WO2011125612A1 - 自動変速機の制御装置 - Google Patents

自動変速機の制御装置 Download PDF

Info

Publication number
WO2011125612A1
WO2011125612A1 PCT/JP2011/057667 JP2011057667W WO2011125612A1 WO 2011125612 A1 WO2011125612 A1 WO 2011125612A1 JP 2011057667 W JP2011057667 W JP 2011057667W WO 2011125612 A1 WO2011125612 A1 WO 2011125612A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
automatic transmission
control
speed
slip
Prior art date
Application number
PCT/JP2011/057667
Other languages
English (en)
French (fr)
Inventor
洋 筒井
豊 寺岡
正猛 市川
祥司 大光
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to CN201180007869.3A priority Critical patent/CN102741591B/zh
Priority to DE112011100173T priority patent/DE112011100173T5/de
Priority to JP2012509460A priority patent/JP5464270B2/ja
Priority to US13/076,230 priority patent/US8725373B2/en
Publication of WO2011125612A1 publication Critical patent/WO2011125612A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0437Smoothing ratio shift by using electrical signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/20Preventing gear creeping ; Transmission control during standstill, e.g. hill hold control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/18025Drive off, accelerating from standstill
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0488Smoothing ratio shift during range shift from neutral (N) to drive (D)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/20Preventing gear creeping ; Transmission control during standstill, e.g. hill hold control
    • F16H2061/207Preventing gear creeping ; Transmission control during standstill, e.g. hill hold control by neutral control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2312/00Driving activities
    • F16H2312/02Driving off

Definitions

  • the present invention relates to a control device for an automatic transmission mounted on a vehicle, for example, and more particularly to a control device for an automatic transmission that starts a vehicle while slip-controlling a clutch from a neutral state of an automatic transmission mechanism.
  • a clutch for example, a clutch C-1 that transmits power to an automatic transmission mechanism is used immediately before slipping when it is determined, for example, that the vehicle stops in a D (drive) range.
  • D drive
  • neutral control In order to reduce the drag loss in the torque converter and to reduce the load on the engine in the idle state by releasing it to the state, what is called neutral control has been proposed (see Patent Document 1).
  • the device that performs the neutral control engages the clutch of the automatic transmission mechanism and starts the vehicle with good response when an operation with the intention of starting the vehicle is detected, such as foot brake OFF or accelerator ON. The ones that make it become mainstream.
  • the clutch of the automatic transmission mechanism when the clutch of the automatic transmission mechanism is engaged at the start after the neutral control, the clutch is hydraulically controlled in the same manner as the normal transmission control.
  • the maximum value among the gradient, the gradient that guarantees rotation change (rotation guarantee gradient), and the gradient that guarantees torque transmission (torque guarantee gradient) the clutch is engaged while slipping. So that it is controlled.
  • the present invention reduces the fluctuation of the inertia force when the clutch is engaged from the state where the automatic transmission mechanism is in the neutral state, enables the vehicle with reduced rolling shock, and improves the riding comfort.
  • An object of the present invention is to provide a control device for an automatic transmission that can be used.
  • the present invention includes an automatic transmission mechanism (5) that has a clutch (C-1) that is engaged when starting, and that changes the rotation of the drive source (2), and the drive source.
  • a control device for an automatic transmission (3) comprising: a fluid transmission device (4) interposed between an output shaft (2a) of (2) and an input shaft (10) of the automatic transmission mechanism (5).
  • the clutch control means (24) Initial engagement control means (24c) for performing initial engagement control for starting frictional contact of the clutch (C-1) by supplying hydraulic pressure to the hydraulic servo (40) of the clutch (C-1); After completion of the initial engagement control, the rotational speed (Nt) of the input shaft (10) of the automatic transmission mechanism (5) is set to the rotational speed (Nt) of the input shaft (10) at the end of the initial engagement control. ) Slip control of the clutch (C-1) so as to increase the rotational speed (Nout) of the output shaft (11) of the automatic transmission mechanism (5) without lowering the automatic transmission mechanism (5).
  • Slip starting control means (24d) for establishing a gear ratio at the time of starting (that is, a gear ratio of 1ST).
  • the slip start control means (24d) The target end time to end the slip control (TA), sets the target input rotational speed (N targ) of the target completion time said in (TA) automatic speed change mechanism (5) of the input shaft (10), Based on said target input rotational speed (N targ) and the transmission gear ratio at the start of the automatic speed change mechanism (5) (i.e.
  • the automatic transmission mechanism (5) Calculate the target rotation change rate ( ⁇ ) of the output shaft (11), Based on the target rotational change rate ( ⁇ ) of the output shaft (11) of the automatic transmission mechanism (5), an inertia torque (I ⁇ ) generated in the automatic transmission mechanism (5) is calculated, Based on the total torque obtained by adding the generated inertia torque (I ⁇ ) to the input torque (t ⁇ C ⁇ Ne 2 + T L ⁇ UP ) from the drive source (2), the torque capacity of the clutch (C-1) ( T C1 ) The clutch (C-1) is controlled by hydraulically controlling the engagement pressure (P C1 ) supplied to the hydraulic servo (40) of the clutch (C-1) so that the calculated torque capacity (T C1 ) is obtained. ) Slip control is performed.
  • the slip start control means (24d) The input shaft (10) rotational speed (Nt) and the rotation speed (Ne) and speed ratio (e) is the target speed ratio which is a constant of the drive source (2) of the automatic speed change mechanism (5) (e targ) Set Based on said constant target speed ratio (e targ), calculates the torque capacity of the clutch (C1) (T C1), The clutch (C-1) is controlled by hydraulically controlling the engagement pressure (P C1 ) supplied to the hydraulic servo (40) of the clutch (C-1) so that the calculated torque capacity (T C1 ) is obtained. ) Slip control is performed.
  • the slip start control means (24d) The set up automatic speed change mechanism (5) an input shaft (10) rotational speed (Nt) is constant and becomes the target constant input rotation speed of the (Nt targ), The calculated target constant input rotation speed (Nt targ) and the drive source (2) the output shaft (2a) rotation speed (Ne) and the target speed ratio based on the of the (e targ), Based on said target speed ratio (e targ), calculates the torque capacity of the clutch (C1) (T C1), The clutch (C-1) is controlled by hydraulically controlling the engagement pressure (P C1 ) supplied to the hydraulic servo (40) of the clutch (C-1) so that the calculated torque capacity (T C1 ) is obtained. ) Slip control is performed.
  • the automatic transmission (3) includes a lockup clutch (7) that can lock up the fluid transmission device (4), Lock-up control means (25) for controlling so that at least the lock-up clutch (7) is engaged in a slip region having a predetermined torque capacity (T L-UP 1) when an operation to start the vehicle is detected. ).
  • the rotational speed of the output shaft of the automatic transmission mechanism is increased without decreasing the rotational speed of the input shaft of the automatic transmission mechanism compared to the end of the initial engagement control.
  • the clutch is controlled to slip so that the gear ratio at the start of the automatic transmission mechanism is established, so that fluctuations in the inertia force when engaging the clutch from the neutral state of the automatic transmission mechanism are reduced. It is possible to start the vehicle with reduced shock, and to improve riding comfort.
  • the target end time for ending the slip control and the target input rotational speed of the input shaft of the automatic transmission mechanism at the target end time are set, and the target input rotational speed and the automatic transmission mechanism Calculating a target rotation change rate of the output shaft of the automatic transmission mechanism based on the speed ratio at the time of start and the target end time; calculating an inertia torque generated in the automatic transmission mechanism based on the target rotation change rate; Calculating the torque capacity of the clutch based on the total torque obtained by adding the inertia torque to the input torque from the drive source, and hydraulically controlling the engagement pressure supplied to the hydraulic servo of the clutch so as to be the calculated torque capacity Therefore, the slip control of the clutch is performed during the slip control when the clutch is engaged from the state where the automatic transmission mechanism is in the neutral state.
  • Variation of turbocharger force can be slip controlled clutch so as not to generate. Further, since the engagement pressure can be hydraulically controlled while calculating the inertia torque, it is possible to freely set the fluctuation of the
  • the target speed ratio at which the speed ratio between the rotational speed of the input shaft of the automatic transmission mechanism and the rotational speed of the drive source is constant is set, and the clutch speed is determined based on the constant target speed ratio. Since the clutch slip control is performed by calculating the torque capacity and hydraulically controlling the engagement pressure supplied to the clutch hydraulic servo so that the calculated torque capacity is obtained, the automatic transmission mechanism can be controlled from the neutral state. During the slip control when the clutch is engaged, the clutch can be slip-controlled so that the inertia force does not fluctuate. In addition, since the speed ratio between the rotational speed of the input shaft of the automatic transmission mechanism and the rotational speed of the drive source is constant, a constant torque increasing action can be obtained by the fluid transmission device. An input torque proportional to the increase) can be obtained, that is, an acceleration feeling proportional to the output torque requested by the driver (that is, the throttle opening) can be obtained.
  • the target constant input rotational speed at which the rotational speed of the input shaft of the automatic transmission mechanism is constant is set, and based on the target constant input rotational speed and the rotational speed of the output shaft of the drive source.
  • control when an operation to start the vehicle is detected, control is performed so that at least the lock-up clutch is engaged in a slip region having a predetermined torque capacity. It is possible to improve the fuel consumption by preventing the rotation of the engine from blowing up. Further, when starting the vehicle while engaging the lockup clutch in this way, the input shaft of the automatic transmission mechanism and the output shaft of the drive source are locked up, so that the rotation of the input shaft of the automatic transmission mechanism If the speed decreases, the drive source may stop rotating (so-called engine stop). However, as described above, the slip of the automatic transmission mechanism can be reduced without reducing the rotational speed of the input shaft of the automatic transmission mechanism. The vehicle with the lockup clutch engaged without causing the drive source to stop rotating (so-called engine stop), since the rotation speed of the output shaft is increased to establish the gear ratio at the start of the automatic transmission mechanism. Can be made possible.
  • the block diagram which shows the control apparatus of the automatic transmission which concerns on this invention.
  • the skeleton figure which shows the automatic transmission which can apply this invention.
  • the flowchart which shows control of a lockup clutch.
  • the flowchart which shows control of the clutch C-1.
  • the flowchart which shows the apply control of clutch C-1.
  • the flowchart which shows an example of the slip start control of the clutch C-1.
  • the time chart which shows the time of the start in the engagement state of the lockup clutch when the throttle opening is low.
  • the time chart which shows the time of the start in the state where the lock-up clutch is slipping when the throttle opening is high.
  • the time chart which shows the time of start in the release state of the lockup clutch from a slip state when the throttle opening is a high opening.
  • the time chart which shows the slip start control in case the throttle opening is a low opening.
  • 4 is a time chart showing a slip start control for calculating a torque capacity of a clutch C-1 in consideration of an inertia torque.
  • 4 is a time chart showing slip start control for calculating a torque capacity of a clutch C-1 that achieves a target constant speed ratio. 4 is a time chart showing slip start control for calculating a torque capacity of a clutch C-1 at which a target input rotation speed is constant.
  • an automatic transmission 3 suitable for use in a vehicle of FF type front engine, front drive
  • an output shaft 2a of an engine (E / G) 2 (see FIG. 1) as a drive source.
  • the automatic transmission has an input shaft 8 that can be connected to the shaft, and includes a torque converter (fluid transmission) (T / C) 4 and an automatic transmission mechanism 5 with the axial direction of the input shaft 8 as the center. Yes.
  • the torque converter 4 is interposed between the engine 2 and an automatic transmission mechanism 5 which will be described in detail later.
  • the pump impeller 4a connected to the input shaft 8 of the automatic transmission 3 and the pump via the working fluid.
  • the torque converter 4 is provided with a lock-up clutch 7, and when the lock-up clutch 7 is engaged, the rotation of the input shaft 8 of the automatic transmission 3 causes the input shaft of the automatic transmission mechanism 5 to rotate. 10 is transmitted directly.
  • the stator 4c is fixed by the one-way clutch F in a state where the rotation of the turbine runner 4b is lower than the rotation of the pump impeller 4a, receives the reaction force of the oil flow, and generates a torque increasing action.
  • the rotation of the runner 4b is exceeded, the engine runs idle and the oil flow does not act in the negative direction.
  • the automatic transmission mechanism 5 includes a planetary gear SP and a planetary gear unit PU on the input shaft 10.
  • the planetary gear SP is a so-called single pinion planetary gear that includes a sun gear S1, a carrier CR1, and a ring gear R1, and has a pinion P1 that meshes with the sun gear S1 and the ring gear R1.
  • the planetary gear unit PU has a sun gear S2, a sun gear S3, a carrier CR2, and a ring gear R2 as four rotating elements.
  • the long gearion PL that meshes with the sun gear S2 and the ring gear R2 and the sun gear S3.
  • This is a so-called Ravigneaux type planetary gear that has meshing short pinions PS that mesh with each other.
  • the sun gear S1 of the planetary gear SP is connected to a boss portion that is integrally fixed to the transmission case 9, and the rotation is fixed.
  • the ring gear R1 is in the same rotation as the rotation of the input shaft 10 (hereinafter referred to as “input rotation”). Further, the carrier CR1 is decelerated by reducing the input rotation by the fixed sun gear S1 and the ring gear R1 that rotates, and is connected to the clutch C-1 and the clutch C-3.
  • the sun gear S2 of the planetary gear unit PU is connected to a brake B-1 formed of a band brake so as to be freely fixed to the transmission case, and is connected to the clutch C-3 via the clutch C-3.
  • the sun gear S3 is connected to the clutch C-1, so that the decelerated rotation of the carrier CR1 can be input.
  • the carrier CR2 is connected to a clutch C-2 to which the rotation of the input shaft 10 is input, and the input rotation can be freely input through the clutch C-2, and the one-way clutch F-1 and Connected to the brake B-2, rotation in one direction with respect to the transmission case is restricted via the one-way clutch F-1, and rotation can be fixed via the brake B-2.
  • the ring gear R2 is connected to a counter gear (output shaft of an automatic transmission mechanism) 11, and the counter gear 11 is connected to a drive wheel via a counter shaft and a differential device (not shown).
  • the automatic transmission 3 configured as described above includes the clutches C-1 to C-3 and the brake B-1 at the first forward speed to the sixth forward speed and the reverse speed as shown in the operation table of FIG. ... B-2, the one-way clutch F-1 is operated, and the gear ratio of the shift stage is formed with a good step ratio. Further, each shift control is executed by re-engaging these clutches C-1 to C-3 and brakes B-1 to B-2, and at the time of driving the first forward speed at each shift speed (for example, Except at the time of starting), two of the clutches C-1 to C-3 and the brakes B-1 to B-2 are engaged to achieve each gear stage.
  • the control device 1 of the automatic transmission includes a control unit (ECU) 20, which includes an input shaft rotation speed sensor 30, a shift position sensor 31, an output shaft rotation.
  • a speed (vehicle speed) sensor 32, a brake sensor 33, a throttle opening sensor 34, and the like are connected to the clutches C-1 to C-3 and brakes B-1 to B-2 of the automatic transmission mechanism 5 described above.
  • a hydraulic control device (V / B) 6 that hydraulically controls the lockup clutch 7 and the like.
  • the hydraulic control device 6 includes a plurality of linear solenoid valves for controlling the engagement pressure supplied to the hydraulic servos of the clutches C-1 to C-3 and the brakes B-1 to B-2. cage, in particular to the hydraulic control device 6, the engagement pressure of P C1, the tone pressure output closable linear solenoid valve SLC1 as an original pressure, for example, the line pressure P L is supplied to the hydraulic servo 40 of the clutch C1, A linear solenoid valve SLU capable of adjusting and outputting the engagement pressure P L-UP (internal pressure of the torque converter 4) of the lock-up clutch 7 with, for example, the secondary pressure P SEC as a source pressure is provided.
  • the valve SLC1 and the linear solenoid valve SLU are configured to be controlled by a command from the control unit 20.
  • control unit 20 includes a range determination unit 21, a stop determination unit 22, a start intention operation detection unit 23, a clutch control unit 24, and a lock-up control unit 25.
  • the clutch control unit 24 includes A neutral control means 24a and an apply control means 24b having an initial engagement control means 24c and a slip start control means 24d are provided.
  • the lockup control means 25 is provided with a stop-time lockup control means 25a, a start-up lockup control means 25b, a steady-state lockup control means 25c, and a lockup control map 25map.
  • Clutch control means 24 of this instructs control the linear solenoid valve SLC1, and freely controlling the hydraulic pressure command value of the engagement pressure P C1, released states of the clutches C1, i.e.
  • the lock-up control means 25 controls the linear solenoid valve SLU to freely control the hydraulic pressure command value of the engagement pressure P L-UP , and the lock-up piston is not shown in the state of pressing the lock-up clutch 7.
  • the engagement / disengagement state of the lock-up clutch 7, that is, the release state (release region), the slip state (slip region), and the engagement state (engagement region) are freely controlled.
  • the input shaft rotational speed sensor 30 detects the rotational speed of the input shaft 10 of the automatic transmission mechanism 5 (that is, the turbine rotational speed Nt of the turbine runner 4b).
  • the shift position sensor 31 detects an operation position of a shift lever (or a position of a manual shaft interlocked with the shift lever) arranged in a driver's seat (not shown).
  • the output shaft rotational speed sensor 32 detects the rotational speed of the counter gear 11 (or counter shaft) of the automatic transmission mechanism 5 (that is, the vehicle speed V and the output shaft rotational speed Nout).
  • the brake sensor 33 detects a depression state (at least brake ON / OFF) of a brake pedal (not shown).
  • the throttle opening sensor 34 detects a throttle opening (driving source required output) TH that is controlled mainly based on the accelerator opening.
  • the range determination means 21 is based on detection of the shift lever position by the shift position sensor 31, P (parking) range (non-traveling range), R (reverse) range (traveling range), N (neutral) range (non-traveling) Range) and D (drive) range (traveling range) are included to determine which range is included.
  • the stop determination means 22 determines whether or not the vehicle is stopped based on the detection result of the output shaft rotation speed (that is, the vehicle speed V) by the output shaft rotation speed sensor 32. For example, when the driver releases the brake on a slope or the like and the vehicle speed V becomes 0 or more (when the vehicle is not stopped), the throttle opening degree is turned on. If it is determined that the driver has started the vehicle, the driver detects that the driver has made an intention to start.
  • step S1-3 the lock-up control means 25 proceeds to step S1-3 shown in FIG. Then, whether the start intention operation detecting means 23 detects that the throttle is ON by the throttle opening sensor 34 or whether the vehicle speed V is greater than 0 by the output shaft rotation speed (vehicle speed) sensor 32, or The system waits until either the brake OFF is detected by the brake sensor 33 (No in S1-3). Then, when the start intention operation detecting means 23 detects any of the throttle ON, the vehicle speed V is greater than 0, and the brake OFF (Yes in S1-3), it is determined that the driver has an intention to start and the vehicle is stopped. The lockup control is terminated and the process proceeds to step S1-4. When the driver's intention to start is detected in this way, the clutch control means 24 described later ends the neutral control and shifts to apply control (engagement control of the clutch C-1).
  • step S1-4 the start-up lockup control means 25b of the lockup control means 25 starts start-up lockup control (startup L-UP control). Then, the start-up lockup control means 25b refers to a lockup control map 25map (see FIGS. 10 and 12), which will be described later in detail, and determines whether the lockup clutch 7 is engaged based on the relationship between the vehicle speed V and the throttle opening TH.
  • the engagement pressure P L-UP of the lock-up clutch 7 is increased to a predetermined command value by commanding the linear solenoid valve SLU so as to be in the slip region, and the lock-up clutch 7 is engaged with a predetermined torque capacity. To do.
  • step S1-5 shown in FIG.
  • the clutch control means 24 which will be described later, finishes applying the clutch C-1, and waits until it is detected that the engagement of the clutch C-1 is completed (No in S1-5).
  • the start-up lockup control is terminated, and the routine proceeds to step S1-6, where the steady-state lockup control means 25c is for steady running ( The routine proceeds to lock-up steady control (for normal running) (L-UP steady control), and the control of the lock-up clutch 7 at the time of start is terminated (S1-7).
  • ON / OFF / slip control of the lockup clutch 7 is appropriately performed based on the vehicle speed V and the throttle opening TH while referring to the lockup control map 25map and the like.
  • the release control for lowering the pressure is performed, that is, the clutch C-1 is slightly released (disengaged), and the automatic transmission mechanism 5 is brought into a complete neutral state.
  • the engagement pressure P C1 of the clutch C1 by the lower pressure than the stroke end pressure, it is possible to eliminate the drag loss of the clutch C1 in the neutral control completely, the load on the engine 2 It is possible to reduce the fuel consumption of the vehicle.
  • step S2-3 whether the above-mentioned start intention operation detecting means 23 detects that the throttle is ON by the throttle opening sensor 34 or whether the vehicle speed V is greater than 0 by the output shaft rotational speed (vehicle speed) sensor 32.
  • the system waits until either the brake OFF is detected by the brake sensor 33 (No in S2-3).
  • the start intention operation detecting means 23 detects any of the throttle ON, the vehicle speed V is greater than 0, and the brake OFF (Yes in S2-3), it is determined that the driver has the start The end of neutral control is determined, and the process proceeds to step S2-4.
  • step S2-4 the apply control means 24b of the clutch control means 24 starts the apply control of the clutch C-1 as shown in FIG. 6 (S2-4-1). Then, first, the apply control means 24b starts the fast fill control for performing the backlash operation of the hydraulic servo 40 of the clutch C-1 (S2-4-2).
  • the first fill control for example, the magnitude of the hydraulic command value to be output and the time for executing the first fill (first fill time) are set based on the oil temperature, the time when the neutral control is executed, and the like.
  • step S2-4-3 it is determined whether or not the first fill time has elapsed. The first fill control is continued until the first fill time has elapsed (No in S2-4-3).
  • step S2-4-4 the initial engagement control means 24c of the application control unit 24b maintains the hydraulic pressure command value of the engagement pressure P C1 to the high standby pressure than the stroke end pressure of the clutch C1 Standby control (initial engagement control) for starting frictional contact is started.
  • the piston is gradually stroked to the engagement side from the dragged state.
  • whether or not the clutch C-1 has started engagement depends on whether or not the turbine rotational speed Nt detected by the input shaft rotational speed sensor 30 has changed.
  • the standby pressure is maintained until the clutch C-1 starts to be engaged (No in S2-4-5), and then the clutch C-1 is engaged.
  • step S2-4-5 standby control (initial engagement control) by the apply control means 24b is terminated, and the process proceeds to step S2-4-6.
  • this standby pressure may be set after learning correction based on the engagement timing or the like in the previous engagement control of the clutch C-1 (may be the engagement control at the time of normal shifting).
  • step S2-4-6 the slip start control means 24d of the apply control means 24b starts the slip start control.
  • the slip start control means 24d first sets a slip start timer as a forced end time in order to prevent the slip start control from being prolonged for some reason.
  • Slip start control as shown in FIG. 7 is started (S2-4-6-1). Note that the slip start control shown in FIG. 7 shows one of the three calculation methods (see FIGS. 15 to 17) described later in detail (as shown in FIG. 15) as an example.
  • the slip start control does not decrease the rotational speed of the input shaft 10 of the automatic transmission mechanism 5 (that is, the turbine rotational speed Nt), and the rotational speed of the output shaft 11 of the automatic transmission mechanism 5 (that is, the output shaft rotational speed Nout).
  • the turbine rotational speed Nt is not decreased. Therefore, the output shaft rotation speed Nout is increased while the lockup clutch 7 is engaged, and the gear ratio of the first forward speed can be established.
  • the torque converter 4 and the lock-up clutch 7 are used. Is calculated, and the torque capacity of the clutch C-1 (that is, the rotation holding torque capacity) that holds the rotational speed of the input torque so that the rotational speed of the output shaft rotational speed Nout does not change is calculated. (S2-4-6-2).
  • the target turbine speed by setting the (target input rotational speed) N targ and the target completion time TA, the inertia torque of the rotating system in the automatic speed change mechanism 5 at the time of the target turbine speed N targ target end time TA
  • the torque capacity of the clutch C-1 (that is, the target rotational change necessary torque capacity) is calculated so that the rotational change of the output shaft rotational speed Nout becomes the target rotational change (S2-4-6).
  • the required hydraulic pressure of the clutch C-1 is calculated from the total torque of the rotation holding torque capacity and the target rotational change required torque capacity, and the hydraulic servo 40 of the clutch C-1 is engaged by the calculated required hydraulic pressure.
  • hydraulically controlled pressure P C1 (S2-4-6-4), to end the slip start control (S2-4-6-5)
  • step S2-4-7 the apply control means 24b determines that the gear ratio calculated from, for example, the turbine rotational speed Nt and the output shaft rotational speed Nout becomes the gear ratio of the first forward speed. It is determined whether or not the engagement of the clutch C-1 is completed by the slip start control. If the engagement of the clutch C-1 is not completed (the gear ratio is not established) (No in S2-4-7), the process proceeds to step S2-4-8, and the period of the slip start timer is set. If the slip start timer period has not elapsed (No in S2-4-8), the slip start control is continued.
  • step S2-4-9 the control is shifted to the engagement completion control of the clutch C-1.
  • the completion of the engagement control of the clutch C1 increases the engagement pressure P C1 of the clutch C1 at a predetermined gradient and instructs the linear solenoid valve SLC1, until engagement of the clutch C1 is completed Wait until the gear ratio is established (No in S2-4-10).
  • the engagement pressure P C1 is raised up to the line pressure P L corresponding to end the above apply control (S2-4-11).
  • the control of the clutch C-1 from the stop time described above to the start time is all finished (S2-5).
  • FIG. 8 shows an example of traveling when the driver depresses the throttle opening TH at a low opening when the vehicle starts, and the clutch C-1 is slip-engaged while the lockup clutch is engaged. It explains along. For example, a state that the foot brake (Brake) is stopped is treading (ON) in N range, is the engagement pressure P C1 of the clutch C1 is 0 released the clutch C1 In addition, the engagement pressure P L-UP of the lockup clutch 7 is also 0, and the lockup clutch 7 is also released. Therefore, the engine speed Ne in the idle state is in a state where fluid is transmitted from the pump impeller 4a to the turbine runner 4b in the torque converter 4, and the turbine speed Nt is slightly lower than the engine speed Ne. It has become.
  • the range determination means 21 detects the D range (based on the detection of the shift position sensor 31). Based on this determination, the stop-time lockup control means 25a of the lockup control means 25 determines the start of the stop-time lockup control (S1-2) and controls the linear solenoid valve SLU.
  • the lock-up engagement pressure P L-UP after performing the first fill (backlash filling operation), the lock-up clutch 7 is slightly engaged with a small torque capacity T L-UP .
  • the neutral control means 24a of the clutch control means 24 determines the start of the in-neutral control (S2-2), and controls the linear solenoid valve SLC1 to control the engagement pressure P C1 .
  • the clutch C1 is at a slightly lower engagement pressure P C1 than the stroke end pressure to be play reduction immediately before engagement while the clutch C1 to the release state Wait in state.
  • the start-up lockup control means 25b of the lockup control means 25 is determined that the driver has an intention to start. Then, the start-up lockup control (S1-4) is determined to be started, and the lockup clutch 7 is engaged in the slip region so that the predetermined torque capacity T L-UP 1 is obtained. At this time, the start-up lockup control means 25b determines the engagement state (ON, OFF, slip state) of the lockup clutch 7 with reference to the lockup control map 25map shown in FIG. First, between time t2-1 and time t3-1, the throttle opening TH is 0% and the vehicle speed V (output shaft speed Nout) is small, so the engagement state in the slip region is selected. .
  • the apply control means 24b of the clutch control means 24 determines that the driver has an intention to start.
  • the above-described standby control (S2-4-4) is performed, and the slip start control (S2-4-6) is started by the slip start control means 24d.
  • the vehicle starts to start (increase in the output shaft rotation speed Nout) while slip-controlling the clutch C-1.
  • the lockup clutch 7 is engaged with the predetermined torque capacity T L-UP 1 and the torque capacity T C1 of the clutch C-1 and Since the input torque (hereinafter referred to as “engine torque”) Te from the engine 2 does not exceed the torque capacity T L-UP of the lock-up clutch 7, the lock-up clutch 7 does not slip and the engine speed Ne And the turbine speed Nt are the same, that is, the engine 2 is prevented from blowing up.
  • engine torque input torque
  • the slip start control means 24d performs torque torque of the clutch C-1 by a calculation method described in detail later. calculates the capacity T C1, by controlling the engagement pressure P C1 so that the calculated torque capacity T C1, the engagement pressure P C1 and the torque capacity T C1 is increased according to the throttle opening TH
  • the slip start control means 24d calculates the capacity T C1, by controlling the engagement pressure P C1 so that the calculated torque capacity T C1, the engagement pressure P C1 and the torque capacity T C1 is increased according to the throttle opening TH
  • the lock-up clutch 7 is determined to be ON by the steady-state lock-up control means 25c. Then, the lockup engagement pressure P L-UP is swept up, and the lockup clutch 7 is engaged (ON). As a result, the vehicle is in a steady running state with the lockup ON at the first forward speed.
  • FIG. 9 shows an example of traveling when the driver depresses the throttle opening TH at a high opening when the vehicle starts, and the clutch C-1 is slip-engaged while slipping the lock-up clutch. It explains along.
  • the clutch C-1 is released, and the lockup clutch 7 is also released. . Therefore, the engine speed Ne in the idle state is in a state where fluid is transmitted by the torque converter 4, and the turbine speed Nt is slightly lower than the engine speed Ne.
  • the stop-time lockup control means 25a of the lockup control means 25 starts the stop-time lockup control (S1-2).
  • the lockup clutch 7 is slightly engaged so that the torque capacity TL-UP becomes small. Since the foot brake is ON, the throttle opening TH is 0%, and the vehicle speed V is 0, the neutral control means 24a of the clutch control means 24 determines the start of the in-neutral control (S2-2), and the first fill after (play reduction operation), at a slightly lower engagement pressure P C1 than the stroke end pressure clutch C1 is play reduction in state immediately before the engagement while the clutch C1 to the release state stand by.
  • the start-up lockup control means 25b starts the start-up lockup control (S1-4). Judgment is made and the lockup clutch 7 is engaged in the slip region so that the predetermined torque capacity T L-UP 1 is obtained.
  • the start-up lockup control means 25b determines the engagement state (ON, OFF, slip state) of the lockup clutch 7 with reference to the lockup control map 25map shown in FIG. First, between time t2-2 and time t3-2, as indicated by an arrow A in FIG. 10, the throttle opening TH is 0% and the vehicle speed V (output shaft speed Nout) is small. The engagement state at is selected.
  • the apply control means 24b of the clutch control means 24 determines that the driver is willing to start, and the fast fill control (S2-4-2) ), The standby control (S2-4-4) described above is performed, and the slip start control means 24d starts the slip start control (S2-4-6) to control the slippage of the clutch C-1. While starting the vehicle (increase in the output shaft rotation speed Nout) is started.
  • the lockup clutch 7 is engaged with the predetermined torque capacity T L-UP 1 as described above, and the torque capacity T C1 of the clutch C-1 and Since the engine torque Te does not exceed the torque capacity TL-UP of the lockup clutch 7, the lockup clutch 7 does not slip, and the engine speed Ne and the turbine speed Nt are the same, that is, the engine 2 is prevented from blowing up.
  • the slip start control means 24d uses the calculation method described later in detail to calculate the torque capacity T of the clutch C-1. calculates the C1, by controlling the engagement pressure P C1 so that the calculated torque capacity T C1, the engagement pressure P C1 and the torque capacity T C1 rises sharply in response to the throttle opening TH.
  • the lockup control map 25map is in the slip region, and the engagement pressure P L-UP and the predetermined torque capacity of the lockup clutch 7 T L-UP 1 is maintained as it is, but the torque capacity T C1 and engine torque Te of the clutch C-1 exceed the torque capacity T L-UP of the lockup clutch 7, that is, the engine torque Te increases. Accordingly, the lockup clutch 7 is slipped, and torque transmission by the fluid transmission by the torque converter 4 is performed. That is, as shown in FIG. 9, the engine rotational speed Ne rises above the turbine rotational speed Nt.
  • the slip state is maintained as it is at the time point t4-2, and then the vehicle speed V increases and the arrow A
  • the lock-up ON (Lup ON) determination line is exceeded, the lock-up clutch 7 is determined to be ON by the steady-state lock-up control means 25c, and the lock-up engagement pressure P L-UP is swept up.
  • the lockup clutch 7 is engaged (ON).
  • the vehicle is in a steady running state with the lockup ON at the first forward speed.
  • the stop-time lockup control means 25a of the lockup control means 25 starts the stop-time lockup control (S1-2).
  • the lockup clutch 7 is slightly engaged so that the torque capacity TL-UP becomes small. Since the foot brake is ON, the throttle opening TH is 0%, and the vehicle speed V is 0, the neutral control means 24a of the clutch control means 24 determines the start of the in-neutral control (S2-2), and the first fill after (play reduction operation), at a slightly lower engagement pressure P C1 than the stroke end pressure clutch C1 is play reduction in state immediately before the engagement while the clutch C1 to the release state stand by.
  • the start-up lockup control means 25b starts the start-up lockup control (S1-4) on the assumption that the driver intends to start. Judgment is made and the lockup clutch 7 is engaged in the slip region so that the predetermined torque capacity T L-UP 1 is obtained. At this time, the start-up lockup control means 25b determines the engagement state (ON, OFF, slip state) of the lockup clutch 7 with reference to the lockup control map 25map shown in FIG. First, between time t2-3 and time t3-3, as indicated by an arrow A in FIG. 12, the throttle opening TH is 0% and the vehicle speed V (output shaft speed Nout) is small. The engagement state at is selected.
  • the apply control means 24b of the clutch control means 24 determines that the driver is willing to start, and the fast fill control (S2-4-2) ), The standby control (S2-4-4) described above is performed, and the slip start control means 24d starts the slip start control (S2-4-6) to control the slippage of the clutch C-1. While starting the vehicle (increase in the output shaft rotation speed Nout) is started.
  • the lockup clutch 7 is engaged with the predetermined torque capacity T L-UP 1 as described above, and the torque capacity T C1 of the clutch C-1 and Since the engine torque Te does not exceed the torque capacity TL-UP of the lockup clutch 7, the lockup clutch 7 does not slip, and the engine speed Ne and the turbine speed Nt are the same, that is, the engine 2 is prevented from blowing up.
  • the slip start control means 24d performs a torque capacity T of the clutch C-1 by a calculation method described in detail later. calculates the C1, by controlling the engagement pressure P C1 so that the calculated torque capacity T C1, the engagement pressure P C1 and the torque capacity T C1 rises sharply in response to the throttle opening TH.
  • the slip-up control map 25map switches from the slip region to the lock-up OFF region. Therefore, at time t4-3, the start-up lockup control means 25b starts sweeping down the engagement pressure P L-UP of the lockup clutch 7, and accordingly, the torque capacity T L-UP of the lockup clutch 7 is reached. Is gradually lowered, and then the lock-up clutch 7 is released. As a result, the lock-up clutch 7 is released, torque transmission of the lock-up clutch 7 is lost, torque transmission by the fluid transmission by the torque converter 4 is performed, and the torque increase action of the torque converter 4 is affected by the lock-up clutch 7.
  • the engine torque Te is increased without being interfered with and is input to the input shaft 10 of the automatic transmission mechanism 5, and the driver increases the accelerator opening (throttle opening) as compared with the case of FIG. A larger output torque can be obtained, and drivability is ensured. That is, as shown in FIG. 11, the engine speed Ne increases significantly higher than the turbine speed Nt.
  • the slip start control is performed when the clutch C-1 is engaged while slipping while the lockup clutch 7 is engaged in the slip region, and the turbine speed Nt does not decrease. Even when the clutch C-1 is shifted from the general neutral control to the engaged state, that is, when the lockup clutch 7 is released, the neutral control may return to the first forward speed. Since the occurrence of inertia shock can be suppressed by using this control, a case where the clutch C-1 is shifted to the engaged state from the general neutral control will be described as an example.
  • the standby control is terminated at the time point tb-1,
  • the routine proceeds to slip start control by the slip start control means 24d (S2-4-6).
  • the engagement pressure P C1 of the clutch C-1 is calculated and hydraulically controlled so that the turbine speed Nt does not decrease by, for example, three calculation methods described later.
  • the turbine rotational speed Nt at the end is the turbine rotational speed Nt when it is determined that torque transmission has started, and is not limited to the turbine rotational speed Nt at the timing when the end of standby control is determined.
  • the turbine rotational speed Nt from the time when the termination is judged to the time when the engagement based on the hydraulic pressure command value by the slip start control is started may be used, and the lowest turbine rotational speed Nt at that time is taken into consideration. Is preferred.
  • the slip start control is performed so that the turbine rotational speed does not decrease below the turbine rotational speed when it is determined that torque transmission is started.
  • the target turbine speed (at the start of slip start control) that is not desired to be reduced is set in advance, and the turbine speed when the slip start control is started in consideration of the response delay of the hydraulic pressure is the target turbine speed A threshold for determining that a change has occurred in the turbine rotational speed Nt may be set so that
  • the engagement of the clutch C-1 is completed based on the fact that the gear ratio calculated from the turbine rotational speed Nt and the output shaft rotational speed Nout becomes the gear ratio of the first forward speed.
  • the slip start control means 24d can be commanded to the linear solenoid valve SLC1 is soaring the engagement pressure P C1 of the clutch C1 at a predetermined gradient, the time td-1 was increased to the line pressure P L corresponding to, to complete the engagement of the clutch C-1, and ends the slip start control (S2-4-11, S2-5).
  • the brake OFF is detected at the time point ta-2, the standby control of the clutch C-1 is performed, and the clutch C-1 starts to be engaged. If it is determined, the standby control is terminated at time tb-2, and the routine proceeds to slip start control by the slip start control means 24d. After this, for example, even if the accelerator pedal is depressed by the driver and the throttle opening TH increases, the gear ratio (transmission progress rate) decreases so that the turbine rotational speed Nt does not decrease by, for example, three calculation methods described later.
  • the hydraulic pressure control is performed by calculating the engagement pressure P C1 of the clutch C-1 so as not to occur.
  • the turbine rotational speed Nt does not decrease from the end of the standby control, and the engagement of the clutch C-1 proceeds according to the magnitude of the throttle opening TH, and the output side rotation of the clutch C-1
  • the number N C1 increases as the throttle opening TH increases, and then the speed change progress rate proceeds to gradually establish the gear ratio of the first forward speed.
  • the clutch C-1 is engaged based on the fact that the gear ratio calculated from the turbine speed Nt and the output shaft speed Nout becomes the gear ratio of the first forward speed.
  • the slip start control means 24d can be commanded to the linear solenoid valve SLC1 is soaring the engagement pressure P C1 of the clutch C1 at a predetermined gradient, the line pressure P L corresponding to up to the time td-2 To complete the engagement of the clutch C-1 and finish the slip start control.
  • the slip start control means 24d sets a target end time TA, and takes into account the current throttle opening TH, for example, and the target turbine speed (target input speed) at the target end time TA. setting the N targ.
  • rotational variation amount of the output shaft speed Nout for up to a target end time TA becomes the target turbine speed N targ (target rotation change rate) " ⁇ " is the first speed gear ratio "G 1ST" slip start
  • (N targ -Nout ⁇ G 1ST) / (TA-cnt_C1Slip) ⁇ (2) It becomes.
  • the speed ratio (speed ratio between the pump impeller 4a and the turbine runner 4b) in the current torque converter 4 is “e current ”
  • the capacity coefficient of the torque converter 4 at the current speed ratio is “C (e current )”
  • the torque transmitted by the lockup clutch 7 is “T L-UP ”
  • the torque sharing of the clutch C-1 is “Tdiv C1 ”
  • T C1 -change (I ⁇ ) ⁇ (Tdiv C1 ) (4) (S2-4-6-3 in FIG. 7),
  • the above calculation formula (5) is based on the total torque including the inertia torque (I ⁇ ) generated in the input torque (t ⁇ C ⁇ Ne 2 + T L ⁇ UP ) from the engine 2 based on the total torque. 1 torque capacity T C1 is calculated.
  • the turbine rotational speed Nt does not decrease compared to the end of the standby control, and the fluctuation of the inertia force is reduced. Since it does not occur, it is possible to start a vehicle that does not cause a rebound shock, and to improve ride comfort.
  • the engagement pressure can be hydraulically controlled while calculating the inertia torque, so that the fluctuation of the inertia force can be set freely.
  • the turbine rotational speed Nt (the rotational speed of the input shaft 10 of the automatic transmission mechanism 5) is not decreased more than at the end of the standby control.
  • the clutch C-1 is slip-controlled so as to increase the output rotational speed Nout of the automatic transmission mechanism 5 to establish the gear ratio at the start of the automatic transmission mechanism 5 (that is, the gear ratio of the first forward speed).
  • the clutch C-1 is engaged from the state where the automatic transmission mechanism 5 is in the neutral state, the fluctuation of the inertia force is reduced, and it is possible to start the vehicle with reduced back shock. Improvements can be made.
  • a target end time TA to end the slip control and sets the target turbine speed Nt targ in the target completion time TA, the gear ratio of the target turbine rotational speed Nt targ the first forward speed and the target end time TA
  • the rotational change amount ⁇ of the output speed Nout of the automatic transmission mechanism 5 is calculated
  • the inertia torque I ⁇ generated in the automatic transmission mechanism 5 is calculated based on the rotational change amount ⁇
  • the engine torque Te The torque capacity T C1 of the clutch C-1 is calculated based on the total torque including the inertia torque I ⁇ , and the engagement pressure P supplied to the hydraulic servo 40 of the clutch C-1 so as to be the calculated torque capacity T C1.
  • the clutch C-1 Since the slip control of the clutch C-1 is performed by hydraulically controlling the C1 , the clutch C-1 is engaged from the state where the automatic transmission mechanism 5 is in the neutral state.
  • the clutch C-1 can be slip controlled so that the inertia force does not fluctuate during the slip control during the engagement. Further, since the engagement pressure P C1 while calculating the inertia torque I ⁇ can be hydraulic control, it can also be possible to freely set the variation of the inertia force.
  • the turbine speed Nt sets a target constant turbine speed Nt targ the turbine speed Nt is constant, calculates the target speed ratio e targ based on the said target constant turbine speed Nt targ and the engine speed Ne, the target speed ratio
  • the torque capacity T C1 of the clutch C-1 is calculated based on e target , and the engagement pressure P C1 supplied to the hydraulic servo 40 of the clutch C-1 is hydraulically controlled so as to be the calculated torque capacity T C1.
  • the slip control of the clutch C-1 is performed, so that the clutch is controlled so that the inertia force does not fluctuate during the slip control when the clutch C-1 is engaged from the neutral state of the automatic transmission mechanism 5.
  • C-1 can be slip-controlled.
  • the turbine speed Nt is constant, the generation of inertia force in the automatic transmission mechanism 5 can be substantially eliminated.
  • control is performed so that at least the lock-up clutch 7 is engaged in a slip region where the predetermined torque capacity T L-UP 1 is engaged. Can be prevented from blowing up, and fuel consumption can be improved. Further, when starting the vehicle while engaging the lock-up clutch 7 in this way, the input shaft 10 of the automatic transmission mechanism 5 and the output shaft 2a of the engine 2 are locked up, so that the automatic transmission mechanism 5 If the rotational speed of the input shaft 10 (turbine rotational speed Nt) decreases, the engine 2 may stop rotating (so-called engine stop). However, as described above, the input shaft of the automatic transmission mechanism 5 is in slip control.
  • the gear ratio of the first forward speed of the automatic transmission mechanism 5 is increased by increasing the rotation speed (turbine rotation speed Nt) of the output shaft 11 of the automatic transmission mechanism 5 without decreasing the rotational speed of 10 (turbine rotation speed Nt). Therefore, the vehicle can be started with the lockup clutch 7 engaged without causing the engine 2 to stop rotating (so-called engine stop).
  • the control apparatus 1 is applied to the automatic transmission 3 that can achieve, for example, the sixth forward speed and the reverse speed.
  • the automatic transmission 3 can achieve, for example, the sixth forward speed and the reverse speed.
  • a multi-stage automatic transmission, a belt-type continuously variable transmission, a toroidal-type continuously variable transmission can be used as long as the automatic transmission has a lock-up clutch and a slip start control after neutral control of the combined clutch for power transmission.
  • the present invention can be applied to any automatic transmission such as a transmission.
  • the three calculation methods described with reference to FIGS. 15 to 17 have been described as the calculation methods for performing the slip start control of the clutch C-1. Any calculation method may be used as long as the clutch C-1 can be slip-engaged so that the speed ratio at the time of starting is established without reducing the rotational speed Nt.
  • the neutral control in which the engagement pressure P C1 of the clutch C-1 is controlled to a pressure lower than the stroke end pressure has been described.
  • the general neutral control that is, The present invention can be applied even when the engagement pressure P C1 is controlled to be close to the stroke end pressure.
  • lock-up clutch 7 In the present embodiment, the detailed structure of the lock-up clutch 7 is not described. Of course, a single-plate lock-up clutch, a multi-plate lock-up clutch, a so-called two-way lock-up clutch, or 3 The present invention can be applied to any lock-up clutch structure such as a way-type lock-up clutch.
  • the torque converter is to be locked up as a lock-up clutch, it is possible to obtain a torque increasing action of the torque converter by slipping the lock-up clutch in particular, but a fluid coupling that cannot obtain a torque increasing action, etc. It is needless to say that even if this fluid transmission device is used, the blow-up of the rotation of the drive source can be suppressed by applying this control.
  • the hydraulic control device for a starting device can be used as a control device for an automatic transmission mounted on a passenger car, a truck, etc., and in particular, after performing neutral control by a clutch of an automatic transmission mechanism, It is suitable for use in a control device for an automatic transmission that engages and starts a vehicle and is required to improve riding comfort without causing fluctuations in inertia force when starting.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Fluid Gearings (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

 自動変速機構をニュートラルにした状態から待機制御を行った後にスリップ制御してクラッチ(C-1)を係合して車輌を発進させる際に、該スリップ制御において、例えば目標終了時間(TA)と、該目標終了時間(TA)における目標タービン回転数(Nttarg)を設定し、それらから出力回転数(Nout)の回転変化量(ω)を算出し、該回転変化量(ω)に基づきイナーシャトルク(Iω)を算出して、エンジン(2)からの入力トルクとイナーシャトルクとの合計トルクからクラッチ(C-1)のトルク容量(TC1)を算出し、該算出されたトルク容量(TC1)となるようにクラッチ(C-1)の係合圧(PC1)を制御する。これにより、待機制御の終了時よりもタービン回転数(Nt)を低下させずに出力回転数(Nout)が上昇し、前進1速段のギヤ比が成立するので、発進時にイナーシャ力の変動が低減され、揺り返しショックが低減される。

Description

自動変速機の制御装置
 本発明は、例えば車輌に搭載される自動変速機の制御装置に係り、詳しくは、自動変速機構のニュートラル状態からクラッチをスリップ制御しつつ車輌の発進を行う自動変速機の制御装置に関する。
 近年、車輌等に搭載される自動変速機においては、例えばD(ドライブ)レンジで車輌の停車を判定した際に、自動変速機構の動力伝達を行うクラッチ(例えばクラッチC-1)をスリップ直前の状態まで解放することで、トルクコンバータにおける引き摺りロスを低減し、アイドル状態のエンジンに対する負荷を軽減する、いわゆるニュートラル制御を行うものが提案されている(特許文献1参照)。当該ニュートラル制御を行うものは、例えばフットブレーキのOFFやアクセルのONなどの、車輌の発進意思がある操作が検出された際に、上記自動変速機構のクラッチを係合し、レスポンス良く車輌を発進させるものが主流となっている。
特開平5-65837号公報
 ところで、上述したようにニュートラル制御後の発進時に自動変速機構のクラッチを係合する際には、通常の変速制御と同様の手法で該クラッチを油圧制御しており、例えば油圧指令値を、基本勾配、回転変化を保障する勾配(回転保障勾配)、トルク伝達を保障する勾配(トルク保障勾配)、のうちの最大値を選択する形で設定することで、当該クラッチをスリップさせつつ係合するように制御している。
 しかしながら、このようにクラッチを係合させる手法にあっては、自動変速機構のイナーシャ力(慣性力)の変化が全く考慮されていない。つまり、発進時に該クラッチをスリップ制御する際、停止状態にある駆動車輪側(自動変速機構の出力軸側)の回転系に引き込まれて、自動変速機構の入力軸側(トルクコンバータのタービンランナ側)の回転系の回転速度が一旦低下するため、この回転速度低下に伴うイナーシャ力が発生し、その後、クラッチの係合によりギヤ比が成立して、自動変速機構の入力軸側の回転系における回転速度の変化が無くなると、急に上記イナーシャ力が無くなることになる。このイナーシャ力の変動は駆動車輪(自動変速機構の出力軸)に伝達されるため、当該車輌に揺り返しショックとして現れ、乗り心地として好ましくはなく、改善が望まれていた。
 そこで本発明は、自動変速機構をニュートラルにした状態からクラッチを係合する際におけるイナーシャ力の変動を低減し、揺り返しショックが低減された車輌の発進を可能とし、もって乗り心地の向上を図ることが可能な自動変速機の制御装置を提供することを目的とするものである。
 本発明は(例えば図1乃至図17参照)、発進時に係合されるクラッチ(C-1)を有すると共に、駆動源(2)の回転を変速する自動変速機構(5)と、前記駆動源(2)の出力軸(2a)と前記自動変速機構(5)の入力軸(10)との間に介在された流体伝動装置(4)と、を備えた自動変速機(3)の制御装置(1)において、
 車輌の発進意思の操作を検出する発進意思操作検出手段(23)と、
 前記クラッチ(C-1)を非係合状態にして前記自動変速機構(5)をニュートラルにした状態から、前記車輌の発進意思の操作を検出した際に、前記クラッチ(C-1)を係合させるクラッチ制御手段(24)と、を備え、
 前記クラッチ制御手段(24)は、
 前記クラッチ(C-1)の油圧サーボ(40)に油圧を供給することにより前記クラッチ(C-1)の摩擦接触を開始させる初期係合制御を行う初期係合制御手段(24c)と、
 前記初期係合制御の終了後、前記自動変速機構(5)の入力軸(10)の回転速度(Nt)を、前記初期係合制御の終了時における該入力軸(10)の回転速度(Nt)より低下させずに前記自動変速機構(5)の出力軸(11)の回転速度(Nout)を上昇させるように前記クラッチ(C-1)をスリップ制御して、前記自動変速機構(5)の発進時の変速比(即ち1STのギヤ比)を成立させるスリップ発進制御手段(24d)と、を有することを特徴とする。
 具体的に本発明は(例えば図1、図7、図15参照)、前記スリップ発進制御手段(24d)は、
 前記スリップ制御を終了する目標終了時間(TA)と、前記目標終了時間(TA)における前記自動変速機構(5)の入力軸(10)の目標入力回転速度(Ntarg)を設定し、
 前記目標入力回転速度(Ntarg)と前記自動変速機構(5)の発進時の変速比(即ち1STのギヤ比)と前記目標終了時間(TA)とに基づき、前記自動変速機構(5)の出力軸(11)の目標回転変化率(ω)を算出し、
 前記自動変速機構(5)の出力軸(11)の目標回転変化率(ω)に基づき、前記自動変速機構(5)にて発生するイナーシャトルク(Iω)を算出し、
 前記駆動源(2)からの入力トルク(t・C・Ne+TL-UP)に前記発生するイナーシャトルク(Iω)を加味した合計トルクに基づき、前記クラッチ(C-1)のトルク容量(TC1)を算出し、
 前記算出されたトルク容量(TC1)となるように前記クラッチ(C-1)の油圧サーボ(40)に供給する係合圧(PC1)を油圧制御することにより、前記クラッチ(C-1)のスリップ制御を行ってなることを特徴とする。
 また、具体的に本発明は(例えば図1、図16参照)、前記スリップ発進制御手段(24d)は、
 前記自動変速機構(5)の入力軸(10)の回転速度(Nt)と前記駆動源(2)の回転速度(Ne)との速度比(e)が一定となる目標速度比(etarg)を設定し、
 前記一定の目標速度比(etarg)に基づき、前記クラッチ(C-1)のトルク容量(TC1)を算出し、
 前記算出されたトルク容量(TC1)となるように前記クラッチ(C-1)の油圧サーボ(40)に供給する係合圧(PC1)を油圧制御することにより、前記クラッチ(C-1)のスリップ制御を行ってなることを特徴とする。
 また、具体的に本発明は(例えば図1、図17参照)、前記スリップ発進制御手段(24d)は、
 前記自動変速機構(5)の入力軸(10)の回転速度(Nt)が一定となる目標一定入力回転速度(Nttarg)を設定し、
 前記目標一定入力回転速度(Nttarg)と前記駆動源(2)の出力軸(2a)の回転速度(Ne)とに基づき目標速度比(etarg)を算出し、
 前記目標速度比(etarg)に基づき、前記クラッチ(C-1)のトルク容量(TC1)を算出し、
 前記算出されたトルク容量(TC1)となるように前記クラッチ(C-1)の油圧サーボ(40)に供給する係合圧(PC1)を油圧制御することにより、前記クラッチ(C-1)のスリップ制御を行ってなることを特徴とする。
 また特に本発明は(例えば図1、図8乃至図12参照)、前記自動変速機(3)は、前記流体伝動装置(4)をロックアップし得るロックアップクラッチ(7)を備え、
 前記車輌の発進意思の操作を検出した際に、少なくとも前記ロックアップクラッチ(7)が所定トルク容量(TL-UP1)となるスリップ領域で係合するように制御するロックアップ制御手段(25)を備えたことを特徴とする。
 なお、上記カッコ内の符号は、図面と対照するためのものであるが、これは、発明の理解を容易にするための便宜的なものであり、特許請求の範囲の構成に何等影響を及ぼすものではない。
 請求項1に係る本発明によると、スリップ制御にあって、初期係合制御終了時よりも自動変速機構の入力軸の回転速度を低下させずに該自動変速機構の出力軸の回転速度を上昇させるようにクラッチをスリップ制御して、自動変速機構の発進時の変速比を成立させるので、自動変速機構をニュートラルにした状態からクラッチを係合する際におけるイナーシャ力の変動が低減され、揺り返しショックが低減された車輌の発進を可能とすることができ、乗り心地の向上を図ることができる。
 請求項2に係る本発明によると、スリップ制御を終了する目標終了時間と、該目標終了時間における自動変速機構の入力軸の目標入力回転速度を設定し、該目標入力回転速度と自動変速機構の発進時の変速比と該目標終了時間とに基づき、自動変速機構の出力軸の目標回転変化率を算出し、該目標回転変化率に基づき、自動変速機構にて発生するイナーシャトルクを算出し、駆動源からの入力トルクに該イナーシャトルクを加味した合計トルクに基づきクラッチのトルク容量を算出し、該算出されたトルク容量となるようにクラッチの油圧サーボに供給する係合圧を油圧制御することにより、クラッチのスリップ制御を行うので、自動変速機構をニュートラルにした状態からクラッチを係合する際におけるスリップ制御中にあって、イナーシャ力の変動が発生しないようにクラッチをスリップ制御することができる。また、イナーシャトルクを算出しつつ係合圧を油圧制御することができるので、イナーシャ力の変動を自由に設定することも可能とすることができる。
 請求項3に係る本発明によると、自動変速機構の入力軸の回転速度と駆動源の回転速度との速度比が一定となる目標速度比を設定し、該一定の目標速度比に基づきクラッチのトルク容量を算出し、該算出されたトルク容量となるようにクラッチの油圧サーボに供給する係合圧を油圧制御することにより、クラッチのスリップ制御を行うので、自動変速機構をニュートラルにした状態からクラッチを係合する際におけるスリップ制御中にあって、イナーシャ力の変動が発生しないようにクラッチをスリップ制御することができる。また、自動変速機構の入力軸の回転速度と駆動源の回転速度との速度比が一定となるため、流体伝動装置により一定のトルク増大作用を得ることができるので、駆動源の出力変化(出力上昇)に比例した入力トルクを得ることができ、つまり運転者が要求した出力トルク(即ちスロットル開度)に比例した加速フィーリングを得ることができる。
 請求項4に係る本発明によると、自動変速機構の入力軸の回転速度が一定となる目標一定入力回転速度を設定し、該目標一定入力回転速度と駆動源の出力軸の回転速度とに基づき目標速度比を算出し、該目標速度比に基づきクラッチのトルク容量を算出し、該算出されたトルク容量となるようにクラッチの油圧サーボに供給する係合圧を油圧制御することにより、クラッチのスリップ制御を行うので、自動変速機構をニュートラルにした状態からクラッチを係合する際におけるスリップ制御中にあって、イナーシャ力の変動が発生しないようにクラッチをスリップ制御することができる。特に自動変速機構の入力軸の回転速度が一定となるため、自動変速機構におけるイナーシャ力の発生を略々無くすことができる。
 請求項5に係る本発明によると、車輌の発進意思の操作を検出した際に、少なくともロックアップクラッチが所定トルク容量となるスリップ領域で係合するように制御するので、車輌の発進時に駆動源の回転が吹き上がることを防止して燃費の向上を図ることができる。また、このようにロックアップクラッチを係合しつつ車輌の発進を行う際には、自動変速機構の入力軸と駆動源の出力軸とがロックアップされるため、自動変速機構の入力軸の回転速度が低下すると駆動源の回転停止(いわゆるエンジンストップ)を招く虞があるが、上述のようにスリップ制御中にあって自動変速機構の入力軸の回転速度を低下させずに該自動変速機構の出力軸の回転速度を上昇させて、自動変速機構の発進時の変速比を成立させるので、駆動源の回転停止(いわゆるエンジンストップ)を招くことなく、ロックアップクラッチを係合した状態での車輌の発進を可能とすることができる。
本発明に係る自動変速機の制御装置を示すブロック図。 本発明を適用し得る自動変速機を示すスケルトン図。 本発明を適用し得る自動変速機の係合表。 ロックアップクラッチの制御を示すフローチャート。 クラッチC-1の制御を示すフローチャート。 クラッチC-1のアプライ制御を示すフローチャート。 クラッチC-1のスリップ発進制御の一例を示すフローチャート。 スロットル開度が低開度におけるロックアップクラッチが係合状態での発進時を示すタイムチャート。 スロットル開度が高開度におけるロックアップクラッチがスリップ状態での発進時を示すタイムチャート。 発進時にロックアップクラッチをスリップ領域で制御するためのロックアップ制御マップを示す図。 スロットル開度が高開度におけるロックアップクラッチがスリップ状態から解放状態での発進時を示すタイムチャート。 発進時にロックアップクラッチをスリップ領域と解放領域とを切換えて制御するためのロックアップ制御マップを示す図。 スロットル開度が低開度におけるスリップ発進制御を示すタイムチャート。 スロットル開度が高開度におけるスリップ発進制御を示すタイムチャート。 イナーシャトルクを加味したクラッチC-1のトルク容量を演算するスリップ発進制御を示すタイムチャート。 目標一定速度比となるクラッチC-1のトルク容量を演算するスリップ発進制御を示すタイムチャート。 目標入力回転速度が一定となるクラッチC-1のトルク容量を演算するスリップ発進制御を示すタイムチャート。
 以下、本発明に係る実施の形態を図1乃至図17に沿って説明する。
 [自動変速機の概略]
 まず、本発明を適用し得る自動変速機3の概略構成について図2に沿って説明する。図2に示すように、例えばFFタイプ(フロントエンジン、フロントドライブ)の車輌に用いて好適な自動変速機3は、駆動源としてのエンジン(E/G)2(図1参照)の出力軸2aに接続し得る自動変速機の入力軸8を有しており、該入力軸8の軸方向を中心としてトルクコンバータ(流体伝動装置)(T/C)4と、自動変速機構5とを備えている。
 上記トルクコンバータ4は、エンジン2と詳しくは後述する自動変速機構5との間に介在されており、自動変速機3の入力軸8に接続されたポンプインペラ4aと、作動流体を介して該ポンプインペラ4aの回転が伝達されるタービンランナ4bと、タービンランナ4bからポンプインペラ4aに戻るオイルを整流しつつトルク増大作用を生じさせるステータ4cとを有していると共に、該タービンランナ4bは、上記入力軸8と同軸上に配設された上記自動変速機構5の入力軸10に接続されている。また、該トルクコンバータ4には、ロックアップクラッチ7が備えられており、該ロックアップクラッチ7が係合されると、上記自動変速機3の入力軸8の回転が自動変速機構5の入力軸10に直接伝達される。
 なお、ステータ4cは、ワンウェイクラッチFによって、ポンプインペラ4aの回転よりタービンランナ4bの回転が下回る状態で回転が固定されて、オイルの流れの反力を受圧してトルク増大作用を生じさせ、タービンランナ4bの回転が上回る状態になると空転して、オイルの流れが負方向に作用しないように構成されている。
 上記自動変速機構5には、入力軸10上において、プラネタリギヤSPと、プラネタリギヤユニットPUとが備えられている。上記プラネタリギヤSPは、サンギヤS1、キャリヤCR1、及びリングギヤR1を備えており、該キャリヤCR1に、サンギヤS1及びリングギヤR1に噛合するピニオンP1を有している、いわゆるシングルピニオンプラネタリギヤである。
 また、該プラネタリギヤユニットPUは、4つの回転要素としてサンギヤS2、サンギヤS3、キャリヤCR2、及びリングギヤR2を有し、該キャリヤCR2に、サンギヤS2及びリングギヤR2に噛合するロングピニオンPLと、サンギヤS3に噛合するショートピニオンPSとを互いに噛合する形で有している、いわゆるラビニヨ型プラネタリギヤである。
 上記プラネタリギヤSPのサンギヤS1は、ミッションケース9に一体的に固定されているボス部に接続されて回転が固定されている。また、上記リングギヤR1は、上記入力軸10の回転と同回転(以下「入力回転」という。)になっている。更に上記キャリヤCR1は、該固定されたサンギヤS1と該入力回転するリングギヤR1とにより、入力回転が減速された減速回転になると共に、クラッチC-1及びクラッチC-3に接続されている。
 上記プラネタリギヤユニットPUのサンギヤS2は、バンドブレーキからなるブレーキB-1に接続されてミッションケースに対して固定自在となっていると共に、上記クラッチC-3に接続され、該クラッチC-3を介して上記キャリヤCR1の減速回転が入力自在となっている。また、上記サンギヤS3は、クラッチC-1に接続されており、上記キャリヤCR1の減速回転が入力自在となっている。
 更に、上記キャリヤCR2は、入力軸10の回転が入力されるクラッチC-2に接続され、該クラッチC-2を介して入力回転が入力自在となっており、また、ワンウェイクラッチF-1及びブレーキB-2に接続されて、該ワンウェイクラッチF-1を介してミッションケースに対して一方向の回転が規制されると共に、該ブレーキB-2を介して回転が固定自在となっている。そして、上記リングギヤR2は、カウンタギヤ(自動変速機構の出力軸)11に接続されており、該カウンタギヤ11は、不図示のカウンタシャフト、ディファレンシャル装置を介して駆動車輪に接続されている。
 上記のように構成された自動変速機3は、図3に示す作動表のように前進1速段~前進6速段及び後進段において、各クラッチC-1~C-3、ブレーキB-1~B-2、ワンウェイクラッチF-1が作動することにより、良好なステップ比をもって変速段のギヤ比を形成する。また、これらの複数のクラッチC-1~C-3、ブレーキB-1~B-2同士を掴み換えすることで各変速制御が実行され、各変速段において前進1速段の駆動時(例えば発進時)を除き、各クラッチC-1~C-3、ブレーキB-1~B-2のうちの2つが係合されて各変速段が達成される。
 [自動変速機の制御装置の構成]
 つづいて、本発明に係る自動変速機の制御装置1について、主に図1に沿って説明する。
 図1に示すように、本自動変速機の制御装置1は、制御部(ECU)20を有しており、該制御部20は、入力軸回転速度センサ30、シフトポジションセンサ31、出力軸回転速度(車速)センサ32、ブレーキセンサ33、スロットル開度センサ34、などが接続されていると共に、上述した自動変速機構5の各クラッチC-1~C-3、ブレーキB-1~B-2やロックアップクラッチ7等を油圧制御する油圧制御装置(V/B)6に接続されている。
 該油圧制御装置6には、各クラッチC-1~C-3、ブレーキB-1~B-2の油圧サーボに対して供給する係合圧を制御する複数のリニアソレノイドバルブ等が備えられており、特に油圧制御装置6には、クラッチC-1の油圧サーボ40に対して供給する係合圧PC1を、例えばライン圧Pを元圧として調圧出力自在なリニアソレノイドバルブSLC1と、ロックアップクラッチ7の係合圧PL-UP(トルクコンバータ4の内圧)を、例えばセカンダリ圧PSECを元圧として調圧出力自在なリニアソレノイドバルブSLUと、が備えられていて、該リニアソレノイドバルブSLC1及びリニアソレノイドバルブSLUは、制御部20からの指令により制御され得るように構成されている。
 また、該制御部20には、レンジ判定手段21、停車判定手段22、発進意思操作検出手段23、クラッチ制御手段24、ロックアップ制御手段25が備えられており、該クラッチ制御手段24には、ニュートラル制御手段24aと、初期係合制御手段24c及びスリップ発進制御手段24dを有するアプライ制御手段24bとが備えられている。また、該ロックアップ制御手段25には、停車時ロックアップ制御手段25aと発進時ロックアップ制御手段25bと定常時ロックアップ制御手段25cとロックアップ制御マップ25mapとが備えられている。このうちのクラッチ制御手段24はリニアソレノイドバルブSLC1に指令制御して、係合圧PC1の油圧指令値を自在に制御し、クラッチC-1の係脱状態、つまり油圧サーボ40のピストンのストローク状態ないし摩擦板に対する押圧状態を自在に制御する。また、ロックアップ制御手段25はリニアソレノイドバルブSLUに指令制御して、係合圧PL-UPの油圧指令値を自在に制御し、ロックアップクラッチ7の図示を省略したロックアップピストンの押圧状態を自在に制御し、該ロックアップクラッチ7の係脱状態、つまり解放状態(解放領域)、スリップ状態(スリップ領域)、係合状態(係合領域)を自在に制御する。
 一方、上記入力軸回転速度センサ30は、上述した自動変速機構5の入力軸10の回転速度(つまりタービンランナ4bのタービン回転数Nt)を検出する。上記シフトポジションセンサ31は、不図示の運転席に配置されたシフトレバーの操作位置(或いはシフトレバーに連動するマニュアルシャフトの位置)を検出する。上記出力軸回転速度センサ32は、上述した自動変速機構5のカウンタギヤ11(或いはカウンタシャフト)の回転速度(つまり車速V、出力軸回転数Nout)を検出する。上記ブレーキセンサ33は、不図示のブレーキペダルの踏圧状態(少なくともブレーキON/OFF)を検出する。上記スロットル開度センサ34は、主にアクセル開度に基づき制御されるスロットル開度(駆動源の要求出力)THを検出する。
 上記レンジ判定手段21は、上記シフトポジションセンサ31によるシフトレバーの位置検出に基づき、P(パーキング)レンジ(非走行レンジ)、R(リバース)レンジ(走行レンジ)、N(ニュートラル)レンジ(非走行レンジ)、D(ドライブ)レンジ(走行レンジ)を含むシフトレンジの、いずれのレンジであるかを判定する。上記停車判定手段22は、上記出力軸回転速度センサ32による出力軸回転速度(即ち車速V)の検出結果に基づき車輌が停車状態であるか否かを判定する。上記発進意思操作検出手段23は、例えば運転者が坂路等でブレーキを緩めて車速Vが0以上となった場合(停車状態ではなくなった場合)、ブレーキがOFFされた場合、スロットル開度がONされた場合(0%ではなくなった場合)、のいずれかの場合に運転者による発進意思の操作があったとして検出する。
 [ロックアップクラッチの制御]
 ついで、車輌の停車時から発進時におけるロックアップクラッチ7の制御、即ち、ロックアップ制御手段25によるロックアップ制御について図1を参照しつつ図4に沿って説明する。例えばレンジ判定手段21によりDレンジが判定されている状態で(NレンジからDレンジにされた場合を含む)、かつ停車判定手段22により車輌の停車が判定されると、図4に示すように、本発明に係るロックアップクラッチの制御を開始し(S1-1)、ロックアップ制御手段25の停車時ロックアップ制御手段25aは、停車時ロックアップ制御(停車時L-UP制御)を実行し(S1-2)、不図示のロックアップリレーバルブをロックアップ位置に切換え、ロックアップクラッチ7のファーストフィル(いわゆるガタ詰め動作)を行ったのち、該ロックアップクラッチ7が微小なトルク容量となるように係合する。この際、クラッチC-1は後述するようにインニュートラル制御中であり、自動変速機構5の入力軸10(タービンランナ4b)は略々空転状態にあるため、該ロックアップクラッチ7はスリップせずに係合状態となる。
 ロックアップ制御手段25は、上述のようにロックアップクラッチ7を微小なトルク容量で係合状態にすると、図4に示すステップS1-3に進む。すると、上記発進意思操作検出手段23が、スロットル開度センサ34によりスロットルONが検出されるか、出力軸回転速度(車速)センサ32により車速Vが0より大きくなったことが検出されるか、ブレーキセンサ33によりブレーキOFFが検出されるか、のいずれかが検出されるまで待機する(S1-3のNo)。そして、発進意思操作検出手段23が、スロットルON、車速Vが0より大きい、ブレーキOFF、のいずれかの状態を検出すると(S1-3のYes)、運転者の発進意思があるとして、停車時ロックアップ制御を終了し、ステップS1-4に進む。なお、このように運転者の発進意思が検出された場合、後述するクラッチ制御手段24は、インニュートラル制御を終了して、アプライ制御(クラッチC-1の係合制御)に移行する。
 ステップS1-4に進むと、ロックアップ制御手段25の発進時ロックアップ制御手段25bは、発進時ロックアップ制御(発進時L-UP制御)を開始する。すると、発進時ロックアップ制御手段25bは、詳しくは後述するロックアップ制御マップ25map(図10、図12参照)を参照して、車速Vとスロットル開度THとの関係に基づきロックアップクラッチ7がスリップ領域となるように、リニアソレノイドバルブSLUに指令する形でロックアップクラッチ7の係合圧PL-UPを所定指令値まで上昇し、該ロックアップクラッチ7を所定トルク容量で係合状態にする。
 ロックアップ制御手段25は、上述のようにロックアップクラッチ7を所定トルク容量で係合状態にすると、図4に示すステップS1-5に進む。ここでは、詳しくは後述するクラッチ制御手段24によりクラッチC-1のアプライ制御が終了して、該クラッチC-1の係合が完了したことが検出されるまで待機する(S1-5のNo)。そして、クラッチC-1の係合完了を検出すると(S1-5のYes)、発進時ロックアップ制御を終了し、ステップS1-6に進み、定常時ロックアップ制御手段25cが、定常走行用(通常走行用)としてのロックアップ定常制御(L-UP定常制御)に移行し、発進時におけるロックアップクラッチ7の制御を終了する(S1-7)。なお、ロックアップ定常制御では、ロックアップ制御マップ25map等を参照しつつ、車速Vやスロットル開度THに基づきロックアップクラッチ7のON・オフ・スリップ制御が適宜に行われる。
 [クラッチC-1の制御]
 ついで、停車時から発進時におけるクラッチC-1制御、即ち、クラッチ制御手段24によるインニュートラル制御とアプライ制御とについて、図1を参照しつつ図5乃至図7に沿って説明する。例えばレンジ判定手段21によりDレンジが判定されている状態で、かつ停車判定手段22により車輌の停車が判定されると(車輌停車中におけるN-Dシフトも含む)、図5に示すように、クラッチC-1の制御を開始し(S2-1)、クラッチ制御手段24のニュートラル制御手段24aは、インニュートラル制御を開始する(S2-2)。ニュートラル制御手段24aは、このインニュートラル制御を開始すると、例えばリニアソレノイドバルブSLC1を指令制御して、クラッチC-1の係合圧PC1をストロークエンド圧(即ち油圧サーボ40がガタ詰めした状態)よりも低い圧にする解放制御を行い、つまりクラッチC-1を僅かに解放して(非係合状態にして)自動変速機構5を完全なニュートラル状態にする。このようにクラッチC-1の係合圧PC1をストロークエンド圧よりも低い圧にすることで、ニュートラル制御中のクラッチC-1の引き摺りロスを完全に無くすことができ、エンジン2に対する負荷を軽減し、つまり車輌の燃費向上を図ることが可能となる。
 クラッチ制御手段24は、上記インニュートラル制御を行うと、ステップS2-3に進む。すると、上述した発進意思操作検出手段23が、スロットル開度センサ34によりスロットルONが検出されるか、出力軸回転速度(車速)センサ32により車速Vが0より大きくなったことが検出されるか、ブレーキセンサ33によりブレーキOFFが検出されるか、のいずれかが検出されるまで待機する(S2-3のNo)。そして、発進意思操作検出手段23が、スロットルON、車速Vが0より大きい、ブレーキOFF、のいずれかの状態を検出すると(S2-3のYes)、運転者の発進意思があるとして、上記インニュートラル制御の終了を判断し、ステップS2-4に進む。
 ステップS2-4に進むと、クラッチ制御手段24のアプライ制御手段24bは、図6に示すように、クラッチC-1のアプライ制御を開始する(S2-4-1)。すると、まず、アプライ制御手段24bは、クラッチC-1の油圧サーボ40のガタ詰め動作を行うためのファーストフィル制御を開始する(S2-4-2)。このファーストフィル制御においては、例えば油温やインニュートラル制御が実行された時間などに基づき、出力する油圧指令値の大きさと、ファーストフィルを実行する時間(ファーストフィル時間)とを設定する。そして、ステップS2-4-3において、ファーストフィル時間が経過したか否かを判定し、該ファーストフィル時間が経過するまで(S2-4-3のNo)、ファーストフィル制御を継続する。
 その後、ファーストフィル時間が経過すると(S2-4-3のYes)、クラッチC-1の油圧サーボ40のピストンがストロークエンドより僅かに係合側の状態となるように(つまりクラッチC-1が引き摺り状態となるように)ファーストフィル(ガタ詰め動作)が終了しているはずであるので、ファーストフィル制御を終了し、ステップS2-4-4に進む。
 ステップS2-4-4に進むと、アプライ制御手段24bの初期係合制御手段24cは、係合圧PC1の油圧指令値をストロークエンド圧よりも高い待機圧に維持し、クラッチC-1の摩擦接触を開始させるための待機制御(初期係合制御)を開始する。これにより、クラッチC-1は、引き摺り状態から徐々にピストンが係合側にストロークされていく。そして、上記入力軸回転速度センサ30により検出されるタービン回転数Ntに変化が生じたか否かにより、クラッチC-1が係合を開始したか否か(つまりクラッチC-1が摩擦接触したか否か)を判定し(S2-4-5)、該クラッチC-1が係合開始となるまで待機圧を維持し(S2-4-5のNo)、その後、クラッチC-1が係合(摩擦接触)を開始すると(S2-4-5のYes)、アプライ制御手段24bによる待機制御(初期係合制御)を終了して、ステップS2-4-6に進む。なお、この待機圧は、前回のクラッチC-1の係合制御(通常の変速時の係合制御でもよい)における係合タイミング等に基づき、学習補正されて設定されるようにしてもよい。
 ステップS2-4-6に進むと、アプライ制御手段24bのスリップ発進制御手段24dは、スリップ発進制御を開始する。スリップ発進制御を開始すると、スリップ発進制御手段24dは、まず、このスリップ発進制御が何らかの原因により長期化してしまうことを防止するため、強制終了時間としてのスリップ発進タイマーを設定してから、例えば図7に示すようなスリップ発進制御を開始する(S2-4-6-1)。なお、図7に示すスリップ発進制御は、詳しくは後述する3つの演算手法(図15~図17参照)のうちの1つ(図15のもの)を一例として示したものである。
 即ち、本スリップ発進制御は、自動変速機構5の入力軸10の回転速度(つまりタービン回転数Nt)を低下させずに、自動変速機構5の出力軸11の回転速度(つまり出力軸回転数Nout)を上昇させるように、クラッチC-1をスリップ制御することで、発進時の変速比、つまり前進1速段のギヤ比を成立させる制御である。これにより、自動変速機構5におけるタービンランナ4bからクラッチC-1の入力側部材までの回転系の回転速度が一旦低下することによるイナーシャショックを防止するものでありながら、タービン回転数Ntを低下させないようにすることが可能となるので、ロックアップクラッチ7を係合したまま出力軸回転数Noutを上昇して前進1速段のギヤ比を成立させることを可能とするものである。
 このようにタービン回転数Ntを低下させないようにクラッチC-1をスリップ制御して車輌の発進を行うことを可能とするためは、例えば図7に示すように、トルクコンバータ4及びロックアップクラッチ7から伝達されてくる入力トルクを算出し、その入力トルクを出力軸回転数Noutの回転変化が生じないように回転数を保持するクラッチC-1のトルク容量(即ち回転保持トルク容量)を算出する(S2-4-6-2)。さらに、目標タービン回転数(目標入力回転速度)Ntargと目標終了時間TAとを設定して、目標終了時間TAに目標タービン回転数Ntargとなる際の自動変速機構5における回転系のイナーシャトルクを演算し、該イナーシャトルクに基づき出力軸回転数Noutの回転変化が目標回転変化となるようなクラッチC-1のトルク容量(即ち目標回転変化必要トルク容量)を算出し(S2-4-6-3)、それら回転保持トルク容量と目標回転変化必要トルク容量との合計トルクからクラッチC-1の必要油圧を算出し、該算出された必要油圧によりクラッチC-1の油圧サーボ40の係合圧PC1を油圧制御し(S2-4-6-4)、スリップ発進制御を終了して(S2-4-6-5)、図6のステップS2-4-7に進む。
 該ステップS2-4-7においては、アプライ制御手段24bが、例えばタービン回転数Ntと出力軸回転数Noutとから演算されるギヤ比が前進1速段のギヤ比になったことに基づき、上述のスリップ発進制御によってクラッチC-1の係合が完了したか否かを判定する。該クラッチC-1の係合が完了していない(ギヤ比が成立していない)場合には(S2-4-7のNo)、ステップS2-4-8に進み、上記スリップ発進タイマーの期間が経過したか否かを判定し、該スリップ発進タイマーの期間が経過していない場合には(S2-4-8のNo)、引き続き上記スリップ発進制御を継続する。
 そして、タービン回転数Ntと出力軸回転数Noutとから演算されるギヤ比が前進1速段のギヤ比になり、クラッチC-1の係合完了を検出した場合(S2-4-7のYes)は、スリップ発進制御手段24dがリニアソレノイドバルブSLC1に指令してクラッチC-1の係合圧PC1を所定勾配で急上昇させてライン圧P相当まで上昇し、クラッチC-1の係合を完了させ、アプライ制御を終了して(S2-4-11)、クラッチC-1の制御を全て終了する(S2-5)。
 また、上記スリップ発進タイマーの期間が経過した場合(S2-4-8のYes)には、ステップS2-4-9に進み、クラッチC-1の係合完了制御に移行する。そして、該クラッチC-1の係合完了制御では、リニアソレノイドバルブSLC1に指令してクラッチC-1の係合圧PC1を所定勾配で上昇し、クラッチC-1の係合が完了するまで(ギヤ比が成立するまで)待機し(S2-4-10のNo)、該クラッチC-1の係合が完了すると(S2-4-10のYes)、最終的には該係合圧PC1をライン圧P相当まで上昇させて、以上のアプライ制御を終了する(S2-4-11)。そして、以上説明した停車時から発進時におけるクラッチC-1の制御を全て終了する(S2-5)。
 [スロットル開度が低開度におけるロックアップクラッチが係合状態での発進走行例]
 つづいて、車輌の発進時に運転者がスロットル開度THを低開度で踏み込んだ場合にあって、ロックアップクラッチを係合したままクラッチC-1をスリップ係合する場合の走行例を図8に沿って説明する。例えばNレンジでフットブレーキ(Brake)が踏圧(ON)されて停車している状態にあっては、クラッチC-1の係合圧PC1が0であって該クラッチC-1が解放されており、また、ロックアップクラッチ7の係合圧PL-UPも0であって該ロックアップクラッチ7も解放されている。そのため、アイドル状態にあるエンジン回転数Neは、トルクコンバータ4においてポンプインペラ4aからタービンランナ4bに流体伝動されている状態であり、タービン回転数Ntは、該エンジン回転数Neよりも僅かに低い状態となっている。
 例えば時点t1-1において、運転者が不図示のシフトレバーを操作し、NレンジからDレンジに(N-D)されると、シフトポジションセンサ31の検出に基づきレンジ判定手段21がDレンジ(走行レンジ)を判定し、その判定に基づきロックアップ制御手段25の停車時ロックアップ制御手段25aは、停止時ロックアップ制御(S1-2)の開始を判断し、リニアソレノイドバルブSLUに指令制御してロックアップ係合圧PL-UPを制御することで、ファーストフィル(ガタ詰め動作)を行った後、微小なトルク容量TL-UPでロックアップクラッチ7を僅かに係合状態にする。
 また、レンジ判定手段21がDレンジ(走行レンジ)を判定した際、この状態ではフットブレーキがONであり、スロットル開度THが0%であり、さらに、出力軸回転数Nout(車速V)が0であるので、クラッチ制御手段24のニュートラル制御手段24aは、インニュートラル制御(S2-2)の開始を判断し、リニアソレノイドバルブSLC1に指令制御して係合圧PC1を制御することで、ファーストフィル(ガタ詰め動作)を行った後、クラッチC-1がガタ詰めされるストロークエンド圧よりも僅かに低い係合圧PC1で該クラッチC-1を解放状態にしたまま係合直前の状態で待機する。
 時点t2-1において、発進意思操作検出手段23が、ブレーキOFFを検出すると(S1-3のYes)、運転者の発進意思があるとして、ロックアップ制御手段25の発進時ロックアップ制御手段25bは、発進時ロックアップ制御(S1-4)の開始を判断し、所定トルク容量TL-UP1となるようにロックアップクラッチ7をスリップ領域で係合状態にする。またこの際、発進時ロックアップ制御手段25bは、図10に示すロックアップ制御マップ25mapを参照してロックアップクラッチ7の係合状態(ON、OFF、スリップ状態)を判定する。まず、この時点t2-1から時点t3-1の間では、スロットル開度THが0%で車速V(出力軸回転数Nout)が小さいので、スリップ領域での係合状態を選択することになる。
 一方、時点t2-1において、発進意思操作検出手段23が、ブレーキOFFを検出すると(S2-3のYes)、運転者の発進意思があるとして、クラッチ制御手段24のアプライ制御手段24bは、ファーストフィル制御(S2-4-2)を行った後、上述した待機制御(S2-4-4)を行い、更にスリップ発進制御手段24dによりスリップ発進制御(S2-4-6)を開始して、クラッチC-1をスリップ制御しつつ車輌の発進(出力軸回転数Noutの上昇)を開始する。
 この時点t2-1から時点t3-1までにあっては、上述のようにロックアップクラッチ7が所定トルク容量TL-UP1で係合状態にあり、クラッチC-1のトルク容量TC1及びエンジン2からの入力トルク(以下、「エンジントルク」という)Teがロックアップクラッチ7のトルク容量TL-UPを上回ることがないので、該ロックアップクラッチ7が滑ることがなく、エンジン回転数Neとタービン回転数Ntとが同じであり、つまりエンジン2が吹き上がってしまうことが防止される。
 また、時点t3-1において、運転者によりアクセルが低開度で踏圧され、スロットル開度THが僅かに上昇すると、スリップ発進制御手段24dは、詳しくは後述する演算手法でクラッチC-1のトルク容量TC1を演算し、該演算されたトルク容量TC1となるように係合圧PC1を制御することで、該係合圧PC1及びトルク容量TC1がスロットル開度THに応じて上昇するが、この図8の走行例では、クラッチC-1のトルク容量TC1がロックアップクラッチ7のトルク容量TL-UPを上回ることがなく、つまりエンジントルクTeの上昇に伴い、エンジン回転数Ne及びタービン回転数Ntが上昇していく。
 そして、クラッチC-1の係合状態が進行するに連れて前進1速段のギヤ比が成立していく方向に進行する(変速進行率が進む)ように出力軸回転数Noutも上昇し、時点t4-1において、前進1速段のギヤ比が成立すると、クラッチC-1の係合完了が判定されて(S2-4-7のYes、S1-5のYes)、アプライ制御手段24bによるクラッチC-1のアプライ制御が終了する(S2-5)と共に、発進時ロックアップ制御手段25bによる発進時ロックアップ制御(S1-4)が終了し、定常時ロックアップ制御手段25cによるロックアップ定常制御(S1-6)に移行されて、つまり通常の走行状態に移行される。この際、車速Vが上昇し、図10に示すロックアップ制御マップ25mapにおいて、ロックアップON(Lup ON)の判断線を超えると、定常時ロックアップ制御手段25cによりロックアップクラッチ7のONが判断され、ロックアップ係合圧PL-UPがスイープアップされ、ロックアップクラッチ7が係合(ON)される。それにより、前進1速段にあってロックアップONの定常走行状態となる。
 なお、図10に示すロックアップ制御マップ25mapにあって、定常時ロックアップ制御手段25cによりロックアップ定常制御が開始された場合には、図中実線のロックアップON(Lup ON)の判断線を図中右方側に越えるとロックアップクラッチ7の係合が判定され、図中点線のロックアップOFF(Lup OFF)の判断線を図中左方側に越えるとロックアップクラッチ7の解放が判定されることになる。
 [スロットル開度が高開度におけるロックアップクラッチがスリップ状態での発進走行例]
 つづいて、車輌の発進時に運転者がスロットル開度THを高開度で踏み込んだ場合にあって、ロックアップクラッチをスリップさせつつクラッチC-1をスリップ係合する場合の走行例を図9に沿って説明する。上記図8の場合と同様に、例えばNレンジでフットブレーキが踏圧されて停車している状態にあっては、クラッチC-1が解放されており、また、ロックアップクラッチ7も解放されている。そのため、アイドル状態にあるエンジン回転数Neは、トルクコンバータ4により流体伝動されている状態であり、タービン回転数Ntは、該エンジン回転数Neよりも僅かに低い状態となっている。
 同様に、例えば時点t1-2において、運転者がNレンジからDレンジに操作すると、ロックアップ制御手段25の停車時ロックアップ制御手段25aは、停止時ロックアップ制御(S1-2)の開始を判断し、ファーストフィル(ガタ詰め動作)を行った後、微小なトルク容量TL-UPとなるようにロックアップクラッチ7を僅かに係合状態にする。また、フットブレーキがON、スロットル開度THが0%、車速Vが0であるので、クラッチ制御手段24のニュートラル制御手段24aは、インニュートラル制御(S2-2)の開始を判断し、ファーストフィル(ガタ詰め動作)を行った後、クラッチC-1がガタ詰めされるストロークエンド圧よりも僅かに低い係合圧PC1で該クラッチC-1を解放状態にしたまま係合直前の状態で待機する。
 時点t2-2において、ブレーキOFFを検出すると(S1-3のYes)、運転者の発進意思があるとして、発進時ロックアップ制御手段25bは、発進時ロックアップ制御(S1-4)の開始を判断し、所定トルク容量TL-UP1となるようにロックアップクラッチ7をスリップ領域で係合状態にする。またこの際、発進時ロックアップ制御手段25bは、図10に示すロックアップ制御マップ25mapを参照してロックアップクラッチ7の係合状態(ON、OFF、スリップ状態)を判定する。まず、この時点t2-2から時点t3-2の間では、図10中の矢印Aで示すように、スロットル開度THが0%で車速V(出力軸回転数Nout)が小さいので、スリップ領域での係合状態を選択することになる。
 一方、時点t2-2において、ブレーキOFFを検出すると(S2-3のYes)、運転者の発進意思があるとして、クラッチ制御手段24のアプライ制御手段24bは、ファーストフィル制御(S2-4-2)を行った後、上述した待機制御(S2-4-4)を行い、更にスリップ発進制御手段24dによりスリップ発進制御(S2-4-6)を開始して、クラッチC-1をスリップ制御しつつ車輌の発進(出力軸回転数Noutの上昇)を開始する。
 この時点t2-2から時点t3-2までにあっては、上述のようにロックアップクラッチ7が所定トルク容量TL-UP1で係合状態にあり、クラッチC-1のトルク容量TC1及びエンジントルクTeがロックアップクラッチ7のトルク容量TL-UPを上回ることがないので、該ロックアップクラッチ7が滑ることがなく、エンジン回転数Neとタービン回転数Ntとが同じであり、つまりエンジン2が吹き上がってしまうことが防止される。
 また、時点t3-2において、運転者によりアクセルが高開度で踏圧され、スロットル開度THが急上昇すると、スリップ発進制御手段24dは、詳しくは後述する演算手法でクラッチC-1のトルク容量TC1を演算し、該演算されたトルク容量TC1となるように係合圧PC1を制御することで、該係合圧PC1及びトルク容量TC1がスロットル開度THに応じて急上昇する。
 この際、図10中の矢印Aで示すように、スロットル開度THが上昇してもロックアップ制御マップ25mapではスリップ領域であり、ロックアップクラッチ7の係合圧PL-UP及び所定トルク容量TL-UP1は、そのまま維持されるが、クラッチC-1のトルク容量TC1及びエンジントルクTeが該ロックアップクラッチ7のトルク容量TL-UPを上回るので、つまりエンジントルクTeの上昇に伴い、ロックアップクラッチ7がスリップされ、トルクコンバータ4による流体伝動によるトルク伝達が行われる状態となる。即ち、図9に示すように、エンジン回転数Neが、タービン回転数Ntを上回って上昇していくことになる。
 このトルクコンバータ4の流体伝動においては、ポンプインペラ4aとタービンランナ4bとの回転数が小さく、かつそれらの回転数差が生じる状態であるので、ステータ4cを介して上述したトルク増大作用を生じさせる状態であるので、自動変速機構5の入力軸10には、エンジントルクTeが増大されて入力され、クラッチC-1を介して不図示の駆動車輪に増大されたトルクが伝達されるので、運転者がアクセル開度(スロットル開度)を高くしたことに対して、大きな出力トルクが得られることになり、ドライバビリティが確保されることになる。
 そして、クラッチC-1の係合状態が進行するに連れて前進1速段のギヤ比が成立していく方向に進行する(変速進行率が進む)ように出力軸回転数Noutも上昇し、時点t4-2において、前進1速段のギヤ比が成立すると、クラッチC-1の係合完了が判定されて(S2-4-7のYes、S1-5のYes)、アプライ制御手段24bによるクラッチC-1のアプライ制御が終了する(S2-5)。一方で、発進時ロックアップ制御手段25bによる発進時ロックアップ制御(S1-4)が終了し、定常時ロックアップ制御手段25cによるロックアップ定常制御(S1-6)に移行されるが、ロックアップクラッチ7は、図10に示すロックアップ制御マップ25mapにおいて、矢印Aに示すようにスリップ領域にあるので、時点t4-2ではそのままスリップ状態が維持され、その後、車速Vが上昇して、矢印Aに示すようにロックアップON(Lup ON)の判断線を超えると、定常時ロックアップ制御手段25cによりロックアップクラッチ7のONが判断され、ロックアップ係合圧PL-UPがスイープアップされ、ロックアップクラッチ7が係合(ON)される。それにより、前進1速段にあってロックアップONの定常走行状態となる。
 [スロットル開度が高開度におけるロックアップクラッチがスリップ状態から解放状態での発進走行例]
 つづいて、図9の場合と同様に、車輌の発進時に運転者がスロットル開度THを高開度で踏み込んだ場合の別の実施形態として、ロックアップクラッチのスリップ状態から解放状態に移行しつつクラッチC-1をスリップ係合して車輌を発進させる場合の走行例を図11に沿って説明する。上記図9の場合と同様に、例えばNレンジでフットブレーキが踏圧されて停車している状態にあっては、クラッチC-1が解放されており、また、ロックアップクラッチ7も解放されている。そのため、アイドル状態にあるエンジン回転数Neは、トルクコンバータ4により流体伝動されている状態であり、タービン回転数Ntは、該エンジン回転数Neよりも僅かに低い状態となっている。
 同様に、例えば時点t1-3において、運転者がNレンジからDレンジに操作すると、ロックアップ制御手段25の停車時ロックアップ制御手段25aは、停止時ロックアップ制御(S1-2)の開始を判断し、ファーストフィル(ガタ詰め動作)を行った後、微小なトルク容量TL-UPとなるようにロックアップクラッチ7を僅かに係合状態にする。また、フットブレーキがON、スロットル開度THが0%、車速Vが0であるので、クラッチ制御手段24のニュートラル制御手段24aは、インニュートラル制御(S2-2)の開始を判断し、ファーストフィル(ガタ詰め動作)を行った後、クラッチC-1がガタ詰めされるストロークエンド圧よりも僅かに低い係合圧PC1で該クラッチC-1を解放状態にしたまま係合直前の状態で待機する。
 時点t2-3において、ブレーキOFFを検出すると(S1-3のYes)、運転者の発進意思があるとして、発進時ロックアップ制御手段25bは、発進時ロックアップ制御(S1-4)の開始を判断し、所定トルク容量TL-UP1となるようにロックアップクラッチ7をスリップ領域で係合状態にする。またこの際、発進時ロックアップ制御手段25bは、図12に示すロックアップ制御マップ25mapを参照してロックアップクラッチ7の係合状態(ON、OFF、スリップ状態)を判定する。まず、この時点t2-3から時点t3-3の間では、図12中の矢印Aで示すように、スロットル開度THが0%で車速V(出力軸回転数Nout)が小さいので、スリップ領域での係合状態を選択することになる。
 一方、時点t2-3において、ブレーキOFFを検出すると(S2-3のYes)、運転者の発進意思があるとして、クラッチ制御手段24のアプライ制御手段24bは、ファーストフィル制御(S2-4-2)を行った後、上述した待機制御(S2-4-4)を行い、更にスリップ発進制御手段24dによりスリップ発進制御(S2-4-6)を開始して、クラッチC-1をスリップ制御しつつ車輌の発進(出力軸回転数Noutの上昇)を開始する。
 この時点t2-3から時点t3-3までにあっては、上述のようにロックアップクラッチ7が所定トルク容量TL-UP1で係合状態にあり、クラッチC-1のトルク容量TC1及びエンジントルクTeがロックアップクラッチ7のトルク容量TL-UPを上回ることがないので、該ロックアップクラッチ7が滑ることがなく、エンジン回転数Neとタービン回転数Ntとが同じであり、つまりエンジン2が吹き上がってしまうことが防止される。
 また、時点t3-3において、運転者によりアクセルが高開度で踏圧され、スロットル開度THが急上昇すると、スリップ発進制御手段24dは、詳しくは後述する演算手法でクラッチC-1のトルク容量TC1を演算し、該演算されたトルク容量TC1となるように係合圧PC1を制御することで、該係合圧PC1及びトルク容量TC1がスロットル開度THに応じて急上昇する。
 この際、図12中の矢印Aで示すように、スロットル開度THが上昇すると、ロックアップ制御マップ25mapにおいてスリップ領域からロックアップOFF領域に切り換る。そのため、時点t4-3において、発進時ロックアップ制御手段25bは、ロックアップクラッチ7の係合圧PL-UPのスイープダウンを開始し、それに伴い、ロックアップクラッチ7のトルク容量TL-UPも徐々に低下されて、その後、ロックアップクラッチ7は解放状態にされる。これにより、ロックアップクラッチ7が解放されて該ロックアップクラッチ7のトルク伝達がなくなり、トルクコンバータ4による流体伝動によるトルク伝達が行われる状態となり、該トルクコンバータ4のトルク増大作用にロックアップクラッチ7が干渉することなく、エンジントルクTeが増大されて自動変速機構5の入力軸10に入力され、運転者がアクセル開度(スロットル開度)を高くしたことに対して、図9の場合よりもさらに大きな出力トルクが得られることになり、ドライバビリティが確保されることになる。即ち、図11に示すように、エンジン回転数Neが、タービン回転数Ntを大きく上回って上昇していくことになる。
 その後、クラッチC-1の係合状態が進行するに連れて前進1速段のギヤ比が成立していく方向に進行する(変速進行率が進む)ように出力軸回転数Noutも上昇し、前進1速段のギヤ比が成立すると、クラッチC-1の係合完了が判定されて(S2-4-7のYes、S1-5のYes)、アプライ制御手段24bによるクラッチC-1のアプライ制御が終了する(S2-5)。一方で、発進時ロックアップ制御手段25bによる発進時ロックアップ制御(S1-4)が終了し、定常時ロックアップ制御手段25cによるロックアップ定常制御(S1-6)に移行されるが、ロックアップクラッチ7は、図12に示すロックアップ制御マップ25mapにおいて、矢印Aに示すようにロックアップOFF領域からスリップ領域に入るまで、そのまま解放状態が維持される。
 そして、車速Vが上昇して、矢印Aに示すようにロックアップスリップON(Slip ON)の判断線を超えると、定常時ロックアップ制御手段25cによりロックアップクラッチ7のスリップ状態が判断され、さらにロックアップON(Lup ON)の判断線を超えると、定常時ロックアップ制御手段25cによりロックアップクラッチ7のONが判断され、ロックアップクラッチ7が係合(ON)される。それにより、前進1速段にあってロックアップONの定常走行状態となる。
 なお、図12に示すロックアップ制御マップ25mapにあって、定常時ロックアップ制御手段25cによりロックアップ定常制御が開始された場合には、図中実線のロックアップON(Lup ON)の判断線を図中右方側に越えるとロックアップクラッチ7の係合が判定され、図中点線のロックアップOFF(Lup OFF)の判断線を図中左方側に越えるとロックアップクラッチ7の解放が判定され、図中実線のロックアップスリップON(Slip ON)の判断線を図中右方側に越えるとロックアップクラッチ7のスリップが判定され、図中点線のロックアップスリップOFF(Slip OFF)の判断線を図中左方側に越えるとロックアップクラッチ7の解放が判定されることになる。
 [スリップ発進制御の概要]
 つづいて、上記スリップ発進制御手段24dによるクラッチC-1のスリップ発進制御の概要について図13及び図14に沿って説明する。本スリップ発進制御は、クラッチC-1をスリップさせつつ係合させることで車輌を発進させる際にあって、自動変速機構5の入力軸10の回転数(即ちタービン回転数Nt)が低下しないように制御するものである。なお、図13及び図14、後述する図15~図17における時点taから時点tdまでが例えば図8の時点t2-1から時点t4-1までの期間に相当するものである。また、図13の走行例ではスロットル開度THが0%のままであった場合、図14の走行例ではアクセルが踏まれてスロットル開度THが上昇した場合、をそれぞれ示すものである。
 なお、本スリップ発進制御は、上述したロックアップクラッチ7をスリップ領域で係合したままクラッチC-1をスリップさせつつ係合する場合にあって、タービン回転数Ntが低下しないので、本制御を用いて好適であるが、一般的なニュートラル制御からクラッチC-1を係合状態に移行する場合、つまりロックアップクラッチ7を解放した状態でニュートラル制御から前進1速段に復帰する場合あっても、本制御を用いることでイナーシャショックの発生を抑えることができるので、一般的なニュートラル制御からクラッチC-1を係合状態に移行する場合を一例として説明する。
 図13に示すように、例えばインニュートラル制御(S2-2)を行っている状態から、時点ta-1において、発進意思操作検出手段23がブレーキOFFを検出すると(S2-3のYes)、クラッチC-1の係合圧PC1を所定の待機圧に制御する待機制御(S2-4-4)を行い、クラッチC-1は、引き摺り状態から徐々にピストンが係合側にストロークされていく。これにより、クラッチC-1がトルク伝達を開始し、タービン回転数Ntが僅かに低下し(ロックアップクラッチ7を係合している場合は、タービン回転数Ntの低下と共にエンジン回転数Neも僅かに低下することになる。)、不図示の駆動車輪における出力トルクToutが上昇する。
 なお、この図13の走行例では、インニュートラル制御においてクラッチC-1の係合圧PC1がストロークエンド圧に維持される一般的なニュートラル制御を行っている場合であるので、ニュートラル制御にあってクラッチC-1はガタ詰めされた状態にあり、ファーストフィル制御は行う必要はない。反対に、例えば上述したように、車輌の燃費向上のために、ニュートラル制御中にクラッチC-1の係合圧PC1をストロークエンド圧よりも低い圧に制御した場合には、上述したようにファーストフィル制御(S2-4-2)を行う必要がある。
 例えばタービン回転数Ntに変化が生じたことに基づきクラッチC-1が係合を開始したことを判定すると(S2-4-5のYes)、時点tb-1において上記待機制御を終了して、スリップ発進制御手段24dによるスリップ発進制御に移行する(S2-4-6)。このスリップ発進制御においては、後述する例えば3つの演算手法によりタービン回転数Ntが低下しないようにクラッチC-1の係合圧PC1を演算して油圧制御する。これにより、上記待機制御の終了時のタービン回転数Ntよりもタービン回転数Ntが低下せず、かつクラッチC-1の係合が進行してクラッチC-1の出力側回転数NC1が徐々に上昇し、つまり変速進行率が進行して徐々に前進1速段のギヤ比が成立していき、出力軸回転数Noutも上昇していく。ここで、終了時のタービン回転数Ntとは、トルク伝達が開始したことを判断した際のタービンの回転数Ntであり、待機制御の終了を判断したタイミングにおけるタービン回転数Ntのみに限定されず、油圧の応答遅れなどを考慮し、終了判断したときからスリップ発進制御による油圧指令値による係合が開始するまでのタービン回転数Ntであれば良く、その際の最も低いタービン回転数Ntとすることが好適である。
 なお、本実施の形態では、トルク伝達が開始したことを判断した際のタービンの回転数よりもタービン回転数が低下しないようにスリップ発進制御を行うこととしたが、そもそもスリップ発進制御により回転数を低下させたくない(スリップ発進制御開始時の)目標タービン回転数を予め設定しておき、油圧の応答遅れなどを考慮してスリップ発進制御を開始する際のタービン回転数が当該目標タービン回転数となるように、タービン回転数Ntに変化が生じたことを判断する際の閾値を設定してもよい。
 即ち、従来は、クラッチC-1の係合圧PC1の油圧指令値を演算する際に、基本勾配、一定量以上の回転変化を保障する回転保障勾配、一定量以上のトルク伝達を保障するトルク保障勾配、のうちの最も大きな値を選択して油圧指令値とすることが一般的な演算手法であったため、クラッチC-1の係合が進行するときに、車輌の停車状態に伴い停止している出力軸回転数Noutにタービン回転数Ntが近づくことになり、該タービン回転数Ntが一旦大きく低下してから上昇することになる。このタービン回転数Ntの低下時には、自動変速機構5のイナーシャトルクが発生して出力トルクに加わるので、一旦出力トルクが増加してから再び出力トルクが低下する現象が生じ、つまり揺り返しショックが生じていた。しかしながら、本スリップ発進制御のように上記待機制御の終了時よりもタービン回転数Ntを低下させないようにクラッチC-1をスリップ係合していくことで、イナーシャトルクによる揺り返しショックの発生が防止される。
 そして、時点tc-1において、タービン回転数Ntと出力軸回転数Noutとから演算されるギヤ比が前進1速段のギヤ比になったことに基づき、クラッチC-1の係合が完了したことを判定すると(S2-4-7のYes)、スリップ発進制御手段24dは、リニアソレノイドバルブSLC1に指令してクラッチC-1の係合圧PC1を所定勾配で急上昇させ、時点td-1までにライン圧P相当まで上昇し、クラッチC-1の係合を完了させ、スリップ発進制御を終了する(S2-4-11、S2-5)。
 また、図14に示すように、例えばインニュートラル制御を行っている状態から、時点ta-2においてブレーキOFFを検出し、クラッチC-1の待機制御を行い、クラッチC-1が係合を開始したことを判定すると、時点tb-2において上記待機制御を終了して、スリップ発進制御手段24dによるスリップ発進制御に移行する。この後、例えば運転者によりアクセルが踏圧されてスロットル開度THが上昇したとしても、後述する例えば3つの演算手法によりタービン回転数Ntが低下しないように、かつギヤ比(変速進行率)が後退しないようにクラッチC-1の係合圧PC1を演算して油圧制御する。これにより、上記待機制御の終了時よりもタービン回転数Ntが低下せず、かつクラッチC-1の係合がスロットル開度THの大きさに応じて進行し、クラッチC-1の出力側回転数NC1がスロットル開度THの上昇に合わせて上昇して、その後、変速進行率が進行して徐々に前進1速段のギヤ比が成立していく。
 そして、同様に時点tc-2において、タービン回転数Ntと出力軸回転数Noutとから演算されるギヤ比が前進1速段のギヤ比になったことに基づき、クラッチC-1の係合が完了したことを判定すると、スリップ発進制御手段24dは、リニアソレノイドバルブSLC1に指令してクラッチC-1の係合圧PC1を所定勾配で急上昇させ、時点td-2までにライン圧P相当まで上昇し、クラッチC-1の係合を完了させ、スリップ発進制御を終了する。
 このようにクラッチC-1のスリップ発進制御にあって、タービン回転数Ntが低下しないことで、自動変速機構5をニュートラルにした状態からクラッチC-1を係合する際にイナーシャ力の変動が発生せず、揺り返しショックが現れることがない車輌の発進を可能とすることができ、乗り心地の向上を図ることができる。
 [イナーシャトルクを算出して係合圧PC1を演算する演算手法]
 つづいて、スリップ発進制御手段24dによるスリップ発進制御において、自動変速機構5にて発生するイナーシャトルクから係合圧PC1を演算する演算手法について図15に沿って説明する。
 まず、スリップ発進制御手段24dは、図15に示すように、目標終了時間TAを設定し、例えば現在のスロットル開度THを加味して目標終了時間TAにおける目標タービン回転数(目標入力回転速度)Ntargを設定する。ここで、自動変速機構5におけるイナーシャ分「I」は、トルクコンバータ4におけるタービンランナ4bから自動変速機構5の入力軸10までをトルコン2次側イナーシャ「TC_intertia2」と、該入力軸10からクラッチC-1の入力側部材までのインプット側イナーシャ「GR_intertia」との合計であるので、
I=TC_intertia2+GR_intertia・・・(1)
となる。
 また、目標終了時間TAまでに目標タービン回転数Ntargとなるための出力軸回転数Noutの回転変化量(目標回転変化率)「ω」は、1速ギヤ比を「G1ST」、スリップ発進制御の開始からの経過時間を「cnt_C1Slip」とすると、
ω=(Ntarg-Nout×G1ST)/(TA-cnt_C1Slip)・・・(2)
となる。
 さらに、現在のトルクコンバータ4における速度比(ポンプインペラ4aとタービンランナ4bとの速度比)を「ecurrent」、現在の速度比におけるトルクコンバータ4の容量係数を「C(ecurrent)」、現在の速度比におけるトルクコンバータ4のトルク比を「t(ecurrent)」、ロックアップクラッチ7により伝達されるトルクを「TL-UP」、クラッチC-1のトルク分担を「TdivC1」、エンジン回転数「Ne」とすると、クラッチC-1の出力側部材の回転数NC1の回転を一定に保持するためのトルク容量「TC1-CONT」は、
C1-CONT=(C(ecurrent)×NE×t(ecurrent)+TL-UP)×(TdivC1)・・・(3)
で算出され(図7のS2-4-6-2)、
クラッチC-1の出力側部材の回転数NC1における目標回転変化分として必要なトルク容量「TC1-change」は、
C1-change=(Iω)×(TdivC1)・・・(4)
で算出され(図7のS2-4-6-3)、
クラッチC-1の出力側部材の回転数NC1における目標回転変化として必要なトルク容量は、
C1=TC1-CONT+TC1-change=(C(ecurrent)×NE×t(ecurrent)+TL-UP+Iω)×(TdivC1)・・・(5)
となる。
 なお、上記計算式(5)は、言い換えると、エンジン2からの入力トルク(t・C・Ne+TL-UP)に発生するイナーシャトルク(Iω)を加味した合計トルクに基づき、クラッチC-1のトルク容量TC1を算出したことになる。
 そして、上記目標回転変化として必要なクラッチC-1のトルク容量となるように係合圧PC1の油圧指令値を算出し、該油圧指令値に基づきリニアソレノイドバルブSLC1を油圧制御することにより、図15に示すように、目標終了時間TAにおいてタービン回転数Ntが目標タービン回転数Ntargとなるように制御され、つまりタービン回転数Ntが上記待機制御の終了時よりも低下することなく、目標終了時間TAにおいて前進1速段のギヤ比が成立するようにクラッチC-1がスリップ制御される。これにより、クラッチC-1のスリップ発進制御にあって、クラッチC-1をスリップさせて係合させる際に上記待機制御の終了時よりもタービン回転数Ntが低下せず、イナーシャ力の変動が発生しないので、揺り返しショックが現れることがない車輌の発進を可能とすることができ、乗り心地の向上を図ることができる。また、この図15の演算手法では、イナーシャトルクを算出しつつ係合圧を油圧制御することができるので、イナーシャ力の変動を自由に設定することも可能となる。
 [タービン回転数とエンジン回転数との速度比を一定に算出して係合圧PC1を演算する演算手法]
 次に、スリップ発進制御手段24dによるスリップ発進制御において、タービン回転数Ntとエンジン回転数Neとの速度比を一定に算出することで係合圧PC1を演算する演算手法について図16に沿って説明する。
 図16に示す演算手法では、スリップ発進制御手段24dは、タービン回転数Ntとエンジン回転数Neとの目標速度比「Nt/Ne=etarg」を一定値に設定し、該一定の目標速度比etargに基づきクラッチC-1のトルク容量TC1を算出する。即ち、一定の目標速度比etargとなるトルク容量TC1は、
C1=(C(etarg)×NE×t(etarg))×(TdivC1)・・・(6)
となる。
 そして、上記一定の目標速度比となるクラッチC-1のトルク容量となるように係合圧PC1の油圧指令値を算出し、該油圧指令値に基づきリニアソレノイドバルブSLC1を油圧制御することにより、図16に示すように、目標速度比etargが一定となるように制御され、つまりアイドル回転数よりもエンジン回転数Neが低下しなければ、一定の比率により算出されるタービン回転数Ntが低下することはなく、時間の経過と共に前進1速段のギヤ比が成立するようにクラッチC-1がスリップ制御される。これにより、クラッチC-1のスリップ発進制御にあって、クラッチC-1をスリップさせて係合させる際に上記待機制御の終了時よりもタービン回転数Ntが低下せず、イナーシャ力の変動が発生しないので、揺り返しショックが現れることがない車輌の発進を可能とすることができ、乗り心地の向上を図ることができる。
 また、この図16の演算手法では、タービン回転数Ntとエンジン回転数Neとの速度比etargが一定となるため、トルクコンバータ4により一定のトルク増大作用を得ることができるので、エンジン2の出力変化(出力上昇)に比例した入力トルクを得ることができ、つまり運転者が要求した出力トルク(即ちスロットル開度TH)に比例した加速フィーリングを得ることが可能となる。
 [目標一定タービン回転数を算出して係合圧PC1を演算する演算手法]
 ついで、スリップ発進制御手段24dによるスリップ発進制御において、目標一定タービン回転数(目標一定入力回転速度)Nttargを一定値として算出することで係合圧PC1を演算する演算手法について図17に沿って説明する。
 図17に示す演算手法では、スリップ発進制御手段24dは、目標一定タービン回転数Nttargを一定値に設定する。すると、目標一定タービン回転数Nttargとエンジン回転数Neとから目標速度比etargは、
targ=Nttarg/Ne
として算出され、つまりエンジン回転数Neが変化しても、タービン回転数Ntが一定となるように目標速度比etargに基づき算出される。そして、この目標速度比etargとなるトルク容量TC1は、上記数式(6)と同様に、
C1=(C(etarg)×NE×t(etarg))×(TdivC1)・・・(6)’
となるが、目標速度比etargがエンジン回転数Neの変化に応じて変化するので、結果的にタービン回転数Ntが一定となるように演算される。
 そして、上記目標速度比となるクラッチC-1のトルク容量となるように係合圧PC1の油圧指令値を算出し、該油圧指令値に基づきリニアソレノイドバルブSLC1を油圧制御することにより、図17に示すように、目標タービン回転数Nttargが一定となるように制御され、つまりタービン回転数Ntが低下することはなく、時間の経過と共に前進1速段のギヤ比が成立するようにクラッチC-1がスリップ制御される。これにより、クラッチC-1のスリップ発進制御にあって、クラッチC-1をスリップさせて係合させる際に上記待機制御の終了時よりもタービン回転数Ntが低下せず、イナーシャ力の変動が発生しないので、揺り返しショックが現れることがない車輌の発進を可能とすることができ、乗り心地の向上を図ることができる。
 また、この図17の演算手法では、特にタービン回転数Ntが一定となるため、エンジン回転数Neの変化により駆動車輪に対する出力トルクToutが変動することになるが、自動変速機構5におけるイナーシャ力の発生は、略々完全に無くすことができる。
 [本発明のまとめ]
 以上説明したように本自動変速機の制御装置1によると、スリップ制御にあって、待機制御の終了時よりもタービン回転数Nt(自動変速機構5の入力軸10の回転速度)を低下させずに該自動変速機構5の出力回転数Noutを上昇させるようにクラッチC-1をスリップ制御して、自動変速機構5の発進時の変速比(つまり前進1速段のギヤ比)を成立させるので、自動変速機構5をニュートラルにした状態からクラッチC-1を係合する際におけるイナーシャ力の変動が低減され、揺り返しショックが低減された車輌の発進を可能とすることができ、乗り心地の向上を図ることができる。
 また、スリップ制御を終了する目標終了時間TAと、該目標終了時間TAにおける目標タービン回転数Nttargを設定し、該目標タービン回転数Nttargと前進1速段のギヤ比と該目標終了時間TAとに基づき、自動変速機構5の出力回転数Noutの回転変化量ωを算出し、該回転変化量ωに基づき、自動変速機構5にて発生するイナーシャトルクIωを算出し、エンジントルクTeに該イナーシャトルクIωを加味した合計トルクに基づきクラッチC-1のトルク容量TC1を算出し、該算出されたトルク容量TC1となるようにクラッチC-1の油圧サーボ40に供給する係合圧PC1を油圧制御することにより、クラッチC-1のスリップ制御を行うので、自動変速機構5をニュートラルにした状態からクラッチC-1を係合する際におけるスリップ制御中にあって、イナーシャ力の変動が発生しないようにクラッチC-1をスリップ制御することができる。また、イナーシャトルクIωを算出しつつ係合圧PC1を油圧制御することができるので、イナーシャ力の変動を自由に設定することも可能とすることができる。
 また、タービン回転数Ntとエンジン回転数Neとの速度比eが一定となる目標速度比etargを設定し、該一定の目標速度比etargに基づきクラッチC-1のトルク容量TC1を算出し、該算出されたトルク容量TC1となるようにクラッチC-1の油圧サーボ40に供給する係合圧PC1を油圧制御することにより、クラッチC-1のスリップ制御を行うので、自動変速機構5をニュートラルにした状態からクラッチC-1を係合する際におけるスリップ制御中にあって、イナーシャ力の変動が発生しないようにクラッチC-1をスリップ制御することができる。また、タービン回転数Ntとエンジン回転数Neとの速度比etargが一定となるため、トルクコンバータ4により一定のトルク増大作用を得ることができるので、エンジン2の出力変化(出力上昇)に比例した入力トルクを得ることができ、つまり運転者が要求した出力トルク(即ちスロットル開度TH)に比例した加速フィーリングを得ることができる。
 また、タービン回転数Ntが一定となる目標一定タービン回転数Nttargを設定し、該目標一定タービン回転数Nttargとエンジン回転数Neとに基づき目標速度比etargを算出し、該目標速度比etargに基づきクラッチC-1のトルク容量TC1を算出し、該算出されたトルク容量TC1となるようにクラッチC-1の油圧サーボ40に供給する係合圧PC1を油圧制御することにより、クラッチC-1のスリップ制御を行うので、自動変速機構5をニュートラルにした状態からクラッチC-1を係合する際におけるスリップ制御中にあって、イナーシャ力の変動が発生しないようにクラッチC-1をスリップ制御することができる。特にタービン回転数Ntが一定となるため、自動変速機構5におけるイナーシャ力の発生を略々無くすことができる。
 そして、車輌の発進意思の操作を検出した際に、少なくともロックアップクラッチ7が所定トルク容量TL-UP1となるスリップ領域で係合するように制御するので、車輌の発進時にエンジン回転数Neが吹き上がることを防止して燃費の向上を図ることができる。また、このようにロックアップクラッチ7を係合しつつ車輌の発進を行う際には、自動変速機構5の入力軸10とエンジン2の出力軸2aとがロックアップされるため、自動変速機構5の入力軸10の回転速度(タービン回転数Nt)が低下するとエンジン2の回転停止(いわゆるエンジンストップ)を招く虞があるが、上述のようにスリップ制御中にあって自動変速機構5の入力軸10の回転速度(タービン回転数Nt)を低下させずに該自動変速機構5の出力軸11の回転速度(タービン回転数Nt)を上昇させて、自動変速機構5の前進1速段のギヤ比を成立させるので、エンジン2の回転停止(いわゆるエンジンストップ)を招くことなく、ロックアップクラッチ7を係合した状態での車輌の発進を可能とすることができる。
 なお、以上説明した本実施の形態においては、例えば前進6速段及び後進段を達成し得る自動変速機3に本制御装置1を適用したものを説明したが、これに限らず、発進時に係合されて動力伝達を行うクラッチをニュートラル制御してからスリップ発進制御し、かつロックアップクラッチを有する自動変速機であれば、例えば多段式自動変速機、ベルト式無段変速機、トロイダル式無段変速機など、どのような自動変速機であっても本発明を適用することができる。
 また、本実施の形態においては、クラッチC-1のスリップ発進制御を行う際の演算手法として、図15~図17に沿って説明した3つの演算手法を説明したが、これらに限らず、タービン回転数Ntを低下させずに、かつ発進時の変速比が成立するようにクラッチC-1をスリップ係合させることができる演算手法であれば、どのような演算手法でも構わない。
 さらに、本実施の形態においては、ニュートラル制御にあってクラッチC-1の係合圧PC1をストロークエンド圧よりも低い圧に制御するものを説明したが、勿論、一般的なニュートラル制御(つまり係合圧PC1をストロークエンド圧近傍にする制御)であっても、本発明を適用し得る。
 また、本実施の形態においては、ロックアップクラッチ7の詳細な構造の説明を省略したが、勿論、単板式のロックアップクラッチ、多板式のロックアップクラッチ、いわゆる2ウェイ型のロックアップクラッチ又は3ウェイ型のロックアップクラッチなど、どのようなロックアップクラッチの構造であっても、本発明を適用し得る。
 そして、ロックアップクラッチとしてはトルクコンバータをロックアップするものであると、特にロックアップクラッチをスリップさせてトルクコンバータのトルク増大作用を得ることができるが、トルク増大作用を得られないフルードカップリング等の流体伝動装置であっても、本制御を適用することで駆動源の回転の吹き上がりを抑えることができることは言うまでもない。
 本発明に係る発進装置の油圧制御装置は、乗用車、トラック等に搭載される自動変速機の制御装置として用いることが可能であり、特に自動変速機構のクラッチによりニュートラル制御を行った後に該クラッチを係合して車輌の発進を行うものにあって、発進時にイナーシャ力の変動が発生せずに乗り心地の向上が求められる自動変速機の制御装置に用いて好適である。
1  自動変速機の制御装置
2  駆動源(エンジン)
2a  駆動源の出力軸
3  自動変速機
4  流体伝動装置(トルクコンバータ)
5  自動変速機構
7  ロックアップクラッチ
10  自動変速機構の入力軸
11  自動変速機構の出力軸(カウンタギヤ)
23  発進意思操作検出手段
24  クラッチ制御手段
24c  初期係合制御手段(待機制御手段)
24d  スリップ発進制御手段
25  ロックアップ制御手段
40  油圧サーボ
C-1  クラッチ
Iω  イナーシャトルク
Nt  入力軸の回転速度(タービン回転数)
Nout  出力軸の回転速度(出力回転数)
targ  目標入力回転速度(目標タービン回転数)
Nttarg  目標一定入力回転速度(目標一定タービン回転数)
C1  係合圧
TA  目標終了時間
C1  トルク容量
L-UP1  所定トルク容量
e  速度比
targ  目標速度比
ω  目標回転変化率(回転変化量)

Claims (5)

  1.  発進時に係合されるクラッチを有すると共に、駆動源の回転を変速する自動変速機構と、前記駆動源の出力軸と前記自動変速機構の入力軸との間に介在された流体伝動装置と、を備えた自動変速機の制御装置において、
     車輌の発進意思の操作を検出する発進意思操作検出手段と、
     前記クラッチを非係合状態にして前記自動変速機構をニュートラルにした状態から、前記車輌の発進意思の操作を検出した際に、前記クラッチを係合させるクラッチ制御手段と、を備え、
     前記クラッチ制御手段は、
     前記クラッチの油圧サーボに油圧を供給することにより前記クラッチの摩擦接触を開始させる初期係合制御を行う初期係合制御手段と、
     前記初期係合制御の終了後、前記自動変速機構の入力軸の回転速度を、前記初期係合制御の終了時における該入力軸の回転速度より低下させずに前記自動変速機構の出力軸の回転速度を上昇させるように前記クラッチをスリップ制御して、前記自動変速機構の発進時の変速比を成立させるスリップ発進制御手段と、を有する、
     ことを特徴とする自動変速機の制御装置。
  2.  前記スリップ発進制御手段は、
     前記スリップ制御を終了する目標終了時間と、前記目標終了時間における前記自動変速機構の入力軸の目標入力回転速度を設定し、
     前記目標入力回転速度と前記自動変速機構の発進時の変速比と前記目標終了時間とに基づき、前記自動変速機構の出力軸の目標回転変化率を算出し、
     前記自動変速機構の出力軸の目標回転変化率に基づき、前記自動変速機構にて発生するイナーシャトルクを算出し、
     前記駆動源からの入力トルクに前記発生するイナーシャトルクを加味した合計トルクに基づき、前記クラッチのトルク容量を算出し、
     前記算出されたトルク容量となるように前記クラッチの油圧サーボに供給する係合圧を油圧制御することにより、前記クラッチのスリップ制御を行ってなる、
     ことを特徴とする請求項1記載の自動変速機の制御装置。
  3.  前記スリップ発進制御手段は、
     前記自動変速機構の入力軸の回転速度と前記駆動源の回転速度との速度比が一定となる目標速度比を設定し、
     前記一定の目標速度比に基づき、前記クラッチのトルク容量を算出し、
     前記算出されたトルク容量となるように前記クラッチの油圧サーボに供給する係合圧を油圧制御することにより、前記クラッチのスリップ制御を行ってなる、
     ことを特徴とする請求項1記載の自動変速機の制御装置。
  4.  前記スリップ発進制御手段は、
     前記自動変速機構の入力軸の回転速度が一定となる目標一定入力回転速度を設定し、
     前記目標一定入力回転速度と前記駆動源の出力軸の回転速度とに基づき目標速度比を算出し、
     前記目標速度比に基づき、前記クラッチのトルク容量を算出し、
     前記算出されたトルク容量となるように前記クラッチの油圧サーボに供給する係合圧を油圧制御することにより、前記クラッチのスリップ制御を行ってなる、
     ことを特徴とする請求項1記載の自動変速機の制御装置。
  5.  前記自動変速機は、前記流体伝動装置をロックアップし得るロックアップクラッチを備え、
     前記車輌の発進意思の操作を検出した際に、少なくとも前記ロックアップクラッチが所定トルク容量となるスリップ領域で係合するように制御するロックアップ制御手段を備えた、
     ことを特徴とする請求項1ないし4のいずれか記載の自動変速機の制御装置。
PCT/JP2011/057667 2010-03-31 2011-03-28 自動変速機の制御装置 WO2011125612A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180007869.3A CN102741591B (zh) 2010-03-31 2011-03-28 自动变速器的控制装置
DE112011100173T DE112011100173T5 (de) 2010-03-31 2011-03-28 Steuervorrichtung eines automatikgetriebes
JP2012509460A JP5464270B2 (ja) 2010-03-31 2011-03-28 自動変速機の制御装置
US13/076,230 US8725373B2 (en) 2010-03-31 2011-03-30 Control device of automatic transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010082529 2010-03-31
JP2010-082529 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011125612A1 true WO2011125612A1 (ja) 2011-10-13

Family

ID=44762559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057667 WO2011125612A1 (ja) 2010-03-31 2011-03-28 自動変速機の制御装置

Country Status (5)

Country Link
US (1) US8725373B2 (ja)
JP (1) JP5464270B2 (ja)
CN (1) CN102741591B (ja)
DE (1) DE112011100173T5 (ja)
WO (1) WO2011125612A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068656A1 (ja) * 2012-10-30 2014-05-08 トヨタ自動車株式会社 車両の制御装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120158264A1 (en) * 2010-12-21 2012-06-21 Caterpillar Inc. Clutch calibration for continuously variable transmission
US9488267B2 (en) * 2012-09-14 2016-11-08 Ford Global Technologies, Llc Line pressure control with input shaft torque measurement
JP5830174B2 (ja) * 2012-09-26 2015-12-09 ジヤトコ株式会社 ロック機構付き摩擦要素を備えた自動変速機及びその制御方法
CN104088999A (zh) * 2014-06-30 2014-10-08 盛瑞传动股份有限公司 自动变速器离合器充油时间补偿的控制方法和***
CN105179680A (zh) * 2015-10-13 2015-12-23 哈尔滨东安汽车发动机制造有限公司 一种自动变速器中离合器充油的控制方法
JP6798877B2 (ja) * 2016-12-27 2020-12-09 アイシン・エィ・ダブリュ株式会社 制御装置
JP6845043B2 (ja) * 2017-03-02 2021-03-17 トヨタ自動車株式会社 車両の変速制御装置
JP6973191B2 (ja) * 2018-03-07 2021-11-24 株式会社アイシン 油圧制御装置
CN113464641B (zh) * 2021-05-08 2022-08-30 东风汽车集团股份有限公司 自动变速箱离合器扭矩控制***及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07293682A (ja) * 1994-04-22 1995-11-07 Mazda Motor Corp 自動変速機の変速ショック低減装置
JPH1019122A (ja) * 1996-07-03 1998-01-23 Nissan Motor Co Ltd 自動変速機のクリープ防止装置
JP2005042742A (ja) * 2003-07-22 2005-02-17 Toyota Motor Corp 車両の発進制御装置
JP2006250287A (ja) * 2005-03-11 2006-09-21 Toyota Motor Corp 自動変速機の制御装置
JP2008275000A (ja) * 2007-04-26 2008-11-13 Toyota Motor Corp 自動変速機の制御装置
JP2009074579A (ja) * 2007-09-19 2009-04-09 Toyota Motor Corp 車両の制御装置、制御方法およびその方法をコンピュータで実現されるプログラムならびにそのプログラムを記録した記録媒体

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2949157B2 (ja) 1991-03-18 1999-09-13 トヨタ自動車株式会社 車両のクリープ防止制御の解除装置
JP2828606B2 (ja) * 1995-05-12 1998-11-25 アイシン・エィ・ダブリュ株式会社 自動変速機の制御装置
JP3927325B2 (ja) * 1998-10-21 2007-06-06 トヨタ自動車株式会社 車両の制御装置
US6253140B1 (en) * 1999-08-04 2001-06-26 Ford Global Technologies, Inc. Engagement control logic for an automatic transmission clutch with adaptive engagement feel
JP3519029B2 (ja) * 1999-12-09 2004-04-12 本田技研工業株式会社 自動変速機の制御装置
KR100325214B1 (ko) * 1999-12-30 2002-03-04 이계안 차량용 자동 변속기의 변속 제어 방법
JP4295962B2 (ja) * 2002-07-29 2009-07-15 アイシン精機株式会社 自動変速機の変速制御装置
JP2004124772A (ja) * 2002-09-30 2004-04-22 Daiwa House Ind Co Ltd 風車のブレーキシステム
CN100394082C (zh) * 2003-01-29 2008-06-11 本田技研工业株式会社 车辆控制***
US6832978B2 (en) * 2003-02-21 2004-12-21 Borgwarner, Inc. Method of controlling a dual clutch transmission
JP2005003193A (ja) * 2003-05-16 2005-01-06 Toyota Motor Corp 車両用ロックアップクラッチの制御装置
JP2005207536A (ja) * 2004-01-23 2005-08-04 Koichi Hatamura メタルガスケット
JP2005308071A (ja) * 2004-04-20 2005-11-04 Aisin Seiki Co Ltd ロックアップクラッチの制御装置
JP4214405B2 (ja) * 2004-08-19 2009-01-28 株式会社デンソー 自動変速機の制御装置
JP2007024189A (ja) * 2005-07-15 2007-02-01 Jatco Ltd 自動変速機の掛け替え制御装置及び方法
JP4791168B2 (ja) * 2005-12-12 2011-10-12 川崎重工業株式会社 位置決めロボット
JP4344394B2 (ja) * 2007-06-18 2009-10-14 日産自動車株式会社 トルクコンバータのロックアップ制御装置
JP4455622B2 (ja) * 2007-07-19 2010-04-21 ジヤトコ株式会社 自動変速機の制御装置
JP4535115B2 (ja) * 2007-10-31 2010-09-01 トヨタ自動車株式会社 車両の制御装置
JP4696105B2 (ja) * 2007-11-30 2011-06-08 本田技研工業株式会社 自動二輪車のクラッチ制御装置
US8412426B2 (en) * 2009-03-06 2013-04-02 GM Global Technology Operations LLC Multi-mode hybrid transmission and method for performing a quasi-asynchronous shift in a hybrid transmission
US8589042B2 (en) * 2011-07-13 2013-11-19 GM Global Technology Operations LLC System and method for adaptive transmission clutch torque control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07293682A (ja) * 1994-04-22 1995-11-07 Mazda Motor Corp 自動変速機の変速ショック低減装置
JPH1019122A (ja) * 1996-07-03 1998-01-23 Nissan Motor Co Ltd 自動変速機のクリープ防止装置
JP2005042742A (ja) * 2003-07-22 2005-02-17 Toyota Motor Corp 車両の発進制御装置
JP2006250287A (ja) * 2005-03-11 2006-09-21 Toyota Motor Corp 自動変速機の制御装置
JP2008275000A (ja) * 2007-04-26 2008-11-13 Toyota Motor Corp 自動変速機の制御装置
JP2009074579A (ja) * 2007-09-19 2009-04-09 Toyota Motor Corp 車両の制御装置、制御方法およびその方法をコンピュータで実現されるプログラムならびにそのプログラムを記録した記録媒体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068656A1 (ja) * 2012-10-30 2014-05-08 トヨタ自動車株式会社 車両の制御装置
JP5907279B2 (ja) * 2012-10-30 2016-04-26 トヨタ自動車株式会社 車両の制御装置
US9707969B2 (en) 2012-10-30 2017-07-18 Toyota Jidosha Kabushiki Kaisha Vehicle control system
DE112012007065B4 (de) * 2012-10-30 2019-10-10 Toyota Jidosha Kabushiki Kaisha Fahrzeug-Steuerungssystem

Also Published As

Publication number Publication date
DE112011100173T5 (de) 2012-10-31
JPWO2011125612A1 (ja) 2013-07-08
CN102741591A (zh) 2012-10-17
JP5464270B2 (ja) 2014-04-09
US8725373B2 (en) 2014-05-13
CN102741591B (zh) 2015-04-29
US20110257856A1 (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5387481B2 (ja) 自動変速機の制御装置
JP5464270B2 (ja) 自動変速機の制御装置
US9200701B2 (en) Vehicle transmission apparatus
US7625313B2 (en) Shift control device and shift control method of vehicular automatic transmission
JP5157344B2 (ja) 自動変速機の制御装置
US8190339B2 (en) Shift control apparatus for automatic transmission
JP5983857B2 (ja) 変速機の制御装置および制御方法
JP5652420B2 (ja) 自動変速機の制御装置および制御方法
JP5729379B2 (ja) 自動変速機の制御装置
JP2010185526A (ja) 車両用自動変速機の制御装置
WO2012133666A1 (ja) 変速機の制御装置および変速機の制御方法
US8142320B2 (en) Shift control apparatus for automatic transmission
US20020142886A1 (en) Speed shift control apparatus of automatic transmission
WO2014156368A1 (ja) 車両制御装置、及びその制御方法
JP4967722B2 (ja) 車両の制御装置および制御方法
JP6237438B2 (ja) 車両のニュートラル制御装置
JP4604426B2 (ja) 自動変速機の制御装置
JP2018112229A (ja) 自動変速機の変速制御装置
JP4788082B2 (ja) 自動変速機の制御装置
JP2021099106A (ja) 車両用動力伝達装置の制御装置
JP2016141388A (ja) フライホイール回生システム、及びその制御方法
WO2017047479A1 (ja) 車両の変速制御装置
JP2014043910A (ja) 車両の変速制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007869.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765512

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509460

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120111001738

Country of ref document: DE

Ref document number: 112011100173

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765512

Country of ref document: EP

Kind code of ref document: A1