WO2011111489A1 - アクセルペダル装置 - Google Patents

アクセルペダル装置 Download PDF

Info

Publication number
WO2011111489A1
WO2011111489A1 PCT/JP2011/053290 JP2011053290W WO2011111489A1 WO 2011111489 A1 WO2011111489 A1 WO 2011111489A1 JP 2011053290 W JP2011053290 W JP 2011053290W WO 2011111489 A1 WO2011111489 A1 WO 2011111489A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold
operation amount
accelerator pedal
vehicle
reaction force
Prior art date
Application number
PCT/JP2011/053290
Other languages
English (en)
French (fr)
Inventor
瀧口裕崇
杉本洋一
武政幸一郎
鶴谷泰介
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2012504383A priority Critical patent/JP5563062B2/ja
Priority to US13/583,119 priority patent/US8706374B2/en
Priority to CN201180012559.0A priority patent/CN102791989B/zh
Priority to EP11753151.7A priority patent/EP2546496B1/en
Publication of WO2011111489A1 publication Critical patent/WO2011111489A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18181Propulsion control with common controlling member for different functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W50/16Tactile feedback to the driver, e.g. vibration or force feedback to the driver on the steering wheel or the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/02Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by hand, foot, or like operator controlled initiation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • B60L2250/28Accelerator pedal thresholds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/24Coasting mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/30Engine braking emulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/1809Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/103Accelerator thresholds, e.g. kickdown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/106Rate of change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20528Foot operated
    • Y10T74/20534Accelerator

Definitions

  • the present invention relates to an accelerator pedal device that controls generation of driving force and braking force in a vehicle according to the amount of operation of an accelerator pedal.
  • JP 2001-260713 A Japanese Patent Laid-Open No. 2001-260713
  • T1 a predetermined value
  • E the throttle opening
  • B the brake amount of the brake disc
  • JP 2001-260713A discloses that both the throttle opening and the brake amount are made zero (FIG. 7 of JP 2001-260713 A), and mention is made of the engine brake (see JP 2001-260713 A, paragraph [0009] ], The handling of the engine brake when the throttle opening is zero is not mentioned. Generally, when the accelerator pedal is released, the engine brake is actuated. For this reason, in JP2001-260713A, when the throttle opening degree is made zero, it is understood that the engine brake is operated. However, when the engine brake is actuated, deceleration unintended by the driver occurs.
  • JP2001-260713A there is no one indicating whether the accelerator pedal is in the acceleration region or the deceleration region. For this reason, it is difficult for the driver to immediately recognize whether the accelerator pedal is in the acceleration region or the deceleration region.
  • the present invention has been made in consideration of such problems, and an object of the present invention is to provide a control device capable of avoiding the driver's intentional deceleration.
  • Another object of the present invention is to provide a control device by which a driver can easily recognize switching between generation of driving force and generation of braking force in a vehicle.
  • An accelerator pedal device includes an accelerator pedal provided in a vehicle, an operation amount detection device for detecting an operation amount of the accelerator pedal, an actuator for applying a reaction force to the accelerator pedal, and the actuator And a travel control device for controlling generation of a driving force and a braking force in the vehicle, wherein the travel control device controls the braking force when the operation amount is less than a first threshold. Generating the driving force if the operation amount exceeds a second threshold greater than the first threshold, generating the driving force, and if the operation amount exceeds the first threshold and falls below the second threshold; It is characterized in that inertial travel of the vehicle is permitted without generating any of the braking forces.
  • the present invention by adjusting the operation amount of the accelerator pedal, in addition to the generation of the driving force and the braking force of the vehicle, it is possible to select the inertial traveling in the state where the driving force and the braking force are not generated. . Therefore, it is possible to prevent the vehicle from decelerating due to the generation of the braking force not intended by the driver.
  • the driver actively performs inertial traveling. It becomes possible to utilize.
  • the reaction force control device may increase the reaction force when the operation amount changes across the first threshold or the second threshold. Therefore, when switching from a state in which driving force or braking force is generated in the vehicle to a state in which inertial traveling is enabled, or in a state in which inertial driving is enabled from a state in which inertial traveling is enabled, the driving force or braking force is generated. Increase the power. For this reason, the driver can easily recognize the operation amount at which the switching is performed.
  • the first threshold value and the second threshold value are threshold values of an operation amount for switching the traveling state of the vehicle, the first threshold value is a value which becomes a boundary between a regeneration area and a neutral area, and the second threshold value is The value may be a boundary between the neutral area and the power running area.
  • the reaction force control device sets the reaction force in the case where the operation amount exceeds the second threshold, larger than the reaction force in the case where the operation amount is between the first threshold and the second threshold. You may As a result, the reaction force is smaller in the case where the inertial traveling is allowed than in the case where the driving force is generated. Therefore, the driver can actively use inertial traveling.
  • the driving force is generated, if the reaction force is increased in accordance with, for example, the preceding vehicle, the curve, the signal, and the stop sign, the driver can be notified of the need for deceleration.
  • the braking force may include the braking force generated by the regeneration operation of a traveling motor provided in the vehicle, and the braking force generated by the regeneration operation may be increased as the operation amount of the accelerator pedal decreases. Thereby, it is possible to adjust the braking force (the strength of the regenerative brake) by the regenerative operation in accordance with the operation amount of the accelerator pedal. Therefore, it is possible to decelerate using the braking force by the regeneration operation corresponding to the driver's intention.
  • the accelerator pedal device further includes an operation speed detection device for detecting an operation speed of an accelerator pedal, and the travel control device operates the threshold value of the operation speed for determining the degree of acceleration or deceleration of the vehicle. If the speed is exceeded, the first threshold may be increased or the second threshold may be decreased. As a result, when the operating speed of the accelerator pedal exceeds the threshold of the operating speed, the range of the operating amount for permitting inertial travel narrows. For this reason, when the necessity of inertial traveling is low, for example, the operation speed when transitioning from acceleration or constant speed state to rapid deceleration or transition from deceleration or constant speed traveling to rapid acceleration is used as a threshold of the operation speed. If set, it is possible to shorten the time of inertial traveling and to shift to rapid acceleration or rapid deceleration promptly.
  • the travel control device controls generation of driving force and braking force by an engine and a travel motor of the vehicle, and when the operation amount is less than the first threshold, at least one of the engine and the travel motor is controlled Power is generated, and when the operation amount exceeds the second threshold, at least one of the engine and the traveling motor generates the driving force, the operation amount exceeds the first threshold, and the second threshold is generated. If the vehicle speed falls below, neither the driving force nor the braking force may be generated in both the engine and the traveling motor, and the inertial traveling of the vehicle may be permitted.
  • FIG. 1 is a block diagram of a vehicle equipped with an accelerator pedal device according to an embodiment of the present invention.
  • FIG. 5 is an explanatory view showing a relationship among an operation amount of an accelerator pedal, a traveling state of a vehicle, a reaction force by a return spring, a reaction force by an actuator, and a regenerative braking amount by a motor.
  • It is a flowchart which the threshold value calculation module of integrated ECU calculates a 2nd threshold value.
  • the traveling control module of integrated ECU switches traveling control of a vehicle.
  • FIG. 1 is a block diagram of a vehicle 10 equipped with an accelerator pedal device 100 according to this embodiment.
  • the vehicle 10 is, for example, a hybrid vehicle. Alternatively, it may be an electric car including a fuel cell car.
  • the vehicle 10 includes an accelerator pedal 12, a return spring 14 that applies a reaction force Fr_sp [N] to the accelerator pedal 12, an operation amount sensor 16 (operation amount detection device), a drive system 18, and a reaction force system 20. And an integrated electronic control unit (hereinafter referred to as "integrated ECU 22").
  • integrated ECU 22 integrated electronice control unit
  • the operation amount sensor 16 detects the depression amount (operation amount ⁇ p) [degree] of the accelerator pedal 12 from the original position and outputs it to the integrated ECU 22.
  • the drive system 18 applies a driving force to the vehicle 10, and the throttle valve 30, the engine 32, a motor 34 for traveling, a battery 36, and an output control electronic control unit (hereinafter referred to as "output control ECU 38"). ), An intake pipe 40, a transmission 42, and wheels 44.
  • the throttle valve 30 is provided inside the intake pipe 40 connected to the engine 32, and the output control ECU 38 controls the opening degree (throttle valve opening degree ⁇ th) [degree] according to the operation amount ⁇ p or the like. That is, in the present embodiment, a so-called throttle by wire system is adopted, and the throttle valve 30 is controlled in throttle valve opening degree ⁇ th by a control signal St from the output control ECU 38.
  • the engine 32 controls fuel injection and ignition based on a control signal Se from the output control ECU 38, and generates driving force Fe in accordance with the fuel injection amount, the throttle valve opening degree ⁇ th, and the like.
  • the motor 34 When the vehicle 10 is in the power running state, the motor 34 generates the driving force Fm by the power supplied from the battery 36 via the inverter (not shown) based on the control signal Sm from the output control ECU 38.
  • the driving force Fm is transmitted to the wheel 44 through the transmission 42 together with or independently of the driving force Fe from the engine 32 to rotate the wheel 44.
  • the motor 34 functions as a regenerative brake based on the control signal Sm from the output control ECU 38 when the vehicle 10 is in the regenerative state. That is, motor 34 generates a braking force Fbm on wheel 44 via transmission 42. In other words, the motor 34 generates electric power by the driving force Ft from the wheel 44. Along with this, the motor 34 generates regenerative power to charge the battery 36. Alternatively, the regenerative power may be supplied to an accessory not shown.
  • the output control ECU 38 controls the throttle valve 30, the engine 32, the motor 34, and the battery 36 in accordance with a command (control signal Sd) from the integrated ECU 22.
  • reaction force system 20 applies the reaction force Fr [N] to the accelerator pedal 12, and the actuator 50, the current sensor 52, and the reaction force electronic control unit 54 (hereinafter referred to as “reaction force ECU 54") are provided. Prepare.
  • the actuator 50 is formed of a motor (not shown) connected to the accelerator pedal 12 and applies a reaction force Fr corresponding to the control signal Sa received from the reaction force ECU 54 to the accelerator pedal 12.
  • the reaction force Fr from the actuator 50 is added to the accelerator pedal 12 in addition to the reaction force Fr_sp from the return spring 14.
  • the actuator 50 may be other driving force generating means (for example, a pneumatic actuator).
  • the current sensor 52 detects the current (consumed current Ia) [A] consumed by the actuator 50 and notifies the reaction force ECU 54.
  • the current Ia changes in accordance with the output of the actuator 50, and indicates the reaction force Fr generated by the actuator 50.
  • the reaction force ECU 54 generates a control signal Sa to the actuator 50 based on the command (control signal Sr) from the integrated ECU 22 and the current Ia, and controls the actuator 50 by the control signal Sa.
  • a reaction force application start switch (not shown) may be provided, and the driver may instruct the integrated ECU 22 to start applying reaction force Fr from the actuator 50 to the accelerator pedal 12 by operating the switch.
  • the integrated ECU 22 controls the drive system 18 and the reaction force system 20 based on the operation amount ⁇ p, and includes an arithmetic unit 60 and a storage unit 62.
  • the calculation unit 60 includes a threshold value calculation module 64 (operation speed detection device), a travel control module 66 (travel control device), and a reaction force control module 68 (reaction force control device).
  • the threshold calculation module 64 calculates a second threshold TH2 and the like used by the traveling control module 66 and the reaction force control module 68 (the details will be described later).
  • the travel control module 66 performs operation control of the engine 32 and the motor 34 (output control of the drive system 18). In other words, the traveling control module 66 switches the power running operation and the regeneration operation of the vehicle 10. In the present embodiment, it is also possible to select the neutral state that enables the inertial travel of the vehicle 10 without performing any of the power running operation and the regeneration operation.
  • the reaction force control module 68 controls the reaction force Fr applied from the actuator 50 to the accelerator pedal 12 (details will be described later).
  • the storage unit 62 has a non-volatile memory 70 and a volatile memory 72.
  • the non-volatile memory 70 is, for example, a flash memory or an EEPROM (Erasable Programmable Read Only Memory), and stores a program or the like for executing the process in the arithmetic unit 60.
  • the volatile memory 72 is, for example, a dynamic random access memory (DRAM), and is used when the computing unit 60 executes a process.
  • DRAM dynamic random access memory
  • the accelerator pedal device 100 of the present embodiment includes, for example, an accelerator pedal 12, an operation amount sensor 16, a reaction force system 20, an integrated ECU 22, and an output control ECU 38.
  • reaction force application characteristics In FIG. 2, the operation amount ⁇ p of the accelerator pedal 12, the traveling state of the vehicle 10 (power running area, regeneration area and neutral area), reaction force Fr_sp by the return spring 14 and reaction force Fr by the actuator 50 The relationship with the amount of regenerative braking Qb by the motor 34 is shown.
  • the first threshold TH1 and the second threshold TH2 are thresholds of the operation amount ⁇ p for switching the traveling state of the vehicle 10. That is, the first threshold TH1 is a value at the boundary between the regeneration region and the neutral region, and the second threshold TH is a value at the boundary between the neutral region and the power running region. In the present embodiment, the first threshold TH1 is a fixed value, and the second threshold TH is variable. The method of setting the second threshold TH will be described later.
  • At least one of the driving force Fe from the engine 32 and the driving force Fm from the motor 34 is transmitted to the wheels 44 via the transmission 42 to drive the vehicle 10.
  • the motor 34 In the regeneration region, the motor 34 generates electric power in accordance with the braking force Fbm of the motor 34 on the wheel 44 (the driving force Ft from the wheel 44).
  • the engine 32 functions as a braking means (engine brake) by applying rotational resistance to the wheel 44 and generates a braking force Fbe to the wheel 44.
  • the engine 32 and the motor 34 are separated from the wheel 44 by the transmission 42, and neither the driving force Fe, Fm nor the braking force Fbe, Fbm is generated on the wheel 44.
  • the vehicle 10 can perform inertial travel (deceleration due to rolling resistance).
  • a foot brake (not shown) is operable, the user can decelerate the vehicle 10 by stepping on the foot brake.
  • the second threshold TH2 is variable, the boundary between the neutral area and the power running area changes, and the power running area shifts.
  • the reaction force Fr_sp by the return spring 14 rises in accordance with the increase of the operation amount ⁇ p.
  • the reaction force Fr by the actuator 50 has a lower limit value (zero in the state of FIG. 2) until the operation amount ⁇ p becomes the operation amount ⁇ 1 and from the operation amount ⁇ 2 to the operation amount ⁇ 3.
  • the reaction force Fr increases between the operation amount ⁇ 1 and the first threshold TH1 and between the operation amount ⁇ 3 and the second threshold TH.
  • the reaction force Fr decreases between the first threshold TH1 and the operation amount ⁇ 2 and between the second threshold TH2 and the operation amount ⁇ 4.
  • the reaction force Fr is larger than the lower limit value between the first threshold TH1 and the operation amount ⁇ 2 and between the second threshold TH and the operation amount ⁇ 4.
  • the reaction force Fr is increased as compared with the regeneration area or the neutral area. Furthermore, in the power running area, for example, as shown in WO2009 / 136512A1, a reaction force Fr can be applied according to the target speed of the vehicle 10. Alternatively, the reaction force Fr may be increased according to the presence of a preceding vehicle, a curve, a signal, a stop sign, etc., and the driver may be notified of the need for deceleration.
  • the regenerative braking amount Qb by the motor 34 gradually decreases until the operation amount ⁇ p reaches the first threshold TH1, and becomes zero when the operating amount ⁇ p becomes the first threshold TH1 or more.
  • the motor 34 is not functioned as a regenerative brake by setting the regenerative brake amount Qb to zero.
  • the threshold value calculation module 64 of the integrated ECU 22 calculates a second threshold value TH2 in accordance with the operation speed Vp [degree / sec] of the accelerator pedal 12.
  • FIG. 3 is a flowchart for the threshold value calculation module 64 to calculate the second threshold value TH2.
  • the threshold value calculation module 64 acquires the operation amount ⁇ p from the operation amount sensor 16.
  • the threshold value calculation module 64 calculates the operation speed Vp by calculating the amount of change of the operation amount ⁇ p per unit time.
  • step S3 the threshold value calculation module 64 sets the coefficient A2 in accordance with the operation speed Vp.
  • FIG. 4 shows the relationship between the operation speed Vp and the coefficient A2. As shown in FIG. 4, when the operation speed Vp is equal to or less than the threshold TH_Vp1, the coefficient A2 becomes the maximum value A2max. When the operation speed Vp is larger than the threshold TH_Vp1 and smaller than the threshold TH_Vp2, the coefficient A2 gradually decreases. When the operation speed Vp is equal to or higher than the threshold TH_V2, the coefficient A2 has a minimum value (zero in the present embodiment).
  • the thresholds TH_Vp1 and TH_Vp2 are set, for example, as follows. That is, the threshold TH_Vp1 is set to the minimum value (estimated value or reference value) of the operation speed Vp that can be taken when accelerating, and when acceleration is required, the threshold TH_Vp1 is exceeded. Further, the threshold TH_Vp2 is set to the maximum value (estimated value or reference value) of the operation speed Vp which can be obtained when performing a gentle acceleration, and is set to exceed the threshold TH_Vp2 when a rapid acceleration is required.
  • the coefficient A2 and the second threshold TH2 are maximized, and the neutral region is also maximized.
  • the driver transfers the operation amount ⁇ p of the accelerator pedal 12 to the neutral region as needed (for example, when entering a gentle slope while traveling at a constant speed), thereby performing inertial travel.
  • the neutral region is narrowed, which facilitates switching from the neutral state to the power running operation.
  • the neutral region is minimized (e.g., zero), so that switching from the neutral state to the power running operation can be performed quickly.
  • the operation speed Vp of FIG. 4 can be made into an absolute value.
  • the neutral region narrows, and when the rapid deceleration occurs, the neutral region is minimized (e.g., zero).
  • the operation amount ⁇ p is easily shifted to the regeneration region at the time of deceleration, and it is possible to smoothly switch from the power running operation to the regeneration operation.
  • the traveling control module 66 of the integrated ECU 22 switches traveling control (powering control, regeneration control, neutral control) of the vehicle 10 according to the operation amount ⁇ p of the accelerator pedal 12.
  • FIG. 5 is a flowchart in which the traveling control module 66 switches traveling control of the vehicle 10.
  • the traveling control module 66 acquires the operation amount ⁇ p of the accelerator pedal 12 and the second threshold TH2 from the threshold calculation module 64.
  • step S12 the traveling control module 66 determines whether the operation amount ⁇ p is equal to or less than a second threshold TH2. If the operation amount ⁇ p is not equal to or smaller than the second threshold TH2 (S12: NO), the traveling control module 66 selects powering control in step S13. Specifically, the traveling control module 66 generates a control signal Sd for the output control ECU 38 based on the operation amount ⁇ p of the accelerator pedal 12 or the like, and controls the driving force Fe of the engine 32 and the driving force Fm of the motor 34. If the operation amount ⁇ p is equal to or less than the second threshold TH2 (S12: YES), the process proceeds to step S14.
  • step S14 the traveling control module 66 determines whether the operation amount ⁇ p is equal to or less than the first threshold TH1. If the operation amount ⁇ p is equal to or less than the first threshold TH1 (S14: YES), the traveling control module 66 selects regeneration control in step S15. That is, in step S21, the traveling control module 66 first calculates the regenerative braking amount Qb (the braking force Fbm) by the regenerative operation of the motor 34 based on the operation amount ⁇ p of the accelerator pedal 12.
  • Qb the braking force Fbm
  • the regenerative braking amount Qb is increased as the operation amount ⁇ p decreases.
  • the regenerative braking amount Qb is calculated using the following equation (1).
  • Qb Qb_max ⁇ G (1)
  • Qb_max is the maximum value that the regenerative braking amount Qb can take
  • G is a gain by which the maximum value Qb_max is multiplied according to the operation amount ⁇ p.
  • the gain G is defined by the following equation (2).
  • the gain G (- ⁇ p / TH1) +1 (2) As understood from the above equation (2), the gain G is minimum (zero) when the operation amount ⁇ p is equal to the first threshold TH1, and is maximum when the operation amount ⁇ p is the minimum value (for example, zero). Obviously, the gain G is minimum (zero) when the operation amount ⁇ p is equal to the first threshold TH1, and is maximum when the operation amount ⁇ p is the minimum value (for example, zero). Become.
  • step S22 the traveling control module 66 generates a control signal Sd indicating the regenerative braking amount Qb, and transmits the control signal Sd to the output control ECU 38.
  • the output control ECU 38 that receives the control signal Sd controls the motor 34 in accordance with the regenerative braking amount Qb indicated by the control signal Sd, and generates the braking force Fbm.
  • the engine 32 functions as a braking means (engine brake) by applying rotational resistance to the wheels 44 to generate a braking force Fbe on the wheels 44.
  • the traveling control module 66 selects neutral control in step S16. Specifically, the traveling control module 66 generates a control signal Sd for requesting the engine 32 and the motor 34 to be in the neutral state, and transmits the control signal Sd to the output control ECU 38.
  • the output control ECU 38 having received the control signal Sd brings the engine 32 and the motor 34 into the neutral state. Thereby, the driving forces Fe and Fm and the braking forces Fbe and Fbm from the engine 32 and the motor 34 are not transmitted to the wheels 44, and the engine brake of the engine 32 and the regenerative brake of the motor 34 do not operate.
  • the vehicle 10 can travel by inertia only. However, since a foot brake (not shown) is operable, the user can decelerate the vehicle 10 by stepping on the foot brake.
  • the travel control module 66 changes the traveling state of the vehicle 10 as needed by repeating the processing of FIG. 5.
  • reaction force control module 68 of the integrated ECU 22 controls the reaction force Fr by the actuator 50 in accordance with the operation amount ⁇ p of the accelerator pedal 12.
  • FIG. 6 is a flowchart in which the reaction force control module 68 controls the reaction force Fr of the actuator 50.
  • the reaction force control module 68 acquires the operation amount ⁇ p of the accelerator pedal 12 and the second threshold value TH2 from the threshold value calculation module 64.
  • the reaction force control module 68 calculates the operation amounts ⁇ 3 and ⁇ 4 based on the second threshold value TH2. That is, the difference between the second threshold TH2 and the operation amount ⁇ 3 and the difference between the operation amount ⁇ 4 and the second threshold TH2 are set in advance, and the operation amounts ⁇ 3 and ⁇ 4 are calculated based on these differences.
  • the reaction force Fr is increased between the operation amount ⁇ 3 and the operation amount ⁇ 4. More specifically, the reaction force Fr increases while the operation amount ⁇ p is from the operation amount ⁇ 3 to the second threshold TH2, and the reaction force Fr decreases from the second threshold TH2 to the operation amount ⁇ 4.
  • step S33 the reaction force control module 68 determines whether the operation amount ⁇ p is not less than the operation amount ⁇ 3 and not more than the operation amount ⁇ 4. If the operation amount ⁇ p is not the operation amount ⁇ 3 or more and the operation amount ⁇ 4 or less (S33: NO), the process proceeds to step S34. When the operation amount ⁇ p is the operation amount ⁇ 3 or more and the operation amount ⁇ 4 or less (S33: YES), the process proceeds to step S35.
  • step S34 the reaction force control module 68 determines whether the operation amount ⁇ p is not less than the operation amount ⁇ 1 and not more than the operation amount ⁇ 2.
  • the process proceeds to step S35. If the operation amount ⁇ p is not the operation amount ⁇ 1 or more and the operation amount ⁇ 2 or less (S34: NO), the process proceeds to step S37.
  • step S35 the reaction force control module 68 calculates a command value (a reaction force command value Fr_com) of the reaction force Fr to be generated by the actuator 50 according to the operation amount ⁇ p.
  • the reaction force Fr increases when the operation amount ⁇ p of the accelerator pedal 12 is lowered from a value larger than the operation amount ⁇ 4 in the power running area Enter the neutral area above. Similarly, when the operation amount ⁇ p is decreased from a value larger than the operation amount ⁇ 2 in the neutral region, the reaction force Fr increases and then enters the regeneration region.
  • the user can recognize whether the current traveling state is the power running state, the regeneration state or the neutral state by the increase of the reaction force Fr.
  • step S36 the reaction force control module 68 generates a control signal Sr indicating the reaction force command value Fr_com, and transmits the control signal Sr to the reaction force ECU 54.
  • the reaction force ECU 54 receiving this control signal Sr controls the actuator 50 based on the reaction force command value Fr_com indicated by the control signal Fr_com.
  • step S37 the reaction force control module 68 generates a control signal Sr that sets the reaction force command value Fr_com to zero, and transmits the control signal Sr to the reaction force ECU 54.
  • the reaction force ECU 54 receiving this control signal Sr sets the reaction force Fr applied by the actuator 50 to zero.
  • the reaction force control module 68 controls the reaction force Fr of the actuator 50 by repeating the process of FIG.
  • FIG. 7 shows an example of how the vehicle 10c of the comparative example stops at the temporary stop sign 80.
  • FIG. 8 shows an example of how the vehicle 10 of the present embodiment stops at a stop sign 80.
  • the threshold of the power running area and the regeneration area in the comparative example is set as the threshold THc.
  • the driver notices that the vehicle 10c has decelerated too much, depresses the accelerator pedal 12, makes the operation amount ⁇ p larger than the threshold THc, and returns the vehicle 10c to the power running operation.
  • the driving forces Fe and Fm from at least one of the engine 32 and the motor 34 are transmitted to the wheels 44, and the speed Vc of the vehicle 10c gradually increases.
  • the driver returns the accelerator pedal 12 to make the operation amount ⁇ p smaller than the threshold THc, and then shifts the vehicle 10c to the regeneration operation again.
  • the driver depresses a foot brake (not shown) to decrease the speed Vc of the vehicle 10c in combination with the regenerative operation of the vehicle 10c.
  • the vehicle 10c stops at a point P15 at which the stop sign 80 is located.
  • the vehicle 10 of this embodiment when using the vehicle 10 of this embodiment, it becomes as follows, for example. That is, at point P21 in FIG. 8, the driver who notices the temporary stop sign 80 returns the accelerator pedal 12, and sets the operation amount ⁇ p to a value between the first threshold TH1 and the second threshold TH2. As a result, the engine 32 and the motor 34 are in a neutral state, and the vehicle 10 is decelerated by inertia (rolling resistance). As a result, the velocity V [km / h] of the vehicle 10 decreases gradually as compared with the case of the regeneration operation. Further, at this time, the fuel supply to the engine 32 is stopped, so that the fuel consumption can be improved.
  • the driver returns the accelerator pedal 12 further, makes the operation amount ⁇ p smaller than the first threshold TH1, and sets the vehicle 10 to the regeneration operation. Migrate. As a result, the speed V of the vehicle 10 is reduced by the regenerative brake and the engine brake.
  • the driver depresses a foot brake (not shown) to reduce the speed V of the vehicle 10 in combination with the regenerative operation of the vehicle 10.
  • a foot brake (not shown) to reduce the speed V of the vehicle 10 in combination with the regenerative operation of the vehicle 10.
  • the vehicle 10 stops at a point P24 where the stop sign 80 is located.
  • the adjustment of the operation amount ⁇ p of the accelerator pedal 12 makes it possible to select the neutral state in addition to the power running operation and the regeneration operation of the vehicle 10. Therefore, it is possible to prevent the vehicle 10 from decelerating due to the generation of the braking forces Fbe and Fbm (the activation of the engine brake or the regenerative brake) that the driver does not intend.
  • the driver actively performs inertial traveling. It becomes possible to utilize.
  • the reaction force Fr is increased. Therefore, the driver can easily recognize the operation amount ⁇ p at which the switching is performed.
  • the reaction force control module 68 of the integrated ECU 22 generates a reaction force Fr when the operation amount ⁇ p exceeds the operation amount ⁇ 4, and a reaction force when the operation amount ⁇ p is between the operation amount ⁇ 2 and the operation amount ⁇ 3.
  • Set larger than Fr (see FIG. 2).
  • the reaction force Fr becomes smaller in the neutral area than in the drive area. Therefore, the driver can actively use inertial traveling. Further, in the drive region, it is possible to notify the driver of the necessity of deceleration by, for example, increasing the reaction force Fr in accordance with the preceding vehicle, the curve, the signal, and the stop sign.
  • the regenerative braking amount Qb (the braking force Fbm) by the motor 34 is increased. Accordingly, it is possible to adjust the regenerative braking amount Qb (the braking force Fbm) by the regenerative operation according to the operation amount ⁇ p. Therefore, it is possible to decelerate using the braking force Fbm by the regeneration operation corresponding to the driver's intention.
  • the threshold calculation module 64 of the integrated ECU 22 gradually reduces the second threshold TH2 (see FIG. 4 and the like).
  • the range of the operation amount ⁇ p that is, the neutral region
  • the time for entering inertial traveling is shortened, and rapid acceleration or rapid acceleration It is possible to shift to rapid deceleration.
  • the threshold calculation module 64 gradually increases the second threshold TH2 when the operation speed Vp (absolute value) falls below the threshold TH_Vp2 (see FIG. 4 and the like).
  • the range of the operation amount ⁇ p that is, the neutral region
  • the inertial It is possible to extend the traveling time and improve the fuel consumption.
  • the vehicle 10 is a hybrid vehicle in the above embodiment, the present invention is not limited to this, and may be an electric vehicle including a fuel cell vehicle.
  • both of the regenerative brake and the engine brake function, but only one of them may function.
  • the regenerative braking amount Qb is increased as the operation amount ⁇ p becomes smaller (see FIG. 2), but not limited thereto. Regardless of the value, it is also possible to make the regenerative braking amount Qb constant.
  • the reaction force Fr when the operation amount ⁇ p is in the power running region is when the operation amount ⁇ p is in the neutral region (more accurately) Is set larger than the reaction force Fr in the case where the operation amount ⁇ p exceeds the operation amount ⁇ 2 and falls below the operation amount ⁇ 3, but the invention is not limited thereto.
  • the reaction force Fr can be equalized either when the operation amount ⁇ p is in the power running region or in the neutral region.
  • the first threshold TH1 is a fixed value
  • the second threshold TH2 is a variable
  • the present invention is not limited thereto.
  • the first threshold TH1 can be a variable and the second threshold TH2 can be a fixed value. In this case, when the operation speed Vp increases, the neutral region is narrowed by increasing the first threshold TH1.
  • both the first threshold TH1 and the second threshold TH2 may be fixed values or variables.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Regulating Braking Force (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

 アクセルペダル装置(100)の走行制御装置(66)は、アクセルペダル(12)の操作量(θp)が、第1閾値(TH1)を下回る場合、車両(10)における制動力を発生させ、操作量(θp)が,第1閾値(TH1)より大きい第2閾値(TH2)を上回る場合、車両(10)における駆動力を発生させ、操作量(θp)が第1閾値(TH1)を上回り第2閾値(TH2)を下回る値である場合、駆動力及び制動力のいずれも発生させずに、車両(10)の慣性走行を許容する。

Description

アクセルペダル装置
 この発明は、車両における駆動力及び制動力の発生を、アクセルペダルの操作量に応じて制御するアクセルペダル装置に関する。
 アクセルペダルの操作により、車両の加速と減速を制御可能なアクセルペダル装置が存在する{特開2001-260713号公報(以下「JP2001-260713A」という。)}。JP2001-260713Aでは、アクセルペダル(1)の操作量が所定値(T1)以下のときは、スロットル開度(E)をゼロとし、ブレーキディスク(14)のブレーキ量(B)を調節する(例えば、JP2001-260713Aの要約、図2、図3、図7参照)。
 また、アクセルペダルの操作量に応じて、アクチュエータからアクセルペダルに反力を付与する構成が知られている{国際公開第2009/136512号(以下「WO2009/136512A」という。)}。
 上述の通り、JP2001-260713Aでは、アクセルペダルの操作により、車両の加速と減速を制御可能である。JP2001-260713Aでは、スロットル開度及びブレーキ量の両方をゼロとすることが開示されると共に(JP2001-260713Aの図7)、エンジンブレーキについての言及もなされているが(JP2001-260713Aの段落[0009])、スロットル開度をゼロとした際におけるエンジンブレーキの取扱いについては言及されていない。一般に、アクセルペダルを戻すと、エンジンブレーキが作動する。このため、JP2001-260713Aでは、スロットル開度をゼロにした際、エンジンブレーキが作動しているものと解される。しかし、エンジンブレーキが作動した場合、運転者が意図しない減速が生じてしまう。
 また、JP2001-260713Aでは、アクセルペダルが加速領域又は減速領域のいずれにあるのかを示すものが存在しない。このため、運転者は、アクセルペダルが加速領域又は減速領域のいずれにあるのかを直ちに認識することが困難である。
 この発明はこのような課題を考慮してなされたものであり、運転者が意図しない減速を避けることが可能な制御装置を提供することを目的とする。
 この発明の別の目的は、車両における駆動力の発生と制動力の発生の切替えを運転者が容易に認識することができる制御装置を提供することである。
 この発明に係るアクセルペダル装置は、車両に設けられたアクセルペダルと、前記アクセルペダルの操作量を検出する操作量検出装置と、前記アクセルペダルに対して反力を付与するアクチュエータと、前記アクチュエータを制御する反力制御装置と、前記車両における駆動力及び制動力の発生を制御する走行制御装置とを備え、前記走行制御装置は、前記操作量が、第1閾値を下回る場合、前記制動力を発生させ、前記操作量が、前記第1閾値より大きい第2閾値を上回る場合、前記駆動力を発生させ、前記操作量が前記第1閾値を上回り前記第2閾値を下回る場合、前記駆動力及び前記制動力のいずれも発生させずに、前記車両の慣性走行を許容することを特徴とする。
 この発明によれば、アクセルペダルの操作量の調整により、車両の駆動力及び制動力の発生に加え、これらの駆動力及び制動力が発生しない状態での慣性走行を選択することが可能となる。このため、運転者が意図しない制動力の発生により、車両が減速することを避けることが可能となる。加えて、運転者は、例えば、加速から定速走行に移行する際、加速若しくは定速走行から緩やかな減速に移行する際、又は減速から定速走行に移行する際、慣性走行を積極的に活用することが可能となる。
 前記反力制御装置は、前記操作量が前記第1閾値又は前記第2閾値を跨って変化するとき、前記反力を大きくしてもよい。これにより、車両において駆動力又は制動力を発生させる状態から慣性走行を可能とする状態に切り替える際、又は、慣性走行を可能とする状態から駆動力又は制動力を発生させる状態に切り替える際、反力を大きくする。このため、運転者は、これらの切替えが行われる操作量を容易に認識することが可能となる。
 前記第1閾値及び前記第2閾値は、前記車両の走行状態を切り替えるための操作量の閾値とし、前記第1閾値は、回生領域とニュートラル領域の境界となる値とし、前記第2閾値は、前記ニュートラル領域と力行領域の境界となる値とすることができる。
 前記反力制御装置は、前記操作量が前記第2閾値を上回る場合における前記反力を、前記操作量が前記第1閾値と前記第2閾値の間にある場合における前記反力よりも大きく設定してもよい。これにより、駆動力を生じさせている場合と比べ、慣性走行を許容している場合の方が、反力が小さくなる。従って、運転者は、慣性走行を積極的に利用することが可能となる。また、駆動力を生じさせている場合、例えば、先行車、カーブ、信号、一時停止の標識に合わせて反力を大きくすれば、減速の必要性を運転者に報せることが可能となる。
 前記制動力は、前記車両に設けられた走行モータの回生動作による制動力を含み、前記アクセルペダルの操作量が小さくなるほど前記回生動作による制動力を大きくしてもよい。これにより、アクセルペダルの操作量に応じて、回生動作による制動力(回生ブレーキの強さ)を調整することが可能となる。従って、運転者の意図に対応した回生動作による制動力を用いての減速が可能となる。
 前記アクセルペダル装置は、さらに、アクセルペダルの操作速度を検出する操作速度検出装置を備え、前記走行制御装置は、前記車両の加速又は減速の度合いを判定するための前記操作速度の閾値を前記操作速度が上回る場合、前記第1閾値を大きくするか又は前記第2閾値を小さくしてもよい。これにより、アクセルペダルの操作速度が前記操作速度の閾値を上回る場合、慣性走行を許容する操作量の範囲が狭くなる。このため、慣性走行の必要性が低い場合、例えば、加速若しくは定速状態から急減速に移行する場合、又は減速若しくは定速走行から急加速に移行する場合の操作速度を前記操作速度の閾値として設定しておけば、慣性走行の時間を短くし、速やかに急加速又は急減速に移行することが可能となる。
 前記走行制御装置は、前記車両のエンジン及び走行モータによる駆動力及び制動力の発生を制御し、前記操作量が、前記第1閾値を下回る場合、前記エンジン及び前記走行モータの少なくとも一方に前記制動力を発生させ、前記操作量が,前記第2閾値を上回る場合、前記エンジン及び前記走行モータの少なくとも一方に前記駆動力を発生させ、前記操作量が前記第1閾値を上回り前記第2閾値を下回る場合、前記エンジン及び前記走行モータの両方に前記駆動力及び前記制動力のいずれも発生させずに、前記車両の慣性走行を許容してもよい。
この発明の一実施形態に係るアクセルペダル装置を搭載した車両のブロック図である。 アクセルペダルの操作量と、車両の走行状態と、リターンスプリングによる反力とアクチュエータによる反力と、モータによる回生ブレーキ量との関係を示す説明図である。 統合ECUの閾値算出モジュールが第2閾値を算出するフローチャートである。 アクセルペダルの操作速度と、第2閾値の算出に用いる係数との関係を示す説明図である。 統合ECUの走行制御モジュールが車両の走行制御を切り替えるフローチャートである。 統合ECUの反力制御モジュールが、アクチュエータの反力を制御するフローチャートである。 比較例の車両が一時停止の標識で止まる様子の一例を示す説明図である。 前記実施形態の車両が一時停止の標識で止まる様子の一例を示す説明図である。
A.一実施形態
 以下、この発明の一実施形態に係るアクセルペダル装置を搭載した車両について図面を参照して説明する。
1.車両10の構成
 図1は、この実施形態に係るアクセルペダル装置100を搭載した車両10のブロック図である。車両10は、例えば、ハイブリッド車両である。或いは、燃料電池車を含む電気自動車であってもよい。車両10は、アクセルペダル12と、アクセルペダル12に反力Fr_sp[N]を付与するリターンスプリング14と、操作量センサ16(操作量検出装置)と、駆動系18と、反力系20と、統合電子制御装置(以下「統合ECU22」という。)とを備える。
 操作量センサ16は、アクセルペダル12の原位置からの踏込み量(操作量θp)[度]を検出し、統合ECU22に出力する。
 駆動系18は、車両10に駆動力を与えるものであり、スロットル弁30と、エンジン32と、走行用のモータ34と、バッテリ36と、出力制御電子制御装置(以下「出力制御ECU38」という。)と、吸気管40と、トランスミッション42と、車輪44とを備える。
 スロットル弁30は、エンジン32に接続された吸気管40の内部に設けられ、出力制御ECU38により操作量θp等に応じてその開度(スロットル弁開度θth)[度]が制御される。すなわち、本実施形態では、いわゆるスロットル・バイ・ワイヤ方式が採用され、スロットル弁30は、出力制御ECU38からの制御信号Stによりスロットル弁開度θthが制御される。
 エンジン32は、出力制御ECU38からの制御信号Seに基づいて、燃料噴射や点火を制御し、燃料噴射量やスロットル弁開度θth等に応じて駆動力Feを発生させる。
 モータ34は、車両10が力行状態のとき、出力制御ECU38からの制御信号Smに基づいて、図示しないインバータを介してバッテリ36から供給される電力により、駆動力Fmを発生させる。当該駆動力Fmは、エンジン32からの駆動力Feと一緒に又は単独で、トランスミッション42を通じて車輪44に伝達されて車輪44を回転させる。
 また、モータ34は、車両10が回生状態のとき、出力制御ECU38からの制御信号Smに基づいて、回生ブレーキとして機能する。すなわち、モータ34は、トランスミッション42を介して車輪44に対する制動力Fbmを発生させる。換言すると、モータ34は、車輪44からの駆動力Ftにより発電する。これに伴って、モータ34は、回生電力を発生させ、バッテリ36を充電する。或いは、当該回生電力は、図示しない補機に供給してもよい。
 出力制御ECU38は、統合ECU22からの指令(制御信号Sd)に従って、スロットル弁30、エンジン32、モータ34及びバッテリ36を制御する。
 反力系20は、アクセルペダル12に反力Fr[N]を付与するものであり、アクチュエータ50と、電流センサ52と、反力電子制御装置54(以下「反力ECU54」という。)とを備える。
 アクチュエータ50は、アクセルペダル12に連結された図示しないモータからなり、反力ECU54から受信した制御信号Saに応じた反力Frをアクセルペダル12に付与する。これにより、アクセルペダル12には、リターンスプリング14による反力Fr_spに加えてアクチュエータ50からの反力Frが付加される。アクチュエータ50は、その他の駆動力生成手段(例えば、空気圧アクチュエータ)であってもよい。
 電流センサ52は、アクチュエータ50が消費する電流(消費電流Ia)[A]を検出して反力ECU54に通知する。この電流Iaは、アクチュエータ50の出力に応じて変化し、アクチュエータ50が生成した反力Frを示す。反力ECU54は、統合ECU22からの指令(制御信号Sr)と電流Iaに基づいて、アクチュエータ50への制御信号Saを生成し、この制御信号Saによりアクチュエータ50を制御する。
 なお、図示しない反力付与開始スイッチを設け、運転者が当該スイッチを操作することにより、アクチュエータ50からアクセルペダル12に対する反力Frの付与の開始を統合ECU22に対して指令してもよい。
 統合ECU22は、操作量θpに基づいて駆動系18と反力系20とを制御するものであり、演算部60と記憶部62とを有する。
 演算部60は、閾値算出モジュール64(操作速度検出装置)と、走行制御モジュール66(走行制御装置)と、反力制御モジュール68(反力制御装置)とを備える。閾値算出モジュール64は、走行制御モジュール66及び反力制御モジュール68で用いる第2閾値TH2等を算出する(詳細は後述する。)。走行制御モジュール66は、エンジン32及びモータ34の動作制御(駆動系18の出力制御)を行う。換言すると、走行制御モジュール66は、車両10の力行動作及び回生動作を切り替える。なお、本実施形態では、力行動作及び回生動作のいずれも行わずに、車両10の慣性走行を可能とするニュートラル状態の選択も可能である。反力制御モジュール68は、アクチュエータ50からアクセルペダル12に付与する反力Frを制御する(詳細は後述する。)。
 記憶部62は、不揮発性メモリ70及び揮発性メモリ72を有する。不揮発性メモリ70は、例えば、フラッシュメモリ又はEEPROM(Erasable Programmable Read Only Memory)であり、演算部60における処理を実行するためのプログラム等が記憶されている。揮発性メモリ72は、例えば、DRAM(Dynamic Random Access Memory)であり、演算部60が処理を実行する際に用いられる。
 本実施形態のアクセルペダル装置100は、例えば、アクセルペダル12、操作量センサ16、反力系20、統合ECU22及び出力制御ECU38を含む。
2.反力付与特性
 図2には、アクセルペダル12の操作量θpと、車両10の走行状態(力行領域、回生領域及びニュートラル領域)と、リターンスプリング14による反力Fr_spとアクチュエータ50による反力Frと、モータ34による回生ブレーキ量Qbとの関係が示されている。
 図2において、第1閾値TH1及び第2閾値TH2は、車両10の走行状態を切り替えるための操作量θpの閾値である。すなわち、第1閾値TH1は、回生領域とニュートラル領域の境界となる値であり、第2閾値THは、ニュートラル領域と力行領域の境界となる値である。本実施形態において、第1閾値TH1は固定値であり、第2閾値THは可変である。第2閾値THの設定方法については後述する。
 力行領域では、エンジン32からの駆動力Fe及びモータ34からの駆動力Fmの少なくとも一方が、トランスミッション42を介して車輪44に伝達され、車両10を駆動する。
 回生領域では、車輪44に対するモータ34の制動力Fbm(車輪44からの駆動力Ft)に応じてモータ34が発電する。この際、エンジン32は、車輪44に対して回転抵抗を付与することで制動手段(エンジンブレーキ)として機能し、車輪44に対する制動力Fbeを生じさせる。
 ニュートラル領域では、エンジン32及びモータ34は、トランスミッション42により車輪44から切り離され、車輪44に対して駆動力Fe、Fm及び制動力Fbe、Fbmのいずれも発生させない。その結果、車両10は、慣性走行(転がり抵抗による減速)を行うことができる。但し、図示しないフットブレーキは作動可能であるため、ユーザは、当該フットブレーキを踏むことにより、車両10を減速させることができる。
 上記の通り、第2閾値TH2は可変であるため、ニュートラル領域と力行領域の境界は変化し、力行領域がシフトする。
 図2に示すように、リターンスプリング14による反力Fr_spは、操作量θpの増加に応じて上昇する。アクチュエータ50による反力Frは、操作量θpが操作量θ1になるまで及び操作量θ2から操作量θ3までの間は下限値(図2の状態では、ゼロ)である。また、操作量θ1から第1閾値TH1までの間及び操作量θ3から第2閾値THまでの間は、反力Frが増加する。さらに、第1閾値TH1から操作量θ2までの間及び第2閾値TH2から操作量θ4までの間は、反力Frが減少する。但し、第1閾値TH1から操作量θ2までの間及び第2閾値THから操作量θ4までの間でも、反力Frは、前記下限値より大きい。
 また、回生領域やニュートラル領域と比べて、力行領域では、反力Frを大きくする。さらに、力行領域では、例えば、WO2009/136512A1に示すように、車両10の目標速度に応じて反力Frを付与することができる。或いは、先行車、カーブ、信号、一時停止の標識等の存在に応じて反力Frを大きくし、減速の必要性を運転者に通知してもよい。
 モータ34による回生ブレーキ量Qbは、操作量θpが第1閾値TH1になるまで徐々に減少し、第1閾値TH1以上になるとゼロになる。これにより、操作量θpが回生領域にあるときは、操作量θpに応じて回生ブレーキ量Qbを増減させることが可能となる。また、力行領域及びニュートラル領域においては回生ブレーキ量Qbをゼロとすることで、モータ34を回生ブレーキとしては機能させない。
3.第2閾値TH2の算出
 本実施形態では、統合ECU22の閾値算出モジュール64は、アクセルペダル12の操作速度Vp[度/sec]に応じて第2閾値TH2を算出する。
 図3は、閾値算出モジュール64が第2閾値TH2を算出するフローチャートである。ステップS1において、閾値算出モジュール64は、操作量センサ16から操作量θpを取得する。ステップS2において、閾値算出モジュール64は、単位時間当たりの操作量θpの変化量を算出することにより操作速度Vpを算出する。
 ステップS3において、閾値算出モジュール64は、操作速度Vpに応じて係数A2を設定する。図4には、操作速度Vpと係数A2との関係が示されている。図4に示すように、操作速度Vpが、閾値TH_Vp1以下であるとき、係数A2は、最大値A2maxとなる。操作速度Vpが、閾値TH_Vp1より大きく閾値TH_Vp2より小さいとき、係数A2は徐々に減少する。操作速度Vpが、閾値TH_V2以上であるとき、係数A2は、最小値(本実施形態ではゼロ)となる。
 閾値TH_Vp1、TH_Vp2は、例えば、次のように設定する。すなわち、閾値TH_Vp1は、加速する際に採り得る操作速度Vpの最小値(推定値又は基準値)とし、加速を要する場合、閾値TH_Vp1を超えるようにする。また、閾値TH_Vp2は、緩やかな加速をしている際に採り得る操作速度Vpの最大値(推定値又は基準値)とし、急加速を要する場合、閾値TH_Vp2を超えるようにする。
 図3に戻り、ステップS4において、閾値算出モジュール64は、固定値である第1閾値TH1に係数A2を加算することで第2閾値TH2を算出する(TH2=TH1+A2)。
 以上のようにすることで、例えば、加速を要しない場合、係数A2及び第2閾値TH2が最大となり、ニュートラル領域も最大となる。その結果、運転者は、必要に応じて(例えば、定速走行をしている状態で緩やかな坂道に入ったとき)、アクセルペダル12の操作量θpをニュートラル領域に移行させることで、慣性走行をすることができる。一方、緩やかに加速する場合、ニュートラル領域が狭くなることで、ニュートラル状態から力行動作への切替えを容易とする。さらに、急加速する場合、ニュートラル領域が最小(例えば、ゼロ)になることで、ニュートラル状態から力行動作への切替えを迅速に行うことができる。
 なお、上記では、操作速度Vpの値が正である場合を説明したが、図4の操作速度Vpは絶対値とすることができる。これにより、緩やかに減速する場合、ニュートラル領域が狭まり、急減速する場合、ニュートラル領域を最小(例えば、ゼロ)にする。その結果、減速時に操作量θpが回生領域に移行し易くなり、力行動作から回生動作への切替えをスムーズに行うことが可能となる。
4.走行制御の切替え
 本実施形態では、統合ECU22の走行制御モジュール66は、アクセルペダル12の操作量θpに応じて車両10の走行制御(力行制御、回生制御、ニュートラル制御)を切り替える。
 図5は、走行制御モジュール66が車両10の走行制御を切り替えるフローチャートである。ステップS11において、走行制御モジュール66は、閾値算出モジュール64からアクセルペダル12の操作量θp及び第2閾値TH2を取得する。
 ステップS12において、走行制御モジュール66は、操作量θpが第2閾値TH2以下であるかどうかを判定する。操作量θpが第2閾値TH2以下でない場合(S12:NO)、ステップS13において、走行制御モジュール66は、力行制御を選択する。具体的には、走行制御モジュール66は、アクセルペダル12の操作量θp等に基づいて出力制御ECU38に対する制御信号Sdを生成し、エンジン32の駆動力Feやモータ34の駆動力Fmを制御する。操作量θpが第2閾値TH2以下である場合(S12:YES)、ステップS14に進む。
 ステップS14において、走行制御モジュール66は、操作量θpが第1閾値TH1以下であるかどうかを判定する。操作量θpが第1閾値TH1以下である場合(S14:YES)、ステップS15において、走行制御モジュール66は、回生制御を選択する。すなわち、ステップS21において、走行制御モジュール66は、まず、アクセルペダル12の操作量θpに基づいて、モータ34の回生動作による回生ブレーキ量Qb(制動力Fbm)を算出する。
 図2を参照して上述したように、本実施形態では、操作量θpが第1閾値TH1以下であるとき、操作量θpが小さくなるほど、回生ブレーキ量Qbを大きくする。
 より具体的には、下記の式(1)を用いて、回生ブレーキ量Qbを算出する。
 Qb=Qb_max×G  ・・・(1)
 上記式(1)において、Qb_maxは、回生ブレーキ量Qbが取り得る最大値であり、Gは、操作量θpに応じて最大値Qb_maxに乗算されるゲインである。ここで、ゲインGは、下記の式(2)で定義される。
 G=(-θp/TH1)+1  ・・・(2)
 上記式(2)からわかるように、ゲインGは、操作量θpが第1閾値TH1と等しいとき、最小(ゼロ)となり、操作量θpが最小値(例えば、ゼロ)であるとき、最大値となる。
 次いで、ステップS22において、走行制御モジュール66は、回生ブレーキ量Qbを示す制御信号Sdを生成し、出力制御ECU38に送信する。この制御信号Sdを受信した出力制御ECU38は、制御信号Sdが示す回生ブレーキ量Qbに応じてモータ34を制御し、制動力Fbmを発生させる。
 なお、回生制御中、エンジン32は、車輪44に対して回転抵抗を付与することで制動手段(エンジンブレーキ)として機能し、車輪44に対する制動力Fbeを生じさせる。
 ステップS14に戻り、操作量θpが第1閾値TH1以下でない場合(S14:NO)、ステップS16において、走行制御モジュール66は、ニュートラル制御を選択する。具体的には、走行制御モジュール66は、エンジン32及びモータ34をニュートラル状態にさせることを求める制御信号Sdを生成し、出力制御ECU38に送信する。この制御信号Sdを受信した出力制御ECU38は、エンジン32及びモータ34をニュートラル状態とする。これにより、エンジン32及びモータ34からの駆動力Fe、Fm及び制動力Fbe、Fbmは車輪44に伝達されず、エンジン32のエンジンブレーキ及びモータ34の回生ブレーキは作動しない。その結果、車両10は慣性のみにより走行することが可能となる。但し、図示しないフットブレーキは作動可能であるため、ユーザは、当該フットブレーキを踏むことにより、車両10を減速させることができる。
 走行制御モジュール66は、図5の処理を繰り返すことにより、車両10の走行状態を随時変化させる。
5.反力制御
 上述の通り、本実施形態では、統合ECU22の反力制御モジュール68は、アクセルペダル12の操作量θpに応じてアクチュエータ50による反力Frを制御する。
 図6は、反力制御モジュール68が、アクチュエータ50の反力Frを制御するフローチャートである。ステップS31において、反力制御モジュール68は、閾値算出モジュール64からアクセルペダル12の操作量θp及び第2閾値TH2を取得する。
 続くステップS32において、反力制御モジュール68は、第2閾値TH2に基づいて操作量θ3、θ4を算出する。すなわち、第2閾値TH2と操作量θ3との差及び操作量θ4と第2閾値TH2との差を予め設定しておき、これらの差に基づいて操作量θ3、θ4を算出する。図2を参照して上述したように、操作量θ3と操作量θ4との間で反力Frを増加させる。より具体的には、操作量θpが操作量θ3から第2閾値TH2までの間は、反力Frが増加し、第2閾値TH2から操作量θ4までの間は、反力Frが減少する。
 ステップS33において、反力制御モジュール68は、操作量θpが操作量θ3以上、操作量θ4以下であるかどうかを判定する。操作量θpが操作量θ3以上、操作量θ4以下でない場合(S33:NO)、ステップS34に進む。操作量θpが操作量θ3以上、操作量θ4以下である場合(S33:YES)、ステップS35に進む。
 ステップS34において、反力制御モジュール68は、操作量θpが操作量θ1以上、操作量θ2以下であるかどうかを判定する。操作量θpが操作量θ1以上、操作量θ2以下である場合(S34:YES)、ステップS35に進む。操作量θpが操作量θ1以上、操作量θ2以下でない場合(S34:NO)、ステップS37に進む。
 ステップS35において、反力制御モジュール68は、操作量θpに応じてアクチュエータ50が生成すべき反力Frの指令値(反力指令値Fr_com)を算出する。
 反力Frの特性が図2に示すようなものであることから、アクセルペダル12の操作量θpを、力行領域内の操作量θ4より大きい値から下げていったとき、反力Frが増大した上でニュートラル領域に入る。同様に、操作量θpを、ニュートラル領域内の操作量θ2より大きい値から下げていったとき、反力Frが増大した上で回生領域に入る。
 また、操作量θpを、回生領域内の操作量θ1より小さい値から上げていったとき、反力Frが増大した上でニュートラル領域に入る。同様に、操作量θpを、ニュートラル領域内の操作量θ3より小さい値から上げていったとき、反力Frが増大した上で力行領域に入る。
 従って、ユーザは、反力Frの増大によって、現在の走行状態が、力行状態、回生状態又はニュートラル状態のいずれなのかを認識することが可能となる。
 図6に戻り、ステップS36において、反力制御モジュール68は、反力指令値Fr_comを示す制御信号Srを生成し、反力ECU54に送信する。この制御信号Srを受信した反力ECU54は、制御信号Fr_comが示す反力指令値Fr_comに基づいてアクチュエータ50を制御する。
 また、ステップS37において、反力制御モジュール68は、反力指令値Fr_comをゼロとする制御信号Srを生成し、反力ECU54に送信する。この制御信号Srを受信した反力ECU54は、アクチュエータ50が付与する反力Frをゼロとする。
 反力制御モジュール68は、図6の処理を繰り返すことにより、アクチュエータ50の反力Frを制御する。
6.本実施形態と比較例との比較
 次に、本実施形態の車両10と比較例の車両10cが一時停止の標識80で止まる場合を比較する。図7には、比較例の車両10cが一時停止の標識80で止まる様子の一例が示されている。図8には、本実施形態の車両10が一時停止の標識80で止まる様子の一例が示されている。比較例では、JP2001-260713Aのように、図2の力行領域と回生領域のみが用いられる。なお、図7では、比較例における力行領域と回生領域の閾値を閾値THcとする。
 図7の地点P11において、一時停止の標識80に気づいた運転者は、アクセルペダル12を戻し、操作量θpを閾値THcよりも小さくし、車両10cを回生動作に移行させる。その結果、モータ34による回生ブレーキとエンジン32によるエンジンブレーキの両方が機能し、車両10cの速度Vc[km/h]は、徐々に減少する。
 地点P12において、運転者は、車両10cを減速し過ぎたことに気づき、アクセルペダル12を踏み込み、操作量θpを閾値THcよりも大きくし、車両10cを力行動作に戻す。その結果、エンジン32及びモータ34の少なくとも一方からの駆動力Fe、Fmが車輪44に伝達され、車両10cの速度Vcは徐々に増加する。
 地点P13において、運転者は、アクセルペダル12を戻し、操作量θpを閾値THcよりも小さくすることで、再度、車両10cを回生動作に移行させる。その結果、モータ34による回生ブレーキとエンジン32によるエンジンブレーキの両方が機能し、車両10cの速度Vcは、徐々に減少する。
 地点P14において、運転者は、図示しないフットブレーキを踏み込み、車両10cの回生動作と合わせて、車両10cの速度Vcを減少させる。その結果、車両10cは、一時停止の標識80のある地点P15で停止する。
 一方、本実施形態の車両10を利用した場合、例えば、次のようになる。すなわち、図8の地点P21において、一時停止の標識80に気づいた運転者は、アクセルペダル12を戻し、操作量θpを第1閾値TH1と第2閾値TH2の間の値とする。これにより、エンジン32及びモータ34はニュートラル状態となり、車両10は、慣性(転がり抵抗)により減速する。その結果、車両10の速度V[km/h]は、回生動作の場合と比べて緩やかに減少する。また、この際、エンジン32への燃料の供給が停止されるため、燃費を向上させることが可能となる。
 地点P22において、運転者は、モータ34による回生ブレーキ及びエンジン32によるエンジンブレーキを作動させるため、アクセルペダル12をさらに戻し、操作量θpを第1閾値TH1よりも小さくし、車両10を回生動作に移行させる。その結果、車両10の速度Vは、回生ブレーキ及びエンジンブレーキにより減少する。
 地点P23において、運転者は、図示しないフットブレーキを踏み込み、車両10の回生動作と合わせて、車両10の速度Vを減少させる。その結果、車両10は、一時停止の標識80のある地点P24で停止する。
 以上からわかるように、比較例と比較して、本実施形態では、滑らかな減速が可能になると共に、燃費を向上させることができる。
7.本実施形態の効果
 以上のように、本実施形態によれば、アクセルペダル12の操作量θpの調整により、車両10の力行動作及び回生動作に加え、ニュートラル状態を選択することが可能となる。このため、運転者が意図しない制動力Fbe、Fbmの発生(エンジンブレーキ又は回生ブレーキの作動)により、車両10が減速することを避けることが可能となる。加えて、運転者は、例えば、加速から定速走行に移行する際、加速若しくは定速走行から緩やかな減速に移行する際、又は減速から定速走行に移行する際、慣性走行を積極的に活用することが可能となる。
 本実施形態では、力行動作又は回生動作からニュートラル状態に切り替える際、又はニュートラル状態から力行動作又は回生動作に切り替える際、反力Frを大きくする。このため、運転者は、これらの切替えが行われる操作量θpを容易に認識することが可能となる。
 本実施形態では、統合ECU22の反力制御モジュール68は、操作量θpが操作量θ4を上回る場合における反力Frを、操作量θpが操作量θ2と操作量θ3の間にある場合における反力Frよりも大きく設定する(図2参照)。これにより、駆動領域と比べ、ニュートラル領域の方が、反力Frが小さくなる。従って、運転者は、慣性走行を積極的に利用することが可能となる。また、駆動領域では、例えば、先行車、カーブ、信号、一時停止の標識に合わせて反力Frを大きくすることで、減速の必要性を運転者に報せることが可能となる。
 本実施形態では、アクセルペダル12の操作量θpが小さくなるほどモータ34による回生ブレーキ量Qb(制動力Fbm)を大きくする。これにより、操作量θpに応じて、回生動作による回生ブレーキ量Qb(制動力Fbm)を調整することが可能となる。従って、運転者の意図に対応した回生動作による制動力Fbmを用いての減速が可能となる。
 さらに、統合ECU22の閾値算出モジュール64は、アクセルペダル12の操作速度Vp(絶対値)が閾値TH_Vp1を上回る場合、第2閾値TH2を徐々に小さくする(図4等参照)。これにより、操作速度Vpが閾値TH_Vp1を上回る場合、慣性走行を許容する操作量θpの範囲(すなわち、ニュートラル領域)が徐々に狭くなる。このため、慣性走行の必要性が低い場合、例えば、急減速又は急加速の場合の操作速度Vpを閾値TH_Vp1として設定しておくことで、慣性走行に入る時間を短くし、速やかに急加速又は急減速に移行することが可能となる。換言すると、閾値算出モジュール64は、操作速度Vp(絶対値)が閾値TH_Vp2を下回る場合、第2閾値TH2を徐々に大きくする(図4等参照)。これにより、操作速度Vpが閾値TH_Vp2を下回る場合、慣性走行を許容する操作量θpの範囲(すなわち、ニュートラル領域)が広くなる。このため、慣性走行の必要性が高い場合、例えば、緩やかな坂道を下る場合又は比較的遠い位置にある信号が赤に変わった場合における操作速度Vpを閾値TH_Vp2として設定しておくことで、慣性走行の時間を長くし、燃費を向上させることが可能となる。
B.変形例
 なお、この発明は、上記実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
 上記実施形態では、車両10をハイブリッド車としたが、これに限らず、燃料電池車を含む電気自動車であってもよい。
 上記実施形態では、アクセルペダル12の操作量θpが回生領域にある場合、回生ブレーキとエンジンブレーキの両方を機能させたが、いずれか一方のみを機能させてもよい。また、アクセルペダル12の操作量θpが回生領域にある場合、操作量θpが小さくなるほど回生ブレーキ量Qbを大きくしたが(図2参照)、これに限らず、例えば、回生領域では操作量θpの値にかかわらず、回生ブレーキ量Qbを一定とすることも可能である。
 上記実施形態では、操作量θpが力行領域にあるとき(より正確には、操作量θpが操作量θ4を上回るとき)における反力Frを、操作量θpがニュートラル領域にあるとき(より正確には、操作量θpが操作量θ2を上回り、操作量θ3を下回るとき)における反力Frよりも大きく設定したが、これに限らない。例えば、操作量θpが力行領域にあるとき及びニュートラル領域にあるときのいずれにおいても反力Frを等しくすることもできる。
 上記実施形態では、第1閾値TH1を固定値とし、第2閾値TH2を変数としたが、これに限らず、第1閾値TH1を変数とし、第2閾値TH2を固定値とすることができる。この場合、操作速度Vpが増加すると、第1閾値TH1を大きくすることでニュートラル領域を狭くする。或いは、第1閾値TH1及び第2閾値TH2の両方を固定値又は変数としてもよい。

Claims (7)

  1.  車両(10)に設けられたアクセルペダル(12)と、
     前記アクセルペダル(12)の操作量を検出する操作量検出装置(16)と、
     前記アクセルペダル(12)に対して反力を付与するアクチュエータ(50)と、
     前記アクチュエータ(50)を制御する反力制御装置(68)と、
     前記車両(10)における駆動力及び制動力の発生を制御する走行制御装置(66)と
     を備え、
     前記走行制御装置(66)は、
     前記操作量が、第1閾値を下回る場合、前記制動力を発生させ、
     前記操作量が、前記第1閾値より大きい第2閾値を上回る場合、前記駆動力を発生させ、
     前記操作量が前記第1閾値を上回り前記第2閾値を下回る場合、前記駆動力及び前記制動力のいずれも発生させずに、前記車両(10)の慣性走行を許容する
     ことを特徴とするアクセルペダル装置(100)。
  2.  請求項1記載のアクセルペダル装置(100)において、
     前記反力制御装置(68)は、前記操作量が前記第1閾値又は前記第2閾値を跨って変化するとき、前記反力を大きくする
     ことを特徴とするアクセルペダル装置(100)。
  3.  請求項1又は2記載のアクセルペダル装置(100)において、
     前記第1閾値及び前記第2閾値は、前記車両(10)の走行状態を切り替えるための操作量の閾値であり、
     前記第1閾値は、回生領域とニュートラル領域の境界となる値であり、
     前記第2閾値は、前記ニュートラル領域と力行領域の境界となる値である
     ことを特徴とするアクセルペダル装置(100)。
  4.  請求項1~3のいずれか1項に記載のアクセルペダル装置(100)において、
     前記反力制御装置(68)は、前記操作量が前記第2閾値を上回る場合における前記反力を、前記操作量が前記第1閾値と前記第2閾値の間にある場合における前記反力よりも大きく設定する
     ことを特徴とするアクセルペダル装置(100)。
  5.  請求項1~4のいずれか1項に記載のアクセルペダル装置(100)において、
     前記制動力は、前記車両(10)に設けられた走行モータ(34)の回生動作による制動力を含み、
     前記アクセルペダル(12)の操作量が小さくなるほど前記回生動作による制動力を大きくする
     ことを特徴とするアクセルペダル装置(100)。
  6.  請求項1~5のいずれか1項に記載のアクセルペダル装置(100)において、
     さらに、前記アクセルペダル(12)の操作速度を検出する操作速度検出装置(64)を備え、
     前記走行制御装置(66)は、前記車両(10)の加速又は減速の度合いを判定するための前記操作速度の閾値を前記操作速度が上回る場合、前記第1閾値を大きくする又は前記第2閾値を小さくする
     ことを特徴とするアクセルペダル装置(100)。
  7.  請求項1~6のいずれか1項に記載のアクセルペダル装置(100)において、
     前記走行制御装置(66)は、
     前記車両(10)のエンジン(32)及び走行モータ(34)による駆動力及び制動力の発生を制御し、
     前記操作量が、前記第1閾値を下回る場合、前記エンジン(32)及び前記走行モータ(34)の少なくとも一方に前記制動力を発生させ、
     前記操作量が,前記第2閾値を上回る場合、前記エンジン(32)及び前記走行モータ(34)の少なくとも一方に前記駆動力を発生させ、
     前記操作量が前記第1閾値を上回り前記第2閾値を下回る場合、前記エンジン(32)及び前記走行モータ(34)の両方に前記駆動力及び前記制動力のいずれも発生させずに、前記車両(10)の慣性走行を許容する
     ことを特徴とするアクセルペダル装置(100)。
PCT/JP2011/053290 2010-03-09 2011-02-16 アクセルペダル装置 WO2011111489A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012504383A JP5563062B2 (ja) 2010-03-09 2011-02-16 アクセルペダル装置
US13/583,119 US8706374B2 (en) 2010-03-09 2011-02-16 Accelerator pedal device
CN201180012559.0A CN102791989B (zh) 2010-03-09 2011-02-16 油门踏板装置
EP11753151.7A EP2546496B1 (en) 2010-03-09 2011-02-16 Accelerator pedal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010051843 2010-03-09
JP2010-051843 2010-03-09

Publications (1)

Publication Number Publication Date
WO2011111489A1 true WO2011111489A1 (ja) 2011-09-15

Family

ID=44563314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053290 WO2011111489A1 (ja) 2010-03-09 2011-02-16 アクセルペダル装置

Country Status (5)

Country Link
US (1) US8706374B2 (ja)
EP (1) EP2546496B1 (ja)
JP (1) JP5563062B2 (ja)
CN (1) CN102791989B (ja)
WO (1) WO2011111489A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014069579A (ja) * 2012-09-27 2014-04-21 Toyota Motor Corp 車両および車両の制御方法
FR2997671A1 (fr) * 2012-11-08 2014-05-09 Peugeot Citroen Automobiles Sa Procede d'assistance a l'eco-conduite pour vehicule automobile
JP2014104857A (ja) * 2012-11-28 2014-06-09 Daihatsu Motor Co Ltd 制御装置
JP2014121888A (ja) * 2012-12-20 2014-07-03 Mitsubishi Motors Corp ペダルによる決定操作装置
JP2015067264A (ja) * 2013-10-01 2015-04-13 日産自動車株式会社 制駆動力制御装置及び制駆動力制御方法
JPWO2013175680A1 (ja) * 2012-05-25 2016-01-12 ヤマハ発動機株式会社 車両
JP2016033012A (ja) * 2015-10-07 2016-03-10 トヨタ自動車株式会社 車両および車両の制御方法
US20160221437A1 (en) * 2014-08-29 2016-08-04 Mazda Motor Corporation Vehicle accelerator pedal reaction force control device
JP2017017810A (ja) * 2015-06-29 2017-01-19 三菱自動車工業株式会社 電動車両の制御装置
EP2781722A4 (en) * 2011-11-14 2017-04-26 Toyota Jidosha Kabushiki Kaisha Driving assistance device
JP2019064563A (ja) * 2017-10-05 2019-04-25 トヨタ自動車株式会社 車両の運転支援制御装置
JP2020138607A (ja) * 2019-02-27 2020-09-03 学校法人日本大学 電動車両、アクセル部材、及び制御方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011088277A1 (de) * 2011-12-12 2013-06-13 Robert Bosch Gmbh Verfahren und Steuergerät zum Steuern eines haptischen Fahrpedals eines Kraftfahrzeugs mit einer Lageregelung
US9476369B2 (en) * 2012-04-13 2016-10-25 Toyota Motor Engineering & Manufacturing North America, Inc. Variable power output and maximum speed in drive mode
DE102012209647A1 (de) 2012-06-08 2013-12-12 Robert Bosch Gmbh Verfahren und Steuergerät zum Steuern eines haptischen Fahrpedals eines Kraftfahrzeugs mit einer Aktivierungsbedingung
DE102013003143B4 (de) * 2013-02-25 2015-04-09 Audi Ag Verfahren zum Betrieb eines Kraftfahrzeugs mit Hybridantrieb
CN105473837B (zh) * 2013-08-22 2018-06-26 本田技研工业株式会社 油门踏板反力控制装置
FR3011215B1 (fr) * 2013-09-27 2015-10-16 Peugeot Citroen Automobiles Sa Procede d'aide a la conduite d'un vehicule
FR3014805B1 (fr) * 2013-12-17 2017-04-28 Peugeot Citroen Automobiles Sa Vehicule automobile avec mode roue libre commande par la pedale d'acceleration
FR3017355B1 (fr) * 2014-02-10 2016-02-26 Peugeot Citroen Automobiles Sa Procede et dispositif d'aide a la conduite d'un vehicule suivant un autre vehicule, en fonction de la pente
JP6065878B2 (ja) * 2014-06-09 2017-01-25 トヨタ自動車株式会社 車両の制御装置及び車両の制御方法
FR3024856B1 (fr) * 2014-08-12 2018-01-26 Psa Automobiles Sa. Procede et dispositif de controle des modes de fonctionnement d'une chaine de transmission hybride d'un vehicule, en fonction de lois d'evolution
US9656671B2 (en) * 2014-08-25 2017-05-23 Ford Global Technologies, Llc Coast switch for an electrified vehicle
US9545849B2 (en) * 2014-09-19 2017-01-17 Ford Global Technologies, Llc Vehicle system and method for adapting lift pedal regeneration
JP6183335B2 (ja) * 2014-11-12 2017-08-23 トヨタ自動車株式会社 車両
DE102015105331B4 (de) 2015-04-08 2023-02-16 Ujet S.A. Elektrischer Motorroller
JP6168097B2 (ja) * 2015-05-08 2017-07-26 トヨタ自動車株式会社 ハイブリッド自動車
JP6414133B2 (ja) * 2016-04-28 2018-10-31 トヨタ自動車株式会社 車両制御装置
US11801835B2 (en) 2018-02-26 2023-10-31 Jaguar Land Rover Limited Controller for a vehicle based on accelerator pedal position
GB2571323B (en) * 2018-02-26 2020-11-18 Jaguar Land Rover Ltd Accelerator pedal maps
JP7464355B2 (ja) * 2018-08-07 2024-04-09 トヨタ自動車株式会社 制動力制御装置、制御装置、マネージャ、方法、プログラム、アクチュエータシステム、および車両
DE102019113225A1 (de) * 2019-05-20 2020-11-26 Wabco Gmbh Geschwindigkeitseinstell-System für ein Fahrzeug und Verfahren zur Einstellung einer Fahrgeschwindigkeit
JP7331814B2 (ja) * 2020-09-28 2023-08-23 トヨタ自動車株式会社 車両用制御装置、及び車両用制御プログラム
CN113306408A (zh) * 2021-06-04 2021-08-27 江西江铃集团晶马汽车有限公司 一种新能源客车用全新驾驶操控装置及其工作方法
US20230294719A1 (en) * 2022-03-21 2023-09-21 Faraday&Future Inc. Intelligent one-pedal driving system
US20230331229A1 (en) * 2022-04-15 2023-10-19 Lenovo (Singapore) Pte. Ltd. Automated assistance with one-pedal driving

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08216737A (ja) * 1994-12-13 1996-08-27 Toyota Motor Corp 身体障害者用車両運転装置
JP2001260713A (ja) 2000-03-23 2001-09-26 Nissan Motor Co Ltd 車両用アクセルペダル装置
JP2002240590A (ja) * 2001-02-20 2002-08-28 Toyota Motor Corp 車両用運転操作装置
JP2006117020A (ja) * 2004-10-19 2006-05-11 Toyota Motor Corp 車両用走行制御装置
JP2007022236A (ja) * 2005-07-14 2007-02-01 Fujitsu Ten Ltd 運転補助装置の制御装置
JP2007099268A (ja) * 2002-06-10 2007-04-19 Nissan Motor Co Ltd 車両用運転操作補助装置およびその装置を備えた車両
WO2009136512A1 (ja) 2008-05-09 2009-11-12 本田技研工業株式会社 車両走行制御装置及び車両走行制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5253172A (en) * 1990-01-25 1993-10-12 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Method and apparatus for learning neutral position of vehicle steering angle
DE4029334A1 (de) * 1990-09-15 1992-03-19 Teves Gmbh Alfred Pedaleinheit fuer ein kraftfahrzeug
US5927829A (en) * 1995-10-03 1999-07-27 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Brake apparatus for electric automobile utilizing regenerative braking
FR2749229B1 (fr) * 1996-05-30 1998-07-31 Renault Procede de freinage recuperatif d'un vehicule electrique
DE19629229C2 (de) * 1996-07-20 2002-06-20 Daimler Chrysler Ag Verfahren zur Durchführung eines automatischen Bremsvorgangs
US6378636B1 (en) 2000-10-11 2002-04-30 Ford Global Technologies, Inc. Method and system for providing for vehicle drivability feel after accelerator release in an electric or hybrid electric vehicle
FR2863992B1 (fr) 2003-12-23 2007-03-23 Giat Ind Sa Commande de freinage d'un vehicule electrique avec recuperation d'energie
DE102007035424A1 (de) * 2007-07-28 2009-01-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Fahrzeug, Betriebsverfahren und Bedienschnittstelle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08216737A (ja) * 1994-12-13 1996-08-27 Toyota Motor Corp 身体障害者用車両運転装置
JP2001260713A (ja) 2000-03-23 2001-09-26 Nissan Motor Co Ltd 車両用アクセルペダル装置
JP2002240590A (ja) * 2001-02-20 2002-08-28 Toyota Motor Corp 車両用運転操作装置
JP2007099268A (ja) * 2002-06-10 2007-04-19 Nissan Motor Co Ltd 車両用運転操作補助装置およびその装置を備えた車両
JP2006117020A (ja) * 2004-10-19 2006-05-11 Toyota Motor Corp 車両用走行制御装置
JP2007022236A (ja) * 2005-07-14 2007-02-01 Fujitsu Ten Ltd 運転補助装置の制御装置
WO2009136512A1 (ja) 2008-05-09 2009-11-12 本田技研工業株式会社 車両走行制御装置及び車両走行制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2546496A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781722A4 (en) * 2011-11-14 2017-04-26 Toyota Jidosha Kabushiki Kaisha Driving assistance device
JPWO2013175680A1 (ja) * 2012-05-25 2016-01-12 ヤマハ発動機株式会社 車両
JP2014069579A (ja) * 2012-09-27 2014-04-21 Toyota Motor Corp 車両および車両の制御方法
FR2997671A1 (fr) * 2012-11-08 2014-05-09 Peugeot Citroen Automobiles Sa Procede d'assistance a l'eco-conduite pour vehicule automobile
WO2014072617A1 (fr) * 2012-11-08 2014-05-15 Peugeot Citroen Automobiles Sa Procédé d'assistance à l'éco-conduite pour véhicule automobile
JP2014104857A (ja) * 2012-11-28 2014-06-09 Daihatsu Motor Co Ltd 制御装置
JP2014121888A (ja) * 2012-12-20 2014-07-03 Mitsubishi Motors Corp ペダルによる決定操作装置
JP2015067264A (ja) * 2013-10-01 2015-04-13 日産自動車株式会社 制駆動力制御装置及び制駆動力制御方法
US20160221437A1 (en) * 2014-08-29 2016-08-04 Mazda Motor Corporation Vehicle accelerator pedal reaction force control device
US9908409B2 (en) * 2014-08-29 2018-03-06 Mazda Motor Corporation Vehicle accelerator pedal reaction force control device
JP2017017810A (ja) * 2015-06-29 2017-01-19 三菱自動車工業株式会社 電動車両の制御装置
JP2016033012A (ja) * 2015-10-07 2016-03-10 トヨタ自動車株式会社 車両および車両の制御方法
JP2019064563A (ja) * 2017-10-05 2019-04-25 トヨタ自動車株式会社 車両の運転支援制御装置
US11572062B2 (en) 2017-10-05 2023-02-07 Toyota Jidosha Kabushiki Kaisha Driving assistance control device
JP2020138607A (ja) * 2019-02-27 2020-09-03 学校法人日本大学 電動車両、アクセル部材、及び制御方法
JP7292705B2 (ja) 2019-02-27 2023-06-19 学校法人日本大学 電動車両、アクセル部材、及び制御方法

Also Published As

Publication number Publication date
EP2546496A1 (en) 2013-01-16
EP2546496A4 (en) 2013-08-21
US20120325042A1 (en) 2012-12-27
JP5563062B2 (ja) 2014-07-30
US8706374B2 (en) 2014-04-22
CN102791989B (zh) 2015-04-29
JPWO2011111489A1 (ja) 2013-06-27
CN102791989A (zh) 2012-11-21
EP2546496B1 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2011111489A1 (ja) アクセルペダル装置
JP6458877B2 (ja) 制駆動力制御方法及び制駆動力制御装置
US7291090B2 (en) Motor torque control system for vehicle
CN108349399B (zh) 制动驱动力控制方法以及制动驱动力控制装置
JP5878906B2 (ja) 電気自動車のモータ位置及びクリープ制御装置とその制御方法
US9896083B2 (en) Vehicle control device
US8862303B2 (en) Industrial vehicle
CN109476235B (zh) 转矩控制方法以及转矩控制装置
WO2012098680A1 (ja) 車両制御装置
JP6729142B2 (ja) 駆動力制御方法及び駆動力制御装置
JP2014527392A (ja) 車両の減速構成を制御する方法
JP5524808B2 (ja) 電動車両用制御装置
US9139106B2 (en) Method of controlling electric vehicle
JP7207269B2 (ja) ペダル反力制御装置
US8930053B2 (en) Control apparatus for hybrid vehicle
JP2021044975A (ja) 車両の制御装置
JP7176360B2 (ja) 電動車両
JP3721838B2 (ja) 回生電力制御装置
JP2020100349A (ja) 車両の制御装置
JP2003061205A (ja) 電気自動車のモータ制御装置
JP2014207839A (ja) 車両の挙動制御装置
JP2002095106A (ja) 車輌の制動力制御装置
JP3951649B2 (ja) 電気自動車のモータ制御装置
JP2000274270A (ja) ハイブリッド車の車両走行制御装置
US11815175B2 (en) Control device and control method of electric vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012559.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753151

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504383

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13583119

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011753151

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE