりもロードセンシング制御の目標差圧分だけ高くなるようメインポンプ2の傾転を制御するロードセンシング方式のポンプ制御手段を構成する。
 ここで、絶対圧Paはエンジン回転数に応じて変化する値であるため、絶対圧Paをロードセンシング制御の目標差圧として用い、圧力補償弁27a~27hの目標補償差圧をメインポンプ2の吐出圧Pdと最高負荷圧PLmaxとの差圧の絶対圧PLSにより設定することにより、エンジン回転数に応じたアクチュエータスピードの制御が可能となる。また、上記のようにエンジン回転数検出弁装置30の流量検出弁30aの可変絞り部30cは、通過流量が増大するにしたがって前後差圧の上昇度合いが緩やかになるように構成されており、これによりエンジン回転数に応じたサチュレーション現象の改善が図れ、エンジン回転数を低く設定した場合に良好な微操作性が得られる。
 アンロード弁25のバネ25aの設定圧は、エンジン1が定格最高回転数にあるときのエンジン回転数検出弁装置30の差圧減圧弁30bで生成された絶対圧Pa(ロードセンシング制御の目標差圧)よりも高くなるように設定されている。
 また、本実施例の油圧駆動装置は、その特徴的な構成として、差圧減圧弁30bから出力された絶対圧Paを目標LS差圧としてLS制御弁35bの受圧部35dへ導く油路40に設けられた切換弁39と、パイロット油圧源33を切換弁39に接続する油路41に設けられ、パイロット油圧源33の圧油を減圧して絶対圧Pa’(第1規定値より低い第2規定値)を出力する減圧弁42とを備え、切換弁39の切り換えによって、差圧減圧弁30bで生成された絶対圧Paを目標LS差圧としてLS制御弁35bの受圧部35dへ導く第1油圧回路と、パイロット油圧源33の圧油を減圧弁42を介して生成された絶対圧Pa’を目標LS差圧としてLS制御弁35bの受圧部35dへ導く第2油圧回路の2つの回路を選択的に形成する構成となっている。
 また、油圧駆動装置は、走行用の操作レバー装置34b,34dのリモコン弁34b1,34b2及び34d1,34d2の吐出ポートに設けられ、走行操作用リモコン弁34b1,34b2及び34d1,34d2で生成された制御パイロット圧c,d,g,hのうち最も高い圧力を走行信号圧として信号油路38に出力するトーナメント形に組まれたシャトル弁37a,37b,37cを備え、シャトル弁37a,37b,37cから出力された走行信号圧は油路38を介して切換弁39の受圧部39aに導かれる。
 切換弁39は、位置Iと位置IIの2つの切り換え位置を有し、走行操作用の操作レバー装置34b,34dのいずれも操作されておらず、受圧部39aに走行信号圧が導かれていないときは位置Iにある。この位置Iでは第1油圧回路が形成され、差圧減圧弁30bで生成された絶対圧Paが目標LS差圧としてLS制御弁35bの受圧部35dへ導かれる。走行操作用の操作レバー装置34b,34dが操作され、受圧部39aに走行信号圧が導かれると、切換弁39は位置Iから位置IIに切り換わる。位置IIでは第2油圧回路が形成され、パイロット油圧源33の圧油を減圧弁42を介して生成された絶対圧Pa’が目標LS差圧としてLS制御弁35bの受圧部35dへ導かれる。
 図3に油圧ショベルの外観を示す。
 図3において、油圧ショベルは、上部旋回体300と、下部走行体301と、スイング式のフロント作業機302を備え、フロント作業機302は、ブーム306、アーム307、バケット308から構成されている。上部旋回体300は下部走行体301を旋回モータ5の回転によって旋回可能である。上部旋回体300の前部にはスイングポスト303が取り付けられ、このスイングポスト303にフロント作業機302が上下動可能に取り付けられている。スイングポスト303はスイングシリンダ9の伸縮により上部旋回体300に対して水平方向に回動可能であり、フロント作業機302のブーム306、アーム307、バケット308はブームシリンダ10、アームシリンダ11、バケットシリンダ12の伸縮により上下方向に回動可能である。下部走行体301は中央フレーム304を備え、この中央フレーム304にはブレードシリンダ7の伸縮により上下動作を行うブレード305が取り付けられている。下部走行体301は、走行モータ6,8の回転により左右の履帯310,311を駆動することによって走行を行う。
 上部旋回体300は運転室312を有し、運転室312内には走行用の操作レバー装置34b,34d(図3では片側のみ図示)、旋回用、ブーム用、アーム用、バケット用の操作レバー装置34a、34f~34h(図3では一部のみ図示)、ブレード用の操作レバー装置34c(図3では図示せず)、スイング用の操作レバー装置34e(図3では図示せず)が設置されている。
 図4に、走行モータ6,8に供給される圧油の流量を制御する走行用のバルブセクション14,16における流量制御弁26b,26dの開口面積特性を示す。図中、Maが本実施の形態における流量制御弁26b,26dの開口面積特性であり、Mbが従来の開口面積特性である。
 本実施の形態では、走行用の操作レバー装置34b,34dを操作した走行時には,後述する如く、走行用の圧力補償弁27b,27dの目標補償差圧が圧力PaからPa’に低減し、流量制御弁26b,26dの前後差圧が同様に減少し、そのままでは走行モータ6,8へ供給される圧油の流量が従来よりも減少してしまう。そこで、走行モータ6,8へ供給される圧油の流量を従来通りに確保するため、目標補償差圧(前後差圧)が減少する分、流量制御弁26b,26dの開口面積を大きく設定している。
 すなわち、本実施の形態における流量制御弁26b,26dの開口面積をAa、比較例である従来の流量制御弁の開口面積をAb、走行に必要な流量をQtとすると、
  Qt=cAa√(2Pa’/ρ)=cAb√(2Pa/ρ)
   c:流量係数
   ρ:作動油の密度
の関係にあり、
  Aa=Ab√(Pa/Pa’)
の関係が得られる。よって、本実施の形態における流量制御弁26b,26dの開口面積Aaは従来の流量制御弁の開口面積Abの√(Pa/Pa’)倍にする必要があり、流量制御弁26b,26dはそのような開口面積特性に設定されている。
 なお、走行用の流量制御弁26b,26dの開口面積を増やす代わりに、従来の流量制御弁にパラレルに補助的な流量制御弁を配置し、合計の通過流量を従来の流量制御弁の通過流量と同じになるようにしてもよい。また、走行モータ6,8へ供給される圧油の流量を従来と同じにしなくてもよい場合は、必要とする流量が得られるよう走行用の流量制御弁26b,26dの開口面積を設定すればよい。
 以上において、シャトル弁37a,37b,37cは走行モータ6,8が駆動される走行動作時かどうかを検出する走行検出装置を構成し、流量検出弁30a及び差圧減圧弁30bを含むエンジン回転数検出弁装置30と、切換弁39と、減圧弁42と、LS制御弁35bの受圧部35dは、その走行検出装置の検出結果に基づいて、走行動作時でないときはロードセンシング制御の目標差圧を第1規定値(絶対圧Pa)に設定し、走行動作時はロードセンシング制御の目標差圧を第1規定値より小さい第2規定値(絶対圧Pa’)に設定する設定変更装置を構成する。
 また、流量検出弁30a及び差圧減圧弁30bを含むエンジン回転数検出弁装置30と、切換弁39と、減圧弁42は、走行動作時でないときは第1規定値に対応する第1絶対圧(絶対圧Pa)を生成して信号圧力として出力し、走行動作時は第2規定値に対応する第2絶対圧(絶対圧Pa’)を生成して信号圧力として出力する信号圧力生成装置を構成し、ポンプ制御装置35は、信号圧力生成装置が出力する信号圧力をロードセンシング制御の目標差圧として設定し、メインポンプ2の押しのけ容積を制御する。
 更に、減圧弁42は、パイロット油圧源33の圧力を減圧して第2絶対圧(絶対圧Pa’)を生成して出力する減圧装置を構成し、切換弁39は、走行動作時でないときは第1絶対圧(絶対圧Pa)を信号圧力として出力し、走行動作時は第2絶対圧(絶対圧Pa’)を前記信号圧力として出力するよう切り換える切換装置を構成する。
 以上のように構成した本実施の形態の動作を説明する。
 油圧ショベルの走行以外の動作、例えばブーム上げを意図して、ブーム用の操作レバー装置34fの操作レバーを図示左方向に操作してリモコン弁を動作させた場合、パイロット油圧源33の圧油に基づいて制御パイロット圧kが生成され、この制御パイロット圧kが流量制御弁26fの図示左端側の受圧部に導かれ、流量制御弁26fは図示左側の位置に切り換えられる。このとき、走行操作用の操作レバー装置34b,34dは操作されていないため、切換弁39は位置Iにあり、第1油圧回路が形成され、LS制御弁35bの受圧部35dヘ差圧減圧弁30bで生成された絶対圧Paが目標LS差圧として導かれる。これによりメインポンプ2の吐出圧Pdが最高負荷圧PLmaxよりも絶対圧Pa(目標LS差圧)だけ高くなるようにメインポンプ2の傾転量(押しのけ容積)が制御され、メインポンプ2から吐出された圧油が、上記のように切り換えられた流量制御弁26fを介してアクチュエータ10(ブームシリンダ)のボトム側に供給され、ブーム306(図3)が上げ方向に動作する。また、このとき、ブーム用の圧力補償弁27fの目標補償差圧は差圧減圧弁24の出力圧である絶対圧PLSにより設定される。この絶対圧PLSはメインポンプの吐出流量が不足状態にない(サチュレーションしていない)場合は、目標LS差圧である絶対圧Paに等しい(絶対圧PLS=Pa)。これによりブーム用の流量制御弁26fの前後差圧は絶対圧PLS(=Pa)に保持され、ブームシリンダ10のボトム側に流量制御弁26fの開口面積に応じた所定の流量が供給される。
 また、ブーム上げとアームクラウドの複合操作ように、油圧ショベルの走行以外の動作であって、複数のアクチュエータを同時駆動する複合操作を意図して、複数の操作レバー装置を操作した場合は、メインポンプの吐出流量の不足する状態(サチュレーション)が生じ得る。メインポンプの吐出流量の不足する状態が生じた場合は、メインポンプ2の吐出圧力が下がり気味となるため、差圧減圧弁24の出力圧である絶対圧PLSは目標LS差圧としての絶対圧Paより低くなり(絶対圧PLS<Pa)、この絶対圧PLSの低下による目標補償差圧の低下が複合操作に係わる全ての圧力補償弁(例えばブーム用の圧力補償弁27fとアーム用の圧力補償弁27g)に生じるため、複数の流量制御弁(例えばブーム用の流量制御弁26fとアーム用の流量制御弁26g)の開口面積比に応じた流量比が保たれ、操作レバー装置のレバー操作量割合に応じた円滑な複合操作を行うことができる。
 一方、例えば油圧ショベルの走行直進を意図して、走行用の操作レバー装置34b,34dの操作レバーを図示右方向に操作してリモコン弁34b2,34d2を動作させた場合は、パイロット油圧源33の圧油に基づいて制御パイロット圧d,hが生成され、この制御パイロット圧d,hが流量制御弁26b,26dの図示右端側の受圧部に導かれ、流量制御弁26b,26dは図示右側の位置に切り換えられる。これと同時に、リモコン弁34b2,34d2の制御パイロット圧d,hがトーナメント形に組まれたシャトル弁37a,37b,37cに導かれ、制御パイロット圧d,hのうち最も高い圧力が油路38を介して走行信号圧として切換弁39の受圧部39aへ導かれ、切換弁39は位置Iから位置IIに切換られる。これにより油路40が閉じられ油路41が連通して、第2油圧回路が形成され、LS制御弁35bの受圧部35dヘパイロット油圧源33の圧油を減圧弁42で減圧して生成した絶対圧Pa’が目標LS差圧としてLS制御弁35bの受圧部35dへ導かれる。減圧弁42で生成した絶対圧Pa’は差圧減圧弁30bで生成された絶対圧Paよりも低い圧力に設定されており、その結果、ロードセンシング制御の目標差圧(目標LS差圧)が絶対圧Paから絶対圧Pa’に低下する。
 図5に、そのときの制御パイロット圧d,h(走行パイロット圧)と目標LS差圧の変化の関係を示す。図中、丸数字の1は走行用の操作レバー装置の中立時(走行用リモコン弁中立時)であり、丸数字の2は走行用の操作レバー装置の操作時(走行用リモコン弁操作時)である。リモコン弁の中立時は、走行パイロット圧はタンク圧相当のP0にあり、目標LS差圧は差圧減圧弁30bで生成された絶対圧Paにある。絶対圧Paは例えば2Mpa程度である。リモコン弁の操作時は、走行パイロット圧はP0からP1に上昇し、これと同時に目標LS差圧は絶対圧Paから減圧弁42の出力圧である絶対圧Pa’に低下する。リモコン弁をフル操作した場合、走行パイロット圧P1は例えば4MPa程度であり、絶対圧Pa’は例えば0.7Mpa程度である。
 ロードセンシング制御の目標差圧が絶対圧Pa’に低下した場合は、ロードセンシング制御の目標差圧が絶対圧Paである場合に比べて、LS制御弁35bは開き気味となって、パイロット油圧源33の圧力がLS制御傾転アクチュエータ35cに多めに導かれ、メインポンプ2の傾転角が減り、メインポンプ2の吐出流量が減る。メインポンプ2の吐出流量が減ることで、メインポンプ2の吐出圧力が低めとなり、メインポンプ2の吐出圧Pdと最高負荷圧PLmaxとの差圧が目標LS差圧に対応する絶対圧Pa’に低下する。
 メインポンプ2から吐出された圧油は、上記のように切り換えられた流量制御弁26b,26dを介して走行モータ6,8に供給され、下部走行体301の履帯310,311(図3)が駆動され、走行が行われる。また、このとき、走行用の圧力補償弁27b,27dの目標補償差圧は差圧減圧弁24の出力圧である絶対圧PLSにより設定され、アクチュエータが走行モータ6,8である場合は、通常、メインポンプの吐出流量は不足状態にならない(サチュレーションしない)ため、絶対圧PLSは目標LS差圧である絶対圧Pa’に等しくなり(絶対圧PLS=Pa’)、走行用の流量制御弁26b,26dの前後差圧は絶対圧PLS(=Pa’)に保持され、走行モータ6,8に流量制御弁26b,26dの開口面積に応じた所定の流量が供給される。これにより走行用の流量制御弁26b,26dの開口面積比(走行直進を意図した場合は1:1の開口面積比)に応じた流量比が保たれ、走行負荷圧の変動に係わらず、安定した直進走行を行うことができる。また、走行用の流量制御弁26b,26dの前後差圧が絶対圧Pa’に低下するため、コントロールバルブ4の内部圧損が低減され、走行動作時のエネルギロスが改善される。
 油圧ショベルの走行旋回を意図して、走行用の操作レバー装置34b,34dの操作レバーの操作量を違えて操作した場合、油圧ショベルの走行後進を意図して、走行用の操作レバー装置34b,34dの操作レバーを図示右方向に操作した場合も、走行直進を意図して走行用の操作レバー装置34b,34dの操作レバーを操作した場合と同様であり、絶対圧PLSがPaからPa’へと低くなり、走行用の流量制御弁26b,26dの前後差圧が絶対圧Pa’に低下し、この低下した流量制御弁26b,26dの前後差圧で圧油が走行モータ6,8に供給され、意図する走行を行うことができる。また、走行用の流量制御弁26b,26dの前後差圧が絶対圧Pa’に低下するため、コントロールバルブ4の内部圧損が低減され、走行動作時のエネルギロスが改善される。
 以上のように本実施の形態によれば、走行以外のアクチュエータ動作では、ロードセンシング制御の目標差圧として絶対圧Paが設定されるため、従来通り、必要な最大流量を供給して必要なアクチュエータ速度を得ることができ、かつ圧力補償弁27a,27c,27e~27hによる流量制御弁26a,26c,26e~26hの前後差圧の制御で、複合操作時に負荷圧の異なる各アクチュエータに流量制御弁の開口面積比に応じた流量を分配することができる。また、走行動作時は、ロードセンシング制御の目標差圧が絶対圧Paから絶対圧Pa’に低下してメインポンプ2の吐出流量が減るため、絶対圧PLSが低くなり、それに応じて圧力補償弁27b,27dにより制御される走行用の流量制御弁26b,26dの前後差圧が絶対圧Pa’に低下し、コントロールバルブ4の内部圧損が低減する。その結果、走行動作時のエネルギロスが低減し、エネルギー効率の向上が可能となる。
<第2の実施の形態>
 図6に本発明の第2の実施形態に係わる建設機械の油圧駆動装置の構成を示す、図1と同様な図である。本実施の形態におけるコントロールバルブの部分は図2に示されるものと同じである。
 本実施の形態は、第2の油圧回路における減圧弁42をパイロット作動形減圧弁43に変更したものである。
 図6において、本実施例の油圧駆動装置は、前述した切換弁39と、パイロット油圧源33を切換弁39に接続する油路41に設けられ、パイロット油圧源33の圧油を減圧して絶対圧Pa’を出力するパイロット作動形減圧弁43とを備え、切換弁39の切り換えによって、差圧減圧弁30bで生成された絶対圧Paを目標LS差圧としてLS制御弁35bの受圧部35dへ導く第1油圧回路と、パイロット油圧源33の圧油をパイロット作動形減圧弁43を介して生成された絶対圧Pa’を目標LS差圧としてLS制御弁35bの受圧部35dへ導く第2油圧回路の2つの回路を選択的に形成する構成となっている。
 パイロット作動形減圧弁43はバネの設定(バネ力)を弱めるように作用する受圧部43aを有し、受圧部43aは、トーナメント形に組まれたシャトル弁37a,37b,37cから出力された走行信号圧を切換弁39の受圧部39aに導く油路38に油路38aを介して接続され、受圧部43aに走行操作用リモコン弁34b1,34b2及び34d1及び34d2からの走行信号圧を導いている。また、受圧部43aはタンクTに絞り要素43bを介して接続されている。
 上記以外の構成は、第1の実施形態と同じである。
 以上のように構成した本実施の形態の動作を説明する。
 例えば油圧ショベルの走行直進を意図して、走行用の操作レバー装置34b,34dの操作レバーを図示右方向に操作してリモコン弁34b2,34d2を動作させた場合は、パイロット油圧源33の圧油に基づいて制御パイロット圧d,hが生成され、この制御パイロット圧d,hが流量制御弁26b,26dの図示右端側の受圧部に導かれ、流量制御弁26b,26dは図示右側の位置に切り換えられる。これと同時に、リモコン弁34b2,34d2の制御パイロット圧d,hがトーナメント形に組まれたシャトル弁37a,37b,37cに導かれ、制御パイロット圧d,hのうち最も高い圧力が油路38を介して走行信号圧として切換弁39の受圧部39aへ導かれ、切換弁39は位置Iから位置IIに切換られる。これにより油路40が閉じられ油路41が連通して、第2油圧回路が形成され、LS制御弁35bの受圧部35dヘパイロット油圧源33の圧油をパイロット作動形減圧弁43で減圧して生成した絶対圧Pa’が目標LS差圧としてLS制御弁35bの受圧部35dへ導かれる。パイロット作動形減圧弁43で生成した絶対圧Pa’は差圧減圧弁30bで生成された絶対圧Paよりも低い圧力に設定されており、目標LS差圧が絶対圧Paから絶対圧Pa’に低下する。その結果、LS制御弁35b及びLS制御傾転アクチュエータ35cによって制御されるメインポンプ2の吐出流量が減り、メインポンプ2の吐出圧力が低めとなり、メインポンプ2の吐出圧Pdと最高負荷圧PLmaxとの差圧が絶対圧Pa’に低下する。これにより差圧減圧弁24の出力圧である絶対圧PLSがPa’に低下し、走行用の圧力補償弁27b,27dの目標補償差圧もPa’に低下し、走行用の流量制御弁26b,26dの前後差圧はその低下した絶対圧Pa’に保たれる。
 このようにして本実施の形態においても、走行用の流量制御弁26b,26dの開口面積比に応じた流量比が保たれ、安定した直進走行を行うことができるとともに、走行用の流量制御弁26b,26dの前後差圧が絶対圧Pa’に低下するため、コントロールバルブ4の内部圧損が低減され、走行動作時のエネルギロスが低減する。
 また、本実施の形態では、パイロット作動形減圧弁43の受圧部43aに走行操作用リモコン弁34b2,34d2の走行信号圧を導き、その圧力がバネの設定(バネ力)を弱める方向に働いて減圧するとともに、受圧部43aの出側に設けられた絞り43bの作用で、受圧部43aに作用する走行信号圧が緩やかにバネの設定(バネ力)を弱めるため、走行操作開始時のロードセンシング制御の目標差圧の減少を緩やかにし、走行操作性を向上することができる。
 以上のように本実施の形態によれば、第1の実施の形態と同様の効果(走行動作時のエネルギロスの改善)が得られるとともに、走行操作開始時のロードセンシング制御の目標差圧の急激な変化を抑え、走行操作性を向上することができる。
<第3の実施の形態>
 図7に本発明の第2の実施形態に係わる建設機械の油圧駆動装置の構成を示す、図1と同様な図である。本実施の形態におけるコントロールバルブの部分は図2に示されるものと同じである。
 本実施の形態は、第2の油圧回路における減圧弁42を分圧回路44に変更したものである。
 図7において、本実施例の油圧駆動装置は、前述した切換弁39と、パイロット油圧源33を切換弁39に接続する油路41に設けられ、パイロット油圧源33の圧油を減圧して絶対圧Pa’を出力する分圧回路44とを備え、切換弁39の切り換えによって、差圧減圧弁30bで生成された絶対圧Paを目標LS差圧としてLS制御弁35bの受圧部35dへ導く第1油圧回路と、パイロット油圧源33の圧油を分圧回路44を介して生成された絶対圧Pa’を目標LS差圧としてLS制御弁35bの受圧部35dへ導く第2油圧回路の2つの回路を選択的に形成する構成となっている。
 分圧回路44は、油路41に位置する固定絞り要素44aと、固定絞り要素44aの下流側から分岐した油路44cに位置する可変絞り要素44bとを有し、可変絞り要素44bの下流側はタンクTに接続され、固定絞り要素44aと可変絞り要素44bとで分圧した中間圧を絶対圧Pa’として出力する構成となっている。また、可変絞り要素44bの絞り径(開口面積)によりタンクTへ放出する流量が決まり、固定絞り要素44aと可変絞り要素44bによる分圧の割合が決まり、中間圧(出力圧である絶対圧Pa’)が決まる。可変絞り要素44bは例えばセットスクリューなどの操作部を備え、外部から作業員がその操作部をドライバー等で操作することにより可変絞り要素44bの絞り径(開口面積)を変更し、分圧の割合を調整し、出力圧(絶対圧Pa’)を変更することができる。
 上記以外の構成は、第1の実施形態と同じである。
 以上のように構成した本実施の形態の動作を説明する。
 例えば油圧ショベルの走行直進を意図して、走行用の操作レバー装置34b,34dの操作レバーを図示右方向に操作してリモコン弁34b2,34d2を動作させた場合は、パイロット油圧源33の圧油に基づいて制御パイロット圧d,hが生成され、この制御パイロット圧d,hが流量制御弁26b,26dの図示右端側の受圧部に導かれ、流量制御弁26b,26dは図示右側の位置に切り換えられる。これと同時に、リモコン弁34b2,34d2の制御パイロット圧d,hがトーナメント形に組まれたシャトル弁37a,37b,37cに導かれ、制御パイロット圧d,hのうち最も高い圧力が油路38を介して走行信号圧として切換弁39の受圧部39aへ導かれ、切換弁39は位置Iから位置IIに切換られる。これにより油路40が閉じられ油路41が連通して、第2油圧回路が形成され、LS制御弁35bの受圧部35dヘパイロット油圧源33の圧油を分圧回路44で分圧して生成した絶対圧Pa’が目標LS差圧としてLS制御弁35bの受圧部35dへ導かれる。分圧回路44で生成した絶対圧Pa’は差圧減圧弁30bで生成された絶対圧Paよりも低い圧力に設定されており、目標LS差圧が絶対圧Paから絶対圧Pa’に低下する。その結果、LS制御弁35b及びLS制御傾転アクチュエータ35cによって制御されるメインポンプ2の吐出流量が減り、メインポンプ2の吐出圧力が低めとなり、メインポンプ2の吐出圧Pdと最高負荷圧PLmaxとの差圧が絶対圧Pa’に低下する。これにより差圧減圧弁24の出力圧である絶対圧PLSがPa’に低下し、走行用の圧力補償弁27b,27dの目標補償差圧もPa’に低下し、走行用の流量制御弁26b,26dの前後差圧はその低下した絶対圧Pa’に保持される。
 このようにして本実施の形態においても、走行用の流量制御弁26b,26dの開口面積比に応じた流量比が保たれ、安定した直進走行を行うことができるとともに、走行用の流量制御弁26b,26dの前後差圧が絶対圧Pa’に低下するため、コントロールバルブ4の内部圧損が低減され、走行動作時のエネルギロスが改善される。
 また、本実施の形態では、分圧回路44は、可変絞り要素44bの絞り径(開口面積)を変更することで減圧量を大きくすることができ、出力圧である絶対圧Pa’を自由に調整することができる。
 以上のように本実施の形態によれば、第1の実施の形態と同様の効果(走行動作時のエネルギロスの低減)が得られるとともに、絶対圧Pa’の値の調整及び設定が容易となり、設計の自由度を増すことができる。
<第4の実施の形態>
 図8に本発明の第4の実施形態に係わる建設機械の油圧駆動装置の構成を示す、図1と同様な図である。本実施の形態におけるコントロールバルブの部分は図2に示されるものと同じである。
 本実施の形態は、第2の油圧回路における減圧弁42の機能を流量検出弁30aに持たせ、第1の油圧回路に第2の油圧回路の機能も持たせたものである。
 図8において、流量検出弁30aは可変絞り部30cが開く方向に作用する受圧部30hを有し、シャトル弁37a,37b,37cから出力された走行信号圧が信号油路45を介して流量検出弁30aの受圧部30hに導かれる。受圧部30hに導かれた走行信号圧は、流量検出弁30aの可変絞り部30cが開く方向に作用するため、それに応じて流量検出弁30aの可変絞り部30cの前後差圧が低下し、差圧減圧弁30bはその減圧した前後差圧を絶対圧Pa’として出力する。絶対圧Pa’は目標LS差圧として油路40を介してLS制御弁35bの受圧部35dへ導かれる。
 上記以外の構成は、第1の実施形態と同じである。
 以上のように構成した本実施の形態の動作を説明する。
 例えば油圧ショベルの走行直進を意図して、走行用の操作レバー装置34b,34dの操作レバーを図示右方向に操作してリモコン弁34b2,34d2を動作させた場合は、パイロット油圧源33の圧油に基づいて制御パイロット圧d,hが生成され、この制御パイロット圧d,hが流量制御弁26b,26dの図示右端側の受圧部に導かれ、流量制御弁26b,26dは図示右側の位置に切り換えられる。これと同時に、リモコン弁34b2,34d2の制御パイロット圧d,hがトーナメント形に組まれたシャトル弁37a,37b,37cに導かれ、制御パイロット圧d,hのうち最も高い圧力が油路45を介して走行信号圧として流量検出弁30aの受圧部30hに導かれ、可変絞り部30cの開口面積が増加し、それに応じて可変絞り部30cの前後差圧が低下する。可変絞り部30cの前後差圧が減少することで、差圧減圧弁30bで生成される絶対圧Paは絶対圧Pa’に減圧され、絶対圧Pa’が目標LS差圧としてLS制御弁35bの受圧部35dへ導かれ、目標LS差圧が絶対圧Paから絶対圧Pa’に低下する。
 図9に、走行用の操作レバー装置の中立時(走行用リモコン弁中立時)と走行用の操作レバー装置の操作時(走行リモコン弁操作時)の目標LS差圧の変化を示す。図中、横軸はエンジン回転数である。走行用リモコン弁の中立時は、目標LS差圧はエンジン回転数が上昇するとともに上昇し、定格回転数Nrateにおいて差圧減圧弁30bの出力圧である絶対圧Paとなる(エンジン回転数検出弁装置30の機能)。走行用リモコン弁操作時は、走行用リモコン弁中立時に比べエンジン回転数上昇時の途中から目標LS差圧の上昇割合は小さくなり、定格回転数Nrateにおいて目標LS差圧はPaより低いPa’となる(流量検出弁30aに走行信号圧を導いたことによる効果)。
 走行用リモコン弁操作時に目標LS差圧が絶対圧Paから絶対圧Pa’に低下すると、差圧減圧弁24の出力圧である絶対圧PLSがPa’に低下し、走行用の圧力補償弁27b,27dの目標補償差圧もPa’に低下し、走行用の流量制御弁26b,26dの前後差圧はその低下した絶対圧Pa’に保持される。
 このようにして本実施の形態においても、走行用の流量制御弁26b,26dの開口面積比に応じた流量比が保たれ、安定した直進走行を行うことができるとともに、走行用の流量制御弁26b,26dの前後差圧が絶対圧Pa’に低下するため、コントロールバルブ4の内部圧損が低減され、走行動作時のエネルギロスが改善される。
 また、本実施の形態では、前述した実施の形態のように特別な減圧手段や切替弁を設けることなく、流量検出弁30aに走行信号圧(制御圧力)を導くだけで絶対圧Paから絶対圧Pa’に変更することができるので、信号圧力生成装置(設定変更装置)を少ない部品点数で構成することができる。
 以上のように本実施の形態によれば、第1の実施の形態と同様の効果(走行動作時のエネルギロスの低減)が得られるとともに、信号圧力生成装置(設定変更装置)を少ない部品点数で構成することができ、油圧駆動装置の製造コストを低減することができる。
<第5の実施の形態>
 図10に本発明の第5の実施形態に係わる建設機械の油圧駆動装置の構成を示す、図1と同様な図である。本実施の形態におけるコントロールバルブの部分は図2に示されるものと同じである。
 本実施の形態は、第2の油圧回路における減圧弁42及び切換弁39の機能を電気制御を用いて実現し、かつ第1の油圧回路に第2の油圧回路の機能も持たせたものである。
 図10において、本実施例の油圧駆動装置は、シャトル弁37a,37b,37cから出力された走行信号圧を検出する圧力センサ46と、制御装置47と、電磁比例減圧弁48とを備えている。制御装置47は圧力センサ46の検出信号を入力し、走行信号圧がタンク圧P0からリモコン弁操作時の圧力P1に上昇したかどうかを監視し、走行信号圧がP0からP1に上昇すると走行動作時であると判断し、制御用の電気信号を電磁比例減圧弁48に出力する。電磁比例減圧弁48は差圧減圧弁30bから出力された絶対圧PaをLS制御弁35bの受圧部35dへ導く油路40に配置され、制御装置47から制御用の電気信号を入力すると作動し、差圧減圧弁30bから出力された絶対圧Paを絶対圧Pa’に減圧して出力する。
 上記以外の構成は、第1の実施形態と同じである。
 このように構成した本実施の形態においても、走行用の操作レバー装置の操作時(走行リモコン弁操作時)は、目標LS差圧が絶対圧Paから絶対圧Pa’に低下し、走行用の圧力補償弁27b,27dの目標補償差圧もPa’に低下するため、走行用の流量制御弁26b,26dの開口面積比に応じた流量比が保たれ、安定した直進走行を行うことができるとともに、走行用の流量制御弁26b,26dの前後差圧が絶対圧Pa’に低下するため、コントロールバルブ4の内部圧損が低減され、走行動作時のエネルギロスが低減される。
 また、本実施形態においては、制御装置47と電磁比例減圧弁48を用いて第2規定値である絶対圧Pa’を生成するため、制御装置47の演算処理により制御用の電気信号を任意に変更することができ、絶対圧Pa’を自由に調整することができる。
<その他の実施の形態>
 以上の実施の形態は本発明の精神の範囲内で種々の変更が可能である。例えば、上記実施の形態では、差圧減圧弁24の出力圧(ポンプ圧Pdと最高負荷圧PLmaxとの差圧の絶対圧PLS)を圧力補償弁27a~27hの受圧部28a~28hに導いて目標補償差圧を設定したが、圧力補償弁27a~27hに対向する受圧部を設け、これらの受圧部にポンプ圧Pdと最高負荷圧PLmaxを個別に導いて目標補償差圧を設定してもよい。
 また、上記実施の形態では、第1規定値として、差圧減圧弁30bが出力するエンジンの回転数に依存する圧力を絶対圧Paに用いたが、走行動作時はエンジン回転数を一定にして走行するのが通常であるため、パイロット油圧源33の圧力を減圧して絶対圧Paを生成し、その絶対圧Paを第1規定値として用いてもよい。
 更に、上記実施の形態では、建設機械が油圧ショベルである場合について説明したが、走行モータを備えた建設機械であれば、油圧ショベル以外の建設機械(例えば油圧クレーン、ホイール式ショベル等)に本発明を適用し、同様の効果を得ることができる。
1 エンジン
2 メインポンプ
2a 供給油路
3 パイロットポンプ
3a 供給油路
5~12 アクチュエータ
5 旋回モータ
6,8 走行モータ
7 ブレードシリンダ
9 スイングシリンダ
10 ブームシリンダ
11 アームシリンダ
12 バケットシリンダ
13~20 バルブセクション
21 信号油路
22a~22g シャトル弁
23 メインリリーフ弁
24 差圧減圧弁
25 アンロード弁
25a バネ
26a~26h 流量制御弁(メインスプール)
27a~27h 圧力補償弁
30 エンジン回転数検出弁装置
30a 流量検出弁
30b 差圧減圧弁
30c 可変絞り部
30e 油路
30f 絞り要素
30h 受圧部
31 パイロット油路
32 パイロットリリーフ弁
33 パイロット油圧源
34a~34h 走行用操作レバー装置
34b1,34b2,34d1,34d2 走行用リモコン弁
35 ポンプ制御装置
35a 馬力制御傾転アクチュエータ
35b LS制御弁
35c LS制御傾転アクチュエータ
35d,35e 受圧部
37a~37c シャトル弁
38 油路
38a 油路
39 切換弁
39a 受圧部
40 油路
41 油路
42 減圧弁
43 パイロット作動形減圧弁
43a 受圧部
43b 絞り要素
44 分圧回路
44a 固定絞り要素
44b 可変絞り要素
44c 油路
45 信号油路
46 圧力センサ
47 制御装置
48 電磁比例減圧弁
300 上部旋回体
301 下部走行体
302 フロント作業機
303 スイングポスト
304 中央フレーム
305 ブレード
306 ブーム
307 アーム
308 バケット

Claims (6)

  1.  エンジンと、
     このエンジンにより駆動される可変容量型のメインポンプと、
     このメインポンプから吐出された圧油により駆動される走行用の油圧モータを含む複数のアクチュエータと、
     前記メインポンプから前記複数のアクチュエータに供給される圧油の流量を制御する走行用の流量制御弁を含む複数の流量制御弁と、
     前記複数の流量制御弁の前後差圧をそれぞれ制御する複数の圧力補償弁と、
     前記メインポンプの吐出圧が前記複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるようメインポンプの押しのけ容積をロードセンシング制御するポンプ制御装置とを備え、
     前記複数の圧力補償弁は、前記流量制御弁の前後差圧が前記メインポンプの吐出圧と前記複数のアクチュエータの最高負荷圧との差圧に保持されるようにそれぞれの流量制御弁の前後差圧を制御する建設機械の油圧駆動装置において、
     前記走行モータが駆動される走行動作時かどうかを検出する走行検出装置と、
     前記走行検出装置の検出結果に基づいて、前記走行動作時でないときは前記ロードセンシング制御の目標差圧を第1規定値に設定し、前記走行動作時は前記ロードセンシング制御の目標差圧を前記1規定値より小さい第2規定値に設定する設定変更装置とを備えることを特徴とする建設機械の油圧駆動装置。
  2.  請求項1の建設機械の油圧駆動装置において、
     前記設定変更装置は、
     前記走行動作時でないときは前記第1規定値に対応する第1絶対圧を生成して信号圧力として出力し、前記走行動作時は前記第2規定値に対応する第2絶対圧を生成して信号圧力として出力する信号圧力生成装置を有し、
     前記ポンプ制御装置は、前記信号圧力生成装置が出力する前記信号圧力を前記ロードセンシング制御の目標差圧として設定し、前記メインポンプの押しのけ容積を制御することを特徴とする建設機械の油圧駆動装置。
  3.  請求項2の建設機械の油圧駆動装置において、
     前記信号圧力生成装置は、
     前記メインポンプを駆動する前記エンジンの回転数に依存する圧力を前記第1絶対圧として生成して出力する差圧減圧弁と、
     パイロット油圧源の圧力を減圧して前記第2絶対圧を生成して出力する減圧装置と、
     前記走行動作時でないときは前記第1絶対圧を前記信号圧力として出力し、前記走行動作時は前記第2絶対圧を前記信号圧力として出力するよう切り換える切換装置とを有することを特徴とする建設機械の油圧駆動装置。
  4.  請求項3の建設機械の油圧駆動装置において、
     前記減圧装置は、前記パイロット油圧源の圧力を減圧して前記第2絶対圧を生成し出力する減圧弁であることを特徴とする建設機械の油圧駆動装置。
  5.  請求項2の建設機械の油圧駆動装置において、
     前記信号圧力生成装置は、
     前記エンジンにより駆動されるパイロットポンプと、
     前記パイロットポンプの吐出油が通過する油路に設置され、通過流量に応じて前後差圧を変化させる流量検出弁と、
     前記流量検出弁の前後差圧を前記第1絶対圧として生成して出力する差圧減圧弁とを有し、
     前記流量検出弁は、前記走行動作時に制御圧力が導かれて前記流量検出手段の可変絞り部を開く方向に作用する受圧部を有し、
     前記差圧減圧弁は、前記走行動作時でないときは、前記受圧部に前記制御圧が導かれていない前記流量検出弁の前後差圧を前記第1絶対圧として生成して出力し、前記走行動作時は、前記受圧部に前記制御圧が導かれた前記流量検出弁の前後差圧を前記第2絶対圧として生成して出力することを特徴とする建設機械の油圧駆動装置。
  6.  請求項2の建設機械の油圧駆動装置において、
     前記信号圧力生成装置は、
     前記走行検出装置の検出信号を入力し、この検出信号に基づいて前記走行動作時かどうかを判断し、前記走行動作時に制御用の電気信号を出力する制御装置と、
     前記制御装置から前記制御用の電気信号が出力されていないときは、前記第1絶対圧を生成して出力し、前記制御装置から前記制御用の電気信号が出力されたときは、前記第2絶対圧を生成して出力する電磁比例減圧弁とを有することを特徴とする建設機械の油圧駆動装置。
PCT/JP2011/055550 2010-05-24 2011-03-09 建設機械の油圧駆動装置 WO2011148693A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11786393.6A EP2578890A4 (en) 2010-05-24 2011-03-09 Hydraulically driven system for construction machine
US13/641,571 US9200431B2 (en) 2010-05-24 2011-03-09 Hydraulic drive system for construction machine
CN201180025533.XA CN102933857B (zh) 2010-05-24 2011-03-09 工程机械的液压驱动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010118594A JP5383591B2 (ja) 2010-05-24 2010-05-24 建設機械の油圧駆動装置
JP2010-118594 2010-05-24

Publications (1)

Publication Number Publication Date
WO2011148693A1 true WO2011148693A1 (ja) 2011-12-01

Family

ID=45003686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055550 WO2011148693A1 (ja) 2010-05-24 2011-03-09 建設機械の油圧駆動装置

Country Status (5)

Country Link
US (1) US9200431B2 (ja)
EP (1) EP2578890A4 (ja)
JP (1) JP5383591B2 (ja)
CN (1) CN102933857B (ja)
WO (1) WO2011148693A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102777433A (zh) * 2011-05-13 2012-11-14 株式会社神户制钢所 工程机械的液压驱动装置
EP2837831A4 (en) * 2012-04-10 2015-12-30 Hitachi Construction Machinery HYDRAULIC DRIVE DEVICE FOR A CONSTRUCTION MACHINE
JP2021156063A (ja) * 2020-03-27 2021-10-07 株式会社日立建機ティエラ 建設機械の油圧駆動装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5364382B2 (ja) 2006-02-07 2013-12-11 シャイアー ヒューマン ジェネティック セラピーズ インコーポレイテッド 遊離チオール部分を有するタンパク質の安定化された組成物
JP5928065B2 (ja) * 2012-03-27 2016-06-01 コベルコ建機株式会社 制御装置及びこれを備えた建設機械
JP5984164B2 (ja) * 2012-10-17 2016-09-06 日立建機株式会社 建設機械の油圧駆動装置
EP2949948A4 (en) * 2013-01-25 2016-09-14 Hitachi Construction Machinery HYDRAULIC DRIVE DEVICE FOR A CONSTRUCTION MACHINE
JP6331010B2 (ja) * 2014-04-24 2018-05-30 株式会社不二越 油圧駆動装置
CN107636318B (zh) 2015-06-16 2020-05-05 沃尔沃建筑设备公司 用于工程机械的负载感测液压***
CN105443471B (zh) * 2015-12-04 2017-09-15 湖南三一快而居住宅工业有限公司 一种多路阀和多路阀的流量补偿控制***及方法
JP6789843B2 (ja) 2017-02-17 2020-11-25 ヤンマーパワーテクノロジー株式会社 油圧機械の制御装置
JP6944270B2 (ja) 2017-04-10 2021-10-06 ヤンマーパワーテクノロジー株式会社 油圧機械の制御装置
JP6815268B2 (ja) 2017-04-19 2021-01-20 ヤンマーパワーテクノロジー株式会社 油圧機械の制御装置
JP7257132B2 (ja) * 2018-11-15 2023-04-13 株式会社小松製作所 作業機械
EP3795843B1 (en) * 2019-03-28 2023-03-15 Hitachi Construction Machinery Co., Ltd. Construction machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247131A (ja) * 1991-01-28 1992-09-03 Hitachi Constr Mach Co Ltd 油圧建設機械の油圧制御装置
JPH09165792A (ja) * 1995-12-18 1997-06-24 Sumitomo Constr Mach Co Ltd 油圧ショベルの制御回路
JP2001193705A (ja) 2000-01-12 2001-07-17 Hitachi Constr Mach Co Ltd 油圧駆動装置
JP2004205019A (ja) * 2002-12-26 2004-07-22 Kubota Corp バックホウの油圧回路構造
JP2010107009A (ja) * 2008-10-31 2010-05-13 Hitachi Constr Mach Co Ltd 建設機械の油圧駆動装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2933806B2 (ja) * 1993-09-09 1999-08-16 日立建機株式会社 建設機械の油圧駆動装置
JPH08219110A (ja) * 1995-02-09 1996-08-27 Hitachi Constr Mach Co Ltd 油圧駆動装置
JPH10159809A (ja) * 1996-11-28 1998-06-16 Kobe Steel Ltd 油圧アクチュエータの流量制御装置
US6202411B1 (en) * 1998-07-31 2001-03-20 Kobe Steel, Ltd. Flow rate control device in a hydraulic excavator
JP4098955B2 (ja) * 2000-12-18 2008-06-11 日立建機株式会社 建設機械の制御装置
JP4128482B2 (ja) * 2002-04-30 2008-07-30 東芝機械株式会社 油圧制御システム
JP2006207185A (ja) * 2005-01-26 2006-08-10 Hitachi Constr Mach Co Ltd 油圧駆動装置
JP2007024103A (ja) * 2005-07-13 2007-02-01 Hitachi Constr Mach Co Ltd 油圧駆動装置
JP4380643B2 (ja) * 2006-02-20 2009-12-09 コベルコ建機株式会社 作業機械の油圧制御装置
JP5247025B2 (ja) * 2006-12-28 2013-07-24 日立建機株式会社 油圧式走行車両の走行制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247131A (ja) * 1991-01-28 1992-09-03 Hitachi Constr Mach Co Ltd 油圧建設機械の油圧制御装置
JPH09165792A (ja) * 1995-12-18 1997-06-24 Sumitomo Constr Mach Co Ltd 油圧ショベルの制御回路
JP2001193705A (ja) 2000-01-12 2001-07-17 Hitachi Constr Mach Co Ltd 油圧駆動装置
JP2004205019A (ja) * 2002-12-26 2004-07-22 Kubota Corp バックホウの油圧回路構造
JP2010107009A (ja) * 2008-10-31 2010-05-13 Hitachi Constr Mach Co Ltd 建設機械の油圧駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2578890A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102777433A (zh) * 2011-05-13 2012-11-14 株式会社神户制钢所 工程机械的液压驱动装置
EP2837831A4 (en) * 2012-04-10 2015-12-30 Hitachi Construction Machinery HYDRAULIC DRIVE DEVICE FOR A CONSTRUCTION MACHINE
JP2021156063A (ja) * 2020-03-27 2021-10-07 株式会社日立建機ティエラ 建設機械の油圧駆動装置
JP7339914B2 (ja) 2020-03-27 2023-09-06 株式会社日立建機ティエラ 建設機械の油圧駆動装置

Also Published As

Publication number Publication date
US9200431B2 (en) 2015-12-01
JP2011247301A (ja) 2011-12-08
CN102933857A (zh) 2013-02-13
EP2578890A4 (en) 2017-08-02
EP2578890A1 (en) 2013-04-10
US20130055705A1 (en) 2013-03-07
CN102933857B (zh) 2015-07-08
JP5383591B2 (ja) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5383591B2 (ja) 建設機械の油圧駆動装置
KR101741291B1 (ko) 유압 작업기
JP5984164B2 (ja) 建設機械の油圧駆動装置
JP6200498B2 (ja) 建設機械の油圧駆動装置
JP5878811B2 (ja) 建設機械の油圧駆動装置
JP6992721B2 (ja) 走行式作業機械の油圧駆動装置
WO2014021015A1 (ja) 建設機械の油圧駆動装置
WO2021039286A1 (ja) 建設機械の油圧システム
JP6840756B2 (ja) ショベル、ショベル用コントロールバルブ
WO2019054366A1 (ja) 建設機械の油圧駆動システム
JP2015110981A (ja) 建設機械の油圧駆動装置
JP2009167659A (ja) 作業機械の油圧制御回路
US20050167129A1 (en) Oil-pressure controlling device for earthmoving machine
JP2009179983A (ja) 作業機械の油圧制御回路
JP2017190799A (ja) 作業機械の流体圧回路
JP6731387B2 (ja) 建設機械の油圧駆動装置
JP3760055B2 (ja) 建設機械の油圧駆動制御装置
JP2009256904A (ja) 作業機械の油圧制御回路
JP4926627B2 (ja) 電油システム
JP2017026085A (ja) 作業機械の油圧制御装置
JP7319942B2 (ja) 建設機械の油圧駆動装置
JP7268435B2 (ja) 作業機械の油圧駆動装置
JP2010077750A (ja) 作業機械の油圧制御回路
JP2006322472A (ja) 作業機械におけるロードセンシング制御回路
JP2006342893A (ja) 建設機械における油圧制御回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180025533.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786393

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13641571

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011786393

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE