WO2011125985A1 - 顕微鏡コントローラ及び該顕微鏡コントローラを有する顕微鏡システム - Google Patents

顕微鏡コントローラ及び該顕微鏡コントローラを有する顕微鏡システム Download PDF

Info

Publication number
WO2011125985A1
WO2011125985A1 PCT/JP2011/058554 JP2011058554W WO2011125985A1 WO 2011125985 A1 WO2011125985 A1 WO 2011125985A1 JP 2011058554 W JP2011058554 W JP 2011058554W WO 2011125985 A1 WO2011125985 A1 WO 2011125985A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
stage
unit
microscope
touch panel
Prior art date
Application number
PCT/JP2011/058554
Other languages
English (en)
French (fr)
Inventor
城田 哲也
山口 克能
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010086751A external-priority patent/JP5649848B2/ja
Priority claimed from JP2010114567A external-priority patent/JP5649851B2/ja
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to EP11765885.6A priority Critical patent/EP2557446B1/en
Publication of WO2011125985A1 publication Critical patent/WO2011125985A1/ja
Priority to US13/573,775 priority patent/US8867126B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes

Definitions

  • the present invention relates to a microscope system having a plurality of objective lenses and performing magnification observation of a minute sample, in which various optical members are driven by a motor.
  • a microscope apparatus is widely used in research and inspection in the field of biology as well as in the industrial field.
  • a motorized stage capable of moving the observation sample in a plane orthogonal to the observation light path from the objective lens in a microscope apparatus generally having a plurality of objective lenses having different magnifications
  • the observation and inspection are performed by operating the When observing a sample with these microscopes, various constituent units constituting the microscope (for example, various illuminations, aperture stop, field stop, revolver, automatic focusing mechanism, optical element switching mechanism such as lens and filter, etc.) It is necessary to operate each according to the observation conditions.
  • a method of operating these constituent units for example, there is the following method.
  • a controller dedicated to the microscope or a microscope controller such as a PC (personal computer) is connected to the microscope main body via a communication cable.
  • commands are transmitted / received to / from the microscope main body, and drive control of each component unit performs various settings.
  • microscope controllers have begun to appear with touch panel functions in order to cope with numerous operations.
  • the microscope controller having a touch panel function is to arrange an arbitrary button area on the touch panel, and to operate the microscope by pushing the area.
  • the touch panel has a narrow (small) display operation area on the operation screen. Therefore, for example, if the operation areas in the X and Y directions and Z direction to move the electric unit continuously are arranged on the touch panel as they are, the operation stroke becomes short, and the operability is impaired.
  • the present invention provides a microscope controller that improves the operability of stage movement when performing a stage movement operation on a touch panel, and a microscope system having the microscope controller.
  • the present invention also provides a microscope controller that improves the operability when operating a motorized unit using a touch panel, and a microscope system having the microscope controller.
  • a microscope controller for performing an operation to control the operation of the motorized stage used in the microscope system according to the present invention receives a touch input from external physical contact and has a touch panel unit having a display function and the motorized stage.
  • a function setting unit for setting a stage operation function for operation in a predetermined display area of the touch panel unit, and the physical contact performed on an operation display area which is a display area in which the stage operation function is set A movement mode of the motorized stage is determined according to an input detection unit for detecting an input and the detected input result, and a control instruction signal for controlling the motorized stage is generated based on the determined movement mode.
  • a determination unit, and a communication control unit that transmits the control instruction signal to an external device that controls the operation of the motorized stage Equipped with a.
  • a computer readable storage medium storing a motorized stage operation control program that causes a computer to execute processing for controlling the operation of the motorized stage used in the microscope system receives an input due to physical contact from the outside and receives a display function.
  • Function setting processing for setting a stage operation function for operating the motorized stage with respect to a predetermined display area of the touch panel unit, and a row with respect to the operation display area which is a display area in which the stage operation function is set.
  • Communication control processing for transmitting the control instruction signal to an external device that controls the operation of Cause the computer to execute.
  • a motorized stage operation control method for controlling the operation of a motorized stage used in a microscope system operates the motorized stage with respect to a predetermined display area of a touch panel unit having a display function while receiving an input by external physical contact.
  • Setting a stage operation function for performing an operation detecting an input by the physical contact performed on the operation display area which is a display area in which the stage operation function is set, and according to the detected input result Determining the movement mode of the motorized stage, generating a control instruction signal for controlling the motorized stage based on the determined movement mode, and controlling the control instruction to an external device for controlling the operation of the motorized stage Send a signal.
  • the microscope controller for performing an operation to control the operation of the motorized unit used in the microscope system receives an input by physical contact from the outside, and operates a touch panel unit having a display function and the motorized unit.
  • a function setting unit configured to set an operation function to be performed in a predetermined display area of the touch panel unit; and an input by the physical contact performed on the operation display area which is a display area in which the operation function is set Determining the number of input points indicating the position input to the operation display area and the movement mode of the input points based on the input detection unit and the detected input result, and determining the input points of the determined input points According to the number, the operation mode of the electric unit is determined, and based on the determined movement mode, an instruction to control the drive of the electric unit is issued. And a control unit for generating a control instruction signal to an external device for controlling the operation of the electric unit, and a communication control unit for transmitting the control instruction signal.
  • the present invention is a computer for performing an operation to control the operation of the motorized unit used in the microscope system according to the present invention, which receives an input by physical contact from the outside, and has a display function.
  • a function setting unit configured to set an operation function for operating the motorized unit in a predetermined display area of the touch panel unit; and the physical contact performed on the operation display area which is a display area in which the operation function is set
  • a computer readable storage medium storing a microscope control program for causing the computer to execute processing for controlling the operation of the electric unit, the computer readable storage medium including an input detection unit for detecting an input by the computer.
  • the number of input points indicating the input position with respect to the operation display area, and the movement mode of the input points A determination process for determining, a determination process for determining an operation mode of the electric unit according to the determined number of input points, and an instruction to control driving of the electric unit based on the determined movement mode And causing the computer to execute a generation process of generating a control instruction signal for performing the control process and a transmission process of transmitting the control instruction signal to an external device that controls the operation of the motorized unit.
  • the present invention is a microscope controller for performing an operation to control the operation of the motorized unit used in the microscope system according to the present invention, the touch panel unit having a display function as well as accepting an input by physical contact from the outside.
  • a function setting unit for setting an operation function for operating the electric unit in a predetermined display area of the touch panel unit, and the physical operation performed on the operation display area which is a display area in which the operation function is set The microscope control method for causing the microscope controller to execute a process of controlling the operation of the electric unit, includes an input detection unit that detects an input due to a touch, is performed in the operation display area based on the detected input result.
  • the number of input points indicating the input position and the movement mode of the input point are determined with respect to the input point determined According to the number, the operation mode of the electric unit is determined, and based on the determined movement mode, a control instruction signal for instructing to control the drive of the electric unit is generated, and the operation of the electric unit is The control instruction signal is transmitted to an external device to be controlled.
  • the present invention it is possible to improve the operability of the stage movement when performing the stage movement operation on the touch panel. Further, according to the present invention, the operability can be improved in the case where the electric unit is operated using the touch panel.
  • the structural example of the microscope system in 1st embodiment is shown.
  • the external appearance top view of the microscope controller in 1st Embodiment is shown.
  • summary of the internal structure of the microscope controller 2 in 1st Embodiment is shown.
  • An example of the screen displayed on the touch panel in a 1st embodiment is shown.
  • the control flow of the microscope controller 2 in connection with the touch operation to the functional area to which the function in 1st Embodiment was allocated is shown.
  • the operation flow of the microscope controller at the time of performing drag operation to functional area S_A in a 1st embodiment normal functional area mode, normal movement mode
  • FIG. 11B is a diagram (part 1) for explaining the movement of the stage 20 in the XY direction accompanying the operation.
  • a diagram for describing an operation on a functional area S_A to which a function for moving the stage 20 in the XY direction is assigned (A) in the first embodiment (normal functional area mode, normal movement mode) 11B is a second diagram illustrating the movement of the stage 20 in the XY directions accompanying the operation.
  • a diagram for describing an operation on a functional area S_A to which a function for moving the stage 20 in the XY direction is assigned (A) in the first embodiment (normal functional area mode, normal movement mode) 11B is a third diagram illustrating the movement of the stage 20 in the XY directions accompanying the operation; FIG.
  • a diagram for describing an operation on a function area S_B to which a function for moving the stage 20 in the Z direction is assigned (part 1) for explaining the movement of the stage 20 in the XY direction accompanying the operation.
  • FIG. 7 is a diagram (part 1) for describing the position of the objective lens arranged in the motorized revolver 24 accompanying the operation.
  • a diagram for describing an operation on a function area S_C to which a function for switching the objective lens by the electric revolver 24 is assigned A diagram for describing an operation on a function area S_C to which a function for switching the objective lens by the electric revolver 24 is assigned
  • B FIG. 11 is a second diagram illustrating the position of the objective lens disposed in the motorized revolver 24 associated with the operation. It is a figure (the 1) for explaining operation about functional area S_E in a 1st embodiment.
  • FIG. 2 It is a figure (the 2) for demonstrating the operation about functional area S_E in 1st Embodiment.
  • the control flow of the microscope controller 2 accompanying the touch operation to the functional area to which the function in 1st Embodiment (magnification functional area mode) was allocated is shown.
  • a functional area S_A_2 and a functional area S_B_2 (Example 1) in the first embodiment (enlarged functional area mode) are shown.
  • a functional area S_A_2 and a functional area S_B_2 Example 2 in the first embodiment (enlarged functional area mode) are shown.
  • a diagram for describing an operation on a functional area S_A_2 to which a function for moving the stage 20 in the XY direction is assigned in the first embodiment (enlarged functional area mode, normal movement mode);
  • B) is a diagram (part 1) for explaining the movement of the stage 20 in the XY direction accompanying the operation.
  • B) is a diagram (part 2) for describing the movement of the stage 20 in the XY direction accompanying the operation.
  • FIG. 16 is a diagram (part 1) for describing movement of the stage 20 in the XY directions accompanying with FIG.
  • B) the operation FIG. 16 is a diagram (part 1) for describing movement of the stage 20 in the XY directions accompanying with FIG.
  • FIG. 20 is a second diagram illustrating the movement of the stage 20 in the XY directions accompanying with FIG.
  • FIG. 16 is a third diagram illustrating the movement of the stage 20 in the XY directions accompanying with FIG.
  • An example of the continuous movement speed table in which the continuous movement speed set for every objective lens in 1st Embodiment (continuous movement mode) was stored is shown.
  • a diagram for describing a touch operation when the range of the function area S_A_21 is set to include the range of the function area S_B_2 (A) B) A diagram (part 1) for explaining the movement of the stage 20 in the XY direction accompanying the operation.
  • a diagram for describing a touch operation when the range of the function area S_A_21 is set to include the range of the function area S_B_2 (A) B) A diagram (part 2) for explaining the movement of the stage 20 in the XY direction accompanying the operation.
  • achieving continuous movement mode in the normal functional area mode in 1st Embodiment is shown.
  • the moving speed / moving distance table in 2nd Embodiment is shown.
  • the operation flow of the microscope controller at the time of performing touch operation to functional area S_A_2 in a 2nd embodiment is shown.
  • an operation for moving the stage 20 a fixed distance in the XY direction (left and right direction with respect to the drawing) 11B is a view for explaining the movement of the stage 20 in the XY direction (left and right direction with respect to the drawing) accompanying the operation.
  • an operation for moving the stage 20 a fixed distance in the XY direction (vertical direction with respect to the drawing) regardless of the length of the drag (A) FIG.
  • FIG. 7B is a view for explaining movement of the stage 20 in the XY direction (up and down direction with respect to the drawing) accompanying the operation.
  • A A diagram for explaining an operation for moving the stage 20 in the X and Y directions regardless of the length of the drag
  • the structural example of the microscope system in 3rd Embodiment is shown.
  • the multiplate 50 in 3rd Embodiment is shown.
  • interval input screen in 3rd Embodiment is shown.
  • the well interval setting operation flow in 3rd Embodiment is shown.
  • the operation flow of the microscope controller at the time of performing touch operation to functional area S_A_2 in a 3rd embodiment is shown.
  • a diagram for explaining the operation of moving the stage 20 a distance of one well in the XY direction (horizontal direction with respect to the drawing) is there. It is the figure which expanded the multi plate 50 of FIG. It is a figure for demonstrating discrimination
  • the diagram for explaining the operation of moving the stage 20 by a distance in the XY direction (vertical direction with respect to the drawing) regardless of the length of the drag is there.
  • the drag velocity is SV or less and the distance LL10 is a distance less than the fixed distance SL from the point a34 to the point a35.
  • FIG. The functional area on the touch panel in a 4th embodiment is shown. It is a figure for demonstrating the case where there exists two continuous touch inputs in the same place within fixed time T2 in specific functional area SS_1 in 4th Embodiment.
  • movement control table used when two continuous touch inputs exist in the same place within fixed time T2 with respect to each function area in 4th Embodiment is shown.
  • the operation flow of the microscope controller at the time of performing touch operation to functional area SS_1 in a 4th embodiment is shown.
  • the operation flow (the 1) of the microscope controller at the time of performing input of two specific operations to functional area S_A_2 in a 5th embodiment is shown.
  • the operation flow (the 2) of the microscope controller at the time of performing input of two specific operations to functional area S_A_2 in a 5th embodiment is shown.
  • movement control table used when two points are input into the touch panel in 5th Embodiment is shown.
  • pieces are input into the touch panel in 5th Embodiment is shown.
  • a diagram for describing a case where one point input operation is performed on the functional area S_A_2 in order to move the stage 20 in the XY direction in (A) the fifth embodiment (enlarged functional area mode) and 11B is a view for explaining the movement of the stage 20 in the XY direction accompanying the operation.
  • FIG. 11B is a diagram (part 1) for explaining the movement of the stage 20 in the XY direction accompanying the operation.
  • a diagram for describing a case where a two-point input operation is performed on a functional area S_A_2 in order to move the stage 20 in the XY direction in (A) the fifth embodiment (enlarged functional area mode) and 11B is a second diagram illustrating the movement of the stage 20 in the XY directions accompanying the operation.
  • FIG. 16 is a diagram (part 1) for describing movement of the stage 20 in the XY directions accompanying the operation.
  • FIG. 21 is a second diagram illustrating the movement of the stage 20 in the XY directions accompanying the operation;
  • FIG. 16 is a third diagram illustrating the movement of the stage 20 in the XY directions accompanying the operation.
  • the microscope controller in the embodiment of the present invention performs an operation to control the operation of the motorized stage used in the microscope system.
  • the microscope controller includes a touch panel unit, a function setting unit, an input detection unit, a determination unit, and a communication control unit.
  • the touch panel unit has a display function as well as accepting an input from external physical contact.
  • the touch panel unit corresponds to, for example, the touch panel unit 207 in the present embodiment.
  • the function setting unit sets a stage operation function for operating the motorized stage in a predetermined display area of the touch panel unit.
  • the function setting unit corresponds to, for example, the CPU 201 in the present embodiment.
  • the input detection unit detects an input by the physical contact performed on an operation display area which is a display area in which the stage operation function is set.
  • the input detection unit corresponds to, for example, the touch panel control unit 206 in the present embodiment.
  • the determination unit determines the movement mode of the motorized stage according to the detected input result, and generates a control instruction signal for controlling the motorized stage based on the determined movement mode.
  • the function setting unit corresponds to, for example, the CPU 201 in the present embodiment.
  • the communication control unit transmits the control instruction signal to an external device that controls the operation of the motorized stage.
  • the communication control unit corresponds to, for example, the communication control unit 205 in the present embodiment.
  • the determining unit determines that the input continues at a predetermined position after the position of the input in the operation display area is continuously changed in a predetermined direction based on the detected input result.
  • the motorized stage is continuously moved in the predetermined direction.
  • the determination unit controls the moving speed of the motorized stage according to the magnification of the objective lens inserted in the observation light path of the microscope system.
  • the moving speed of the motorized stage can be controlled according to the magnification of the selected objective lens.
  • the determination unit continuously moves the motorized stage in the predetermined direction
  • the predetermined direction immediately before the continuous change of the position of the input in the predetermined direction in the operation display area ends.
  • the motorized stage is moved at the same moving speed as the moving speed of the motorized stage moving in the same direction and in response to the continuous change of the position of the input.
  • the function setting unit can set a first display area including the predetermined position and a second display area excluding the first display area.
  • the motorized stage is selected. The predetermined amount is moved.
  • the determination unit moves the motorized stage based on the movement amount set in accordance with the magnification of the objective lens inserted into the observation light path of the microscope system.
  • the motorized stage can be moved by a predetermined distance according to the magnification of the selected objective lens.
  • a microscope system may include the microscope controller.
  • the motorized stage can mount a microplate having a plurality of wells.
  • the microscope controller further includes an interval storage unit.
  • the spacing storage unit stores the spacing between the wells when the spacing between the wells of the microplate is input to the touch panel portion.
  • the determination unit determines that the position of the input in the operation display area has changed at a predetermined speed or more and continuously by a predetermined distance based on the detected input result, the interval storage The motorized stage is moved based on the distance between the wells stored in the unit.
  • the stage 20 is moved according to the drag direction regardless of the length of the drag. It is possible to move one well in a predetermined direction.
  • the motorized stage can mount a microplate having a plurality of wells.
  • the microscope controller further includes an interval storage unit.
  • the spacing storage unit stores the spacing between the wells when the spacing between the wells of the microplate is input to the touch panel portion.
  • the interval storage section The motorized stage is moved based on the distance between each well stored in the.
  • the distance from the stage 20 by one well in a predetermined direction is determined according to the function area. It can be moved.
  • a microscope controller that performs an operation to control the operation of the motorized unit used in the microscope system includes a touch panel unit, a function setting unit, an input detection unit, a control unit, and a communication control unit.
  • the touch panel unit has a display function as well as accepting an input from external physical contact.
  • the touch panel unit corresponds to, for example, the touch panel 207 in the present embodiment.
  • the function setting unit sets an operation function for operating the electric unit in a predetermined display area of the touch panel unit.
  • the function setting unit corresponds to, for example, the CPU 201 in the present embodiment.
  • the input detection unit detects an input by the physical contact performed on an operation display area which is a display area in which the operation function is set.
  • the input detection unit corresponds to, for example, the touch panel control unit 206 in the present embodiment.
  • the control unit determines the number of input points indicating the input position with respect to the operation display area and the movement mode of the input point based on the detected input result, and the determined input point
  • the operation mode of the motorized unit is determined in accordance with the number, and a control instruction signal for instructing to control the drive of the motorized unit is generated based on the determined movement mode.
  • the control unit corresponds to, for example, the CPU 201 in the present embodiment.
  • the communication control unit transmits the control instruction signal to an external device that controls the operation of the motorized unit.
  • the communication control unit corresponds to, for example, the communication control unit 205 in the present embodiment.
  • the motorized unit is a motorized stage. Then, it is assumed that an operation for moving the motorized stage with respect to the operation display area is performed in a state where the operation function for moving the motorized stage with respect to the operation display area is set. At this time, as a result of the determination, the control unit detects one or more input points other than the predetermined input point when the input point is one point and when the predetermined input point is detected. The moving distance of the motorized stage can be changed depending on the situation.
  • the moving distance of the motorized stage can be changed according to the number of input points simultaneously input to the touch panel.
  • the control unit detects a case where the input point is one point and a predetermined input point.
  • the moving distance of the motorized stage can be changed depending on when one or more input points other than the predetermined input point are detected.
  • the movement distance of the motorized stage can be changed according to whether the drag operation by one input point or the drag operation by two or more input points is performed on the touch panel.
  • control unit is configured such that, as a result of the determination, in the operation display area, an input point at one point is continuously changed in a predetermined direction, and another input is performed while the position of one input point is unchanged.
  • the moving distance of the motorized stage can be changed in the case where the point changes continuously in a predetermined direction.
  • the moving distance of the motorized stage is determined depending on whether one input point is dragged on the touch panel or one input point is fixed and the other input point is dragged. It can be changed.
  • control unit is different from the first electric unit to be a target of the operation function set in the operation display area according to the number of input points input in the operation display area.
  • the second motorized unit can also be an object of control.
  • the second motorized unit includes an optical axis direction drive unit for moving the motorized stage in the optical axis direction, a light source device, a motorized revolver, an optical element turret, or a microscope control apparatus for controlling a scanning method. It is.
  • the control unit moves the motorized stage in the optical axis direction by the optical axis direction drive unit, adjusts the light control amount by the light source device, switches the objective lens by the motorized revolver, and changes the optical element turret
  • the control instruction signal for performing any of the switching of the optical element and the switching of the microscopic method by the microscope control device is generated.
  • the operation of the electrically driven units other than the electrically driven stage can be controlled according to the number of input points simultaneously input to the touch panel.
  • a microscope system may include the microscope controller.
  • FIG. 1 shows a configuration example of a microscope system in the present embodiment.
  • the microscope apparatus 1 includes, as an optical system for transmission observation, a light source 6 for transmission illumination, a collector lens 7 for condensing illumination light of the light source 6 for transmission illumination, a transmission filter unit 8, and a transmission field stop 9.
  • a transmission aperture stop 10, a condenser optical element unit 11, and a top lens unit 12 are provided.
  • an epi-illumination light source 13 a collector lens 14, an epi-illumination filter unit 15, an epi-illumination shutter 16, an epi-field stop 17, and an epi-aperture stop 18 are provided as epi-illumination observation optical systems. It is equipped.
  • a motorized stage 20 on which the specimen 19 is mounted is provided on the observation light path where the light path of the transmission observation optical system and the light path of the incident light observation optical system overlap.
  • the motorized stage 20 can be moved in the vertical (Z) direction and in the lateral (XY) direction.
  • the control of the movement of the motorized stage 20 is performed by the stage XY drive control unit 21 and the stage Z drive control unit 22.
  • the stage XY drive control unit 21 moves the stage 20 in the X direction and the Y direction by controlling the drive of the XY motor 21a.
  • the stage Z drive control unit 22 moves the stage 20 in the Z direction by controlling the drive of the Z motor 22a.
  • the motorized stage 20 has an origin detection function (not shown) by an origin sensor. Therefore, it is possible to perform movement control by coordinate detection and coordinate specification of the sample 19 mounted on the motorized stage 20.
  • a revolver 24, a cube turret 25, and a beam splitter 27 are provided on the observation light path.
  • a plurality of objective lenses 23a, 23b,... (Hereinafter collectively referred to as “the objective lens 23" as necessary) is mounted on the revolver 24. By rotating the revolver 24, it is possible to select an objective lens to be used for observation from the plurality of objective lenses 23.
  • the fluorescent cube A (35a), the fluorescent cube B (35b), and the fluorescent cube C (not shown) each have an excitation filter, a dichroic mirror, and an absorption filter corresponding to each fluorescence observation wavelength.
  • the cube can be switched to any one of the fluorescent cube A (35a), the fluorescent cube B (35b), the fluorescent cube C (not shown)...
  • the cube turret 25 By the cube turret 25 and disposed on the light path.
  • the beam splitter 27 splits the observation light path into the eyepiece 26 side and the video camera side (not shown).
  • the polarizer 28 for differential interference observation, the DIC (Differential Interference Contrast) prism 29, and the analyzer 30 can be inserted into the observation light path.
  • Each of these units is motorized, and its operation is controlled by a microscope control unit 31 described later.
  • the microscope control unit 31 is connected to the microscope controller 2.
  • the microscope control unit 31 has a function of controlling the overall operation of the microscope apparatus 1.
  • the microscope control unit 31 changes the observation method and performs light adjustment of the transmissive illumination light source 6 and the epi-illumination light source 13 according to the control signal or command from the microscope controller 2.
  • the microscope control unit 31 has a function of transmitting the current observation state of the microscope apparatus 1 to the microscope controller 2.
  • the microscope control unit 31 is also connected to the stage XY drive control unit 21 and the stage Z drive control unit 22. Therefore, control of the motorized stage 20 can also be performed by the microscope controller 2 via the microscope control unit 31.
  • FIG. 2 shows an external top view of the microscope controller in the present embodiment.
  • the microscope controller 2 is a controller having a touch panel 207 for the user to input an operation of the microscope 1.
  • predetermined attributes for operating the microscope system 1 are set.
  • the user can operate various microscopes by operating a functional area (a GUI (Graphical User Interface) button or the like displayed on a touch panel) in which a predetermined attribute is set.
  • GUI Graphic User Interface
  • the touch panel 207 has a function as a display device and a function as an input device. Then, the touch panel 207 is fitted into the exterior 208 of the microscope controller 2.
  • the touch panel 207 is attached to the bottom of the recess of the exterior 208. Between the surface of the touch panel 207 and the outer surface of the exterior 208, a regulation frame 209 formed by a step is provided. When the finger is moved along the restriction frame 209, the restriction frame 209 serves as a guide.
  • FIG. 3 shows an outline of the internal configuration of the microscope controller 2 in the present embodiment.
  • the microscope controller 2 includes a central processing unit (CPU) 201, a random access memory (RAM) 202, a read only memory (ROM) 203, a non-volatile memory 204, a communication control unit 205, a touch panel control unit 206, and a touch panel 207.
  • CPU central processing unit
  • RAM random access memory
  • ROM read only memory
  • the CPU 201 performs operation control of the entire microscope controller 2.
  • the RAM 202 is a memory that is used as a work storage area and temporarily stores various data.
  • a control program for the CPU 201 to control the operation of the controller 2 is stored in advance in the ROM 203.
  • Application software for controlling the microscope apparatus 1 is also a part of this control program.
  • the non-volatile memory 204 information (functional area setting information) of a plurality of functional areas in which predetermined attributes for operating the microscope 1 including operation button display (icon button display etc.) are set on the touch panel 207 It is stored in advance.
  • the functional area setting information includes coordinate information on the touch panel indicating the range of the functional area, and information on the function assigned to the functional area to operate a predetermined motorized unit constituting the microscope system. It is associated information.
  • the function assigned to the functional area for operating the motorized unit is, for example, a function for moving the stage 20 in the XY direction or a function for moving the stage 20 in the Z direction with respect to the operation of the stage 20.
  • the function assigned to the functional area is, for example, a function of rotating the motorized revolver to select an arbitrary objective lens and inserting it into the observation light path with respect to the operation of the motorized revolver 24.
  • the communication control unit 205 manages data communication (for example, serial communication) performed with the microscope control unit 31 of the main body of the microscope apparatus 1 and sends to the microscope control unit 31 such as control information for controlling the operation of each component unit. Send
  • the touch panel 207 may be any type of touch panel, such as a film resistance type, a capacitance type, an infrared type, an ultrasonic type, etc., and is not limited to that type. Further, the touch panel control unit 206 detects the X coordinate and the Y coordinate of the position input by the user on the touch panel 207, and transmits the detected coordinate information to the CPU 201. Further, in the present embodiment, a multi touch screen device capable of detecting an input at a plurality of points is adopted. Therefore, the touch panel control unit 206 can detect the coordinates of each input point and can also track the movement of each point.
  • a multi touch screen device capable of detecting an input at a plurality of points is adopted. Therefore, the touch panel control unit 206 can detect the coordinates of each input point and can also track the movement of each point.
  • FIG. 4 shows an example of a screen displayed on the touch panel in the present embodiment.
  • functions are mainly allocated to areas (functional areas) indicated by S_A, S_B, S_C, S_D, S_E, and S_F.
  • a function for moving the stage 20 in the X and Y directions is assigned to the functional area S_A.
  • a function for moving the stage 20 of the microscope 1 in the Z direction is assigned to the functional area S_B.
  • a function for operating the interlocking revolver 24 for switching the objective lens 24 is assigned to the functional area S_C.
  • the function area S_D is assigned a function for performing a speculum switching method.
  • the function area S_E is assigned a function for switching the function of the S_A function area.
  • the function area S_F is assigned a function of performing various settings.
  • FIG. 5 shows a control flow of the microscope controller 2 in accordance with a touch operation on a function area to which a function is assigned in the present embodiment.
  • the control unit CUP 201 of the microscope controller 2 reads the application program stored in the ROM 202 and executes the following processing.
  • the CPU 201 reads the functional area setting information stored in the non-volatile memory 204 into the RAM 203 (S101).
  • the CUP 201 assigns predetermined attributes for operating the microscope system 1 on the touch panel 207 to each function area (including GUI buttons and the like displayed on the touch panel) based on the function area setting information, and The setting is performed (S102).
  • the CPU 201 assigns the functional area S_A to the functional areas represented by the coordinates (x1, y1) to (x2, y2) on the touch panel. Also, for example, the CPU 201 assigns the functional area S_B to the functional areas represented by the coordinates (x3, y3) to (x4, y4) on the touch panel. Also, for example, the CPU 201 assigns the functional area S_C to the functional area represented by the coordinates (x5, y5) to (x6, y6) on the touch panel. Also, for example, the CPU 201 assigns the functional area S_D to the functional areas represented by the coordinates (x7, y7) to (x8, y8) on the touch panel.
  • the CPU 201 assigns the functional area S_E to the functional area represented by the coordinates (x9, y9) to (x10, y10) on the touch panel. Also, for example, the CPU 201 assigns the functional area S_F to the functional area represented by the coordinates (x11, y11) to (x12, y12) on the touch panel.
  • the functional area setting information is configured by associating the functional area indicated by these coordinates with the information on the function assigned to the functional area.
  • the touch panel control unit 206 detects the X coordinate and the Y coordinate of the input position on the touch panel 207 ("Yes" in S103).
  • the touch panel control unit 206 transmits the detected coordinate information to the CPU 201.
  • the CPU 201 determines which functional area the coordinate information sent from the touch panel control unit 206 belongs to, that is, determines which functional area the input has been made (S104).
  • the CPU 201 Based on the determination result, the CPU 201 performs control processing according to each of the functional areas (S105). For example, when an input is made at an arbitrary position of a certain functional area, the CPU 201 moves a predetermined image to that position, changes the image size, changes the color of the image, or changes the shape of the image.
  • the display form of the image on the GUI is controlled by coordinate information based on the touch operation such as moving the cursor or moving the cursor.
  • the CPU 201 calculates the movement amount of the touch operation on the touch panel 207 based on the coordinate information detected in response to the touch operation. Then, the CPU 201 converts the amount of movement into the amount of drive of the electric unit allocated to the functional area, and transmits a control instruction signal to the microscope control unit 31. The CPU 201 also transmits the content selected on the touch panel 207 to the microscope control unit 31 as a control instruction signal based on the coordinate information detected in response to the touch operation. The processes of S103 to S105 are repeated until the observation is completed (S106).
  • the stage movement mode includes a normal movement mode and a continuous movement mode.
  • the display mode includes a normal function area mode and an enlargement function area mode. Note that switching between the normal movement mode and the continuous movement mode, and between the normal function area mode and the enlargement function area mode can be performed by a switching button (not shown).
  • FIG. 6 shows an operation flow of the microscope controller when the drag operation is performed on the functional area S_A in the present embodiment (normal functional area mode, normal movement mode).
  • drag refers to moving the contact portion from one position on the touch panel 207 to the other position while in contact with the touch panel surface.
  • the touch panel control unit 206 detects X and Y coordinates of the input position on the touch panel 207 (S202). The touch panel control unit 206 transmits the detected coordinate information to the CPU 201.
  • the touch panel control unit 206 detects the coordinates corresponding to the drag position (S204). The touch panel control unit 206 transmits the detected coordinate information to the CPU 201.
  • the CPU 201 calculates the movement distance and movement direction of the stage from the coordinates of the drag start position and the coordinates during dragging based on the coordinate information sent from the touch panel control unit 206 (S205).
  • the CPU 201 gives an instruction to the stage XY drive control unit 21 via the microscope control unit 31 so as to move the stage 20 to the calculated distance and direction (S206).
  • the processes of S203 to S206 are repeated until the dragging is completed.
  • FIGS. 7 to 9 respectively illustrate operations of the functional area S_A to which the function for moving the stage 20 in the XY direction is assigned in the present embodiment (normal functional area mode, normal movement mode).
  • FIG. 6B is a view for explaining the movement of the stage 20 in the XY direction accompanying the operation;
  • FIG. The control of the CPU 201 according to the operation of the touch panel 207 will be described in detail based on the flow of FIG. 6 with respect to the operation of the stage 20 in the XY direction, with reference to FIGS. 7-9.
  • the user performs a drag operation on the functional area S_A (an operation of moving a touch portion while touching the touch panel).
  • the microscope controller 2 instructs the microscope control unit 31 to control the stage 20 so that the stage XY drive control unit 21 corresponds to the distance and direction of the drag operation. give.
  • the movement distance of the stage 20 in the X and Y directions corresponds to the distance of the drag operation on the functional area S_A on the touch panel 207.
  • the microscope controller 2 instructs the microscope control unit 31 to move the distance on the touch panel 207 by, for example, the coefficient la.
  • the distance XA from the coordinate X_0 to the X_1 which is the coordinate of the stage 20 in the X direction Control is performed to move the distance by la and to move the distance YA ⁇ la from the coordinate Y_0, which is the coordinate of the stage 20 in the Y direction, to Y_1.
  • the touch panel control unit 206 detects the coordinates during the dragging, so that the position of the stage 20 is followed according to the drag position. Also, the history of stage movement is recorded in the RAM 203 and can be referred to later. Further, although the coefficient la is described as being fixed in the present embodiment, the coefficient may be variable. For example, the coefficient la may be variable for each objective lens 23.
  • FIGS. 10 to 12 respectively illustrate operations of the functional area S_B to which the function for moving the stage 20 in the Z direction is assigned in the present embodiment (normal functional area mode, normal movement mode).
  • FIG. 6B is a view for explaining the movement of the stage 20 in the XY direction accompanying the operation and FIG.
  • the control of the CPU 201 according to the operation of the touch panel 207 will be described in detail based on the flow of FIG. 6 with respect to the operation of the stage 20 in the Z direction, using FIG. 10 to FIG.
  • a bar 301 indicates the position of the coordinate of the stage 20 in the Z direction.
  • the stage 20 exists in the position of Z coordinate Z_0, as shown to FIG. 10 (B).
  • the user touches the function area S_B at the position of the point b1 shown in FIG. 10A and performs the drag operation (the operation of moving from the point b1 to the point b2 while touching the touch panel) to the position b2
  • the microscope controller 2 instructs the stage Z drive controller 22 via the microscope controller 31 to perform control to move the objective lens 23 and the stage 20 in the approaching direction.
  • the movement distance of the stage 20 in the Z direction corresponds to the distance of the drag operation on the functional area S_B on the touch panel 207.
  • the microscope controller 2 instructs the microscope control unit 31 to move a distance obtained by multiplying the distance on the touch panel 207 by the coefficient lb. Then, as shown in FIG. 11B, when the drag operation of the distance ZB is performed from the point b1 to the point b2, the distance ZB ⁇ from the coordinates Z_0 to Z_1 of the stage 20 in the direction in which the objective lens 23 and the stage 20 approach. Control to move lb is performed.
  • the microscope controller 2 instructs the stage Z drive controller 22 via the microscope controller 31 to perform control to move the objective lens 23 and the stage 20 in a direction away from each other.
  • the coefficient lb has been described as being fixed in this embodiment, it may be switchable, and the coefficient lb may be variable for each objective lens 23.
  • FIGS. 13 and 14 respectively illustrate the operation of the functional area S_C to which the function for switching the objective lens by the electric revolver 24 is assigned in the present embodiment (normal function area mode).
  • FIGS. 13 and 14 respectively illustrate the operation of the functional area S_C to which the function for switching the objective lens by the electric revolver 24 is assigned in the present embodiment (normal function area mode).
  • (B) are diagrams for explaining the position of the objective lens arranged in the motorized revolver 24 associated with the operation thereof.
  • the control operation of the CPU 201 according to the operation of the touch panel 207 will be described in detail based on the flow of FIG. 6 for the switching operation of the objective lens by the electric revolver 24 below using FIG. 13 and FIG.
  • the interlocking revolver 24 includes a 5 ⁇ objective lens 23 a, a 10 ⁇ objective lens 23 b, a 20 ⁇ objective lens 23 c, and a 50 ⁇ objective lenses 23 d and 100.
  • the double objective lenses 23 d are mounted, and the 20 ⁇ objective lens 23 c is inserted in the optical axis.
  • icons 401a to 401e corresponding to the objective lenses 23a to 23e mounted on the electric revolver 24 are displayed on the screen.
  • the icon 401c is displayed emphatically to indicate that it is an objective lens currently inserted in the optical path, and is displayed separately from the other icons 401a, 401b, 401d, and 401e.
  • the icon corresponding to the 20 ⁇ objective lens 23 c is highlighted.
  • the user touches the functional area S_C, and releases the touched finger at the position of the icon 401 d shown in FIG.
  • the microscope controller 2 detects the position where the finger touched on the touch panel 207 is released.
  • the microscope controller 2 controls the microscope control unit 31 so that the 50 ⁇ objective lens 23 d corresponding to the 20 ⁇ objective lens 23 c to the icon 401 d enters the observation light path as shown in FIG. Give instructions to control the rotation.
  • the icon 401c is switched to a display correspondence distinguishable from the other icons 401a, 401b, 401c, and 401e so as to display the icon of the objective lens currently inserted in the optical path.
  • the objective lens insertion operation corresponding to the icon at the position where the finger touched on the touch panel 207 is released is performed, but the objective lens insertion operation corresponding to the icon at the touched position is performed It may be a mode.
  • the functional area S_D and the functional area S_F are operations in which the function corresponding to the icon at the separated position is selected in each functional area, and is the same as the functional area S_C, so the description will be omitted.
  • the functional area S_E is an area for switching the operation of the microscope site assigned to the functional area S_A.
  • the functional area S_E will be described with reference to FIGS.
  • FIGS. 15 and 16 are diagrams for explaining the operation of the functional area S_E in the present embodiment.
  • the “XY-position” for moving the motorized stage 20 in the XY direction is selected, and with the selection, the stage 20 is moved in the XY direction to the functional area S_A.
  • the function to operate is assigned.
  • the functional area S_A has a function for switching to the dimming operation of the transmissive illumination light source 6 and the epi-illumination light source 13 as shown in FIG. Is assigned.
  • FIG. 17 shows a control flow of the microscope controller 2 accompanied by a touch operation on a function area to which a function is assigned in the present embodiment (magnifying function area mode).
  • S301 to S304 and S306 to S307 in FIG. 17 are processes similar to S101 to S106 in FIG. 5, respectively.
  • the CUP 201 reads out the functional area setting information stored in the non-volatile memory 204 to the RAM 203 (S301) and allocates functions to the respective functional areas in the same manner as described in FIG. S302).
  • the functional area S_A is assigned an operation function for moving the stage 20 in the XY directions.
  • the functional area S_B is assigned an operation function of moving the stage 20 of the microscope 1 in the Z direction.
  • a function for operating the interlocking revolver 24 for switching the objective lens 24 is assigned to the functional area S_C.
  • the function area S_D is assigned a function for performing a speculum switching method.
  • the functional area S_E is assigned an S_A functional area switching operation function.
  • Various other setting functions are assigned to the functional area S_F.
  • the CUP 201 determines in which functional area the input has been performed (S304).
  • the CPU 201 performs control processing according to each functional area as in the normal functional area mode (S306).
  • the CPU 201 changes the display mode from the normal functional area mode to the enlarged functional area mode. Specifically, the CPU 201 reads the functional area setting information stored in the non-volatile memory 204 into the RAM 203 (S308), and as shown in FIG. 18, the functional area S_A and the functional area S_B, the functional area S_A_2, the functional area S_B_2. The setting is performed as (S309). This will be described using FIGS. 18 and 19.
  • FIG. 18 shows a functional area S_A_2 and a functional area S_B_2 (Example 1) in the present embodiment (enlarged functional area mode).
  • FIG. 19 shows a function area S_A_2 and a function area S_B (Example 2) in the present embodiment (enlarged function area mode).
  • functional areas S_A_2 and S_B_2 are arranged on the touch panel 207.
  • an operation function to move the stage 20 in the XY direction is assigned (S312).
  • an operation function for moving the stage 20 of the microscope 1 in the Z direction is assigned (S312).
  • the functional area S_A_2 is arranged so as to be expanded to the areas of the functional areas S_E and S_F.
  • FIGS. 20 and 21 explain the operation of the functional area S_A_2 to which the function for moving the stage 20 in the XY direction is assigned in (A) the stage 20 in the present embodiment (enlarged function area mode, normal movement mode).
  • FIG. 6B is a view for explaining the movement of the stage 20 in the XY direction accompanying the operation and FIG.
  • the user drags the distance XA_2 in the X direction from the point a5 to the point a6 by the distance YA_2 in the Y direction with respect to the functional area S_A_2 (from the point a5 to the point while touching the touch panel Perform the operation of moving to a6).
  • the distance XA_2 ⁇ la from the coordinate X_0 to the coordinate X_21 is moved in the X direction with respect to the stage 20, and the coordinate in the Y direction Control is performed to move the distance YA_2 ⁇ la from the Y_0 to the coordinate Y_21.
  • the position of the stage 20 is followed in accordance with the drag position.
  • the user drags a distance XA_3 in the X direction from the point a7 in the functional area S_A_2 to a point a8 in the functional area S_A_2 and a distance YA_3 in the Y direction (touch the touch panel
  • the operation of moving to the point a8 is performed as it is.
  • the position of the stage 20 is followed according to the drag position.
  • the stage 20 remains in the stopped state even when the input to the touch panel is continued at the same position at the point a8 after the drag operation.
  • the continuous movement mode when the end point of the input by the drag operation on the touch panel is within the predetermined area, while the input is continued for a certain time at the end point (that is, after dragging and continuing to touch at the same position) This is a mode in which the movement of the stage can be continued at a predetermined speed in the same direction as the approach to the end point immediately before the drag stop.
  • FIG. 22 shows the operation flow of the microscope controller in the case where the drag operation is performed on the functional area S_A_2 in the present embodiment (continuous movement mode).
  • S401 to S403 and S405 to S407 in FIG. 22 are respectively the same as S201 to S206 in FIG.
  • the functional area S_A_2 corresponding to the drive of the stage 20 in the XY direction is further divided into S_A_21 near the outer periphery of the functional area S_A_2 and S_A_22 in the other area.
  • Information on functional areas for S_A_21 and S_A_22 is also stored in advance in the non-volatile memory 204 as functional area setting information.
  • the touch panel control unit 206 detects the X coordinate and the Y coordinate of the position input by the drag operation on the touch panel 207 ( S402). The touch panel control unit 206 transmits the detected coordinate information to the CPU 201.
  • the touch panel control unit 206 determines whether the detection position of the input by the drag operation has changed (S404).
  • the touch panel control unit 206 When there is a change in the detection position of the input by the drag operation (“No” in S404), the touch panel control unit 206 detects the coordinates corresponding to the drag position. The touch panel control unit 206 transmits the detected coordinate information to the CPU 201. The processing of S405 to S407 performed when the drug is being dragged is the same as that of S204 to S206.
  • the CUP 201 stops its position at the functional area S_A_21 based on the coordinate information sent from the touch panel control unit 206. It is determined whether or not (S408).
  • the CPU 201 determines the current input coordinates, inter-history information during dragging, The movement distance and movement direction of the stage 20 are calculated from the information indicating the currently selected objective lens (S409).
  • the CPU 201 gives an instruction to the stage XY drive control unit 21 via the microscope control unit 31 so as to move the stage 20 based on the calculated distance and direction (S410). While the input is continuing for the functional area S_A_21 (“No” in S411), S410 is repeated.
  • FIGS. 23 to 25 are diagrams for explaining the operation of the functional area S_A_2 to which the function for moving the stage 20 in the XY direction is assigned in the continuous movement mode of this embodiment.
  • 11B is a view for explaining the movement of the stage 20 in the XY direction accompanying the operation.
  • control of the CPU 201 according to the operation of the touch panel 207 will be described in detail based on the flow of FIG. 22 regarding the operation of the stage 20 in the XY direction using FIGS.
  • the user drags a distance XA_2 in the X direction from point a5 to a point a6 in the functional area S_A_2 in the functional area S_A_2 and a distance YA_2 in the Y direction (from the point a5 while touching the touch panel Perform the operation of moving to a6).
  • the distance XA_2 ⁇ la from the coordinate X_0 to the coordinate X_21 is moved in the X direction, and the coordinate in the Y direction Control is performed to move the distance YA_2 ⁇ la from Y_0 to the coordinate Y_21.
  • the position of the stage 20 is followed according to the drag position.
  • the user drags a distance XA_3 in the X direction from the point a7 in the functional area S_A_22 to a point a8 in the functional area S_A_21 and a distance YA_3 in the Y direction (with the touch panel touched)
  • An operation of moving from the point a7 to the point a8) is performed, and a case where the input (touch) is continued at the same position for a predetermined time T1 at the point a8 will be described.
  • the user performs a drag operation from the point a7 to the point a8 in the functional area S_A_21.
  • the distance XA_3 ⁇ la from the coordinate X_0 to the coordinate X_22 is moved in the X direction, and the distance from the coordinate Y_0 to the coordinate Y_22 in the Y direction Control to move YA_3 ⁇ la is performed.
  • the position of the stage 20 is followed according to the drag position.
  • the user continues to input (touch) the touch panel at the same position at a point a8 in the functional area S_A_21 for a predetermined time T1.
  • the CPU 201 controls the stage XY drive control unit 21 via the microscope control unit 31 while the input (touch) to the point a8 is continued, as shown in FIG. 25B, the stage 20. Further, control is performed to continue the movement of the stage 20 in the same direction (angle) D1 as the direction (angle) in which the movement to the point a8 is performed.
  • the moving direction of the stage 20 is calculated as follows.
  • the CPU 201 acquires stage history information from the RAM 203. Based on the stage history information, the CPU 201 calculates the moving direction D1 of the stage 20 from the direction (angle) connecting the point a8 ', which is the position of the past drag at a position separated by a predetermined distance R from the point a8. As a result, the stage 20 moves in the direction of D1.
  • the moving speed of the stage is variable according to the currently selected objective lens. This will be described with reference to FIG.
  • FIG. 26 shows an example of a continuous movement speed table in which the continuous movement speed set for each objective lens in this embodiment (continuous movement mode) is stored. Note that “ID” in the table indicates information for identifying an objective lens.
  • the continuous movement speed table is stored in the non-volatile memory 204.
  • the movement of the stage 20 is performed while the user performs drag operation from the point a7 to the point a8 in the direction D1 and the input is continued at the point a8. It is continued at speed V4.
  • the CPU 201 instructs the microscope control unit 31 to move the stage 2 at the speed V4 based on the continuous movement speed table.
  • the dragging operation is performed from the point in the functional area S_A_22 toward the point in the functional area S_A_21, and the dragging is stopped when the input (touch) continues continuously in the functional area S_A_21 even after the dragging is stopped.
  • the movement of the stage 20 is controlled to be continued at the velocity V4 in the same direction as the direction in which the stage 20 has been moved until immediately before.
  • the moving speed of the stage 20 is determined for each objective lens, but can be switched to a mode in which the moving speed from the point a8 'to the point a8 is handed over. For example, if the stage moving speed from the point a8 'to the point a8 is V4' and the touch panel is continuously input (touched) for a predetermined time T1 at the same position at the point a8, the moving speed of the stage is V4 '. Is set.
  • the moving speed of the stage 20 is a constant speed corresponding to the selected objective lens or a moving speed from the point a8 'to the point a8, but is not limited thereto.
  • the movement of the stage 20 may be accelerated in accordance with the elapse of the time continuously input (touched) in the functional area S_A_21.
  • the present invention is also applicable to the case where the end point of the drag operation is in the functional area S_A_21.
  • the position of the stage 20 is followed in accordance with the drag position. After the end of dragging, if the input is continued at the same position in the functional area S_A_21, the movement of the stage 20 in the XY direction is continued as in the above example.
  • the continuous movement of the stage 20 in the XY direction in the functional area S_A_2 has been described above, it may be applied to the functional area S_B_2. That is, the upper end area and the lower end area of the functional area S_B_2 may be set as the area corresponding to the functional area S_A_21, and the other areas may be set as the area corresponding to the functional area S_A_22.
  • the user performs a drag operation from a point in the area corresponding to the functional area S_A_22 to a point in the area corresponding to the functional area S_A_21, and inputs at the same position for a predetermined time T1 at the final point of the drag operation ), The movement of the stage 20 in the Z direction is continued.
  • the area of the functional area S_A_21 may be set arbitrarily.
  • FIGS. 27 to 28 respectively explain touch operations when the range of the functional area S_A_21 is set so as to include the range of the functional area S_B_2 in the present embodiment (enlarged function area mode, continuous movement mode).
  • FIG. 6B is a view for explaining the movement of the stage 20 in the XY direction accompanying the operation and FIG.
  • the control of the CPU 201 according to the operation of the touch panel 207 will be described in detail based on the flow of FIG. 22 for the operation of the stage 20 in the Z direction, using FIGS. 27 to 28.
  • the functional area S_B_2 normally receives an operation of moving the stage 20 of the microscope 1 in the Z direction.
  • the functional area S_B_2 functions as the functional area S_A_21 in the functional area S_A_2 when continuously input from the functional area S_A_2. That is, when the drag operation is started to the functional area S_A_2, the function set to the functional area S_A_21 is set to the functional area S_B_2. The setting continues while the user continues touching the touch panel 207. When the touch by the user ends, the original function is reset in the functional area S_B_2.
  • Drag operation of distance XA_4 in the X direction and distance YA_4 in the Y direction from point a9 in functional area S_A_22 to point a10 in functional area S_B_2 (operation to move from point a9 to point a10 while touching the touch panel) is performed
  • a case will be described where input (touch) is continuously performed at the same position for a predetermined time T2 at the point a10.
  • the position of the stage 20 is followed according to the drag position. After the end of the drag operation, it is assumed that input (touch) is continued for a predetermined time T2 on the touch panel at the same position at point a10 in the functional area S_B_2 (expanded functional area S_A_21). In this case, while the input (touch) is continued to the point a10, as shown in FIG. 28B, the CPU 201 further causes the stage 20 to move in the same direction (angle) as the movement to the point a10. (Angle) An instruction to continue the movement of the stage 20 is issued to D2 as it is.
  • the moving direction D2 of the stage 20 is calculated as follows.
  • the CPU 201 acquires stage history information from the RAM 203. Based on the stage history information, the CPU 201 makes a stage from the direction (angle) connecting the point a10 and the point a10 ′ which is the position of the past drag at a position separated from the point a10 by a predetermined distance R just before stopping the drag.
  • the movement direction D2 of 20 is calculated. As a result, the stage 20 moves in the direction of D2.
  • the movement of the stage 20 is continued while the input is continued to the point a10.
  • the movement of the stage 20 is performed in the direction D2 and the velocity V4 during the time T2. That is, it is assumed that a drag operation is performed from a point in the functional area S_A_22 toward a point in the functional area S_B_2 (expanded functional area S_A_21), and input (touch) continues continuously in the functional area S_A_1.
  • control of continuing the movement of the stage 20 in the same direction as the direction in which the movement of the stage 20 was performed is performed until just before the dragging operation is stopped.
  • FIG. 29 shows an example in the case of realizing the continuous movement mode in the normal functional area mode.
  • the area corresponding to S_A_21 is set to function as S_A_11 and corresponds to S_A_22 also in the normal function area mode.
  • the area may be set to function as S_A_12.
  • the movement of the stage can be continued at a predetermined speed in the same direction as the approach to the end point immediately before the drag stop.
  • Second Embodiment when a predetermined moving distance is input (touch operation) at a predetermined speed on the touch panel, the function of moving the stage 20 in the XY direction by a fixed distance regardless of the length of the drag. Will be explained.
  • the same components, processes, and functions as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the configuration of the microscope system of the second embodiment is similar to that of the first embodiment.
  • FIG. 30 shows a moving speed / moving distance table in the present embodiment.
  • the movement speed and movement distance table stores the distance used to move the stage 20 by a fixed distance and the speed for each objective lens. Note that “ID” in the table indicates information for identifying an objective lens.
  • the moving speed / moving distance table is stored in the non-volatile memory 204.
  • FIG. 31 shows an operation flow of the microscope controller when the touch operation is performed on the functional area S_A_2 in the present embodiment.
  • the normal stage operation that is, the processing of S501 and S503 to S507 is the same as that of the first embodiment (S201 to S206 in FIG. 6), and thus the description thereof is omitted.
  • the CPU 201 determines that the input of the drag operation is constant in the functional area S_A_2 based on the detection signal from the touch panel control unit 206. It is determined whether the speed is equal to or higher than the speed SV and the input length on the touch panel 207 is less than the predetermined distance SL (S502).
  • the CPU 201 If it is determined that the input of the drag operation is an input at a constant velocity SV or more and the length of the input on the touch panel 207 is less than the constant distance SL ("Yes" in S502), the CPU 201 performs the following. That is, based on the information stored in the moving speed and moving distance table shown in FIG. 30, CPU 201 moves the moving distance and moving direction of motorized stage 20 based on the current drag input direction and the currently selected objective lens information. Is calculated (S508).
  • the CPU 201 performs control of moving the motorized stage 20 by a fixed amount based on the calculated movement distance and movement direction (S509). That is, when the CPU 201 determines that the input of the drag operation is an input at a constant velocity SV or more and the input length on the touch panel 207 is less than the predetermined distance SL, the length of the drag First, control is performed to move the stage 20 by a fixed amount in a fixed direction.
  • the motorized stage 20 is moved by L4 at the speed V4 based on the moving speed / moving distance table of FIG.
  • the movement distance here is set to, for example, a half distance of the field of view for each objective lens.
  • the movement direction the same direction as the direction in which the drag is performed is selected.
  • FIG. 32 is for explaining the operation of moving the stage 20 a fixed distance in the XY direction (horizontal direction with respect to the drawing) regardless of the length of (A) drag in the present embodiment (enlarged function area mode).
  • FIG. 7B is a view for explaining the movement of the stage 20 in the XY direction (horizontal direction with respect to the drawing) accompanying the operation.
  • FIG. 33 illustrates an operation of moving the stage 20 a fixed distance in the XY direction (vertical direction with respect to the drawing) regardless of the length of (A) drag in this embodiment (enlarged function area mode).
  • FIG. 6B is a view for explaining the movement of the stage 20 in the XY direction (up and down direction with respect to the drawing) accompanying the operation;
  • control of the CPU 201 according to the operation of the touch panel 207 will be described in detail based on the flow of FIG. 31 regarding the operation of the stage 20 in the X direction or Y direction using FIGS.
  • the drag speed is at least SV and at a distance less than a predetermined distance SL on the touch panel from point a11 to point a12 in S_A_2 of the touch panel
  • the motorized stage 20 is moved at a velocity V4 with respect to the X direction at a velocity L4 regardless of the distance LL1 based on the moving velocity / moving distance table of FIG. FIG. 32 (B).
  • FIG. 32A when a distance LL2 is input from the point a13 to the point a14 on the touch panel 207 with a drag speed of SV or more and a distance less than the predetermined distance SL, the distance LL2 is not affected.
  • the stage L4 is moved at a constant distance corresponding to the magnification of the objective lens in the X direction (FIG. 32B).
  • FIG. 32A when input of a distance LL3 which is a distance of SV or more and less than a fixed distance SL is performed on the touch panel from point a15 to point a16, regardless of the distance of LL3.
  • the stage L4 is moved at a fixed distance corresponding to the magnification of the objective lens in the X direction (FIG. 32B).
  • the dragging direction may be changed to the Y direction.
  • FIG. 33A the dragging direction may be changed to the Y direction.
  • FIG. 33 (B) movement of the L4 stage, which is a fixed distance corresponding to the magnification of the objective lens in the Y direction, is performed (FIG. 33 (B)).
  • FIG. 34 is a diagram for describing an operation of causing the stage 20 to move in the X and Y directions regardless of the length of the drag (A) in the present embodiment (normal function area mode); It is a figure for demonstrating movement to XY direction of.
  • the drag speed is at least SV on the touch panel from the point a23 to the point a24 as shown in FIG.
  • the motorized stage 20 is moved at the speed V4 by the distance L4 regardless of the distance of LL7 based on the moving speed / moving distance table of FIG. FIG. 34 (B).
  • the points a25 to a26 and the points a27 to a28 respectively are electrically driven regardless of the distance between LL8 and LL9 based on the moving speed / moving distance table of FIG.
  • the stage 20 is moved by a distance L4 at a velocity V4 (FIG. 34 (B)).
  • the dragging direction may be changed to the Y direction.
  • the dragging operation in the X direction or Y direction and the movement of the stage in the same direction as the dragging direction have been described above, the dragging operation in the oblique direction in the XY plane, the same direction as the dragging direction It can also be applied to the movement of the stage to For example, in the case of the drag operation in the oblique direction, the movement vector of the drag operation is decomposed into the X component and the Y component, and the distance of the larger component is a distance less than the fixed distance SL. In the case where is greater than SV, the motorized stage 20 may be moved at a constant speed and a fixed distance based on the moving speed and moving distance table of FIG.
  • the drag speed is SV or more and there is an input of a distance less than the fixed distance SL on the touch panel 207
  • the fixed distance corresponding to the magnification of the objective lens with respect to the Y direction regardless of the SL distance.
  • L4 stage movement is performed. This enables blind operation even in a controller having a (narrow) limited operation area such as a touch panel.
  • Third Embodiment when a drag operation is performed on the touch panel 207 at a drag speed of SV or more and a distance less than the predetermined distance SL, the stage 20 is moved in a predetermined direction according to the drag direction regardless of the drag length. The movement of one well will be described.
  • the same components, processes, and functions as those of the first or second embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • FIG. 35 shows a configuration example of a microscope system in the present embodiment.
  • the microscope system of FIG. 35 is a modification of the upright microscope device 1 of the first embodiment to an inverted microscope device 1 b.
  • the multi-plate 50 on the motorized stage 20 can be observed using the inverted microscope apparatus 1 b.
  • the touch panel input operation determination unit and the inter-well movement amount setting unit correspond to the CPU 201 and the non-volatile memory 204 of the microscope controller 2 in FIGS. 36 and 2.
  • the well interval input unit corresponds to the touch panel 207.
  • FIG. 36 shows a multiplate 50 in the present embodiment.
  • the multiplate 50 in the multiplate 50, a plurality of wells are evenly arranged at equal intervals.
  • the multiplate 50 consists of 12 ⁇ 8 96 wells (W_A1 to W_H12).
  • the distance between the centers of the wells in the X direction is L_WX, and the distance in the Y direction L_WY.
  • FIG. 37 shows a well interval input screen in the present embodiment.
  • the well interval input screen 60 is displayed on the touch panel 207.
  • the well interval input screen 60 includes an input field 61 for entering an interval L_WX in the X direction of the multiplate 50, and an input field 62 for entering an interval L_WY in the Y direction.
  • FIG. 38 shows the well interval setting operation flow in this embodiment.
  • the user switches the display on the touch panel 207 of the microscope controller 2 from the normal screen (FIG. 4) to the well interval input screen for inputting the well interval shown in FIG. 38 (S601).
  • the values of the interval L_WX in the X direction of the multiplate 50 and the interval L_WY in the Y direction are input (S602).
  • the inputted values of the interval L_WX in the X direction and the interval L_WY in the Y direction are recorded in the non-volatile memory 204 of the microscope controller 2 (S603).
  • the screen transitions to the normal screen (FIG. 4) again (S604).
  • the normal stage operation is the same as in the first embodiment, and thus the description thereof is omitted.
  • FIG. 39 shows an operation flow of the microscope controller when the touch operation is performed on the functional area S_A_2 in the present embodiment. As shown in FIG. 39, when the normal drag operation is performed in the functional area S_A_2, the operation is similar to that of the first embodiment.
  • FIG. 40 is for explaining the operation of moving the stage 20 by a distance in the XY direction (horizontal direction with respect to the drawing) regardless of the length of dragging in the present embodiment (enlarged function area mode).
  • FIG. A case will be described with reference to FIG. 32 in which the drag operation input is at a constant speed SV or higher and the input length on the touch panel is less than a predetermined distance SL in the functional area S_A_2.
  • the CPU 201 determines that the specific operation is performed.
  • the CPU 201 When it is determined that the operation is a specific operation, the CPU 201 relates to the length of the drag based on the information of the X direction well interval L_WX and the Y direction well interval L_WY recorded in the nonvolatile memory 24 of the microscope controller 2. Then, control is performed to move the stage 20 a distance of one well.
  • FIG. 41 is an enlarged view of the multi-plate 50 of FIG.
  • the point of S_W_A1 in the well W_A1 of the microplate 50 is observed. That is, in the stage coordinates, the center of observation (field of view) is the coordinates of S_W_A1.
  • the CPU 201 determines that the operation is a specific operation. Then, the CPU 201 determines the direction of the drag operation shown in FIG. That is, the CPU 201 determines the movement direction of the stage 20 from the drag direction with the start point of the drag as S_XY. In this embodiment, as shown in FIG. 42, division is performed into four divisions of X +, X ⁇ , Y +, and Y ⁇ with respect to the drag operable direction, centering on the start point of the drag. Then, the CPU 201 determines which direction the drag operation is.
  • the CPU 201 determines that the motorized stage 20 is driven in the direction in which the X coordinate becomes + with the Y direction fixed. If it is determined as X ⁇ , the CPU 201 determines that the motorized stage 20 is driven in the direction in which the X coordinate is + ⁇ with the Y direction fixed. When it is determined that the position is Y +, the CPU 201 determines that the motorized stage 20 is to be driven in the direction in which the X coordinate becomes + while being fixed in the X direction. When it is determined as Y-, the CPU 201 determines that the motorized stage 20 is driven in the direction in which the Y coordinate is fixed by fixing in the X direction. That is, in the case of the drag operation from the point a30 to the point a31, it is determined as X +, and thus the CPU 201 determines that driving is performed in a direction in which the Y direction is fixed and the X coordinate is +.
  • the CPU 201 When the movement direction and the movement distance are set, the CPU 201 performs control of moving the motorized stage 20 by the set movement distance in the set movement direction.
  • FIG. 43 is a diagram for describing the movement of the observation position in the X direction accompanying the driving of the motorized stage 20 in the present embodiment.
  • FIG. 41 it is assumed that the point of S_W_A1 in the well W_A1 of the microplate is observed. Then, as shown in FIG. 44, it is assumed that within the S_A_2 of the touch panel 207, an input of a distance LL10 is performed on the touch panel from the point a34 to the point a35. In this case, the CPU 201 determines that the specific operation is performed. Then, the CPU 201 determines the direction of the drag operation shown in FIG. In the case of the drag operation from the point a34 to the point a35, since it is determined to be Y-, the CPU 201 determines that driving is performed in a direction in which the X direction is fixed and the Y coordinate is-.
  • the CPU 201 controls the motorized stage 20 to move in the set movement direction by the set movement distance.
  • L_WY 9 mm driving is performed in the direction in which the X direction is fixed and the Y coordinate is ⁇ .
  • the movement of the observation position in the Y direction accompanying the driving of the motorized stage 20 will be described with reference to FIG.
  • FIG. 45 is a diagram for explaining the movement of the observation position in the Y direction accompanying the driving of the motorized stage 20 in the present embodiment.
  • the division is performed into four divisions X +, X-, Y +, and Y- around the start point of the drag, but division is performed into eight divisions. It is also good. That is, the division may be provided not only vertically and horizontally but also in the upper right diagonal direction, the lower right diagonal direction, the upper left diagonal direction, and the lower left diagonal direction centering on the start point of the drag. As a result, when the drag operation is performed in any of the oblique directions, the stage 20 may be moved by a distance corresponding to one well in the corresponding direction regardless of the length of the drag.
  • the stage 20 is moved in a predetermined direction according to the drag direction regardless of the drag length. It is possible to move one well distance. This enables blind operation even in a controller having a (narrow) limited operation area such as a touch panel.
  • the stage 20 when touch input is continuously performed within a specific time in a specific functional area on the touch panel 207, the stage 20 is moved by a distance of one well in a predetermined direction according to the functional area. Will be explained.
  • the same components, processes, and functions as those in the first, second, or third embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • the values of the interval L_WX in the X direction and the interval L_WY in the Y direction of the multiplate 50 are also the same as in the third embodiment, and thus the description thereof will be omitted.
  • FIG. 46 shows functional areas on the touch panel in the present embodiment. As shown in FIG. 46, the CPU 201 divides the display area of the touch panel 207 into functional areas SS_1 to SS_8.
  • FIG. 47 is a diagram for describing a case where continuous touch input is performed twice in the same place within a specific time T2 in a specific functional area SS_1 according to the present embodiment. If there is continuous touch input twice in the same place within the fixed time T2 in the functional area SS_1, the CPU 201 determines that the specific operation is performed. When it is determined that the operation is the specific operation, the CPU 201 changes the drag length based on the information of the X direction well interval L_WX and the Y direction well interval L_WY recorded in the non-volatile memory 24 of the microscope controller 2. Then, control is performed to move the stage 20 a distance of one well.
  • FIG. 48 is a diagram for explaining the movement of the observation position accompanying the driving of the motorized stage 20 in the present embodiment. It is assumed that the point of S_W_A1 in the well W_A1 of the microplate 50 is observed. That is, with regard to stage coordinates, center coordinates of observation (field of view) are coordinates of S_W_A1.
  • FIG. 49 shows an example of a microscope system operation control table used when two continuous touch inputs are made at the same place within a fixed time T2 for each functional area in the present embodiment.
  • the microscope system operation control table of FIG. 49 is stored in the ROM 202 or the non-volatile memory 204.
  • the microscope system operation control table includes, for example, data items of “ID” 41, “input area” 42, “touch panel input specifying operation” 43, “drive part” 44, and “control content” 45.
  • the “ID” 41 stores information for identifying a touch panel input specifying operation.
  • the “input area” 42 stores information for identifying the functional area in which the input has been made.
  • the “touch panel input specifying operation” 43 the aspect of the specific operation by the touch panel input performed on the touch panel 207 is stored.
  • the “drive part” 44 stores information for identifying a drive part to be a target of the operation of the specific operation by the touch panel input.
  • control content the content of control on the drive part which is the target of the operation of the specific operation by the touch panel input is stored.
  • the contents of the microscope system operation control table of FIG. 49 can be registered or changed on the setting screen displayed on the touch panel 207, for example.
  • FIG. 50 shows an operation flow of the microscope controller in the case where the touch operation is performed on the functional area SS_1 in the present embodiment.
  • CPU 201 determines that it is a specific operation (S801).
  • the XY directions may be upside down, right and left, up and down, left and right reversed, or the user may be able to arbitrarily switch.
  • the stage movement distance according to the specific operation is the movement for the well interval, but it may be an operation for moving to the center of the next well.
  • the stage 20 is moved by a distance of one well in a predetermined direction according to the function area. Can. This enables blind operation even in a controller having a (narrow) limited operation area such as a touch panel.
  • an upright microscope apparatus is adopted as the microscope apparatus 1.
  • the present invention is not limited to this, and an inverted microscope apparatus may be adopted.
  • the first to fourth embodiments may be applied to various systems such as a line device incorporating a microscope device.
  • the movement of the stage 20 has been described.
  • the movement of the stage 20 is not limited in terms of continuously driving the portion of the microscope by performing the drag operation on the touch panel 207.
  • the microscope controller having the touch panel is used.
  • the microscope controller can be replaced with a device having the same function as the touch panel.
  • the operability in the XY direction can be improved by continuously moving in the drag operation.
  • a controller having a (narrow) limited operation area such as a touch panel
  • the operability in the XY direction can be improved by continuously moving in the drag operation.
  • a touch operation or a drag operation on the touch panel 207 is performed using a plurality of fingers, and the same position on the touch panel is touched with one finger. It means doing drag operation with other fingers.
  • a touch operation is performed using two fingers as an example, the touch operation may be performed using three or more fingers.
  • inputting a plurality of fingers (points) to the touch panel 207 in order to cause the electric unit to perform a predetermined operation is referred to as a “specific operation”.
  • FIG. 51A and FIG. 51B show an operation flow of the microscope controller in the case where two specific operations are input to the functional area S_A_2 in the fifth embodiment.
  • the flows of FIG. 51A and FIG. 51B are obtained by adding the processing of S901 and S902 to the flow of FIG.
  • the CPU 201 After determining the function area at the position where the input is made in S311, the CPU 201 determines whether or not the specific operation is input by the two-point input to the touch panel 207 based on the detection result by the touch panel control unit 206 (S901) .
  • the CPU 201 If it is determined that the input operation is a specific operation by two-point input to the touch panel 207, the CPU 201 reads a microscope system operation control table to be described later from the ROM 202 or the non-volatile memory 204, and performs microscope control processing according to the specific operation. (S902). The process of S902 will be described in detail with reference to FIGS.
  • the CPU 201 when determining that it is not the input of the specific operation by the two-point input to the touch panel 207, the CPU 201 performs the microscope control process according to the functional area (S312).
  • FIG. 52A and FIG. 52B show an example of a microscope system operation control table used when two points are input to the touch panel in the fifth embodiment.
  • the microscope system operation control table is stored in the ROM 202 or the non-volatile memory 204.
  • the microscope system operation control table includes, for example, data of “ID” 541, “input area” 542, “two-point input specifying operation” 543, “drive part” 544, “control content” 545, “ON / OFF flag” 546 It consists of items.
  • the “ID” 541 stores information for identifying a two-point input specifying operation.
  • the “input area” 542 stores information for identifying the functional area in which the input has been made.
  • the “two-point input specifying operation” 543 the aspect of the specifying operation by the two-point input performed on the touch panel 207 is stored.
  • the “drive part” 544 stores information for identifying a drive part to be a target of the operation of the specific operation by two-point input.
  • the “control content” 545 stores the content of control on the drive part which is the target of the operation of the specific operation by two-point input.
  • the “ON / OFF flag” 546 stores information as to whether control of the two-point input specifying operation indicated by the corresponding “ID” 541 is enabled (ON) or disabled (OFF). For example, when a plurality of control contents exist for the two-point input specifying operation A to the touch panel 207, the “ON / OFF flag” 546 can be set to ON or OFF. As a result, for the same specific operation, it is possible to exclusively set the drive part to be the target of the specific operation.
  • the contents of the “ON / OFF flag” 546 are different between FIG. 52A and FIG. 52B.
  • the contents of the microscope system operation control table can be registered or changed on the setting screen displayed on the touch panel 207, for example.
  • FIG. 53 illustrates the case where one point input operation is performed on the functional area S_A_2 in order to move the stage 20 in the XY direction in (A) the fifth embodiment (enlarged functional area mode).
  • FIG. 6B is a view for explaining the movement of the stage 20 in the XY direction accompanying the operation and FIG.
  • a drag operation of distance XA_2 in the X direction from point a5 to point a6 to Y6 in the Y direction (operation of moving the touch panel to point a6 while touching the touch panel) is performed on functional area S_A_2 I suppose.
  • control is performed to move the stage 20 in the X direction from the coordinate X_0 by a distance XA_2 ⁇ la and to move the distance in the Y direction from the coordinate Y_0 by a distance YA_2 ⁇ la.
  • the position of the stage 20 is followed in accordance with the drag position.
  • the CPU 201 When two points are input to the touch panel 207 and the drag operation is performed, the CPU 201 performs control registered in the microscope system operation control table (FIG. 52A).
  • FIG. 52A an input function area, a specific operation, a drive part, control content and its ON / OFF flag corresponding to a two-point input operation to the touch panel 207 are recorded.
  • the stage movement coefficient s is multiplied by the movement distance by the drag operation by one-point input. That is, for the stage 20, control is performed to move the distance XA_2 ⁇ la ⁇ s from the coordinate X_0 to X_22 in the X direction and move the distance YA_2 ⁇ la ⁇ s from the coordinate Y_0 to Y_22 in the Y direction It will be.
  • the drag operation corresponding to the trajectory of the stage 20 is set such that the input on the left side is prioritized in the fifth embodiment. Therefore, in the case of FIG. 54, the stage 20 is driven corresponding to the dragging operation from the point a5 to the point a6.
  • the CPU 201 performs control registered in the microscope system operation control table (FIG. 52B).
  • the stage movement coefficient s is multiplied by the movement distance by the drag operation by one-point input. Similar to the operation of ID01, the stage 20 is moved in the X direction from the coordinate X_0 to the coordinate X_22 by a distance XA_2 ⁇ la ⁇ s, and in the Y direction from the coordinate Y_0 to the coordinate Y_22 by a distance YA_2 ⁇ la ⁇ s Control to move the distance is performed.
  • FIG. 56 is for explaining the case where a single-point input operation is performed on the functional area S_B_2 in order to move the stage 20 in the Z direction (A) in the fifth embodiment (enlarged functional area mode)
  • FIG. 7B is a view for explaining the movement of the stage 20 in the Z direction accompanying the operation.
  • FIG. 7B is a view for explaining the movement of the stage 20 in the Z direction accompanying the operation.
  • FIG. 7B is a view for explaining movement of the stage 20 in the XY direction accompanying the operation.
  • FIG. 59 that is, as shown in FIG. 59 (B), it is assumed that the 20 ⁇ objective lens 23 c is selected.
  • the microscope system According to the microscope system according to the fifth embodiment, it becomes possible to assign the input of the specific operation to the touch panel to the operation of the motorized stage according to the selected objective lens, and it is limited (narrow) like the touch panel Blind operation is also possible in a controller having an operation area.
  • the present invention is not limited to the above-described embodiments, and various improvements and modifications can be made without departing from the scope of the present invention.
  • an upright microscope apparatus is employed as the microscope apparatus 1, but instead, an inverted microscope apparatus may be employed.
  • the fifth embodiment may be applied to various systems such as a line device incorporating a microscope device.
  • the microscope apparatus of the present embodiment has been described as having a configuration in which a plurality of objective lenses are switched as needed, but of course the objective lens may have a zoom mechanism.
  • the movement of the stage 20 and the switching of the electric revolver are mainly described as the operation target of the specific operation by the multipoint input to the touch panel 207.
  • the present invention is not limited to the above in terms of driving a portion of the microscope by performing a specific operation by inputting a plurality of points to the touch panel 207.
  • As an operation target of the specific operation by the plural point input for example, switching of the light control amount of the light source, the optical magnification, the optical element turret, or the observation method may be used.
  • the operation target of the specific operation by the multipoint input to the touch panel 207 is movement of the stage 20, the moving speed may be changed according to the number of points to be input.
  • the microscope controller which has a touch panel in 5th Embodiment, it can replace with the device which has a function equivalent to a touch panel.
  • the speed or the distance at the time of stage movement may be changed according to the number of input points at the time of dragging.
  • the microscope system of the fifth embodiment even in a controller having a (narrow) limited operation area such as a touch panel, it is possible to improve operability in the XY direction such as continuously moving by drag operation. it can. Furthermore, it becomes possible to improve the operability of other microscopes including the stage by assigning to specific operations according to the microscope-specific objective lens.
  • microscope apparatus 1 microscope apparatus 2 microscope controller 6 light source for transmission illumination 7 collector lens 8 filter unit for transmission 9 transmission field stop 10 transmission aperture stop 11 condenser optical element unit 12 top lens unit 13 light source for epi-illumination 14 collector lens 15 filter unit for epi-reflection 16 Incidence shutter 17 Incidence field stop 18 Incidence aperture stop 19 Observation body 20 Motorized stage 21 Stage XY drive control unit 21a XY motor 22 Stage Z drive control unit 22a Z motor 23 Objective lens 24 Revolver 25 Cube turret 26 Eyepiece 27 Beam splitter 28 Polarizer 29 DIC prism 30 Analyzer 31 Microscope control unit 35 (35a, 35b) Fluorescent cube 201 CPU 202 ROM 203 RAM 204 non-volatile memory 205 communication control unit 206 touch panel control unit 207 touch panel 209 restriction frame

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microscoopes, Condenser (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

 本発明では、タッチパネルに対してステージ移動操作を行う場合のステージ移動の操作性の向上させる顕微鏡コントローラを提供する。顕微鏡システムを構成する各電動ユニットの動作を制御するための操作を行う顕微鏡コントローラは、外部からの物理的接触による入力を受け付けると共に、表示機能を有するタッチパネル部と、前記電動ユニットを操作するための画像を前記タッチパネル部の所定の表示領域に割り当てることにより該表示領域を機能エリアとして設定すると共に、該機能エリアに対して行われた入力が検出された場合、該機能エリアに対応する電動ユニットに対する該接触動作に応じて、該電動ユニットを制御する制御指示信号を生成する制御部と、該電動ユニットの動作を制御する外部装置に対して、前記制御指示信号を送信する通信制御部と、を備えることにより、上記課題の解決を図る。

Description

顕微鏡コントローラ及び該顕微鏡コントローラを有する顕微鏡システム
 本発明は、複数の対物レンズを有し、微小な試料の拡大観察を行なう、各種光学部材がモータによって駆動される顕微鏡システムに関する。
 顕微鏡装置は工業分野を始め、生物分野における研究や検査等において広く利用されている。このような顕微鏡装置を使用して検査を行う場合には、一般に拡大倍率の異なる複数の対物レンズを有する顕微鏡装置において、対物レンズからの観察光路と直交する平面内で観察試料を移動できる電動ステージを操作することにより、観察、検査を行っている。これらの顕微鏡によって標本を観察する際には、顕微鏡を構成する各種の構成ユニット(例えば、各種照明、開口絞り、視野絞り、レボルバ、自動焦準機構、レンズやフィルター等の光学素子切り替え機構など)をそれぞれ観察条件に応じて操作する必要がある。
 これらの構成ユニットを操作する手法として、例えば、次の方法がある。顕微鏡本体に操作装置を接続し、この操作装置に対する操作に応じて各構成ユニットを駆動し、操作装置での表示によって各構成ユニットの駆動状態を把握する方法が一般的に知られている。すなわち、顕微鏡に専用のコントローラやPC(パーソナル・コンピュータ)などの顕微鏡コントローラを、通信ケーブルを介して顕微鏡本体と接続する。そして、顕微鏡コントローラの操作に応じて顕微鏡本体との間でコマンドの送受を行い、各構成ユニットの駆動制御が各種設定を行う。
国際公開第WO96/18924号 特開2008-292578号公報
 近年、顕微鏡コントローラは、数々の操作に対応するためにタッチパネル機能を有するものが登場し始めている。タッチパネル機能を有する顕微鏡コントローラとは、タッチパネル上に任意のボタン領域を配置し、その領域を押すことで顕微鏡の操作を行うものである。
 顕微鏡観察においては、タッチパネル上のボタンを操作するために、接眼レンズから一旦目を離してボタン位置を確認しなければならない。そのため、ブラインドタッチにより操作を行うためには操作技術が求められる。
 しかしながら、このようなタッチパネルを用いた顕微鏡コントローラの操作画面に、PCのディスプレイと同等の操作画面をそのまま配置することは、次の理由から困難である。まず、タッチパネルはPCのディスプレイと異なり、操作画面の表示操作領域が狭い(小さな)。そのため、例えば連続的に電動ユニットを動かすようなXY方向、及びZ方向の操作エリアをそのままタッチパネル上に配置すると操作ストロークが短くなってしまい、操作性が損なわれてしまうという問題があった。
 また、従来のタッチパネルを用いた顕微鏡コントローラでは、ブラインドタッチにより顕微鏡操作を行うことは考慮されておらず、操作性が大きく損なわれているという問題があった。さらに、マルチウェルプレート観察において、次のウェルへの移動における操作性についても考慮されていなかった。
 上記課題に鑑み、本発明では、タッチパネルに対してステージ移動操作を行う場合のステージ移動の操作性の向上させる顕微鏡コントローラ及びその顕微鏡コントローラを有する顕微鏡システムを提供する。また、本発明では、タッチパネルを用いて電動ユニットの操作を行う場合のその操作性の向上させる顕微鏡コントローラ及びその顕微鏡コントローラを有する顕微鏡システムを提供する。
 本発明にかかる、顕微鏡システムで用いられる電動ステージの動作を制御するための操作を行う顕微鏡コントローラは、外部からの物理的接触による入力を受け付けると共に、表示機能を有するタッチパネル部と、前記電動ステージを操作するためのステージ操作機能を前記タッチパネル部の所定の表示領域に設定する機能設定部と、前記ステージ操作機能が設定された表示領域である操作表示領域に対して行われた前記物理的接触による入力を検出する入力検出部と、前記検出された入力結果に応じて、前記電動ステージの移動態様を決定し、該決定した移動態様に基づいて、前記電動ステージを制御する制御指示信号を生成する決定部と、該電動ステージの動作を制御する外部装置に対して、前記制御指示信号を送信する通信制御部と、を備える。
 また、顕微鏡システムで用いられる電動ステージの動作を制御する処理をコンピュータに実行させる電動ステージ動作制御プログラムが格納されたコンピュータ読取可能記憶媒体は、外部からの物理的接触による入力を受け付けると共に表示機能を有するタッチパネル部の所定の表示領域に対して、前記電動ステージを操作するためのステージ操作機能を設定する機能設定処理と、前記ステージ操作機能が設定された表示領域である操作表示領域に対して行われた前記物理的接触による入力に応じて、前記電動ステージの移動態様を決定し、該決定した移動態様に基づいて、前記電動ステージを制御する制御指示信号を生成する決定処理と、該電動ステージの動作を制御する外部装置に対して、前記制御指示信号を送信する通信制御処理と、をコンピュータに実行させる。
 顕微鏡システムで用いられる電動ステージの動作を制御する電動ステージ動作制御方法は、外部からの物理的接触による入力を受け付けると共に表示機能を有するタッチパネル部の所定の表示領域に対して、前記電動ステージを操作するためのステージ操作機能を設定し、前記ステージ操作機能が設定された表示領域である操作表示領域に対して行われた前記物理的接触による入力を検出し、前記検出された入力結果に応じて、前記電動ステージの移動態様を決定し、該決定した移動態様に基づいて、前記電動ステージを制御する制御指示信号を生成し、該電動ステージの動作を制御する外部装置に対して、前記制御指示信号を送信する。
 本発明に係る顕微鏡システムで用いられる電動ユニットの動作を制御するための操作を行う顕微鏡コントローラは、外部からの物理的接触による入力を受け付けると共に、表示機能を有するタッチパネル部と、前記電動ユニットを操作するための操作機能を前記タッチパネル部の所定の表示領域に設定する機能設定部と、前記操作機能が設定された表示領域である操作表示領域に対して行われた前記物理的接触による入力を検出する入力検出部と、前記検出された入力結果に基づいて、前記操作表示領域へ入力された位置を示す入力点の数及び該入力点の移動態様を判定し、前記判定された前記入力点の数に応じて、前記電動ユニットの動作態様を決定し、該決定した移動態様に基づいて、前記電動ユニットの駆動を制御する指示を行うための制御指示信号を生成する制御部と、該電動ユニットの動作を制御する外部装置に対して、前記制御指示信号を送信する通信制御部と、を備える。
 また、本発明に係る、顕微鏡システムで用いられる電動ユニットの動作を制御するための操作を行うコンピュータであって、外部からの物理的接触による入力を受け付けると共に、表示機能を有するタッチパネル部と、前記電動ユニットを操作するための操作機能を前記タッチパネル部の所定の表示領域に設定する機能設定部と、前記操作機能が設定された表示領域である操作表示領域に対して行われた前記物理的接触による入力を検出する入力検出部と、を備える該コンピュータに、前記電動ユニットの動作を制御させる処理を実行させる顕微鏡制御プログラムが格納されたコンピュータ読取可能記憶媒体は、前記検出された入力結果に基づいて、前記操作表示領域に対して前記入力された位置を示す入力点の数及び該入力点の移動態様を判定する判定処理と、前記判定された前記入力点の数に応じて、前記電動ユニットの動作態様を決定する決定処理と、該決定した移動態様に基づいて、前記電動ユニットの駆動を制御する指示を行うための制御指示信号を生成する生成処理と、該電動ユニットの動作を制御する外部装置に対して、前記制御指示信号を送信する送信処理と、をコンピュータに実行させる。
 また、本発明に係る、顕微鏡システムで用いられる電動ユニットの動作を制御するための操作を行う顕微鏡コントローラであって、外部からの物理的接触による入力を受け付けると共に、表示機能を有するタッチパネル部と、前記電動ユニットを操作するための操作機能を前記タッチパネル部の所定の表示領域に設定する機能設定部と、前記操作機能が設定された表示領域である操作表示領域に対して行われた前記物理的接触による入力を検出する入力検出部と、を備える該顕微鏡コントローラに、前記電動ユニットの動作を制御させる処理を実行させる顕微鏡制御方法は、前記検出された入力結果に基づいて、前記操作表示領域に対して前記入力された位置を示す入力点の数及び該入力点の移動態様を判定し、前記判定された前記入力点の数に応じて、前記電動ユニットの動作態様を決定し、該決定した移動態様に基づいて、前記電動ユニットの駆動を制御する指示を行うための制御指示信号を生成し、該電動ユニットの動作を制御する外部装置に対して、前記制御指示信号を送信する。
 本発明によれば、タッチパネルに対してステージ移動操作を行う場合のステージ移動の操作性の向上させることができる。また、本発明によれば、タッチパネルを用いて電動ユニットの操作を行う場合のその操作性の向上させることができる。
第1の施形態における顕微鏡システムの構成例を示す。 第1の実施形態における顕微鏡コントローラの外観上面図を示す。 第1の実施形態における顕微鏡コントローラ2の内部構成の概要を示す。 第1の実施形態におけるタッチパネルに表示される画面の一例を示す。 第1の実施形態における機能が割り当てられた機能エリアへのタッチ操作に伴う顕微鏡コントローラ2の制御フローを示す。 第1の実施形態(通常機能エリアモード、通常移動モード)における機能エリアS_Aに対してドラッグ動作を行った場合の顕微鏡コントローラの動作フローを示す。 第1の実施形態(通常機能エリアモード、通常移動モード)における、(A)ステージ20をX-Y方向へ移動させるための機能が割り当てられた機能エリアS_Aについての操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図(その1)である。 第1の実施形態(通常機能エリアモード、通常移動モード)における、(A)ステージ20をX-Y方向へ移動させるための機能が割り当てられた機能エリアS_Aについての操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図(その2)である。 第1の実施形態(通常機能エリアモード、通常移動モード)における、(A)ステージ20をX-Y方向へ移動させるための機能が割り当てられた機能エリアS_Aについての操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図(その3)である。 第1の実施形態(通常機能エリアモード、通常移動モード)における、(A)ステージ20をZ方向へ移動させるための機能が割り当てられた機能エリアS_Bについての操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図(その1)である。 第1の実施形態(通常機能エリアモード、通常移動モード)における、(A)ステージ20をZ方向へ移動させるための機能が割り当てられた機能エリアS_Bについての操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図(その2)である。 第1の実施形態(通常機能エリアモード、通常移動モード)における、(A)ステージ20をZ方向へ移動させるための機能が割り当てられた機能エリアS_Bについての操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図(その3)である。 第1の実施形態(通常機能エリアモード)における、(A)電動レボルバ24による対物レンズの切替操作をするための機能が割り当てられた機能エリアS_Cについての操作を説明するための図と、(B)その操作に伴う電動レボルバ24に配置された対物レンズの位置を説明するための図(その1)である。 第1の実施形態(通常機能エリアモード)における、(A)電動レボルバ24による対物レンズの切替操作をするための機能が割り当てられた機能エリアS_Cについての操作を説明するための図と、(B)その操作に伴う電動レボルバ24に配置された対物レンズの位置を説明するための図(その2)である。 第1の実施形態における、機能エリアS_Eについての操作を説明するための図(その1)である。 第1の実施形態における、機能エリアS_Eについての操作を説明するための図(その2)である。 第1の実施形態(拡大機能エリアモード)における機能が割り当てられた機能エリアへのタッチ操作に伴う顕微鏡コントローラ2の制御フローを示す。 第1の実施形態(拡大機能エリアモード)における機能エリアS_A_2及び機能エリアS_B_2(実施例1)を示す。 第1の実施形態(拡大機能エリアモード)における機能エリアS_A_2及び機能エリアS_B_2(実施例2)を示す。 第1の実施形態(拡大機能エリアモード、通常移動モード)における(A)ステージ20をX-Y方向へ移動させるための機能が割り当てられた機能エリアS_A_2についての操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図(その1)である。 第1の実施形態(拡大機能エリアモード、通常移動モード)における(A)ステージ20をX-Y方向へ移動させるための機能が割り当てられた機能エリアS_A_2についての操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図(その2)である。 第1の実施形態(連続移動モード)における、機能エリアS_A_2に対してドラッグ動作を行った場合の顕微鏡コントローラの動作フローを示す。 第1の実施形態の連続移動モードにおける、(A)ステージ20をX-Y方向へ移動させるための機能が割り当てられた機能エリアS_A_2についての操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図(その1)である。 第1の実施形態の連続移動モードにおける、(A)ステージ20をX-Y方向へ移動させるための機能が割り当てられた機能エリアS_A_2についての操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図(その2)である。 第1の実施形態の連続移動モードにおける、(A)ステージ20をX-Y方向へ移動させるための機能が割り当てられた機能エリアS_A_2についての操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図(その3)である。 第1の実施形態(連続移動モード)における対物レンズ毎に設定された連続移動速度が格納された連続移動速度テーブルの一例を示す。 第1の実施形態(拡大機能エリアモード、連続移動モード)における、(A)機能エリアS_A_21の範囲が機能エリアS_B_2の範囲を含むように設定した場合におけるタッチ操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図(その1)である。 第1の実施形態(拡大機能エリアモード、連続移動モード)における、(A)機能エリアS_A_21の範囲が機能エリアS_B_2の範囲を含むように設定した場合におけるタッチ操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図(その2)である。 第1の実施形態における、通常機能エリアモードで、連続移動モードを実現する場合の例を示す。 第2の実施形態における移動速度・移動距離テーブルを示す。 第2の実施形態における機能エリアS_A_2に対してタッチ操作を行った場合の顕微鏡コントローラの動作フローを示す。 第2の実施形態(拡大機能エリアモード)における、(A)ドラッグの長さに関わらず、ステージ20をXY方向(図面に対して左右方向)へ一定距離移動させる操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向(図面に対して左右方向)への移動を説明するための図である。 第2の実施形態(拡大機能エリアモード)における、(A)ドラッグの長さに関わらず、ステージ20をX-Y方向(図面に対して上下方向)へ一定距離移動させる操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向(図面に対して上下方向)への移動を説明するための図である。 第2の実施形態(通常機能エリアモード)における、(A)ドラッグの長さに関わらず、ステージ20をXY方向させる操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図である。 第3の実施形態における顕微鏡システムの構成例を示す。 第3の実施形態におけるマルチプレート50を示す。 第3の実施形態におけるウェル間隔入力画面を示す。 第3の実施形態におけるウェル間隔設定動作フローを示す。 第3の実施形態における機能エリアS_A_2に対してタッチ操作を行った場合の顕微鏡コントローラの動作フローを示す。 第3の実施形態(拡大機能エリアモード)における、ドラッグの長さに関わらず、ステージ20をXY方向(図面に対して左右方向)へウェル1つ分距離移動させる操作を説明するための図である。 図36のマルチプレート50を拡大した図である。 第3の実施形態におけるドラック動作の方向の判別を説明するための図である。 第3の実施形態における電動ステージ20の駆動に伴う観察位置のX方向への移動を説明するための図である。 第3の実施形態(拡大機能エリアモード)における、ドラッグの長さに関わらず、ステージ20をXY方向(図面に対して上下方向)へウェル1つ分距離移動させる操作を説明するための図である。 第3の実施形態における、タッチパネル207のS_A_2内において、地点a34から地点a35までタッチパネル上でドラック速度がSV以下で一定距離SL未満の距離である距離LL10の入力がされたことを説明するための図である。 第4の実施形態におけるタッチパネル上の機能エリアを示す。 第4の実施形態における、特定の機能エリアSS_1内において一定時間T2以内に同じ場所に2回連続タッチ入力あった場合について説明を行うための図である。 第4の実施形態における電動ステージ20の駆動に伴う観察位置の移動を説明するための図である。 第4の実施形態における各機能エリアに対して一定時間T2以内に同じ場所に2回連続タッチ入力があった場合に用いられる顕微鏡システム動作制御テーブルの一例を示す。 第4の実施形態における機能エリアSS_1に対してタッチ操作を行った場合の顕微鏡コントローラの動作フローを示す。 第5の実施形態における、機能エリアS_A_2に対して2点の特定動作の入力を行った場合の顕微鏡コントローラの動作フロー(その1)を示す。 第5の実施形態における、機能エリアS_A_2に対して2点の特定動作の入力を行った場合の顕微鏡コントローラの動作フロー(その2)を示す。 第5の実施形態におけるタッチパネルへ2点入力がされた場合に用いられる顕微鏡システム動作制御テーブルの一例(その1)を示す。 第5の実施形態におけるタッチパネルへ2点入力がされた場合に用いられる顕微鏡システム動作制御テーブルの一例(その2)を示す。 第5の実施形態(拡大機能エリアモード)における(A)ステージ20をX-Y方向へ移動させるために、機能エリアS_A_2に対して、1点入力操作を行った場合について説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図である。 第5の実施形態(拡大機能エリアモード)における(A)ステージ20をX-Y方向へ移動させるために、機能エリアS_A_2に対して、2点入力操作を行った場合について説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図(その1)である。 第5の実施形態(拡大機能エリアモード)における(A)ステージ20をX-Y方向へ移動させるために、機能エリアS_A_2に対して、2点入力操作を行った場合について説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図(その2)である。 第5の実施形態(拡大機能エリアモード)における(A)ステージ20をZ方向へ移動させるために、機能エリアS_B_2に対して、1点入力操作を行った場合について説明するための図と、(B)その操作に伴うステージ20のZ方向への移動を説明するための図である。 第5の実施形態(拡大機能エリアモード)における(A)ステージ20をZ方向へ移動させるために、機能エリアS_A_2に対して、2点入力操作を行った場合について説明するための図と、(B)その操作に伴うステージ20のZ方向への移動を説明するための図(その1)である。 第5の実施形態(拡大機能エリアモード)における(A)ステージ20をZ方向へ移動させるために、機能エリアS_A_2に対して、2点入力操作を行った場合について説明するための図と、(B)その操作に伴うステージ20のZ方向への移動を説明するための図(その2)である。 第5の実施形態(拡大機能エリアモード)における(A)電動レボルバの切換えのために、機能エリアS_A_2に対して、2点入力操作を行った場合について説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図(その1)である。 第5の実施形態(拡大機能エリアモード)における(A)電動レボルバの切換えのために、機能エリアS_A_2に対して、2点入力操作を行った場合について説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図(その2)である。 第5の実施形態(拡大機能エリアモード)における(A)電動レボルバの切換えのために、機能エリアS_A_2に対して、2点入力操作を行った場合について説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図(その3)である。
 本発明の実施形態における顕微鏡コントローラは、顕微鏡システムで用いられる電動ステージの動作を制御するための操作を行う。顕微鏡コントローラは、タッチパネル部、機能設定部、入力検出部、決定部、通信制御部を備える。
 タッチパネル部は、外部からの物理的接触による入力を受け付けると共に、表示機能を有する。タッチパネル部は、例えば本実施形態で言えば、タッチパネル部207に相当する。
 機能設定部は、前記電動ステージを操作するためのステージ操作機能を前記タッチパネル部の所定の表示領域に設定する。機能設定部は、例えば本実施形態で言えば、CPU201に相当する。
 入力検出部は、前記ステージ操作機能が設定された表示領域である操作表示領域に対して行われた前記物理的接触による入力を検出する。入力検出部は、例えば本実施形態で言えば、タッチパネル制御部206に相当する。
 決定部は、前記検出された入力結果に応じて、前記電動ステージの移動態様を決定し、該決定した移動態様に基づいて、前記電動ステージを制御する制御指示信号を生成する。機能設定部は、例えば本実施形態で言えば、CPU201に相当する。
 通信制御部は、該電動ステージの動作を制御する外部装置に対して、前記制御指示信号を送信する。通信制御部は、例えば本実施形態で言えば、通信制御部205に相当する。
 このように構成することにより、ユーザーの顕微鏡の操作性の向上させることができる。
 また、前記決定部は、前記検出された入力結果に基づいて、前記操作表示領域における前記入力の位置が所定方向に連続して変化した後、所定の位置において前記入力が継続すると判定した場合、前記電動ステージを前記所定方向へ継続的に移動させる。
 このように構成することにより、ドラッグ(drag)動作による入力の終了点が所定の領域内である場合、その終了点において一定時間入力が継続する間、そのドラッグ停止直前でのその終了点へアプローチする方向と同方向で、所定の速度でステージの移動を継続させることができる。
 また、前記決定部は、前記電動ステージを前記所定方向へ継続的に移動させる場合、前記顕微鏡システムの観察光路に挿入された対物レンズの倍率に応じて、前記電動ステージの移動速度を制御する。
 このように構成することにより、選択された対物レンズの倍率に応じて、電動ステージの移動速度を制御することができる。
 また、前記決定部は、前記電動ステージを前記所定方向へ継続的に移動させる場合、前記操作表示領域における前記所定方向への前記入力の位置の連続的な変化が終了する直前の、該所定方向と同方向、かつ該入力の位置の連続的な変化に対応して移動する前記電動ステージの移動速度と同じ移動速度で、該電動ステージを移動させる。
 このように構成することにより、ドラッグ動作による入力の終了点が所定の領域内である場合、その終了点において一定時間入力が継続する間、そのドラッグ停止直前でのその終了点へアプローチする方向と同方向で、それまでのステージ移動速度を維持しながら、ステージの移動を継続させることができる。
 また、前記機能設定部は、前記所定の位置を含む第1の表示領域と、該第1の表示領域を除く第2の表示領域とを設定することができる。
 このように構成することにより、ドラッグ動作による入力の終了点が第1の領域内である場合、その終了点において一定時間入力が継続する間、そのドラッグ停止直前でのその終了点へアプローチする方向と同方向で、所定の速度でステージの移動を継続させることができる。
 また、前記決定部は、前記検出された入力結果に基づいて、前記操作表示領域における前記入力の位置が所定速度以上で、かつ所定の距離連続して変化したと判定した場合、前記電動ステージを前記所定量移動させる。
 このように構成することにより、タッチパネルに対して、所定速度で、所定の移動距離の入力(タッチ操作)がされた場合、ドラッグの長さに関わらず、電動ステージをXY方向へ一定距離移動させることができる。
 また、前記決定部は、前記顕微鏡システムの観察光路に挿入された対物レンズの倍率に応じて設定された移動量に基づいて、前記電動ステージを移動させる。
 このように構成することにより、選択された対物レンズの倍率に応じて、電動ステージの一定距離だけ移動させることができる。
 また、顕微鏡システムが前記顕微鏡コントローラを備えていてもよい。
 また、前記電動ステージは、複数のウェルを有するマイクロプレートを搭載可能である。このとき、前記顕微鏡コントローラは、さらに、間隔格納部を含む。間隔格納部は、前記タッチパネル部に対して、前記マイクロプレートの各ウェル間の間隔が入力された場合、該各ウェル間の間隔を格納する。このとき、前記決定部は、前記検出された入力結果に基づいて、前記操作表示領域における前記入力の位置が所定速度以上で、かつ所定の距離連続して変化したと判定した場合、前記間隔格納部に格納された各ウェル間の距離に基づいて、前記電動ステージを移動させる。ここで、前記操作表示領域における前記入力の位置が所定速度以上で、かつ所定の距離連続して変化した場合とは、前記タッチパネル部に対して一定速度以上かつ一定距離以下のドラック動作がなされた場合である。
 このように構成することにより、タッチパネル207上でドラック速度がSV以上で、一定距離SL未満の距離のドラッグ動作があった場合、ドラックの長さに関わらず、ドラッグ方向に応じて、ステージ20を所定方向にウェル1つ分距離移動させることができる。
 また、前記電動ステージは、複数のウェルを有するマイクロプレートを搭載可能である。このとき、前記顕微鏡コントローラは、さらに、間隔格納部を含む。間隔格納部は、前記タッチパネル部に対して、前記マイクロプレートの各ウェル間の間隔が入力された場合、該各ウェル間の間隔を格納する。このとき、前記決定部は、前記検出された入力結果に基づいて、前記操作表示領域における前記入力が、所定時間内で、所定の領域内で連続してなされたと判定した場合、前記間隔格納部に格納された各ウェル間の距離に基づいて、前記電動ステージを移動させる。
 このように構成することにより、タッチパネル207上の特定の機能エリア内において一定時間内に連続でタッチ入力があった場合は、その機能エリアに応じて、ステージ20を所定方向にウェル1つ分距離移動させることができる。
 また、本発明の別の実施形態では、タッチパネルに対して、1点による入力を行った場合と、同時に2点以上による入力を行った場合とで、電動ユニットの動作の制御を変更する顕微鏡システムについて説明する。その別の実施形態に係る顕微鏡システムで用いられる電動ユニットの動作を制御するための操作を行う顕微鏡コントローラは、タッチパネル部、機能設定部、入力検出部、制御部、通信制御部を備える。
 タッチパネル部は、外部からの物理的接触による入力を受け付けると共に、表示機能を有する。タッチパネル部は、例えば本実施形態で言えば、タッチパネル207に相当する。
 機能設定部は、前記電動ユニットを操作するための操作機能を前記タッチパネル部の所定の表示領域に設定する。機能設定部は、例えば本実施形態で言えば、CPU201に相当する。
 入力検出部は、前記操作機能が設定された表示領域である操作表示領域に対して行われた前記物理的接触による入力を検出する。入力検出部は、例えば本実施形態で言えば、タッチパネル制御部206に相当する。
 制御部は、前記検出された入力結果に基づいて、前記操作表示領域に対して前記入力された位置を示す入力点の数及び該入力点の移動態様を判定し、前記判定された前記入力点の数に応じて、前記電動ユニットの動作態様を決定し、該決定した移動態様に基づいて、前記電動ユニットの駆動を制御する指示を行うための制御指示信号を生成する。制御部は、例えば本実施形態で言えば、CPU201に相当する。
 通信制御部は、該電動ユニットの動作を制御する外部装置に対して、前記制御指示信号を送信する。通信制御部は、例えば本実施形態で言えば、通信制御部205に相当する。
 このように構成することにより、タッチパネルを用いて電動ユニットの操作を行う場合のその操作性の向上させることができる。
 また、前記電動ユニットが電動ステージであるとする。そして、前記操作表示領域に対して該電動ステージを移動させる操作機能が設定されている状態で、操作表示領域に対して該電動ステージを移動させる操作が行われたとする。このとき、前記制御部は、前記判定の結果、前記入力点が1点の場合と、所定の入力点が検出されている際に該所定の入力点以外の入力点が1点以上検出されている場合とで、前記電動ステージの移動距離を変更することができる。
 このように構成することにより、タッチパネルに対して同時に入力された入力点の数に応じて、電動ステージの移動距離を変更することができる。
 また、前記制御部は、前記判定の結果、前記操作表示領域において前記入力点が所定方向に連続して変化した際において、該入力点が1点の場合と、所定の入力点が検出されているときに該所定の入力点以外の入力点が1点以上検出されている場合とで、前記電動ステージの移動距離を変更することができる。
 このように構成することにより、タッチパネルに対して1つの入力点によるドラッグ動作か、または2つ以上の入力点によるドラッグ動作かに応じて、電動ステージの移動距離を変更することができる。
 また、前記制御部は、前記判定の結果、前記操作表示領域において、1点による入力点が所定方向に連続して変化した場合と、一方の入力点の位置が不変である間に他方の入力点が所定方向に連続して変化した場合とで、前記電動ステージの移動距離を変更することができる。
 このように構成することにより、タッチパネルに対して1つの入力点をドラッグ動作させたか、または一方の入力点を固定したまま他方の入力点をドラッグ動作させたかに応じて、電動ステージの移動距離を変更することができる。
 また、前記制御部は、前記判定結果より、前記操作表示領域に入力された入力点の数に応じて、前記操作表示領域に設定された操作機能の対象となる第1の電動ユニットとは異なる第2の電動ユニットを制御の対象とすることもできる。
 より具体的には、前記第2の電動ユニットは、前記電動ステージを光軸方向に移動させる光軸方向駆動部、光源装置、電動レボルバ、光学素子ターレット、または検鏡方法を制御する顕微鏡制御装置である。このとき、前記制御部は、前記光軸方向駆動部により光軸方向への前記電動ステージの移動、前記光源装置により調光量の調整、前記電動レボルバにより対物レンズの切換え、前記光学素子ターレットによる光学素子の切換え、前記顕微鏡制御装置により検鏡方法の切換えのいずれかを実行させるための前記制御指示信号を生成する。
 このように構成することにより、電動ステージ以外の電動ユニットについても、タッチパネルに対して同時に入力された入力点の数に応じて、その動作を制御することができる。
 また、顕微鏡システムが前記顕微鏡コントローラを備えていてもよい。
 以下に発明の実施形態について詳述する。
 <第1の実施形態>
 本実施形態では、タッチパネルへのドラッグ動作による入力の終了点が所定の領域内である場合、その終了点において一定時間入力が継続する間、そのドラッグ停止直前でのその終了点へアプローチする方向と同方向で、所定の速度でステージの移動を継続させることができる顕微鏡コントローラについて説明する。
 図1は、本実施形態における顕微鏡システムの構成例を示す。顕微鏡装置1には、透過観察用光学系として、透過照明用光源6と、透過照明用光源6の照明光を集光するコレクタレンズ7と、透過用フィルタユニット8と、透過視野絞り9と、透過開口絞り10と、コンデンサ光学素子ユニット11と、トップレンズユニット12とが備えられている。
 また、顕微鏡装置1には、落射観察光学系として、落射照明用光源13と、コレクタレンズ14と、落射用フィルタユニット15と、落射シャッタ16と、落射視野絞り17と、落射開口絞り18とが備えられている。
 また、透過観察用光学系の光路と落射観察用光学系の光路とが重なる観察光路上には、標本19が載置される電動ステージ20が備えられている。電動ステージ20は、上下(Z)方向、左右(XY)方向の各方向に移動させることができる。
 電動ステージ20の移動の制御は、ステージX-Y駆動制御部21とステージZ駆動制御部22とによって行われる。ステージX-Y駆動制御部21は、X-Yモータ21aの駆動を制御することにより、ステージ20をX方向及びY方向へ移動させる。ステージZ駆動制御部22は、Zモータ22aの駆動を制御することにより、ステージ20をZ方向へ移動させる。
 なお、電動ステージ20は原点センサによる原点検出機能(不図示)を有している。そのため、電動ステージ20に載置した標本19の座標検出及び座標指定による移動制御を行うことができる。
 また、観察光路上には、レボルバ24、キューブターレット25と、ビームスプリッタ27とが備えられている。
 レボルバ24には、複数の対物レンズ23a,23b,・・・(以下、必要に応じて「対物レンズ23」と総称する)が装着されている。レボルバ24を回転させることにより、複数の対物レンズ23から観察に使用する対物レンズを選択することができる。
 蛍光キューブA(35a)、蛍光キューブB(35b)、蛍光キューブC(図示せず)はそれぞれ、励起フィルター、ダイクロックミラー及び各蛍光観察波長に対応した吸収フィルターを有する。キューブターレット25により、蛍光キューブA(35a)、蛍光キューブB(35b)、蛍光キューブC(図示せず)・・・のうちいずれかに切り換えて、光路上に配置することができる。
 ビームスプリッタ27により、観察光路が接眼レンズ26側とビデオカメラ側(図示せず)とに分岐されている。
 更に、微分干渉観察用のポラライザー28、DIC(DifferentialInterference Contrast)プリズム29、及びアナライザー30は観察光路に挿入可能となっている。
 なお、これらの各ユニットは電動化されており、その動作は後述する顕微鏡制御部31によって制御される。
 顕微鏡制御部31は、顕微鏡コントローラ2に接続されている。顕微鏡制御部31は、顕微鏡装置1全体の動作を制御する機能を有する。顕微鏡制御部31は、顕微鏡コントローラ2からの制御信号またはコマンドに応じ、検鏡法の変更、透過照明用光源6及び落射照明用光源13の調光を行う。さらに、顕微鏡制御部31は、顕微鏡装置1による現在の検鏡状態を顕微鏡コントローラ2へ送出する機能を有している。また、顕微鏡制御部31はステージX-Y駆動制御部21及びステージZ駆動制御部22にも接続されている。このため、顕微鏡制御部31を介して、電動ステージ20の制御も顕微鏡コントローラ2により行うことができる。
 図2は、本実施形態における顕微鏡コントローラの外観上面図を示す。顕微鏡コントローラ2は、ユーザーが顕微鏡1の操作の入力を行うためのタッチパネル207を有するコントローラである。
 タッチパネル207上の所定のエリアに、顕微鏡システム1を操作するための所定の属性が設定されている。ユーザーは所定の属性が設定された機能エリア(タッチパネル上に表示されたGUI(Graphical User Interface)ボタン等)を操作することで、各種顕微鏡の操作が可能な構成となっている。
 タッチパネル207は、表示装置としての機能と入力装置としての機能とを兼ね備えている。そして、タッチパネル207は、顕微鏡コントローラ2の外装208に嵌め込まれている。
 またタッチパネル207は、外装208の凹部の底に取り付けられている。タッチパネル207の面と外装208の外表面の間には、段差によって形成された規制枠209が設けられている。規制枠209に沿って指を移動させたとき、規制枠209がガイドの役目を果たす。
 図3は、本実施形態における顕微鏡コントローラ2の内部構成の概要を示す。顕微鏡コントローラ2は、CPU(Central Processing Unit)201、RAM(Random Access Memory)202、ROM(Read Only Memory)203、不揮発性メモリ204、通信制御部205、タッチパネル制御部206、及びタッチパネル207を備えている。これらの構成要素間では、CPU201の管理の下でバスを介して各種のデータを相互に授受することができる。
 CPU201は、顕微鏡コントローラ2全体の動作制御を行うものである。CPU201が制御プログラムを実行する際に、RAM202は、作業用記憶領域として利用されると共に、各種のデータを一時的に記憶しておくメモリである。ROM203には、CPU201がコントローラ2の動作制御を行うための制御プログラムが予め格納されている。なお、顕微鏡装置1を制御するためのアプリケーションソフトウェアもこの制御プログラムの一部である。
 不揮発性メモリ204には、タッチパネル207に、操作ボタン表示(アイコンボタン表示等)を含めた顕微鏡1を操作するための所定の属性が設定された複数の機能エリアの情報(機能エリア設定情報)が予め格納されている。具体的には、機能エリア設定情報は、機能エリアの範囲を示すタッチパネル上の座標情報と、顕微鏡システムを構成する所定の電動ユニットを操作するためにその機能エリアに割り当てられた機能に関する情報とが関連付けられた情報である。電動ユニットを操作するためにその機能エリアに割り当てられた機能とは、例えば、ステージ20の操作に関しては、ステージ20をX-Y方向へ移動させる機能またはZ方向へ移動させるための機能である。また、その機能エリアに割り当てられた機能とは、例えば、電動レボルバ24の操作に関しては、電動レボルバを回転させて任意の対物レンズを選択し観察光路に挿入させる機能である。
 通信制御部205は、顕微鏡装置1本体の顕微鏡制御部31との間で行われるデータ通信(例えばシリアル通信)の管理を行い、各構成ユニットの動作を制御する制御情報などの顕微鏡制御部31への送信を行う。
 タッチパネル207は、膜抵抗方式、静電容量方式、赤外線方式、超音波方式等いずれの種類のタッチパネルでもよく、その種類に限定されない。また、タッチパネル制御部206は、タッチパネル207上においてユーザーより入力された位置のX座標及びY座標を検出し、その検出した座標情報をCPU201へ送信する。また、本実施形態では、複数点による入力を検出することができるマルチタッチスクリーンデバイスを採用している。したがって、タッチパネル制御部206は、入力された各点の座標を検出し、各点の移動も追跡することができる。
 図4は、本実施形態におけるタッチパネルに表示される画面の一例を示す。図4において、タッチパネル207には、主に、S_A、S_B、S_C、S_D、S_E、S_Fで示す領域(機能エリア)にそれぞれ機能が割り当てられている。
 機能エリアS_Aには、ステージ20をXY方向へ移動させる操作をするための機能が割り当てられている。機能エリアS_Bには、顕微鏡1のステージ20をZ方向へ移動させる操作をするための機能が割り当てられている。機能エリアS_Cには、対物レンズ24の切り換えを行う連動レボルバ24の操作をするための機能が割り当てられている。機能エリアS_Dには、検鏡方法切換え操作をするための機能が割り当てられている。機能エリアS_Eには、S_A機能エリアの機能を切換え操作するための機能が割り当てられている。機能エリアS_Fには、その他、各種の設定を行う機能が割り当てられている。
 図5は、本実施形態における機能が割り当てられた機能エリアへのタッチ操作に伴う顕微鏡コントローラ2の制御フローを示す。顕微鏡コントローラ2の制御部であるCUP201は、ROM202に記録されているアプリケーションプログラムを読み出して、以下の処理を実行する。
 まず、CUP201は、不揮発メモリ204に記録されている機能エリア設定情報をRAM203に読み出す(S101)。CUP201は、その機能エリア設定情報に基づいて、タッチパネル207上において顕微鏡システム1を操作するための所定の属性を各機能エリア(タッチパネル上に表示されたGUIボタン等を含む)に割り当て、機能エリアの設定を行う(S102)。
 例えば、CPU201は、タッチパネル上の座標(x1,y1)~(x2,y2)で表される機能エリアに、機能エリアS_Aを割り当てる。また、例えば、CPU201は、タッチパネル上の座標(x3,y3)~(x4,y4)で表される機能エリアに、機能エリアS_Bを割り当てる。また、例えば、CPU201は、タッチパネル上の座標(x5,y5)~(x6,y6)で表される機能エリアに、機能エリアS_Cを割り当てる。また、例えば、CPU201は、タッチパネル上の座標(x7,y7)~(x8,y8)で表される機能エリアに、機能エリアS_Dを割り当てる。また、例えば、CPU201は、タッチパネル上の座標(x9,y9)~(x10,y10)で表される機能エリアに、機能エリアS_Eを割り当てる。また、例えば、CPU201は、タッチパネル上の座標(x11,y11)~(x12,y12)で表される機能エリアに、機能エリアS_Fを割り当てる。この場合、機能エリア設定情報はこれらの座標で示される機能エリアと、その機能エリアに割り当てられた機能に関する情報とが関連付けられて構成されている。
 次にタッチパネル207に入力があった場合、タッチパネル制御部206は、タッチパネル207上の、その入力された位置のX座標及びY座標を検出する(S103で「Yes」)。タッチパネル制御部206は、その検出した座標情報をCPU201へ送信する。
 CUP201は、機能エリア設定情報に基づいて、タッチパネル制御部206から送られた座標情報がどこの機能エリアに属するかの判定、すなわち、どこの機能エリアに入力があったか判定する(S104)。
 CUP201は、その判定結果から、その各機能エリアに応じた制御処理を行う(S105)。例えば、ある機能エリアの任意の位置に入力があった場合、CPU201は、その位置に所定の画像を移動させたり、画像サイズを変更したり、画像の色を変更したり、画像の形状を変更したり、カーソルを移動させたり等、タッチ操作に基づく座標情報によりGUI上の画像の表示形態を制御する。
 さらに、CPU201は、タッチ操作に対して検出された座標情報に基づいて、タッチパネル207上におけるタッチ操作の移動量を算出する。それから、CPU201は、その移動量を、その機能エリアに割り当てられた電動ユニットの駆動量に換算し、顕微鏡制御部31に制御指示信号を送信する。また、CPU201は、タッチ操作に対して検出された座標情報に基づいて、タッチパネル207上で選択された内容を制御指示信号として顕微鏡制御部31に送信する。観察が終了するまで、S103~S105の処理を繰り返す(S106)。
 ここで、ステージ20を移動させる際に用いるステージ移動モードと、タッチパネル207の表示モードについて説明する。ステージ移動モードには、通常移動モードと連続移動モードがある。また、表示モードには、通常機能エリアモードと拡大機能エリアモードがある。なお、通常移動モードと連続移動モード、及び通常機能エリアモードと拡大機能エリアモードの切換えは切換えボタン(図示せず)によって行うことができる。
 ステージ20のX-Y方向の操作を例に、まずは、通常機能エリアモード及び通常移動モードにおける動作について説明する。
 図6は、本実施形態(通常機能エリアモード、通常移動モード)における機能エリアS_Aに対してドラッグ動作を行った場合の顕微鏡コントローラの動作フローを示す。ここで、ドラッグとは、本実施形態で言えば、タッチパネル207における一方の位置から他方の位置へタッチパネル表面に接触したまま、その接触部分を移動させることをいう。
 ユーザーが機能エリアS_Aに対してドラッグ動作を行った場合(S201で「Yes」)、タッチパネル制御部206は、タッチパネル207上におけるその入力された位置のX座標及びY座標を検出する(S202)。タッチパネル制御部206は、その検出した座標情報をCPU201へ送信する。
 ユーザーが機能エリアS_Aにおいてドラッグ動作を行っている場合には(S203で「Yes」)、タッチパネル制御部206は、ドラッグ位置に対応した座標を検出する(S204)。タッチパネル制御部206は、その検出した座標情報をCPU201へ送信する。
 CUP201は、タッチパネル制御部206から送られた座標情報に基づいて、ドラッグ開始位置の座標とドラッグ中の座標とから、ステージの移動距離及び移動方向を算出する(S205)。
 CPU201は、算出された距離及び方向にステージ20を移動させるように、顕微鏡制御部31を介して、ステージX-Y駆動制御部21に指示を与える(S206)。ドラッグが終了するまで、S203~S206の処理は繰り返される。
 機能エリアS_Aに入力がない場合(S201で「No」)またはドラッグ中でない場合(S203で「No」)、観察を終了するか否かが判断される(S207)。観察を続行する場合には(S207で「No」)、S201へ戻る。
 図7-図9はそれぞれ、本実施形態(通常機能エリアモード、通常移動モード)における、(A)ステージ20をX-Y方向へ移動させるための機能が割り当てられた機能エリアS_Aについての操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図である。以下では、図7-図9を用いて、ステージ20のX-Y方向の操作について、図6のフローに基づいて、タッチパネル207の操作に応じたCPU201の制御を詳述する。
 ユーザーが機能エリアS_Aに対してドラッグ動作(タッチパネルをタッチしたままタッチ部分を移動させる動作)を行う。この場合、上記のように、顕微鏡コントローラ2は、顕微鏡制御部31を介して、ステージX-Y駆動制御部21がドラッグ動作の距離と方向に対応するようにステージ20の制御を行うように指示を与える。
 ステージ20のXY方向の移動距離は、タッチパネル207上の機能エリアS_A上のドラッグ動作の距離に対応している。顕微鏡コントローラ2は、タッチパネル207上での距離に、例えば係数laを掛けた距離を移動させるように、顕微鏡制御部31に指示を行う。
 図7(A)において機能エリアS_Aに対して、図8(A)に示すように、地点a1から地点a2までX方向の距離XA、Y方向の距離YAのドラッグ動作(タッチパネルをタッチしたまま地点a2まで移動させる動作)が行われた場合について説明する。なお、図7(A)の機能エリアS_Aに入力がない場合には、ステージ20の左下端は、図7(B)座標(X_0,Y_0)の位置にあるとする。
 図8(A)に示すように、地点a1から地点a2までのドラッグ動作に応じて、図8(B)に示すように、ステージ20のX方向の座標である座標X_0からX_1へ距離XA×la分の距離を移動させ、ステージ20のY方向の座標である座標Y_0からY_1へ距離YA×la分の距離を移動させる制御が行われる。
 さらに、図8(B)に示す状態から、図9(A)に示すように再び地点a3から地点a4でX方向の距離XA’、Y方向の距離YA’のドラッグ動作が行われたとする。この場合、図9(B)に示すように、ステージ20のX方向の座標である座標X_1からX_2へ距離XA’×la分の距離を移動させ、ステージ20のY方向の座標である座標Y_1からY_2へ距離YA’×la分の距離を移動させる制御が行われる。
 なお、図6に示すように、ドラッグ動作中は、タッチパネル制御部206によりドラッグ中の座標を検出することにより、ドラッグ位置に応じてステージ20位置の追従が行われる。またステージ移動の来歴はRAM203に記録され、後で参照することができる。また、本実施形態では係数laは固定で説明したが、当該係数は可変であってもよく、例えば対物レンズ23毎に係数laを可変としてもよい。
 次にステージ20のZ方向の操作について説明する。
 図10-図12はそれぞれ、本実施形態(通常機能エリアモード、通常移動モード)における、(A)ステージ20をZ方向へ移動させるための機能が割り当てられた機能エリアS_Bについての操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図である。以下では、図10-図12を用いて、ステージ20のZ方向の操作について、図6のフローに基づいて、タッチパネル207の操作に応じたCPU201の制御を詳述する。
 図10(A)において、バー301は、ステージ20のZ方向の座標の位置を示す。バー301が機能エリアS_Bの上側にあるほど、対物レンズ23に対してステージ20が近い位置にあり、下側にあるほど対物レンズ23に対してステージ20が遠い位置にあることを示している。なお、図10(A)の機能エリアS_Bに入力がない場合には、ステージ20は、図10(B)に示すように、Z座標Z_0の位置にあるとする。
 ユーザーが機能エリアS_Bに対して図10(A)に示す地点b1の位置にタッチし、そのまま地点b2の位置までドラッグ動作(タッチパネルをタッチしたまま地点b1から地点b2まで移動させる動作)を行った場合について説明する。この場合、顕微鏡コントローラ2は、顕微鏡制御部31を介して、ステージZ駆動制御部22に、対物レンズ23とステージ20が近づく方向に移動させる制御を行うように指示を与える。
 ステージ20のZ方向の移動距離は、タッチパネル207上の機能エリアS_B上のドラッグ動作の距離に対応している。顕微鏡コントローラ2は、タッチパネル207上での距離に係数lbをかけた距離を移動するように顕微鏡制御部31に指示を行う。すると、図11(B)に示すように、地点b1から地点b2まで距離ZBのドラッグ動作が行われた場合、対物レンズ23とステージ20が近づく方向にステージ20の座標Z_0からZ_1に距離ZB×lb移動させる制御が行われる。
 次に、ユーザーが機能エリアS_Bに対して地点b2の位置にタッチし、そのまま規制枠209に沿って地点b1の位置に向かってドラッグ動作を行った場合について説明する。この場合、顕微鏡コントローラ2は、顕微鏡制御部31を介して、ステージZ駆動制御部22に、対物レンズ23とステージ20が遠ざかる方向に移動させる制御を行うように指示を与える。
 図11に示す状態において、図12(A)に示すように、再び地点b3から地点b4まで距離ZB’のドラッグ動作が行われた場合、図12(B)に示すように、さらに対物レンズ23とステージ20が近づく方向にステージ20の座標Z_1からZ_2へ距離ZB’×lb移動させる制御が行われる。なお、ドラッグ動作中は、ドラッグ位置に応じてステージ20位置の追従が行われる。
 なお、本実施形態では係数lbは固定で説明したが、切り換え可能であってもよく、対物レンズ23毎に係数lbを可変としてもよい。
 続いて電動レボルバ24の切り換え動作について説明する。
 図13及び図14はそれぞれ、本実施形態(通常機能エリアモード)における、(A)電動レボルバ24による対物レンズの切替操作をするための機能が割り当てられた機能エリアS_Cについての操作を説明するための図と、(B)その操作に伴う電動レボルバ24に配置された対物レンズの位置を説明するための図である。以下では、図13、図14用いて、電動レボルバ24による対物レンズの切替操作について、図6のフローに基づいて、タッチパネル207の操作に応じたCPU201の制御を詳述する。
 本実施形態では、図13(B)に示すように、連動レボルバ24には、5倍の対物レンズ23a、10倍の対物レンズ23b、20倍の対物レンズ23c、50倍の対物レンズ23d、100倍の対物レンズ23dがそれぞれ装着されており、光軸には20倍の対物レンズ23cが挿入された状態として説明する。
 図13(A)に示すように、機能S_Cには電動レボルバ24に装着されている対物レンズ23a~23eに対応するアイコン401a~401eが画面上に表示されている。なお、アイコン401cが現在光路に挿入されている対物レンズであることを示すように強調して表示され、他のアイコン401a,401b,401d,401eと区別して表示されている。ここでは20倍の対物レンズ23cに対応するアイコンが強調表示されている。
 ユーザーが機能エリアS_Cに対してタッチし、図14(A)に示すアイコン401dの位置でタッチした指を離す。顕微鏡コントローラ2は、タッチパネル207上でタッチした指を離した位置の検出を行う。
 顕微鏡コントローラ2は、顕微鏡制御部31に対して、図14(B)に示すように、20倍対物レンズ23cからアイコン401dに対応した50倍対物レンズ23dを観察光路に入れるように電動レボルバ24の回転の制御を行うように指示を与える。
 それから、現在光路に挿入されている対物レンズのアイコンを表示させるように、アイコン401cは、他のアイコン401a,401b,401c,401eとは区別できる表示対応への切り換が行われる。
 なお、本実施形態では、タッチパネル207上でタッチした指が離された位置のアイコンに対応した対物レンズの挿入動作を行ったが、タッチされた位置のアイコンに対応した対物レンズの挿入動作を行うモードであってもよい。
 機能エリアS_D、及び機能エリアS_Fに関しては、各機能エリア内において、離された位置のアイコンに対応した機能が選択される動作であり、機能エリアS_Cと同様のため説明を省略する。
 機能エリアS_Eは、機能エリアS_Aに割り当てられた顕微鏡部位の操作の切換えを行うためのエリアである。機能エリアS_Eについて、図15-図16を用いて説明する。
 図15及び図16はそれぞれ、本実施形態における、機能エリアS_Eについての操作を説明するための図である。図4において、機能エリアS_Eでは電動ステージ20のXY方向への移動操作をするための「XY-位置」が選択され、その選択に伴い、機能エリアS_Aには、ステージ20をXY方向へ移動させる操作をするための機能が割り当てられている。
 図4の状態から、機能エリアS_Eに表示されている「ミラー」を選択すると、機能エリアS_Aには、図15に示すように電動キューブターレット25の切換え操作を行うための機能が割り当てられる。
 さらに、機能エリアS_Eに表示されている「明るさ」を選択すると、機能エリアS_Aには、図16に示すように、透過照明光源6、落射照明光源13の調光動作にそれぞれ切換えるための機能が割り当てられる。
 続いて、拡大機能エリアモードの場合について説明を行う。本実施形態では、ステージ20のXY方向の操作を割り当てた機能エリアS_Aと、顕微鏡1のステージ20のZ方向の操作を割り当てた機能エリアS_Bとが拡大される場合について説明を行う。
 図17は、本実施形態(拡大機能エリアモード)における機能が割り当てられた機能エリアへのタッチ操作に伴う顕微鏡コントローラ2の制御フローを示す。図17のS301-S304,S306-S307はそれぞれ、図5のS101-S106と同様の処理である。
 まず、通常モードと同じように、図4で説明したのと同様に、CUP201は、不揮発メモリ204に記録されている機能エリア設定情報をRAM203に読み出し(S301)、各機能エリアに機能を割り当てる(S302)。具体的には、機能エリアS_Aには、ステージ20をXY方向へ移動させる操作機能を割り当てる。機能エリアS_Bには、顕微鏡1のステージ20のZ方向へ移動させる操作機能を割り当てる。機能エリアS_Cには、対物レンズ24の切り換えを行う連動レボルバ24を操作するための機能を割り当てる。機能エリアS_Dには、検鏡方法切換え操作をするための機能を割り当てる。機能エリアS_Eには、S_A機能エリア切換え操作機能を割り当てる。機能エリアS_Fには、その他の各種設定機能を割り当てる。
 タッチパネル207に入力があった場合(S303で「Yes」)、CUP201はどこの機能エリアに入力があったかの判別を行う(S304)。機能エリアS_C、S_D、S_E、S_Fへの入力があった場合(S305で「No」)、CPU201は、通常機能エリアモードと同様に、各機能エリアに応じた制御処理を行う(S306)。
 機能エリアS_Aまたは機能エリアS_Bにタッチ入力があった場合は(S305で「Yes」)、CPU201は、表示モードを通常機能エリアモードから拡大機能エリアモードに変更する。具体的には、CPU201は、不揮発メモリ204に記録されている機能エリア設定情報をRAM203に読み出し(S308)、機能エリアS_A及び機能エリアS_Bを図18に示すように、機能エリアS_A_2、機能エリアS_B_2として再設定を行う(S309)。これについて、図18及び図19を用いて説明する。
 図18は、本実施形態(拡大機能エリアモード)における機能エリアS_A_2及び機能エリアS_B_2(実施例1)を示す。図19は、本実施形態(拡大機能エリアモード)における機能エリアS_A_2及び機能エリアS_B(実施例2)を示す。
 図18では、タッチパネル207上には、機能エリアS_A_2及びS_B_2が配置される。ここで機能エリアS_A_2への入力の場合は(S310で「Yes」、S311)、ステージ20のXY方向へ移動させる操作機能を割り当てる(S312)。機能エリアS_B_2への入力の場合は(S310で「Yes」、S311)、顕微鏡1のステージ20のZ方向へ移動させる操作機能を割り当てる(S312)。図19の場合には、機能エリアS_A_2を、機能エリアS_E,S_Fのエリアまで拡大されるように配置する。
 機能エリアS_A_2またはS_B_2に対して一定時間入力がない場合は(S310で「No」、S313で「Yes」)、図4に示す状態に戻る。なお時間制御でなく、戻るための特定のボタンを設けてもよい。また、機能エリアS_A_2またはS_B_2に対して一定時間入力がある場合は(S310で「No」、S313で「No」)、S314へ進む。拡大機能エリアモードにおいて、観察が終了するまで、S310~S314の処理を繰り返す。
 図20、図21は、本実施形態(拡大機能エリアモード、通常移動モード)における(A)ステージ20をX-Y方向へ移動させるための機能が割り当てられた機能エリアS_A_2についての操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図である。
 図20(A)に示すように、ユーザーが、機能エリアS_A_2に対して、地点a5から地点a6までX方向に距離XA_2、Y方向に距離YA_2だけドラッグ動作(タッチパネルをタッチしたまま地点a5から地点a6まで移動させる動作)を行う。すると、図20(B)に示すように、通常機能エリアモードと同様に、ステージ20について、X方向に対して座標X_0から座標X_21までの距離XA_2×laを移動させ、Y方向に対して座標Y_0から座標Y_21までの距離YA_2×laの距離を移動させる制御が行われる。なお、ドラッグ動作中は、ドラッグ位置に応じてステージ20位置の追従が行われる。
 同様に、図21(A)に示すように、ユーザーが、機能エリアS_A_2内の地点a7から機能エリアS_A_2内の地点a8までX方向へ距離XA_3、Y方向へ距離YA_3のドラッグ動作(タッチパネルをタッチしたまま地点a8まで移動させる動作)を行う。すると、機能エリア2_A_2内のドラッグ動作に対応して、ステージ20についてX方向に対して座標X_0から座標X_22までの距離XA_3×laを移動させ、Y方向に対して座標Y_0から座標Y_22までの距離YA_3×laを移動させる制御が行われる。
 ドラッグ動作中は、ドラッグ位置に応じてステージ20位置の追従が行われる。なお、通常移動モードでは、ドラッグ動作後、地点a8において同一位置にてタッチパネルに入力し続けた場合でも、ステージ20は停止状態を維持したままとなっている。
 続いてステージ移動モードのうち、連続移動モードを選択した場合について説明する。連続移動モードとは、タッチパネルへのドラッグ動作による入力の終了点が所定の領域内である場合、その終了点において一定時間入力が継続する間(すなわち、ドラッグした後、同一位置でタッチし続ける)、そのドラッグ停止直前でのその終了点へアプローチする方向と同方向で、所定の速度でステージの移動を継続させることができるモードをいう。
 図22は、本実施形態(連続移動モード)における、機能エリアS_A_2に対してドラッグ動作を行った場合の顕微鏡コントローラの動作フローを示す。図22のS401-S403,S405-S407はそれぞれ、図6のS201-S206と同様である。
 連続移動モードが選択された場合、ステージ20のXY方向の駆動に対応する機能エリアS_A_2は、さらに機能エリアS_A_2の外周近傍であるS_A_21と、それ以外のエリアあるS_A_22とに分割される。S_A_21とS_A_22についての機能エリアの情報も機能エリア設定情報として、不揮発性メモリ204に予め格納されている。
 ユーザーが機能エリアS_A_2に対してドラッグ動作を行った場合(S401で「Yes」)、タッチパネル制御部206は、タッチパネル207上におけるそのドラッグ動作により入力された位置のX座標及びY座標を検出する(S402)。タッチパネル制御部206は、その検出した座標情報をCPU201へ送信する。
 ユーザーが機能エリアS_A_2においてドラッグ動作を行っている場合(S403で「Yes」)、タッチパネル制御部206は、ドラッグ動作による入力の検出位置に変化がないか否かを判定する(S404)。
 ドラッグ動作による入力の検出位置に変化がある場合(S404で「No」)、タッチパネル制御部206は、ドラッグ位置に対応した座標を検出する。タッチパネル制御部206は、その検出した座標情報をCPU201へ送信する。ドラッグ中の場合に行われるS405-S407の処理については、S204-S206と同様である。
 しかし、機能エリアS_A_2へのドラッグ動作において、検出位置に変化がない場合(S404で「Yes」)、CUP201は、タッチパネル制御部206から送られた座標情報に基づいて、その停止位置が機能エリアS_A_21か否かを判定する(S408)。
 その停止位置が機能エリアS_A_21の場合、すなわち、機能エリアS_A_2において、同一位置でタッチしたままで、ドラッグ動作が停止している場合、CPU201は、現在の入力座標、ドラッグ中の来歴座標間情報、現在選択されている対物レンズを示す情報から、ステージ20の移動距離、及び移動方向を算出する(S409)。
 CPU201は、算出された距離及び方向に基づいてステージ20を移動させるように、顕微鏡制御部31を介して、ステージX-Y駆動制御部21に指示を与える(S410)。機能エリアS_A_21に対して、その入力が継続している間(S411で「No」)、S410を繰り返す。
 S408においてその停止位置が機能エリアS_A_21ではない場合(S408で「No」)、またはS411において機能エリアS_A_21への入力がなくなった場合(S411で「Yes」)、観察を終了するか否かが判断される(S412)。観察を続行する場合には(412で「No」)、S401へ戻る。
 図23-図25はそれぞれ、本実施形態の連続移動モードにおける、(A)ステージ20をX-Y方向へ移動させるための機能が割り当てられた機能エリアS_A_2についての操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図である。以下では、図23-図25を用いて、ステージ20のX-Y方向の操作について、図22のフローに基づいて、タッチパネル207の操作に応じたCPU201の制御を詳述する。
 図23(A)に示すように、ユーザーが機能エリアS_A_2のS_A_22内の、地点a5から地点a6までX方向へ距離XA_2、Y方向へ距離YA_2のドラッグ動作(タッチパネルをタッチしたまま地点a5から地点a6まで移動させる動作)を行う。この場合、図23(B)に示すように、通常移動モードと同様に、ステージ20について、X方向に対して座標X_0から座標X_21までの距離XA_2×laを移動させ、Y方向に対して座標Y_0から座標Y_21までの距離YA_2×laを移動させる制御が行われる。ドラッグ動作中は、ドラッグ位置に応じてステージ20の位置の追従が行われる。
 次に図24(A)に示すように、ユーザーが機能エリアS_A_22内の地点a7から機能エリアS_A_21内の地点a8までX方向へ距離XA_3、Y方向へ距離YA_3のドラッグ動作(タッチパネルをタッチしたまま地点a7から地点a8まで移動させる動作)を行い、地点a8で一定時間T1の間、同一位置で入力(タッチ)し続けた場合について説明を行う。
 まず、ユーザーが地点a7から機能エリアS_A_21内の地点a8までドラッグ動作を行う。この場合、図24(B)に示すように、ステージ20について、X方向に対して座標X_0から座標X_22までの距離XA_3×laを移動させ、Y方向に対して座標Y_0から座標Y_22までの距離YA_3×laを移動させる制御が行われる。ドラッグ動作中は、ドラッグ位置に応じてステージ20の位置の追従が行われる。
 続いてドラッグ動作終了後、図25(A)に示すように、ユーザーは機能エリアS_A_21内の地点a8において同一位置でタッチパネルに一定時間T1の間入力(タッチ)し続ける。
 CPU201は、地点a8に入力(タッチ)し続けている間は、顕微鏡制御部31を介して、ステージX-Y駆動制御部21を制御して、図25(B)に示すように、ステージ20はさらに、地点a8まで移動が行われた方向(角度)と同一方向(角度)D1にそのままステージ20の移動を続ける制御を行う。
 ステージ20の移動方向は、次のようにして算出される。CPU201は、RAM203からステージ来歴情報を取得する。CPU201は、そのステージ来歴情報に基づいて、地点a8から直前の一定距離R離れた位置における過去のドラッグの位置である地点a8’を結ぶ方向(角度)からステージ20の移動方向D1を算出する。その結果、ステージ20は、D1の方向へ移動する。
 なお、ステージの移動速度は、現在選択されている対物レンズに応じて可変である。これについて、図26を用いて説明する。
 図26は、本実施形態(連続移動モード)における対物レンズ毎に設定された連続移動速度が格納された連続移動速度テーブルの一例を示す。なお、テーブル中の「ID」は、対物レンズを識別するための情報を示す。連続移動速度テーブルは、不揮発性メモリ204に格納されている。
 例えば、現在50倍の対物レンズが選択されている場合において、ユーザーが地点a7から地点a8まで方向D1へドラッグ動作を行って地点a8で入力が行われ続けている間は、ステージ20の移動は速度V4で継続される。このとき、CPU201は、連続移動速度テーブルに基づいて、速度V4でステージ2を移動させるように、顕微鏡制御部31に指示を行う。
 すなわち、機能エリアS_A_22内の地点から機能エリアS_A_21内の地点に向かってドラッグ動作が行われ、ドラッグ停止後も機能エリアS_A_21内でさらに連続的に入力(タッチ)され続けた場合は、ドラッグの停止直前までステージ20の移動が行われた方向と同一方向に、そのままステージ20の移動を速度V4で続ける制御がなされる。
 また、ステージ20の移動速度は、対物レンズ毎に定められているが、さらに地点a8’から地点a8までの移動速度を引き継ぐモードにも切換え可能である。例えば、地点a8’から地点a8までのステージ移動速度がV4’であり、地点a8において同一位置において、タッチパネルに一定時間T1の間入力(タッチ)し続けた場合、ステージの移動速度として、V4’が設定される。
 なお、ステージ20の移動速度は、選択された対物レンズに応じた定速、または、地点a8’から地点a8までの移動速度としたが、これに限定されない。例えば、機能エリアS_A_21内で連続的に入力(タッチ)され続けた時間の経過に応じて、ステージ20の移動を加速させるようにしてもよい。
 また、上記では、機能エリアS_A_21と機能エリアS_A_22との境界をまたいでドラッグ動作を行った例について説明したが、必ずしもその境界をまたぐ必要はない。例えば、機能エリアS_A_21内においてドラッグ動作を行った後、そのドラッグ動作の終点が機能エリアS_A_21内にある場合にも適用できる。この場合、ドラッグ動作中は、ドラッグ位置に応じてステージ20の位置の追従が行われる。ドラッグ終了後、機能エリアS_A_21内の同一位置で入力が継続すれば、上記の例と同様に、X-Y方向へのステージ20の移動は継続される。
 すなわち、ドラッグ動作の終点が機能エリアS_A_21にあり、その終点において一定時間入力が継続すれば、その直前のドラッグ位置からドラッグが終了する位置までの移動方向と同一方向へステージ20の移動が継続される。
 また、上記では、機能エリアS_A_2における、X-Y方向のステージ20の連続移動について説明したが、機能エリアS_B_2について適用してもよい。すなわち、機能エリアS_B_2の上端領域及び下端領域を機能エリアS_A_21に相当する領域に設定し、それら以外の領域を機能エリアS_A_22に相当する領域に設定してもよい。これにより、ユーザーが機能エリアS_A_22に相当する領域内の地点から機能エリアS_A_21に相当する領域内の地点までドラッグ動作を行い、ドラッグ動作の最終点で一定時間T1の間、同一位置で入力(タッチ)し続けた場合、Z方向へのステージ20の移動は継続される。
 なお、機能エリアS_A_21の領域は任意に設定できるようにしてもよい。
 続いて、機能エリアS_2_21の範囲がさらにS_B_2を含むように設定した場合、すなわち、機能エリアS_2_21の機能をS_B_2の領域にまで拡張した場合について図27、図28を用いて説明する。
 図27-図28はそれぞれ、本実施形態(拡大機能エリアモード、連続移動モード)における、(A)機能エリアS_A_21の範囲が機能エリアS_B_2の範囲を含むように設定した場合におけるタッチ操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図である。以下では、図27-図28を用いて、ステージ20のZ方向の操作について、図22のフローに基づいて、タッチパネル207の操作に応じたCPU201の制御を詳述する。
 機能エリアS_B_2は、通常は顕微鏡1のステージ20のZ方向への移動操作を受付ける。しかしながら、機能エリアS_B_2は、機能エリアS_A_2から連続的にまたがって入力された場合、機能エリアS_A_2における機能エリアS_A_21として機能する。すなわち、機能エリアS_A_2に対してドラッグ動作が開始されると、機能エリアS_B_2に機能エリアS_A_21に設定される機能が設定される。当該設定は、ユーザーがタッチパネル207にタッチし続けている間継続する。ユーザーによるタッチが終了すると、機能エリアS_B_2には、元の機能が再設定される。
 機能エリアS_A_22内の地点a9から機能エリアS_B_2内の地点a10までX方向へ距離XA_4、Y方向へ距離YA_4のドラッグ動作(タッチパネルをタッチしたまま地点a9から地点a10まで移動させる動作)が行われ、地点a10で一定時間T2の間、同一位置で入力(タッチ)が行われ続けた場合について説明を行う。
 図27(A)に示すように、地点a9から機能エリアS_B_2(拡張された機能エリアS_A_21)内の地点a10までドラッグ動作が行われたとする。この場合、図27(B)に示すように、ステージ20について、X方向に対して座標X_0から座標X_23までの距離XA_4×laを移動させ、Y方向に対して座標Y_0から座標Y_23までの距離YA_4×laを移動させる制御が行われる。
 ドラッグ動作中は、ドラッグ位置に応じてステージ20の位置の追従が行われる。ドラッグ動作終了後、機能エリアS_B_2(拡張された機能エリアS_A_21)内に地点a10において同一位置にてタッチパネルに一定時間T2の間入力(タッチ)し続けたとする。この場合、地点a10に入力(タッチ)し続けている間は、CPU201は、図28(B)に示すように、ステージ20はさらに、地点a10まで移動が行われた方向(角度)と同一方向(角度)D2にそのままステージ20の移動を続ける指示を行う。
 ステージ20の移動方向D2は、次のようにして算出される。CPU201はRAM203からステージ来歴情報を取得する。CPU201は、そのステージ来歴情報に基づいて、地点a10と、その地点a10からドラッグの停止直前の一定距離R離れた位置における過去のドラッグの位置である地点a10’とを結ぶ方向(角度)からステージ20の移動方向D2を算出する。その結果、ステージ20は、D2の方向へ移動する。
 ステージ20の移動は、地点a10に入力が行われ続けている間は継続される。本実施形態では、例えば、時間T2の間、方向D2、速度V4でステージ20の移動が行われる。すなわち、機能エリアS_A_22内の地点から機能エリアS_B_2(拡張された機能エリアS_A_21)内の地点に向かってドラッグ動作が行われ、機能エリアS_A_1内でさらに連続的に入力(タッチ)され続けたとする。この場合、ステージ20の移動を停止させずに、ドラッグ動作停止直前までステージ20の移動が行われた方向と同一方向にそのままステージ20の移動を続ける制御を行う。このとき、機能エリアS_B_2では、ドラッグを開始した地点a9における機能エリアの動作であるステージ20のXY方向の操作が行われ、顕微鏡1のステージ20のZ方向の操作は行われない。
 図29は、通常機能エリアモードで、連続移動モードを実現する場合の例を示す。上記では、拡大機能エリアモードの場合について説明を行ったが、図29に示すように、通常機能エリアモードの場合についてもS_A_21に対応するエリアをS_A_11として機能するように設定し、S_A_22に対応するエリアをS_A_12として機能するように設定してもよい。
 本実施形態によれば、タッチパネルへのドラッグ動作による入力の終了点が所定の領域内である場合、その終了点において一定時間入力が継続する間(すなわち、ドラッグした後、同一位置でタッチし続ける)、そのドラッグ停止直前でのその終了点へアプローチする方向と同方向で、所定の速度でステージの移動を継続させることができる。これにより、タッチパネルのような(狭い)限られた操作エリアを有するコントローラにおいても、特にドラッグ動作で連続的に動かすようなYX方向の操作性の向上を図ることが可能となる。
<第2の実施形態>
 第2の実施形態では、タッチパネルに対して、所定速度で、所定の移動距離の入力(タッチ操作)がされた場合、ドラッグの長さに関わらず、ステージ20をXY方向へ一定距離移動させる機能について説明する。なお、第1の実施形態と同様の構成、処理、機能については同一の符号を付し、その説明を省略する。また、第2の実施形態の顕微鏡システムの構成は、第1の実施形態と同様である。
 図30は、本実施形態における移動速度・移動距離テーブルを示す。移動速度・移動距離テーブルには、対物レンズ毎にステージ20を一定距離動かすために用いられる距離と、速度とが格納されている。なお、テーブル中の「ID」は、対物レンズを識別するための情報を示す。移動速度・移動距離テーブルは、不揮発性メモリ204に格納されている。
 図31は、本実施形態における機能エリアS_A_2に対してタッチ操作を行った場合の顕微鏡コントローラの動作フローを示す。通常のステージ動作については、すなわちS501,S503-S507の処理については、第1の実施形態(図6のS201-S206)と同様のため、その説明を省略する。
 ユーザーが機能エリアS_A_2に対してドラッグ動作を行った場合(S501で「Yes」)、CPU201は、タッチパネル制御部206からの検出信号に基づいて、機能エリアS_A_2内において、ドラッグ動作の入力が、一定速度SV以上で、かつタッチパネル207上での入力の長さが一定距離SL未満の入力であるか否かを判定する(S502)。
 ドラッグ動作の入力が、一定速度SV以上で、かつタッチパネル207上での入力の長さが一定距離SL未満の入力であると判定した場合(S502で「Yes」)、CPU201は、次を行う。すなわち、CPU201は、図30に示す移動速度・移動距離テーブルに格納されている情報に基づいて、現在のドラッグ入力方向と現在選択されている対物レンズ情報から、電動ステージ20の移動距離及び移動方向を算出する(S508)。
 CPU201は、その算出された移動距離、移動方向に基づいて、電動ステージ20を一定量移動させる制御を行う(S509)。すなわち、CPU201は、ドラッグ動作の入力が、一定速度SV以上で、かつタッチパネル207上での入力の長さが一定距離SL未満の入力であると判定した場合には、そのドラッグの長さに関わらず、ステージ20を一定方向に一定量移動させる制御を行う。
 これにより、例えば対物レンズ50倍が選択されている場合には、図30の移動速度・移動距離テーブルに基づいて、電動ステージ20は、速度V4でL4移動させられる。ここでの移動距離は、例えば対物レンズ毎の視野の1/2の距離に設定している。なお、移動方向については、ドラッグが行われた方向と同一な方向が選択される。
 なお、機能エリアS_A_2内において通常のドラッグ動作が行われた場合(S502で「No」)、第1の実施形態と同様の処理(S503-S507)を行う。
 図32は、本実施形態(拡大機能エリアモード)における、(A)ドラッグの長さに関わらず、ステージ20をXY方向(図面に対して左右方向)へ一定距離移動させる操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向(図面に対して左右方向)への移動を説明するための図である。図33は、本実施形態(拡大機能エリアモード)における、(A)ドラッグの長さに関わらず、ステージ20をX-Y方向(図面に対して上下方向)へ一定距離移動させる操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向(図面に対して上下方向)への移動を説明するための図である。以下では、図32-図33を用いて、ステージ20のX方向またはY方向の操作について、図31のフローに基づいて、タッチパネル207の操作に応じたCPU201の制御を詳述する。
 図32(A)において、例えば、対物レンズ50倍が選択されている場合において、タッチパネルのS_A_2内において、地点a11から地点a12までタッチパネル上でドラッグ速度がSV以上で、一定距離SL未満の距離である距離LL1の入力が行われた場合は、図30の移動速度・移動距離テーブルに基づいて、LL1の距離に関わらず、電動ステージ20はX方向に対して速度V4で距離L4移動させられる(図32(B))。
 また、図32(A)において、地点a13から地点a14までタッチパネル207上でドラッグ速度がSV以上で、一定距離SL未満の距離である距離LL2の入力が行われた場合、LL2の距離に関わらず、X方向に対して対物レンズの倍率に対応した一定距離であるL4のステージの移動が行われる(図32(B))。
 同様に、図32(A)において、地点a15から地点a16までタッチパネル上でドラッグ速度がSV以上で、一定距離SL未満の距離である距離LL3の入力が行われた場合、LL3の距離に関わらず、図32に示すように、X方向に対して対物レンズの倍率に対応した一定距離であるL4のステージの移動が行われる(図32(B))。
 また、図33(A)に示すように、ドラッグ方向をY方向へ変更してもよい。この場合、例えば、地点a17から地点a18までタッチパネル207上でドラッグ速度がSV以上で、一定距離SL未満の距離である距離LL4の入力が行われた場合、LL4の距離に関わらず、図32に示すように、Y方向に対して対物レンズの倍率に対応した一定距離であるL4のステージの移動が行われる(図33(B))。
 また、図33(A)に示すように、地点a19から地点a20までタッチパネル207上でドラッグ速度がSV以上で、一定距離SL未満の距離である距離LL5の入力が行われた場合、LL5の距離に関わらず、Y方向に対して対物レンズの倍率に対応した一定距離であるL4のステージの移動が行われる(図33(B))。
 また、図33(A)に示すように、地点a21から地点a22までタッチパネル207上でドラッグ速度がSV以上で、一定距離SL未満の距離である距離LL6の入力が行われた場合、LL6の距離に関わらず、Y方向に対して対物レンズの倍率に対応した一定距離であるL4のステージの移動が行われる(図33(B))。
 図34は、本実施形態(通常機能エリアモード)における、(A)ドラッグの長さに関わらず、ステージ20をXY方向させる操作を説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図である。
 通常機能エリアモードでも、拡大機能エリアモードと同様に、タッチパネルのS_A内において、例えば、図34(A)に示すように、地点a23から地点a24までタッチパネル上でドラッグ速度がSV以上で、一定距離SL未満の距離である距離LL7の入力が行われた場合は、図30の移動速度・移動距離テーブルに基づいて、LL7の距離に関わらず、電動ステージ20は速度V4で距離L4移動させられる(図34(B))。地点a25から地点a26、地点a27から地点a28についても同様にそれぞれ、図34(A)に示すように、図30の移動速度・移動距離テーブルに基づいて、LL8、LL9の距離に関わらず、電動ステージ20は速度V4で距離L4移動させられる(図34(B))。
 また、図33で説明したのと同様に、ドラッグ方向をY方向へ変更してもよい。
 なお、上記では、X方向またはY方向へのドラッグ動作、及びそのドラッグ方向と同一の方向へのステージの移動について説明したが、XY平面における斜め方向へのドラッグ動作、そのドラッグ方向と同一の方向へのステージの移動についても適用することができる。例えば、斜め方向へのドラッグ動作の場合には、そのドラッグ動作の移動ベクトルをX成分とY成分に分解し、大きい成分の方の距離が一定距離SL未満の距離であり、このときのドラッグ速度がSV以上の場合には、図30の移動速度・移動距離テーブルに基づいて、電動ステージ20は一定速度で一定距離動かされるようにしてもよい。
 以上のように、タッチパネル207上でドラッグ速度がSV以上で、一定距離SL未満の距離の入力があった場合、SLの距離に関わらず、Y方向に対して対物レンズの倍率に対応した一定距離であるL4のステージの移動が行われる。これにより、タッチパネルのような(狭い)限られた操作エリアを有するコントローラにおいても、ブラインド操作が可能となる。
<第3の実施形態>
 本実施形態では、タッチパネル207上でドラック速度がSV以上で、一定距離SL未満の距離のドラッグ動作があった場合、ドラックの長さに関わらず、ドラッグ方向に応じて、ステージ20を所定方向にウェル1つ分距離移動させることについて説明する。なお、第1または第2の実施形態と同様の構成、処理、機能については同一の符号を付し、その説明を省略する。
 図35は、本実施形態における顕微鏡システムの構成例を示す。図35の顕微鏡システムは、第1の実施形態における正立型の顕微鏡装置1から倒立型顕微鏡装置1bに変更したものである。倒立型顕微鏡装置1bを用いて、電動ステージ20上のマルチプレート50の観察が行える。
 ここで、タッチパネル入力動作判定部、ウェル間移動量設定部は、図36及び図2の顕微鏡コントローラ2のCPU201及び不揮発メモリ204に対応する。また、ウェル間隔入力部は、タッチパネル207に対応する。
 図36は、本実施形態におけるマルチプレート50を示す。マルチプレート50は、図36に示すように、複数のウェルが等間隔で均等に配列されている。本実施形態では、マルチプレート50は、12×8の96ウェル(W_A1~W_H12)からなる。各ウェルの中心同士のX方向の間隔は、L_WX、Y方向の間隔L_WYとなっている。なお、本実施形態では、L_WX、L_WYはともに等しい距離となっており、L_WX=L_WY=9mmとなっている。すなわち、ウェルの中心間のX方向の間隔、Y方向の間隔が9mmとなっているマイクロプレートとなっている。
 図37は、本実施形態におけるウェル間隔入力画面を示す。ウェル間隔入力画面60は、タッチパネル207に表示される。ウェル間隔入力画面60は、マルチプレート50のX方向の間隔L_WXを入力するための入力欄61、Y方向の間隔L_WYを入力するための入力欄62を含む。
 図38は、本実施形態におけるウェル間隔設定動作フローを示す。まずユーザーは、顕微鏡コントローラ2のタッチパネル207の表示を通常画面(図4)から図38に示すウェル間隔の入力を行うためのウェル間隔入力画面に切換えを行なう(S601)。ここで、マルチプレート50のX方向の間隔L_WX、Y方向の間隔L_WYの値の入力を行なう(S602)。入力されたX方向の間隔L_WX、Y方向の間隔L_WYの値は、顕微鏡コントローラ2の不揮発メモリ204へ記録される(S603)。入力後、再び通常画面(図4)へ遷移する(S604)。なお、本実施形態では、L_WX=9mm、L_WY=9mmの値が記録されたものとする。
 通常のステージ動作については、第1の実施形態と同様のため、その説明を省略する。
 図39は、本実施形態における機能エリアS_A_2に対してタッチ操作を行った場合の顕微鏡コントローラの動作フローを示す。図39に示すように、機能エリアS_A_2内において通常のドラック動作が行われた場合は、第1の実施形態と同様である。
 図40は、本実施形態(拡大機能エリアモード)における、ドラッグの長さに関わらず、ステージ20をXY方向(図面に対して左右方向)へウェル1つ分距離移動させる操作を説明するための図である。図32を用いて、機能エリアS_A_2内において、ドラック動作入力が一定速度SV以上でかつタッチパネル上での入力の長さが、一定距離SL未満の入力があった場合について説明を行う。
 ドラック動作入力が一定速度SV以上でかつタッチパネル上での入力の長さが、一定距離SL未満の入力があった場合は、CPU201は、特定動作であると判定する。
 特定動作と判定された場合は、CPU201は、顕微鏡コントローラ2の不揮発メモリ24に記録されているX方向ウェル間隔距離L_WX、Y方向ウェル間隔距離L_WYの情報をもとに、ドラックの長さに関わらず、ステージ20をウェル1つ分距離移動させる制御を行う。
 図41は、図36のマルチプレート50を拡大した図である。ここで、マイクロプレート50のウェルW_A1の中のS_W_A1の地点を観察しているものとする。すなわち、ステージ座標は、観察(視野)の中心がS_W_A1の座標となっている。
 ここで、図40に示すように、タッチパネルのS_A_2内において、地点a30から地点a31までタッチパネル207上でドラック速度がSV以下で一定距離SL未満の距離である距離LL10の入力が行われた場合は、CPU201は、特定動作であると判定する。すると、CPU201は、図42で示すドラック動作の方向の判別を行う。すなわち、ドラックの開始地点をS_XYとして、CPU201は、ドラック方向からステージ20の移動方向の判定を行う。本実施形態では、図42に示すように、ドラッグ動作可能な方向について、ドラックの開始地点を中心に、X+,X-,Y+,Y-の4つの区分に分割を行う。それから、CPU201は、ドラック動作の方向がどの方向であるかの判定を行う。
 ドラック動作の方向がX+と判定された場合は、CPU201は、Y方向固定でX座標が+となる方向に電動ステージ20の駆動を行うと判定する。X―と判定された場合は、CPU201は、Y方向固定でX座標が+-なる方向に電動ステージ20の駆動を行うと判定する。Y+と判定された場合は、CPU201は、X方向固定でX座標が+となる方向に電動ステージ20の駆動を行うと判定する。Y―と判定された場合は、CPU201は、X方向固定でY座標が+-なる方向に電動ステージ20の駆動を行うと判定する。すなわち、地点a30から地点a31までのドラック動作の場合は、X+と判定されるため、CPU201は、Y方向は固定でX座標が+となる方向に駆動を行うと判定する。
 続いて移動方向が判別されると、CPU201は、電動ステージ20の移動距離の設定を行う。すなわち、移動方向がX方向と判別された場合(X+、X-)は、CPU201は、L_WXの値を設定する。移動方向がY方向と判別された場合(Y+、Y-)は、CPU201は、L_WYの値を設定する。地点a30から地点a31までのドラック動作の場合は、X+と判定されたため、CPU201は、移動距離としてL_WX=9mmの値を設定する(S701)。
 移動方向と移動距離が設定されると、CPU201は、電動ステージ20を、設定された移動方向へ設定した移動距離分移動させる制御を行う。地点a30から地点a31までのドラック動作の場合は、Y方向は固定でX座標が+となる方向にL_WX=9mm分、電動ステージ20の駆動が行なわれる。電動ステージ20の駆動に伴う観察位置のX方向への移動について図43を用いて説明する。
 図43は、本実施形態における電動ステージ20の駆動に伴う観察位置のX方向への移動を説明するための図である。図43(A)におけるウェルW_A1のS_W_A1の地点から、図43(B)におけるウェル1つ分(L_WX=9mm)移動されたウェルW_A2のS_W_A2の地点に、観察位置の移動制御がCPU201によって行われる(S702)。
 さらに、地点a32から地点a33までタッチパネル上でドラック速度がSV以下で一定距離SL未満の距離である距離LL11の入力が行われた場合においても、CPU201は、LL11の距離に関わらず、Y方向は固定でX座標が+となる方向に、L_WX=9mm分電動ステージ20の駆動を行うように制御する。
 すなわち、図43(B)におけるウェルW_A2のS_W_A2の地点から、図34(C)におけるウェル1つ分(L_WX=9mm)移動されたウェルW_A3のS_W_A3の地点に観察位置の移動が行われる。
 続いて、Y方向の移動について説明を行なう。図41において、マイクロプレートのウェルW_A1の中のS_W_A1の地点を観察しているとする。そして、図44に示すようにタッチパネル207のS_A_2内において、地点a34から地点a35までタッチパネル上でドラック速度がSV以下で一定距離SL未満の距離である距離LL10の入力が行われたとする。この場合は、CPU201は、特定動作であると判定する。すると、CPU201は、図42で示すドラック動作の方向の判別を行う。地点a34から地点a35までのドラック動作の場合はY-と判定されるため、CPU201は、X方向は固定でY座標が-となる方向に駆動を行うと判定する。
 移動方向が判別されると、CPU201は、電動ステージ20の移動距離の設定を行う。地点a34から地点a35までのドラック動作の場合は、Y-と判定されたため、CPU201は、移動距離としてL_WX=9mmの値を設定する。
 移動方向と移動距離が設定されると、CPU201は、電動ステージ20を、設定された移動方向へ、設定された移動距離分移動を行なうように制御する。地点a34から地点a35までのドラック動作の場合は、X方向は固定でY座標が-となる方向にL_WY=9mm駆動が行なわれる。電動ステージ20の駆動に伴う観察位置のY方向への移動について図45を用いて説明する。
 図45は、本実施形態における電動ステージ20の駆動に伴う観察位置のY方向への移動について説明するための図である。図45(A)におけるウェルW_A1のS_W_A1の地点から、図45(B)におけるウェル1つ分(L_WX=9mm)移動されたウェルW_B1のS_W_B1の地点に、観察位置の移動が行われる。
 なお、本実施形態では、図42に示すように、ドラックの開始地点を中心に、X+,X-,Y+,Y-の4つの区分に分割を行ったが、8つの区分に分割を行ってもよい。すなわち、ドラックの開始地点を中心に、上下左右だけでなく、さらに、右上斜め方向、右下斜め方向、左上斜め方向、左下斜め方向へ区分を設けてもよい。これにより、いずれかの斜め方向へドラッグ動作が行われた場合には、ドラックの長さに関わらず、その対応する方向へステージ20をウェル1つ分距離移動させるようにしてもよい。
 以上のように、タッチパネル207上でドラック速度がSV以上で、一定距離SL未満の距離のドラッグ動作があった場合、ドラックの長さに関わらず、ドラッグ方向に応じて、ステージ20を所定方向にウェル1つ分距離移動させることができる。これにより、タッチパネルのような(狭い)限られた操作エリアを有するコントローラにおいても、ブラインド操作が可能となる。
 <第4の実施形態>
 本実施形態では、タッチパネル207上の特定の機能エリア内において一定時間内に連続でタッチ入力があった場合は、その機能エリアに応じて、ステージ20を所定方向にウェル1つ分距離移動させることについて説明する。なお、第1、第2、または第3の実施形態と同様の構成、処理、機能については同一の符号を付し、その説明を省略する。また、マルチプレート50のX方向の間隔L_WX、Y方向の間隔L_WYの値の入力についても、第3の実施形態と同様なため、その説明を省略する。
 機能エリアS_A_2内において通常のドラック動作が行われた場合は、第1の実施形態と同様である。
 図46は、本実施形態におけるタッチパネル上の機能エリアを示す。CPU201は、図46に示すように、タッチパネル207の表示領域を機能エリアSS_1~SS_8に分ける。
 図47は、本実施形態における、特定の機能エリアSS_1内において一定時間T2以内に同じ場所に2回連続タッチ入力あった場合について説明を行うための図である。機能エリアSS_1内において一定時間T2以内に同じ場所に2回連続タッチ入力があった場合は、CPU201は、特定動作であると判定する。特定動作と判定された場合は、CPU201は、顕微鏡コントローラ2の不揮発メモリ24に記録されているX方向ウェル間隔距離L_WX、Y方向ウェル間隔距離L_WYの情報をもとに、ドラックの長さにかかわらず、ステージ20をウェル1つ分距離移動させる制御を行う。
 図48は、本実施形態における電動ステージ20の駆動に伴う観察位置の移動を説明するための図である。マイクロプレート50のウェルW_A1の中のS_W_A1の地点を観察しているものとする。すなわち、ステージ座標について、観察(視野)の中心座標は、S_W_A1の座標となっている。
 図49は、本実施形態における各機能エリアに対して一定時間T2以内に同じ場所に2回連続タッチ入力があった場合に用いられる顕微鏡システム動作制御テーブルの一例を示す。図49の顕微鏡システム動作制御テーブルは、ROM202または不揮発性メモリ204に格納されている。顕微鏡システム動作制御テーブルは、例えば、「ID」41、「入力エリア」42、「タッチパネル入力特定動作」43、「駆動部位」44、「制御内容」45のデータ項目からなる。
 「ID」41には、タッチパネル入力特定動作を識別する情報が格納されている。「入力エリア」42には、入力のあった機能エリアを識別する情報が格納されている。「タッチパネル入力特定動作」43には、タッチパネル207に対して行われたタッチパネル入力による特定動作の態様が格納されている。「駆動部位」44には、タッチパネル入力による特定動作の操作の対象となる駆動部位を識別する情報が格納されている。「制御内容」45には、タッチパネル入力による特定動作の操作の対象となる駆動部位に対する制御の内容が格納されている。
 図49の顕微鏡システム動作制御テーブルの内容は、例えば、タッチパネル207に表示される設定画面にて登録したり、変更したりすることができる。
 図50は、本実施形態における機能エリアSS_1に対してタッチ操作を行った場合の顕微鏡コントローラの動作フローを示す。図47に示すように、タッチパネル207のSS_1内において、地点a36に一定時間T2以内に同じ場所に2回連続タッチ入力があった場合、CPU201は、特定動作であると判定する(S801)。
 すると、CPU201は、図49の顕微鏡システム動作制御テーブルに基づいて、電動ステージ20の移動方向と距離の設定を行う。すなわち、CPU201は、SS_1のエリアに一定時間T2以内に同じ場所に2回連続タッチ入力があったと判定する。すると、CPU201は、Y方向は固定でX座標が+となる方向に駆動を行うと判定する。その結果、CPU201は、移動距離としてL_WX=9mmの値を設定する(S802)。
 移動方向と移動距離が設定されると、CPU201は、電動ステージ20を、設定された移動方向へ、設定された移動距離分移動させる制御を行う。すなわち、Y方向は固定でX座標が+となる方向に、L_WX=9mmの距離分、電動ステージ20の駆動が行なわれる。すなわち、図48(A)におけるウェルW_A1のS_W_A1の地点から、図48(B)におけるウェル1つ分(L_WX=9mm)移動されたウェルW_A2のS_WA2の地点に、観察位置の移動が行われることとなる(S803)。
 また、図49の顕微鏡システム動作制御テーブルによれば、SS_2内において、一定時間T2以内に同じ場所に2回連続タッチ入力があった場合には、X座標が「-」となる方向に、L_WX距離分電動ステージ20を移動させることができる。また、SS_3内において、一定時間T2以内に同じ場所に2回連続タッチ入力があった場合には、Y座標が「+」となる方向に、L_WY距離分電動ステージ20を移動させることができる。また、SS_4内において、一定時間T2以内に同じ場所に2回連続タッチ入力があった場合には、Y座標が「-」となる方向に、L_WY距離分電動ステージ20を移動させることができる。
 このように、タッチパネル207に対する特定動作の入力に基づいて、次のウェルへの切換えることができる。その結果、タッチパネルのような(狭い)限られた操作エリアを有するコントローラにおいても、ブラインド操作が可能となる。
 なお、XY方向は上下、左右、上下及び左右を反転させた場合であってもよく、またユーザーが任意に切換え可能な状態になっていてもよい。また、本実施形態では、特定動作によるステージ移動距離をウェル間隔分の移動としているが、次のウェルの中心へ移動させる動作となっていてもよい。
 以上のように、タッチパネル207上の特定の機能エリア内において一定時間内に連続でタッチ入力があった場合は、その機能エリアに応じて、ステージ20を所定方向にウェル1つ分距離移動させることができる。これにより、タッチパネルのような(狭い)限られた操作エリアを有するコントローラにおいても、ブラインド操作が可能となる。
 以上、第1~第4の実施形態を説明したが、本発明は、上述した各実施形態に限定されることなく、本発明の要旨を逸脱しない範囲内で種々の改良・変更が可能である。
 例えば、第1~第4の実施形態に係る顕微鏡システムにおいては、顕微鏡装置1として正立顕微鏡装置を採用していたが、これに限定されず、倒立顕微鏡装置を採用してもよい。また、顕微鏡装置を組み込んだライン装置といった各種システムに第1~第4の実施形態を適応してもよい。
 また、第1~第4の実施形態では、ステージ20の移動について述べた。しかし、タッチパネル207に対してドラッグ動作を行うことにより、連続的に顕微鏡の部位の駆動を行うという観点ではステージ20の移動に限定されるものではない。また、第1~第4の実施形態ではタッチパネルを有する顕微鏡コントローラとしたが、タッチパネルと同等の機能を有するデバイスにも置き換え可能である。
 第1~第4の実施形態の顕微鏡システムによれば、タッチパネルのような(狭い)限られた操作エリアを有するコントローラにおいても、ドラッグ動作で連続的に動かすようなXY方向の操作性の向上を図ることができる。さらに顕微鏡特有の対物レンズ、マルチウェルプレート観察に応じた、特定な操作に割り当てることで、ステージを含めたその他の顕微鏡の操作性の向上させることが可能となる。
 <第5の実施形態>
 続いて、タッチパネル207に対して、複数の点により入力することにより、電動ユニットに所定の動作を行わせることについて説明する。ここで、複数の点により入力するとは、例えば、複数の本の指を用いて、タッチパネル207上をタッチ操作したり、ドラッグ操作したり、1本の指によりタッチパネル上の同一位置をタッチしつつ他の指でドラッグ操作をすることをいう。本実施形態では、例として2本の指を用いてタッチ操作を行う場合について説明するが、3本以上の指を用いてタッチ操作してもよい。また、以下では、電動ユニットに所定の動作の行わせるために、タッチパネル207に対して複数の指(点)を用いて入力することを、「特定動作」という。
 図51A、図51Bは、第5の実施形態における、機能エリアS_A_2に対して2点の特定動作の入力を行った場合の顕微鏡コントローラの動作フローを示す。図51A及び図51Bのフローは、図17のフローにS901,S902の処理を追加したものである。
 S311において、入力があった位置の機能エリアの判別後、タッチパネル制御部206による検出結果に基づいて、CPU201はタッチパネル207への2点入力による特定動作の入力であるか否を判定する(S901)。
 タッチパネル207への2点入力による特定動作の入力であると判定した場合、CPU201は、ROM202または不揮発性メモリ204から、後述する顕微鏡システム動作制御テーブルを読み出して、その特定動作に応じた顕微鏡制御処理を行う(S902)。S902の処理については、図52-図61を用いて詳述する。
 一方で、タッチパネル207への2点入力による特定動作の入力でないと判定した場合、CPU201は、機能エリアに応じた顕微鏡制御処理を行う(S312)。
 図52A、図52Bは、第5の実施形態におけるタッチパネルへ2点入力がされた場合に用いられる顕微鏡システム動作制御テーブルの一例を示す。顕微鏡システム動作制御テーブルは、ROM202または不揮発性メモリ204に格納されている。顕微鏡システム動作制御テーブルは、例えば、「ID」541、「入力エリア」542、「2点入力特定動作」543、「駆動部位」544、「制御内容」545、「ON/OFFフラグ」546のデータ項目からなる。
 「ID」541には、2点入力特定動作を識別する情報が格納されている。「入力エリア」542には、入力のあった機能エリアを識別する情報が格納されている。「2点入力特定動作」543には、タッチパネル207に対して行われた2点入力による特定動作の態様が格納されている。「駆動部位」544には、2点入力による特定動作の操作の対象となる駆動部位を識別する情報が格納されている。「制御内容」545には、2点入力による特定動作の操作の対象となる駆動部位に対する制御の内容が格納されている。
 「ON/OFFフラグ」546には、その対応する「ID」541で示される2点入力特定動作の制御を有効(ON)にするか無効(OFF)にするかの情報が格納されている。例えば、タッチパネル207への2点入力特定動作Aに対して、複数の制御内容が存在する場合、「ON/OFFフラグ」546にONまたはOFFを設定することができる。これにより、同一の特定動作について、特定動作の対象となる駆動部位を排他的に設定することができる。なお、図52Aと、図52Bとでは、「ON/OFFフラグ」546の内容が異なっている。
 顕微鏡システム動作制御テーブルの内容は、例えば、タッチパネル207に表示される設定画面にて登録したり、変更したりすることができる。
 図53は、第5の実施形態(拡大機能エリアモード)における(A)ステージ20をX-Y方向へ移動させるために、機能エリアS_A_2に対して、1点入力操作を行った場合について説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図である。
 図53に示すように、機能エリアS_A_2に対して、地点a5から地点a6までX方向へ距離XA_2、Y方向へ距離YA_2のドラッグ動作(タッチパネルをタッチしたまま地点a6まで移動させる動作)が行われたとする。この場合、通常機能エリアモードと同様に、ステージ20を、X方向へ座標X_0から距離XA_2×la分の距離を移動させ、Y方向へ座標Y_0から距離YA_2×la分の距離を移動させる制御が行われる。なお、ドラッグ動作中は、ドラッグ位置に応じてステージ20位置の追従が行われる。
 図54及び図55は、第5の実施形態(拡大機能エリアモード)における(A)ステージ20をX-Y方向へ移動させるために、機能エリアS_A_2に対して、2点入力操作を行った場合について説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図である。
 図54、図55では、2点の入力、すなわち指2本でドラッグ動作をした場合について説明する。仮に人差し指で地点a5を、中指で地点a5’をタッチしたものとし、人差し指で地点a5から地点a6までX方向の距離XA_2、Y方向の距離YA_2のドラッグ動作(タッチパネルをタッチしたまま地点a6まで移動させる動作)が行われ、同時に中指で地点a5’から地点a6’までX方向の距離XA_2、Y方向の距離YA_2のドラッグ動作(タッチパネルをタッチしたまま地点a6’まで移動させる動作)が行われたものとする。
 タッチパネル207に対して、2点の入力があり、ともにドラッグ動作が行われた場合、CPU201は、顕微鏡システム動作制御テーブル(図52A)に登録された制御を行う。図52Aにはタッチパネル207への2点入力動作に対応した、入力機能エリア、特定動作、駆動部位、制御内容及びそのON/OFFフラグが記録されている。
 図54の場合には、「ID」541=ID01が選択されるので、1点入力によるドラッグ操作による移動距離にステージ移動係数sが乗ぜられる。すなわち、ステージ20について、X方向へ座標X_0からX_22へ距離XA_2×la×s分の距離を移動させ、Y方向へ座標Y_0からY_22へ距離YA_2×la×s分の距離を移動させる制御が行われる。第5の実施形態では、例えば移動係数s=3が設定されている。したがって、2点で同時にドラッグ動作が行われた場合は、1点のみのドラッグ動作に比べ、3倍の距離を駆動することになる。
 ステージ20の軌跡に対応するドラッグ動作は、第5の実施形態では左側の入力が優先されるように設定されている。したがって、図54の場合には、地点a5から地点a6のドラッグ動作に対応してステージ20は駆動する。
 なお、第5の実施形態では移動係数s=3としたが、例えば、1未満のs=0.5としてもよい。この場合、1点入力によるドラッグ動作に比べ、2点同時にドラッグ動作を入力した場合の方が、移動距離が短くなるものとなる。
 次に、図52Bに示すように、図52Aの状態から「ID」541=ID01の「ON/OFFフラグ」546の内容がOFFであり、「ID」541=ID02の「ON/OFFフラグ」546の内容がONであった場合について説明する。
 図55に示すように、機能エリアS_A_2に対して1点を固定しながら、もう1点をドラッグ動作した場合について説明を行う。仮に親指で地点a5”をタッチしながら、人差し指で地点a5からから地点a6までX方向へ距離XA_2、Y方向へ距離YA_2のドラッグ動作(タッチパネルをタッチしたまま地点a6まで移動させる動作)が行われたものとする。
 この場合、CPU201は、顕微鏡システム動作制御テーブル(図52B)に登録された制御を行う。図55の場合には、「ID」541=ID02が選択されるので、1点入力によるドラッグ操作による移動距離にステージ移動係数sが乗ぜられる。ID01の動作と同様に、ステージ20を、X方向へ座標X_0から座標X_22へ距離XA_2×la×s分の距離を移動させ、Y方向へ座標Y_0から座標Y_22へ距離YA_2×la×s分の距離を移動させる制御が行われる。第5の実施形態では、例えば移動係数s=3が設定されている。したがって、1点固定で、もう1点でドラッグ動作が行われた場合は、1点のみのドラッグ動作に比べ3倍の距離を駆動することになる。
 続いてZ方向の駆動について説明する。
 図56は、第5の実施形態(拡大機能エリアモード)における(A)ステージ20をZ方向へ移動させるために、機能エリアS_B_2に対して、1点入力操作を行った場合について説明するための図と、(B)その操作に伴うステージ20のZ方向への移動を説明するための図である。
 図56に示すように機能エリアS_B_2に対して、地点b5から地点b6まで距離ZB_2のドラッグ動作が行われた場合、通常機能エリアモードと同様に、対物レンズ23とステージ20が近づく方向に距離ZB_2×lb移動させる制御が行われる。なお、ドラッグ動作中は、ドラッグ位置に応じてステージ20位置の追従が行われる。
 図57及び図58は、第5の実施形態(拡大機能エリアモード)における(A)ステージ20をZ方向へ移動させるために、機能エリアS_A_2に対して、2点入力操作を行った場合について説明するための図と、(B)その操作に伴うステージ20のZ方向への移動を説明するための図である。
 図57に示すように機能エリアS_A_2に対して、地点a7をタッチしながら、地点b8から地点b9まで距離ZB_2のドラッグ動作が行われた場合は、CPU201は顕微鏡システム動作制御テーブル(図52A、または図52B)に登録された制御を行う。ここでは、1点を固定した上で、もう1点ではY方向へのドラッグ動作となるため、図57の場合には、「ID」541=ID03が選択される。したがって、対物レンズ23とステージ20が近づく方向に距離ZB_2×lb移動させる制御が行われる。なお、ドラッグ動作中は、ドラッグ位置に応じてステージ20位置の追従が行われる。
 図58に示すように機能エリアS_A_2に対して、地点a7をタッチしながら、図57とは逆方向の地点b10から地点b11まで距離ZB_2のドラッグ動作が行われた場合は、対物レンズ23とステージ20が遠ざかる方向に距離ZB_2×lb移動させる制御が行われる。
 次に、電動レボルバ24の切換えについて、図59~図61を用いて説明する。
 図59-図61は、第5の実施形態(拡大機能エリアモード)における(A)電動レボルバの切換えのために、機能エリアS_A_2に対して、2点入力操作を行った場合について説明するための図と、(B)その操作に伴うステージ20のX-Y方向への移動を説明するための図である。
 電動レボルバ24の切換えは、顕微鏡システム動作制御テーブル(図52A,図52B)で言えば、「ID」541=ID04,ID05に相当する。初期状態は、図59の状態、すなわち、図59(B)に示すように、20倍の対物レンズ23cが選択されているものとする。
 図60(A)に示すように、S_A_2内の地点a12をタッチしながら、地点a13から地点a14方向にドラッグ動作を行うと、CPU201は、電動レボルバ24を制御して、対物レンズ23を高倍に変換する(図60(B))。
 図60の状態から、図61(A)に示すように、さらに、S_A_2内の地点a12をタッチしながら地点a15から地点a16方向にドラッグ動作を行うと、CPU201は、電動レボルバ24を制御して、対物レンズ23を低倍に変換する(図61(A))。
 第5の実施形態に係る顕微鏡システムによれば、タッチパネルに対する特定動作の入力を選択されている対物レンズに応じた電動ステージの操作に割り当てることが可能となり、タッチパネルのような(狭い)限られた操作エリアを有するコントローラにおいても、ブラインド操作が可能となる。
 上記において、本発明の実施形態を説明したが、本発明は、上述した各実施形態に限定されることなく、本発明の要旨を逸脱しない範囲内で種々の改良・変更が可能である。例えば、上述した各実施形態に係る顕微鏡システムにおいては、顕微鏡装置1として正立顕微鏡装置を採用していたが、その代わりに、倒立顕微鏡装置を採用してもよい。また、顕微鏡装置を組み込んだライン装置等の各種システムに第5の実施形態を適応してもよい。
 また、第5の実施形態では、顕微鏡の機能の割り当てについて、隼焦部の座標、光源の調光量、倍率、光学素子ターレット位置の変更について述べたが、これに限定されるものではなく、視野絞り(FS:Field Stop)や開口絞り(AS:Aperture Stop)、その他公知の電動部位またはユニットであってもよい。もちろん本実施例の顕微鏡装置は、複数の対物レンズを有し、これを随時切り換えていく構成として説明したが、もちろんズーム機構を有する対物レンズであってもよい。
 また、第5の実施形態では、タッチパネル207に対して複数点入力による特定動作の操作対象として、主としてステージ20の移動、及び電動レボルバの切り替えについて述べた。しかし、タッチパネル207に対して複数点入力による特定動作を行うことにより、顕微鏡の部位の駆動を行うという観点ではこれらに限定されるものではない。複数点入力による特定動作の操作対象として、例えば、光源の調光量、光学倍率、光学素子ターレット、または検鏡方法の切換えであってもよい。また、タッチパネル207に対して複数点入力による特定動作の操作対象がステージ20の移動である場合、入力する点の数に応じて、その移動速度を変化させてもよい。また、第5の実施形態ではタッチパネルを有する顕微鏡コントローラとしたが、タッチパネルと同等の機能を有するデバイスにも置き換え可能である。
 また、ドラッグ時における入力する点の数に応じて、ステージ移動の際の速度または距離を変更するようにしてもよい。
 第5の実施形態の顕微鏡システムによれば、タッチパネルのような(狭い)限られた操作エリアを有するコントローラにおいても、ドラッグ動作で連続的に動かすようなXY方向の操作性の向上を図ることができる。さらに顕微鏡特有の対物レンズに応じた、特定な操作に割り当てることで、ステージを含めたその他の顕微鏡の操作性の向上させることが可能となる。
 1   顕微鏡装置
 2   顕微鏡コントローラ
 6   透過照明用光源
 7   コレクタレンズ
 8   透過用フィルタユニット
 9   透過視野絞り
 10  透過開口絞り
 11  コンデンサ光学素子ユニット
 12  トップレンズユニット
 13  落射照明用光源
 14  コレクタレンズ
 15  落射用フィルタユニット
 16  落射シャッタ
 17  落射視野絞り
 18  落射開口絞り
 19  観察体
 20  電動ステージ
 21  ステージX-Y駆動制御部
 21a X-Yモータ
 22  ステージZ駆動制御部
 22a Zモータ
 23  対物レンズ
 24  レボルバ
 25  キューブターレット
 26  接眼レンズ
 27  ビームスプリッタ
 28  ポラライザー
 29  DICプリズム
 30  アナライザー
 31  顕微鏡制御部
 35(35a,35b) 蛍光キューブ
 201 CPU
 202 ROM
 203 RAM
 204 不揮発性メモリ
 205 通信制御部
 206 タッチパネル制御部
 207 タッチパネル
 209 規制枠
 
 

Claims (23)

  1.  顕微鏡システムで用いられる電動ステージの動作を制御するための操作を行う顕微鏡コントローラにおいて、
     外部からの物理的接触による入力を受け付けると共に、表示機能を有するタッチパネル部と、
     前記電動ステージを操作するためのステージ操作機能を前記タッチパネル部の所定の表示領域に設定する機能設定部と、
     前記ステージ操作機能が設定された表示領域である操作表示領域に対して行われた前記物理的接触による入力を検出する入力検出部と、
     前記検出された入力結果に応じて、前記電動ステージの移動態様を決定し、該決定した移動態様に基づいて、前記電動ステージを制御する制御指示信号を生成する決定部と、
     該電動ステージの動作を制御する外部装置に対して、前記制御指示信号を送信する通信制御部と、
     を備えることを特徴とする顕微鏡コントローラ。
  2.  前記決定部は、前記検出された入力結果に基づいて、前記操作表示領域における前記入力の位置が所定方向に連続して変化した後、所定の位置において前記入力が継続すると判定した場合、前記電動ステージを前記所定方向へ継続的に移動させる
     ことを特徴とする請求項1に記載の顕微鏡コントローラ。
  3.  前記決定部は、前記電動ステージを前記所定方向へ継続的に移動させる場合、前記顕微鏡システムの観察光路に挿入された対物レンズの倍率に応じて、前記電動ステージの移動速度を制御する
     ことを特徴とする請求項2に記載の顕微鏡コントローラ。
  4.  前記決定部は、前記電動ステージを前記所定方向へ継続的に移動させる場合、前記操作表示領域における前記所定方向への前記入力の位置の連続的な変化が終了する直前の、該所定方向と同方向、かつ該入力の位置の連続的な変化に対応して移動する前記電動ステージの移動速度と同じ移動速度で、該電動ステージを移動させる
     ことを特徴とする請求項2に記載の顕微鏡コントローラ。
  5.  前記機能設定部は、前記所定の位置を含む第1の表示領域と、該第1の表示領域を除く第2の表示領域とを設定する
     ことを特徴とする請求項2に記載の顕微鏡コントローラ。
  6.  前記決定部は、前記検出された入力結果に基づいて、前記操作表示領域における前記入力の位置が所定速度以上で、かつ所定の距離連続して変化したと判定した場合、前記電動ステージを前記所定量移動させる
     ことを特徴とする請求項1記載の顕微鏡コントローラ。
  7.  前記決定部は、前記顕微鏡システムの観察光路に挿入された対物レンズの倍率に応じて設定された移動量に基づいて、前記電動ステージを移動させる
     ことを特徴とする請求項6に記載の顕微鏡コントローラ。
  8.  前記電動ステージは、複数のウェルを有するマイクロプレートを搭載可能であり、
     前記顕微鏡コントローラは、さらに、
     前記タッチパネル部に対して、前記マイクロプレートの各ウェル間の間隔が入力された場合、該各ウェル間の間隔を格納する間隔格納部と、
     を備え、
     前記決定部は、前記検出された入力結果に基づいて、前記操作表示領域における前記入力の位置が所定速度以上で、かつ所定の距離連続して変化したと判定した場合、前記間隔格納部に格納された各ウェル間の距離に基づいて、前記電動ステージを移動させる
     ことを特徴とする請求項1に記載の顕微鏡コントローラ。
  9.  前記操作表示領域における前記入力の位置が所定速度以上で、かつ所定の距離連続して変化した場合とは、前記タッチパネル部に対して一定速度以上かつ一定距離以下のドラック動作がなされた場合である
     ことを特徴とする請求項8記載の顕微鏡コントローラ。
  10.  前記電動ステージは、複数のウェルを有するマイクロプレートを搭載可能であり、
     前記顕微鏡コントローラは、さらに、
     前記タッチパネル部に対して、前記マイクロプレートの各ウェル間の間隔が入力された場合、該各ウェル間の間隔を格納する間隔格納部と、
     を備え、
     前記決定部は、前記検出された入力結果に基づいて、前記操作表示領域における前記入力が、所定時間内で、所定の領域内で連続してなされたと判定した場合、前記間隔格納部に格納された各ウェル間の距離に基づいて、前記電動ステージを移動させる
     ことを特徴とする請求項1に記載の顕微鏡コントローラ。
  11.  前記電動ステージは複数のウェルを有するマイクロプレートを搭載可能な構成となっており、
     前記マイクロプレートの各ウェル間の距離の入力を行なうウェル間隔入力部と、
    前記ウェル間隔入力部に入力されたウェル間隔の値を設定するウェル間移動量設定部と、
     タッチパネル入力動作判定部とを有し、
     前記電動ステージに対応した機能エリアによる入力動作が前記タッチパネル入力動作判定部に登録された特定動作と判定された場合、顕微鏡制御部はウェル間移動量設定部に記録させたウェル間隔の値の分ステージを移動させる
     ことを特徴とする請求項1記載の顕微鏡システム。
  12.  請求項1~11のうちいずれか1項に記載の顕微鏡コントローラを備える顕微鏡システム。
  13.  顕微鏡システムで用いられる電動ステージの動作を制御する処理をコンピュータに実行させる電動ステージ動作制御プログラムが格納されたコンピュータ読取可能記憶媒体において、
     外部からの物理的接触による入力を受け付けると共に表示機能を有するタッチパネル部の所定の表示領域に対して、前記電動ステージを操作するためのステージ操作機能を設定する機能設定処理と、
     前記ステージ操作機能が設定された表示領域である操作表示領域に対して行われた前記物理的接触による入力に応じて、前記電動ステージの移動態様を決定し、該決定した移動態様に基づいて、前記電動ステージを制御する制御指示信号を生成する決定処理と、
     該電動ステージの動作を制御する外部装置に対して、前記制御指示信号を送信する通信制御処理と、
     をコンピュータに実行させることを特徴とする電動ステージ動作制御プログラムが格納されたコンピュータ読取可能記憶媒体。
  14.  顕微鏡システムで用いられる電動ステージの動作を制御する電動ステージ動作制御方法において、
     外部からの物理的接触による入力を受け付けると共に表示機能を有するタッチパネル部の所定の表示領域に対して、前記電動ステージを操作するためのステージ操作機能を設定し、
     前記ステージ操作機能が設定された表示領域である操作表示領域に対して行われた前記物理的接触による入力を検出し、
     前記検出された入力結果に応じて、前記電動ステージの移動態様を決定し、
     該決定した移動態様に基づいて、前記電動ステージを制御する制御指示信号を生成し、
     該電動ステージの動作を制御する外部装置に対して、前記制御指示信号を送信する
     ことを特徴とする電動ステージ動作制御方法。
  15.  顕微鏡システムで用いられる電動ユニットの動作を制御するための操作を行う顕微鏡コントローラにおいて、
     外部からの物理的接触による入力を受け付けると共に、表示機能を有するタッチパネル部と、
     前記電動ユニットを操作するための操作機能を前記タッチパネル部の所定の表示領域に設定する機能設定部と、
     前記操作機能が設定された表示領域である操作表示領域に対して行われた前記物理的接触による入力を検出する入力検出部と、
     前記検出された入力結果に基づいて、前記操作表示領域に対して入力された位置を示す入力点の数及び該入力点の移動態様を判定し、前記判定された前記入力点の数に応じて、前記電動ユニットの動作態様を決定し、該決定した移動態様に基づいて、前記電動ユニットの駆動を制御する指示を行うための制御指示信号を生成する制御部と、
     該電動ユニットの動作を制御する外部装置に対して、前記制御指示信号を送信する通信制御部と、
     を備えることを特徴とする顕微鏡コントローラ。
  16.  前記電動ユニットが電動ステージであり、
     前記操作表示領域に対して該電動ステージを移動させる操作機能が設定されている状態で、操作表示領域に対して該電動ステージを移動させる操作が行われた際に、
     前記制御部は、前記判定の結果、前記入力点が1点の場合と、所定の入力点が検出されている際に該所定の入力点以外の入力点が1点以上検出されている場合とで、前記電動ステージの移動距離を変更する
     ことを特徴とする請求項15に記載の顕微鏡コントローラ。
  17.  前記制御部は、前記判定の結果、前記操作表示領域において前記入力点が所定方向に連続して変化した際において、該入力点が1点の場合と、所定の入力点が検出されているときに該所定の入力点以外の入力点が1点以上検出されている場合とで、前記電動ステージの移動距離を変更する
     ことを特徴とする請求項16に記載の顕微鏡コントローラ。
  18.  前記制御部は、前記判定の結果、前記操作表示領域において、1点による入力点が所定方向に連続して変化した場合と、一方の入力点の位置が不変である間に他方の入力点が所定方向に連続して変化した場合とで、前記電動ステージの移動距離を変更する
     ことを特徴とする請求項16に記載の顕微鏡コントローラ。
  19.  前記制御部は、前記判定結果より、前記操作表示領域に入力された入力点の数に応じて、前記操作表示領域に設定された操作機能の対象となる第1の電動ユニットとは異なる第2の電動ユニットを制御の対象とする
     ことを特徴とする請求項15に記載の顕微鏡コントローラ。
  20.  前記第2の電動ユニットは、前記電動ステージを光軸方向に移動させる光軸方向駆動部、光源装置、電動レボルバ、光学素子ターレット、または検鏡方法を制御する顕微鏡制御装置であり、
     前記制御部は、前記光軸方向駆動部により光軸方向への前記電動ステージの移動、前記光源装置により調光量の調整、前記電動レボルバにより対物レンズの切換え、前記光学素子ターレットによる光学素子の切換え、前記顕微鏡制御装置により検鏡方法の切換えのいずれかを実行させるための前記制御指示信号を生成する
     ことを特徴とする請求項19に記載の顕微鏡コントローラ。
  21.  請求項15~20のうちいずれか1項に記載の顕微鏡コントローラを備える顕微鏡システム。
  22.  顕微鏡システムで用いられる電動ユニットの動作を制御するための操作を行うコンピュータであって、外部からの物理的接触による入力を受け付けると共に、表示機能を有するタッチパネル部と、前記電動ユニットを操作するための操作機能を前記タッチパネル部の所定の表示領域に設定する機能設定部と、前記操作機能が設定された表示領域である操作表示領域に対して行われた前記物理的接触による入力を検出する入力検出部と、を備える該コンピュータに、前記電動ユニットの動作を制御させる処理を実行させる顕微鏡制御プログラムが格納されたコンピュータ読取可能記憶媒体において、
     前記検出された入力結果に基づいて、前記操作表示領域に対して入力された位置を示す入力点の数及び該入力点の移動態様を判定する判定処理と、
     前記判定された前記入力点の数に応じて、前記電動ユニットの動作態様を決定する決定処理と、
     該決定した移動態様に基づいて、前記電動ユニットの駆動を制御する指示を行うための制御指示信号を生成する生成処理と、
     該電動ユニットの動作を制御する外部装置に対して、前記制御指示信号を送信する送信処理と、
     をコンピュータに実行させる顕微鏡制御プログラムが格納されたコンピュータ読取可能記憶媒体。
  23.  顕微鏡システムで用いられる電動ユニットの動作を制御するための操作を行う顕微鏡コントローラであって、外部からの物理的接触による入力を受け付けると共に、表示機能を有するタッチパネル部と、前記電動ユニットを操作するための操作機能を前記タッチパネル部の所定の表示領域に設定する機能設定部と、前記操作機能が設定された表示領域である操作表示領域に対して行われた前記物理的接触による入力を検出する入力検出部と、を備える該顕微鏡コントローラに、前記電動ユニットの動作を制御させる処理を実行させる顕微鏡制御方法において、
     前記検出された入力結果に基づいて、前記操作表示領域に対して入力された位置を示す入力点の数及び該入力点の移動態様を判定し、
     前記判定された前記入力点の数に応じて、前記電動ユニットの動作態様を決定し、
     該決定した移動態様に基づいて、前記電動ユニットの駆動を制御する指示を行うための制御指示信号を生成し、
     該電動ユニットの動作を制御する外部装置に対して、前記制御指示信号を送信する、
     ことを特徴とする顕微鏡制御方法。
     
PCT/JP2011/058554 2010-04-05 2011-04-04 顕微鏡コントローラ及び該顕微鏡コントローラを有する顕微鏡システム WO2011125985A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11765885.6A EP2557446B1 (en) 2010-04-05 2011-04-04 Microscope controller and microscope system comprising the microscope controller
US13/573,775 US8867126B2 (en) 2010-04-05 2012-10-04 Microscope controller and microscope system having microscope controller

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-086751 2010-04-05
JP2010086751A JP5649848B2 (ja) 2010-04-05 2010-04-05 顕微鏡コントローラ及び該顕微鏡コントローラを有する顕微鏡システム
JP2010-114567 2010-05-18
JP2010114567A JP5649851B2 (ja) 2010-05-18 2010-05-18 顕微鏡コントローラを有する顕微鏡システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/573,775 Continuation US8867126B2 (en) 2010-04-05 2012-10-04 Microscope controller and microscope system having microscope controller

Publications (1)

Publication Number Publication Date
WO2011125985A1 true WO2011125985A1 (ja) 2011-10-13

Family

ID=44762920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058554 WO2011125985A1 (ja) 2010-04-05 2011-04-04 顕微鏡コントローラ及び該顕微鏡コントローラを有する顕微鏡システム

Country Status (3)

Country Link
US (1) US8867126B2 (ja)
EP (1) EP2557446B1 (ja)
WO (1) WO2011125985A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6150586B2 (ja) * 2013-03-29 2017-06-21 オリンパス株式会社 顕微鏡
CN103257438B (zh) * 2013-05-29 2015-02-18 哈尔滨工业大学 一种基于自动控制电动平移台的平面二维矩形扫描装置及其扫描方法
WO2016061563A1 (en) * 2014-10-17 2016-04-21 The Regents Of The University Of California Automated hardware and software for mobile microscopy
JP2018112573A (ja) * 2017-01-06 2018-07-19 オリンパス株式会社 顕微鏡システム
JP7087363B2 (ja) * 2017-12-01 2022-06-21 富士フイルムビジネスイノベーション株式会社 情報処理装置及びプログラム
DE102018107033A1 (de) * 2018-03-23 2019-09-26 Leica Microsystems Cms Gmbh Mikroskopsystem und Verfahren zur Steuerung eines solchen Mikroskopsystems
PL3623798T3 (pl) 2018-09-13 2022-03-28 Euroimmun Medizinische Labordiagnostika Ag Sposób i urządzenie do wykrywania i przedstawiania obrazu immunofluorescencyjnego próbki biologicznej
CA3205944A1 (en) * 2020-12-21 2022-06-30 Singular Genomics Systems, Inc. Systems and methods for multicolor imaging

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103735A (ja) * 1993-10-05 1995-04-18 Mitsutoyo Corp 非接触画像計測システム
JPH07199077A (ja) * 1993-12-29 1995-08-04 Olympus Optical Co Ltd 顕微鏡システム
JPH0886965A (ja) * 1995-10-06 1996-04-02 Nikon Corp 顕微鏡用電動ステージ制御装置
JP2001059940A (ja) * 1999-08-24 2001-03-06 Nikon Corp 顕微鏡及び記録媒体
JP2001091854A (ja) * 1999-09-21 2001-04-06 Jasco Corp 簡易操作顕微装置
JP2005114859A (ja) * 2003-10-03 2005-04-28 Nikon Corp 顕微鏡
JP2007034050A (ja) * 2005-07-28 2007-02-08 Olympus Corp 観察装置及びその制御方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064213A (ja) 1992-06-19 1994-01-14 Olympus Optical Co Ltd タッチパネル式操作装置
US5557456A (en) * 1994-03-04 1996-09-17 Oncometrics Imaging Corp. Personal interface device for positioning of a microscope stage
WO1996018924A1 (fr) 1994-12-15 1996-06-20 Olympus Optical Co., Ltd. Microscope pourvu d'organes d'observation et de prise de vues
JPH08223563A (ja) * 1995-02-15 1996-08-30 Meitec Corp 観察装置の試料台制御方式
JPH09197287A (ja) * 1996-01-23 1997-07-31 Nikon Corp 電動顕微鏡
JP3872866B2 (ja) 1997-05-27 2007-01-24 オリンパス株式会社 焦点深度伸長装置
AU1097299A (en) * 1997-10-17 1999-05-10 Accumed International, Inc. High-precision computer-aided microscope system
JP4253482B2 (ja) * 2002-09-19 2009-04-15 オリンパス株式会社 顕微鏡装置
US7180662B2 (en) * 2004-04-12 2007-02-20 Applied Scientific Instrumentation Inc. Stage assembly and method for optical microscope including Z-axis stage and piezoelectric actuator for rectilinear translation of Z stage
JP2006292999A (ja) * 2005-04-11 2006-10-26 Direct Communications:Kk スライド画像データ作成装置およびスライド画像データ
JP4845468B2 (ja) * 2005-10-06 2011-12-28 オリンパス株式会社 観察装置
DE102006010104B4 (de) * 2006-02-28 2021-08-05 Carl Zeiss Microscopy Gmbh Bedienheinheit für optische Abbildungseinrichtungen
KR100771626B1 (ko) 2006-04-25 2007-10-31 엘지전자 주식회사 단말기 및 이를 위한 명령 입력 방법
CN101461026B (zh) * 2006-06-07 2012-01-18 Fei公司 与包含真空室的装置一起使用的滑动轴承
JP4267030B2 (ja) * 2006-12-26 2009-05-27 オリンパス株式会社 顕微鏡装置、コントローラ、及びプログラム
JP2008292578A (ja) 2007-05-22 2008-12-04 Nikon Corp 顕微鏡用コントローラと、これを有する顕微鏡装置
JP2010008856A (ja) * 2008-06-30 2010-01-14 Olympus Corp 顕微鏡撮像装置及び顕微鏡撮像システム
US20100020393A1 (en) * 2008-07-24 2010-01-28 Hologic Inc. System and Device for Non-Destructive Raman Analysis
JP4853507B2 (ja) 2008-10-30 2012-01-11 ソニー株式会社 情報処理装置、情報処理方法およびプログラム
JP5306088B2 (ja) 2009-07-14 2013-10-02 オリンパス株式会社 顕微鏡システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103735A (ja) * 1993-10-05 1995-04-18 Mitsutoyo Corp 非接触画像計測システム
JPH07199077A (ja) * 1993-12-29 1995-08-04 Olympus Optical Co Ltd 顕微鏡システム
JPH0886965A (ja) * 1995-10-06 1996-04-02 Nikon Corp 顕微鏡用電動ステージ制御装置
JP2001059940A (ja) * 1999-08-24 2001-03-06 Nikon Corp 顕微鏡及び記録媒体
JP2001091854A (ja) * 1999-09-21 2001-04-06 Jasco Corp 簡易操作顕微装置
JP2005114859A (ja) * 2003-10-03 2005-04-28 Nikon Corp 顕微鏡
JP2007034050A (ja) * 2005-07-28 2007-02-08 Olympus Corp 観察装置及びその制御方法

Also Published As

Publication number Publication date
EP2557446A1 (en) 2013-02-13
EP2557446B1 (en) 2019-09-04
US8867126B2 (en) 2014-10-21
EP2557446A4 (en) 2015-12-09
US20130038931A1 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
WO2011125985A1 (ja) 顕微鏡コントローラ及び該顕微鏡コントローラを有する顕微鏡システム
JP5608360B2 (ja) 顕微鏡コントローラ及び顕微鏡コントローラを備える顕微鏡システム
EP2275852B1 (en) Microscope controller and microscope system having the microscope controller
US9329375B2 (en) Microscope having a touch screen
JP5468892B2 (ja) 顕微鏡コントローラ及び顕微鏡コントローラを備える顕微鏡システム
JP5649851B2 (ja) 顕微鏡コントローラを有する顕微鏡システム
JP5363278B2 (ja) 顕微鏡システム
JP2012029180A (ja) 周辺画像表示装置及びその表示方法
JP7247210B2 (ja) 顕微鏡システムおよびかかる顕微鏡システムの制御方法
JP2007034050A (ja) 観察装置及びその制御方法
JP2008151865A (ja) 顕微鏡システム
JP5965966B2 (ja) 顕微鏡コントローラ及び該顕微鏡コントローラを有する顕微鏡システム
JP5649848B2 (ja) 顕微鏡コントローラ及び該顕微鏡コントローラを有する顕微鏡システム
JP2007316452A (ja) 観察装置および観察装置の画面表示方法
JP2015082099A (ja) 顕微鏡を制御する制御装置、顕微鏡システム、制御方法およびプログラム
JP7375007B2 (ja) サンプル領域を画像化するための顕微鏡システムおよび相応する方法
JP5911535B2 (ja) 顕微鏡コントローラを備える顕微鏡システム
JP4635492B2 (ja) 顕微鏡装置
JP2019078904A (ja) 顕微鏡システム
JP5102081B2 (ja) 顕微鏡装置、その駆動制御装置、プログラム
JP2011028110A (ja) 顕微鏡用コントローラ、顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011765885

Country of ref document: EP