WO2011093165A1 - 対物レンズ及び光ピックアップ装置 - Google Patents

対物レンズ及び光ピックアップ装置 Download PDF

Info

Publication number
WO2011093165A1
WO2011093165A1 PCT/JP2011/050705 JP2011050705W WO2011093165A1 WO 2011093165 A1 WO2011093165 A1 WO 2011093165A1 JP 2011050705 W JP2011050705 W JP 2011050705W WO 2011093165 A1 WO2011093165 A1 WO 2011093165A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
resin
optical
pickup device
less
Prior art date
Application number
PCT/JP2011/050705
Other languages
English (en)
French (fr)
Inventor
省吾 山本
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2011551807A priority Critical patent/JPWO2011093165A1/ja
Publication of WO2011093165A1 publication Critical patent/WO2011093165A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system

Definitions

  • the present invention relates to an objective lens, and more particularly to an objective lens having an NA of 0.75 or more and an optical pickup device that are suitable for use in an optical pickup device.
  • a high-density optical disk system capable of recording and / or reproducing information (hereinafter, “recording and / or reproduction” is referred to as “recording / reproduction”) using a blue-violet semiconductor laser having a wavelength of about 400 nm is already on the market. Yes.
  • BD Blu-ray Disc
  • DVD DVD (NA 0.6, light source wavelength 650 nm, storage capacity 4.7 GB) It is possible to record information of 23 to 27 GB per layer on an optical disk having a diameter of 12 cm which is the same size as the above.
  • Patent Document 1 discloses a technique for manufacturing a resin lens by so-called injection molding in which a cavity corresponding to a lens is formed by a mold, and a molten resin is poured into the cavity from a resin inlet called a gate to form a lens. Is disclosed.
  • the axial lens thickness is relatively thin with respect to the flange thickness because of NA of about 0.6, and the injection molding technique disclosed in Patent Document 1 is used. Manufacturing is possible.
  • NA is 0.75 or more
  • the axial lens thickness becomes relatively thick with respect to the flange thickness and becomes nearly hemispherical, and the total amount of resin injected into the cavity Will increase.
  • the gate seals before the pressure is sufficiently transmitted to the maximum wall thickness in the cavity, and the air in the cavity cannot be pushed out.
  • the problem is that a desired optical surface cannot be obtained due to the accumulation of the resin and the shrinkage of the resin accompanying the temperature decrease.
  • the gate can also be increased, so that the pressure can be sufficiently transmitted, but there is a problem in that the mass increases which is disadvantageous for the tracking and focusing control of the objective lens. Arise.
  • the thickness of the axial lens is increased as the flange thickness is increased as a whole, there arises a problem that the working distance for avoiding the interference with the optical disc is reduced.
  • the present invention has been made in view of the problems of the prior art, and an object of the present invention is to provide an objective lens and an optical pickup device that can suppress problems during molding in a high NA lens.
  • the objective lens according to claim 1 is an objective lens used in an optical pickup device that records and / or reproduces information by condensing a light beam having a wavelength of 500 nm or less on an information recording surface of an optical disc.
  • the NA of the objective lens is 0.75 or more and 0.9 or less, satisfies the following formula, and is formed of a resin having an MFR of 10 (g / 10 min) or more and 70 (g / 10 min) or less. It is characterized by. 0.9 ⁇ d / f ⁇ 1.2 (1)
  • d (mm) represents the on-axis lens thickness of the objective lens
  • f (mm) represents the focal length of the objective lens in a light beam having a wavelength of 500 nm or less.
  • the objective lens of the present invention is formed from a resin having an MFR of 10 (g / 10 min) to 70 (g / 10 min), for example, the NA of the objective lens is 0.75 or more, and (1) Even if it has a shape that satisfies the equation, the gate solidifies before the resin flowing from the gate during molding fills up to the maximum thickness of the mold (usually near the optical axis of the objective lens). Can be suppressed. As a result, the resin is effectively filled up to the maximum thickness portion, and the shrinkage can be compensated for by sufficiently transmitting the pressure, and a highly accurate optical surface can be transferred and molded.
  • MFR means a melt flow rate (Melt flow rate), and a certain amount of synthetic resin is heated and pressurized at a predetermined temperature (eg, 260 ° C.) in a cylindrical container heated by a heater.
  • a predetermined temperature eg, 260 ° C.
  • the test machine uses an extrusion plastometer defined by JIS K6760, and the measurement method is defined by JIS K7210.
  • the objective lens according to claim 2 is the following formula in the invention according to claim 1, 0.9 ⁇ d / f ⁇ 1.1 (1 ′) It is characterized by satisfying.
  • the objective lens described in claim 3 is characterized in that, in the invention described in claim 1 or 2, the resin is a cycloolefin resin.
  • Preferred examples of such a resin include ZEONEX manufactured by Nippon Zeon, APEL manufactured by Mitsui Chemicals, TOPAS ADVANCED, TOPAS manufactured by POLYMERS, and ARTON manufactured by JSR.
  • the MFR of the resin is preferably 20 or more and 55 or less, more preferably 30 or more and 50 or less.
  • the objective lens according to any one of the first to third aspects, wherein the objective lens has a flange portion around an optical surface, and the minimum thickness of the flange portion is t (mm). ) 5.0 ⁇ d / t ⁇ 8.0 (2) It is characterized by satisfying.
  • the present invention is particularly effective for an objective lens having such a shape.
  • An optical pickup device includes a light source that emits a light beam having a wavelength of at least 500 nm, a condensing optical system including the objective lens according to any one of the first to fourth aspects, a photodetector, The objective lens is characterized in that the optical surface with the smaller radius of curvature is arranged toward the light source side.
  • the condensing optical system may be composed of only an objective lens, or may have a coupling lens such as a collimator in addition to the objective lens.
  • the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing a light beam emitted from the light source onto the information recording surface of the optical disk.
  • the objective lens is preferably a single lens.
  • an optical path difference providing structure may be formed integrally with the objective lens.
  • the objective lens preferably has a refractive surface that is aspheric.
  • the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
  • the optical pickup device uses a light source (for example, a semiconductor laser) having a wavelength of at least 500 nm or less (preferably 350 nm or more and 450 nm or less).
  • the objective lens has an image-side numerical aperture of 0.75 to 0.9.
  • the objective lens preferably has an optical surface and a flange portion.
  • the flange portion refers to a portion used to hold the objective lens, having an annular portion extending in a direction substantially orthogonal to the optical axis around the optical surface.
  • the objective lens satisfies the following conditional expression (1). 0.9 ⁇ d / f ⁇ 1.2 (1)
  • d (mm) represents the axial lens thickness of the objective lens
  • f (mm) represents the focal length of the objective lens in a light beam having a wavelength of 500 nm or less.
  • conditional expression (1) it is possible to ensure a long working distance while suppressing the generation of astigmatism and decentration coma. In order to secure a longer working distance, it is preferable to satisfy the conditional expression (1 ′).
  • FIG. 1 is a diagram showing a process of molding a lens having an NA of 0.85 used for an optical pickup device for BD using a molding die.
  • FIG. 2 is an enlarged view of the molding die according to the present embodiment, and shows a state during molding.
  • FIG. 3 is an enlarged view of a molding die according to a comparative example, and similarly shows a state during molding.
  • the molding die includes a first die 10 and a second die 20, and a plurality of cavities are formed in a state where both are clamped.
  • the cavity shape in FIG. 1 is schematic. Since a general optical pickup device is sufficient, it is omitted here.
  • the first mold 10 is a first optical transfer for transferring and forming the first optical surface of the objective lens (the light source side when attached to the optical pickup device).
  • the first mold 10 is formed with a gate portion (inlet channel) GT so as to be connected to the first flange portion transfer surface 11b.
  • the second mold 20 continues to the second optical transfer surface 21a for transferring and forming the second optical surface of the objective lens (on the optical disc side when attached to the optical pickup device) and the periphery thereof.
  • a second flange portion transfer surface 21b for transferring and forming the optical disc side surface of the flange portion is provided.
  • the shapes of the first mold 10 and the second mold 20 are the same as those in the present embodiment.
  • the first mold 10 is set so as to face the second mold 20. Further, by heating the first mold 10 and the second mold 20 with a heater (not shown), the optical transfer surfaces 11a and 21a are heated to a predetermined temperature.
  • the first mold 10 is relatively approached and brought into close contact with the second mold 20, and the mold is clamped with a predetermined holding pressure.
  • a resin heated to a higher temperature than the mold temperature is supplied in a state of being pressurized to an arbitrary pressure through the runner LN and the gate part GT from the nozzle (see FIG. 1C).
  • the fluidity of the resin PL ′ is worse than that of the resin PL having an MFR of 10 or more and 70 or less. For this reason, resin begins to be filled in the cavity as in the initial state shown in FIG. 3A, but in the intermediate state shown in FIG. 3B, a sufficient amount of resin PL ′ is filled in the cavity. Before the resin is cooled, the fluidity deteriorates as the resin cools in the vicinity of the gate part GT having a relatively small opening area, and the pressure is not gradually transmitted through the gate part GT because a part of the resin starts to solidify. . In the final state shown in FIG.
  • the pressure on the runner LN side is not effectively transmitted to the resin PL ′ in the cavity, and thereby the maximum thickness portion of the transfer surface 10a of the first mold 10 having a small curvature radius.
  • the resin PL ′ does not adhere to the vicinity, and molding defects may occur, and a highly accurate optical surface may not be obtained.
  • the fluidity of the resin PL ′′ is better than that of the resin PL having an MFR of 10 to 70.
  • the fluidity is too good, it immediately scatters into the cavity immediately after passing through the gate GT, and directly solidifies by hitting the transfer surface 10a of the first mold 10 having a small curvature radius. There is a problem that unevenness occurs on the surface, resulting in poor appearance.
  • the resin PL having an MFR of 10 (g / 10 min) to 70 (g / 10 min) since the resin PL having an MFR of 10 (g / 10 min) to 70 (g / 10 min) is used, the fluidity of the resin PL is maintained to some extent even when the temperature is lowered. Is done. Accordingly, from the initial state shown in FIG. 2 (a) to the final state shown in FIG. 2 (c) through the intermediate state shown in FIG. 2 (b), a sufficient amount of resin PL is filled in the cavity. Since the solidification in the vicinity of the gate part GT can be suppressed, the pressure on the runner LN side is effectively transmitted to the resin PL in the cavity, and thereby the vicinity of the maximum thickness part of the transfer surface 10a of the first mold 10 having a small curvature radius. Resin PL adheres. In addition, since poor appearance caused by fluidity is too good, a highly accurate optical surface can be obtained.
  • the resin is cooled by waiting for a predetermined time until the molten resin is solidified in a state where the shapes of the transfer surfaces 11a, 11b, 21a, and 21b are transferred.
  • FIG. 4 is a view of the objective lens OBJ formed by the molding die shown in FIGS. 1 and 2, viewed from the optical axis direction
  • FIG. 5 is a view of the objective lens OBJ viewed from the direction orthogonal to the optical axis.
  • the first optical surface S1 transferred and molded by the first optical transfer surface 11a and the second optical transfer surface 21a have a radius of curvature larger than that of the first optical surface S1. It has a second optical surface S2 that has been transfer-molded, and a flange portion FL that has been transfer-molded by the first flange portion transfer surface 11b and the second flange portion transfer surface 21b.
  • the axial lens thickness of the objective lens OBJ is d (mm)
  • the focal length of the objective lens OBJ in a light beam having a wavelength of 500 nm or less is f (mm)
  • the flange portion FL thin flange portion FT of the objective lens OBJ.
  • the wall thickness of t (mm) 0.9 ⁇ d / f ⁇ 1.2 (1) 5.0 ⁇ d / t ⁇ 8.0 (2) Meet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Optical Head (AREA)

Abstract

 高NAのレンズにおいて成形時の不具合を抑制できる対物レンズ及び光ピックアップ装置を提供するために、MFRが10(g/10min)以上、70(g/10min)以下の樹脂PLを用いているので、図2(a)に示す初期状態から図2(b)に示す最終状態まで、ゲート部GT付近の樹脂PLが固化することが抑制され、ランナLN側の圧力がキャビティ内の樹脂PLに伝達され、これにより曲率半径が小さい第1の型10の転写面10aの最大肉厚部付近まで樹脂PLが密着して、高精度な光学面を得ることができる。

Description

対物レンズ及び光ピックアップ装置
 本発明は、対物レンズに関し、特に光ピックアップ装置に用いられると好適なNA0.75以上の対物レンズ及び光ピックアップ装置に関する。
 波長400nm程度の青紫色半導体レーザを用いて、情報の記録及び/又は再生(以下、「記録及び/又は再生」を「記録/再生」と記載する)を行える高密度光ディスクシステムが既に市販されている。一例として、NA0.85、光源波長405nmの仕様で情報記録/再生を行う光ディスク、いわゆるBlu-ray Disc(以下、BDという)では、DVD(NA0.6、光源波長650nm、記憶容量4.7GB)と同じ大きさである直径12cmの光ディスクに対して、1層あたり23~27GBの情報の記録が可能である。
 ところで、光ピックアップ装置に用いる対物レンズを成形によって形成すれば大量生産が可能であり、低コスト化を図ることができる。特許文献1には、金型によりレンズに対応するキャビティを形成し、かかるキャビティ内にゲートと呼ばれる樹脂流入口から溶融した樹脂を流し込んでレンズを形成する、いわゆる射出成形により樹脂レンズを製造する技術が開示されている。
特開2005-84080号公報
 ここで、従来のDVD用の光ピックアップ装置に用いる対物レンズの場合、NA0.6程度であるためフランジ厚に対して軸上レンズ厚が比較的薄く、特許文献1に開示された射出成形技術で製造が可能である。ところが、BD用の光ピックアップ装置に用いる対物レンズの場合、NA0.75以上であるためフランジ厚に対して軸上レンズ厚が比較的厚くなって半球形に近くなり、キャビティ内に射出する樹脂総量が増大する。樹脂総量が増大すると、狭いゲートから樹脂を注入する際にキャビティ内の最大肉厚部まで圧力が十分伝わる前にゲートがシールしてしまい、キャビティ内のエアを押し出すことができず、その結果空気溜まりができてしまい、温度低下に伴う樹脂の収縮も相まって、所望の光学面を得ることができないという不具合が生じる。これに対し、フランジ厚を全体的に厚くすれば、ゲートも厚くすることができる為圧力を十分に伝えることができるが、対物レンズのトラッキング・フォーカシング制御に不利となる質量増を招くという問題が生じる。また、フランジ厚を全体的に厚くするのに伴い、軸上レンズ厚を厚くすると、光ディスクとの干渉を回避するためのワーキングディスタンスの減少を招くという問題が生じる。
 本発明は、かかる従来技術の問題点に鑑みてなされたものであり、高NAのレンズにおいて成形時の不具合を抑制できる対物レンズ及び光ピックアップ装置を提供することを目的とする。
 請求項1に記載の対物レンズは、500nm以下の波長の光束を光ディスクの情報記録面に集光することによって、情報の記録及び/又は再生を行う光ピックアップ装置において用いられる対物レンズにおいて、
 前記対物レンズのNAは0.75以上、0.9以下であり、以下の式を満たし、且つMFRが10(g/10min)以上、70(g/10min)以下の樹脂から形成されていることを特徴とする。
0.9≦d/f≦1.2       (1)
但し、d(mm)は、前記対物レンズの軸上レンズ厚を表し、f(mm)は、前記500nm以下の波長の光束における前記対物レンズの焦点距離を表す。
 本発明の対物レンズは、MFRが10(g/10min)以上70(g/10min)以下の樹脂から形成されているので、例えば前記対物レンズのNAが0.75以上であり、且つ(1)式を満たすような形状を有していても、成形時にゲートから流入した樹脂が、金型における最大肉厚部(通常は対物レンズの光軸付近)まで充填される前にゲートが固化してしまうようなことを抑制できる。これにより最大肉厚部まで樹脂が有効に充填され、かつ十分に圧力が伝わることで収縮を補うことができ、高精度な光学面を転写成形することが可能となる。
 尚、MFRとは、メルトフローレート(Melt flow rate)を意味し、ヒータで加熱された円筒容器内で一定量の合成樹脂を、定められた温度(例えば260℃)で加熱・加圧し、容器底部に設けられた開口部(ノズル)から、所定の圧力(例えば21.18N)で10分間あたりに押出された樹脂量を測定して得られる値であって、単位(g/10min)で表示される。試験機械はJIS K6760で定められた押出し形プラストメータを用い、測定方法はJISK7210で規定されている。
 請求項2に記載の対物レンズは、請求項1に記載の発明において、以下の式、
 0.9≦d/f<1.1   (1′)
を満たすことを特徴とする。
 請求項3に記載の対物レンズは、請求項1又は2に記載の発明において、前記樹脂はシクロオレフィン系の樹脂であることを特徴とする。
 このような樹脂としては、日本ゼオン社製のZEONEX、三井化学社製のAPEL、TOPAS ADVANCED POLYMERS社製のTOPAS、JSR社製のARTONなどが好ましい例として挙げられる。尚、樹脂のMFRは、好ましくは20以上55以下であり、より好ましくは30以上50以下である。
 請求項4に記載の対物レンズは、請求項1から3のいずれかに記載の発明において、前記対物レンズは光学面の周囲にフランジ部を有し、前記フランジ部の最小肉厚をt(mm)としたときに、以下の式、
 5.0<d/t≦8.0   (2)
を満たすことを特徴とする。このような形状を有する対物レンズに、本発明は特に効果がある。
 請求項5に記載の光ピックアップ装置は、少なくとも500nm以下の波長の光束を射出する光源と、請求項1から4のいずれかに記載の対物レンズを含む集光光学系と、光検出器と、を有し、前記対物レンズは、曲率半径の小さい方の光学面が光源側に向けて配置されていることを特徴とする。
 集光光学系は、対物レンズのみで構成されていてもよいし、対物レンズの他に、コリメータ等のカップリングレンズを有していてもよい。
 本明細書において、対物レンズとは、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された光束を光ディスクの情報記録面上に集光する機能を有する光学系を指す。対物レンズは、単玉のレンズであることが好ましい。また、対物レンズに一体的に光路差付与構造を形成しても良い。また、対物レンズは、屈折面が非球面であることが好ましい。また、対物レンズは、光路差付与構造が設けられるベース面が非球面であることが好ましい。光ピックアップ装置は、少なくとも500nm以下(好ましくは、350nm以上、450nm以下)の波長の光源(例えば、半導体レーザ等)を用いるものである。また、対物レンズは、像側の開口数が0.75以上、0.9以下である。対物レンズは、光学面とフランジ部とを有すると好ましい。フランジ部とは、光学面の周囲で略光軸直交方向に延在した輪帯部を有し、対物レンズを保持するために用いられる部位をいう。
 また、対物レンズは、以下の条件式(1)を満たす。
0.9≦d/f≦1.2   (1)
但し、d(mm)は、対物レンズの軸上レンズ厚を表し、f(mm)は、500nm以下の波長の光束における対物レンズの焦点距離を表す。
 以下の式、
 0.9≦d/f<1.1   (1′)
を満たすと更に好ましい。
 BDのような短波長、高NAの光ディスクに対応させる場合、対物レンズにおいて、非点収差が発生しやすくなり、偏心コマ収差も発生しやすくなるという課題が生じる。当該課題を解決する構成の一つとして、d/fの値を大きくするということが挙げられる。しかしながら、d/fの値を大きくし過ぎてしまうと、ワーキングディスタンスが小さくなりすぎ、光ディスクに対して対物レンズが接触する危険性が増えてしまう。そこで、条件式(1)を満たすことにより非点収差や偏心コマ収差の発生を抑制しつつ、ワーキングディスタンスを長めに確保することが可能となる。より長いワーキングディスタンスを確保したい場合は、条件式(1′)を満たすことが好ましい。
 対物レンズのフランジ部の最小肉厚をt(mm)としたときに、以下の式、
 5.0<d/t≦8.0   (2)
を満たすと好ましい。
 本発明によれば、高NAのレンズにおいて成形時の不具合を抑制できる対物レンズを提供することができる。
本実施の形態にかかる対物レンズを、成形金型を用いて成形する工程を示す図である。 本実施の形態にかかる対物レンズを成形する成形金型の拡大図である。 比較例にかかる対物レンズを成形する成形金型の拡大図である。 本実施の形態にかかる対物レンズOBJを光軸方向から見た図である。 本実施の形態にかかる対物レンズOBJを光軸直交方向に見た図である。
 以下、図面を参照して本発明の実施の形態について説明する。図1は、BD用光ピックアップ装置に用いるNA0.85のレンズを、成形金型を用いて成形する工程を示す図である。図2は、本実施の形態にかかる成形金型の拡大図であり、成形時の状態を示す。図3は、比較例にかかる成形金型の拡大図であり、同様に成形時の状態を示す。
 成形金型は、第1の型10と第2の型20とを含み、両者が型締めされた状態で複数のキャビティを形成するようになっている。尚、図1におけるキャビティ形状は概略的である。光ピックアップ装置は一般的なもので足りるため、ここでは省略する。
 図1、図2に示すように、第1の型10は、対物レンズの第1の光学面(光ピックアップ装置に取り付けた状態で光源側となる)を転写形成するための第1の光学転写面11aと、その周囲に続くフランジ部の光源側面(輪帯部)を転写形成するための第1のフランジ部転写面11bを有する。更に第1の型10には、第1のフランジ部転写面11bに接続するようにしてゲート部(入口流路)GTが形成されている。
 一方、第2の型20は、対物レンズの第2の光学面(光ピックアップ装置に取り付けた状態で光ディスク側となる)を転写形成するための第2の光学転写面21aと、その周囲に続くフランジ部の光ディスク側側面を転写形成するための第2のフランジ部転写面21bを有する。
 尚、図3に示す比較例において、第1の型10、第2の型20の形状は本実施の形態と同様の形状を有するものとする。
 次に、本実施の形態にかかる対物レンズの成形方法について説明する。まず、図1(a)に示すように、第2の型20に対向するようにして第1の型10をセットする。更に第1の型10と第2の型20とを不図示のヒータなどにより加熱することにより、光学転写面11a、21aを所定温度まで加熱する。
 その後、図1(b)に示すように、第2の型20に対して第1の型10を相対的に接近させ密着させて、所定の保圧にて型締めを行った後、不図示のノズルからランナLN及びゲート部GTを介して任意の圧力に加圧された状態で型温度よりも更に高温に加熱された樹脂を供給する(図1(c)参照)。
 このとき、MFRが10未満の樹脂PL′を用いた場合、樹脂PL′の流動性はMFRが10以上70以下の樹脂PLよりも悪い。このため、図3(a)に示す初期状態のようにキャビティ内に樹脂が充填され始めてゆくが、図3(b)に示す中期状態では、十分な量の樹脂PL′がキャビティ内に充填される前に、開口面積が比較的小さいゲート部GT付近で樹脂が冷えるに連れて流動性が悪化し、一部が固化を開始することでゲート部GTを介した圧力の伝達が徐々にされなくなる。図3(c)に示す最終状態では、ランナLN側の圧力がキャビティ内の樹脂PL′に有効に伝達されず、これにより曲率半径が小さい第1の型10の転写面10aの最大肉厚部付近に樹脂PL′が密着せず、成形不良が生じ、高精度な光学面を得られない恐れがある。
 また、MFRが70を超える樹脂PL″を用いた場合、樹脂PL″の流動性はMFRが10以上70以下の樹脂PLよりも良好である。しかし、流動性が良すぎるためゲートGTを通り過ぎた直後にキャビティ内に飛び散り、そのまま曲率半径が小さい第1の型10の転写面10aに当って固化してしまい、成形品である対物レンズOBJの表面にムラが生じ、外観不良が生じてしまうという問題がある。
 これに対し本実施の形態では、MFRが10(g/10min)以上70(g/10min)以下の樹脂PLを用いているので、温度が低下しても樹脂PLの流動性が或る程度維持される。従って、図2(a)に示す初期状態から、図2(b)に示す中期状態を経て、図2(c)に示す最終状態まで、十分な量の樹脂PLがキャビティ内に充填されるまでゲート部GT付近の固化を抑制できるため、ランナLN側の圧力がキャビティ内の樹脂PLに有効に伝達され、これにより曲率半径が小さい第1の型10の転写面10aの最大肉厚部付近まで樹脂PLが密着する。また、流動性が良すぎるために生じる外観不良も防止されるので、高精度な光学面を得ることができる。
 このように、溶融した樹脂が転写面11a、11b、21a、21bの形状が転写した状態で固化するまで所定の時間待機して樹脂を冷却させる。
 その後、図1(d)に示すように、第1の型10と第2の型20とを相対的に移動させて型開きを行うと、対物レンズOBJを含む成形品が第1の型10に貼り付いた状態で露出する。かかる成形品から対物レンズOBJを分離することで、単体の対物レンズOBJが形成される。
 図4は、図1、図2に示す成形金型により成形された対物レンズOBJを光軸方向から見た図であり、図5は、対物レンズOBJを光軸直交方向から見た図である。本実施の形態の対物レンズOBJにおいては、第1の光学転写面11aにより転写成形された第1の光学面S1と、第1の光学面S1より曲率半径が大きく第2の光学転写面21aにより転写成形された第2の光学面S2と、第1のフランジ部転写面11b及び第2のフランジ部転写面21bにより転写成形されたフランジ部FLとを有している。
 ここで、対物レンズOBJの軸上レンズ厚をd(mm)、500nm以下の波長の光束における前記対物レンズOBJの焦点距離をf(mm)、対物レンズOBJのフランジ部FL(厚肉フランジ部FT以外)の肉厚をt(mm)としたときに、以下の式、
 0.9≦d/f≦1.2   (1)
 5.0<d/t≦8.0   (2)
を満たしている。
 波長405nmの平行光束を入射させた際に、BDの透明基板厚0.0875mmにおいて、球面収差がマレシャル限界よりも小さくなるような対物レンズを設計した。また、NA=0.85、d/f=1.05、d/f=6である。
 当該対物レンズの金型を用いて、以下の5種類の樹脂材料で、対物レンズを射出成形し、成形された各対物レンズについて以下の評価基準で評価を行った。
(樹脂材料)
1)ポリカーボネート:MFR=7(g/10min)(比較例1)
2)シクロオレフィン:MFR=7(g/10min)(比較例2)
3)シクロオレフィン:MFR=20(g/10min)(実施例1)
4)シクロオレフィン:MFR=50(g/10min)(実施例2)
5)メチルペンテンポリマー:MFR=80(g/10min)(比較例3)
(評価基準)
 成形不良:金型の形状を正確に転写できている場合は○
      金型の形状を正確に転写できていない場合は×
 外観不良:白点、シミ等の外観不良が見られない場合は○
      白点、シミ等の外観不良が見られる場合は×
 その結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明の範囲内の対物レンズは成形、外観の観点で良好な結果を示していることがわかる。
 以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態に限定して解釈されるべきではなく、適宜変更・改良が可能であることはもちろんである。
 10 第1の型
 20 第2の型
 OBJ 対物レンズ
 FL フランジ部
 S1 第1の光学面
 S2 第2の光学面

Claims (5)

  1.  500nm以下の波長の光束を光ディスクの情報記録面に集光することによって、情報の記録及び/又は再生を行う光ピックアップ装置において用いられる対物レンズにおいて、
     前記対物レンズのNAは0.75以上、0.9以下であり、以下の式を満たし、且つMFRが10(g/10min)以上、70(g/10min)以下の樹脂から形成されていることを特徴とする対物レンズ。
     0.9≦d/f≦1.2   (1)
    但し、d(mm)は、前記対物レンズの軸上レンズ厚を表し、f(mm)は、前記500nm以下の波長の光束における前記対物レンズの焦点距離を表す。
  2.  以下の式を満たすことを特徴とする請求項1に記載の対物レンズ。
     0.9≦d/f<1.1   (1′)
  3.  前記樹脂はシクロオレフィン系の樹脂であることを特徴とする請求項1又は2に記載の対物レンズ。
  4.  前記対物レンズは光学面の周囲にフランジ部を有し、前記フランジ部の最小肉厚をt(mm)としたときに、以下の式を満たすことを特徴とする請求項1から3のいずれか一項に記載の対物レンズ。
     5.0<d/t≦8.0   (2)
  5.  少なくとも500nm以下の波長の光束を射出する光源と、請求項1から4のいずれか一項に記載の対物レンズを含む集光光学系と、光検出器と、を有し、前記対物レンズは、曲率半径の小さい方の光学面が光源側に向けて配置されていることを特徴とする光ピックアップ装置。
PCT/JP2011/050705 2010-01-29 2011-01-18 対物レンズ及び光ピックアップ装置 WO2011093165A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011551807A JPWO2011093165A1 (ja) 2010-01-29 2011-01-18 対物レンズ及び光ピックアップ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010018669 2010-01-29
JP2010-018669 2010-01-29

Publications (1)

Publication Number Publication Date
WO2011093165A1 true WO2011093165A1 (ja) 2011-08-04

Family

ID=44319157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050705 WO2011093165A1 (ja) 2010-01-29 2011-01-18 対物レンズ及び光ピックアップ装置

Country Status (2)

Country Link
JP (1) JPWO2011093165A1 (ja)
WO (1) WO2011093165A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235677A (ja) * 2000-02-24 2001-08-31 Konica Corp 対物レンズ及びdvd/cd互換光ピックアップ装置
JP2004197067A (ja) * 2002-10-23 2004-07-15 Konica Minolta Holdings Inc 環状オレフィン樹脂、プラスチック製光学素子及び光ピックアップ装置
WO2006112434A1 (ja) * 2005-04-18 2006-10-26 Mitsui Chemicals, Inc. 樹脂組成物および光学部品
JP2007154072A (ja) * 2005-12-06 2007-06-21 Mitsubishi Rayon Co Ltd 光学用共重合体及びそれからなる成形体
JP2007179720A (ja) * 2005-11-29 2007-07-12 Konica Minolta Opto Inc 光ピックアップ装置用の対物レンズ、光ピックアップ装置用の対物レンズユニット及び光ピックアップ装置
JP2009211795A (ja) * 2008-02-06 2009-09-17 Panasonic Corp 対物レンズおよび光ピックアップ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235677A (ja) * 2000-02-24 2001-08-31 Konica Corp 対物レンズ及びdvd/cd互換光ピックアップ装置
JP2004197067A (ja) * 2002-10-23 2004-07-15 Konica Minolta Holdings Inc 環状オレフィン樹脂、プラスチック製光学素子及び光ピックアップ装置
WO2006112434A1 (ja) * 2005-04-18 2006-10-26 Mitsui Chemicals, Inc. 樹脂組成物および光学部品
JP2007179720A (ja) * 2005-11-29 2007-07-12 Konica Minolta Opto Inc 光ピックアップ装置用の対物レンズ、光ピックアップ装置用の対物レンズユニット及び光ピックアップ装置
JP2007154072A (ja) * 2005-12-06 2007-06-21 Mitsubishi Rayon Co Ltd 光学用共重合体及びそれからなる成形体
JP2009211795A (ja) * 2008-02-06 2009-09-17 Panasonic Corp 対物レンズおよび光ピックアップ装置

Also Published As

Publication number Publication date
JPWO2011093165A1 (ja) 2013-05-30

Similar Documents

Publication Publication Date Title
WO2008053692A1 (fr) Elément optique, matrice métallique de moulage de résine et procédé de fabrication d'un élément optique
JP4993326B2 (ja) レンズ
CN102549666A (zh) 光拾取装置用的物镜、光拾取装置及光信息记录再生装置
WO2010087068A1 (ja) レンズ及び成形金型
JP2012190533A5 (ja)
JP5057298B2 (ja) 対物レンズ及び光ピックアップ装置
JP4808089B2 (ja) 光学素子成形方法
JP4407148B2 (ja) 光学素子の製造方法及び装置並びに光学素子
WO2011093165A1 (ja) 対物レンズ及び光ピックアップ装置
JP2004046053A (ja) 対物レンズ及び光ヘッド装置
JPWO2011040148A1 (ja) 光学素子
JP2006327147A (ja) プラスチックレンズの成形方法およびプラスチックレンズ
JP5733388B2 (ja) 対物レンズ及び対物レンズの製造方法並びに成形金型
JP2004191948A5 (ja)
JP5716755B2 (ja) 対物レンズの製造方法及び成形金型
JP5429412B2 (ja) 対物レンズ、光ピックアップ装置および対物レンズの製造方法
WO2012118041A1 (ja) 光学素子、成形金型、及び光学素子の製造方法
JP2002154139A (ja) 光学素子、光学素子の製造方法及び光学素子用金型
JP2011118964A (ja) 光ピックアップ装置用の対物レンズ及び成形金型
JP2013134797A (ja) 光ピックアップ装置用の対物レンズ
WO2011122174A1 (ja) 金型
JP5716754B2 (ja) 対物レンズの製造方法及び成形金型
CN102834240A (zh) 成型模具、注射成型机以及物镜光学元件的制造方法
JP2009187644A (ja) 記録再生用対物レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736880

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551807

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11736880

Country of ref document: EP

Kind code of ref document: A1