WO2011093487A1 - ポリ塩化ビニル用熱安定剤、ポリ塩化ビニル樹脂組成物およびその製造方法 - Google Patents

ポリ塩化ビニル用熱安定剤、ポリ塩化ビニル樹脂組成物およびその製造方法 Download PDF

Info

Publication number
WO2011093487A1
WO2011093487A1 PCT/JP2011/051885 JP2011051885W WO2011093487A1 WO 2011093487 A1 WO2011093487 A1 WO 2011093487A1 JP 2011051885 W JP2011051885 W JP 2011051885W WO 2011093487 A1 WO2011093487 A1 WO 2011093487A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinyl chloride
pva
chloride resin
parts
resin composition
Prior art date
Application number
PCT/JP2011/051885
Other languages
English (en)
French (fr)
Inventor
楠藤 健
明 坪井
秀樹 真木
仲前 昌人
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to US13/576,557 priority Critical patent/US20120309880A1/en
Priority to EP11737196.3A priority patent/EP2532708A4/en
Priority to CN201180016985.1A priority patent/CN102822266B/zh
Priority to JP2011551952A priority patent/JP5755152B2/ja
Publication of WO2011093487A1 publication Critical patent/WO2011093487A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention includes a polyvinyl chloride heat stabilizer used in a polyvinyl chloride resin composition suitably used in the fields of food, medical use, daily necessities, and the like, and the polyvinyl chloride heat stabilizer More specifically, the present invention relates to a polyvinyl chloride resin composition capable of obtaining a molded article having good thermal stability during molding and less coloring.
  • Polyvinyl chloride resin is molded by compounding stabilizers such as Ca-Zn and Ba-Zn, and the molded products are widely used for products suitable for general use, and for food and medical use. ing.
  • Patent Document 1 Japanese Patent Laid-Open No. 50-92947 discloses a method of adding calcium soap, zinc soap, polyhydric alcohol or a derivative thereof, and a neutral inorganic calcium salt to a chlorine-containing resin. ing.
  • Patent Document 2 Japanese Patent Laid-Open No. 54-813559 discloses a method of adding a water-soluble polymer to a chlorine-containing polymer.
  • Patent Document 3 Japanese Patent Laid-Open No. 57-147552 discloses a method of adding a reaction condensate of dipentaerythritol and dicarboxylic acid, zinc oxide, zinc carbonate or fatty acid zinc, and hydrotalcite to a chlorine-containing resin. Has been.
  • Patent Document 5 Japanese Patent Application Laid-Open No. 1-178543 discloses a halogen-containing thermoplastic resin, a metal soap, and a copolymer having an ethylene content of 20 to 75 mol% and a saponification degree of a vinyl acetate moiety of 50 mol% or more. A method of adding a saponified ethylene-vinyl acetate copolymer having a composition is disclosed.
  • Patent Document 6 JP-A-6-287387 discloses a method of adding a metal salt of an organic acid and an acetalized product of polyvinyl alcohol to a vinyl chloride resin.
  • Patent Document 7 Japanese Patent Application Laid-Open No. 9-32866 discloses a partially saponified polyvinyl alcohol having a saponification degree of 70 to 95 mol%, an average polymerization degree of 300 to 2000, and a mercapto group at the molecular chain terminal. A method of adding is disclosed.
  • Patent Document 8 Japanese Patent Laid-Open No. 9-31281 discloses a method of adding a zinc compound, hydrotalcites, polyvinyl alcohol, and polymethyl methacrylate to a vinyl chloride resin.
  • Non-Patent Document 1 (Polymer Collection Vol. 47, No. 3, 197 (1990)) includes polyvinyl chloride, zinc stearate-calcium stearate composite soap, and fully saponified polyvinyl alcohol having a polymerization degree of 600 or more. A method of adding is disclosed.
  • Non-Patent Document 2 Polymer Collection Vol. 47, No. 6, 509 (1990) describes polyvinyl chloride, zinc stearate-calcium stearate composite soap, polymerization degree of 500, and saponification degree of 73.6. A method of adding mol% partially saponified polyvinyl alcohol is disclosed.
  • Non-Patent Document 3 Polymer Collection Vol. 50, No. 2, 65 (1993) describes polyvinyl chloride, zinc stearate-calcium stearate composite soap, ethylene having an ethylene content of 29 mol% or more. A method of adding a vinyl alcohol copolymer is disclosed.
  • Non-Patent Document 5 Journal of the Adhesion Society of Japan, Vol. 43, No. 2, 43 (2007) shows that polyvinyl chloride has a polymerization degree of 500 and a saponification degree of 88% by mole polyvinyl alcohol or a polymerization degree of 1700, a saponification degree. Discloses a method of adding 78 mol% or more of polyvinyl alcohol and polymethyl methacrylate.
  • Patent Documents 1 to 8 and Non-Patent Documents 1 to 5 have problems that the long-term thermal stability is not sufficient and the obtained molded product is colored. Was.
  • the present invention relates to a thermal stabilizer for polyvinyl chloride that can improve the thermal stability of a vinyl chloride resin composition at the time of molding and reduce the coloring of a molded product obtained by molding the vinyl chloride resin composition, And it aims at providing the polyvinyl chloride resin composition containing this heat stabilizer for polyvinyl chloride.
  • the present inventors have found that the vinyl alcohol polymer (A) (hereinafter referred to as “vinyl alcohol heavy polymer”) having an average saponification degree of 30 to 99.9 mol% and a viscosity average polymerization degree of 1000 or less. And the zinc compound (B), and the weight ratio A / B between (A) and (B) is in the range of 1/10 to 10/1. And heat during molding of the polyvinyl chloride resin composition when using a thermal stabilizer for polyvinyl chloride comprising a mixed powder (P) in which 80% by weight or more of the particles pass through a 75 ⁇ m sieve. The inventors have found that the stability can be sufficiently maintained and the molded product is less colored, and the present invention has been completed.
  • the mixed powder (P) further contains a calcium compound (C), and the weight ratio A / (B + C) of (A) to the total amount of (B) and (C) is 1/20 to 10 /. A range of 2 is preferable.
  • the mixed powder (P) is obtained by spray drying a slurry in which the zinc compound (B) is dispersed in the aqueous solution of the PVA (A).
  • the mixed powder (P) is obtained by spray-drying a slurry in which the zinc compound (B) and the calcium compound (C) are dispersed in the aqueous solution of the PVA (A).
  • the mixed powder (P) is obtained by mixing the zinc compound (B) with powder obtained by spray drying a slurry in which the calcium compound (C) is dispersed in the aqueous solution of the PVA (A). It is also preferable that The mixed powder (P) is obtained by mixing the calcium compound (C) with powder obtained by spray drying a slurry in which the zinc compound (B) is dispersed in the aqueous solution of the PVA (A). It is also preferable that
  • the PVA (A) preferably has an alkyl group having 6 or more carbon atoms at the terminal, preferably contains 0.1 to 20 mol% of an ethylene unit as a copolymerization component, and further has a carboxyl group at the terminal, It is also preferable to have at least one functional group selected from the group consisting of sulfonic acid groups and salts thereof.
  • the present invention also includes a polyvinyl chloride resin composition containing 0.1 to 10 parts by weight of the above-mentioned heat stabilizer for polyvinyl chloride with respect to 100 parts by weight of the polyvinyl chloride resin.
  • a lubricant with respect to 100 parts by weight of the polyvinyl chloride resin.
  • the lubricant is more preferably a fatty acid ester of a polyol, and particularly preferably the fatty acid ester of the polyol is glycerin monostearate.
  • the present invention further includes a step of producing a slurry by dispersing the zinc compound (B) in an aqueous solution of PVA (A), and a step of spray drying the slurry to obtain a mixed powder (P). Also included is a method for producing a heat stabilizer for polyvinyl chloride. Including the steps of dispersing a zinc compound (B) and a calcium compound (C) in an aqueous solution of PVA (A) to produce a slurry, and spray-drying the slurry to obtain a mixed powder (P). And a method for producing a heat stabilizer for polyvinyl chloride.
  • the present invention further includes a step of mixing 0.1 to 10 parts by weight of the thermal stabilizer for polyvinyl chloride obtained by the above production method with 100 parts by weight of the polyvinyl chloride resin.
  • the manufacturing method of a thing is also included.
  • the polyvinyl chloride resin composition of the present invention is excellent in thermal stability during molding. And when the said resin composition is used, a molded object with little coloring can be obtained.
  • the average saponification degree of PVA (A) used in the present invention is 30 to 99.9 mol%, preferably 60 to 96 mol%, particularly preferably 70 to 93 mol%.
  • the average saponification degree is less than 30 mol%, the long-term thermal stability of the polyvinyl chloride resin composition is lowered, which is not preferable.
  • the average saponification degree is 30 mol%. If it is smaller, the aqueous solubility may decrease and an aqueous solution of PVA (A) may not be prepared.
  • the average saponification degree of PVA is a value measured according to JIS K6726.
  • PVA (A) has an average saponification degree of 75 to 99.9 mol% and a viscosity average polymerization degree of 450 or less. It is preferable that two or more types of PVA are contained, and the average saponification degree of the two or more types of PVA is different by 5 mol% or more.
  • PVA (A) contains 3 or more types of PVA "the average saponification degree of PVA differs by 5 mol% or more" means that PVA having the maximum average saponification degree and the minimum PVA among a plurality of PVAs. It represents that the difference in the average saponification degree is 5 mol% or more.
  • PVA (A) has an average degree of saponification of 75 to 85 mol% and a viscosity average degree of polymerization of 450 or less, and an average degree of saponification of 85 to 95 mol% and a viscosity average degree of polymerization. It is preferable to consist of PVA (a2) which is 450 or less. At this time, the average degree of saponification of PVA (a1) is more preferably 78 to 83 mol%, still more preferably 79 to 82 mol%. The average degree of saponification of PVA (a2) is more preferably 85 to 95 mol%, further preferably 87 to 94 mol%, particularly preferably 88 to 93 mol%.
  • the weight ratio (a1) / (a2) is preferably 20/80 to 80/20, more preferably 30/70 to 70/30, and 40 / More preferred is 60-60 / 40.
  • PVA (A) is a vinyl ester monomer obtained by polymerizing a vinyl ester monomer using a conventionally known method such as bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, or dispersion polymerization. It can be produced by saponifying an ester polymer. From the industrial viewpoint, preferred polymerization methods are solution polymerization, emulsion polymerization and dispersion polymerization. In the polymerization operation, any one of a batch method, a semi-batch method, and a continuous method can be employed.
  • vinyl ester monomer examples include vinyl acetate, vinyl formate, vinyl propionate, vinyl caprylate, vinyl versatate, etc.
  • vinyl acetate is an industrial viewpoint. To preferred.
  • the vinyl ester monomer When the vinyl ester monomer is polymerized, the vinyl ester monomer may be copolymerized with other monomers as long as the gist of the present invention is not impaired.
  • monomers that can be used include ⁇ -olefins such as ethylene, propylene, n-butene, and isobutylene; acrylic acid and its salts; methyl acrylate, ethyl acrylate, n-propyl acrylate, and i-propyl acrylate.
  • Acrylic acid esters such as n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate and octadecyl acrylate; methacrylic acid and salts thereof; methyl methacrylate, methacryl Methacrylic acid such as ethyl acetate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, octadecyl methacrylate Esters; N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetoneacrylamide, acrylamidepropanesulfonic acid and its salt, acrylamidepropyld
  • the content thereof is preferably 0.1 to 20 mol%, more preferably 0.5 to 18 mol%, still more preferably 1 to 15 mol% in terms of ethylene units. .
  • the content of the ethylene unit exceeds 20 mol%, the long-term thermal stability of the polyvinyl chloride resin composition may be deteriorated.
  • the PVA aqueous solution When preparing the PVA, the water solubility of the PVA is low, which may make the preparation difficult.
  • a chain transfer agent may be allowed to coexist for the purpose of adjusting the degree of polymerization of the resulting PVA (A).
  • Chain transfer agents include aldehydes such as acetaldehyde, propionaldehyde, butyraldehyde, benzaldehyde; ketones such as acetone, methyl ethyl ketone, hexanone, cyclohexanone; mercaptans having an alkyl group having 6 or more carbon atoms, mercaptans having a carboxyl group, sulfone Mercaptans such as mercaptans having an acid group and mercaptans having a hydroxyl group; thiocarboxylic acids such as thioacetic acid; and halogenated hydrocarbons such as trichloroethylene and perchloroethylene.
  • the addition amount of the chain transfer agent is determined according to the chain transfer constant of the chain transfer agent to be added and the degree of polymerization of the target PVA, but is generally preferably 0.1 to 10% by weight with respect to PVA.
  • Aldehydes having 6 or more carbon atoms such as aldehyde, n-tridecyl aldehyde, cetyl aldehyde, palmityl aldehyde, stearyl aldehyde; or n-hexyl mercaptan, n-octyl mercaptan, n-decyl mercaptan, n-dodecyl mercaptan, n-octadecyl Mercaptans having 6 or more carbon atoms such as mercaptans can be used.
  • the carbon number of the alkyl group in the chain transfer agent which has the said alkyl group 8 or more are more preferable.
  • PVA (A) has at least one functional group selected from the group consisting of a carboxyl group, a sulfonic acid group, and a salt thereof at the terminal.
  • a technique for introducing at least one functional group selected from the group consisting of a carboxyl group, a sulfonic acid group and a salt thereof at the terminal a technique using the above chain transfer agent is mainly used.
  • a method in which a vinyl ester such as vinyl acetate is polymerized in the presence and then saponified is preferable (see WO 91/15518).
  • the carboxyl group or sulfonic acid group may be an ester thereof or a salt thereof.
  • the salt at this time include alkali metal salts.
  • a carboxyl group or sulfonic acid group salt is produced by exchange of hydrogen ions and alkali metal cations after a saponification step, etc., when introducing a chain transfer agent having a carboxyl group or sulfonic acid group into PVA. There are things to do.
  • PVA (A) may contain an acid having a pKa at 25 ° C. of 3.5 to 5.5 and / or a metal salt thereof.
  • an acetic acid pKa4.76), propionic acid (pKa4.87), butyric acid ( pKa 4.63), octanoic acid (pKa 4.89), adipic acid (pKa 5.03), benzoic acid (pKa 4.00), formic acid (pKa 3.55), valeric acid (pKa 4.63), heptanoic acid (pKa 4.66) ), Lactic acid (pKa 3.66), phenylacetic acid (pKa 4.10), isobutyric acid (pKa 4.63), cyclohexanecarboxylic acid (pKa 4.70), and the like.
  • Acids that can be particularly preferably used are acetic acid, propionic acid and lactic acid.
  • the metal salt of said acid can also be used.
  • alkaline-earth metal salts such as alkali metal salts, such as sodium and potassium, magnesium, and calcium, are used.
  • the content of the acid having a pKa of 3.5 to 5.5 and / or a metal salt thereof is preferably 0.05 to 5 parts by weight, more preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of PVA. More preferably, it is 0.15 to 2 parts by weight.
  • the content of the acid and / or metal salt thereof relative to PVA is less than 0.05 parts by weight, the long-term thermal stability of the polyvinyl chloride resin composition is lowered. There is a risk of coloring.
  • the method for containing the acid and / or metal salt thereof in a predetermined amount is not particularly limited.
  • Examples of the zinc compound (B) used in the present invention include zinc aliphatic carboxylates such as zinc stearate, zinc laurate and zinc oleate; zinc benzoate and zinc pt-butyl zinc benzoate. Aromatic carboxylates; zinc salts of organic acids such as amino acid zinc salts and phosphoric ester zinc salts; inorganic zinc salts such as zinc oxide and zinc carbonate, etc. may be used, and these may be used in combination. Among these, zinc stearate, zinc laurate and zinc oleate are preferable, and zinc stearate and zinc laurate are more preferable. Further, the zinc compound (B) used in the present invention is preferably such that 80% by weight or more of the particles pass through a 75 ⁇ m sieve, and 85% by weight or more of the particles pass through a 75 ⁇ m sieve. More preferably.
  • the mixed powder (P) further contains a calcium compound (C), and the weight ratio A / (B + C) of (A) to the total amount of (B) and (C) is 1/20 to 10/2. It is preferable that it is in the range.
  • Examples of calcium compounds (C) used in the present invention include calcium aliphatic carboxylates such as calcium stearate, calcium laurate, and calcium oleate; calcium aromatics such as calcium benzoate and calcium pt-butylbenzoate. Examples thereof include carboxylates; calcium salts of organic acids such as amino acid calcium salts and phosphate ester calcium salts; inorganic calcium salts such as calcium oxide and calcium carbonate, and the like. Among these, calcium stearate, calcium laurate, calcium oleate and calcium carbonate are preferable, and calcium stearate, calcium laurate and calcium carbonate are more preferable.
  • the calcium compound (C) used in the present invention is preferably such that 80% by weight or more of the particles pass through a 75 ⁇ m sieve and 85% by weight or more of the particles pass through a 75 ⁇ m sieve. More preferably.
  • the mixed powder (P) constituting the heat stabilizer for polyvinyl chloride of the present invention has an average saponification degree of 30 to 99.9 mol% and a viscosity average degree of polymerization of 1000 or less.
  • a zinc compound (B) The weight ratio A / B of PVA (A) to zinc compound (B) is in the range of 1/10 to 10/1, preferably in the range of 1/5 to 5/1.
  • the weight ratio A / B is less than 1/10, that is, when the amount of PVA (A) is small, the blackening time of the polyvinyl chloride resin composition is short and the thermal stability becomes insufficient.
  • B is larger than 10/1, that is, when the amount of the zinc compound (B) is small, coloring of the obtained molded product becomes remarkable.
  • the weight ratio A / (B + C) of (A) to the total amount of (B) and (C) is 1/10 to A range of 10/1 is more preferable.
  • the weight ratio A / (B + C) is smaller than 1/20, that is, when the amount of PVA (A) is small, the blackening time of the polychlorinated resin composition may be short and the thermal stability may be insufficient.
  • the weight ratio A / (B + C) is larger than 10/2, that is, when the amount of the zinc compound (B) and the calcium compound (C) is small, there is a possibility that the obtained molded body is colored.
  • the weight ratio B / D between the zinc compound (B) and the calcium compound (C) is not particularly limited, but is preferably in the range of 1/20 to 20/1, more preferably 1/10 to 10 /. 1 range.
  • the weight ratio B / D is less than 1/20, the blackening of the polychlorinated resin composition itself is alleviated, but the colorability of the molded product may be deteriorated.
  • the weight ratio B / D exceeds 20/1, the blackening time may be shortened.
  • the above-mentioned mixed powder (P) is preferably such that 80% by weight or more of the particles pass through a sieve having an opening of 75 ⁇ m, and 85% by weight or more of the particles pass through a sieve having an opening of 75 ⁇ m.
  • the object of the present invention is that when the amount of particles passing through a sieve having a mesh opening of 75 ⁇ m is less than 80% by weight, the obtained vinyl chloride resin composition is excellent in thermal stability at the time of molding and obtains a molded product with little coloring. May not be achieved.
  • the form of the mixed powder (P) may be a simple powder blend of the powder of the above-mentioned PVA (A) and the powder of the zinc compound (B), but the above-mentioned zinc is added to the aqueous solution of the above-mentioned PVA (A).
  • a mixed powder containing a powder obtained by spray drying a slurry in which the compound (B) and / or the calcium compound (C) is dispersed is preferable.
  • the concentration of the aqueous solution of PVA (A) is preferably in the range of 3 to 30% by weight.
  • the total concentration of PVA (A), zinc compound (B) and calcium compound (C) in the slurry is preferably in the range of 5 to 60% by weight, more preferably in the range of 10 to 50% by weight.
  • a wetting agent may be used in combination as long as the effects of the present invention are not impaired.
  • the wetting agent is preferably a known nonionic surfactant or anionic surfactant.
  • the amount of wetting agent used is not particularly limited, but is preferably in the range of 0.001 to 5 parts by weight with respect to 100 parts by weight of the total of the zinc compound (B) and the calcium compound (C).
  • the mixed powder (P) is preferably a mixed powder obtained by spray-drying a slurry in which the zinc compound (B) is dispersed in the aqueous solution of PVA (A) described above.
  • the form of the mixed powder (P) may be a mixed powder obtained by spray drying a slurry in which the zinc compound (B) and the calcium compound (C) are dispersed in the aqueous solution of the PVA (A) described above. preferable.
  • the powder of the zinc compound (B) is added to the powder obtained by spray-drying the slurry in which the calcium compound (C) is dispersed in the aqueous solution of the PVA (A) described above. It is also preferable that they are mixed.
  • the mixed powder (P) may further contain dipentaerythritol as long as the effect of the present invention is not impaired.
  • the dipentaerythritol is preferably such that 80% by weight or more of the particles pass through a sieve having an opening of 75 ⁇ m.
  • the method of incorporating the dipentaerythritol into the mixed powder (P) is not particularly limited.
  • the powder (P) is simply blended with each powder to prepare a powder mixture of dipentaerythritol together with other powders
  • the mixed powder (spray dry) is used.
  • the method of making it contain by dispersing the powder of dipentaerythritol with the other powder in the slurry etc. is mentioned.
  • the mixed powder (P) may further contain an alkyl ester of a polyhydric alcohol as long as the effect of the present invention is not impaired.
  • the alkyl ester of a polyhydric alcohol is a compound obtained by esterifying a polyhydric alcohol and a carboxylic acid.
  • the polyhydric alcohol alkyl ester is preferably such that 80% by weight or more of the particles pass through a 75 ⁇ m sieve.
  • Examples of the polyhydric alcohol used for esterification include glycerin, pentaerythritol, dipentaerythritol, xylitol, sorbitol, mannitol and the like, and pentaerythritol and dipentaerythritol are particularly preferable.
  • Carboxylic acids used for esterification include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and other aliphatic dicarboxylic acids, phthalic acid, and isophthalic acid.
  • aromatic dicarboxylic acids such as terephthalic acid, and adipic acid is particularly preferable.
  • pentaerythritol adipic acid esters and dipentaerythritol adipic acid esters are preferred, and mixtures thereof are more preferred because they are easily available.
  • the method for adding the alkyl ester of polyhydric alcohol to the mixed powder (P) is not particularly limited, and the same method as in the case of dipentaerythritol can be used.
  • a vinyl chloride monomer as a main component and a mixture thereof with a copolymerizable monomer (single vinyl chloride)
  • the body is 50% by weight or more).
  • the monomers copolymerized with this vinyl chloride monomer include vinyl esters such as vinyl acetate and vinyl propionate; (meth) acrylic acid such as methyl (meth) acrylate and ethyl (meth) acrylate. Examples include esters; olefins such as ethylene and propylene; and maleic anhydride, acrylonitrile, styrene, and vinylidene chloride.
  • a method for producing the polyvinyl chloride resin using these monomers a method in which the monomer is subjected to suspension polymerization in the presence of a polymerization initiator is preferable.
  • Dispersing stabilizers used for example, water-soluble cellulose ethers such as methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose; water-soluble polymers such as PVA and gelatin; sorbitan monolaurate, sorbitan trioleate, glycerin tristeare Oil-soluble emulsifiers such as ethylene oxide-propylene oxide block copolymer; water-soluble emulsifiers such as polyoxyethylene sorbitan monolaurate, polyoxyethylene glycerine oleate, sodium laurate, etc. Degrees 65-99 mol%, PVA of polymerization degree of 500-4000 are preferably used, the amount added is 0.01-2.0 parts by weight per part by weight of vinyl chloride 100 is preferred
  • oil-soluble or water-soluble polymerization initiators conventionally used for polymerization of vinyl chloride monomers and the like can be used.
  • oil-soluble polymerization initiator include percarbonate compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, diethoxyethyl peroxydicarbonate; t-butyl peroxyneodecanate, t -Perester compounds such as butyl peroxypivalate, t-hexylperoxypivalate, ⁇ -cumylperoxyneodecanate; acetylcyclohexylsulfonyl peroxide, 2,4,4-trimethylpentyl-2-peroxyphenoxyacetate Peroxides such as 3,5,5-trimethylhexanoyl peroxide, lauroyl peroxide; 2,2′-azobis-2,4-dimethylvaleronitrile
  • water-soluble polymerization initiator examples include potassium persulfate, ammonium persulfate, hydrogen peroxide, cumene hydroperoxide, and the like. These oil-soluble or water-soluble polymerization initiators can be used alone or in combination of two or more.
  • additives can be added to the polymerization reaction system as necessary.
  • the additive include polymerization regulators such as aldehydes, halogenated hydrocarbons and mercaptans; polymerization inhibitors such as phenol compounds, sulfur compounds and N-oxide compounds.
  • a pH adjuster, a crosslinking agent, etc. can also be added arbitrarily.
  • additives such as preservatives, antifungal agents, anti-blocking agents, antifoaming agents, anti-scale agents, antistatic agents and the like that are usually used for polymerization can be optionally added as necessary.
  • the polyvinyl chloride resin composition of the present invention contains 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight of the above-mentioned heat stabilizer for polyvinyl chloride with respect to 100 parts by weight of the above polyvinyl chloride resin. Contains. If the content is less than 0.1 part by weight, a sufficient heat stabilizing effect may not be obtained, and if it exceeds 10 parts by weight, the polyvinyl chloride molded product may be blackened.
  • the method of mixing the polyvinyl chloride resin and the heat stabilizer for polyvinyl chloride is not particularly limited, and the method of mixing the above heat stabilizer with the polyvinyl chloride resin powder before thermoforming, When thermoforming vinyl chloride, a method of mixing and molding the above heat stabilizer from a side feeder or the like is appropriately employed.
  • the polyvinyl chloride resin composition of the present invention comprises a stabilizer, a phenolic antioxidant, a phosphorus antioxidant, a light stabilizer, an ultraviolet absorber, an antifogging agent, an antistatic agent, a flame retardant, a lubricant, A modifier, a reinforcing agent, a pigment, a foaming agent, a plasticizer, and the like can be used in combination.
  • the polyvinyl chloride resin composition of the present invention may be mixed with other resins as long as the mechanical properties are not impaired.
  • the lubricant examples include hydrocarbons such as liquid paraffin, natural paraffin, microwax and polyethylene wax; fatty acids such as stearic acid and lauric acid; stearic acid amide, palmitic acid amide, methylene bisstearamide, ethylene bisstearamide, etc. Fatty acid amides; fatty acid esters of monoalcohols such as butyl stearate; fatty acid esters of polyols such as hydrogenated castor oil, ethylene glycol monostearate and glycerin monostearate; alcohols such as cetyl alcohol and stearyl alcohol.
  • the amount of the above-mentioned lubricant added is preferably 0.001 to 10 parts by weight, more preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the polyvinyl chloride resin.
  • alkaline earth metal soaps such as calcium soap and barium soap, aluminum soaps, organometallic salts such as organophosphate metal salts, metal oxidation Inorganic metal salts such as inorganic composite metal salts such as metal hydroxides, metal carbonates and zeolites, inorganic composite metal hydroxides of clay minerals such as hydrotalcite, barium chlorate, barium perchlorate, perchlorine
  • Non-metallic stabilizers such as halogen oxyacid salts such as sodium acid, ⁇ -diketones, polyhydric alcohols, and epoxy compounds.
  • plasticizer examples include phthalic acid, trimellitic acid, pyromellitic acid, adipic acid, sebacic acid, azelaic acid and the like and n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, n-pentanol, isopentanol, t-pentanol, n-hexanol, isohexanol, n-heptanol, isoheptanol, n-octanol, isooctanol, 2-ethylhexanol, n-nonanol, isononanol, n-decanol Esters such as esters of butanediol and adipic acid, and esters of linear and branched alkyl alcohols such as isodecanol, lauryl alcohol, myristyl alcohol, palmityl alcohol
  • epoxy ester plasticizers such as tricresyl phosphate, trixylenyl phosphate, monobutyl dixylenyl phosphate, and trioctyl phosphate.
  • the phenolic antioxidant is not particularly limited as long as it is usually used.
  • the phosphorus-based antioxidant may be any of those usually used.
  • trisnonylphenyl phosphite tris (2,4-di-t-butylphenyl) phosphite, tris [2-t- Butyl-4- (3-tert-butyl-4-hydroxy-5-methylphenylthio) -5-methylphenyl] phosphite
  • tridecyl phosphite tridecyl phosphite
  • octyl diphenyl phosphite di (decyl) monophenyl phosphite
  • di (Tridecyl) pentaerythritol diphosphite distearyl pentaerythritol diphosphite
  • di (nonylphenyl) pentaerythritol diphosphite bis (2,4-di-t-butylphenyl) pentaerythrito
  • ultraviolet absorber examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 5,5′-methylenebis (2-hydroxy-4-methoxybenzophenone).
  • 2-hydroxybenzophenones such as 2-; 2- (2-hydroxy-5-t-octylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) -5-chlorobenzotriazole 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5-dicumylphenyl) benzotriazole, 2,2′-methylenebis (4-t-octyl-6-benzotriazolyl) phenol, 2- (2- 2- (2-hydroxyphenyl) benzotriazoles such as polyethylene glycol ester of droxy-3-tert-butyl-5-carboxyphenyl) benzotriazole; phenyl salicylate resorcinol monobenzoate, 2,4-di-tert-butylphenyl- Benzoates such as 3,5-di-t-butyl-4-hydroxybenzoate
  • Examples of the light stabilizer include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2,6, 6-tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) butanetetracarboxylate, tetrates (1,2,2,6,6-pentamethyl-4-piperidyl) butanetetracarboxylate, bis (1,2,2 2,6,6-pentamethyl-4-piperidyl) di (tridecyl) -1,2,3,4-butanetetracarboxylate, bis (1,2,2,6, -Pentamethyl-4-hydroxybenzyl) malonate, 1- (2-hydroxyethyl
  • Examples of the processing method for the polyvinyl chloride resin composition of the present invention include extrusion processing, calendar processing, blow molding, press processing, powder molding, injection molding and the like.
  • the polymerization temperature was maintained at 60 ° C., and a 20% methanol solution of 2-ME was continuously added at 5.0 mL / hr. After 4 hours, when the polymerization rate reached 60%, the polymerization was stopped by cooling. Next, unreacted vinyl acetate was removed under reduced pressure to obtain a methanol solution of polyvinyl acetate (PVAc).
  • the PVAc solution adjusted to 30% was saponified by adding a NaOH methanol solution (10% concentration) so that the alkali molar ratio (number of moles of NaOH / number of moles of vinyl ester units in PVAc) was 0.006. The obtained PVA was washed with methanol.
  • PVA with a polymerization degree of 400 and a saponification degree of 80 mol% was obtained by the above operation.
  • the obtained slurry was granulated with a spray dryer (manufactured by Okawara Koki Co., Ltd .: L-8 type spray dryer) to obtain a mixed powder (P). From the composition of the slurry, the solid content ratio of PVA (A) / zinc compound (B) is 1/2. Further, when the obtained spray-dried granule was sieved with a 200 mesh (aperture 75 ⁇ m) sieve, 90% of it passed through the sieve.
  • a spray dryer manufactured by Okawara Koki Co., Ltd .: L-8 type spray dryer
  • Thermal stability test The polyvinyl chloride resin composition was kneaded with a test roll at 180 ° C. for 5 minutes to prepare a sheet having a thickness of 0.45 mm. This sheet was cut into 50 ⁇ 70 mm. This sheet piece was put in a gear oven, and the time until it became completely black at a temperature of 180 ° C. was measured, and used as an index of thermal stability. Moreover, it evaluated similarly except having changed the test roll temperature into 190 degreeC.
  • Examples 2-5 PVA shown in Table 1 was obtained in the same manner as in Example 1 except that the alkali molar ratio was changed during saponification.
  • a polyvinyl chloride resin composition was obtained in the same manner as in Example 1, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 1.
  • Examples 6 and 7 PVA shown in Table 1 was obtained in the same manner as in Example 1 except that the charged weight of vinyl acetate and methanol was changed and the alkali molar ratio was changed during saponification.
  • a polyvinyl chloride resin composition was obtained in the same manner as in Example 1, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 1.
  • Example 9 Manufacture of PVA
  • n-DDM n-dodecyl mercaptan
  • the polymerization temperature was maintained at 60 ° C., and 97.9 parts of a 10 wt% methyl acetate solution of n-DDM was added uniformly over 5 hours. After 5 hours, when the polymerization rate reached 50%, the polymerization was stopped by cooling. Next, unreacted vinyl acetate was removed under reduced pressure to obtain a methanol solution of polyvinyl acetate (PVAc).
  • the PVAc solution adjusted to 30% was saponified by adding NaOH methanol solution (10% concentration) so that the alkali molar ratio (number of moles of NaOH / number of moles of vinyl ester units in PVAc) was 0.008.
  • PVA with a saponification degree of 80.0 mol% was obtained by the above operation.
  • the sodium acetate content measured by isotachophoresis (isotacophoresis) was 1.0%.
  • the PVA was washed with methyl acetate containing a small amount of water under reflux, purified by Soxhlet extraction with methanol for 48 hours, dissolved in heavy water, and analyzed by NMR.
  • Example 10 Manufacture of PVA
  • a 100 L pressure reactor equipped with a stirrer, nitrogen inlet, ethylene inlet and initiator addition port was charged with 26.4 kg of vinyl acetate and 33.5 kg of methanol, heated to 60 ° C., and then nitrogen bubbling for 30 minutes. The inside was replaced with nitrogen. Next, ethylene was introduced so that the reactor pressure was 0.22 MPa.
  • a 2.8 g / L methanol solution of 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) was prepared as an initiator, and was purged with nitrogen by bubbling with nitrogen gas. After adjusting the temperature inside the reaction vessel to 60 ° C., 77 mL of the initiator solution was injected to initiate polymerization.
  • ethylene was introduced to maintain the reactor pressure at 0.22 MPa, the polymerization temperature at 60 ° C., and the above initiator solution was continuously added at 241 mL / hr. After 5 hours, when the polymerization rate reached 60%, the polymerization was stopped by cooling. After the reaction vessel was opened to remove ethylene, nitrogen gas was bubbled to completely remove ethylene. Subsequently, the unreacted vinyl acetate monomer was removed under reduced pressure to obtain a methanol solution of an ethylene-polyvinyl acetate copolymer (ethylene-modified PVAc).
  • the solution adjusted to 30% was saponified by adding NaOH methanol solution (10% concentration) so that the alkali molar ratio (number of moles of NaOH / number of moles of vinyl ester units in the modified PVAc) was 0.009. .
  • the saponification degree of the obtained ethylene-modified PVA was 80 mol%.
  • a methanol solution of ethylene-modified PVAc obtained by removing the unreacted vinyl acetate monomer after polymerization is poured into n-hexane to precipitate ethylene-modified PVAc, and reprecipitation purification is performed by dissolving the collected ethylene-modified PVAc with acetone. After being repeated, it was dried under reduced pressure at 60 ° C. to obtain a purified product of ethylene-modified PVAc.
  • the ethylene unit content determined from proton NMR measurement of the ethylene-modified PVAc was 5 mol%.
  • Example 11 Manufacture of PVA
  • a 6 L reactor equipped with a stirrer, a nitrogen inlet, an additive inlet and an initiator addition port 2400 parts of vinyl acetate, 600 parts of methanol and 0.29 parts of 3-mercaptopropionic acid (hereinafter referred to as 3-MPA)
  • 3-MPA 3-mercaptopropionic acid
  • the polymerization temperature was maintained at 60 ° C., and 51.7 parts of a 10% methanol solution of 3-MPA was added uniformly over 5 hours. After 5 hours, when the polymerization rate reached 50%, the polymerization was stopped by cooling. Next, unreacted vinyl acetate was removed under reduced pressure to obtain a methanol solution of polyvinyl acetate (PVAc).
  • the PVAc solution adjusted to 30% was saponified by adding NaOH methanol solution (10% concentration) so that the alkali molar ratio (number of moles of NaOH / number of moles of vinyl ester units in PVAc) was 0.008.
  • PVA with a saponification degree of 80.0 mol% was obtained by the above operation.
  • the sodium acetate content measured by isotachophoresis (isotacophoresis) was 1.0%.
  • a carboxyl group a carboxylic acid Na group
  • a polyvinyl chloride resin composition was obtained in the same manner as in Example 1, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 1.
  • Example 12 Polyvinyl acetate (PVAc) obtained by polymerizing vinyl acetate in the same manner as in Example 11 was prepared in a 30% methanol solution, and an alkali molar ratio (number of moles of NaOH / mol of vinyl ester units in PVAc). The solution was saponified by adding NaOH methanol solution (10% concentration) so that the number was 0.0025. PVA with a saponification degree of 40.0 mol% was obtained by the above operation. The sodium acetate content measured by isotachophoresis (isotacophoresis) was 0.3%.
  • Example 13 Manufacture of PVA
  • a 6 L reaction vessel equipped with a stirrer, nitrogen inlet, additive inlet and initiator inlet was charged with 2400 parts of vinyl acetate, 600 parts of methanol and 0.44 parts of sodium 1-mercaptopropanesulfonate and heated to 60 ° C. After heating, the system was purged with nitrogen by nitrogen bubbling for 30 minutes. The temperature inside the reaction vessel was adjusted to 60 ° C., and 1.2 parts of 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) was added to initiate polymerization.
  • the polymerization temperature was maintained at 60 ° C., and 51.7 parts of a 15% methanol solution of sodium 1-mercaptopropanesulfonate was uniformly added over 5 hours. After 5 hours, when the polymerization rate reached 50%, the polymerization was stopped by cooling. Next, unreacted vinyl acetate was removed under reduced pressure to obtain a methanol solution of polyvinyl acetate (PVAc).
  • the PVAc solution adjusted to 30% was saponified by adding NaOH methanol solution (10% concentration) so that the alkali molar ratio (number of moles of NaOH / number of moles of vinyl ester units in PVAc) was 0.008.
  • Examples 14-23 In the production of the polyvinyl chloride resin compositions of Examples 1 to 5 and 9 to 13, Examples 1 to 5 and 100 were added except that 1 part of glycerin monostearate was further added and mixed with 100 parts of vinyl chloride resin. A polyvinyl chloride resin composition was obtained in the same manner as in 9-13. The obtained polyvinyl chloride resin composition was used to evaluate thermal stability and colorability. The evaluation results are shown in Table 1.
  • Example 25 In the production of the polyvinyl chloride resin composition of Example 24, a polyvinyl chloride resin was obtained in the same manner as in Example 24 except that 1 part of glycerin monostearate was further added to and mixed with 100 parts of the vinyl chloride resin. A composition was obtained. The obtained polyvinyl chloride resin composition was used to evaluate thermal stability and colorability. The evaluation results are shown in Table 1.
  • Comparative Example 1 In the production of the polyvinyl chloride resin composition, a polyvinyl chloride resin composition was prepared in the same manner as in Example 1 except that 2 parts of zinc stearate passing through an opening of 75 ⁇ m was added instead of the mixed powder (P). The thermal stability and colorability were evaluated. The evaluation results are shown in Table 1.
  • Comparative Example 2 In the production of the polyvinyl chloride resin composition of Comparative Example 1, a polyvinyl chloride resin was prepared in the same manner as in Comparative Example 1, except that 1 part of glycerin monostearate was further added to and mixed with 100 parts of the vinyl chloride resin. A composition was obtained. The obtained polyvinyl chloride resin composition was used to evaluate thermal stability and colorability. The evaluation results are shown in Table 1.
  • Comparative Example 4 PVA shown in Table 1 was obtained in the same manner as in Example 1 except that the charged weight of vinyl acetate and methanol was changed and the alkali molar ratio was changed during saponification. Using this PVA, a polyvinyl chloride resin composition was obtained in the same manner as in Example 8, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 1.
  • Example 8 Comparative Example 5 In Example 8, a mixed powder (P) was obtained in the same manner except that the pulverization of PVA was omitted. Using this mixed powder (P), a polyvinyl chloride resin composition was obtained in the same manner as in Example 1, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 1.
  • Comparative Example 9 A mixed powder (P) was obtained in the same manner as in Example 8, except that the mixing ratio of the powders (A) and (B) was 0.001 / 2. Using this mixed powder (P), a polyvinyl chloride resin composition was obtained in the same manner as in Example 1, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 1.
  • Example 1 a mixed powder (P) was prepared in the same manner except that the mixing ratio of the PVA aqueous solution and zinc stearate was adjusted so that the solid content ratio of (A) and (B) was the ratio shown in Table 1. ) Using this mixed powder (P), a polyvinyl chloride resin composition was obtained in the same manner as in Example 1, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 1.
  • Comparative Example 13 PVA used in Example 1 was dissolved in distilled water to obtain 100 parts of a 25% aqueous solution. To this, 50 parts of zinc stearate (manufactured by NOF Corporation; trade name “zinc stearate”) was added, and the mixed powder (P) was the same as in Example 1 except that no wetting agent was added. Got. From the composition of the slurry, the solid content ratio of PVA (A) / zinc compound (B) is 1/2. Moreover, when the obtained spray-dried granule was sieved with a 200 mesh (aperture 75 ⁇ m) sieve, 75% of the granules passed through the sieve. Using this mixed powder (P), a polyvinyl chloride resin composition was obtained in the same manner as in Example 1, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 1.
  • Comparative Example 14 In the production of the polyvinyl chloride resin composition of Comparative Example 13, a polyvinyl chloride resin was prepared in the same manner as in Example 13 except that 100 parts of vinyl chloride resin was mixed with 1 part of glycerin monostearate as a lubricant. A composition was obtained. The obtained polyvinyl chloride resin composition was used to evaluate thermal stability and colorability. The evaluation results are shown in Table 1.
  • Examples 1 to 5 PVA having a saponification degree in the range of 60 to 99.9 mol% and a viscosity average polymerization degree of 400 passes through a sieve-dried granule with zinc stearate through an opening of 75 ⁇ m at 80% by weight or more. The case where mixed powder is used is shown. Overall, the results are good, and the blackening time is longer than in Examples 6 to 8 described later. In particular, regarding Examples 1 to 3 in which the degree of saponification is in the range of 70 to 93 mol%, the blackening time is particularly excellent when the kneading temperature on the test roll is 180 ° C. or 190 ° C.
  • Examples 6 and 7 show cases where the saponification degree is 80 mol% and the viscosity average polymerization degree is 750 and 950. Overall, good results.
  • Example 8 the composition was the same as in Example 1, but instead of spray-dried granules of PVA and zinc stearate, a simple blend of PVA powder and stearic acid powder both passing through an opening of 75 ⁇ m was blended. Shows the case. It is a good result.
  • Example 9 is a PVA containing an alkyl group at the terminal, and the other compositions are the same when using the same PVA as in Example 1. Although both 180 ° C. and 190 ° C. are slight, the blackening time is superior to that of Example 1.
  • Example 10 is a PVA copolymerized with ethylene, and other compositions are the same when PVA similar to Example 1 is used. The blackening time is superior to that of Example 1.
  • Example 11 is a PVA containing a carboxyl group at the terminal, and the other compositions are the same when PVA similar to Example 1 is used.
  • the blackening time is superior to that of Example 1.
  • both blackening time and coloring property are excellent.
  • Example 13 is a PVA containing a sulfonic acid group at the terminal, and the other compositions are the same when PVA similar to Example 1 is used. The blackening time is superior to that of Example 1.
  • glycerin monostearate is blended as a lubricant in the compositions of Examples 1 to 5. In any case, the blackening time is improved and the colorability is excellent.
  • Comparative Examples 1 and 2 show the results when PVA is not used together. In either case, the level of blackening time is unsatisfactory and the level of colorability is low. The same applies to the case where glycerin monostearate, which is a lubricant, is blended (Comparative Example 2).
  • Comparative Example 5 As in Example 8, it is a case where a mixed powder obtained by simply blending both powders is added instead of spray dried granules of PVA and zinc stearate.
  • a mixed powder that passes only 70% by weight through a sieve having a mesh opening of 75 ⁇ m is used. Compared to Example 8, the blackening time is reduced and the colorability is also reduced.
  • Comparative Examples 6 to 8 glycerin monostearate is blended as a lubricant in the compositions of Comparative Examples 3 to 5. In any case, although the blackening time is slightly improved, it is unsatisfactory and the colorability is also low.
  • Example 26 (Making mixed powder (P)) PVA obtained in the same manner as in Example 1 was dissolved in distilled water to obtain 500 parts of a 5% aqueous solution. To this, 50 parts of zinc stearate (manufactured by NOF Corporation; trade name “zinc stearate”) and 25 parts of calcium stearate (manufactured by NOF Corporation; trade name “calcium stearate”) are added and wetted together. As an agent, 0.1 part of an acetylene glycol surfactant (manufactured by Nissin Chemical Industry Co., Ltd .; trade name “Surfinol 465”) was added and stirred to obtain a slurry.
  • an acetylene glycol surfactant manufactured by Nissin Chemical Industry Co., Ltd .; trade name “Surfinol 465”
  • the obtained slurry was granulated with a spray dryer (manufactured by Okawara Koki Co., Ltd .: L-8 type spray dryer) to obtain a mixed powder (P).
  • a spray dryer manufactured by Okawara Koki Co., Ltd .: L-8 type spray dryer
  • the solid content ratio of PVA (A) / zinc compound (B) / calcium compound (C) is 1/2/1, and the solid content ratio of A / (B + C) is 1/3.
  • the obtained spray-dried granule was sieved with a 200 mesh (aperture 75 ⁇ m) sieve, 90% of it passed through the sieve.
  • Examples 27-30 PVA shown in Table 2 was obtained in the same manner as in Example 1 except that the alkali molar ratio was changed during saponification.
  • a polyvinyl chloride resin composition was obtained in the same manner as in Example 26, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 2.
  • Examples 31 and 32 PVA shown in Table 2 was obtained in the same manner as in Example 1 except that the charged weight of vinyl acetate and methanol was changed and the alkali molar ratio was changed during saponification.
  • a polyvinyl chloride resin composition was obtained in the same manner as in Example 26, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 2.
  • Example 34 A polyvinyl chloride resin composition was obtained in the same manner as in Example 26 using PVA having a CH 3 — (CH 2 ) 11 —S group at one end of the molecule obtained in the same manner as in Example 9. The thermal stability and colorability were evaluated. The evaluation results are shown in Table 2.
  • Example 35 Using ethylene-modified PVA obtained in the same manner as in Example 10, a polyvinyl chloride resin composition was obtained in the same manner as in Example 26, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 2.
  • Example 36 A polyvinyl chloride resin composition was obtained in the same manner as in Example 26 using PVA having a carboxyl group (carboxylic acid Na group) at one end in the molecule, obtained in the same manner as in Example 11, and was thermally stable. Evaluation of the property and coloring property was performed. The evaluation results are shown in Table 2.
  • Example 37 A polyvinyl chloride resin composition was obtained in the same manner as in Example 26 using PVA having a carboxyl group (carboxylic acid Na group) at one end in the molecule, obtained in the same manner as in Example 12, and was thermally stable. Evaluation of the property and coloring property was performed. The evaluation results are shown in Table 2.
  • Example 38 A polyvinyl chloride resin composition was obtained in the same manner as in Example 26 using a PVA having a sulfonic acid group (sulfonic acid Na group) at one end in the molecule obtained in the same manner as in Example 13. Stability and colorability were evaluated. The evaluation results are shown in Table 2.
  • Examples 39-48 In the production of the polyvinyl chloride resin compositions of Examples 26-30 and 34-38, Examples 26-30 and 100, except that 1 part of glycerin monostearate was further added to and mixed with 100 parts of vinyl chloride resin. In the same manner as in 34 to 38, a polyvinyl chloride resin composition was obtained. The obtained polyvinyl chloride resin composition was used to evaluate thermal stability and colorability. The evaluation results are shown in Table 2.
  • Example 49 PVA obtained in the same manner as in Example 1 was dissolved in distilled water to obtain 167 parts of a 15% aqueous solution. To this, 50 parts of zinc stearate (manufactured by NOF Corp .; trade name “zinc stearate”) and 25 parts of calcium stearate (manufactured by NOF Corp .; trade name “calcium stearate”) are added, and a wetting agent is added. A mixed powder (P) was obtained in the same manner as in Example 26 except that it was not added. From the composition of the slurry, the solid content ratio of PVA (A) / zinc compound (B) / calcium compound (C) is 1/2/1, and the solid content ratio of A / (B + C) is 1/3. .
  • Example 50 In the production of the polyvinyl chloride resin composition of Example 49, a polyvinyl chloride resin was obtained in the same manner as in Example 49 except that 1 part of glycerin monostearate was further added to and mixed with 100 parts of the vinyl chloride resin. A composition was obtained. The obtained polyvinyl chloride resin composition was used to evaluate thermal stability and colorability. The evaluation results are shown in Table 2.
  • Comparative Example 15 In the production of the polyvinyl chloride resin composition, instead of the mixed powder (P), 2 parts of zinc stearate passing through a 75 ⁇ m sieve and 1 part calcium stearate passing through a 75 ⁇ m sieve were added. Except for the above, a polyvinyl chloride resin composition was obtained in the same manner as in Example 26, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 2.
  • Comparative Example 16 In the production of the polyvinyl chloride resin composition of Comparative Example 15, a polyvinyl chloride resin was prepared in the same manner as in Comparative Example 15 except that 1 part of glycerin monostearate was further added to and mixed with 100 parts of the vinyl chloride resin. A composition was obtained. The obtained polyvinyl chloride resin composition was used to evaluate thermal stability and colorability. The evaluation results are shown in Table 2.
  • Comparative Example 17 PVA shown in Table 2 was obtained in the same manner as in Example 1 except that the charged weight of vinyl acetate and methanol was changed and the alkali molar ratio was changed during saponification. Using this PVA, a polyvinyl chloride resin composition was obtained in the same manner as in Example 26, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 2.
  • Comparative Example 18 PVA shown in Table 2 was obtained in the same manner as in Example 1 except that the alkali molar ratio was changed during saponification. Using this PVA, a polyvinyl chloride resin composition was obtained in the same manner as in Example 33, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 2.
  • Comparative Example 19 A mixed powder (P) was obtained in the same manner as in Example 33 except that the pulverization of PVA was omitted. Using this mixed powder (P), a polyvinyl chloride resin composition was obtained in the same manner as in Example 26, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 2.
  • Comparative Examples 20-22 In the production of the polyvinyl chloride resin compositions of Comparative Examples 17 to 19, in the same manner as Comparative Examples 17 to 19, except that 1 part of glycerin monostearate was further added to and mixed with 100 parts of the vinyl chloride resin. A polyvinyl chloride resin composition was obtained. The obtained polyvinyl chloride resin composition was used to evaluate thermal stability and colorability. The evaluation results are shown in Table 2.
  • Example 26 except that the mixing ratio of the PVA aqueous solution, zinc stearate and calcium stearate was adjusted so that the solid content ratio of (A), (B) and (C) was the ratio shown in Table 2. Thus, a mixed powder (P) was obtained. Using this mixed powder (P), a polyvinyl chloride resin composition was obtained in the same manner as in Example 26, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 2.
  • Comparative Example 27 PVA obtained in the same manner as in Example 1 was dissolved in distilled water to obtain 100 parts of a 25% aqueous solution. To this, 50 parts of zinc stearate (manufactured by NOF Corp .; trade name “zinc stearate”) and 25 parts of calcium stearate (manufactured by NOF Corp .; trade name “calcium stearate”) are added, and a wetting agent is added. A mixed powder (P) was obtained in the same manner as in Example 26 except that it was not added. From the composition of the slurry, the solid content ratio of PVA (A) / zinc compound (B) / calcium compound (C) is 1/2/1, and the solid content ratio of A / (B + C) is 1/3.
  • Comparative Example 28 In the production of the polyvinyl chloride resin composition of Comparative Example 27, a polyvinyl chloride resin was prepared in the same manner as in Comparative Example 27 except that 100 parts of the vinyl chloride resin was mixed with 1 part of glycerin monostearate as a lubricant. A composition was obtained. The obtained polyvinyl chloride resin composition was used to evaluate thermal stability and colorability. The evaluation results are shown in Table 2.
  • Examples 26 to 30 PVA having a degree of saponification in the range of 60 to 99.9 mol% and a viscosity average degree of polymerization of 400, and having an opening of 75 ⁇ m and 80 wt% in a spray-dried granule with zinc stearate and calcium stearate The case where the mixed powder which passes above is used is shown. Overall, the results are good, and the blackening time is longer than those of Examples 31 to 33 described later. In particular, regarding Examples 26 to 28 in which the saponification degree is in the range of 70 to 93 mol%, the blackening time is particularly excellent when the kneading temperature on the test roll is 180 ° C. or 190 ° C.
  • Examples 31 and 32 show the cases where the saponification degree is 80 mol% and the viscosity average polymerization degree is 750 and 950. Overall, good results.
  • Example 33 the composition is the same as in Example 26, but not PVA, zinc stearate and calcium stearate spray-dried granules, but PVA powder, zinc stearate and calcium stearate both passing through a sieve having an opening of 75 ⁇ m. The case of blending a simple blend of is shown. It is a good result.
  • Example 34 is a PVA containing an alkyl group at the terminal, and other compositions are the same when PVA similar to Example 26 is used. Although both 180 ° C. and 190 ° C. are slight, the blackening time is superior to that of Example 26.
  • Example 35 is a PVA copolymerized with ethylene, and the other composition is the case of using the same PVA as in Example 26.
  • the blackening time is superior to Example 26.
  • Example 36 is a PVA containing a carboxyl group at the terminal, and the other compositions are the same when using PVA similar to Example 26.
  • the blackening time is superior to Example 26. Also, compared with Example 37 described later, both the blackening time and the colorability are excellent.
  • Example 37 is a PVA containing a carboxyl group at the terminal as in Example 36, but the saponification degree is 40 mol% and a PVA lower than that in Example 36 is used. Overall, the results are reasonable.
  • Example 38 is a PVA containing a sulfonic acid group at the terminal, and the other compositions are the same when PVA similar to Example 26 is used. The blackening time is superior to Example 26.
  • Examples 39 to 43 glycerin monostearate is blended as a lubricant in the compositions of Examples 26 to 30. In any case, the blackening time is improved and the colorability is excellent.
  • Examples 44 to 48 glycerin monostearate is blended as a lubricant in the compositions of Examples 34 to 38. In either case, the blackening time is improved.
  • Comparative Examples 15 and 16 show the results when PVA is not used in combination. In either case, the level of blackening time is unsatisfactory and the level of colorability is low. The same applies to the case where glycerin monostearate, which is a lubricant, is blended (Comparative Example 16).
  • Comparative Example 17 the viscosity average polymerization degree exceeds the range of the present invention (1500), and in Comparative Example 18, the saponification degree is outside the range of the present invention (25 mol%). Yes. Since PVA having a saponification degree of 25 mol% is poor in water solubility, PVA is forcibly pulverized and all of PVA powder, zinc stearate powder and calcium stearate powder passing through a sieve having an opening of 75 ⁇ m are simply used. The blend was evaluated. In any of Comparative Examples 17 and 18, the level of blackening time is unsatisfactory and the level of colorability is low.
  • Example 33 it is a case where a mixed powder obtained by simply blending these powders is added instead of spray dried granules of PVA, zinc stearate and calcium stearate,
  • PVA a mixed powder that passes through only 75% by weight of a sieve having a mesh opening of 75 ⁇ m is used as a result of using a non-micronized one.
  • the blackening time is reduced and the colorability is also reduced.
  • Example 51 (Making mixed powder (P)) PVA having a polymerization degree of 400 and a saponification degree of 80 mol% obtained in the same manner as in Example 1 was dissolved in distilled water to obtain 500 parts of a 5% aqueous solution. To this, 50 parts of zinc stearate (manufactured by NOF Corporation; trade name “Zinc Stearate”) and 125 parts of calcium carbonate (trade name “Softon 1800”, manufactured by Bihoku Flour Industry Co., Ltd.) are added and combined.
  • Zinc Stearate trade name “Zinc Stearate”
  • Ca carbonate trade name “Softon 1800”, manufactured by Bihoku Flour Industry Co., Ltd.
  • a wetting agent As a wetting agent, 0.1 part of an acetylene glycol surfactant (manufactured by Nissin Chemical Industry Co., Ltd .; trade name “Surfinol 465”) was added and stirred to obtain a slurry. The obtained slurry was granulated with a spray dryer (manufactured by Okawara Koki Co., Ltd .: L-8 type spray dryer) to obtain a mixed powder (P). From the composition of the slurry, the solid content ratio of PVA (A) / zinc compound (B) / calcium compound (C) is 1/2/5, and the solid content ratio of A / (B + C) is 1/7. . Further, when the obtained spray-dried granule was sieved with a 200 mesh (aperture 75 ⁇ m) sieve, 90% of it passed through the sieve.
  • an acetylene glycol surfactant manufactured by Nissin Chemical Industry Co., Ltd .; trade name “S
  • Example 52 PVA shown in Table 3 was obtained in the same manner except that the alkali molar ratio was changed during saponification.
  • a polyvinyl chloride resin composition was obtained in the same manner as in Example 51, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 3.
  • Comparative Example 29 In the production of the polyvinyl chloride resin composition, instead of the mixed powder (P), 2 parts of zinc stearate passing through a sieve having an opening of 75 ⁇ m, 5 parts of calcium carbonate passing through a sieve having an opening of 75 ⁇ m, and A polyvinyl chloride resin composition was obtained in the same manner as in Example 51 except that 1 part of calcium stearate passing through a sieve having an opening of 75 ⁇ m was added, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 3.
  • Comparative Example 30 A polyvinyl chloride resin composition was obtained in the same manner as in Example 56 using PVA having a polymerization degree of 400 and a saponification degree of 25 mol% used in Comparative Example 18, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 3.
  • Comparative Example 31 A mixed powder (P) was obtained in the same manner as in Example 56 except that the pulverization of PVA was omitted. Using this mixed powder (P), a polyvinyl chloride resin composition was obtained in the same manner as in Example 56, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 3.
  • Comparative Example 29 shows the result when PVA is not used together.
  • the level of blackening time is unsatisfactory and the level of colorability is also low.
  • the saponification degree is outside the range of the present invention (25 mol%). Since PVA with a saponification degree of 25 mol% is poor in water solubility, PVA is forcibly pulverized, and the PVA powder, zinc stearate powder, and calcium carbonate powder that pass through a 75 ⁇ m mesh sieve are simply used.
  • the blend was evaluated as a mixed powder (P) blended with a polyvinyl chloride resin together with calcium stearate. The level of blackening time is also unsatisfactory and the level of colorability is low.
  • Example 56 instead of spray-dried granules of PVA, zinc stearate and calcium carbonate, a mixed powder obtained by simply blending these powders was used as the mixed powder (P). This is a case where it is added to a polyvinyl chloride resin together with calcium stearate. As a result of using PVA that is not particularly finely divided, a mixed powder that passes only 75% by weight of a sieve having a mesh opening of 75 ⁇ m is used. . Compared to Example 56, the blackening time is reduced and the colorability is also reduced.
  • Example 57 (Making mixed powder (P)) PVA having a polymerization degree of 400 and a saponification degree of 80 mol% obtained in the same manner as in Example 1 was dissolved in distilled water to obtain 500 parts of a 5% aqueous solution.
  • the obtained slurry was granulated with a spray dryer (manufactured by Okawara Koki Co., Ltd .: L-8 type spray dryer) to obtain a mixed powder (P).
  • a spray dryer manufactured by Okawara Koki Co., Ltd .: L-8 type spray dryer
  • the solid content ratio of PVA (A) / zinc compound (B) / calcium compound (C) is 1/2/6
  • the solid content ratio of A / (B + C) is 1/8.
  • the obtained spray-dried granule was sieved with a 200 mesh (aperture 75 ⁇ m) sieve, 90% of it passed through the sieve.
  • Example 57 PVA shown in Table 4 was obtained in the same manner except that the alkali molar ratio was changed during saponification.
  • a polyvinyl chloride resin composition was obtained in the same manner as in Example 57, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 4.
  • Examples 57 to 61 as the calcium compound (C), calcium stearate and calcium carbonate were used in combination and granulated by spray drying together with PVA (A) and zinc compound (B). The case where the mixed powder which passes 80 micrometers or more of openings 75 micrometers is shown. The results were generally good, and in particular, the blackening time was superior to those of Examples 26 to 30 in Table 2 and Examples 51 to 55 in Table 3, and the saponification degree was particularly in the range of 70 to 93 mol%. Regarding Examples 57 to 59, the blackening time is particularly excellent when the kneading temperature on the test roll is 180 ° C. or 190 ° C.
  • Example 62 (Making mixed powder (P)) PVA obtained in the same manner as in Example 1 was dissolved in distilled water to obtain 500 parts of a 5% aqueous solution. To this, 25 parts of calcium stearate (manufactured by NOF Corporation; trade name “Calcium stearate”) is added, and an acetylene glycol surfactant (manufactured by Nissin Chemical Industry Co., Ltd .; trade name “ Surfinol 465 ”) 0.1 part was added and stirred to obtain a slurry.
  • calcium stearate manufactured by NOF Corporation; trade name “Calcium stearate”
  • an acetylene glycol surfactant manufactured by Nissin Chemical Industry Co., Ltd .; trade name “ Surfinol 465 0.1 part was added and stirred to obtain a slurry.
  • the resulting slurry was granulated with a spray dryer (manufactured by Ogawara Koki Co., Ltd .: L-8 type spray dryer), and 50 parts of zinc stearate (manufactured by NOF Corporation; trade name “Zinc Stearate”) was added thereto. This was added to obtain a mixed powder (P). From the composition of the slurry and the amount of zinc stearate added, the solid content ratio of PVA (A) / zinc compound (B) / calcium compound (C) is 1/2/1 and the solid content of A / (B + C) The ratio is 1/3. Further, when the obtained spray-dried granule was sieved with a 200 mesh (aperture 75 ⁇ m) sieve, 90% of it passed through the sieve.
  • Examples 63-66 PVA shown in Table 5 was obtained in the same manner as in Example 1 except that the alkali molar ratio was changed during saponification.
  • a polyvinyl chloride resin composition was obtained in the same manner as in Example 62, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 5.
  • Example 71 A polyvinyl chloride resin composition was obtained in the same manner as in Example 62 using PVA having a carboxyl group (carboxylic acid Na group) at one end in the molecule, obtained in the same manner as in Example 11, and heat stable. Evaluation of the property and coloring property was performed. The evaluation results are shown in Table 5.
  • Example 72 A polyvinyl chloride resin composition was obtained in the same manner as in Example 62 using PVA having a carboxyl group (carboxylic acid Na group) at one end in the molecule obtained in the same manner as in Example 12. Evaluation of the property and coloring property was performed. The evaluation results are shown in Table 5.
  • Example 73 A polyvinyl chloride resin composition was obtained in the same manner as in Example 62 using a PVA having a sulfonic acid group (sulfonic acid Na group) at one end in the molecule obtained in the same manner as in Example 13. Stability and colorability were evaluated. The evaluation results are shown in Table 5.
  • Examples 74-83 In the production of the polyvinyl chloride resin compositions of Examples 62 to 66 and 69 to 73, Examples 62 to 66 and 100 parts except for adding 1 part of glycerin monostearate as a lubricant to 100 parts of vinyl chloride resin and mixing. In the same manner as in 69 to 73, a polyvinyl chloride resin composition was obtained. The obtained polyvinyl chloride resin composition was used to evaluate thermal stability and colorability. The evaluation results are shown in Table 5.
  • Example 84 PVA obtained in the same manner as in Example 1 was dissolved in distilled water to obtain 167 parts of a 15% aqueous solution.
  • 25 parts of calcium stearate (manufactured by NOF Corporation; trade name “Calcium stearate”) was added, and the slurry was granulated in the same manner as in Example 62 except that no wetting agent was added.
  • 50 parts of zinc stearate (manufactured by NOF Corporation; trade name “zinc stearate”) was added to obtain a mixed powder (P).
  • the solid content ratio of PVA (A) / zinc compound (B) / calcium compound (C) is 1/2/1 and the solid content of A / (B + C) The ratio is 1/3. Further, when the obtained spray-dried granule was sieved with a 200 mesh (aperture 75 ⁇ m) sieve, 83% of the granules passed through the sieve. Using this mixed powder (P), a polyvinyl chloride resin composition was obtained in the same manner as in Example 62, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 5.
  • Example 85 In the production of the polyvinyl chloride resin composition of Example 84, a polyvinyl chloride resin was obtained in the same manner as in Example 84 except that 100 parts of the vinyl chloride resin was mixed with 1 part of glycerin monostearate as a lubricant. A composition was obtained. The obtained polyvinyl chloride resin composition was used to evaluate thermal stability and colorability. The evaluation results are shown in Table 5.
  • Comparative Example 32 PVA shown in Table 5 was obtained in the same manner as in Example 1 except that the charged weight of vinyl acetate and methanol was changed and the alkali molar ratio was changed during saponification. Using this PVA, a polyvinyl chloride resin composition was obtained in the same manner as in Example 62, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 5.
  • Comparative Example 33 In the production of the polyvinyl chloride resin composition of Comparative Example 32, a polyvinyl chloride resin was prepared in the same manner as in Comparative Example 32 except that 100 parts of vinyl chloride resin was mixed with 1 part of glycerin monostearate as a lubricant. A composition was obtained. The obtained polyvinyl chloride resin composition was used to evaluate thermal stability and colorability. The evaluation results are shown in Table 5.
  • Example 62 Comparative Examples 34 to 36
  • the mixing ratio of the PVA aqueous solution, zinc stearate and calcium stearate was adjusted so that the solid content ratio of (A), (B) and (C) was the ratio shown in Table 5.
  • a mixed powder (P) was obtained.
  • a polyvinyl chloride resin composition was obtained in the same manner as in Example 62, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 5.
  • Comparative Example 37 PVA obtained in the same manner as in Example 1 was dissolved in distilled water to obtain 100 parts of a 25% aqueous solution. To this, 25 parts of calcium stearate (manufactured by NOF Corporation; trade name “Calcium stearate”) was added, and the slurry was granulated in the same manner as in Example 62 except that no wetting agent was added. 50 parts of zinc stearate (manufactured by NOF Corporation; trade name “zinc stearate”) was added to obtain a mixed powder (P).
  • calcium stearate manufactured by NOF Corporation; trade name “Calcium stearate”
  • zinc stearate manufactured by NOF Corporation; trade name “zinc stearate”
  • the solid content ratio of PVA (A) / zinc compound (B) / calcium compound (C) is 1/2/1 and the solid content of A / (B + C) The ratio is 1/3.
  • the obtained spray-dried granule was sieved with a 200 mesh (aperture 75 ⁇ m) sieve, 75% of the granules passed through the sieve.
  • a polyvinyl chloride resin composition was obtained in the same manner as in Example 62, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 5.
  • Comparative Example 38 In the production of the polyvinyl chloride resin composition of Comparative Example 37, a polyvinyl chloride resin was prepared in the same manner as in Comparative Example 37 except that 100 parts of the vinyl chloride resin was mixed with 1 part of glycerin monostearate as a lubricant. A composition was obtained. The obtained polyvinyl chloride resin composition was used to evaluate thermal stability and colorability. The evaluation results are shown in Table 5.
  • Table 5 again shows the results of Example 33, Comparative Example 18, Comparative Example 19, Comparative Example 22, and Comparative Example 23 for reference.
  • Examples 62-66 zinc stearate was added to spray-dried granules with calcium stearate in a PVA having a saponification degree in the range of 60-99.9 mol% and a viscosity average polymerization degree of 400, and an opening of 75 ⁇ m.
  • the case where the mixed powder which passes 80 weight% or more of a sieve is used is shown.
  • the results are good, and the blackening time is longer than in Examples 67, 68 and 33 described later.
  • the blackening time is particularly excellent regardless of whether the kneading temperature on the test roll is 180 ° C. or 190 ° C.
  • Examples 67 and 68 show cases where the degree of saponification is 80 mol% and the viscosity average degree of polymerization is 750 and 950. Overall, good results.
  • Example 69 is a PVA containing an alkyl group at the terminal, and the other compositions are the same when PVA similar to that in Example 62 is used. Although both 180 ° C. and 190 ° C. are slight, the blackening time is superior to that of Example 62.
  • Example 70 is a PVA copolymerized with ethylene, and other compositions are the same when PVA similar to that in Example 62 is used. The blackening time is superior to Example 62.
  • Example 71 is a PVA containing a carboxyl group at the terminal, and the other compositions are the same when PVA similar to that in Example 62 is used.
  • the blackening time is superior to Example 62.
  • both blackening time and coloring property are excellent.
  • Example 72 is a PVA containing a carboxyl group at the terminal as in Example 71, but the saponification degree is 40 mol%, and a PVA lower than that in Example 71 is used. Overall, the results are reasonable.
  • Examples 74 to 78 glycerin monostearate is blended as a lubricant in the compositions of Examples 62 to 66. In any case, the blackening time is improved and the colorability is excellent.
  • Comparative Example 32 the case where the viscosity average polymerization degree exceeds the range of the present invention (1500) is shown, and in Comparative Example 18, the case where the degree of saponification is outside the range of the present invention (25 mol%) is shown. Yes. Since PVA with a saponification degree of 25 mol% is poor in water solubility, a simple blend of PVA powder, zinc stearate and calcium stearate powder that forcibly pulverizes PVA and passes through a sieve with an opening of 75 ⁇ m. It evaluated with what mix
  • Comparative Example 33 glycerin monostearate is blended as a lubricant in the composition of Comparative Example 32. Although the blackening time is slightly improved, it is unsatisfactory and the colorability is also low.
  • Example 86 (Making mixed powder (P)) PVA having a polymerization degree of 400 and a saponification degree of 80 mol% obtained in the same manner as in Example 1 was dissolved in distilled water to obtain 500 parts of a 5% aqueous solution.
  • the resulting slurry was granulated with a spray dryer (manufactured by Ogawara Koki Co., Ltd .: L-8 type spray dryer), and 50 parts of zinc stearate (manufactured by NOF Corporation; trade name “Zinc Stearate”) was added thereto. This was added to obtain a mixed powder (P). From the composition of the slurry and the amount of zinc stearate added, the solid content ratio of PVA (A) / zinc compound (B) / calcium compound (C) is 1/2/6, and the solid content of A / (B + C) The ratio is 1/8. Further, when the obtained mixed powder (P) was sieved with a 200 mesh (aperture 75 ⁇ m) sieve, 90% of it passed through the sieve.
  • Examples 87-90 PVA shown in Table 6 was obtained in the same manner as in Example 1 except that the alkali molar ratio was changed during saponification.
  • a polyvinyl chloride resin composition was obtained in the same manner as in Example 86, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 6.
  • Comparative Example 39 In the production of the polyvinyl chloride resin composition, instead of the mixed powder (P), 2 parts of zinc stearate passing through a sieve having an opening of 75 ⁇ m, 5 parts of calcium carbonate passing through a sieve having an opening of 75 ⁇ m, and A polyvinyl chloride resin composition was obtained in the same manner as in Example 86 except that 1 part of calcium stearate passing through a sieve having a mesh opening of 75 ⁇ m was added, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 6.
  • Comparative Example 40 A polyvinyl chloride resin composition was obtained in the same manner as in Example 91 using PVA having a polymerization degree of 400 and a saponification degree of 25 mol% used in Comparative Example 18, and the thermal stability and colorability were evaluated. The evaluation results are shown in Table 6.
  • Comparative Example 41 A mixed powder (P) was obtained in the same manner as in Example 91 except that the pulverization of PVA was omitted. Using this mixed powder (P), a polyvinyl chloride resin composition was obtained in the same manner as in Example 91, and thermal stability and colorability were evaluated. The evaluation results are shown in Table 6.
  • Example 86 to 90 in Example 62 to 66 in Table 5, granulation was performed by spray drying with PVA (A) using calcium carbonate together with calcium stearate, and zinc stearate (B) was further added.
  • a mixed powder that passes 80% by weight or more through a sieve having an opening of 75 ⁇ m is shown.
  • the results are generally good, and in particular, regarding Examples 86 to 88 in which the degree of saponification is in the range of 70 to 93 mol%, the blackening time is particularly excellent when the kneading temperature at the test roll is 180 ° C or 190 ° C. ing.
  • Example 91 the composition is the same as that of Example 86, but not PVA, calcium stearate and calcium carbonate spray-dried granules, both PVA powder passing through a sieve having an opening of 75 ⁇ m, zinc stearate, calcium stearate and The case where a simple blend of calcium carbonate is blended with a polyvinyl chloride resin as a mixed powder (P) is shown. It is a good result.
  • Comparative Example 39 shows the result when PVA is not used in combination. In either case, the level of blackening time is unsatisfactory and the level of colorability is low.
  • the saponification degree is outside the range of the present invention (25 mol%). Since PVA having a saponification degree of 25 mol% is poor in water solubility, PVA is forcibly pulverized, and all of them pass through a sieve having a mesh opening of 75 ⁇ m, zinc stearate powder, calcium stearate powder, and carbonic acid. A simple blend of calcium powder was evaluated as a mixed powder (P) blended with a polyvinyl chloride resin. The level of blackening time is also unsatisfactory and the level of colorability is low.
  • Example 91 it was a case where a mixed powder obtained by simply blending these powders was added instead of the spray-dried granules of PVA and calcium carbonate. As a result of using non-micronized powder, a mixed powder that passes only 75% by weight through a sieve having an opening of 75 ⁇ m is used. Compared to Example 91, the blackening time is reduced and the colorability is also reduced.
  • the use of the polyvinyl chloride resin composition claimed in the present application is significant because it has a long blackening time, excellent thermal stability, and a high level of colorability.
  • a vinyl chloride resin composition is provided that is capable of obtaining a molded article having excellent thermal stability during molding and less coloring.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 平均けん化度が30~99.9モル%であり粘度平均重合度が1000以下であるビニルアルコール系重合体(A)、および、亜鉛化合物(B)を含有し、(A)と(B)との重量比A/Bが1/10~10/1の範囲であり、かつ、粒子の80重量%以上が目開き75μm篩を通過する混合粉体(P)からなるポリ塩化ビニル用熱安定剤、並びに、ポリ塩化ビニル樹脂100重量部に対して、該ポリ塩化ビニル用熱安定剤を0.1~10重量部含有するポリ塩化ビニル樹脂組成物とする。このようなポリ塩化ビニル樹脂組成物は、成形時の熱安定性に優れ、着色が少ない成形体を得ることができる。

Description

ポリ塩化ビニル用熱安定剤、ポリ塩化ビニル樹脂組成物およびその製造方法
 本発明は、食品用、医療用、日用品等の分野で好適に使用されるポリ塩化ビニル樹脂組成物に使用されるポリ塩化ビニル用熱安定剤、および、該ポリ塩化ビニル用熱安定剤を含有するポリ塩化ビニル樹脂組成物に関するものであり、さらに記述すると、成形時の熱安定性がよく、着色が少ない成形体を得ることができるポリ塩化ビニル樹脂組成物に関するものである。
 ポリ塩化ビニル樹脂はCa-Zn系、Ba-Zn系等の安定剤を配合して成形加工され、その成形品は一般用途に、さらには食品用、医療用等に適した製品として広く用いられている。
 しかしながら、これらの安定剤は、ポリ塩化ビニル樹脂の熱劣化を抑制する能力が不十分であるため、成形品の初期着色性を損ねたり、成形時の熱安定性が十分でないという欠点があった。このため、これらの欠点を改良する手段として、酸化防止剤を添加したり、水酸基を持つ化合物を添加したりしたポリ塩化ビニル樹脂組成物が提案されている。
 特許文献1(特開昭50-92947号公報)には、塩素含有樹脂に、カルシウムセッケンと、亜鉛セッケンと、多価アルコールまたはその誘導体と中性の無機カルシウム塩とを添加する方法が開示されている。
 特許文献2(特開昭54-81359号公報)には、塩素含有重合体に水溶性重合体を添加する方法が開示されている。
 特許文献3(特開昭57-147552号公報)には、含塩素樹脂にジペンタエリスリトールとジカルボン酸との反応縮合物、酸化亜鉛、炭酸亜鉛または脂肪酸亜鉛、ハイドロタルサイトを添加する方法が開示されている。
 特許文献4(特開昭60-238345号公報)には、熱可塑性樹脂に、エチレン単位の含有量20~50%、酢酸ビニル単位の鹸化度96%以上のエチレン-酢酸ビニル共重合体鹸化物、および、ハイドロタルサイト系化合物を添加する方法が開示されている。
 特許文献5(特開平1-178543号公報)には、含ハロゲン熱可塑性樹脂に、金属石鹸、および、エチレン含有量20~75モル%、酢酸ビニル部分のケン化度50モル%以上の共重合組成物を有するエチレン-酢酸ビニル共重合体ケン化物を添加する方法が開示されている。
 特許文献6(特開平6-287387号公報)には、塩化ビニル系樹脂に、有機酸の金属塩、ポリビニルアルコールのアセタール化物を添加する方法が開示されている。
 特許文献7(特開平9-3286号公報)には、塩化ビニル系樹脂に、けん化度70~95モル%、平均重合度300~2000で、かつ分子鎖末端にメルカプト基を有する部分けん化ポリビニルアルコールを添加する方法が開示されている。
 特許文献8(特開平9-31281号公報)には、塩化ビニル系樹脂に、亜鉛化合物、ハイドロタルサイト類、ポリビニルアルコール、および、ポリメチルメタクリレートを添加する方法が開示されている。
 非特許文献1(高分子論文集 Vol.47,No.3,197(1990))には、ポリ塩化ビニルに、ステアリン酸亜鉛-ステアリン酸カルシウム複合石けん、重合度が600以上の完全けん化ポリビニルアルコールを添加する方法が開示されている。
 非特許文献2(高分子論文集 Vol.47,No.6,509(1990))には、ポリ塩化ビニルに、ステアリン酸亜鉛-ステアリン酸カルシウム複合石けん、重合度が500、けん化度が73.6モル%の部分けん化ポリビニルアルコールを添加する方法が開示されている。
 非特許文献3(高分子論文集 Vol.50,No.2、65(1993))には、ポリ塩化ビニルに、ステアリン酸亜鉛-ステアリン酸カルシウム複合石けん、エチレン含有量が29モル%以上のエチレン-ビニルアルコール共重合体を添加する方法が開示されている。
 非特許文献4(Polymers & Polymer Composites,Vol.11,649(2003))には、ポリ塩化ビニルに、ステアリン酸亜鉛-ステアリン酸カルシウム複合石けん、重合度が500、けん化度が98.5モル%のポリビニルアルコールやエチレン含有量が29モル%以上のエチレン-ビニルアルコール共重合体を添加する方法が開示されている。
 非特許文献5(日本接着学会誌 Vol.43 No.2 43(2007))には、ポリ塩化ビニルに、重合度が500、けん化度が88モル%のポリビニルアルコールや重合度が1700、けん化度が78モル%以上のポリビニルアルコール、ポリメタクリル酸メチルを添加する方法が開示されている。
 しかしながら、特許文献1~8および非特許文献1~5に記載されたポリ塩化ビニル樹脂組成物では、長期の熱安定性が十分でなかったり、得られる成形体が着色したりするという問題を有していた。
特開昭50-92947号公報 特開昭54-81359号公報 特開昭57-147552号公報 特開昭60-238345号公報 特開平1-178543号公報 特開平6-287387号公報 特開平9-3286号公報 特開平9-31281号公報
高分子論文集 Vol.47,No.3,197 (1990) 高分子論文集 Vol.47,No.6,509 (1990) 高分子論文集 Vol.50,No.2,65 (1993) Polymers& Polymer Composites, Vol.11,649 (2003) 日本接着学会誌 Vol.43,No.2,43 (2007)
 本発明は、成形時における塩化ビニル樹脂組成物の熱安定性を向上させ、該塩化ビニル樹脂組成物を成形して得られる成形体の着色を低減させることができるポリ塩化ビニル用熱安定剤、および、該ポリ塩化ビニル用熱安定剤を含有するポリ塩化ビニル樹脂組成物を提供することを目的とするものである。
 本発明者らは鋭意検討を重ねた結果、平均けん化度が30~99.9モル%であり粘度平均重合度が1000以下であるビニルアルコール系重合体(A)(以下、「ビニルアルコール系重合体」を「PVA」と略記することがある)、および、亜鉛化合物(B)を含有し、(A)と(B)との重量比A/Bが1/10~10/1の範囲であり、かつ、粒子の80重量%以上が目開き75μm篩を通過する混合粉体(P)からなるポリ塩化ビニル用熱安定剤を使用した場合に、ポリ塩化ビニル樹脂組成物の成形時の熱安定性を十分保持することができ、かつ成形体の着色が少ないことを見出し、本発明を完成するに至った。
 すなわち、上記課題は、平均けん化度が30~99.9モル%であり粘度平均重合度が1000以下であるPVA(A)、および、亜鉛化合物(B)を含有し、(A)と(B)との重量比A/Bが1/10~10/1の範囲であり、かつ、粒子の80重量%以上が目開き75μm篩を通過する混合粉体(P)からなるポリ塩化ビニル用熱安定剤を提供することによって解決される。
 前記混合粉体(P)が、さらにカルシウム化合物(C)を含有し、(A)の、(B)と(C)との合計量に対する重量比A/(B+C)が1/20~10/2の範囲であることが好ましい。
 上記混合粉体(P)が、前記PVA(A)の水溶液に前記亜鉛化合物(B)を分散させたスラリーをスプレードライして得られるものであることが好ましい。
 前記混合粉体(P)が、前記PVA(A)の水溶液に前記亜鉛化合物(B)および前記カルシウム化合物(C)を分散させたスラリーをスプレードライして得られるものであることが好ましい。前記混合粉体(P)が、前記PVA(A)の水溶液に前記カルシウム化合物(C)を分散させたスラリーをスプレードライして得られる粉体に、前記亜鉛化合物(B)を混合して得られるものであることも好ましい。前記混合粉体(P)が、前記PVA(A)の水溶液に前記亜鉛化合物(B)を分散させたスラリーをスプレードライして得られる粉体に、前記カルシウム化合物(C)を混合して得られるものであることも好ましい。
 また、PVA(A)は、末端に炭素数6以上のアルキル基を有することが好ましく、共重合成分としてエチレン単位を0.1~20モル%含有することも好ましく、さらに、末端にカルボキシル基、スルホン酸基およびそれらの塩からなる群より選ばれる少なくとも1種の官能基を有することも好ましい。
 本発明は、ポリ塩化ビニル樹脂100重量部に対して、上記のポリ塩化ビニル用熱安定剤を0.1~10重量部含有するポリ塩化ビニル樹脂組成物をも包含する。
 この場合において、ポリ塩化ビニル樹脂100重量部に対して、さらに滑剤を0.001~10重量部含有することが好ましい。また、該滑剤はポリオールの脂肪酸エステルであることがより好ましく、特に該ポリオールの脂肪酸エステルがグリセリンモノステアレートであることがさらに好ましい。
 本発明はさらに、PVA(A)の水溶液に亜鉛化合物(B)を分散させてスラリーを製造する工程と、該スラリーをスプレードライして混合粉体(P)とする工程とを含む、上記のポリ塩化ビニル用熱安定剤の製造方法をも包含する。PVA(A)の水溶液に亜鉛化合物(B)およびカルシウム化合物(C)を分散させてスラリーを製造する工程と、該スラリーをスプレードライして混合粉体(P)を得る工程とを含む、上記のポリ塩化ビニル用熱安定剤の製造方法をも包含する。PVA(A)の水溶液にカルシウム化合物(C)を分散させてスラリーを製造する工程と、該スラリーをスプレードライして粉体を得る工程と、該粉体に亜鉛化合物(B)を混合して混合粉体(P)を得る工程とを含む、上記のポリ塩化ビニル用熱安定剤の製造方法をも包含する。PVA(A)の水溶液に亜鉛化合物(B)を分散させてスラリーを製造する工程と、該スラリーをスプレードライして粉体を得る工程と、該粉体にカルシウム化合物(C)を混合して混合粉体(P)を得る工程とを含む、上記のポリ塩化ビニル用熱安定剤の製造方法をも包含する。
 本発明はさらに、ポリ塩化ビニル樹脂100重量部に対して、上記の製造方法によって得られたポリ塩化ビニル用熱安定剤を0.1~10重量部混合する工程を含む、ポリ塩化ビニル樹脂組成物の製造方法をも包含する。この場合において、さらに、ポリ塩化ビニル樹脂100重量部に対して滑剤0.001~10重量部を添加する工程を含むことが好ましい。
 本発明のポリ塩化ビニル樹脂組成物は、成形時の熱安定性に優れる。しかも、当該樹脂組成物を用いた場合には、着色が少ない成形体を得ることができる。
 本発明のポリ塩化ビニル用熱安定剤は、平均けん化度が30~99.9モル%であり粘度平均重合度が1000以下であるPVA(A)、および、亜鉛化合物(B)を含有し、(A)と(B)との重量比A/Bが1/10~10/1の範囲であり、かつ、粒子の80重量%以上が目開き75μm篩を通過する混合粉体(P)からなる。
 本発明に用いられるPVA(A)の平均けん化度は30~99.9モル%であり、好ましくは60~96モル%であり、特に好ましくは70~93モル%である。平均けん化度が30モル%より小さい場合、ポリ塩化ビニル樹脂組成物の長期の熱安定性が低下するため好ましくない。また、後述する混合粉体(P)を得る手法として、PVA(A)の水溶液に亜鉛化合物(B)および/またはカルシウム化合物(C)を分散させスプレードライする場合、平均けん化度が30モル%より小さい場合は、水溶性が低下してPVA(A)の水溶液を調製できない場合がある。なお、PVAの平均けん化度はJIS K6726に従って測定した値である。
 上記PVA(A)の粘度平均重合度(以下単に重合度と言うことがある)は1000以下であり、好ましくは800以下であり、特に好ましくは450以下である。粘度平均重合度の下限については特に制限はないが、PVAの製造上の観点から、粘度平均重合度は50以上が好ましく、100以上がより好ましい。粘度平均重合度が1000より大きいと、ポリ塩化ビニル樹脂組成物の長期の熱安定性が著しく低下するため好ましくない。なお、PVAの粘度平均重合度はJIS K6726に従って測定した値である。すなわち、PVAをけん化度99.5モル%以上に再けん化し、精製した後、30℃の水中で測定した極限粘度[η]から次式により求めることができる。
  P=([η]×1000/8.29)(1/0.62)
 ポリ塩化ビニル樹脂組成物を成形する際の好適な成形温度範囲を広げる観点からは、PVA(A)は、平均けん化度が75~99.9モル%であり粘度平均重合度が450以下であるPVA2種類以上を含有し、かつ、該2種類以上のPVAの平均けん化度が5モル%以上異なるものであることが好ましい。なお、PVA(A)が3種類以上のPVAを含有する場合、「PVAの平均けん化度が5モル%以上異なる」とは、複数のPVAのうち、平均けん化度が最大のPVAと最小のPVAにおける平均けん化度の差が5モル%以上であることを表す。
 上記の場合において、PVA(A)は、平均けん化度75~85モル%であり粘度平均重合度が450以下であるPVA(a1)および平均けん化度85~95モル%であり粘度平均重合度が450以下であるPVA(a2)からなることが好ましい。このとき、PVA(a1)の平均けん化度は、より好ましくは78~83モル%、さらに好ましくは79~82モル%である。また、PVA(a2)の平均けん化度は、より好ましくは85~95モル%、さらに好ましくは87~94モル%、特に好ましくは88~93モル%である。
 上記のPVA(a1)および(a2)を使用する場合、その重量比率(a1)/(a2)は、20/80~80/20が好ましく、30/70~70/30がより好ましく、40/60~60/40がさらに好ましい。
 PVA(A)は、ビニルエステル系単量体を塊状重合法、溶液重合法、懸濁重合法、乳化重合法、分散重合法等の従来公知の方法を採用して重合させ、得られたビニルエステル系重合体をけん化することにより製造することができる。工業的観点から好ましい重合方法は、溶液重合法、乳化重合法および分散重合法である。重合操作にあたっては、回分法、半回分法および連続法のいずれの重合方式を採用することも可能である。
 重合に用いることができるビニルエステル系単量体としては、例えば、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、カプリル酸ビニル、バーサチック酸ビニル等を挙げることができ、これらの中でも酢酸ビニルが工業的観点から好ましい。
 ビニルエステル系単量体の重合に際して、本発明の主旨を損なわない範囲であればビニルエステル系単量体を他の単量体と共重合させても差し支えない。使用しうる単量体として、例えば、エチレン、プロピレン、n-ブテン、イソブチレン等のα-オレフィン;アクリル酸およびその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ドデシル、アクリル酸オクタデシル等のアクリル酸エステル類;メタクリル酸およびその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ドデシル、メタクリル酸オクタデシル等のメタクリル酸エステル類;アクリルアミド;N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸およびその塩、アクリルアミドプロピルジメチルアミンおよびその塩またはその4級塩、N-メチロールアクリルアミドおよびその誘導体等のアクリルアミド誘導体;メタクリルアミド;N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸およびその塩、メタクリルアミドプロピルジメチルアミンおよびその塩またはその4級塩、N-メチロールメタクリルアミドおよびその誘導体等のメタクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル類;アクリロニトリル、メタクリロニトリル等のニトリル類;塩化ビニル、フッ化ビニル等のハロゲン化ビニル類;塩化ビニリデン、フッ化ビニリデン等のハロゲン化ビニリデン類;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸、イタコン酸、フマル酸等の不飽和ジカルボン酸およびその塩またはそのエステル;ビニルトリメトキシシラン等のビニルシリル化合物;酢酸イソプロペニル等が挙げられる。
 これらの中でも、エチレンを共重合したものが好ましく、その含有量は、エチレン単位で0.1~20モル%が好ましく、0.5~18モル%がより好ましく、1~15モル%がさらに好ましい。エチレン単位の含有量が20モル%を超える場合、ポリ塩化ビニル樹脂組成物の長期の熱安定性が低下することがあり、さらに、後述する混合粉体(P)を作製するに当たり、該PVA水溶液を調製する際に、該PVAの水溶性が低く、調製に困難をきたす場合がある。
 ビニルエステル系単量体の重合に際して、得られるPVA(A)の重合度を調節すること等を目的として、連鎖移動剤を共存させても差し支えない。連鎖移動剤としては、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ベンズアルデヒド等のアルデヒド類;アセトン、メチルエチルケトン、ヘキサノン、シクロヘキサノン等のケトン類;炭素数6以上のアルキル基を有するメルカプタン、カルボキシル基を有するメルカプタン、スルホン酸基を有するメルカプタン、水酸基を有するメルカプタン等のメルカプタン類;チオ酢酸等のチオカルボン酸類;トリクロロエチレン、パークロロエチレン等のハロゲン化炭化水素類が挙げられる。
 中でもアルデヒド類およびケトン類が好適に用いられる。連鎖移動剤の添加量は、添加する連鎖移動剤の連鎖移動定数および目的とするPVAの重合度に応じて決定されるが、一般にPVAに対して0.1~10重量%が望ましい。
 また、本発明においてPVA(A)が、末端に炭素数6以上のアルキル基を有することが好ましい。末端に炭素数6以上のアルキル基を導入する手法としては、上記の連鎖移動剤を用いる手法が主に用いられる。該PVAをより経済的かつ効率的に得る方法として、炭素数6以上のアルキル基を有する連鎖移動剤、特に炭素数6以上のアルキル基を有するメルカプタンの存在下に、酢酸ビニル等のビニルエステル類を重合し、次いでけん化する方法が好ましい(特開昭59-166505号公報および特開平1-240501号公報参照)。
 上記炭素数6以上のアルキル基を有する連鎖移動剤としては、n-ヘキシルアルデヒド、n-オクチルアルデヒド、2-エチルヘキシルアルデヒド、n-カプリンアルデヒド、n-デシルアルデヒド、n-ウンデシルアルデヒド、n-ラウリルアルデヒド、n-トリデシルアルデヒド、セチルアルデヒド、パルミチルアルデヒド、ステアリルアルデヒド等の炭素数6以上のアルデヒド;またはn-ヘキシルメルカプタン、n-オクチルメルカプタン、n-デシルメルカプタン、n-ドデシルメルカプタン、n-オクタデシルメルカプタン等の炭素数6以上のメルカプタンを使用することができる。上記アルキル基を有する連鎖移動剤におけるアルキル基の炭素数は8以上がより好ましい。
 さらに、本発明においてPVA(A)が、末端にカルボキシル基、スルホン酸基およびそれらの塩からなる群より選ばれる少なくとも1種の官能基を有することが好ましい。末端にカルボキシル基、スルホン酸基およびそれらの塩からなる群より選ばれる少なくとも1種の官能基を導入する手法としては、上記の連鎖移動剤を用いる手法が主に用いられる。該PVAをより経済的かつ効率的に得る方法として、カルボキシル基、スルホン酸基およびそれらの塩からなる群より選ばれる少なくとも1種の官能基を有する連鎖移動剤、特にこれら官能基を有するチオールの存在下に、酢酸ビニル等のビニルエステル類を重合し、次いでけん化する方法が好ましい(WO91/15518号公報参照)。
 カルボキシル基を有するチオールとしては、チオグリコール酸、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、チオリンゴ酸、2-メルカプト安息香酸、3-メルカプト安息香酸、4-メルカプト安息香酸、4-カルボキシフェニルエチルチオール等が例示される。また、スルホン酸基を有するチオールとしては、2-メルカプトエタンスルホン酸、3-メルカプトプロパンスルホン酸、2-メルカプトエチルベンゼンスルホン酸等が例示される。これらの中でも、スルホン酸基を有するチオールを使用することが好ましい。上記カルボキシル基またはスルホン酸基は、それらのエステルであっても、それらの塩であってもよい。このときの塩としては、アルカリ金属塩等が挙げられる。例えば、カルボキシル基またはスルホン酸基の塩は、カルボキシル基またはスルホン酸基を有する連鎖移動剤をPVAに導入する際に、けん化等の工程を経た後に、水素イオンとアルカリ金属カチオンとの交換により生成することがある。
 本発明に用いられるPVA(A)の1,2-グリコール結合の含有量は、好ましくは1.2~2.5モル%、より好ましくは1.3~2.2モル%、さらに好ましくは1.4~2.0モル%である。
 ビニルエステル系重合体のけん化反応には、従来公知の水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド等の塩基性触媒、またはp-トルエンスルホン酸等の酸性触媒を用いた、加アルコール分解ないし加水分解反応が適用できる。けん化反応に用いられる溶媒としては、メタノール、エタノール等のアルコール類;酢酸メチル、酢酸エチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ベンゼン、トルエン等の芳香族炭化水素等が挙げられ、これらは単独で、または2種以上を組合せて用いることができる。中でも、メタノールまたはメタノールと酢酸メチルとの混合溶液を溶媒として用い、塩基性触媒である水酸化ナトリウムの存在下にけん化反応を行うのが簡便であり好ましい。
 本発明においては、PVA(A)が、25℃におけるpKaが3.5~5.5の酸および/またはその金属塩を含有してもよい。酸の種類について特に制限はなく、その具体例として、酢酸(pKa4.76)、プロピオン酸(pKa4.87)、酪酸(
pKa4.63)、オクタン酸(pKa4.89)、アジピン酸(pKa5.03)、安息香酸(pKa4.00)、ギ酸(pKa3.55)、吉草酸(pKa4.63)、ヘプタン酸(pKa4.66)、乳酸(pKa3.66)、フェニル酢酸(pKa4.10)、イソ酪酸(pKa4.63)、シクロヘキサンカルボン酸(pKa4.70)等を挙げることができる。特に好ましく用いることができる酸は、酢酸、プロピオン酸および乳酸である。また、上記の酸の金属塩を用いることもできる。金属塩の種類としては特に制限はないが、通常、ナトリウム、カリウム等のアルカリ金属塩、マグネシウム、カルシウム等のアルカリ土類金属塩が用いられる。
 pKaが3.5~5.5の酸および/またはその金属塩の含有量は、PVA100重量部に対して0.05~5重量部の割合が好ましく、より好ましくは0.1~3重量部、さらに好ましくは0.15~2重量部である。PVAに対する酸および/またはその金属塩の含有量が0.05重量部未満の場合、ポリ塩化ビニル樹脂組成物の長期の熱安定性が低下し、5重量部を超えると、得られる成形体が着色するおそれがある。
 なお、該酸および/またはその金属塩を所定量含有させる方法は特に制限はなく、例えば、PVAを製造する時のけん化で用いるアルカリ触媒の種類や量等を調整する方法、PVA製造後に該酸および/またはその金属塩を追加したり、除去したりする方法が挙げられる。
 本発明に用いられるPVA(A)は、粒子の80重量%以上が目開き75μm篩を通過するものであることが好ましく、粒子の85重量%以上が目開き75μm篩を通過するものであることがさらに好ましい。このようなPVAとしては、PVAを強制的に粉砕して微粉化したものでもよいし、後述する手法で、PVA(A)の水溶液を用いたスプレードライで得られる粒子でもよい。
 本発明に用いられる亜鉛化合物(B)としては、ステアリン酸亜鉛、ラウリン酸亜鉛、オレイン酸亜鉛等の亜鉛の脂肪族カルボン酸塩;安息香酸亜鉛、p-t-ブチル安息香酸亜鉛等の亜鉛の芳香族カルボン酸塩;アミノ酸亜鉛塩、リン酸エステル亜鉛塩等の有機酸の亜鉛塩;酸化亜鉛、炭酸亜鉛等の無機亜鉛塩等が挙げられ、これらを併用してもよい。これらの中でも、ステアリン酸亜鉛、ラウリン酸亜鉛およびオレイン酸亜鉛が好ましく、ステアリン酸亜鉛およびラウリン酸亜鉛がより好ましい。また、本発明に用いられる亜鉛化合物(B)は、粒子の80重量%以上が目開き75μm篩を通過するものであることが好ましく、粒子の85重量%以上が目開き75μm篩を通過するものであることがさらに好ましい。
 前記混合粉末(P)が、さらにカルシウム化合物(C)を含有し、(A)の、(B)と(C)との合計量に対する重量比A/(B+C)が1/20~10/2の範囲であることが好適である。
 本発明に用いられるカルシウム化合物(C)としては、ステアリン酸カルシウム、ラウリン酸カルシウム、オレイン酸カルシウム等のカルシウムの脂肪族カルボン酸塩;安息香酸カルシウム、p-t-ブチル安息香酸カルシウム等のカルシウムの芳香族カルボン酸塩;アミノ酸カルシウム塩、リン酸エステルカルシウム塩等の有機酸のカルシウム塩;酸化カルシウム、炭酸カルシウム等の無機カルシウム塩等が挙げられ、これらを併用してもよい。これらの中でも、ステアリン酸カルシウム、ラウリン酸カルシウム、オレイン酸カルシウムおよび炭酸カルシウムが好ましく、ステアリン酸カルシウム、ラウリン酸カルシウムおよび炭酸カルシウムがより好ましい。また、本発明に用いられるカルシウム化合物(C)は、粒子の80重量%以上が目開き75μm篩を通過するものであることが好ましく、粒子の85重量%以上が目開き75μm篩を通過するものであることがさらに好ましい。
 本発明のポリ塩化ビニル用熱安定剤を構成する混合粉体(P)は、平均けん化度が30~99.9モル%であり、粘度平均重合度が1000以下である上述のPVA(A)および亜鉛化合物(B)からなる。PVA(A)と亜鉛化合物(B)との重量比A/Bは1/10~10/1の範囲であり、好ましくは1/5~5/1の範囲である。重量比A/Bが1/10より小さい、すなわち、PVA(A)の量が少ない場合、ポリ塩化ビニル樹脂組成物の黒化時間が短く熱安定性が不十分となり、逆に重量比A/Bが10/1より大きい、すなわち、亜鉛化合物(B)の量が少ない場合、得られる成形体の着色が顕著となる。
 前記混合粉末(P)が、さらにカルシウム化合物(C)を含有する場合には、(A)の、(B)と(C)との合計量に対する重量比A/(B+C)が1/10~10/1の範囲であることがより好適である。重量比A/(B+C)が1/20より小さい、すなわち、PVA(A)の量が少ない場合、ポリ塩化樹脂組成物の黒化時間が短く熱安定性が不十分となるおそれがある。逆に重量比A/(B+C)が10/2より大きい、すなわち、亜鉛化合物(B)およびカルシウム化合物(C)の量が少ない場合、得られる成形体が着色するおそれがある。
 また、亜鉛化合物(B)とカルシウム化合物(C)の重量比B/Dは、特に制限はないが、好ましくは1/20~20/1の範囲であり、さらに好ましくは1/10~10/1の範囲である。重量比B/Dが1/20に満たない場合、ポリ塩化樹脂組成物の黒化そのものは緩和されるが、成形体の着色性が悪化する場合がある。逆に、重量比B/Dが20/1を超える場合、黒化時間が短くなる場合がある。
 上記の混合粉体(P)は、その粒子の80重量%以上が目開き75μmの篩を通過するものであり、粒子の85重量%以上が目開き75μmの篩を通過するものが好ましい。目開き75μmの篩を通過する粒子の量が80重量%未満である場合、得られる塩化ビニル樹脂組成物が、成形時の熱安定性に優れ、着色が少ない成形体を得るという本発明の目的が達成できない可能性がある。
 混合粉体(P)の形態としては、上述のPVA(A)の粉体と亜鉛化合物(B)の粉体の単純な粉体ブレンドでもよいが、上述のPVA(A)の水溶液に前記亜鉛化合物(B)および/またはカルシウム化合物(C)を分散させたスラリーをスプレードライして得られる粉体を含む混合粉体であることが好ましい。この際、PVA(A)の水溶液の濃度は3~30重量%の範囲が好ましい。また、前記スラリーにおける、PVA(A)、亜鉛化合物(B)およびカルシウム化合物(C)の濃度がトータルで5~60重量%の範囲が好ましく、10~50重量%の範囲がさらに好ましい。
 PVA(A)の水溶液に亜鉛化合物(B)および/またはカルシウム化合物(C)を分散させる際に、分散しにくい場合には、本発明の効果を損なわない範囲で、濡れ剤を併用してもよい。濡れ剤としては、公知のノニオン系界面活性剤、アニオン系界面活性剤であることが好ましい。濡れ剤の使用量に特に制限はないが、亜鉛化合物(B)およびカルシウム化合物(C)の合計100重量部に対して0.001~5重量部の範囲が好ましい。
 混合粉体(P)の形態としては、具体的には、上述のPVA(A)の水溶液に亜鉛化合物(B)を分散させたスラリーをスプレードライして得られる混合粉体であることが好ましい。このとき、上述のPVA(A)の水溶液に前記亜鉛化合物(B)を分散させたスラリーをスプレードライして得られる粉体に、前記カルシウム化合物(C)を混合して得られる混合粉体であることがさらに好ましい。
 混合粉体(P)の形態としては、上述のPVA(A)の水溶液に亜鉛化合物(B)およびカルシウム化合物(C)を分散させたスラリーをスプレードライして得られる混合粉体であることも好ましい。
 混合粉体(P)の形態としては、上述のPVA(A)の水溶液にカルシウム化合物(C)を分散させたスラリーをスプレードライして得られる粉体に、亜鉛化合物(B)の粉体を混合したものであることも好ましい。
 本発明の効果を阻害しない範囲であれば、前記混合粉末(P)が、さらにジペンタエリスリトールを含有してもよい。当該ジペンタエリスリトールは、粒子の80重量%以上が目開き75μm篩を通過するものであることが好ましい。
 前記ジペンタエリスリトールを前記混合粉末(P)に含有させる方法は特に限定されない。例えば、各粉体を単純にブレンドして混合粉末(P)を作製する際に、他の粉末と共にジペンタエリスリトールの粉体もブレンドすることにより含有させる方法、スプレードライを用いて前記混合粉末(P)を調製する際に、スラリーに他の粉末と共にジペンタエリスリトールの粉体も分散させておくことにより含有させる方法などが挙げられる。
 本発明の効果を阻害しない範囲であれば、前記混合粉末(P)が、さらに多価アルコールのアルキルエステルを含有していてもよい。多価アルコールのアルキルエステルとは、多価アルコールとカルボン酸とをエステル化して得られる化合物である。当該多価アルコールのアルキルエステルは、粒子の80重量%以上が目開き75μm篩を通過するものであることが好ましい。
 エステル化に用いられる多価アルコールとしては、グリセリン、ペンタエリスリトール、ジペンタエリスリトール、キシリトール、ソルビトール、マンニトール等が挙げられ、特にペンタエリスリトールおよびジペンタエリスリトールが好ましい。エステル化に用いられるカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等の脂肪族のジカルボン酸や、フタル酸、イソフタル酸、テレフタル酸等の芳香族のジカルボン酸等が挙げられ、特にアジピン酸が好ましい。
 上記の多価アルコールおよびカルボン酸から得られる多価アルコールのアルキルエステルの中でも、ペンタエリスリトールアジピン酸エステルおよびジペンタエリスリトールアジピン酸エステルが好ましく、入手が容易である点で、これらの混合物がより好ましい。
 多価アルコールのアルキルエステルを前記混合粉末(P)に含有させる方法は、特に限定されず、ジペンタエリスリトールの場合と同様の方法を用いることができる。
 本発明で用いられるポリ塩化ビニル樹脂を製造する原料としては、塩化ビニル単量体の他、塩化ビニル単量体を主体とし、これと共重合可能な単量体との混合物(塩化ビニル単量体が50重量%以上)が使用される。なお、この塩化ビニル単量体と共重合される単量体としては、酢酸ビニル、プロピオン酸ビニル等のビニルエステル;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等の(メタ)アクリル酸エステル;エチレン、プロピレン等のオレフィン;無水マレイン酸、アクリロニトリル、スチレン、塩化ビニリデン等が挙げられる。
 また、これらの単量体を用いて上記ポリ塩化ビニル樹脂を製造する方法としては、該単量体を重合開始剤の存在下で懸濁重合する方法が好適であり、その際には、通常使用されている分散安定剤、例えば、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等の水溶性セルロースエーテル;PVA、ゼラチン等の水溶性ポリマー;ソルビタンモノラウレート、ソルビタントリオレート、グリセリントリステアレート、エチレンオキサイド-プロピレンオキサイドブロック共重合体等の油溶性乳化剤;ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレングリセリンオレート、ラウリン酸ナトリウム等の水溶性乳化剤等が用いられ、これらの中でも、けん化度65~99モル%、重合度500~4000のPVAが好適に用いられ、その添加量は塩化ビニル100重量部当たり0.01~2.0重量部が好ましい。
 重合に使用される開始剤としては、従来から塩化ビニル単量体等の重合に使用されている、油溶性または水溶性の重合開始剤を用いることができる。油溶性の重合開始剤としては、例えば、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネート等のパーカーボネート化合物;t-ブチルパーオキシネオデカネート、t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、α-クミルパーオキシネオデカネート等のパーエステル化合物;アセチルシクロヘキシルスルホニルパーオキサイド、2,4,4-トリメチルペンチル-2-パーオキシフェノキシアセテート、3,5,5-トリメチルヘキサノイルパーオキサイド、ラウロイルパーオキサイド等の過酸化物;2,2’-アゾビス-2,4-ジメチルバレロニトリル、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ化合物等が挙げられる。水溶性の重合開始剤としては、例えば過硫酸カリウム、過硫酸アンモニウム、過酸化水素、クメンハイドロパーオキサイド等が挙げられる。これらの油溶性または水溶性の重合開始剤は単独で、または、2種類以上を組合せて用いることができる。
 重合に際し、必要に応じて、重合反応系にその他の各種添加剤を加えることができる。添加剤としては、例えば、アルデヒド類、ハロゲン化炭化水素類、メルカプタン類等の重合調節剤;フェノール化合物、イオウ化合物、N-オキサイド化合物等の重合禁止剤等が挙げられる。また、pH調整剤、架橋剤等も任意に加えることができる。
 重合に際し、重合温度には特に制限はなく、20℃程度の低い温度はもとより、90℃を超える高い温度に調整することもできる。また、重合反応系の除熱効率を高めるために、リフラックスコンデンサー付の重合器を用いることも好ましい実施態様の一つである。
 重合には、必要に応じて、重合に通常使用される防腐剤、防黴剤、ブロッキング防止剤、消泡剤、スケール防止剤、帯電防止剤等の添加剤を任意に添加することができる。
 本発明のポリ塩化ビニル樹脂組成物は、上記のポリ塩化ビニル樹脂100重量部に対して、前述のポリ塩化ビニル用熱安定剤を0.1~10重量部、好ましくは0.5~5重量部含有する。含有量が0.1重量部未満では、十分な熱安定化効果は得らないおそれがあり、10重量部を超えるとポリ塩化ビニル成形品が黒化するおそれがある。ポリ塩化ビニル樹脂とポリ塩化ビニル用熱安定剤を混合する方法としては、特に制限はなく、熱成形する前にポリ塩化ビニル樹脂粉体に上記の熱安定剤を粉体同士混合する方法、ポリ塩化ビニルを熱成形する際にサイドフィーダー等から上記の熱安定剤をフィードしながら混合し成形する方法等が適宜採用される。
 本発明のポリ塩化ビニル樹脂組成物は、通常用いられる安定剤、フェノール系酸化防止剤、リン系酸化防止剤、光安定剤、紫外線吸収剤、防曇剤、帯電防止剤、難燃剤、滑剤、改質剤、強化剤、顔料、発泡剤、可塑剤等を併用することができる。また、本発明のポリ塩化ビニル樹脂組成物には、その機械的特性を損なわない範囲であれば、他の樹脂を混合してもよい。これらの添加物の配合方法としては、熱成形する前にポリ塩化ビニル樹脂粉体に上記の熱安定剤を粉体同士混合する際に同時に配合する方法、上記ポリ塩化ビニル樹脂組成物を熱成形する際にサイドフィーダー等から上記添加物を配合する方法等が挙げられる。
 上記滑剤としては、流動パラフィン、天然パラフィン、マイクロワックス、ポリエチレンワックス等の炭化水素;ステアリン酸、ラウリン酸等の脂肪酸;ステアリン酸アミド、パルミチン酸アミド、メチレンビスステアロアミド、エチレンビスステアロアミド等の脂肪酸アミド;ブチルステアレート等のモノアルコールの脂肪酸エステル;硬化ひまし油、エチレングリコールモノステアレート、グリセリンモノステアレート等のポリオールの脂肪酸エステル;セチルアルコールやステアリルアルコール等のアルコールが挙げられる。これらの中でも、ポリオールの脂肪酸エステルを用いた場合、本発明の効果が一層発現することがある。上記、滑剤の添加量は、ポリ塩化ビニル樹脂100重量部に対して、好ましくは0.001~10重量部、さらに好ましくは0.05~5重量部である。
 上記安定剤としては、周知のものを用いることができ、具体的には、カルシウム石鹸、バリウム石鹸等のアルカリ土類金属の石鹸やアルミニウム石鹸、有機リン酸金属塩等の有機金属塩、金属酸化物、金属水酸化物、金属炭酸塩、ゼオライト等の無機複合金属塩等の無機金属塩、ハイドロタルサイト等の粘土鉱物の無機複合金属水酸化物、塩素酸バリウム、過塩素酸バリウム、過塩素酸ナトリウム等のハロゲン酸素酸塩、β-ジケトン、多価アルコール、エポキシ化合物等の非金属安定剤が挙げられる。
 また、上記可塑剤としては、例えば、フタル酸、トリメリット酸、ピロメリット酸、アジピン酸、セバチン酸、アゼライン酸等の酸とn-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、n-ペンタノール、イソペンタノール、t-ペンタノール、n-ヘキサノール、イソヘキサノール、n-ヘプタノール、イソヘプタノール、n-オクタノール、イソオクタノール、2-エチルヘキサノール、n-ノナノール、イソノナノール、n-デカノール、イソデカノール、ラウリルアルコール、ミリスチルアルコール、パルミチルアルコール、ステアリルアルコール等の直鎖および分岐のアルキルアルコール単独または混合物からなるエステルやブタンジオールとアジピン酸のエステル等のエステル系可塑剤;エポキシ化大豆油、エポキシ化アマニ油、エポキシ化ヒマシ油、エポキシ化アマニ油脂肪酸ブチル、オクチルエポキシステアレート、エポキシトリグリセライド、エポキシヘキサヒドロフタル酸ジイソデシルやエピクロルヒドリンとビスフェノールAの低分子量反応性生物樹脂等のエポキシ系可塑剤;トリクレジルホスフェート、トリキシレニルホスフェート、モノブチルジキシレニルホスフェート、トリオクチルホスフェート等のリン酸エステル系可塑剤等が挙げられる。
 上記フェノール系酸化防止剤としては、通常用いられるものであればいずれでもよく、例えば、2,6-ジ-t-ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ステアリル(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート、ジステアリル(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ホスホネート、チオジエチレングリコールビス〔(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサメチレンビス〔(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサメチレンビス〔(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオン酸アミド〕、4,4’-チオビス(6-t-ブチル-m-クレゾール)、2,2’-メチレンビス(4-メチル-6-t-ブチルへノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、ビス〔3,3-ビス(4-ヒドロキシ-3-t-ブチルフェニル)ブチリックアジッド〕グリコールエステル、2,2’-エチリデンビス(4,6-ジ-t-ブチルフェノール)、2,2’エチリデンビス(4-s-ブチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、ビス〔2-t-ブチル-4-メチル-6-(2-ヒドロキシ-3-t-ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、1,3,5-トリス〔(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、テトラキス〔メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕メタン、2-t-ブチル-4-メチル-6-(2-アクリロイルオキシ-3-t-ブチル-5-メチルベンジル)フェノール、3,9-ビス〔1,1-ジメチル-2-{(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン、トリエチレングリコールビス〔(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕等が挙げられる。上記フェノール系酸化防止剤の添加量は、ポリ塩化ビニル樹脂100重量部に対して、好ましくは0.01~5重量部、さらに好ましくは0.1~3重量部である。
 上記リン系酸化防止剤としては、通常用いられるものであればいずれでもよく、例えば、トリスノニルフェニルホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、トリス〔2-t-ブチル-4-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)-4,4’-n-ブチリデンビス(2-t-ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2,2’-メチレンビス(4-メチル-6-t-ブチルフェニル)-2-エチルヘキシルホスファイト等があげられる。上記リン系酸化防止剤の添加量は、ポリ塩化ビニル樹脂100重量部に対して、好ましくは、0.001~5重量部、さらに好ましくは0.005~3重量部である。
 上記紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、5,5’-メチレンビス(2-ヒドロキシ-4-メトキシベンゾフェノン)等の2-ヒドロキシベンゾフェノン類;2-(2-ヒドロキシ-5-t-オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジクミルフェニル)ベンゾトリアゾール、2,2’-メチレンビス(4-t-オクチル-6-ベンゾトリアゾリル)フェノール、2-(2-ヒドロキシ-3-t-ブチル-5-カルボキシフェニル)ベンゾトリアゾールのポリエチレングリコールエステル等の2-(2-ヒドロキシフェニル)ベンゾトリアゾール類;フェニルサリシレートレゾルシノールモノベンゾエート、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等のベンゾエート類;2-エチル-2’-エトキシオキザニリド、2-エトキシ-4’-ドデシルオキザニリド等の置換オキザニリド類;エチル-α-シアノ-β,β-ジフェニルアクリレート、メチル-2-シアノ-3-メチル-3-(p-メトキシフェニル)アクリレート等のシアノアクリレート類等が挙げられる。上記紫外線吸収剤の添加量は、塩化ビニル100重量部に対して、好ましくは0.005~10重量部、さらに好ましくは0.01~5重量部である。
 上記光安定剤としては、例えば、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)ブタンテトラカルボキシレート、テトラテス(1,2,2,6,6-ペンタメチル-4-ピペリジル)ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ヒドロキシベンジル)マロネート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノール/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラエチル-4-ピペリジルアミノ)ヘキサン/ジブロモエタン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モノホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピレリジルアミノ)ヘキサン/2,4-ジクロロ-6-t-オクチルアミノ-s-トリアジン重縮合物、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8,12-テトラアザドデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イルアミノ〕ウンデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イルアミノ〕ウンデカン等のヒンダードアミン化合物が挙げられる。上記光安定剤の添加量は、ポリ塩化ビニル樹脂100重量部に対して、好ましくは0.001~5重量部、さらに好ましくは0.05~3重量部である。
 本発明のポリ塩化ビニル樹脂組成物の加工方法としては、押し出し加工、カレンダー加工、ブロー成形、プレス加工、粉体成形、射出成形等が挙げられる。
 以下、本発明を実施例によりさらに詳細に説明する。なお、以下の実施例および比較例において、特に断りがない場合、部および%はそれぞれ重量部および重量%を示す。
実施例1
(ポリ塩化ビニル樹脂の製造)
 重合度850、けん化度72モル%のPVAを0.54部(塩化ビニルに対して600ppmに相当する量)で脱イオン水1300部に溶解させ、分散安定剤を調製した。得られた分散安定剤を、スケール付着防止剤NOXOL WSW(CIRS社製)が固形分として0.3g/mになるように塗布された5Lのグラスライニング製オートクレーブに仕込んだ。次いで、グラスライニング製オートクレーブにジイソプロピルパーオキシジカーボネートの70%トルエン溶液1.5部を仕込み、オートクレーブ内の圧力が0.0067MPaとなるまで脱気して酸素を除いた後、塩化ビニル900部を仕込み、オートクレーブ内の内容物を57℃に昇温して撹拌下に重合を開始した。重合開始時におけるオートクレーブ内の圧力は0.83MPaであった。重合を開始してから5時間経過後、オートクレーブ内の圧力が0.70MPaとなった時点で重合を停止し、未反応の塩化ビニルを除去した後、重合反応物を取り出し、65℃にて一晩乾燥を行い、ポリ塩化ビニル樹脂(PVC)を得た。
(PVAの製造)
 撹拌機、窒素導入口、添加剤導入口および開始剤添加口を備えた6L反応槽に酢酸ビニル2450部、メタノール1050部を仕込み、60℃に昇温した後30分間窒素バブリングにより系中を窒素置換した。連鎖移動剤として2-メルカプトエタノール(以下、2-MEと記載する)の20%メタノール溶液を調製し、窒素ガスによるバブリングを行って窒素置換した。上記の反応槽内温を60℃に調整し、2-ME0.2部を添加した後に、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)1.2部を加えて重合を開始した。重合中は重合温度を60℃に維持し、2-MEの20%メタノール溶液を5.0mL/hrで連続添加した。4時間後に重合率が60%に達したところで冷却して重合を停止した。次いで、減圧下にて未反応の酢酸ビニルを除去し、ポリ酢酸ビニル(PVAc)のメタノール溶液を得た。30%に調整したPVAc溶液にアルカリモル比(NaOHのモル数/PVAc中のビニルエステル単位のモル数)が0.006となるようにNaOHメタノール溶液(10%濃度)を添加してけん化した。得られたPVAをメタノールで洗浄した。以上の操作により重合度400、けん化度80モル%のPVAを得た。
(混合粉体(P)の作成)
 上記で得られた重合度400、けん化度80モル%のPVAを蒸留水に溶解し、5%水溶液を500部得た。これに、ステアリン酸亜鉛(日油株式会社製;商品名「ジンクステアレート」)50部を添加し、合わせて濡れ剤として、アセチレングリコール系界面活性剤(日信化学工業株式会社製;商品名「サーフィノール465」)0.1部を添加し、攪拌することでスラリーを得た。得られたスラリーをスプレードライヤー(大河原化工機株式会社製:L-8型スプレードライヤー)にて顆粒化し、混合粉体(P)を得た。スラリーの組成からPVA(A)/亜鉛化合物(B)の固形分比率は、1/2である。また、得られたスプレードライ顆粒を200メッシュ(目開き75μm)の篩でふるったところ、その90%が篩を通過した。
(ポリ塩化ビニル樹脂組成物の製造)
 磁性ビーカーに、ポリ塩化ビニル樹脂100部、上記で得られた混合粉体(P)を3部(PVAは1部、ステアリン酸亜鉛は2部)、およびステアリン酸カルシウム1部をそれぞれ加え混合し、ポリ塩化ビニル樹脂組成物を得た。
(熱安定性試験)
 上記のポリ塩化ビニル樹脂組成物をテストロールにより180℃で5分間混練し、厚さ0.45mmのシートを作成した。このシートを50×70mmにカットした。このシート片をギヤーオーブン中に入れ、180℃の温度で完全に黒色になるまでの時間を測定し、熱安定性の指標とした。また、テストロール温度を190℃に変更した以外は同様にして、評価を実施した。
(着色性試験)
 上記190℃で5分間テストロールで混錬して得られたシートを45×30mmにカットし、得られた約0.5mm厚のシート片を12~14枚重ね合わせ、185℃で5分間プレスして厚さ5mmの試験片を作成し、目視により着色性を比較し、以下の基準にしたがって判定した。
  A:着色がほとんどない。
  B:わずかに着色が認められる。
  C:黄色である。
  D:黄褐色である。
実施例2~5
 実施例1において、けん化時にアルカリモル比を変更した以外は同様の方法で、表1に示すPVAを得た。実施例1と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表1に示す。
実施例6および7
 実施例1において、酢酸ビニルとメタノールの仕込み重量を変更し、けん化時にアルカリモル比を変更した以外は同様の方法で、表1に示すPVAを得た。実施例1と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表1に示す。
実施例8
 実施例1において得られた、重合度400、けん化度80モル%のPVAを、粉砕して、目開き75μmの篩を通過するPVA粉体(A)を得た。(A)と(B)の粉体を1/2の割合で単純にブレンドして混合粉体(P)を調製した。この混合粉体(P)を用いて実施例1と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表1に示す。
実施例9
(PVAの製造)
 撹拌機、窒素導入口、添加剤導入口および開始剤添加口を備えた6L反応槽に酢酸ビニル2400部、メタノール600部およびn-ドデシルメルカプタン(以下n-DDMと記載する)0.55部を仕込み、60℃に昇温した後30分間窒素バブリングにより系中を窒素置換した。上記の反応槽内温を60℃に調整し、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)1.2部を加えて重合を開始した。重合中は重合温度を60℃に維持し、n-DDMの10重量%酢酸メチル溶液97.9部を5時間にわたって均一に加えた。5時間後に重合率が50%に達したところで冷却して重合を停止した。次いで、減圧下にて未反応の酢酸ビニルを除去し、ポリ酢酸ビニル(PVAc)のメタノール溶液を得た。30%に調整したPVAc溶液にアルカリモル比(NaOHのモル数/PVAc中のビニルエステル単位のモル数)が0.008となるようにNaOHメタノール溶液(10%濃度)を添加してけん化した。以上の操作によりけん化度80.0モル%のPVAを得た。等速電気泳動法(イソタコフォレシス))により測定した酢酸ナトリウム含有量は1.0%であった。上記PVAを少量の水を含む酢酸メチルで還流下に洗浄し、メタノールで48時間ソックスレー抽出による精製を行った後、重水に溶解し、NMRによる分析を行った。これにより、n-ドデシル基のメチル基のプロトンがσ=0.85-1.10ppmに認められ、分子の片末端にCH-(CH11-S基を有するPVAであることが確認できた。該PVAの粘度平均重合度を常法のJIS K6726に準じて測定したところ400であった。
 このPVAを用いて実施例1と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表1に示す。
実施例10
(PVAの製造)
 撹拌機、窒素導入口、エチレン導入口および開始剤添加口を備えた100L加圧反応槽に酢酸ビニル26.4kg、メタノール33.5kgを仕込み、60℃に昇温した後30分間窒素バブリングにより系中を窒素置換した。次いで反応槽圧力が0.22MPaとなるようにエチレンを導入した。開始剤として2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)の2.8g/Lメタノール溶液を調製し、窒素ガスによるバブリングを行って窒素置換した。上記の反応槽内温を60℃に調整した後、上記の開始剤溶液77mLを注入し、重合を開始した。重合中はエチレンを導入して反応槽圧力を0.22MPaに、重合温度を60℃に維持し、上記の開始剤溶液を241mL/hrで連続添加した。5時間後に重合率が60%に達したところで冷却して重合を停止した。反応槽を開放して脱エチレンした後、窒素ガスをバブリングして脱エチレンを完全に行った。次いで減圧下に未反応酢酸ビニルモノマーを除去し、エチレン-ポリ酢酸ビニル共重合体(エチレン変性PVAc)のメタノール溶液を得た。30%に調整した該溶液にアルカリモル比(NaOHのモル数/変性PVAc中のビニルエステル単位のモル数)が0.009となるようにNaOHメタノール溶液(10%濃度)を添加してけん化した。得られたエチレン変性PVAのけん化度は80モル%であった。
 重合後に未反応酢酸ビニルモノマーを除去して得られたエチレン変性PVAcのメタノール溶液をn-ヘキサンに投入してエチレン変性PVAcを沈殿させ、回収したエチレン変性PVAcをアセトンで溶解する再沈精製を3回行った後、60℃で減圧乾燥してエチレン変性PVAcの精製物を得た。該エチレン変性PVAcのプロトンNMR測定から求めたエチレン単位の含有量は5モル%であった。上記のエチレン変性PVAcのメタノール溶液をアルカリモル比0.2でけん化した後、メタノールによるソックスレー抽出を3日間実施し、次いで乾燥してエチレン変性PVAの精製物を得た。該エチレン変性PVAの粘度平均重合度を常法のJIS K6726に準じて測定したところ400であった。
 このPVAを用いて実施例1と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表1に示す。
実施例11
(PVAの製造)
 撹拌機、窒素導入口、添加剤導入口および開始剤添加口を備えた6L反応槽に酢酸ビニル2400部、メタノール600部および3-メルカプトプロピオン酸(以下3-MPAと記載する)0.29部を仕込み、60℃に昇温した後30分間窒素バブリングにより系中を窒素置換した。上記の反応槽内温を60℃に調整し、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)1.2部を加えて重合を開始した。重合中は重合温度を60℃に維持し、3-MPAの10%メタノール溶液51.7部を5時間にわたって均一に加えた。5時間後に重合率が50%に達したところで冷却して重合を停止した。次いで、減圧下にて未反応の酢酸ビニルを除去し、ポリ酢酸ビニル(PVAc)のメタノール溶液を得た。30%に調整したPVAc溶液にアルカリモル比(NaOHのモル数/PVAc中のビニルエステル単位のモル数)が0.008となるようにNaOHメタノール溶液(10%濃度)を添加してけん化した。以上の操作によりけん化度80.0モル%のPVAを得た。等速電気泳動法(イソタコフォレシス))により測定した酢酸ナトリウム含有量は1.0%であった。この変性PVAを重水に溶解し、核磁気共鳴分析を行ったところ、分子内の片末端にカルボキシル基(カルボン酸Na基)が存在していることが確認された。該PVAの粘度平均重合度を常法のJIS K6726に準じて測定したところ400であった。
 このPVAを用いて実施例1と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表1に示す。
実施例12
 実施例11と同様に酢酸ビニルを重合して得られたポリ酢酸ビニル(PVAc)を30%のメタノール溶液に調製し、これにアルカリモル比(NaOHのモル数/PVAc中のビニルエステル単位のモル数)が0.0025となるようにNaOHメタノール溶液(10%濃度)を添加してけん化した。以上の操作によりけん化度40.0モル%のPVAを得た。等速電気泳動法(イソタコフォレシス))により測定した酢酸ナトリウム含有量は0.3%であった。この変性PVAを重水に溶解し、核磁気共鳴分析を行ったところ、分子内の片末端にカルボキシル基(カルボン酸Na基)が存在していることが確認された。該PVAの粘度平均重合度を常法のJIS K6726に準じて測定したところ400であった。
 このPVAを用いて実施例1と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表1に示す。
実施例13
(PVAの製造)
 撹拌機、窒素導入口、添加剤導入口および開始剤添加口を備えた6L反応槽に酢酸ビニル2400部、メタノール600部および1-メルカプトプロパンスルホン酸ナトリウム0.44部を仕込み、60℃に昇温した後30分間窒素バブリングにより系中を窒素置換した。上記の反応槽内温を60℃に調整し、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)1.2部を加えて重合を開始した。重合中は重合温度を60℃に維持し、1-メルカプトプロパンスルホン酸ナトリウムの15%メタノール溶液51.7部を5時間にわたって均一に加えた。5時間後に重合率が50%に達したところで冷却して重合を停止した。次いで、減圧下にて未反応の酢酸ビニルを除去し、ポリ酢酸ビニル(PVAc)のメタノール溶液を得た。30%に調整したPVAc溶液にアルカリモル比(NaOHのモル数/PVAc中のビニルエステル単位のモル数)が0.008となるようにNaOHメタノール溶液(10%濃度)を添加してけん化した。以上の操作によりけん化度80.0モル%のPVAを得た。等速電気泳動法(イソタコフォレシス))により測定した酢酸ナトリウム含有量は1.0%であった。この変性PVAを重水に溶解し、核磁気共鳴分析を行ったところ、分子内の片末端にスルホン酸基(スルホン酸Na基)が存在していることが確認された。該PVAの粘度平均重合度を常法のJIS K6726に準じて測定したところ400であった。
 このPVAを用いて実施例1と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表1に示す。
実施例14~23
 実施例1~5および9~13のポリ塩化ビニル樹脂組成物の製造において、塩化ビニル樹脂100部に対して、さらに滑剤としてグリセリンモノステアレートを1部加え混合した以外は実施例1~5および9~13と同様にして、ポリ塩化ビニル樹脂組成物を得た。得られたポリ塩化ビニル樹脂組成物を使用して、熱安定性、着色性の評価を行った。評価結果を表1に示す。
実施例24
 実施例1で使用したPVAを蒸留水に溶解し、15%水溶液を167部得た。これに、ステアリン酸亜鉛(日油株式会社製;商品名「ジンクステアレート」)50部を添加し、濡れ剤を添加しなかったこと以外は実施例1と同様にして混合粉体(P)を得た。スラリーの組成からPVA(A)/亜鉛化合物(B)の固形分比率は、1/2である。また、得られたスプレードライ顆粒を200メッシュ(目開き75μm)の篩でふるったところ、その83%が篩を通過した。
 この混合粉体(P)を用いて実施例1と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表1に示す。
実施例25
 実施例24のポリ塩化ビニル樹脂組成物の製造において、塩化ビニル樹脂100部に対して、さらに滑剤としてグリセリンモノステアレートを1部加え混合した以外は実施例24と同様にして、ポリ塩化ビニル樹脂組成物を得た。得られたポリ塩化ビニル樹脂組成物を使用して、熱安定性、着色性の評価を行った。評価結果を表1に示す。
比較例1
 ポリ塩化ビニル樹脂組成物の製造において、混合粉体(P)の代わりに目開き75μmを通過するステアリン酸亜鉛を2部添加したこと以外は、実施例1と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表1に示す。
比較例2
 比較例1のポリ塩化ビニル樹脂組成物の製造において、塩化ビニル樹脂100部に対して、さらに滑剤としてグリセリンモノステアレートを1部加え混合した以外は比較例1と同様にして、ポリ塩化ビニル樹脂組成物を得た。得られたポリ塩化ビニル樹脂組成物を使用して、熱安定性、着色性の評価を行った。評価結果を表1に示す。
比較例3
 実施例1において、酢酸ビニルとメタノールの仕込み重量を変更し、けん化時にアルカリモル比を変更した以外は同様の方法で、表1に示すPVAを得た。このPVAを用いて実施例1と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表1に示す。
比較例4
 実施例1において、酢酸ビニルとメタノールの仕込み重量を変更し、けん化時にアルカリモル比を変更した以外は同様の方法で、表1に示すPVAを得た。このPVAを用いて実施例8と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表1に示す。
比較例5
 実施例8において、PVAの粉砕を省略した以外は同様にして、混合粉体(P)を得た。この混合粉体(P)を用いて実施例1と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表1に示す。
比較例6~8
 比較例3~5のポリ塩化ビニル樹脂組成物の製造において、塩化ビニル樹脂100部に対して、さらに滑剤としてグリセリンモノステアレートを1部加え混合した以外は比較例3~5と同様にして、ポリ塩化ビニル樹脂組成物を得た。得られたポリ塩化ビニル樹脂組成物を使用して、熱安定性、着色性の評価を行った。評価結果を表1に示す。
比較例9
 実施例8において、(A)と(B)の粉体の混合割合を0.001/2とした以外は同様にして、混合粉体(P)を得た。この混合粉体(P)を用いて実施例1と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表1に示す。
比較例10~12
 実施例1において、(A)と(B)の固形分比率が表1に示す割合となるように、PVA水溶液とステアリン酸亜鉛の混合割合を調節した以外は同様にして、混合粉体(P)を得た。この混合粉体(P)を用いて実施例1と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表1に示す。
比較例13
 実施例1で使用したPVAを蒸留水に溶解し、25%水溶液を100部得た。これに、ステアリン酸亜鉛(日油株式会社製;商品名「ジンクステアレート」)50部を添加し、濡れ剤を添加しなかったこと以外は実施例1と同様にして混合粉体(P)を得た。スラリーの組成からPVA(A)/亜鉛化合物(B)の固形分比率は、1/2である。また、得られたスプレードライ顆粒を200メッシュ(目開き75μm)の篩でふるったところ、その75%が篩を通過した。
 この混合粉体(P)を用いて実施例1と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表1に示す。
比較例14
 比較例13のポリ塩化ビニル樹脂組成物の製造において、塩化ビニル樹脂100部に対して、さらに滑剤としてグリセリンモノステアレートを1部加え混合した以外は実施例13と同様にして、ポリ塩化ビニル樹脂組成物を得た。得られたポリ塩化ビニル樹脂組成物を使用して、熱安定性、着色性の評価を行った。評価結果を表1に示す。

Figure JPOXMLDOC01-appb-T000001
 実施例1~5では、けん化度が60~99.9モル%の範囲で、粘度平均重合度が400のPVAで、ステアリン酸亜鉛とのスプレードライ顆粒で目開き75μmを80重量%以上通過する混合粉体を用いた場合を示している。総じて好結果であり、後述する実施例6~8よりも黒化時間が長い。とりわけ、けん化度が70~93モル%の範囲にある実施例1~3に関して、テストロールでの混錬温度が180℃、190℃のいずれにおいても黒化時間は特に優れている。
 実施例6および7では、けん化度が80モル%で、粘度平均重合度が750の場合および950の場合を示している。総じて好結果である。
 実施例8では、実施例1と同様の組成であるが、PVAとステアリン酸亜鉛のスプレードライ顆粒ではなく、共に目開き75μmを通過するPVA粉体とステアリン酸粉体の単純ブレンド物を配合した場合を示している。好結果である。
 実施例9では、末端にアルキル基を含有するPVAであり、その他の組成に関しては実施例1と同様のPVAを用いた場合である。180℃、190℃共に僅かではあるが、黒化時間が実施例1より優れている。
 実施例10では、エチレンを共重合したPVAであり、その他の組成に関しては実施例1と同様のPVAを用いた場合である。黒化時間が実施例1より優れている。
 実施例11では、末端にカルボキシル基を含有するPVAであり、その他の組成に関しては実施例1と同様のPVAを用いた場合である。黒化時間が実施例1より優れている。また、後述する実施例12と比較すると、黒化時間、着色性いずれも優れている。
 実施例12では、実施例11と同様に末端にカルボキシル基を含有するPVAであるが、けん化度が40モル%であり、実施例11より低いPVAを用いた場合である。総じてまずまずの結果である。
 実施例13では、末端にスルホン酸基を含有するPVAであり、その他の組成に関しては実施例1と同様のPVAを用いた場合である。黒化時間が実施例1より優れている。
 実施例14~18では、実施例1~5の組成に、滑剤としてグリセリンモノステアレートを配合している。いずれのケースでも黒化時間は向上し、着色性にも優れる。
 実施例19~23では、実施例9~13の組成に、滑剤としてグリセリンモノステアレートを配合している。いずれのケースでも黒化時間は向上する。
 一方、比較例1および2においては、PVAを併用しない場合の結果を示している。いずれの場合も、黒化時間のレベルが不満足であり、着色性のレベルも低い。滑剤であるグリセリンモノステアレートを配合した場合(比較例2)においても同様である。
 また、比較例3においては、粘度平均重合度が本発明の範囲を超える(1500)場合を、比較例4においては、けん化度が本発明の範囲外(25モル%)の場合をそれぞれ示している。なお、けん化度が25モル%のPVAは水溶性が乏しいため、PVAを強制的に粉砕し、PVAとステアリン酸亜鉛共に目開き75μmを通過するPVA粉体とステアリン酸粉体の単純ブレンド物を配合したもので評価した。比較例3および4のいずれの場合も、黒化時間のレベルも不満足であり、着色性のレベルも低い。
 さらに、比較例5においては、実施例8と同様に、PVAとステアリン酸亜鉛のスプレードライ顆粒ではなく、両粉体を単純にブレンドした混合粉体を添加した場合であるが、PVAについては、特に微粉化していないものを用いた結果、目開き75μm篩を70重量%しか通過しない混合粉体を使用している。実施例8と比較すると、黒化時間は低減し、着色性も低下している。
 比較例6~8では、比較例3~5の組成に、滑剤としてグリセリンモノステアレートを配合している。いずれのケースでも黒化時間は僅かに向上しているものの不満足であり、着色性もレベルが低い。
 さらに、PVAの添加量が極端に少ない場合(比較例9)、逆にPVAの添加量が極端に多い場合(比較例10)では、黒化時間、着色性共に満足するに至らず、着色性が著しく低下する。
 また、亜鉛化合物の添加量が極端に少ない場合(比較例11)、ロール混連中に樹脂が劣化し、評価するに至らず、逆に亜鉛化合物の添加量が極端に多い場合(比較例12)、黒化時間、着色性共に満足するに至らない。
 また、同一組成の中で、混合粉体(P)の75μm篩通過量による比較では、本発明で規定する範囲の80重量%以上のもの(実施例1および実施例24)は、黒化時間、着色性共に満足するレベルにあり、これらに滑剤を添加したもの(実施例14および実施例25)は更に性能が向上する。一方で、80重量%に満たないもの(比較例5および比較例13)や、これらに滑剤を添加したもの(比較例8および比較例14)では、いずれも黒化時間、着色性共に満足するに至らない。
実施例26
(混合粉体(P)の作成)
 実施例1と同様にして得られたPVAを蒸留水に溶解し、5%水溶液を500部得た。これに、ステアリン酸亜鉛(日油株式会社製;商品名「ジンクステアレート」)50部およびステアリン酸カルシウム(日油株式会社製;商品名「カルシウムステアレート」)25部を添加し、合わせて濡れ剤として、アセチレングリコール系界面活性剤(日信化学工業株式会社製;商品名「サーフィノール465」)0.1部を添加し、攪拌することでスラリーを得た。得られたスラリーをスプレードライヤー(大河原化工機株式会社製:L-8型スプレードライヤー)にて顆粒化し、混合粉体(P)を得た。スラリーの組成からPVA(A)/亜鉛化合物(B)/カルシウム化合物(C)の固形分比率は、1/2/1であり、A/(B+C)の固形分比率は、1/3である。また、得られたスプレードライ顆粒を200メッシュ(目開き75μm)の篩でふるったところ、その90%が篩を通過した。
(ポリ塩化ビニル樹脂組成物の製造)
 磁性ビーカーに、実施例1と同様にして得られたポリ塩化ビニル樹脂100部、上記で得られた混合粉体(P)4部(PVAは1部、ステアリン酸亜鉛は2部、ステアリン酸カルシウムは1部)を加え混合し、ポリ塩化ビニル樹脂組成物を得た。得られたポリ塩化ビニル樹脂組成物を用いて、実施例1と同様にして、熱安定性、着色性の評価を行った。評価結果を表2に示す。
実施例27~30
 実施例1において、けん化時にアルカリモル比を変更した以外は同様の方法で、表2に示すPVAを得た。実施例26と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表2に示す。
実施例31および32
 実施例1において、酢酸ビニルとメタノールの仕込み重量を変更し、けん化時にアルカリモル比を変更した以外は同様の方法で、表2に示すPVAを得た。実施例26と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表2に示す。
実施例33
 実施例1と同様にして得られた、重合度400、けん化度80モル%のPVAを、粉砕して、目開き75μmの篩を通過するPVA粉体(A)を得た。(A)、(B)および(C)の各粉体を1/2/1(A/(B+C)=1/3)の割合で単純にブレンドして混合粉体(P)を調製した。この混合粉体(P)を用いて実施例26と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表2に示す。
実施例34
 実施例9と同様にして得られた、分子の片末端にCH-(CH11-S基を有するPVAを用いて実施例26と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表2に示す。
実施例35
 実施例10と同様にして得られた、エチレン変性PVAを用いて実施例26と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表2に示す。
実施例36
 実施例11と同様にして得られた、分子内の片末端にカルボキシル基(カルボン酸Na基)を有するPVAを用いて実施例26と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表2に示す。
実施例37
 実施例12と同様にして得られた、分子内の片末端にカルボキシル基(カルボン酸Na基)を有するPVAを用いて実施例26と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表2に示す。
実施例38
 実施例13と同様にして得られた、分子内の片末端にスルホン酸基(スルホン酸Na基)を有するPVAを用いて実施例26と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表2に示す。
実施例39~48
 実施例26~30および34~38のポリ塩化ビニル樹脂組成物の製造において、塩化ビニル樹脂100部に対して、さらに滑剤としてグリセリンモノステアレートを1部加え混合した以外は実施例26~30および34~38と同様にして、ポリ塩化ビニル樹脂組成物を得た。得られたポリ塩化ビニル樹脂組成物を使用して、熱安定性、着色性の評価を行った。評価結果を表2に示す。
実施例49
 実施例1と同様にして得られたPVAを蒸留水に溶解し、15%水溶液を167部得た。これに、ステアリン酸亜鉛(日油株式会社製;商品名「ジンクステアレート」)50部およびステアリン酸カルシウム(日油株式会社製;商品名「カルシウムステアレート」)25部を添加し、濡れ剤を添加しなかったこと以外は実施例26と同様にして混合粉体(P)を得た。スラリーの組成からPVA(A)/亜鉛化合物(B)/カルシウム化合物(C)の固形分比率は、1/2/1であり、A/(B+C)の固形分比率は、1/3である。また、得られたスプレードライ顆粒を200メッシュ(目開き75μm)の篩でふるったところ、その83%が篩を通過した。
 この混合粉体(P)を用いて実施例26と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表2に示す。
実施例50
 実施例49のポリ塩化ビニル樹脂組成物の製造において、塩化ビニル樹脂100部に対して、さらに滑剤としてグリセリンモノステアレートを1部加え混合した以外は実施例49と同様にして、ポリ塩化ビニル樹脂組成物を得た。得られたポリ塩化ビニル樹脂組成物を使用して、熱安定性、着色性の評価を行った。評価結果を表2に示す。
比較例15
 ポリ塩化ビニル樹脂組成物の製造において、混合粉体(P)の代わりに目開き75μmの篩を通過するステアリン酸亜鉛を2部および目開き75μmの篩を通過するステアリン酸カルシウムを1部添加したこと以外は、実施例26と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表2に示す。
比較例16
 比較例15のポリ塩化ビニル樹脂組成物の製造において、塩化ビニル樹脂100部に対して、さらに滑剤としてグリセリンモノステアレートを1部加え混合した以外は比較例15と同様にして、ポリ塩化ビニル樹脂組成物を得た。得られたポリ塩化ビニル樹脂組成物を使用して、熱安定性、着色性の評価を行った。評価結果を表2に示す。
比較例17
 実施例1において、酢酸ビニルとメタノールの仕込み重量を変更し、けん化時にアルカリモル比を変更した以外は同様の方法で、表2に示すPVAを得た。このPVAを用いて実施例26と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表2に示す。
比較例18
 実施例1において、けん化時にアルカリモル比を変更した以外は同様の方法で、表2に示すPVAを得た。このPVAを用いて実施例33と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表2に示す。
比較例19
 実施例33おいて、PVAの粉砕を省略した以外は同様にして、混合粉体(P)を得た。この混合粉体(P)を用いて実施例26と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表2に示す。
比較例20~22
 比較例17~19のポリ塩化ビニル樹脂組成物の製造において、塩化ビニル樹脂100部に対して、さらに滑剤としてグリセリンモノステアレートを1部加え混合した以外は比較例17~19と同様にして、ポリ塩化ビニル樹脂組成物を得た。得られたポリ塩化ビニル樹脂組成物を使用して、熱安定性、着色性の評価を行った。評価結果を表2に示す。
比較例23
 実施例33において、(A)、(B)および(C)の粉体の混合割合を0.001/2/1(A/(B+C)=0.001/3)とした以外は同様にして、混合粉体(P)を得た。この混合粉体(P)を用いて実施例26と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表2に示す。
比較例24~26
 実施例26において、(A)、(B)および(C)の固形分比率が表2に示す割合となるように、PVA水溶液、ステアリン酸亜鉛およびステアリン酸カルシウムの混合割合を調節した以外は同様にして、混合粉体(P)を得た。この混合粉体(P)を用いて実施例26と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表2に示す。
比較例27
 実施例1と同様にして得られたPVAを蒸留水に溶解し、25%水溶液を100部得た。これに、ステアリン酸亜鉛(日油株式会社製;商品名「ジンクステアレート」)50部およびステアリン酸カルシウム(日油株式会社製;商品名「カルシウムステアレート」)25部を添加し、濡れ剤を添加しなかったこと以外は実施例26と同様にして混合粉体(P)を得た。スラリーの組成からPVA(A)/亜鉛化合物(B)/カルシウム化合物(C)の固形分比率は、1/2/1であり、A/(B+C)の固形分比率は、1/3である。また、得られたスプレードライ顆粒を200メッシュ(目開き75μm)の篩でふるったところ、その75%が篩を通過した。
 この混合粉体(P)を用いて実施例26と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表2に示す。
比較例28
 比較例27のポリ塩化ビニル樹脂組成物の製造において、塩化ビニル樹脂100部に対して、さらに滑剤としてグリセリンモノステアレートを1部加え混合した以外は比較例27と同様にして、ポリ塩化ビニル樹脂組成物を得た。得られたポリ塩化ビニル樹脂組成物を使用して、熱安定性、着色性の評価を行った。評価結果を表2に示す。

Figure JPOXMLDOC01-appb-T000002
 実施例26~30では、けん化度が60~99.9モル%の範囲で、粘度平均重合度が400のPVAで、ステアリン酸亜鉛およびステアリン酸カルシウムとのスプレードライ顆粒で目開き75μmを80重量%以上通過する混合粉体を用いた場合を示している。総じて好結果であり、後述する実施例31~33よりも黒化時間が長い。とりわけ、けん化度が70~93モル%の範囲にある実施例26~28に関して、テストロールでの混錬温度が180℃、190℃のいずれにおいても黒化時間は特に優れている。
 実施例31および32では、けん化度が80モル%で、粘度平均重合度が750の場合および950の場合を示している。総じて好結果である。
 実施例33では、実施例26と同様の組成であるが、PVA、ステアリン酸亜鉛およびステアリン酸カルシウムのスプレードライ顆粒ではなく、共に目開き75μmの篩を通過するPVA粉体、ステアリン酸亜鉛およびステアリン酸カルシウムの単純ブレンド物を配合した場合を示している。好結果である。
 実施例34では、末端にアルキル基を含有するPVAであり、その他の組成に関しては実施例26と同様のPVAを用いた場合である。180℃、190℃共に僅かではあるが、黒化時間が実施例26より優れている。
 実施例35では、エチレンを共重合したPVAであり、その他の組成に関しては実施例26と同様のPVAを用いた場合である。黒化時間が実施例26より優れている。
 実施例36では、末端にカルボキシル基を含有するPVAであり、その他の組成に関しては実施例26と同様のPVAを用いた場合である。黒化時間が実施例26より優れている。また、後述する実施例37と比較すると、黒化時間、着色性いずれも優れている。
 実施例37では、実施例36と同様に末端にカルボキシル基を含有するPVAであるが、けん化度が40モル%であり、実施例36より低いPVAを用いた場合である。総じてまずまずの結果である。
 実施例38では、末端にスルホン酸基を含有するPVAであり、その他の組成に関しては実施例26と同様のPVAを用いた場合である。黒化時間が実施例26より優れている。
 実施例39~43では、実施例26~30の組成に、滑剤としてグリセリンモノステアレートを配合している。いずれのケースでも黒化時間は向上し、着色性にも優れる。
 実施例44~48では、実施例34~38の組成に、滑剤としてグリセリンモノステアレートを配合している。いずれのケースでも黒化時間は向上する。
 一方、比較例15および16においては、PVAを併用しない場合の結果を示している。いずれの場合も、黒化時間のレベルが不満足であり、着色性のレベルも低い。滑剤であるグリセリンモノステアレートを配合した場合(比較例16)においても同様である。
 また、比較例17においては、粘度平均重合度が本発明の範囲を超える(1500)場合を、比較例18においては、けん化度が本発明の範囲外(25モル%)の場合をそれぞれ示している。なお、けん化度が25モル%のPVAは水溶性が乏しいため、PVAを強制的に粉砕し、共に目開き75μmの篩を通過するPVA粉体、ステアリン酸亜鉛粉体およびステアリン酸カルシウム粉体の単純ブレンド物を配合したもので評価した。比較例17および18のいずれの場合も、黒化時間のレベルも不満足であり、着色性のレベルも低い。
 さらに、比較例19においては、実施例33と同様に、PVA、ステアリン酸亜鉛およびステアリン酸カルシウムのスプレードライ顆粒ではなく、これらの粉体を単純にブレンドした混合粉体を添加した場合であるが、PVAについては、特に微粉化していないものを用いた結果、目開き75μm篩を75重量%しか通過しない混合粉体を使用している。実施例33と比較すると、黒化時間は低減し、着色性も低下している。
 比較例20~22では、比較例17~19の組成に、滑剤としてグリセリンモノステアレートを配合している。いずれのケースでも黒化時間は僅かに向上しているものの不満足であり、着色性もレベルが低い。
 さらに、PVAの添加量が極端に少ない場合(比較例23)、逆にPVAの添加量が極端に多い場合(比較例24)では、黒化時間、着色性共に満足するに至らず、着色性が著しく低下する。
 また、亜鉛化合物およびカルシウム化合物の添加量が極端に少ない場合(比較例25)、ロール混連中に樹脂が劣化し、評価するに至らず、逆に亜鉛化合物およびカルシウム化合物の添加量が極端に多い場合(比較例26)、黒化時間、着色性共に満足するに至らない。
 また、同一組成の中で、混合粉体(P)の75μm篩通過量による比較では、本発明で規定する範囲の80重量%以上のもの(実施例26および実施例49)は、黒化時間、着色性共に満足するレベルにあり、これらに滑剤を添加したもの(実施例39および実施例50)は更に性能が向上する。一方で、80重量%に満たないもの(比較例19および比較例27)や、これらに滑剤を添加したもの(比較例22および比較例28)では、いずれも黒化時間、着色性共に満足するに至らない。
実施例51
(混合粉体(P)の作成)
 実施例1と同様にして得られた重合度400、けん化度80モル%のPVAを蒸留水に溶解し、5%水溶液を500部得た。これに、ステアリン酸亜鉛(日油株式会社製;商品名「ジンクステアレート」)50部、および炭酸カルシウム(備北粉化工業株式会社製;商品名「ソフトン1800」)125部を添加し、合わせて濡れ剤として、アセチレングリコール系界面活性剤(日信化学工業株式会社製;商品名「サーフィノール465」)0.1部を添加し、攪拌することでスラリーを得た。得られたスラリーをスプレードライヤー(大河原化工機株式会社製:L-8型スプレードライヤー)にて顆粒化し、混合粉体(P)を得た。スラリーの組成からPVA(A)/亜鉛化合物(B)/カルシウム化合物(C)の固形分比率は、1/2/5であり、A/(B+C)の固形分比率は、1/7である。また、得られたスプレードライ顆粒を200メッシュ(目開き75μm)の篩でふるったところ、その90%が篩を通過した。
(ポリ塩化ビニル樹脂組成物の製造)
 磁性ビーカーに、ポリ塩化ビニル樹脂100部、上記で得られた混合粉体(P)8部(PVAは1部、ステアリン酸亜鉛は2部、炭酸カルシウムは5部)およびステアリン酸カルシウム(日油株式会社製;商品名「カルシウムステアレート」)1部を加え混合し、ポリ塩化ビニル樹脂組成物を得た。
(熱安定性試験および着色性試験)
 実施例1と同様に評価した。結果を表3に示す。
実施例52~55
 実施例51において、けん化時にアルカリモル比を変更した以外は同様の方法で、表3に示すPVAを得た。実施例51と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表3に示す。
実施例56
 実施例33において、カルシウム化合物(C)として、ステアリン酸カルシウム1部の代わりに炭酸カルシウム5部を用いた。(A)、(B)および(C)の各粉体を1/2/5(A/(B+C)=1/7)の割合で単純にブレンドして混合粉体(P)を調製した。この混合粉体(P)を用いて実施例51と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表3に示す。
比較例29
 ポリ塩化ビニル樹脂組成物の製造において、混合粉体(P)の代わりに目開き75μmの篩を通過するステアリン酸亜鉛を2部、目開き75μmの篩を通過する炭酸カルシウムを5部、および、目開き75μmの篩を通過するステアリン酸カルシウムを1部添加したこと以外は、実施例51と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表3に示す。
比較例30
 比較例18で用いた重合度400、けん化度25モル%のPVAを用いて実施例56と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表3に示す。
比較例31
 実施例56において、PVAの粉砕を省略した以外は同様にして、混合粉体(P)を得た。この混合粉体(P)を用いて実施例56と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例51~55は、表2の実施例26~30において、ステアリン酸カルシウムの代わりに炭酸カルシウムを用いて、PVA(A)、ステアリン酸亜鉛(B)と共にスプレードライによる顆粒化を実施したもので、スプレードライ顆粒で目開き75μmを80重量%以上通過する混合粉体を用いた場合を示している。総じて好結果であり、とりわけ、けん化度が70~93モル%の範囲にある実施例51~53に関して、テストロールでの混錬温度が180℃、190℃のいずれにおいても黒化時間は特に優れている。
 実施例56では、実施例51と同様の組成であるが、PVA、ステアリン酸亜鉛および炭酸カルシウムのスプレードライ顆粒ではなく、共に目開き75μmの篩を通過するPVA粉体、ステアリン酸亜鉛および炭酸カルシウムの単純ブレンド物を混合粉体(P)として、ポリ塩化ビニル樹脂にステアリン酸カルシウムと共に配合した場合を示している。好結果である。
 一方、比較例29においては、PVAを併用しない場合の結果を示している。黒化時間のレベルが不満足であり、着色性のレベルも低い。
 また、比較例30においては、けん化度が本発明の範囲外(25モル%)の場合を示している。なお、けん化度が25モル%のPVAは水溶性が乏しいため、PVAを強制的に粉砕し、共に目開き75μmの篩を通過するPVA粉体、ステアリン酸亜鉛粉体および炭酸カルシウム粉体の単純ブレンド物を混合粉体(P)として、ポリ塩化ビニル樹脂にステアリン酸カルシウムと共に配合したもので評価した。黒化時間のレベルも不満足であり、着色性のレベルも低い。
 さらに、比較例31においては、実施例56と同様に、PVA、ステアリン酸亜鉛および炭酸カルシウムのスプレードライ顆粒ではなく、これらの粉体を単純にブレンドした混合粉体を混合粉体(P)として、ポリ塩化ビニル樹脂にステアリン酸カルシウムと共に添加した場合であるが、PVAについては、特に微粉化していないものを用いた結果、目開き75μm篩を75重量%しか通過しない混合粉体を使用している。実施例56と比較すると、黒化時間は低減し、着色性も低下している。
実施例57
(混合粉体(P)の作成)
 実施例1と同様にして得られた、重合度400、けん化度80モル%のPVAを蒸留水に溶解し、5%水溶液を500部得た。これに、ステアリン酸亜鉛(日油株式会社製;商品名「ジンクステアレート」)50部、カルシウム化合物(C)としてステアリン酸カルシウム(日油株式会社製;商品名「カルシウムステアレート」)25部および炭酸カルシウム(備北粉化工業株式会社製;商品名「ソフトン1800」)125部を添加し、合わせて濡れ剤として、アセチレングリコール系界面活性剤(日信化学工業株式会社製;商品名「サーフィノール465」)0.1部を添加し、攪拌することでスラリーを得た。得られたスラリーをスプレードライヤー(大河原化工機株式会社製:L-8型スプレードライヤー)にて顆粒化し、混合粉体(P)を得た。スラリーの組成からPVA(A)/亜鉛化合物(B)/カルシウム化合物(C)の固形分比率は、1/2/6であり、A/(B+C)の固形分比率は、1/8である。また、得られたスプレードライ顆粒を200メッシュ(目開き75μm)の篩でふるったところ、その90%が篩を通過した。
(ポリ塩化ビニル樹脂組成物の製造)
 磁性ビーカーに、ポリ塩化ビニル樹脂100部、上記で得られた混合粉体(P)9部(PVAは1部、ステアリン酸亜鉛は2部、カルシウム化合物(C)は計6部)を加え混合し、ポリ塩化ビニル樹脂組成物を得た。
(熱安定性試験および着色性試験)
 実施例1と同様に評価した。結果を表4に示す。
実施例58~61
 実施例57において、けん化時にアルカリモル比を変更した以外は同様の方法で、表4に示すPVAを得た。実施例57と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例57~61においては、カルシウム化合物(C)として、ステアリン酸カルシウムおよび炭酸カルシウムを併用し、PVA(A)、亜鉛化合物(B)と共にスプレードライによる顆粒化を実施したもので、スプレードライ顆粒で目開き75μmを80重量%以上通過する混合粉体を用いた場合を示している。総じて好結果であり、とりわけ、表2の実施例26~30や表3の実施例51~55よりも更に黒化時間に優れており、特にけん化度が70~93モル%の範囲にある実施例57~59に関して、テストロールでの混錬温度が180℃、190℃のいずれにおいても黒化時間は特に優れている。
実施例62
(混合粉体(P)の作成)
 実施例1と同様にして得られたPVAを蒸留水に溶解し、5%水溶液を500部得た。これに、ステアリン酸カルシウム(日油株式会社製;商品名「カルシウムステアレート」)25部を添加し、合わせて濡れ剤として、アセチレングリコール系界面活性剤(日信化学工業株式会社製;商品名「サーフィノール465」)0.1部を添加し、攪拌することでスラリーを得た。得られたスラリーをスプレードライヤー(大河原化工機株式会社製:L-8型スプレードライヤー)にて顆粒化し、これにステアリン酸亜鉛(日油株式会社製;商品名「ジンクステアレート」)50部を添加し、混合粉体(P)を得た。スラリーの組成とステアリン酸亜鉛の添加量から、PVA(A)/亜鉛化合物(B)/カルシウム化合物(C)の固形分比率は、1/2/1であり、A/(B+C)の固形分比率は、1/3である。また、得られたスプレードライ顆粒を200メッシュ(目開き75μm)の篩でふるったところ、その90%が篩を通過した。
(ポリ塩化ビニル樹脂組成物の製造)
 磁性ビーカーに、実施例1と同様にして得られたポリ塩化ビニル樹脂100部、上記で得られた混合粉体(P)を4部(PVAは1部、ステアリン酸亜鉛は2部、ステアリン酸カルシウムは1部)を加え混合し、ポリ塩化ビニル樹脂組成物を得た。得られたポリ塩化ビニル樹脂組成物を用いて、実施例1と同様にして、熱安定性、着色性の評価を行った。評価結果を表5に示す。
実施例63~66
 実施例1において、けん化時にアルカリモル比を変更した以外は同様の方法で、表5に
示すPVAを得た。実施例62と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表5に示す。
実施例67および68
 実施例1において、酢酸ビニルとメタノールの仕込み重量を変更し、けん化時にアルカリモル比を変更した以外は同様の方法で、表5に示すPVAを得た。実施例62と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表5に示す。
実施例69
(PVAの製造)
 実施例9と同様にして得られた、分子の片末端にCH-(CH11-S基を有するPVAを用いて実施例62と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表5に示す。
実施例70
 実施例10と同様にして得られた、エチレン変性PVAを用いて実施例62と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表5に示す。
実施例71
 実施例11と同様にして得られた、分子内の片末端にカルボキシル基(カルボン酸Na基)を有するPVAを用いて実施例62と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表5に示す。
実施例72
 実施例12と同様にして得られた、分子内の片末端にカルボキシル基(カルボン酸Na基)を有するPVAを用いて実施例62と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表5に示す。
実施例73
 実施例13と同様にして得られた、分子内の片末端にスルホン酸基(スルホン酸Na基)を有するPVAを用いて実施例62と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表5に示す。
実施例74~83
 実施例62~66および69~73のポリ塩化ビニル樹脂組成物の製造において、塩化ビニル樹脂100部に対して、さらに滑剤としてグリセリンモノステアレートを1部加え混合した以外は実施例62~66および69~73と同様にして、ポリ塩化ビニル樹脂組成物を得た。得られたポリ塩化ビニル樹脂組成物を使用して、熱安定性、着色性の評価を行った。評価結果を表5に示す。
実施例84
 実施例1と同様にして得られたPVAを蒸留水に溶解し、15%水溶液を167部得た。これに、ステアリン酸カルシウム(日油株式会社製;商品名「カルシウムステアレート」)25部を添加し、濡れ剤を添加しなかったこと以外は実施例62と同様にしてスラリーを顆粒化し、これにステアリン酸亜鉛(日油株式会社製;商品名「ジンクステアレート」)50部を添加して混合粉体(P)を得た。スラリーの組成とステアリン酸亜鉛の添加量から、PVA(A)/亜鉛化合物(B)/カルシウム化合物(C)の固形分比率は、1/2/1であり、A/(B+C)の固形分比率は、1/3である。また、得られたスプレードライ顆粒を200メッシュ(目開き75μm)の篩でふるったところ、その83%が篩を通過した。
 この混合粉体(P)を用いて実施例62と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表5に示す。
実施例85
 実施例84のポリ塩化ビニル樹脂組成物の製造において、塩化ビニル樹脂100部に対して、さらに滑剤としてグリセリンモノステアレートを1部加え混合した以外は実施例84と同様にして、ポリ塩化ビニル樹脂組成物を得た。得られたポリ塩化ビニル樹脂組成物を使用して、熱安定性、着色性の評価を行った。評価結果を表5に示す。
比較例32
 実施例1において、酢酸ビニルとメタノールの仕込み重量を変更し、けん化時にアルカリモル比を変更した以外は同様の方法で、表5に示すPVAを得た。このPVAを用いて実施例62と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表5に示す。
比較例33
 比較例32のポリ塩化ビニル樹脂組成物の製造において、塩化ビニル樹脂100部に対して、さらに滑剤としてグリセリンモノステアレートを1部加え混合した以外は比較例32と同様にして、ポリ塩化ビニル樹脂組成物を得た。得られたポリ塩化ビニル樹脂組成物を使用して、熱安定性、着色性の評価を行った。評価結果を表5に示す。
比較例34~36
 実施例62において、(A)、(B)および(C)の固形分比率が表5に示す割合となるように、PVA水溶液、ステアリン酸亜鉛およびステアリン酸カルシウムの混合割合を調節した以外は同様にして、混合粉体(P)を得た。この混合粉体(P)を用いて実施例62と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表5に示す。
比較例37
 実施例1と同様にして得られたPVAを蒸留水に溶解し、25%水溶液を100部得た。これに、ステアリン酸カルシウム(日油株式会社製;商品名「カルシウムステアレート」)25部を添加し、濡れ剤を添加しなかったこと以外は実施例62と同様にしてスラリーを顆粒化し、これにステアリン酸亜鉛(日油株式会社製;商品名「ジンクステアレート」)50部を添加して混合粉体(P)を得た。スラリーの組成とステアリン酸亜鉛の添加量から、PVA(A)/亜鉛化合物(B)/カルシウム化合物(C)の固形分比率は、1/2/1であり、A/(B+C)の固形分比率は1/3である。また、得られたスプレードライ顆粒を200メッシュ(目開き75μm)の篩でふるったところ、その75%が篩を通過した。
 この混合粉体(P)を用いて実施例62と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表5に示す。
比較例38
 比較例37のポリ塩化ビニル樹脂組成物の製造において、塩化ビニル樹脂100部に対して、さらに滑剤としてグリセリンモノステアレートを1部加え混合した以外は比較例37と同様にして、ポリ塩化ビニル樹脂組成物を得た。得られたポリ塩化ビニル樹脂組成物を使用して、熱安定性、着色性の評価を行った。評価結果を表5に示す。
 表5には、参考のため、実施例33、比較例18、比較例19、比較例22および比較例23の結果を再度記載している。

Figure JPOXMLDOC01-appb-T000005
 実施例62~66では、けん化度が60~99.9モル%の範囲で、粘度平均重合度が400のPVAで、ステアリン酸カルシウムとのスプレードライ顆粒にステアリン酸亜鉛を添加し、目開き75μmの篩を80重量%以上通過する混合粉体を用いた場合を示している。総じて好結果であり、後述する実施例67、68および33よりも黒化時間が長い。とりわけ、けん化度が70~93モル%の範囲にある実施例62~64に関して、テストロールでの混錬温度が180℃、190℃のいずれにおいても黒化時間は特に優れている。
 実施例67および68では、けん化度が80モル%で、粘度平均重合度が750の場合および950の場合を示している。総じて好結果である。
 実施例69では、末端にアルキル基を含有するPVAであり、その他の組成に関しては実施例62と同様のPVAを用いた場合である。180℃、190℃共に僅かではあるが、黒化時間が実施例62より優れている。
 実施例70では、エチレンを共重合したPVAであり、その他の組成に関しては実施例62と同様のPVAを用いた場合である。黒化時間が実施例62より優れている。
 実施例71では、末端にカルボキシル基を含有するPVAであり、その他の組成に関しては実施例62と同様のPVAを用いた場合である。黒化時間が実施例62より優れている。また、後述する実施例72と比較すると、黒化時間、着色性いずれも優れている。
 実施例72では、実施例71と同様に末端にカルボキシル基を含有するPVAであるが、けん化度が40モル%であり、実施例71より低いPVAを用いた場合である。総じてまずまずの結果である。
 実施例73では、末端にスルホン酸基を含有するPVAであり、その他の組成に関しては実施例62と同様のPVAを用いた場合である。黒化時間が実施例62より優れている。
 実施例74~78では、実施例62~66の組成に、滑剤としてグリセリンモノステアレートを配合している。いずれのケースでも黒化時間は向上し、着色性にも優れる。
 実施例79~83では、実施例69~73の組成に、滑剤としてグリセリンモノステアレートを配合している。いずれのケースでも黒化時間は向上する。
 また、比較例32においては、粘度平均重合度が本発明の範囲を超える(1500)場合を、比較例18においては、けん化度が本発明の範囲外(25モル%)の場合をそれぞれ示している。なお、けん化度が25モル%のPVAは水溶性が乏しいため、PVAを強制的に粉砕し、共に目開き75μmの篩を通過するPVA粉体、ステアリン酸亜鉛およびステアリン酸カルシウム粉体の単純ブレンド物を配合したもので評価した。比較例32および18のいずれの場合も、黒化時間のレベルも不満足であり、着色性のレベルも低い。
 比較例33では、比較例32の組成に、滑剤としてグリセリンモノステアレートを配合している。黒化時間は僅かに向上しているものの不満足であり、着色性もレベルが低い。
 さらに、PVAの添加量が極端に少ない場合(比較例23)、逆にPVAの添加量が極端に多い場合(比較例34)では、黒化時間、着色性共に満足するに至らず、着色性が著しく低下する。
 また、亜鉛化合物およびカルシウム化合物の添加量が極端に少ない場合(比較例35)、ロール混連中に樹脂が劣化し、評価するに至らず、逆に亜鉛化合物およびカルシウム化合物の添加量が極端に多い場合(比較例36)、黒化時間、着色性共に満足するに至らない。
 また、同一組成の中で、混合粉体(P)の75μm篩通過量による比較では、本発明で規定する範囲の80重量%以上のもの(実施例62および実施例84)は、黒化時間、着色性共に満足するレベルにあり、これらに滑剤を添加したもの(実施例74および実施例85)は更に性能が向上する。一方で、80重量%に満たないもの(比較例19および比較例37)や、これらに滑剤を添加したもの(比較例22および比較例38)では、いずれも黒化時間、着色性共に満足するに至らない。
実施例86
(混合粉体(P)の作成)
 実施例1と同様にして得られた、重合度400、けん化度80モル%のPVAを蒸留水に溶解し、5%水溶液を500部得た。これに、カルシウム化合物(C)としてステアリン酸カルシウム(日油株式会社製;商品名「カルシウムステアレート」)25部および炭酸カルシウム(備北粉化工業株式会社製;商品名「ソフトン1800」)125部を添加し、合わせて濡れ剤として、アセチレングリコール系界面活性剤(日信化学工業株式会社製;商品名「サーフィノール465」)0.1部を添加し、攪拌することでスラリーを得た。得られたスラリーをスプレードライヤー(大河原化工機株式会社製:L-8型スプレードライヤー)にて顆粒化し、これにステアリン酸亜鉛(日油株式会社製;商品名「ジンクステアレート」)50部を添加し、混合粉体(P)を得た。スラリーの組成とステアリン酸亜鉛の添加量から、PVA(A)/亜鉛化合物(B)/カルシウム化合物(C)の固形分比率は、1/2/6であり、A/(B+C)の固形分比率は、1/8である。また、得られた混合粉体(P)を200メッシュ(目開き75μm)の篩でふるったところ、その90%が篩を通過した。
(ポリ塩化ビニル樹脂組成物の製造)
 磁性ビーカーに、ポリ塩化ビニル樹脂100部、上記で得られた混合粉体(P)9部(PVAは1部、ステアリン酸亜鉛は2部、カルシウム化合物(C)は計6部)を加え混合し、ポリ塩化ビニル樹脂組成物を得た。
(熱安定性試験および着色性試験)
 実施例1と同様に評価した。結果を表6に示す。
実施例87~90
 実施例1において、けん化時にアルカリモル比を変更した以外は同様の方法で、表6に示すPVAを得た。実施例86と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表6に示す。
実施例91
 実施例33において、カルシウム化合物(C)として、ステアリン酸カルシウム1部と共に炭酸カルシウム5部を用いた。(A)、(B)および(C)の各粉体を1/2/6(A/(B+C)=1/8)の割合で単純にブレンドして混合粉体(P)を調製した。この混合粉体(P)を用いて実施例86と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表6に示す。
比較例39
 ポリ塩化ビニル樹脂組成物の製造において、混合粉体(P)の代わりに目開き75μmの篩を通過するステアリン酸亜鉛を2部、目開き75μmの篩を通過する炭酸カルシウムを5部、および、目開き75μmの篩を通過するステアリン酸カルシウムを1部添加したこと以外は、実施例86と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表6に示す。
比較例40
 比較例18で用いた重合度400、けん化度25モル%のPVAを用いて実施例91と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表6に示す。
比較例41
 実施例91において、PVAの粉砕を省略した以外は同様にして、混合粉体(P)を得た。この混合粉体(P)を用いて実施例91と同様にしてポリ塩化ビニル樹脂組成物を得て、熱安定性、着色性の評価を行った。評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 実施例86~90は、表5の実施例62~66において、ステアリン酸カルシウムと共に炭酸カルシウムを用いて、PVA(A)と共にスプレードライによる顆粒化を実施し、さらにステアリン酸亜鉛(B)を添加したもので、目開き75μmの篩を80重量%以上通過する混合粉体を用いた場合を示している。総じて好結果であり、とりわけ、けん化度が70~93モル%の範囲にある実施例86~88に関して、テストロールでの混錬温度が180℃、190℃のいずれにおいても黒化時間は特に優れている。
 実施例91では、実施例86と同様の組成であるが、PVA、ステアリン酸カルシウムおよび炭酸カルシウムのスプレードライ顆粒ではなく、共に目開き75μmの篩を通過するPVA粉体、ステアリン酸亜鉛、ステアリン酸カルシウムおよび炭酸カルシウムの単純ブレンド物を混合粉体(P)として、ポリ塩化ビニル樹脂と共に配合した場合を示している。好結果である。
 一方、比較例39においては、PVAを併用しない場合の結果を示している。いずれの場合も、黒化時間のレベルが不満足であり、着色性のレベルも低い。
 また、比較例40においては、けん化度が本発明の範囲外(25モル%)の場合を示している。なお、けん化度が25モル%のPVAは水溶性が乏しいため、PVAを強制的に粉砕し、共に目開き75μmの篩を通過するPVA粉体、ステアリン酸亜鉛粉体、ステアリン酸カルシウム粉体および炭酸カルシウム粉体の単純ブレンド物を混合粉体(P)として、ポリ塩化ビニル樹脂に配合したもので評価した。黒化時間のレベルも不満足であり、着色性のレベルも低い。
 さらに、比較例41においては、実施例91と同様に、PVAおよび炭酸カルシウムのスプレードライ顆粒ではなく、これら粉体を単純にブレンドした混合粉体を添加した場合であるが、PVAについては、特に微粉化していないものを用いた結果、目開き75μmの篩を75重量%しか通過しない混合粉体を使用している。実施例91と比較すると、黒化時間は低減し、着色性も低下している。
 以上の結果から、本願請求の範囲のポリ塩化ビニル樹脂組成物を用いれば、黒化時間が長く、熱安定に優れ、着色性のレベルも高いことから有意義である。
 実施例において示されているように、本発明によれば、成形時の熱安定性に優れ、着色が少ない成形体を得ることができる塩化ビニル樹脂組成物が提供される。

Claims (19)

  1. 平均けん化度が30~99.9モル%であり粘度平均重合度が1000以下であるビニルアルコール系重合体(A)、および、亜鉛化合物(B)を含有し、(A)と(B)との重量比A/Bが1/10~10/1の範囲であり、かつ、粒子の80重量%以上が目開き75μm篩を通過する混合粉体(P)からなるポリ塩化ビニル用熱安定剤。
  2. 前記混合粉体(P)が、さらにカルシウム化合物(C)を含有し、(A)の、(B)と(C)との合計量に対する重量比A/(B+C)が1/20~10/2の範囲である請求項1に記載のポリ塩化ビニル用熱安定剤。
  3. 前記混合粉体(P)が、前記ビニルアルコール系重合体(A)の水溶液に前記亜鉛化合物(B)を分散させたスラリーをスプレードライして得られるものである、請求項1に記載のポリ塩化ビニル用熱安定剤。
  4. 前記混合粉体(P)が、前記ビニルアルコール系重合体(A)の水溶液に前記亜鉛化合物(B)および前記カルシウム化合物(C)を分散させたスラリーをスプレードライして得られるものである、請求項2に記載のポリ塩化ビニル用熱安定剤。
  5. 前記混合粉体(P)が、前記ビニルアルコール系重合体(A)の水溶液に前記カルシウム化合物(C)を分散させたスラリーをスプレードライして得られる粉体に、前記亜鉛化合物(B)を混合して得られるものである、請求項2に記載のポリ塩化ビニル用熱安定剤。
  6. 前記混合粉体(P)が、前記ビニルアルコール系重合体(A)の水溶液に前記亜鉛化合物(B)を分散させたスラリーをスプレードライして得られる粉体に、前記カルシウム化合物(C)を混合して得られるものである、請求項2に記載のポリ塩化ビニル用熱安定剤。
  7. 前記ビニルアルコール系重合体(A)が、末端に炭素数6以上のアルキル基を有する、請求項1~6のいずれか1項に記載のポリ塩化ビニル用熱安定剤。
  8. 前記ビニルアルコール系重合体(A)が、共重合成分としてエチレン単位を0.1~20モル%含有する、請求項1~7のいずれか1項に記載のポリ塩化ビニル用熱安定剤。
  9. 前記ビニルアルコール系重合体(A)が、末端にカルボキシル基、スルホン酸基およびそれらの塩からなる群より選ばれる少なくとも1種の官能基を有する、請求項1~8のいずれか1項に記載のポリ塩化ビニル用熱安定剤。
  10. ポリ塩化ビニル樹脂100重量部に対して、請求項1~9のいずれか1項に記載のポリ塩化ビニル用熱安定剤を0.1~10重量部含有するポリ塩化ビニル樹脂組成物。
  11. ポリ塩化ビニル樹脂100重量部に対して、さらに滑剤を0.001~10重量部含有する、請求項10に記載のポリ塩化ビニル樹脂組成物。
  12. 前記滑剤がポリオールの脂肪酸エステルである、請求項11に記載のポリ塩化ビニル樹脂組成物。
  13. 前記ポリオールの脂肪酸エステルがグリセリンモノステアレートである、請求項12に記載のポリ塩化ビニル樹脂組成物。
  14. ビニルアルコール系重合体(A)の水溶液に亜鉛化合物(B)を分散させてスラリーを製造する工程と、該スラリーをスプレードライして混合粉体(P)を得る工程とを含む、請求項1に記載のポリ塩化ビニル用熱安定剤の製造方法。
  15. ビニルアルコール系重合体(A)の水溶液に亜鉛化合物(B)およびカルシウム化合物(C)を分散させてスラリーを製造する工程と、該スラリーをスプレードライして混合粉体(P)を得る工程とを含む、請求項2に記載のポリ塩化ビニル用熱安定剤の製造方法。
  16. ビニルアルコール系重合体(A)の水溶液にカルシウム化合物(C)を分散させてスラリーを製造する工程と、該スラリーをスプレードライして粉体を得る工程と、該粉体に亜鉛化合物(B)を混合して混合粉体(P)を得る工程とを含む、請求項2に記載のポリ塩化ビニル用熱安定剤の製造方法。
  17. ビニルアルコール系重合体(A)の水溶液に亜鉛化合物(B)を分散させてスラリーを製造する工程と、該スラリーをスプレードライして粉体を得る工程と、該粉体にカルシウム化合物(C)を混合して混合粉体(P)を得る工程とを含む、請求項2に記載のポリ塩化ビニル用熱安定剤の製造方法。
  18. ポリ塩化ビニル樹脂100重量部に対して、請求項14~17のいずれか1項に記載の製造方法によって得られたポリ塩化ビニル用熱安定剤を0.1~10重量部混合する工程を含む、ポリ塩化ビニル樹脂組成物の製造方法。
  19. さらに、ポリ塩化ビニル樹脂100重量部に対して滑剤0.001~10重量部を添加する工程を含む、請求項18に記載のポリ塩化ビニル樹脂組成物の製造方法。
PCT/JP2011/051885 2010-02-01 2011-01-31 ポリ塩化ビニル用熱安定剤、ポリ塩化ビニル樹脂組成物およびその製造方法 WO2011093487A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/576,557 US20120309880A1 (en) 2010-02-01 2011-01-31 Thermal stabilizer for polyvinyl chloride, polyvinyl chloride resin composition, and method for producing the same
EP11737196.3A EP2532708A4 (en) 2010-02-01 2011-01-31 HEAT STABILIZER FOR POLVINYL CHLORIDE, POLVINYL CHLORIDE RESIN COMPOSITION AND METHOD FOR THE PRODUCTION THEREOF
CN201180016985.1A CN102822266B (zh) 2010-02-01 2011-01-31 聚氯乙烯用热稳定剂、聚氯乙烯树脂组合物及其制备方法
JP2011551952A JP5755152B2 (ja) 2010-02-01 2011-01-31 ポリ塩化ビニル用熱安定剤およびその製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-020181 2010-02-01
JP2010020181 2010-02-01
JP2010-159460 2010-07-14
JP2010159460 2010-07-14
JP2010-159459 2010-07-14
JP2010159459 2010-07-14

Publications (1)

Publication Number Publication Date
WO2011093487A1 true WO2011093487A1 (ja) 2011-08-04

Family

ID=44319464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051885 WO2011093487A1 (ja) 2010-02-01 2011-01-31 ポリ塩化ビニル用熱安定剤、ポリ塩化ビニル樹脂組成物およびその製造方法

Country Status (7)

Country Link
US (1) US20120309880A1 (ja)
EP (1) EP2532708A4 (ja)
JP (1) JP5755152B2 (ja)
KR (1) KR20120115552A (ja)
CN (1) CN102822266B (ja)
TW (1) TW201137016A (ja)
WO (1) WO2011093487A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034204A (ja) * 2013-08-08 2015-02-19 リケンテクノス株式会社 医療用放射線滅菌対応塩化ビニル樹脂組成物およびそれからなる医療用器具

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3050926B1 (en) * 2013-09-27 2020-06-03 Sekisui Chemical Co., Ltd. Molding resin composition including chlorinated vinyl chloride-based resin, and molded article thereof
KR102188216B1 (ko) * 2013-09-27 2020-12-08 세키스이가가쿠 고교가부시키가이샤 염소화 염화비닐계 수지를 함유하는 성형용 수지 조성물 및 그 성형체
JP6216675B2 (ja) * 2014-03-31 2017-10-18 株式会社クラレ スラリー用添加剤、掘削泥水及びセメントスラリー
US10487157B2 (en) 2016-03-08 2019-11-26 Oxy Vinyls, Lp Methods for chlorinating polyvinyl chloride
WO2017155989A1 (en) 2016-03-08 2017-09-14 Oxy Vinyls, Lp Methods for providing polyvinyl chloride particles for preparing chlorinated polyvinyl chloride
CN112608229B (zh) * 2020-12-15 2023-08-18 嘉兴若天新材料科技有限公司 一种对叔丁基苯甲酸锌的制备方法
CN113337050B (zh) * 2021-05-26 2022-04-15 浙江中财管道科技股份有限公司 一种高强度硬聚氯乙烯给水管材及其制备方法
CN117866289B (zh) * 2024-03-12 2024-05-10 广州百沙塑胶新材料有限公司 一种粒状钙锌复合稳定剂及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092947A (ja) 1973-12-22 1975-07-24
JPS5481359A (en) 1977-12-12 1979-06-28 Yoshizaki Kozo Composition * film and coated structure of chlorinee containing polymer having good weatherability
JPS57147552A (en) 1981-03-09 1982-09-11 Kyodo Yakuhin Kk Stabilizing method of chlorine-containing resin
JPS59166505A (ja) 1983-03-10 1984-09-19 Kuraray Co Ltd 懸濁重合用分散安定剤
JPS60238345A (ja) 1984-05-10 1985-11-27 Kuraray Co Ltd 樹脂組成物
JPH01178543A (ja) 1987-12-29 1989-07-14 Nippon Synthetic Chem Ind Co Ltd:The 含ハロゲン熱可塑性樹脂組成物
JPH01240501A (ja) 1988-03-21 1989-09-26 Kuraray Co Ltd ビニル系化合物の懸濁重合用分散安定剤
WO1991015518A1 (fr) 1990-04-05 1991-10-17 Kuraray Co., Ltd. Polymerisation en suspension d'un compose vinylique
JPH04117446A (ja) * 1990-09-06 1992-04-17 Sumitomo Chem Co Ltd ポリ塩化ビニル系樹脂組成物
JPH06287387A (ja) 1993-04-06 1994-10-11 Sekisui Chem Co Ltd 塩化ビニル系樹脂組成物
JPH093286A (ja) 1995-06-20 1997-01-07 Shin Etsu Chem Co Ltd 塩化ビニル系樹脂組成物
JPH0931281A (ja) 1995-07-21 1997-02-04 Asahi Denka Kogyo Kk 硬質塩化ビニル樹脂組成物
WO2009157401A1 (ja) * 2008-06-23 2009-12-30 株式会社クラレ ポリ塩化ビニル樹脂組成物およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3103403B2 (ja) * 1991-09-13 2000-10-30 株式会社クラレ 生分解性付与剤
JP3426358B2 (ja) * 1994-07-19 2003-07-14 日本合成化学工業株式会社 ポリビニルアルコール系樹脂微粒子の製造法
CA2291217C (en) * 1998-12-09 2004-09-21 Kuraray Co., Ltd. Vinyl alcohol polymer and its composition
DE102007033971A1 (de) * 2007-07-19 2009-01-22 Kuraray Europe Gmbh Verwendung von Carboxylgruppen-haltigen Polyvinylalkoholen als Stabilisatorzusatz von PVC
DE102007033970A1 (de) * 2007-07-19 2009-01-22 Kuraray Europe Gmbh Verwendung von getemperten Polyvinylalkoholen als Stabilisatorzusatz von PVC
EP2135896A1 (en) * 2008-06-16 2009-12-23 Kuraray Europe GmbH Polyvinyl alcohol as co-stabilizer for PVC
CN102333817B (zh) * 2008-12-26 2014-07-09 可乐丽股份有限公司 聚氯乙烯树脂组合物及其制造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092947A (ja) 1973-12-22 1975-07-24
JPS5481359A (en) 1977-12-12 1979-06-28 Yoshizaki Kozo Composition * film and coated structure of chlorinee containing polymer having good weatherability
JPS57147552A (en) 1981-03-09 1982-09-11 Kyodo Yakuhin Kk Stabilizing method of chlorine-containing resin
JPS59166505A (ja) 1983-03-10 1984-09-19 Kuraray Co Ltd 懸濁重合用分散安定剤
JPS60238345A (ja) 1984-05-10 1985-11-27 Kuraray Co Ltd 樹脂組成物
JPH01178543A (ja) 1987-12-29 1989-07-14 Nippon Synthetic Chem Ind Co Ltd:The 含ハロゲン熱可塑性樹脂組成物
JPH01240501A (ja) 1988-03-21 1989-09-26 Kuraray Co Ltd ビニル系化合物の懸濁重合用分散安定剤
WO1991015518A1 (fr) 1990-04-05 1991-10-17 Kuraray Co., Ltd. Polymerisation en suspension d'un compose vinylique
JPH04117446A (ja) * 1990-09-06 1992-04-17 Sumitomo Chem Co Ltd ポリ塩化ビニル系樹脂組成物
JPH06287387A (ja) 1993-04-06 1994-10-11 Sekisui Chem Co Ltd 塩化ビニル系樹脂組成物
JPH093286A (ja) 1995-06-20 1997-01-07 Shin Etsu Chem Co Ltd 塩化ビニル系樹脂組成物
JPH0931281A (ja) 1995-07-21 1997-02-04 Asahi Denka Kogyo Kk 硬質塩化ビニル樹脂組成物
WO2009157401A1 (ja) * 2008-06-23 2009-12-30 株式会社クラレ ポリ塩化ビニル樹脂組成物およびその製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JAPANESE JOURNAL OF POLYMER SCIENCE AND TECHNOLOGY, vol. 47, no. 3, 1990, pages 197
JAPANESE JOURNAL OF POLYMER SCIENCE AND TECHNOLOGY, vol. 47, no. 6, 1990, pages 509
JAPANESE JOURNAL OF POLYMER SCIENCE AND TECHNOLOGY, vol. 50, no. 2, 1993, pages 65
JOURNAL OF THE ADHESION SOCIETY OF JAPAN, vol. 43, no. 2, 2007, pages 43
POLYMERS & POLYMER COMPOSITES, vol. 11, 2003, pages 649
See also references of EP2532708A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034204A (ja) * 2013-08-08 2015-02-19 リケンテクノス株式会社 医療用放射線滅菌対応塩化ビニル樹脂組成物およびそれからなる医療用器具

Also Published As

Publication number Publication date
JPWO2011093487A1 (ja) 2013-06-06
CN102822266B (zh) 2015-09-16
CN102822266A (zh) 2012-12-12
US20120309880A1 (en) 2012-12-06
EP2532708A4 (en) 2015-07-01
EP2532708A1 (en) 2012-12-12
KR20120115552A (ko) 2012-10-18
JP5755152B2 (ja) 2015-07-29
TW201137016A (en) 2011-11-01

Similar Documents

Publication Publication Date Title
JP5755152B2 (ja) ポリ塩化ビニル用熱安定剤およびその製造方法
EP2348070B1 (en) Method of producing polyvinyl chloride resin compositions
EP2305752B1 (en) Polyvinyl chloride resin composition and manufacturing method thereof
EP2423258B1 (en) Polyvinyl chloride resin composition and method for producing the same
JP5421911B2 (ja) ポリ塩化ビニル樹脂組成物およびその製造方法
JP5646347B2 (ja) ポリ塩化ビニル樹脂組成物およびその製造方法
JP5025837B1 (ja) ハロゲン原子含有樹脂組成物、その製造方法およびそれからなる成形品
EP2292690B1 (en) Polyvinyl chloride resin composition and method for producing same
JP5356313B2 (ja) ポリ塩化ビニル樹脂組成物およびその製造方法
JP2011219546A (ja) ポリ塩化ビニル樹脂組成物およびその製造方法
JP2012046688A (ja) ポリ塩化ビニル樹脂組成物およびその製造方法
JP2011213939A (ja) ポリ塩化ビニル樹脂組成物およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016985.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737196

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551952

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011737196

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011737196

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127022263

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13576557

Country of ref document: US