WO2011122669A1 - 電力供給システム、電力供給方法および電力供給システムの制御プログラム - Google Patents

電力供給システム、電力供給方法および電力供給システムの制御プログラム Download PDF

Info

Publication number
WO2011122669A1
WO2011122669A1 PCT/JP2011/058057 JP2011058057W WO2011122669A1 WO 2011122669 A1 WO2011122669 A1 WO 2011122669A1 JP 2011058057 W JP2011058057 W JP 2011058057W WO 2011122669 A1 WO2011122669 A1 WO 2011122669A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
charge
discharge control
time interval
data
Prior art date
Application number
PCT/JP2011/058057
Other languages
English (en)
French (fr)
Inventor
中島 武
千絵 杉垣
山田 健
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2012508365A priority Critical patent/JP5507669B2/ja
Publication of WO2011122669A1 publication Critical patent/WO2011122669A1/ja
Priority to US13/425,114 priority patent/US20120228935A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Definitions

  • the present invention relates to a power supply system, a power supply method, and a control program for the power supply system.
  • EDC economic load distribution control
  • the power company adjusts the amount of power supplied to the power system according to the load that changes from moment to moment, and performs a plurality of controls to stabilize the frequency.
  • These controls excluding EDC are particularly called frequency control, and by this frequency control, adjustment of the load fluctuation that cannot be adjusted by EDC is performed.
  • components with a fluctuation period of about 10 seconds or less can be naturally absorbed by the self-controllability of the power system itself.
  • corresponds by load frequency control (LFC: Load Frequency Control).
  • LFC Load Frequency Control
  • the LFC power plant adjusts the power generation output by a control signal from the central power supply command station of the power supplier, thereby performing frequency control.
  • the output of the power generation device using renewable energy may change rapidly depending on the weather.
  • Such an abrupt change in the output of the power generation apparatus has a significant adverse effect on the frequency stability of the interconnected power system.
  • This adverse effect becomes more prominent as more consumers have power generation devices that use renewable energy. For this reason, when the number of customers who have power generation devices that use renewable energy increases in the future, it is necessary to maintain the stability of the power system by suppressing the rapid change in the output of the power generation devices. Will arise.
  • a power generation system including a power generation device using renewable energy and a power storage device capable of storing the power generated by the power generation device Has been proposed.
  • Such a power generation system is disclosed in, for example, Japanese Patent Application Laid-Open No. 2001-5543.
  • JP-A-2001-5543 includes a solar cell, an inverter connected to the solar cell and connected to the power system, and a power storage device connected to a bus connecting the inverter and the solar cell.
  • a power generation system is disclosed.
  • the generated power data (detected power data) is acquired at regular time intervals, the target output power is calculated by the moving average method based on the past generated power data, and the target output power is obtained from the inverter.
  • the generated power data (detected power data) is acquired at regular time intervals
  • the target output power is calculated by the moving average method based on the past generated power data
  • the target output power is obtained from the inverter.
  • the power storage device is charged / discharged only when the generated power satisfies a predetermined condition (for example, when the fluctuation of the generated power becomes large to some extent). It is done.
  • the configuration in which the power storage device is charged and discharged when the generated power satisfies a predetermined condition has the following problems with respect to the length of the detection time interval of the generated power data. That is, when the detection time interval of the generated power data is long, it is difficult to appropriately detect fluctuations in the generated power, and as a result, it is difficult to charge and discharge at an appropriate timing. In this case, there is a problem in that fluctuations in output power to the power system cannot be sufficiently suppressed, and adverse effects on the frequency of the power system cannot be sufficiently suppressed.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to suppress an increase in the number of detected power data necessary for calculating a target output power, and An object of the present invention is to provide a power supply system, a power supply method, and a control program for the power supply system that can suppress the influence on the power system caused by fluctuations in power generated by the power generation device.
  • a power supply system of the present invention connects a power generation device that generates power using renewable energy, a power storage device including at least one storage battery, and the power generation device and a power system.
  • a detection unit that acquires detected power data that is a value of power flowing through the power line, and calculates target output power that is output to the power system based on the detected power data, and controls charging and discharging of the power storage device according to the target output power
  • a charge / discharge control unit that acquires the first detected power data from the detection unit at every predetermined first time interval and at every predetermined second time interval shorter than the first time interval.
  • the second detection power data is acquired from the detection unit, and it is determined whether to perform charge / discharge control of the power storage device based on the second detection power data. data Based charging and discharging control of the calculation to the power storage device target output power.
  • the power supply method of the present invention includes a step of generating power by a power generation device using renewable energy, a step of storing power in a power storage device, and a power value flowing through a power line connecting between the power generation device and a power system. Including a step of obtaining certain detected power data by the detection unit, a step of calculating target output power output to the power system based on the detected power data, and controlling charging / discharging of the power storage device according to the target output power.
  • the first detection power data is acquired by the detection unit every predetermined first time interval
  • the second detection power is acquired by the detection unit every predetermined second time interval shorter than the first time interval.
  • the data is acquired, and it is determined whether to perform charge / discharge control of the power storage device based on the second detected power data.
  • the target output is determined based on the first detected power data. Charging and discharging control of the power storage device to calculate the power.
  • the control program for the power supply system of the present invention functions as a charge / discharge control unit of a power supply system that causes a computer to output power from at least one of a power generation device that generates power using renewable energy and a power storage device to a power system.
  • the first time interval is determined by determining whether to perform charge / discharge control of the power storage device based on the second detected power data acquired at a second time interval shorter than the first time interval.
  • the variation in the detected power can be detected earlier than the case in which the variation in the detected power is detected based on the first detected power data acquired in (1).
  • the power storage device can be charged and discharged at an appropriate timing earlier, so that fluctuations in output power to the power system can be more effectively suppressed, and as a result, the frequency of the power system can be reduced. Can be more effectively suppressed.
  • the second detected power data is used by calculating the target output power based on the first detected power data acquired at the first time interval and performing charge / discharge control of the power storage device.
  • the second detected power data is used by calculating the target output power based on the first detected power data acquired at the first time interval and performing charge / discharge control of the power storage device.
  • FIG. 1 It is a block diagram which shows the structure of the electric power supply system by 1st Embodiment of this invention. It is a figure for demonstrating transition of the generated electric power at the time of the start of charging / discharging control of the electric power supply system by 1st Embodiment shown in FIG. 1, and target output electric power. It is a figure for demonstrating the relationship between the magnitude
  • FIG. 1st Embodiment shown in FIG. 2nd Embodiment of this invention It is a flowchart for demonstrating the control flow after charge / discharge control start of the electric power supply system by 1st Embodiment shown in FIG. It is a figure for demonstrating the sampling period in charging / discharging control. It is a figure for demonstrating transition of the generated electric power at the time of the start of charging / discharging control of the electric power supply system by a comparative example, and target output electric power. It is a graph which shows the simulation result which verifies the effect of the present invention. It is an enlarged view of the vicinity of the time A of the graph shown in FIG. It is an enlarged view of the vicinity of the time B of the graph shown in FIG. It is a block diagram which shows the structure of the electric power supply system by 2nd Embodiment of this invention.
  • the power supply system 1 is connected to a power generation device 2 and a power system 50 made of solar cells.
  • the power supply system 1 includes a power storage device 3 capable of storing the power generated by the power generation device 2, and an inverter that outputs the power generated by the power generation device 2 and the power stored by the power storage device 3 to the power system 50 side.
  • the power output unit 4 includes a charging / discharging control unit 5 that controls charging / discharging of the power storage device 3.
  • the power generation device 2 may be a power generation device that uses renewable energy, and for example, a wind power generation device or the like may be used.
  • a DC-DC converter 7 is connected in series to the DC side bus 6 that connects the power generator 2 and the power output unit 4.
  • the DC-DC converter 7 converts the direct current voltage of the power generated by the power generation device 2 into a constant direct current voltage (about 260 V in the first embodiment) and outputs it to the power output unit 4 side.
  • the DC-DC converter 7 has a so-called MPPT (Maximum Power Point Tracking) control function.
  • the MPPT control function is a function that automatically adjusts the operating voltage of the power generator 2 so that the power generated by the power generator 2 is maximized.
  • a diode (not shown) for preventing a current from flowing backward toward the power generation device 2 is provided.
  • the power storage device 3 includes a storage battery 31 connected in parallel to the power generation device 2 with respect to the DC bus 6 and a charge / discharge unit 32 that charges and discharges the storage battery 31.
  • a secondary battery for example, a Li-ion storage battery, a Ni-MH storage battery, etc.
  • the voltage of the storage battery 31 is about 48V.
  • the charging / discharging unit 32 includes a DC-DC converter 33, and the DC bus 6 and the storage battery 31 are connected via the DC-DC converter 33.
  • the DC-DC converter 33 steps down the voltage of the power supplied to the storage battery 31 from the voltage of the DC side bus 6 to a voltage suitable for charging the storage battery 31, so that the storage battery is connected from the DC side bus 6 side. Power is supplied to the 31 side.
  • the DC-DC converter 33 boosts the voltage of the electric power discharged to the DC side bus 6 side from the voltage of the storage battery 31 to the vicinity of the voltage of the DC side bus 6 at the time of discharging, so Electric power is discharged to the 6th side.
  • the charge / discharge control unit 5 includes a memory 5a and a CPU 5b.
  • the charge / discharge control unit 5 performs charge / discharge control of the storage battery 31 by controlling the DC-DC converter 33.
  • the charge / discharge control unit 5 sets a target output power to be output to the power system 50 in order to smooth the power value output to the power system 50 regardless of the generated power of the power generation device 2.
  • the charge / discharge control unit 5 controls the charge / discharge amount of the storage battery 31 so that the amount of power output to the power system 50 becomes the target output power according to the generated power of the power generation device 2.
  • the charging / discharging control unit 5 controls the DC-DC converter 33 so as to charge the storage battery 31 with excess power when the generated power of the power generation device 2 is larger than the target output power, and the power generation device When the generated power of 2 is smaller than the target output power, the DC-DC converter 33 is controlled so that the insufficient power is discharged from the storage battery 31.
  • the charge / discharge control unit 5 acquires the generated power data of the power generation device 2 from the generated power detection unit 8 provided on the output side of the DC-DC converter 7.
  • the generated power detection unit 8 detects the generated power of the power generation device 2 and transmits the generated power data to the charge / discharge control unit 5.
  • the charge / discharge control unit 5 acquires the generated power data at predetermined detection time intervals (for example, 30 seconds or less).
  • the charge / discharge control unit 5 acquires the generated power data of the power generator 2 at two different detection time intervals. Specifically, the detection time interval for acquiring the generated power data for calculating the target output power (referred to as “first time interval Ta”) and the generated power data for calculating the amount of change in the generated power are acquired. Detection time interval (referred to as “second time interval Tc”). As illustrated in FIG. 2, the charge / discharge control unit 5 acquires the generated power data of the power generation device 2 every 30 seconds as the first time interval Ta. As for the generated power data every 30 seconds, a predetermined period (in the first embodiment, 20 minutes of a sampling period described later) is sequentially stored in the memory 5a. In addition, the charge / discharge control unit 5 acquires the generated power data every 10 seconds as the second time interval Tc. As for the generated power data every 10 seconds, only the latest two data are stored in the memory 5a.
  • first time interval Ta the detection time interval for acquiring the generated power data for calculating the target output power
  • Detection time interval
  • the second time interval Tc is shorter than the first time interval Ta, and the length of the first time interval Ta is set to be an integer multiple of twice or more the second time interval Tc. Moreover, the detection timing of the generated power data at the first time interval Ta is set to overlap the detection timing of the generated power data at the second time interval Tc.
  • the second time interval Tc is determined to be an appropriate value in consideration of the fluctuation cycle of the generated power of the power generation device 2 and the like because the change in the generated power cannot be appropriately detected if it is too long or too short. There is a need.
  • the second time interval Tc is set so as to be shorter than the fluctuation cycle that can be handled by the load frequency control (LFC).
  • the charge / discharge control unit 5 acquires the output power of the power output unit 4, thereby recognizing the difference between the power actually output from the power output unit 4 to the power system 50 side and the target output power.
  • the charge / discharge of the charge / discharge unit 32 can be feedback controlled so that the output power from the power output unit 4 becomes the target output power.
  • the charge / discharge control unit 5 controls the charge / discharge of the storage battery 31 such that the sum of the generated power of the power generation device 2 and the charge / discharge amount of the storage battery 31 becomes the target output power.
  • the target output power is calculated using the moving average method based on the generated power data acquired at the first time interval Ta.
  • the moving average method is a calculation method in which, for example, the target output power at a certain point in time is an average value of the generated power of the power generation device 2 in the past period from that point.
  • a period for acquiring generated power data used for calculation of target output power is referred to as a sampling period.
  • the specific value of the sampling period is, for example, a period of about 10 minutes or more and about 30 minutes or less in the power system having the “load fluctuation magnitude-fluctuation period” characteristic as shown in FIG.
  • the sampling period is about 20 minutes.
  • the charge / discharge control unit 5 acquires the generated power data for calculating the target output power of the power generator 2 about every 30 seconds, the average of the 40 generated power data included in the period of the past 20 minutes The value is calculated as the target output power.
  • the charge / discharge control unit 5 does not always perform the charge / discharge control, but performs the charge / discharge control only when a specific condition is satisfied. That is, the charge / discharge control unit 5 does not perform charge / discharge control when the adverse effect on the power system 50 side is small even if the generated power of the power generator 2 is output to the power system 50 as it is, and only when the adverse effect is large. Charge / discharge control is performed.
  • the charge / discharge control unit 5 has a power generation power of the power generation device 2 equal to or higher than a predetermined power generation power (hereinafter referred to as “control start power generation power”), and a change amount of the power generation power of the power generation device 2 is When it is equal to or greater than a predetermined change amount (hereinafter referred to as “control start change amount”), charge / discharge control is performed.
  • the charge / discharge control unit 5 generates power from the power generation device 2 when the generated power of the power generation device 2 detected at each second time interval Tc changes from a state less than the control start generated power to a state equal to or higher than the control start generated power. Start detecting the amount of change in power.
  • the charge / discharge control unit 5 is configured such that the amount of change in the generated power of the power generation device 2 detected at each second time interval Tc is greater than or equal to the control start change amount in a state where the generated power of the power generation device 2 is greater than or equal to the control start generated power. When it becomes, charge / discharge control is started for the first time.
  • the charge / discharge control unit 5 performs charge / discharge control when the change amount of the generated power of the power generation device 2 does not exceed the control start change amount. Not performed. Further, when the generated power of the power generator 2 detected at each second time interval Tc is less than the control end generated power while the change in the generated power of the power generator 2 does not exceed the control start change, The charge / discharge control unit 5 stops detecting the amount of change in the generated power of the power generation device 2.
  • the control start generated power is, for example, generated power that is larger than the generated power in rainy weather, and a specific numerical value is, for example, 10% of the rated output of the power generator 2.
  • the control start change amount is, for example, a change amount larger than the maximum change amount for each detection time interval (second time interval Tc) in the daytime time zone when the weather is fine (clear sky with almost no clouds).
  • the numerical value is, for example, 4% of the generated power before the change.
  • the amount of change in generated power is the amount of change calculated based on the generated power data acquired at the second time interval Tc.
  • the amount of change in the generated power is obtained by calculating a difference between two consecutive generated power data detected at each second time interval Tc.
  • the charge / discharge control unit 5 acquires the generated power data at every first time interval Ta and also acquires the generated power data at every second time interval Tc.
  • FIG. 2 shows the generated power data acquired for each first time interval Ta and the generated power data acquired for each second time interval Tc as target calculation data and change calculation data, respectively.
  • the charge / discharge control unit 5 monitors the magnitude of the change calculation data and also monitors the amount of change in the generated power by taking the difference between the continuous change calculation data.
  • the charge / discharge control unit 5 controls whether to start the charge / discharge control at every second time interval Tc, that is, whether the generated power is equal to or greater than the control start generated power, and the amount of change in the generated power. It is determined whether or not the change amount is equal to or greater than the starting change amount.
  • the charge / discharge control unit 5 determines to start charge / discharge control at time t1. That is, the charge / discharge control unit 5 determines the start of charge / discharge control at a time point before the detection timing (time t2) of the first time interval Ta. After the charge / discharge control unit 5 determines the start of the charge / discharge control, the charge / discharge control is actually started at the acquisition timing of the first first time interval Ta (time t2 in this example).
  • the target output power at time t2 is calculated based on the target calculation data for the past 20 minutes before time t3. For this reason, the charge / discharge control unit 5 charges / discharges from the power storage device 3 by the difference between the target output power at time t2 and the generated power detected at time t2 so that the target output power is output from the power output unit 4. Discharge.
  • the charge / discharge power is constant from time t2 to the next target output power setting timing (time t4). In the case of FIG. 2, since the target output power at time t2 is larger than the generated power, discharge occurs.
  • the charge / discharge control unit 5 stops the charge / discharge control after elapse of a certain control period after starting the charge / discharge control.
  • the control period is a period equal to or longer than the sampling period determined based on at least the fluctuation period range corresponding to the load frequency control. If the control period is too short, the effect of suppressing the fluctuation cycle range corresponding to load frequency control will be diminished, and if it is too long, the frequency of charge / discharge will increase, so the battery life tends to be shortened, and it is necessary to set an appropriate time There is. In the first embodiment, the control period is set to 30 minutes.
  • the charge / discharge control unit 5 extends the control period. This extension is performed by newly setting a control period of 30 minutes when the third change in generated power is detected.
  • the third detection time extension start time
  • the control period is extended, the third detection time (extension start time) when a change in the generated power exceeding the control start change amount is not detected three times from the third detection time (extension start time). 30 minutes later, the charge / discharge control is stopped.
  • the control period is again extended by 30 minutes.
  • the charge / discharge control unit 5 stops the charge / discharge control even before the control period elapses when the generated power of the power generation device 2 becomes less than the control-completed generated power during the control period. It is configured.
  • the control end generated power is a value less than or equal to the control start generated power, and in the first embodiment, the control end generated power is set to a value half the control start generated power.
  • the control methods that can be handled differ depending on the fluctuation cycle, and the fluctuation cycle that can be handled by the load frequency control (LFC) is shown in a region D (region indicated by hatching).
  • the fluctuation period that can be handled by EDC is shown in region A.
  • Region B is a region that naturally absorbs the influence of load fluctuation and the like due to the self-controllability of power system 50 itself.
  • Region C is a region that can be handled by governor-free operation of the generators at each power plant.
  • the boundary line between the region D and the region A becomes the upper limit cycle T1 of the fluctuation cycle that can be handled by the load frequency control (LFC), and the boundary line between the region C and the region D can be handled by the load frequency control.
  • the upper limit cycle T1 and the lower limit cycle T2 are numerical values that change depending on the magnitude of the load fluctuation and the like, rather than a specific cycle. Furthermore, the time of the fluctuation period illustrated by the constructed power network also changes.
  • the fluctuation has a fluctuation cycle (fluctuation frequency) included in the range of the area D (area that can be handled by LFC) that cannot be handled by the EDC, the self-controllability of the power system 50 itself, and the governor-free operation. It is aimed to focus and suppress.
  • the charge / discharge control unit 5 detects the generated power of the power generation device 2 at every first time interval Ta (every 30 seconds) and every second time interval Tc (every 10 seconds). And in step S1, the charging / discharging control part 5 judges whether the generated electric power acquired for every 2nd time interval Tc became more than control start generated electric power. This determination is repeated when the generated power does not exceed the control start generated power. When the generated power becomes equal to or higher than the control start generated power, in step S2, the charge / discharge control unit 5 starts monitoring the amount of change in the generated power. That is, the charge / discharge control unit 5 calculates the difference between two consecutive generated powers acquired at each second time interval Tc as the amount of change in the generated power.
  • step S3 the charge / discharge control unit 5 determines whether or not there is a change in the generated power that is greater than or equal to the control start change amount. When there is no change in the generated power that is equal to or greater than the control start change amount, the process returns to step S2, and the charge / discharge control unit 5 continues to monitor the change in the generated power. In addition, when there is a change in generated power that is greater than or equal to the control start change amount, the charge / discharge control unit 5 starts charge / discharge control. Although not shown in FIG. 4, the charge / discharge control unit 5 confirms the absolute value of the generated power when, for example, monitoring the amount of change in the generated power in step S2, and the generated power indicates the control-completed generated power. If it falls, the process returns to step S1.
  • the charge / discharge control unit 5 After starting the charge / discharge control, the charge / discharge control unit 5 starts counting the elapsed time from the time when the charge / discharge control is started in step S11.
  • step S12 the charge / discharge control unit 5 calculates and sets the target output power by the moving average method using the 40 generated power data immediately before acquired at each first time interval Ta.
  • step S13 the charge / discharge control unit 5 calculates the difference between the target output power set in S12 and the generated power for each first time interval Ta detected first after the target output power is calculated.
  • step S ⁇ b> 14 the charging / discharging control unit 5 instructs the charging / discharging unit 32 to perform charging / discharging in excess or deficiency.
  • the charge / discharge control unit 5 compensates the target output power by the storage battery 31 so that the generated power of the power generator 2 is insufficient with respect to the target output power. Is instructed to discharge.
  • the charge / discharge control unit 5 charges the storage battery 31 by charging the remaining amount by subtracting the target output power from the generated power of the power generation device 2. To charge the battery.
  • step S15 the target output power (the generated power of the power generator 2 + the charge / discharge power of the storage battery 31) is output from the power output unit 4 to the power system 50 side.
  • the charge / discharge control part 5 is a generated electric power more than control start generated electric power, and the change in generated electric power more than predetermined change amount (control start change amount) is a control period (30 minutes). It is determined whether or not there has been a predetermined number of times (three times in the first embodiment). If there is a change in the generated power that is greater than or equal to the control start change amount three times, it is highly likely that the generated power will continue to change, and the charge / discharge control unit 5 counts the elapsed time in step S17. Is reset and the charge / discharge control period is extended. In this case, the process returns to step S11, and the charge / discharge control unit 5 newly starts counting elapsed time.
  • step S18 the charge / discharge control unit 5 determines that the generated power of the power generator 2 is equal to or greater than the predetermined generated power (control-end generated power). It is determined whether or not. And when it is more than control end generation electric power, in step S19, after charging / discharging control part 5 started charging / discharging control or extended charging / discharging control period, it is a control period (30 minutes). It is determined whether or not. When the control period has elapsed, the charge / discharge control unit 5 stops the charge / discharge control. If the control period has not elapsed, the process returns to step S12 and the charge / discharge control is continued.
  • step S18 If it is determined in step S18 that the generated power is less than the control-completed generated power, the charge / discharge control unit 5 stops the charge / discharge control even if the control period has not elapsed. Step S18 may be entered anywhere in the flow.
  • the power supply system of the first embodiment can obtain the following effects by the above configuration.
  • the charge / discharge control unit 5 determines whether to perform charge / discharge control of the power storage device 3 based on the generated power data acquired at the second time interval Tc shorter than the first time interval Ta. By comprising in this way, the fluctuation
  • the charge / discharge control unit 5 when performing the charge / discharge control, performs the charge / discharge control of the power storage device 3 by calculating the target output power based on the generated power data acquired at the first time interval Ta.
  • the number of generated power data for calculating the target output power is increased compared to the case of calculating the target output power using the generated power data acquired at the second time interval Tc. Therefore, it is possible to suppress an increase in the storage capacity of the memory 5a.
  • the charge / discharge control unit 5 calculates the amount of change in the generated power based on the generated power data acquired at the second time interval, and determines whether the amount of change in the generated power is greater than or equal to the control start change amount. By doing so, it is determined whether to perform charge / discharge control of the power storage device 3.
  • the amount of change in generated power By calculating the amount of change in generated power at such a short time interval, it is possible to detect fluctuations in generated power at a more appropriate timing. Therefore, it can be recognized at a more appropriate timing that smoothing needs to be performed due to large fluctuations in generated power, and charge / discharge control of power storage device 3 can be performed.
  • the charge / discharge control unit 5 starts the charge / discharge control of the power storage device 3 when the change amount of the generated power becomes equal to or greater than the control start change amount. If comprised in this way, the burden of the electrical storage apparatus 3 can be reduced by not performing charging / discharging control in the state where the fluctuation
  • the charge / discharge control unit 5 calculates the amount of change in generated power based on the two generated power data acquired at the second time interval stored in the memory 5a. And when the charge / discharge control part 5 performs charge / discharge control of the electrical storage apparatus 3, based on the generated electric power data for the sampling period acquired in the 1st time interval memorize
  • the target output power to be output is calculated by the moving average method.
  • the charge / discharge control part 5 becomes the target output electric power calculated based on the generated electric power data in the range of the sampling period set in the period more than the lower limit period of the fluctuation period which can respond by load frequency control (LFC). So as to control charging and discharging. If comprised in this way, the component of the fluctuation
  • LFC load frequency control
  • the first time interval is an integer multiple of the second time interval, and the generated power detection timing at the second time interval overlaps with the generated power detection timing at the first time interval.
  • FIG. 6 shows the FFT analysis result when the sampling period, which is the generation period of the generated power data, is 10 minutes, and the FFT analysis result when the sampling period is 20 minutes.
  • the sampling period when the sampling period is 10 minutes, the fluctuation in the range where the fluctuation period is less than 10 minutes is suppressed, while the fluctuation in the range where the fluctuation period is 10 minutes or more is not much suppressed.
  • the sampling period when the sampling period is 20 minutes, the fluctuation in the range where the fluctuation period is less than 20 minutes is suppressed, while the fluctuation in the range where the fluctuation period is 20 minutes or more is not much suppressed.
  • the sampling period is longer than the fluctuation cycle corresponding to the load frequency control, particularly in the vicinity of the second half of T1 to T2 ( It is preferable that the period is in the range from the vicinity of the long period) to T1 or more. For example, in the example of FIG.
  • FIG. 7 shows the output power when charge / discharge control of the power supply system according to the comparative example is performed with respect to the same generated power transition as in FIG.
  • FIG. 8 shows a simulation result in which charge / discharge control according to the first embodiment and charge / discharge control according to the comparative example are performed with respect to the actual generated power transition of the power generation device for one day.
  • 9 and 10 show an enlarged view of a part of FIG.
  • Example 1 determines the start of charge / discharge control based on the amount of change calculated based on the generated power data acquired at the second time interval Tc, and at the first time interval Ta.
  • the target output power is calculated based on the acquired generated power data.
  • the comparative example is configured to calculate the amount of change, determine the start of charge / discharge control, and calculate the target output power based on the generated power data acquired at the first time interval Ta.
  • the first time interval Ta in Example 1 was set to 30 seconds
  • the second time interval Tc was set to 5 seconds.
  • the amount of change is calculated based on the generated power data acquired at each first time interval Ta, the amount of change is detected compared to Example 1 (see FIG. 2).
  • the accuracy is low.
  • the charge / discharge control is started when the generated power fluctuation is large as in the first embodiment.
  • the change is detected only at time t2. Therefore, since the start of the charge / discharge control is determined based on the change, in the comparative example, the charge / discharge control is not started at the time t2, and the actual charge / discharge control is performed after the first time interval Ta from the time t2. Charge / discharge control is started at time t4.
  • Example 1 since the variation
  • a change in generated power can be detected more appropriately. For example, when the amount of change is monitored at a long time interval, fluctuations between two generation power detection times cannot be detected, so there is a large fluctuation after the detection time of the generated power and it returns to the next detection time. In such a case, a large fluctuation in the generated power cannot be detected, and charge / discharge control cannot be started at an appropriate timing. On the other hand, since the change in the generated power can be detected more accurately in the first embodiment, the charge / discharge control can be started at an appropriate timing.
  • the fluctuations in the actual generated power can be smoothed in both the configurations of Example 1 and Comparative Example.
  • smoothing is not performed in the comparative example, but there is a period in which smoothing is performed in the first embodiment. This is because the amount of change in the generated power is more appropriately detected in the first embodiment than in the comparative example, and therefore, in the comparative example having a large detection time interval, the charge / discharge control is not performed more than the predetermined control start change amount. This is because in the first embodiment having a short detection time interval, it was determined that the amount of change was greater than the control start change amount, and charge / discharge control was started. Further, as shown in a period B in FIG.
  • the smoothing is not performed in the comparative example, but there is a period in which the smoothing is performed in the first embodiment.
  • the first time interval in the first embodiment is one more than in the comparative example. This is because charge / discharge control can be started earlier by Ta. As a result of charge / discharge control being performed earlier by the first time interval Ta, the amount of change at the start of the control is smaller in Example 1 as shown in FIG. 10, and it can be seen that the smoothing effect is higher. .
  • the power supply system 200 includes a power generation device 2, a power storage device 3, a power output unit 4, a charge / discharge control unit 201, a DC-DC converter 7, and a generated power detection unit 8.
  • a distribution board 202 is provided on the AC bus 9 between the power output unit 4 and the power system 50.
  • Three loads 210, 220 and 230 are connected to the AC side bus 9 through the distribution board 202.
  • the load 210 is often used within the time (about 2 minutes to about 20 minutes) of the lower limit period T2 to the upper limit period T1 of the fluctuation period corresponding to the load frequency control (LFC), and the power consumption For example, an IH heater or the like.
  • the load 220 and the load 230 are loads such as lighting with low power consumption or loads that are not frequently switched on / off.
  • a sensor 203 that detects the operating status of the load 210 is provided between the distribution board 202 and the load 210.
  • the charge / discharge control unit 201 can determine whether the load 210 is used (ON) or not used (OFF) based on the output signal of the sensor 203.
  • the charge / discharge control unit 201 suppresses a change in power entering and exiting the power system 50 that is generated when the load 210 is switched on / off. The charging / discharging of the storage battery 31 is controlled.
  • the charge / discharge control unit 201 discharges from the storage battery 31 so as to suppress the decrease in the power sales or the increase in the purchased power.
  • the charge / discharge control unit 201 The storage battery 31 is charged so as to suppress a decrease or an increase in power sales.
  • the charge / discharge control unit 201 detects a change in the operating status of the load 210 connected to the AC bus 9 between the power generation device 2 and the power system 50 and changes the operating status of the load 210.
  • the charge / discharge control of the power storage device 3 is performed so as to suppress the change in the power entering and exiting the power system 50 caused by the power.
  • the power output to the power system 50 side is reduced by the amount of power consumed by the load 210. At least a part of the minute can be discharged from the power storage device 3.
  • Example 2 continues during the period in which the load 210 is on when the load 210 is switched on / off while performing the charge / discharge control of the first embodiment.
  • the storage battery 31 was discharged. That is, in Example 2, charging / discharging is performed so that the discharging power corresponding to the power consumption of the load 210 is added to the charging / discharging power of the storage battery 31 calculated in the first embodiment during the period in which the load 210 is on. It was.
  • the third embodiment calculates the first embodiment immediately after switching when the load 210 is switched on / off while performing the charge / discharge control of the first embodiment.
  • Charge / discharge is performed so that the discharge power (on time) or the charge power (off time) of the power consumption of the load 210 is added to the charge / discharge power of the storage battery 31 to be added, and then the power added immediately after switching is added for 5 minutes.
  • the storage battery 31 was controlled so as to gradually approach zero over time.
  • Example 4 only the control of the first embodiment was performed. 12 and 13 show the transition of the power output from the power output unit when the controls of Examples 2, 3, and 4 are performed. 14 and 15 show the transition of the power that flows backward to the power system 50 side when the control in Examples 2, 3 and 4 is performed (more precisely, the power passing between the load 210 and the load 220). Change).
  • the load 210 in the period A from when the load 210 is turned on to when the load 210 is turned off, the load 210 is added to the output power calculated based on the transition of the generated power as shown in the fourth embodiment.
  • the power is added to the power consumption. Therefore, in the period A of the second embodiment, charge / discharge control is performed from the storage battery 31 so as to add the discharge power corresponding to the power consumption of the load 210 compared to the fourth embodiment.
  • Example 2 and Example 4 have the same transition.
  • Example 3 was calculated based on the transition of generated power as shown in Example 4 at the start of period B in period B for 5 minutes after load 210 was turned on. Electric power obtained by adding the power consumption of the load 210 to the output power is output, and then gradually reduced to the same output as in the fourth embodiment.
  • the charging / discharging power of the storage battery 31 is calculated so as to add the discharging power corresponding to the power consumption of the load 210 when the load 210 is turned on. It gradually decreases to 0 over a period of minutes.
  • the consumption of the load 210 is calculated from the output power calculated based on the transition of the generated power as shown in the fourth embodiment at the start of the period C.
  • the electric power obtained by subtracting the electric power is output and then gradually increased to the same output as in the fourth embodiment.
  • the charge / discharge power of the storage battery 31 is calculated so as to subtract the discharge power for the power consumption of the load 210 when the load 210 is off, and the discharge power for this subtraction is 5 minutes. Gradually approaching zero.
  • the frequency fluctuation is suppressed as a whole compared to the fourth embodiment.
  • the second and third embodiments suppress frequency fluctuations at substantially the same level.
  • FIGS. 12 and 13 in the third embodiment, unlike the second embodiment, it is not necessary to always add the discharge power for the power consumed by the load 210, and in the period B, the load 210 In the period C, while adding the consumed electric power, control is performed so as to subtract the electric power consumed by the load 210. Therefore, the charge / discharge of the storage battery 31 is unlikely to tilt in one direction of charge or discharge. As a result, it can be seen that the depth of discharge of the storage battery 31 can be suppressed, which is advantageous for extending the life and capacity of the storage battery 31, and that the third embodiment is more effective than the second embodiment.
  • the power supply system 300 includes a power generation device 2, a power storage device 3, a power output unit 4, a charge / discharge control unit 301, a DC-DC converter 7, and a generated power detection unit 8.
  • a power generation device 2 As shown in FIG. 17, the power supply system 300 includes a power generation device 2, a power storage device 3, a power output unit 4, a charge / discharge control unit 301, a DC-DC converter 7, and a generated power detection unit 8.
  • Three loads 210, 220, and 230 are connected to the AC bus 9 between the power output unit 4 and the power system 50 via the distribution board 202.
  • a power meter 310 that measures the power sold from the power supply system 300 to the power system 50 and a power that measures the power purchased from the power system 50 are located closer to the power system 50 than the distribution board 202 of the AC bus 9.
  • Meter 320 is provided.
  • Each of the electric power meter 310 and the electric power meter 320 is provided with an electric power sensor 302 and an electric power sensor 303, and electric power data (power selling power data or electric power purchasing data) that enter and exit the electric power system 50 and the electric power supply system 300. ) Is detected.
  • the charge / discharge control unit 301 acquires purchased power data or sold power data from the power sensors 302 and 303 at predetermined detection time intervals (for example, 30 seconds or less).
  • the charging / discharging control unit 301 calculates the value of the power selling power ⁇ the power purchased (the power selling power and the power purchased are zero or more) as input / output power data.
  • the charge / discharge control unit 301 acquires input / output power data for each first time interval Ta and each second time interval Tc.
  • the charge / discharge control unit 301 calculates target output power based on past input / output power data, and charges / discharges the storage battery 31 so as to compensate for at least part of the difference between the actual input / output power and the target output power.
  • the charge / discharge control unit 301 controls the DC-DC converter 33 so as to charge the storage battery 31 with at least a part of the excess power,
  • the DC-DC converter 33 is controlled so that at least a part of the insufficient power is discharged from the storage battery 31.
  • the charge / discharge control unit 301 is configured such that the generated power of the power generation device 2 is greater than or equal to a predetermined generated power (control start generated power), and the change amount of the input / output power (the purchased power or the sold power) is a predetermined change amount. When it is (control start change amount) or more, charge / discharge control is started. Further, the amount of change in input / output power is calculated based on the input / output power data for each second time interval Tc. The target output power is calculated based on the input / output power data for each first time interval Ta.
  • the control start change amount of the third embodiment is set to a change amount larger than the maximum change amount for each detection time interval in the daytime time zone when the weather is fine (clear sky with almost no clouds), and further the second time interval Tc and the load amount. Set in consideration of the above.
  • the control start change amount is 2% of the rated output of the power generator 2.
  • the transition of input / output power substantially corresponds to the value obtained by subtracting the power consumption of the loads (loads 210, 220 and 230) from the generated power transition.
  • the transition of the generated power and the transition of the input / output power fluctuate in substantially the same way. Therefore, by performing charge / discharge control based on the input / output power, it is possible to suppress fluctuations in the input / output power and suppress the influence on the power system 50.
  • the charge / discharge control unit 301 is configured such that the generated power of the power generation device 2 is equal to or greater than the control start generated power, and the amount of change in the input / output power of the power sensors 302 and 303 is the control start change amount.
  • charging / discharging control of the electrical storage apparatus 3 is performed. If comprised in this way, when the generated electric power of the electric power generating apparatus 2 is smaller than control start generated electric power, or even if the generated electric power of the electric power generating apparatus 2 is larger than control start generated electric power, the change of the input / output electric power of the power sensors 302 and 303 is changed.
  • the number of times of charge / discharge of the power storage device 3 can be reduced. Thereby, the lifetime of the electrical storage apparatus 3 can be extended.
  • the power sensors 302 and 303 when the generated power of the power generation device 2 is smaller than the control start generated power and when the generated power of the power generation device 2 is larger than the control start generated power, the power sensors 302 and 303 When the amount of change in power is smaller than the amount of change in control start, it is found that even if charge / discharge control is not performed, the influence on the power system 50 due to fluctuations in the generated power by the power generator 2 is small. It was.
  • the control start generated power is set higher than in the first embodiment. Specifically, it is necessary to set according to the load amount. For example, when the consumption amount at the load changes around 200 W, the rated output 10 of the power generator 2 set in the first embodiment or the like is set. Set to add 200W to%.
  • a Li-ion battery or a Ni-MH battery is used as a storage battery.
  • the present invention is not limited to this, and other secondary batteries may be used. Good.
  • a capacitor may be used instead of the storage battery.
  • control start generated power is 10% of the rated output of the power generator 2 and the control start change amount is 5% of the generated power before the power generator 2 is changed.
  • control start change amount may be determined based on the rated output of the power generator.
  • the magnitude of the control start generated power is preferably larger than the magnitude of the control start change amount.
  • the present invention is not limited to this, and the charge / discharge control may be started after a predetermined standby time has elapsed since the amount of change in the generated power becomes equal to or greater than the control start change amount. Further, when the generated power returns to a value in the vicinity of the power generation amount before the change within the standby time, the charge / discharge control may not be started.
  • the start of charge / discharge control is determined based on the amount of change in generated power acquired at every second time interval, but the present invention is not limited to this.
  • the start of charge / discharge control may be determined based on the value of the generated power acquired every second time interval. For example, the start of charge / discharge control may be determined when the generated power acquired at every second time interval is larger than a predetermined generated power (threshold). The same applies to the stop of charge / discharge control. For example, the determination of stop of charge / discharge control may be made when the generated power acquired at every second time interval is smaller than a predetermined generated power (threshold). .
  • the present invention is not limited thereto, and the generated power is not limited thereto. It may be configured to constantly monitor the amount of change.
  • the present invention is not limited to this and is included in the sampling period (for example, 20 minutes).
  • the present invention can be applied to the case where target output power is calculated using a plurality of generated power data.
  • the sampling period may be temporarily shortened in the initial stage of calculating the target output power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

 この電力供給システムは、発電装置と、蓄電装置と、発電装置と電力系統との間を接続する電力線を流れる電力値である検出電力データを取得する検出部と、検出電力データに基づき電力系統に出力される目標出力電力を算出するとともに、目標出力電力に応じて蓄電装置の充放電を制御する充放電制御部とを備え、充放電制御部は、所定の第1時間間隔毎に検出部から第1検出電力データを取得するとともに、第1時間間隔よりも短い所定の第2時間間隔毎に検出部から第2検出電力データを取得し、第2検出電力データに基づいて蓄電装置の充放電制御を行うか否かの判断を行い、充放電制御を行う際には、第1検出電力データに基づいて目標出力電力を算出して蓄電装置の充放電制御を行う。

Description

電力供給システム、電力供給方法および電力供給システムの制御プログラム
 本発明は、電力供給システム、電力供給方法および電力供給システムの制御プログラムに関する。
 近年、変電所からの交流電力の供給を受ける各需要家(たとえば、住宅や工場など)に、風力や太陽光などの再生可能エネルギーを利用した発電装置(太陽電池など)が設けられるケースが増加している。このような発電装置は、変電所の配下に設けられる電力系統に接続され、発電装置により発電された電力は、需要家内の電力消費装置側に出力される。また、需要家内の電力消費装置により消費されずに余った電力は、電力系統に出力される。この需要家から電力系統に向かう電力の流れは、「逆潮流」と呼ばれ、需要家から電力系統に出力される電力は「逆潮流電力」と呼ばれる。
 ここで、電力会社等の電力供給者には、電力の安定供給の義務が課されており、逆潮流電力分も含めた電力系統全体における周波数や電圧を一定に保つ必要がある。たとえば、電力供給者は、変動周期の大きさに応じた複数の制御手法によって、電力系統全体の周波数を一定に保っている。具体的には、一般に20分程度以上の変動周期をもつような負荷成分については、最も経済的な発電電力の出力分担が可能なように経済負荷配分制御(EDC:Economic Dispatching Control)が行われている。このEDCは、1日の負荷変動予想に基づいた制御であり、時々刻々と変動する負荷の増減(20分程度より小さい変動周期の成分)に対する対応は困難である。そこで、電力会社は、時々刻々と変動する負荷に応じて電力系統への電力の供給量を調整し、周波数の安定化を行うための複数の制御を行っている。EDCを除いたこれらの制御は特に周波数制御と呼ばれており、この周波数制御によって、EDCで調整できない負荷変動分の調整を行っている。
 より詳細には、約10秒以下の変動周期の成分については、電力系統自体の自己制御性により自然に吸収することができる。また、約10秒~数分程度の変動周期の成分に対しては、各発電所の発電機のガバナフリー運転により対応が可能である。また、数分から20分程度までの変動周期の成分については、負荷周波数制御(LFC:Load Frequency Control)により対応している。この負荷周波数制御では、電力供給者の中央給電指令所からの制御信号によってLFC用発電所が発電出力を調整することにより、周波数制御を行っている。
 しかし、再生可能エネルギーを利用した発電装置の出力は、天候などに応じて急激に変化することがある。このような発電装置の出力の急激な変化は、連系している電力系統の周波数の安定度に大きな悪影響を与えてしまう。この悪影響は、再生可能エネルギーを利用した発電装置を有する需要家が増えるほど顕著になってくる。このため、今後、再生可能エネルギーを利用した発電装置を有する需要家がさらに増えてきた場合には、発電装置の出力の急激な変化を抑制することにより、電力系統の安定度を維持する必要が生じてくる。
 そこで、従来、このような発電装置の出力の急激な変化を抑制するために、再生可能エネルギーを利用した発電装置と、発電装置により発電された電力を蓄電可能な蓄電装置とを備えた発電システムが提案されている。このような発電システムは、たとえば、特開2001-5543号公報に開示されている。
 上記特開2001-5543号公報には、太陽電池と、太陽電池に接続されるとともに電力系統に接続されるインバータと、インバータと太陽電池とを接続する母線に接続された蓄電装置とを備えた発電システムが開示されている。この発電システムでは、一定の時間間隔毎に発電電力データ(検出電力データ)を取得するとともに、過去の発電電力データに基づいて移動平均法により目標出力電力を算出し、その目標出力電力がインバータから出力されるように太陽電池の発電電力の変動に伴って蓄電装置の充放電を行うことにより、インバータからの出力電力の変動を抑制している。これにより、電力系統側への出力電力の変動を抑制することが可能であるので、電力系統の周波数などへの悪影響を抑制することが可能である。
 しかしながら、上記特開2001-5543号公報では、発電装置の発電電力の変化に伴って蓄電装置の充放電がその都度行われるので、充放電の回数が多くなり、その結果、二次電池などからなる蓄電装置の寿命が短くなるという不都合がある。
 そこで、充放電の回数を減らすために、発電電力が所定の条件を満たしたとき(たとえば、発電電力の変動がある程度大きくなったとき)にはじめて蓄電装置の充放電を行う構成とすることが考えられる。
特開2001-5543号公報
 しかしながら、発電電力が所定の条件を満たしたときに蓄電装置の充放電を行う構成では、発電電力データの検出時間間隔の長さに関して、以下のような問題点がある。すなわち、発電電力データの検出時間間隔が長い場合には、発電電力の変動を適切に検出することが困難となり、その結果、適切なタイミングで充放電を行うことが困難となってしまう。この場合、電力系統への出力電力の変動を十分に抑制することができず、電力系統の周波数などへの悪影響を十分に抑制することができないという問題点がある。また、発電電力データの検出時間間隔を短くした場合、発電電力の変動を適切に検出することが可能である一方、所定の期間の発電電力データに基づいてたとえば移動平均法により目標出力電力を算出する場合には、算出に必要な発電電力のデータ数が多くなってしまう。そのため、発電電力データを記憶するための記憶容量が大きく、かつ高速演算が可能なCPUを有する制御装置が必要となり、システム価格が高額になってしまうなどの問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、目標出力電力の算出に必要な検出電力のデータ数が増大するのを抑制し、かつ、発電装置による発電電力の変動に起因する電力系統への影響を抑制することが可能な電力供給システム、電力供給方法および電力供給システムの制御プログラムを提供することである。
 上記目的を達成するために、本発明の電力供給システムは、再生可能エネルギーを利用して発電する発電装置と、少なくとも1つの蓄電池を含んだ蓄電装置と、発電装置と電力系統との間を接続する電力線を流れる電力値である検出電力データを取得する検出部と、検出電力データに基づき電力系統に出力される目標出力電力を算出するとともに、目標出力電力に応じて蓄電装置の充放電を制御する充放電制御部とを備え、充放電制御部は、所定の第1時間間隔毎に検出部から第1検出電力データを取得するとともに、第1時間間隔よりも短い所定の第2時間間隔毎に検出部から第2検出電力データを取得し、第2検出電力データに基づいて蓄電装置の充放電制御を行うか否かの判断を行い、充放電制御を行う際には、第1検出電力データに基づいて目標出力電力を算出して蓄電装置の充放電制御を行う。
 本発明の電力供給方法は、再生可能エネルギーを利用して発電装置により発電する工程と、蓄電装置に電力を蓄電する工程と、発電装置と電力系統との間を接続する電力線を流れる電力値である検出電力データを検出部により取得する工程と、検出電力データに基づき電力系統に出力される目標出力電力を算出するとともに、目標出力電力に応じて蓄電装置の充放電を制御する工程とを含み、充放電制御工程において、所定の第1時間間隔毎に検出部により第1検出電力データを取得するとともに、第1時間間隔よりも短い所定の第2時間間隔毎に検出部により第2検出電力データを取得し、第2検出電力データに基づいて蓄電装置の充放電制御を行うか否かの判断を行い、充放電制御を行う際には、第1検出電力データに基づいて目標出力電力を算出して蓄電装置の充放電制御を行う。
 本発明の電力供給システムの制御プログラムは、コンピュータを、再生可能エネルギーを利用して発電する発電装置および蓄電装置の少なくとも一方からの電力を電力系統に出力させる電力供給システムの充放電制御部として機能させるための制御プログラムであって、コンピュータに、発電装置と電力系統との間を接続する電力線を流れる電力値である検出電力データを検出する検出部から所定の第1時間間隔毎に第1検出電力データを取得させ、第1時間間隔よりも短い所定の第2時間間隔毎に第2検出電力データを取得させ、第2検出電力データに基づいて蓄電装置の充放電制御を行うか否かの判断を行わせ、充放電制御を行う際には、第1検出電力データに基づいて目標出力電力を算出させて蓄電装置の充放電制御を行わせる。
 本発明によれば、第1時間間隔よりも短い第2時間間隔で取得した第2検出電力データに基づいて蓄電装置の充放電制御を行うか否かの判断を行うことによって、第1時間間隔で取得した第1検出電力データに基づいて検出電力の変動を検出する場合よりも検出電力の変動をより早く検出することができる。これにより、より早い適切なタイミングで蓄電装置の充放電を行うことができるので、電力系統側への出力電力の変動をより効果的に抑制することができ、その結果、電力系統の周波数などへの悪影響をより効果的に抑制することができる。また、充放電制御を行う際に、第1時間間隔で取得した第1検出電力データに基づいて目標出力電力を算出して蓄電装置の充放電制御を行うことによって、第2検出電力データを用いて目標出力電力を算出する場合と比べて目標出力電力の算出に必要な検出電力データ数が増大してしまうことを抑制することができる。
本発明の第1実施形態による電力供給システムの構成を示すブロック図である。 図1に示した第1実施形態による電力供給システムの充放電制御の開始時における発電電力の推移および目標出力電力について説明するための図である。 電力系統に対する負荷変動の大きさと変動周期との関係を説明するための図である。 図1に示した第1実施形態による電力供給システムの充放電制御開始前の制御フローを説明するためのフローチャートである。 図1に示した第1実施形態による電力供給システムの充放電制御開始後の制御フローを説明するためのフローチャートである。 充放電制御におけるサンプリング期間について説明するための図である。 比較例による電力供給システムの充放電制御の開始時における発電電力の推移および目標出力電力について説明するための図である。 本発明の効果を検証するシミュレーション結果を示すグラフである。 図8に示したグラフの時刻Aの近傍の拡大図である。 図8に示したグラフの時刻Bの近傍の拡大図である。 本発明の第2実施形態による電力供給システムの構成を示すブロック図である。 本発明の第2実施形態による電力供給システム(実施例2)の充放電制御を説明するためのグラフである。 本発明の第2実施形態による電力供給システム(実施例3)の充放電制御を説明するためのグラフである。 本発明の第2実施形態による電力供給システム(実施例2)の充放電制御を行うことによる効果を説明するためのグラフである。 本発明の第2実施形態による電力供給システム(実施例3)の充放電制御を行うことによる効果を説明するためのグラフである。 本発明の第2実施形態による電力供給システム(実施例2および実施例3)の充放電制御を行うことによる効果を説明するためのグラフである。 本発明の第3実施形態による電力供給システムの構成を示すブロック図である。 本発明の第3実施形態による電力供給システムの充放電制御を説明するためのグラフである。
 以下、本発明の実施形態を図面に基づいて説明する。
(第1実施形態)
 まず、図1~図3を参照して、本発明の第1実施形態による電力供給システム1の構造を説明する。
 図1に示すように、電力供給システム1は、太陽電池からなる発電装置2および電力系統50に接続されている。電力供給システム1は、発電装置2により発電された電力を蓄電可能な蓄電装置3と、発電装置2により発電された電力および蓄電装置3により蓄電された電力を電力系統50側に出力するインバータを含む電力出力部4と、蓄電装置3の充放電を制御する充放電制御部5とを備えている。なお、発電装置2は、再生可能エネルギーを利用した発電装置であればよく、例えば風力発電装置等を用いてもよい。
 発電装置2と電力出力部4とを接続する直流側母線6には、DC-DCコンバータ7が直列的に接続されている。DC-DCコンバータ7は、発電装置2により発電された電力の直流電圧を一定の直流電圧(第1実施形態では、約260V)に変換して電力出力部4側に出力する。また、DC-DCコンバータ7は、いわゆるMPPT(Maximum Power Point Tracking)制御機能を有している。MPPT制御機能とは、発電装置2により発電された電力が最大となるように発電装置2の動作電圧を自動的に調整する機能である。発電装置2とDC-DCコンバータ7との間には、発電装置2に向かって電流が逆流するのを防止するためのダイオード(図示せず)が設けられている。
 また、蓄電装置3は、直流側母線6に対して発電装置2と並列的に接続された蓄電池31と、蓄電池31の充放電を行う充放電部32とを含んでいる。蓄電池31としては、自然放電が少なく、充放電効率の高い二次電池(たとえば、Li-ion蓄電池、Ni-MH蓄電池など)が用いられている。また、蓄電池31の電圧は約48Vである。
 充放電部32は、DC-DCコンバータ33を有しており、直流側母線6と蓄電池31とはDC-DCコンバータ33を介して接続されている。DC-DCコンバータ33は、充電時には、蓄電池31に供給する電力の電圧を、直流側母線6の電圧から蓄電池31を充電するのに適した電圧まで降圧させることにより、直流側母線6側から蓄電池31側に電力を供給する。また、DC-DCコンバータ33は、放電時には、直流側母線6側に放電させる電力の電圧を、蓄電池31の電圧から直流側母線6の電圧付近まで昇圧させることにより、蓄電池31側から直流側母線6側に電力を放電させる。
 充放電制御部5は、メモリ5aおよびCPU5bを備える。充放電制御部5は、DC-DCコンバータ33を制御することにより、蓄電池31の充放電制御を行う。充放電制御部5は、発電装置2の発電電力に関わらず電力系統50へ出力する電力値を平滑化するために、電力系統50へ出力する目標出力電力を設定する。充放電制御部5は、発電装置2の発電電力に応じて、電力系統50へ出力する電力量が目標出力電力となるように、蓄電池31の充放電量を制御する。すなわち、充放電制御部5は、発電装置2の発電電力が目標出力電力よりも大きい場合には、過剰分の電力を蓄電池31に充電するようにDC-DCコンバータ33を制御するとともに、発電装置2の発電電力が目標出力電力よりも小さい場合には、不足分の電力を蓄電池31から放電するようにDC-DCコンバータ33を制御する。
 また、充放電制御部5は、DC-DCコンバータ7の出力側に設けられた発電電力検出部8からの発電装置2の発電電力データを取得する。発電電力検出部8は、発電装置2の発電電力を検出して、発電電力データを充放電制御部5に送信する。充放電制御部5は、発電電力データを所定の検出時間間隔(たとえば、30秒以下)毎に取得する。
 ここでは、充放電制御部5は、2つの異なる検出時間間隔で発電装置2の発電電力データを取得している。具体的には、目標出力電力を算出するための発電電力データを取得する検出時間間隔(「第1時間間隔Ta」と呼ぶ)と、発電電力の変化量を算出するための発電電力データを取得する検出時間間隔(「第2時間間隔Tc」と呼ぶ)である。図2に示すように、充放電制御部5は、第1時間間隔Taとして、30秒毎に発電装置2の発電電力データを取得している。この30秒毎の発電電力データは、所定の期間(第1実施形態では、後述するサンプリング期間の20分)分がメモリ5aに逐次記憶される。また、充放電制御部5は、第2時間間隔Tcとして、10秒毎に発電電力データを取得している。この10秒毎の発電電力データは、最新の2つのデータのみがメモリ5aに記憶される。
 第2時間間隔Tcは、第1時間間隔Taよりも短いとともに、第1時間間隔Taの長さは第2時間間隔Tcの2倍以上の整数倍となるように設定されている。また、第1時間間隔Taによる発電電力データの検出タイミングは第2時間間隔Tcによる発電電力データの検出タイミングと重なるように設定されている。なお、第2時間間隔Tcは、長すぎても短すぎても発電電力の変化を適切に検出することができないので、発電装置2の発電電力の変動周期などを勘案して適正な値に定める必要がある。第1実施形態では、負荷周波数制御(LFC)により対応可能な変動周期よりも短くなるように第2時間間隔Tcを設定している。
 また、充放電制御部5は、電力出力部4の出力電力を取得することにより、実際に電力出力部4から電力系統50側に出力された電力と目標出力電力との差を認識することによって、電力出力部4からの出力電力が目標出力電力となるように充放電部32の充放電をフィードバック制御することが可能である。
 次に、充放電制御部5による蓄電池31の充放電制御について説明する。上述したように、充放電制御部5は、発電装置2の発電電力と蓄電池31の充放電量との合計が目標出力電力となるように蓄電池31の充放電を制御する。この目標出力電力は、第1時間間隔Taで取得された発電電力データに基づいて、移動平均法を用いて算出される。なお、移動平均法とは、たとえばある時点の目標出力電力を、その時点より過去の期間の発電装置2の発電電力の平均値とする算出方法である。以下、目標出力電力の算出に用いる発電電力データを取得するための期間をサンプリング期間と呼ぶ。サンプリング期間の具体的な値としては、たとえば、図3に示すような「負荷変動の大きさ-変動周期」特性を有する電力系統においては約10分以上約30分以下の期間であり、第1実施形態では、サンプリング期間を約20分としている。この場合、充放電制御部5は、約30秒置きに発電装置2の目標出力電力の算出用の発電電力データを取得するので、過去20分の期間に含まれる40個の発電電力データの平均値を目標出力電力として算出している。
 ここで、第1実施形態では、充放電制御部5は、充放電制御を常に行うわけではなく、特定の条件を満たした時にのみ充放電制御を行う。すなわち、充放電制御部5は、発電装置2の発電電力をそのまま電力系統50に出力しても電力系統50側への悪影響が小さい場合には充放電制御を行わず、悪影響が大きい場合にのみ充放電制御を行う。具体的には、充放電制御部5は、発電装置2の発電電力が所定の発電電力(以下、「制御開始発電電力」と呼ぶ)以上で、かつ、発電装置2の発電電力の変化量が所定の変化量(以下、「制御開始変化量」と呼ぶ)以上である場合に、充放電制御を行う。
 充放電制御部5は、第2時間間隔Tc毎に検出された発電装置2の発電電力が制御開始発電電力未満の状態から制御開始発電電力以上の状態になった場合に、発電装置2の発電電力の変化量の検出を開始する。そして、充放電制御部5は、発電装置2の発電電力が制御開始発電電力以上の状態で、第2時間間隔Tc毎に検出された発電装置2の発電電力の変化量が制御開始変化量以上になった時に、はじめて充放電制御を開始する。発電装置2の発電電力が制御開始発電電力以上になった場合にも、充放電制御部5は、発電装置2の発電電力の変化量が制御開始変化量を超えない場合には充放電制御は行わない。また、発電装置2の発電電力の変化量が制御開始変化量を超えないまま、第2時間間隔Tc毎に検出された発電装置2の発電電力が制御終了発電電力未満になった場合には、充放電制御部5は、発電装置2の発電電力の変化量の検出を停止する。
 制御開始発電電力は、たとえば雨天時の発電電力よりも多い発電電力であり、具体的な数値としては、たとえば、発電装置2の定格出力の10%である。また、制御開始変化量は、たとえば快晴時(雲が殆どない晴天)の昼間の時間帯における検出時間間隔毎(第2時間間隔Tc)の最大変化量よりも多い変化量であり、具体的な数値としては、たとえば、変化前の発電電力の4%である。また、発電電力の変化量とは、第2時間間隔Tcで取得した発電電力データに基づいて算出した変化量である。発電電力の変化量は、第2時間間隔Tc毎に検出される連続する2つの発電電力データの差分を算出することにより取得される。
 なお、上記の具体的な数値(変化前の発電電力の4%および定格出力の10%)については、検出時間間隔を変えた場合には、その検出時間間隔に応じて制御開始発電電力および制御開始変化量を設定する必要がある。
 ここで、図2を参照して、電力供給システム1の充放電制御の開始タイミングについて、発電電力推移の一例を示して説明する。
 充放電制御部5は、第1時間間隔Ta毎に発電電力データを取得するとともに、第2時間間隔Tc毎にも発電電力データを取得する。図2は、第1時間間隔Ta毎に取得した発電電力データおよび第2時間間隔Tc毎に取得した発電電力データをそれぞれ目標算出用データおよび変化算出用データとして示している。
 充放電制御部5は、変化算出用データの大きさを監視するとともに、連続する変化算出用データの差分をとることにより発電電力の変化量を監視する。そして、充放電制御部5は、第2時間間隔Tc毎に充放電制御を開始するか否か、すなわち発電電力が制御開始発電電力以上であるか否か、および、発電電力の変化量が制御開始変化量以上であるか否かを判断する。
 ここで、時刻t0~時刻t1において、発電電力の大きな低下(制御開始変化量以上の変化)があった場合、充放電制御部5は、時刻t1において充放電制御を開始すると判断する。すなわち、充放電制御部5は、第1時間間隔Taの検出タイミング(時刻t2)の前の時点で充放電制御の開始を判断する。充放電制御部5が充放電制御の開始を決定した後、最初の第1時間間隔Taの取得タイミング(この例では、時刻t2)において、実際に充放電制御が開始される。
 時刻t2において充放電制御を開始する場合、時刻t2における目標出力電力は時刻t3以前の過去20分の目標算出用データに基づいて算出される。そのため、充放電制御部5は、その目標出力電力を電力出力部4から出力するように、時刻t2の目標出力電力と時刻t2において検出した発電電力との差分の電力分だけ蓄電装置3から充放電を行う。この充放電電力は、時刻t2において算出された値が時刻t2から次の目標出力電力の設定タイミング(時刻t4)まで一定である。図2の場合、時刻t2における目標出力電力は発電電力よりも大きいので、放電となる。この後は、第1時間間隔Ta後の時刻t4において時刻t2において算出した目標出力電力に基づいて充放電が行われ、その後も第1時間間隔Ta毎に目標出力電力が設定されて充放電が行われる。
 また、充放電制御部5は、充放電制御を開始した後、一定の制御期間の経過後に充放電制御を停止する。制御期間は、少なくとも負荷周波数制御で対応する変動周期範囲を基に決定したサンプリング期間以上の期間である。制御期間は短すぎると負荷周波数制御で対応する変動周期範囲の抑制効果が薄くなり、長すぎると充放電回数の頻度が増えることから蓄電池寿命が短くなる傾向にあり、適切な時間を設定する必要がある。第1実施形態では、制御期間は30分間に設定されている。
 また、制御期間中に制御開始変化量以上の発電電力の変化を所定回数(第1実施形態では、3回)検出した場合には、充放電制御部5は、制御期間を延長する。この延長は、3回目の発電電力変化を検出した時点で、新たに30分の制御期間を設定することにより行われる。制御期間が延長された場合、3回目の検出時点(延長開始時点)から制御開始変化量以上の発電電力の変化を新たに3回検出しない場合には、3回目の検出時点(延長開始時点)から30分後に充放電制御が停止される。3回目の検出時点(延長開始時点)から制御開始変化量以上の発電電力の変化を新たに3回検出した場合には、制御期間が再度30分延長される。
 また、充放電制御部5は、制御期間中に、発電装置2の発電電力が制御終了発電電力未満になった場合には、制御期間の経過前であっても、充放電制御を停止するように構成されている。なお、制御終了発電電力は、制御開始発電電力以下の値であり、第1実施形態では、制御開始発電電力の半分の値としている。
 ここで、充放電制御部5による蓄電池31の充放電制御により変動抑制を主に行う変動周期範囲について説明する。
 図3に示すように、変動周期によって対応可能な制御方法が異なっており、負荷周波数制御(LFC)により対応可能な変動周期が領域D(ハッチングで示す領域)に示されている。また、EDCにより対応可能な変動周期は領域Aに示されている。なお、領域Bは、負荷変動などによる影響を電力系統50自体の自己制御性により自然に吸収する領域である。また、領域Cは、各発電所の発電機のガバナフリー運転により対応が可能な領域である。ここで、領域Dと領域Aとの境界線が負荷周波数制御(LFC)により対応可能な変動周期の上限周期T1となり、領域Cと領域Dとの境界線が負荷周波数制御により対応可能な変動周期の下限周期T2となる。この上限周期T1および下限周期T2は、図3より固有の周期ではなく、負荷変動の大きさなどによって変化する数値であることが分かる。さらに、構築された電力網によって図示されている変動周期の時間も変化する。第1実施形態では、EDC、電力系統50自体の自己制御性およびガバナフリー運転などによって対応できない領域D(LFCにより対応可能な領域)の範囲内に含まれる変動周期(変動周波数)を有する変動に着目し、抑制することを目的としている。
 次に、図4を参照して、電力供給システム1の充放電制御開始前の制御フローについて説明する。
 充放電制御部5は、発電装置2の発電電力を第1時間間隔Ta毎(30秒毎)および第2時間間隔Tc毎(10秒毎)に検出している。そして、ステップS1において、充放電制御部5は、第2時間間隔Tc毎に取得した発電電力が制御開始発電電力以上になったか否かを判断する。発電電力が制御開始発電電力以上にならなかった場合には、この判断が繰り返される。発電電力が制御開始発電電力以上になった場合には、ステップS2において、充放電制御部5は、発電電力の変化量の監視を開始する。すなわち、充放電制御部5は、第2時間間隔Tc毎に取得した連続する2つの発電電力の差分を発電電力の変化量として算出する。
 そして、ステップS3において、充放電制御部5は、制御開始変化量以上の発電電力の変化があったか否かを判断する。制御開始変化量以上の発電電力の変化がない場合には、ステップS2に戻り、充放電制御部5は発電電力の変化量の監視を継続する。また、制御開始変化量以上の発電電力の変化があった場合には、充放電制御部5は充放電制御を開始する。なお、図4には記載していないが、充放電制御部5は、たとえばステップS2において発電電力の変化量を監視する際に発電電力の絶対値を確認し、発電電力が制御終了発電電力を下回った場合にはステップS1に戻るようにもしている。
 次に、図5を参照して、充放電制御の開始後の制御フローについて詳細に説明する。
 充放電制御を開始した後、充放電制御部5は、ステップS11において、充放電制御を開始した時点からの経過時間のカウントを開始する。
 次に、ステップS12において、充放電制御部5は、第1時間間隔Ta毎に取得した直前の40個の発電電力データを用いて移動平均法により目標出力電力を算出して設定する。
 そして、ステップS13において、充放電制御部5は、S12において設定した目標出力電力と、目標出力電力の算出後の最初に検出される第1時間間隔Ta毎の発電電力との差を算出する。そして、ステップS14において、充放電制御部5は、充放電部32に対して過不足分の充放電を指示する。すなわち、目標出力電力が発電電力よりも大きい場合には、目標出力電力に対して発電装置2の発電電力では足りない分を蓄電池31により補うように、充放電制御部5はDC-DCコンバータ33に対して放電を指示する。また、目標出力電力が発電電力よりも小さい場合には、発電装置2の発電電力から目標出力電力を差し引いて余る分を蓄電池31に充電するように、充放電制御部5はDC-DCコンバータ33に対して充電を指示する。
 そして、ステップS15において、目標出力電力(発電装置2の発電電力+蓄電池31の充放電電力)が電力出力部4から電力系統50側に出力される。
 また、ステップS16において、充放電制御部5は、制御開始発電電力以上の発電電力であって、かつ、所定の変化量(制御開始変化量)以上の発電電力の変化が制御期間(30分)中に所定回数(第1実施形態では、3回)あったか否かを判断する。制御開始変化量以上の発電電力の変化が3回あった場合には、この後も発電電力の変化が継続する可能性が高いので、充放電制御部5は、ステップS17において、経過時間のカウントをリセットするとともに、充放電制御の期間を延長する。この場合、ステップS11に戻り、充放電制御部5は、新たに経過時間のカウントを開始する。
 また、制御開始変化量以上の発電電力の変化が3回未満の場合には、ステップS18において、充放電制御部5は、発電装置2の発電電力が所定の発電電力(制御終了発電電力)以上であるか否かを判断する。そして、制御終了発電電力以上である場合には、ステップS19において、充放電制御部5は、充放電制御を開始してから、または、充放電制御期間を延長してから制御期間(30分)を経過したか否かを判断する。制御期間が経過した場合には、充放電制御部5は充放電制御を停止する。制御期間が経過していない場合には、ステップS12に戻り、充放電制御が継続される。
 また、ステップS18において発電電力が制御終了発電電力未満であると判断された場合には、充放電制御部5は、制御期間が経過していない場合であっても、充放電制御を停止する。なお、ステップS18は、フローのどこに入れてもよい。
 第1実施形態の電力供給システムは、上記構成により以下の効果を得ることができる。
 充放電制御部5は、第1時間間隔Taよりも短い第2時間間隔Tcで取得した発電電力データに基づいて蓄電装置3の充放電制御を行うか否かの判断を行う。このように構成することによって、第1時間間隔Taで取得した発電電力データに基づいて発電電力の変動を検出する場合よりも発電電力の変動をより早く正確に検出することができる。これにより、より早い適切なタイミングで蓄電装置3の充放電を行うことができるので、電力系統50側への出力電力の変動をより効果的に抑制することができ、その結果、電力系統50の周波数などへの悪影響をより効果的に抑制することができる。
 また、充放電制御部5は、充放電制御を行う際に、第1時間間隔Taで取得した発電電力データに基づいて目標出力電力を算出して蓄電装置3の充放電制御を行う。このように構成することによって、第2時間間隔Tcで取得した発電電力データを用いて目標出力電力を算出する場合と比べて目標出力電力を算出するための発電電力データ数が多くなってしまうことを抑制することができるので、メモリ5aの記憶容量が大きくなるのを抑制することができる。
 また、充放電制御部5は、第2時間間隔で取得した発電電力データに基づいて発電電力の変化量を算出するとともに、発電電力の変化量が制御開始変化量以上であるか否かを判断することにより、蓄電装置3の充放電制御を行うか否かの判断を行う。このように短い時間間隔で発電電力の変化量を算出することにより、より適切なタイミングで発電電力の変動を検出することができる。そのため、発電電力の変動が大きいために平滑化を行う必要のある状態であることをより適切なタイミングで認識し、蓄電装置3の充放電制御を行うことができる。
 また、充放電制御部5は、発電電力の変化量が制御開始変化量以上になった場合に、蓄電装置3の充放電制御を開始する。このように構成すれば、発電電力の変動が小さい状態では充放電制御を行わないことにより蓄電装置3の負担を軽減することができ、発電電力の変動が大きくなった場合には適切なタイミングで充放電制御を開始することができる。
 また、充放電制御部5は、メモリ5aに記憶された第2時間間隔で取得した2つの発電電力データに基づいて、発電電力の変化量を算出する。そして、充放電制御部5は、蓄電装置3の充放電制御を行う際に、メモリ5aに記憶された第1時間間隔で取得したサンプリング期間分の発電電力データに基づいて、電力系統50側に出力する目標出力電力を移動平均法により算出する。このように構成すれば、目標出力電力を算出するための発電電力データを所定の個数分(サンプリング期間を第1時間間隔で割った値)だけメモリ5aに記憶することに加えて、発電電力の変化量を算出するための第2時間間隔毎に取得した2つの発電電力データをメモリ5aに記憶するだけで、発電電力の変動をより適切に検出して適切なタイミングで充放電制御を行うことができる。これにより、目標出力電力を算出するための発電電力の検出時間間隔を単純に短くする場合と異なり、メモリ5aに記憶させる発電電力データをそれほど増加させることなく、発電電力の変動をより適切に検出して正確なタイミングで充放電制御を行うことができる。
 また、充放電制御部5は、負荷周波数制御(LFC)により対応可能な変動周期の下限周期以上の期間に設定されたサンプリング期間の範囲内の発電電力データに基づいて算出した目標出力電力となるように充放電を制御する。このように構成すれば、特に、負荷周波数制御(LFC)により対応可能な変動周期の成分を減らすことができる。これにより、電力系統50に影響を与えることを抑制することができる。
 また、第1時間間隔が第2時間間隔の整数倍であり、第2時間間隔の発電電力検出タイミングが第1時間間隔の発電電力検出タイミングと重なるように構成されている。このように構成すれば、発電電力の検出頻度(第1時間間隔の検出頻度と第2時間間隔の検出頻度との和)を最小限にすることができるので、容易に発電電力データを取得して充放電制御を行うか否かの判断を行うことができる。
 次に、移動平均法のサンプリング期間について検討した。
 図6は、発電電力データの取得期間であるサンプリング期間を10分とした場合のFFT解析結果と、サンプリング期間を20分とした場合のFFT解析結果を示す。図6に示すように、サンプリング期間が10分の場合には、変動周期が10分未満の範囲における変動が抑制されている一方、変動周期が10分以上の範囲における変動があまり抑制されていない。また、サンプリング期間が20分の場合には、変動周期が20分未満の範囲における変動が抑制されている一方、変動周期が20分以上の範囲における変動はあまり抑制されていない。したがって、サンプリング期間の長さと、充放電制御により抑制できる変動周期との間には良好な相関関係があることがわかる。このため、サンプリング期間の設定により効果的に変動周期を抑制できる範囲が変わることがいえる。そこで、本システムで主に注目している負荷周波数制御により対応可能な変動周期の部分を抑制するためには、サンプリング期間を負荷周波数制御で対応する変動周期以上、特にT1~T2の後半付近(長周期付近)からT1以上の範囲の期間とすることが好ましい。たとえば、図3の例では20分以上のサンプリング期間とすることにより、負荷周波数制御で対応する変動周期の殆どを抑制することができる。ただし、サンプリング期間を長くすると、必要な蓄電池容量が大きくなる傾向があり、T1よりもあまり長くないサンプリング期間を選択することが好ましい。
 次に、図7~図10を参照して、電力供給システム1を用いることによる効果を検証したシミュレーション結果について詳細に説明する。
 図7は、図2と同じ発電電力推移に対して、比較例による電力供給システムの充放電制御を行った場合の出力電力を示す。図8は、発電装置の1日の実際の発電電力推移に対して、実施例1による充放電制御および比較例による充放電制御を行ったシミュレーション結果を示す。図9および図10は、図8の一部の拡大図を示す。
 なお、実施例1は、上記実施形態と同様に、充放電制御の開始を第2時間間隔Tcで取得した発電電力データに基づいて算出した変化量に基づいて判断し、第1時間間隔Taで取得した発電電力データに基づいて目標出力電力を算出する構成とした。また、比較例は、第1時間間隔Taで取得した発電電力データに基づいて、変化量の算出、充放電制御の開始の判断および目標出力電力の算出を行う構成とした。なお、このシミュレーションでは、実施例1の第1時間間隔Taを30秒とし、第2時間間隔Tcを5秒とした。
 まず、図2および図7を参照して、比較例による電力供給システムの充放電制御について詳細に説明する。
 図7に示すように、比較例では、第1時間間隔Ta毎に取得した発電電力データに基づいて変化量を算出しているため、実施例1(図2参照)に比べて変化量の検出精度が低くなっている。また、比較例では実施例1と同様に発電電力の変動が大きい場合に充放電制御を開始する構成であるが、比較例では時刻t2になってはじめてその変化を検出する。したがって、その変化に基づいて充放電制御の開始を決定するので、比較例では、時刻t2においては充放電制御は開始されず、実際の充放電制御は時刻t2から第1時間間隔Taだけ後の時刻t4に充放電制御が開始されることになる。このため、比較例では、大きな変化の検出時点(時刻t2)においてはその変化を平滑化するための充放電が行われないので、変化後の発電電力がそのまま電力系統に出力されることになる。したがって、図7に示すように、比較例では時刻t2において変動が残ったままの発電電力が電力系統に出力されてしまう。その一方、実施例1(図2参照)では、時刻t2の前の時点(時刻t1)において充放電制御の開始の判断ができるので、比較例の充放電制御の開始タイミング(時刻t4)よりも早いタイミング(時刻t2)において充放電制御を開始することができる。
 また、実施例1では、短い時間間隔(第2時間間隔Tc)で発電電力の変化量を監視しているので、長い時間間隔(第1時間間隔Ta)で変化量を監視するよりも実際の発電電力の変化をより適切に検出することができる。たとえば、長い時間間隔で変化量を監視した場合には、2つの発電電力検出時点の間における変動については検出できないので、発電電力の検出時点の後に大きな変動があり、次の検出時点までに戻ったような場合には、その発電電力の大きな変動を検出することができず、充放電制御を適切なタイミングで開始することができない。その一方、実施例1では発電電力の変化をより正確に検出することができるので、適切なタイミングで充放電制御を開始することができる。
 以上のような効果を、図8~図10に示すシミュレーション結果を参照して説明する。
 図8に示すように、実施例1および比較例のいずれの構成においても、実際の発電電力の変動を平滑化できている。ここで、図9の期間Aに示すように、比較例では平滑化を行っていないが実施例1では平滑化を行っている期間がある。これは、比較例よりも実施例1の方が発電電力の変化量をより適切に検出しているため、検出時間間隔の大きい比較例では所定の制御開始変化量以上にならず充放電制御を開始することができなかったが、検出時間間隔の短い実施例1では制御開始変化量以上であると判断して充放電制御を開始したためである。また、図10の期間Bに示すように、比較例では平滑化を行っていないが実施例1では平滑化を行っている期間がある。これは、図2および図7に示したように、実施例1では比較例よりも細かく発電電力の変化量を監視しているため、実施例1では、比較例よりも1つの第1時間間隔Ta分だけ早く充放電制御を開始することができるためである。第1時間間隔Ta分だけ早く充放電制御ができた結果、図10に示すように制御開始時の変化量は実施例1の方が小さくなっており、より平滑化の効果が高いことがわかる。
(第2実施形態)
 次に、図11を参照して、本発明の第2実施形態による電力供給システム200について説明する。この第2実施形態では、第1実施形態の充放電制御を行うことに加えて、負荷210の稼動状況に応じて蓄電池31の充放電を制御する例について説明する。
 図11に示すように、電力供給システム200は、発電装置2と、蓄電装置3と、電力出力部4と、充放電制御部201と、DC-DCコンバータ7と、発電電力検出部8とを備えている。また、電力出力部4と電力系統50との間の交流側母線9には分電盤202が設けられている。分電盤202を介して3つの負荷210、220および230が交流側母線9に接続されている。ここで、負荷210は、負荷周波数制御(LFC)で対応する変動周期の下限周期T2~上限周期T1の時間(約2分~約20分)内で使用されることが多く、かつ、消費電力の比較的大きい負荷であり、たとえば、IHヒータなどである。また、負荷220および負荷230は、消費電力の小さい照明等の負荷またはオン/オフを切り替えることの少ない負荷等である。
 第2実施形態では、分電盤202と負荷210との間に、負荷210の稼動状況を検知するセンサ203が設けられている。充放電制御部201は、負荷210が使用されている(オン)か使用されていない(オフ)かをセンサ203の出力信号に基づいて判断することが可能である。充放電制御部201は、第1実施形態の充放電制御を行うことに加えて、負荷210のオン/オフが切り替えられることに伴って生じる電力系統50に出入りする電力の変化を抑制するように蓄電池31の充放電を制御する。すなわち、負荷210がオフからオンになったと判断した場合には、負荷210の消費が加わる分、電力供給システム200から電力系統50に逆潮流する電力(売電力)が減るか、電力系統50から電力供給システム200に入る電力(買電力)が増加する。そのため、充放電制御部201は、売電力の減少分または買電力の増加分を抑制するように蓄電池31から放電する。同様に、負荷210がオンからオフになったと判断した場合には、負荷210の消費が減る分、売電力が増加するか、買電力が減少するので、充放電制御部201は、買電力の減少分または売電力の増加分を抑制するように蓄電池31の充電を行う。
 上記のように、充放電制御部201は、発電装置2と電力系統50との間の交流側母線9に接続された負荷210の稼動状況の変化を検出するとともに、負荷210の稼動状況の変化に伴って生じる電力系統50に出入りする電力の変化を抑制するように、蓄電装置3の充放電制御を行う。このように構成すれば、たとえば逆潮流が発生している状況下において負荷210が稼動することにより負荷210の消費電力の分だけ電力系統50側に出力される電力が減少する場合に、その減少分の少なくとも一部を蓄電装置3から放電することができる。また、負荷210が停止することにより負荷210の消費電力の分だけ電力系統50側に出力される電力が増加する場合には、その増加分の少なくとも一部を蓄電装置3に充電することができる。これにより、負荷210の稼動状況の変化に伴って電力系統50に出入りする電力が変動することを抑制することができるので、電力系統50に与える影響を抑制することができる。
 また、第2実施形態の構成においても、電力系統50に出入りする電力の変動をより適切に抑制することができるので、第1実施形態と同様の効果が得られる。
 次に、図12~図16を参照して、本発明の第2実施形態の効果を検証したシミュレーション結果について説明する。
 このシミュレーションでは、発電装置2の発電電力推移に対して、第2実施形態による制御を行った場合の電力系統50側に出力される電力推移を検証した。第2実施形態による制御として、実施例2は、第1実施形態の充放電制御を行いながら、負荷210のオン/オフが切り替えられた場合に、負荷210がオンである期間の間継続して蓄電池31の放電を行った。すなわち、実施例2は、第1実施形態で算出される蓄電池31の充放電電力に、負荷210がオンである期間の間負荷210の消費電力分の放電電力を加算するように充放電を行った。
 また、第2実施形態による制御として、実施例3は、第1実施形態の充放電制御を行いながら、負荷210のオン/オフが切り替えられた場合に、切替直後に、第1実施形態で算出される蓄電池31の充放電電力に負荷210の消費電力分の放電電力(オン時)または充電電力(オフ時)を加算するように充放電を行い、その後、切替直後に加算した電力を5分間かけて徐々に0へと近づけていくように蓄電池31を制御した。
 また、実施例4は、第1実施形態の制御のみを行った。図12および図13は、実施例2、3および4の制御を行った場合に電力出力部から出力される電力の推移を示す。図14および図15は、実施例2、3および4の制御を行った場合に電力系統50側に逆潮流される電力の推移(正確には、負荷210と負荷220との間を通過する電力の推移)を示す。
 図12に示すように、実施例2は、負荷210がオンされてからオフされるまでの期間Aにおいて、実施例4に示したような発電電力の推移を基に算出した出力電力に負荷210の消費電力分を加えた電力を出力している。したがって、実施例2の期間Aにおいては、蓄電池31からは実施例4に比べて負荷210の消費電力分の放電電力を加算するように充放電制御が行われている。期間A以外の期間は実施例2と実施例4とは同じ推移である。
 また、図13に示すように、実施例3は、負荷210がオンされてから5分間の期間Bにおいて、期間Bの開始時に実施例4に示したような発電電力の推移を基に算出した出力電力に負荷210の消費電力分を加えた電力を出力し、それから徐々に実施例4と同じ出力へと減らしている。この際、実施例3の期間Bにおいては、負荷210のオン時に負荷210の消費電力分の放電電力を加算するように蓄電池31の充放電電力が算出され、この加算した分の放電電力が5分かけて徐々に0へと減少していく。
 また、負荷210がオフされてから5分間の期間Cにおいて、実施例3は、期間Cの開始時に実施例4に示したような発電電力の推移を基に算出した出力電力から負荷210の消費電力分を差し引いた電力を出力し、それから徐々に実施例4と同じ出力へと増やしている。この際、実施例3の期間Cにおいては、負荷210のオフ時に負荷210の消費電力分の放電電力を差し引くように蓄電池31の充放電電力が算出され、この差し引いた分の放電電力が5分かけて徐々に0へと近づいていく。
 ここで、図14および図15に示すように、実施例4では、電力出力部4から出力された電力から負荷210での消費分が減少するために、負荷210のオン時およびオフ時において、電力系統50に出力される電力に急激な変動が生じている。その一方、実施例2および実施例3では、実施例4で大きな変動となっている期間A~Cにおいて、急激な変動なく滑らかに推移している。したがって、実施例2および3は、実施例4よりも電力系統50に与える影響が少ないことがわかる。
 また、図16に示すように、実施例2および3では、実施例4に比べて全体的に周波数変動を抑制している。また、実施例2および実施例3は略同じレベルで周波数変動を抑制している。ここで、図12および図13に示したように、実施例3は実施例2のように、負荷210で消費される電力分の放電電力を常時加算する必要がなく、期間Bでは負荷210で消費される電力分を加算する一方で期間Cでは負荷210で消費される電力分を減算するように制御するために、蓄電池31の充放電が充電あるいは放電の一方向に傾きにくい。その結果、蓄電池31の放電深度を抑制することができるなど、蓄電池31の長寿命化・低容量化に有利であり、実施例3は実施例2よりも有効であることがわかる。
(第3実施形態)
 次に、図17を参照して、本発明の第3実施形態による電力供給システム300について説明する。第1実施形態では、発電電力に基づいて充放電制御を行う例を示した。一方、この第3実施形態では、電力系統50に出入りする電力(買電力または売電力)に基づいて充放電制御を行う例について説明する。
 図17に示すように、電力供給システム300は、発電装置2と、蓄電装置3と、電力出力部4と、充放電制御部301と、DC-DCコンバータ7と、発電電力検出部8とを備えている。また、電力出力部4と電力系統50との間の交流側母線9には分電盤202を介して3つの負荷210、220および230が接続されている。
 また、交流側母線9の分電盤202よりも電力系統50側には電力供給システム300から電力系統50に売却する電力を計量する電力メータ310と、電力系統50から購入する電力を計量する電力メータ320とが設けられている。電力メータ310および電力メータ320のそれぞれには、電力センサ302および電力センサ303が設けられており、電力系統50と電力供給システム300とを出入りする電力のデータ(売電電力データまたは買電電力データ)を検出する。
 充放電制御部301は、電力センサ302および303から買電電力データまたは売電電力データを所定の検出時間間隔毎(たとえば、30秒以下)に取得する。充放電制御部301は、売電電力-買電電力(売電電力および買電電力はゼロ以上の値)の値を出入電力データとして算出する。第3実施形態においても第1実施形態と同様に、充放電制御部301は、出入電力データを第1時間間隔Ta毎および第2時間間隔Tc毎に取得する。また、充放電制御部301は、過去の出入電力データに基づいて目標出力電力を算出するとともに、実際の出入電力と目標出力電力との差の少なくとも一部を補償するように蓄電池31の充放電を行う。すなわち、充放電制御部301は、実際の出入電力が目標出力電力よりも大きい場合には、過剰分の電力の少なくとも一部を蓄電池31に充電するようにDC-DCコンバータ33を制御するとともに、実際の出入電力が目標出力電力よりも小さい場合には、不足分の電力の少なくとも一部を蓄電池31から放電するようにDC-DCコンバータ33を制御するように構成されている。
 また、充放電制御部301は、発電装置2の発電電力が所定の発電電力(制御開始発電電力)以上で、かつ、出入電力(買電電力または売電電力)の変化量が所定の変化量(制御開始変化量)以上である場合に、充放電制御を開始するように構成されている。また、出入電力の変化量は、第2時間間隔Tc毎の出入電力データに基づいて算出する。また、目標出力電力は、第1時間間隔Ta毎の出入電力データに基づいて算出する。第3実施形態の制御開始変化量は、快晴時(雲が殆どない晴天)の昼間の時間帯における検出時間間隔毎の最大変化量よりも多い変化量とし、さらに第2時間間隔Tc、負荷量なども考慮して設定する。特に第3実施形態では、出入電力(=売電電力-買電電力)が正負の値をとるために、単純に第1実施形態などで示した発電電力の変化量と変化前の発電電力とを比較する方法ではなく、たとえば発電装置2の定格出力、負荷の定格消費電力などを加味して、変化量の絶対値で制御する方法、あるいは、出入電力(=売電電力-買電電力)に負荷量に応じて適切な電力を加算する方法が望ましい。第3実施形態では、制御開始変化量は発電装置2の定格出力の2%とした。
 なお、サンプリング期間、目標出力電力の算出方法、待機時間などの充放電制御に関する設定は、第1実施形態と同様である。
 図18は、ある1日の発電装置2の発電電力の推移と、同じ日の出入電力(=売電電力-買電電力)の推移とを示す。出入電力の推移は、発電電力推移から負荷(負荷210、220および230)の消費電力を差し引いたものにほぼ相当する。図18に示すように、一般家庭においては1日を通して負荷の消費電力の急激な変動の頻度は高くないので、発電電力の推移と出入電力の推移とは略同じように変動している。したがって、出入電力に基づいて充放電制御を行うことにより、出入電力の変動を抑制し、電力系統50に影響を抑制することが可能である。
 第3実施形態では、上記のように、充放電制御部301は、発電装置2の発電電力が制御開始発電電力以上で、かつ、電力センサ302および303の出入電力の変化量が制御開始変化量以上である場合に、蓄電装置3の充放電制御を行う。このように構成すれば、発電装置2の発電電力が制御開始発電電力よりも小さい場合や、発電装置2の発電電力が制御開始発電電力よりも大きくても電力センサ302および303の出入電力の変化量が制御開始変化量よりも小さい場合には充放電制御を行わないので、蓄電装置3の充放電回数を減らすことができる。これにより、蓄電装置3の長寿命化を図ることができる。また、第1実施形態と同様に、発電装置2の発電電力が制御開始発電電力より小さい場合、および、発電装置2の発電電力が制御開始発電電力よりも大きくても電力センサ302および303の出入電力の変化量が制御開始変化量よりも小さい場合には、充放電制御を行わない場合であっても、発電装置2による発電電力の変動に起因する電力系統50への影響が小さいことを見出した。したがって、第3実施形態では、発電装置2による発電電力の変動に起因する電力系統50への影響を抑制しながら、蓄電装置3の長寿命化を図ることができる。なお、制御開始発電電力は第1実施形態などに比べて高く設定することが望ましい。具体的には負荷量に応じて設定する必要があるが、たとえば負荷での消費量が200W前後で推移している場合には、第1実施形態などで設定した発電装置2の定格出力の10%に200Wを加算するように設定する。
 また、第3実施形態の構成においても、電力系統50に出入りする電力の変動をより適切に抑制することができるので、第1実施形態と同様の効果が得られる。
 なお、今回開示された実施形態および実施例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 また、第1~第3実施形態および実施例では、蓄電池としてLi-ion電池やNi-MH電池を用いる例を示したが、本発明はこれに限らず、他の二次電池を用いてもよい。また、本発明の「蓄電装置」の一例として、蓄電池の代わりにキャパシタを用いてもよい。
 また、第1~第2実施形態および実施例では、制御開始発電電力を発電装置2の定格出力の10%とし、制御開始変化量を発電装置2の変化前の発電電力の5%とした例について説明したが、本発明はこれに限らず、上記以外の数値を用いてもよい。たとえば、制御開始変化量は、発電装置の定格出力を基準にして決めてもよい。ただし、制御開始発電電力の大きさは、制御開始変化量の大きさよりも大きいことが望ましい。
 また、第1~第3実施形態および実施例では、発電電力の変化量が制御開始変化量以上になった場合に、その次の目標算出タイミングから充放電制御を開始する例について説明したが、本発明はこれに限らず、発電電力の変化量が制御開始変化量以上になってから所定の待機時間を経過した後に充放電制御を開始してもよい。また、その待機時間内に発電電力が変化前の発電量の近傍の値に戻った場合には充放電制御を開始しなくてもよい。
 また、第1~第3実施形態および実施例では、第2時間間隔毎に取得した発電電力の変化量に基づいて充放電制御を開始するか否かを判断した例について説明し、また、所定の制御期間を用いて充放電制御を停止する例について説明したが、本発明はこれに限らず、第2時間間隔毎に取得した発電電力の変化量に基づいて充放電制御を停止するか否かを判断してもよい。
 また、第1~第3実施形態および実施例では、第2時間間隔毎に取得した発電電力の変化量に基づいて充放電制御の開始の判断を行ったが、本発明はこれに限らず、第2時間間隔毎に取得した発電電力の値そのものに基づいて充放電制御の開始の判断を行ってもよい。たとえば、第2時間間隔毎に取得した発電電力が所定の発電電力(閾値)よりも大きい場合に充放電制御の開始の判断を行ってもよい。また、充放電制御の停止に関しても同様であり、たとえば、第2時間間隔毎に取得した発電電力が所定の発電電力(閾値)よりも小さい場合に充放電制御の停止の判断を行ってもよい。
 また、第1~第3実施形態および実施例では、発電電力が制御開始発電電力以上になってはじめて発電電力の変化量を監視する例について説明したが、本発明はこれに限らず、発電電力の変化量を常時監視するように構成してもよい。
 また、第1~第3実施形態および実施例では、移動平均法により目標出力電力を算出する例について説明したが、本発明はこれに限らず、サンプリング期間(たとえば、20分)内に含まれる複数の発電電力データを用いて目標出力電力を算出する場合に本発明を適用することが可能である。たとえば、目標出力電力の算出の初期において、一時的にサンプリング期間を短くしてもよい。
 また、第2実施形態では、負荷210のオン/オフを検出するセンサ203の出力信号に基づいて蓄電池31の充放電を制御する例について説明したが、本発明はこれに限らず、負荷210の消費電力を検出する電力センサの出力信号に基づいて蓄電池31の充放電を制御してもよい。

Claims (5)

  1.  再生可能エネルギーを利用して発電する発電装置と、
     少なくとも1つの蓄電池を含んだ蓄電装置と、
     前記発電装置と電力系統との間を接続する電力線を流れる電力値である検出電力データを取得する検出部と、
     前記検出電力データに基づき前記電力系統に出力される目標出力電力を算出するとともに、前記目標出力電力に応じて前記蓄電装置の充放電を制御する充放電制御部とを備え、
     前記充放電制御部は、所定の第1時間間隔毎に前記検出部から第1検出電力データを取得するとともに、前記第1時間間隔よりも短い所定の第2時間間隔毎に前記検出部から第2検出電力データを取得し、前記第2検出電力データに基づいて前記蓄電装置の充放電制御を行うか否かの判断を行い、充放電制御を行う際には、前記第1検出電力データに基づいて前記目標出力電力を算出して前記蓄電装置の充放電制御を行う、電力供給システム。
  2.  前記充放電制御部は、前記第2検出電力データに基づいて検出電力の変化量を算出するとともに、算出した前記検出電力の変化量に基づいて、前記蓄電装置の充放電制御を行うか否かの判断を行う、請求項1に記載の電力供給システム。
  3.  前記充放電制御部は、前記検出電力の変化量が所定の変化量以上になった場合に、前記蓄電装置の充放電制御を開始する、請求項2に記載の電力供給システム。
  4.  再生可能エネルギーを利用して発電装置により発電する工程と、
     蓄電装置に電力を蓄電する工程と、
     前記発電装置と電力系統との間を接続する電力線を流れる電力値である検出電力データを検出部により取得する工程と、
     前記検出電力データに基づき前記電力系統に出力される目標出力電力を算出するとともに、前記目標出力電力に応じて前記蓄電装置の充放電を制御する工程とを含み、
     前記充放電制御工程において、
     所定の第1時間間隔毎に前記検出部により第1検出電力データを取得するとともに、前記第1時間間隔よりも短い所定の第2時間間隔毎に前記検出部により第2検出電力データを取得し、前記第2検出電力データに基づいて前記蓄電装置の充放電制御を行うか否かの判断を行い、充放電制御を行う際には、前記第1検出電力データに基づいて前記目標出力電力を算出して前記蓄電装置の充放電制御を行う、電力供給方法。
  5.  コンピュータを、再生可能エネルギーを利用して発電する発電装置および蓄電装置の少なくとも一方からの電力を電力系統に出力させる電力供給システムの充放電制御部として機能させるための制御プログラムであって、
     前記コンピュータに、前記発電装置と前記電力系統との間を接続する電力線を流れる電力値である検出電力データを検出する検出部から所定の第1時間間隔毎に第1検出電力データを取得させ、前記第1時間間隔よりも短い所定の第2時間間隔毎に第2検出電力データを取得させ、前記第2検出電力データに基づいて前記蓄電装置の充放電制御を行うか否かの判断を行わせ、充放電制御を行う際には、前記第1検出電力データに基づいて目標出力電力を算出させて前記蓄電装置の充放電制御を行わせる、電力供給システムの制御プログラム。
PCT/JP2011/058057 2010-03-30 2011-03-30 電力供給システム、電力供給方法および電力供給システムの制御プログラム WO2011122669A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012508365A JP5507669B2 (ja) 2010-03-30 2011-03-30 電力供給システム、電力供給方法および電力供給システムの制御プログラム
US13/425,114 US20120228935A1 (en) 2010-03-30 2012-03-20 Electric power generation system, method of controlling a battery and computer-readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010079374 2010-03-30
JP2010-079374 2010-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/425,114 Continuation US20120228935A1 (en) 2010-03-30 2012-03-20 Electric power generation system, method of controlling a battery and computer-readable recording medium

Publications (1)

Publication Number Publication Date
WO2011122669A1 true WO2011122669A1 (ja) 2011-10-06

Family

ID=44712363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058057 WO2011122669A1 (ja) 2010-03-30 2011-03-30 電力供給システム、電力供給方法および電力供給システムの制御プログラム

Country Status (3)

Country Link
US (1) US20120228935A1 (ja)
JP (1) JP5507669B2 (ja)
WO (1) WO2011122669A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105580235A (zh) * 2013-11-19 2016-05-11 中国电力株式会社 蓄电池的控制装置、控制方法、控制程序以及蓄电***
JP2018124716A (ja) * 2017-01-31 2018-08-09 ニチコン株式会社 電力変換装置および該電力変換装置を備えた電力供給システム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5967516B2 (ja) 2011-11-22 2016-08-10 パナソニックIpマネジメント株式会社 電力管理装置、電力管理プログラム、及び、電力分配システム
KR20130138611A (ko) * 2012-06-11 2013-12-19 삼성에스디아이 주식회사 에너지 저장 시스템
JP6043576B2 (ja) * 2012-10-10 2016-12-14 株式会社日立製作所 蓄電池システム及び発電プラント制御システム
US9337657B2 (en) 2012-11-28 2016-05-10 General Electric Company Power unit control system
WO2015187070A1 (en) * 2014-06-02 2015-12-10 Ferroamp Elektronik Ab Smart battery module
JP6204614B2 (ja) * 2014-11-27 2017-09-27 京セラ株式会社 電力制御装置、電力制御方法及び電力制御システム
US11309714B2 (en) * 2016-11-02 2022-04-19 Tesla, Inc. Micro-batteries for energy generation systems
KR101959627B1 (ko) * 2017-06-12 2019-03-18 에스케이 주식회사 실제 반도체 제조물을 복제한 가상 반도체 제조물 제공 방법 및 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241458A (ja) * 1999-02-25 2000-09-08 T & D:Kk 電流測定装置および電流測定方法
JP2001005543A (ja) * 1999-06-17 2001-01-12 Kansai Electric Power Co Inc:The 直流電力出力装置および太陽光発電システム
JP2008295208A (ja) * 2007-05-24 2008-12-04 Kawasaki Heavy Ind Ltd 電力平滑化方法、電力平滑化装置および同装置の設計方法
JP2010022122A (ja) * 2008-07-10 2010-01-28 Meidensha Corp 分散型電源の安定化制御方式

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3758359B2 (ja) * 1998-04-14 2006-03-22 石川島播磨重工業株式会社 風力発電出力安定化方法及び装置
JP3905692B2 (ja) * 2000-07-10 2007-04-18 三菱重工業株式会社 風力発電制御方法
JP4796974B2 (ja) * 2007-01-26 2011-10-19 株式会社日立産機システム 風力発電装置と蓄電装置のハイブリッドシステム,風力発電システム,電力制御装置
US20090055030A1 (en) * 2007-08-21 2009-02-26 Ingeteam, S.A. Control of active power reserve in a wind-farm
US7991511B2 (en) * 2008-05-14 2011-08-02 National Semiconductor Corporation Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
US8554519B2 (en) * 2010-02-25 2013-10-08 International Business Machines Corporation Method for designing the layout of turbines in a windfarm
US8165811B2 (en) * 2011-07-25 2012-04-24 Clean Power Research, L.L.C. Computer-implemented system and method for determining point-to-point correlation of sky clearness for photovoltaic power generation fleet output estimation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241458A (ja) * 1999-02-25 2000-09-08 T & D:Kk 電流測定装置および電流測定方法
JP2001005543A (ja) * 1999-06-17 2001-01-12 Kansai Electric Power Co Inc:The 直流電力出力装置および太陽光発電システム
JP2008295208A (ja) * 2007-05-24 2008-12-04 Kawasaki Heavy Ind Ltd 電力平滑化方法、電力平滑化装置および同装置の設計方法
JP2010022122A (ja) * 2008-07-10 2010-01-28 Meidensha Corp 分散型電源の安定化制御方式

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105580235A (zh) * 2013-11-19 2016-05-11 中国电力株式会社 蓄电池的控制装置、控制方法、控制程序以及蓄电***
JP2018124716A (ja) * 2017-01-31 2018-08-09 ニチコン株式会社 電力変換装置および該電力変換装置を備えた電力供給システム

Also Published As

Publication number Publication date
JP5507669B2 (ja) 2014-05-28
JPWO2011122669A1 (ja) 2013-07-08
US20120228935A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP5507669B2 (ja) 電力供給システム、電力供給方法および電力供給システムの制御プログラム
JP5479182B2 (ja) 発電システムおよび充放電制御装置
JP5383902B2 (ja) 電力供給システム、電力供給方法および電力供給システムの制御プログラム
JP5520365B2 (ja) 系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム
WO2011040470A1 (ja) 充放電制御装置および発電システム
US9148020B2 (en) Method of controlling a battery, computer readable recording medium, electric power generation system and device controlling a battery
WO2011074661A1 (ja) 充放電システム
WO2011078151A1 (ja) 電力供給方法、コンピュータ読み取り可能な記録媒体および発電システム
WO2011118766A1 (ja) 電力供給システム、集中管理装置、系統安定化システム、集中管理装置の制御方法および集中管理装置の制御プログラム
WO2017159486A1 (ja) 力率改善装置、及びそれを備えた蓄電装置
KR101566296B1 (ko) 전력계통에서의 주파수 제어 시스템
JP2014033539A (ja) 電力制御装置、方法、プログラム
JP5475019B2 (ja) 電力供給方法、コンピュータ読み取り可能な記録媒体および発電システム
WO2011078215A1 (ja) 電力供給方法、コンピュータ読み取り可能な記録媒体および発電システム
JP2016167913A (ja) 電力供給システム及び電力供給方法
JP5479499B2 (ja) 充放電システムおよび充放電制御装置
JP5355721B2 (ja) 充放電システムおよび充放電制御装置
KR20190048181A (ko) 빌딩 분산전원 시스템의 에너지 안정화 관리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762893

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508365

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762893

Country of ref document: EP

Kind code of ref document: A1