WO2011092945A1 - 発光素子搭載用基板、その製造方法および発光装置 - Google Patents

発光素子搭載用基板、その製造方法および発光装置 Download PDF

Info

Publication number
WO2011092945A1
WO2011092945A1 PCT/JP2010/071928 JP2010071928W WO2011092945A1 WO 2011092945 A1 WO2011092945 A1 WO 2011092945A1 JP 2010071928 W JP2010071928 W JP 2010071928W WO 2011092945 A1 WO2011092945 A1 WO 2011092945A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting element
substrate
element mounting
mounting substrate
Prior art date
Application number
PCT/JP2010/071928
Other languages
English (en)
French (fr)
Inventor
勝寿 中山
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2011551698A priority Critical patent/JPWO2011092945A1/ja
Priority to CN2010800498040A priority patent/CN102598323A/zh
Priority to EP10844699A priority patent/EP2530749A1/en
Priority to KR1020127011024A priority patent/KR20120124387A/ko
Publication of WO2011092945A1 publication Critical patent/WO2011092945A1/ja
Priority to US13/537,895 priority patent/US20120275166A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials

Definitions

  • the present invention relates to a light-emitting element mounting substrate, a manufacturing method thereof, and a light-emitting device.
  • an alumina substrate is used as a light emitting element mounting substrate.
  • the thermal conductivity of the alumina substrate is not necessarily as high as about 15 to 20 W / m ⁇ K, the use of an aluminum nitride substrate having a higher thermal conductivity has been studied.
  • the thermal expansion coefficient of the aluminum nitride substrate is as small as 4 ⁇ 10 ⁇ 6 to 5 ⁇ 10 ⁇ 6 / ° C.
  • the thermal expansion coefficient of 9 ⁇ 10 ⁇ 6 / ° C or higher which is a general-purpose product
  • sufficient connection reliability cannot always be obtained due to the difference in thermal expansion.
  • LTCC substrate low-temperature co-fired ceramic substrate
  • the LTCC substrate is made of, for example, glass and an alumina filler, and has a large difference in refractive index between them, a large number of interfaces between them, and a thickness larger than the wavelength used, so that a high reflectance can be obtained.
  • the light from a light emitting element can be utilized efficiently, and as a result, the emitted-heat amount can be reduced.
  • it is made of an inorganic oxide that is less deteriorated by light, a stable color tone can be maintained over a long period of time.
  • the LTCC substrate has a high reflectance as described above as a light-emitting element mounting substrate. Furthermore, for the purpose of reflecting the light emitted from the light emitting element as far as possible, a silver reflective film is applied to the surface of the LTCC substrate, and an overcoat glass for preventing oxidation and sulfurization is applied to the surface of the silver reflective film. Attempts have been made to install it.
  • the silver reflective film is provided on the LTCC substrate for mounting the light emitting element, the light extraction efficiency is higher when the area is as large as possible.
  • a pair of wiring conductors are provided on the same plane, insulation is ensured. It is necessary to provide a gap.
  • Patent Document 1 As a technique for solving such a decrease in the reflection efficiency due to the insulating portion in the light emitting element mounting substrate, for example, as described in Patent Document 1 and Patent Document 2, the structure of the LTCC substrate is improved. It has been known.
  • Patent Document 1 in order to eliminate a gap between wiring conductors on a light emitting element mounting substrate, a light reflecting layer made of metal and an insulating layer are formed so as to cover the light reflecting layer, and the wiring conductor is applied on the insulating layer.
  • An invention relating to a light emitting element mounting substrate having the above-described structure is disclosed.
  • Patent Document 2 discloses a conductor wiring pattern on an aluminum nitride substrate and aluminum nitride constituting the substrate in order to eliminate light entering the substrate from the gap between the conductor wiring patterns on the aluminum nitride substrate.
  • An invention relating to a light emitting element mounting substrate having a structure in which an insulating layer made of an aluminum nitride paste having a sintering temperature different from that of a composition is provided is disclosed.
  • an attempt to eliminate the gap between the reflective film and the wiring conductor in the LTCC substrate having the reflective film and the wiring conductor on the substrate as described above has not been known yet.
  • the present invention has been made to solve the above-described problem, and in an LTCC substrate for mounting a light emitting element, a gap provided to obtain insulation between a metal reflection film formed on the substrate and a wiring conductor portion is provided. It is an object of the present invention to provide a reduced light emitting element mounting substrate and a manufacturing method thereof.
  • a substrate for mounting a light emitting element of the present invention comprises a sintered body of a glass ceramic composition containing glass powder and a ceramic filler, and a substrate body having a mounting surface, a part of which is a mounting part on which the light emitting element is mounted, A wiring conductor that is electrically connected to the electrode of the light emitting element and is disposed in a stepped portion having a height different from that of the mounting surface provided on the mounting surface of the substrate body, and the stepped portion and the vicinity thereof are excluded.
  • the reflective film in addition to silver, metal powder composed of silver and palladium, and metal powder composed of silver and platinum can be used.
  • a reflective film consisting essentially of silver having a high reflectance is preferable.
  • the reflective film substantially made of silver means that when the reflective film is formed of a silver paste, the component for forming the paste contained in the silver paste is included in the formed reflective film. Or other components for improving the durability of silver may be included.
  • the reflective film substantially made of silver means a reflective film containing 90% by mass or more of silver, and a silver alloy is allowed.
  • palladium may contain up to 10% by mass, and platinum up to 3% by mass.
  • step-difference part provided in the said mounting surface is a recessed part.
  • a portion where the coating layer of the reflective film and the overcoat glass film is not formed on the substrate mounting surface in the vicinity of the stepped portion, that is, an uncoated portion is formed.
  • the width of the uncoated portion is preferably 20 to 80 ⁇ m. It should be noted that the width of the non-coated portion may not be in the range of 20 to 80 ⁇ m in all portions, and it is preferable that the width is in this range in most portions. That is, it means that a part where the width is extremely wide or narrow is included in some part of the entire circumference around the step portion.
  • the width of the non-coated portion is 110 ⁇ m or less at the maximum portion and 10 ⁇ m or more at the minimum portion.
  • the height difference between the mounting surface and the stepped portion is preferably 50 to 200 ⁇ m.
  • the present invention provides a plurality of green sheets having different shapes, each of which has a configuration in which the substrate body has a stepped portion having a height different from that of the mounting surface on the mounting surface, which is made of a glass ceramic composition including glass powder and a ceramic filler.
  • a method for producing a substrate for mounting a light emitting element according to the present invention is provided, wherein the wiring conductor, the reflective film, and the overcoat glass film are formed by screen printing.
  • a manufacturing method of a light emitting element mounting substrate including the following steps (A) to (D) ( Hereinafter, it is referred to as “the manufacturing method of the first aspect” of the present invention.
  • a covering green sheet comprising a mounting surface of the light emitting element mounting substrate, comprising a through hole penetrating in the thickness direction in a portion corresponding to the wiring conductor of the light emitting element mounting substrate, comprising the glass ceramic composition.
  • a reflection film paste layer is formed by screen printing on the surface of the green sheet laminate covering the green sheet laminate so as to remove the through-holes and the vicinity thereof, and further including the end of the reflection film paste layer And forming an overcoat glass paste layer by screen printing so as to remove the through-hole and the vicinity thereof to obtain a green light-emitting element mounting substrate.
  • D A step of firing the green light emitting element mounting substrate at 800 to 930 ° C.
  • the following (A) step, (B) ′ step, (C) ′ step and ( D) A method of manufacturing a light emitting element mounting substrate including a step (hereinafter referred to as “manufacturing method of the second aspect” of the present invention) is provided.
  • a green sheet for main body that mainly constitutes a main body substrate of the light emitting element mounting substrate is produced, and a predetermined on the main surface of the green sheet for main body A step of obtaining a main body forming member by arranging a wiring conductor paste layer at a position by screen printing.
  • (B) The covering green sheet which comprises the mounting surface of the said light emitting element mounting board
  • a light emitting device of the present invention includes the light emitting element mounting substrate of the present invention and a light emitting element mounted on a mounting portion of the light emitting element mounting substrate.
  • the area of the gap provided in order to obtain insulation between the metal reflection film formed on the substrate and the wiring conductor portion is small, and the light extraction efficiency when the light emitting device is mounted to form a light emitting device is excellent. It is possible to provide a light-emitting element mounting substrate.
  • FIG. 2 is a cross-sectional view of a portion corresponding to the line X-X ′ in FIG. 1 of the embodiment of the light emitting element mounting substrate shown in FIG. 1.
  • FIG. 2 is sectional drawing which shows an example of the light-emitting device using the light emitting element mounting substrate of this invention.
  • a substrate for mounting a light emitting element of the present invention comprises a sintered body of a glass ceramic composition containing glass powder and a ceramic filler, and a substrate body having a mounting surface, a part of which is a mounting part on which the light emitting element is mounted, A wiring conductor that is electrically connected to the electrode of the light emitting element and is disposed in a stepped portion having a height different from that of the mounting surface provided on the mounting surface of the substrate body, and the stepped portion and the vicinity thereof are excluded.
  • the present invention by providing a step (height difference) between the light emitting element mounting surface on which the reflective film of the substrate body is provided and the surface on which the wiring conductor electrically connected to the electrode of the light emitting element is disposed. It is possible to reduce the gap area between the reflective film and the wiring conductor. Thus, when the light emitting element is mounted on the light emitting element mounting substrate and used as a light emitting device, it is possible to reduce the light emitted from the light emitting element from entering the substrate through the gap. A light emitting device with high light extraction efficiency can be obtained.
  • FIG. 1 is a plan view of an embodiment of a light emitting element mounting substrate according to the present invention as viewed from above, and FIG. 2 is an XX ′ line in FIG. 1 of the embodiment of the light emitting element mounting substrate shown in FIG. It is sectional drawing of the part corresponded to.
  • the light emitting element mounting substrate 1 has a substantially flat substrate body 2 that mainly constitutes the light emitting element mounting substrate 1.
  • the substrate body 2 is made of a sintered body of a glass ceramic composition containing glass powder and a ceramic filler, and one surface (upper side in FIG. 2) is a mounting surface 21 on which a light emitting element is mounted.
  • a substantially central portion is a mounting portion 22 on which a light emitting element is actually mounted.
  • the other surface is a non-mounting surface 23 on which no light emitting element is mounted.
  • the substrate body 2 preferably has a bending strength of, for example, 250 MPa or more from the viewpoint of suppressing damage or the like when the light emitting element is mounted and thereafter used.
  • the shape, thickness, size, etc. of the substrate body are not particularly limited, and can be the same as those usually used as a light emitting element mounting substrate.
  • the raw material composition and sintering conditions of the sintered body of the glass ceramic composition containing the glass powder and the ceramic filler constituting the substrate body 2 will be described in a method for manufacturing a light emitting element mounting substrate described later.
  • the substrate body 2 has a recess 5 in a part of the mounting surface 21, and a wiring conductor 3 electrically connected to the light emitting element is provided on the bottom surface of the recess 5.
  • the non-mounting surface 23 is provided with an external electrode terminal 4 that is electrically connected to an external circuit, and a through conductor 6 that electrically connects the wiring conductor 3 and the external electrode terminal 4 inside the substrate body 2. Is provided.
  • the wiring conductor 3 is disposed over the entire bottom surface of the recess 5 so that an uncoated portion of the substrate body cannot be formed.
  • the configuration of the wiring conductor is not particularly limited as long as it is the same configuration as that of the wiring conductor used for the light emitting element mounting substrate, but a preferable thickness is 5 to 15 ⁇ m.
  • a constituent material it demonstrates in the below-mentioned manufacturing method.
  • any material can be used without particular limitation as long as it is usually the same as that used for the light emitting element mounting substrate.
  • the arrangement of the external electrode terminal 4 and the through conductor 6 is not particularly limited as long as it is arranged so as to be electrically connected from the wiring conductor 3 to the external electrode (not shown).
  • the mounting surface 21 is provided with a concave portion 5 as a step having a height different from that of the mounting surface 21 for disposing the wiring conductor 3, but a convex portion is provided instead of the concave portion.
  • the shape of the stepped portion is such that the side wall of each of the concave portion and the convex portion is perpendicular to the mounting surface. If the concave portion is a concave portion, the lowest part (bottom part) is horizontal. The shape which is is preferable. Note that the shape of the stepped portion is preferably a concave portion in consideration of ease of manufacturing.
  • the position, size, shape, etc. of the step portion when the light emitting element mounting substrate is viewed from above are the same as the position, size, shape, etc. of the wiring conductor required in the conventional light emitting element mounting substrate. Can be.
  • the number of recesses on the mounting surface side of the substrate body is two, but can be appropriately adjusted according to the number of wiring conductors that require the light emitting element mounting substrate.
  • the distance between the surface on which the wiring conductor of the step portion is disposed and the mounting surface of the substrate body, that is, the height difference (for example, indicated by h in FIG. 2) is preferably 50 to 200 ⁇ m, preferably 100 to 150 ⁇ m. Is more preferable.
  • the height difference is less than 50 ⁇ m, the distance between the wiring conductor and the reflective film may not be sufficiently secured. If the height difference exceeds 200 ⁇ m, the incidence of light from the side wall of the recess increases, and the light extraction efficiency is improved. May decrease.
  • the reflective film 7 is formed on the surface of the mounting surface 21 except for the concave portion 5 and the vicinity thereof, covers the entire reflective film 7 including the end portion on the reflective film 7, and the concave portion.
  • An overcoat glass film 8 is provided so as to exclude 5 and the vicinity thereof.
  • the concave portion 5 is formed in the mounting surface 21 and the wiring conductor 3 is provided at the bottom of the concave portion 5, so that the reflective film 7 and the overcoat glass are formed on the mounting surface 21 of the base body 2. The area of the non-coated portion 9 where the film 8 is not formed can be reduced.
  • the film thickness of the reflective film 7 is preferably 5 ⁇ m or more in order to obtain sufficient reflection performance, although it depends on the design of the light emitting device in which the light emitting element mounting substrate is used. Considering deformation due to the above, it is preferably 50 ⁇ m or less.
  • the film thickness of the overcoat glass film 8 depends on the design of the light-emitting device in which the light-emitting element mounting substrate is used. ⁇ 50 ⁇ m is preferred. The raw material composition regarding the reflective film and the overcoat glass film will be described in the production method described later.
  • the width of the non-coated portion 9 indicated by “w” in FIGS. 1 and 2 is preferably 20 to 80 ⁇ m, and more preferably 30 to 50 ⁇ m.
  • the width of the non-coated portion 9 exceeds 80 ⁇ m, the amount of light emitted from the light emitting element is increased in the substrate, and as a result, the light extraction efficiency may be lowered. Further, if it is less than 20 ⁇ m, there may be a problem in manufacturing.
  • the distance between the end of the reflective layer 7 and the end of the overcoat glass film 8 covering the same is preferably as short as possible within a range in which the reflective layer is sufficiently protected from external deterioration factors. Specifically, 10 to 50 ⁇ m is preferable, and 20 to 30 ⁇ m is more preferable. If this distance is less than 10 ⁇ m, the reflective layer may be exposed to the surface of the reflective layer, which may cause oxidation or sulfurization of the reflective layer, resulting in a decrease in reflectance. If the distance exceeds 50 ⁇ m, the substrate body is covered only with the overcoat glass film 8. The reflectance may decrease due to the increased number of regions.
  • a thermal via may be embedded in the substrate body 2 in order to reduce the thermal resistance.
  • the thermal via is, for example, a columnar one smaller than the mounting portion 22, and a plurality of thermal vias are provided immediately below the mounting portion 22.
  • the light emitting element mounting substrate according to the present invention has been described above with an example, but the light emitting element mounting substrate according to the present invention is not limited thereto. As long as it does not contradict the spirit of the present invention, the configuration can be changed as necessary.
  • a light emitting device for example, the light emitting device shown in FIG. 3 is manufactured by mounting the light emitting element on the mounting portion using the light emitting element mounting substrate of the present invention.
  • a light-emitting device 10 shown in FIG. 3 is a device in which a light-emitting element 11 such as a light-emitting diode element is mounted on a mounting portion 22 of a light-emitting element mounting substrate 1.
  • the light emitting element 11 is fixed to the mounting portion 22 using an adhesive, and an electrode (not shown) is electrically connected to the wiring conductor 3 by a bonding wire 13.
  • the light emitting device 10 is configured by providing a molding material 14 so as to cover the light emitting element 11 and the bonding wire 13.
  • the light emitting device 10 using the light emitting element mounting substrate of the present invention since the gap area between the wiring conductor 3 and the reflective film 7 of the light emitting element mounting substrate 1 is small, the light emitted from the light emitting element 11 is reduced. The incidence on the substrate body is suppressed, the light extraction efficiency can be increased, and light can be emitted with high brightness.
  • a light emitting device 10 can be suitably used, for example, as a backlight for a mobile phone, a large-sized liquid crystal display, etc., illumination for automobiles or decoration, and other light sources.
  • the light emitting element mounting substrate of the present invention is manufactured as follows. In the following description, members used for manufacturing, layers to be formed, and the like will be described with the same reference numerals as the members of the finished product.
  • the substrate for mounting a light-emitting element of the present invention having a configuration in which the substrate body has a stepped portion having a height different from that of the mounting surface on the mounting surface is, for example, a shape manufactured using a glass ceramic composition containing glass powder and a ceramic filler. It can be produced by laminating a plurality of different green sheets.
  • the wiring conductor, the reflective film, and the overcoat glass film can be formed by screen printing.
  • a green sheet means a green sheet made of a glass ceramic composition containing glass powder and a ceramic filler.
  • the step portion of the light emitting element mounting substrate of the present invention is a recess, for example, a through hole is formed in a portion corresponding to the wiring conductor paste layer on a green sheet in which the wiring conductor paste layer is formed by screen printing at a desired position.
  • a green sheet for coating is laminated, and a paste layer for a reflective film and an overcoat glass paste layer are screen-printed except for a through-hole and a peripheral portion thereof to produce an unfired light emitting element mounting substrate.
  • the light emitting element mounting substrate of the present invention is manufactured.
  • the step portion of the light emitting element mounting substrate of the present invention is a convex portion
  • a small piece of sheet is laminated, and the paste layer for the reflective film and the overcoat glass paste layer are screen printed except for the laminated part and its peripheral part to produce an unfired light emitting element mounting substrate, and this is fired to produce this
  • the light emitting element mounting substrate of the invention is manufactured.
  • the manufacturing method of the first aspect of the present invention is specifically a manufacturing method of a light emitting element mounting substrate including the following steps (A) to (D), and refer to FIG. 4 for an example of the embodiment. To explain. More specifically, it is preferable to manufacture the light emitting element mounting substrate of the present invention by following the steps (A) to (D) described below in this order.
  • a green sheet for main body that mainly constitutes a main body substrate of the light emitting element mounting substrate is produced, and a predetermined on the main surface of the green sheet for main body
  • a step of obtaining a main body forming member by arranging a wiring conductor paste layer at a position by screen printing (hereinafter referred to as a “main body forming member manufacturing step”).
  • a covering green sheet comprising a mounting surface of the light emitting element mounting substrate, comprising a through hole penetrating in the thickness direction in a portion corresponding to the wiring conductor of the light emitting element mounting substrate, comprising the glass ceramic composition.
  • a reflection film paste layer is formed by screen printing on the surface of the green sheet laminate covering the green sheet laminate so as to remove the through-holes and the vicinity thereof, and further including the end of the reflection film paste layer
  • a step of forming an overcoat glass paste layer by screen printing so as to remove the through-hole and its surroundings so as to obtain an unsintered light emitting element mounting substrate (hereinafter referred to as “reflection film paste layer forming step”) ").
  • a step of firing the unsintered light-emitting element mounting substrate at 800 to 930 ° C. hereinafter referred to as “firing step”).
  • FIG. 4A is a view showing a cross section of the main body forming member 2A obtained by the process including the above (A) process.
  • the wiring conductor paste layer 3 is formed on the main surface of the main body green sheet 2a by the above-described step (A), and finally the other non-mounting surface 23 of the light emitting element mounting substrate.
  • the external electrode terminal conductor paste layer 4 and the wiring conductor paste layer 3 and the through electrode paste layer 6 for electrically connecting the external electrode terminal conductor paste layer 4 are formed on the surface.
  • the green sheet 2a for main body prepares a slurry by adding a binder, and if necessary, a plasticizer, a dispersant, a solvent, etc. to a glass ceramic composition containing glass powder (glass powder for substrate main body) and a ceramic filler, This is formed into a sheet by a doctor blade method or the like, and dried to produce.
  • the glass powder for the substrate body is not necessarily limited, but a glass transition point (Tg) of 550 ° C. or higher and 700 ° C. or lower is preferable.
  • Tg glass transition point
  • the glass transition point (Tg) is less than 550 ° C., degreasing may be difficult.
  • Tg exceeds 700 ° C., the shrinkage start temperature becomes high and the dimensional accuracy may be lowered.
  • crystals are precipitated when fired at 800 ° C. or higher and 930 ° C. or lower. If the crystal does not precipitate, sufficient mechanical strength may not be obtained. Furthermore, the thing whose crystallization peak temperature (Tc) measured by DTA (differential thermal analysis) is 880 degrees C or less is preferable. When the crystallization peak temperature (Tc) exceeds 880 ° C., the dimensional accuracy may be lowered.
  • the glass composition of the glass powder for this substrate body in mol% in terms of oxide, such as SiO 2 or 57 mol% 65 mol% or less, B 2 O 3 of 13 mol% or more 18 mol% or less, 9 mol of CaO % To 23 mol%, Al 2 O 3 to 3 mol% to 8 mol%, including at least one selected from K 2 O and Na 2 O, and K 2 O, Na 2 O, or K 2 O and Na 2 O Are preferably contained in an amount of 0.5 mol% to 6 mol%.
  • SiO 2 serves as a glass network former.
  • the content of SiO 2 is preferably 58 mol% or more, more preferably 59 mol% or more, and particularly preferably 60 mol% or more.
  • the content of SiO 2 is preferably 64 mol% or less, more preferably 63 mol% or less.
  • B 2 O 3 is a glass network former. If the content of B 2 O 3 is less than 13 mol%, there is a possibility that the glass melting temperature or the glass transition point (Tg) becomes too high. On the other hand, when the content of B 2 O 3 exceeds 18 mol%, it is difficult to obtain a stable glass and the chemical durability may be lowered.
  • the content of B 2 O 3 is preferably 14 mol% or more, more preferably 15 mol% or more. Further, the content of B 2 O 3 is preferably 17 mol% or less, more preferably 16 mol% or less.
  • Al 2 O 3 is added to increase the stability, chemical durability, and strength of the glass.
  • the content of Al 2 O 3 is less than 3 mol%, the glass may become unstable.
  • the content of Al 2 O 3 exceeds 8 mol%, the glass melting temperature and the glass transition point (Tg) may be excessively increased.
  • the content of Al 2 O 3 is preferably 4 mol% or more, more preferably 5 mol% or more.
  • the content of Al 2 O 3 is preferably 7 mol% or less, more preferably 6 mol% or less.
  • CaO is added to increase glass stability and crystal precipitation, and to lower the glass melting temperature and glass transition point (Tg).
  • the content of CaO is less than 9 mol%, the glass melting temperature may be excessively high.
  • the content of CaO exceeds 23 mol%, the glass may become unstable.
  • the content of CaO is preferably 12 mol% or more, more preferably 13 mol% or more, and particularly preferably 14 mol% or more.
  • the CaO content is preferably 22 mol% or less, more preferably 21 mol% or less, and particularly preferably 20 mol% or less.
  • K 2 O and Na 2 O are added to lower the glass transition point (Tg).
  • the glass melting temperature and the glass transition point (Tg) may be excessively high. There is.
  • the content of K 2 O or Na 2 O, or the total content of K 2 O and Na 2 O exceeds 6 mol%, chemical durability, particularly acid resistance, may be reduced. There is also a risk that the electrical insulation will be lowered.
  • the content of K 2 O or Na 2 O, or the total content of K 2 O and Na 2 O is preferably 0.8 mol% or more and 5 mol% or less.
  • the glass powder for substrate main bodies is not necessarily limited to the said component, but can contain another component in the range with which various characteristics, such as a glass transition point (Tg), are satisfy
  • Tg glass transition point
  • filled the total content is preferably 10 mol% or less.
  • the glass powder for the substrate body is prepared by mixing and mixing glass raw materials so as to become glass having the above composition, producing glass by a melting method, and pulverizing the obtained glass by a dry pulverization method or a wet pulverization method. Is obtained. In the case of the wet grinding method, it is preferable to use water as a solvent.
  • the pulverization is performed using a pulverizer such as a roll mill, a ball mill, or a jet mill.
  • the 50% particle size (D 50 ) of the glass powder for substrate main body is preferably 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the 50% particle size of the glass powder for substrate main body is less than 0.5 ⁇ m, the glass powder tends to aggregate, making handling difficult and difficult to disperse uniformly.
  • the 50% particle size of the glass powder for substrate main body exceeds 2 ⁇ m, the glass softening temperature may increase or the sintering may be insufficient. Adjustment of the particle size is performed by classification as necessary after pulverization, for example.
  • the particle size of the powder shown in this specification is measured by a particle size measuring apparatus (trade name: MT3100II, manufactured by Nikkiso Co., Ltd.) using a laser diffraction / scattering method.
  • the ceramic filler those having a melting point of 1500 ° C. or higher and conventionally used for the production of LTCC substrates can be used without any particular limitation.
  • alumina powder, zirconia powder, or a mixture of alumina powder and zirconia powder is used. It can be used suitably.
  • the 50% particle size (D 50 ) of the ceramic filler is preferably 0.5 ⁇ m or more and 4 ⁇ m or less, for example.
  • white ceramic fillers are present, but they may cause problems with the light-emitting element mounting support and should be avoided.
  • This defect is, for example, an increase in the difference in thermal expansion coefficient from a mounting substrate (for example, a glass epoxy substrate) due to a decrease in light reflectance, a decrease in strength, a decrease in sinterability, and a decrease in thermal expansion coefficient.
  • a mounting substrate for example, a glass epoxy substrate
  • a glass ceramic composition is obtained.
  • a slurry can be obtained by adding a binder, and if necessary, a plasticizer, a dispersant, a solvent, and the like to the glass ceramic composition.
  • binder for example, polyvinyl butyral, acrylic resin and the like can be suitably used.
  • plasticizer for example, dibutyl phthalate, dioctyl phthalate, butyl benzyl phthalate and the like can be used.
  • solvent organic solvents such as toluene, xylene, 2-propanol and 2-butanol can be suitably used.
  • the green sheet 2a for main body can be manufactured by forming the slurry thus obtained into a sheet shape by a doctor blade method or the like and drying it.
  • step (A) the wiring conductor paste layer 3 is formed on one main surface of the main body green sheet 2a thus obtained (step (A)), and the external electrode terminal conductor paste layer 4 is formed on the other main surface.
  • a body forming member 2A having a cross section shown in FIG.
  • a method of applying a conductor paste by a screen printing method, or a method of applying and filling it can be mentioned.
  • the conductive paste for example, a paste obtained by adding a vehicle such as ethyl cellulose to a metal powder mainly composed of copper, silver, gold or the like, and a solvent or the like as necessary can be used.
  • a metal powder composed of silver, a metal powder composed of silver and platinum, or a metal powder composed of silver and palladium is preferably used.
  • the main body green sheet 2a may have an unfired thermal via, and in this case, the formation of the unfired thermal via includes the step (A) in the manufacturing method of the present invention. It is performed in the manufacturing process of the forming member.
  • FIG. 4B shows a cross section before lamination of the main body forming member 2A and the covering green sheet 2b obtained in the step (A) laminated in the step (B).
  • the covering green sheet 2b is made of a glass ceramic composition containing glass powder and a ceramic filler, and has a through-hole 5 ′ penetrating in the thickness direction in a portion corresponding to the wiring conductor of the obtained light emitting element mounting substrate.
  • the covering green sheet 2b is a member that finally constitutes the mounting surface of the light emitting element mounting substrate of the present invention.
  • the through-hole 5 ′ becomes a concave portion on the mounting surface after the covering green sheet 2b and the main body forming member 2A are stacked.
  • the covering green sheet 2b can be produced by using the same material components as those of the main body green sheet 2a and forming the through-hole 5 'in a green sheet produced by the same production method.
  • the depth of the concave portion on the mounting surface is determined by the film thickness of the produced covering green sheet 2b.
  • the film thickness of the covering green sheet 2b is adjusted so that the depth (h) of the concave portion after lamination and firing becomes a preferable value of 50 to 200 ⁇ m.
  • the formation of the through hole 5 ' can be performed without particular limitation by a method similar to a method of forming a through hole in a normal green sheet such as punching.
  • the through-hole 5 ′ of the covering green sheet 2 b is preferably formed smaller than the size of the wiring conductor paste layer 3 that the main body forming member 2 A has on the main surface.
  • the size of the through hole 5 ′ is such that when the main body forming member 2A and the covering green sheet 2b are laminated, the overlapping width of the wiring conductor paste layer 3 and the covering green sheet 2b becomes 50 to 150 ⁇ m. Such a size is preferable.
  • the covering green sheet 2b is superposed on the main surface of the main body forming member 2A so as to face the wiring conductor paste layer 3 from the through hole 5 ', and integrated by thermocompression bonding to form the green sheet laminate 2.
  • FIG. 4C shows a reflecting film formed on the surface of the covering green sheet 2b of the green sheet laminate 2 obtained by laminating in the process (B) by the process (C). It is a figure which shows the cross section of the non-sintered light emitting element mounting substrate 1 obtained by forming the paste layer 7 and the overcoat glass paste layer 8 in order.
  • the surface of the covering green sheet 2b of the green sheet laminate 2 is used for a reflecting film that becomes a reflecting film by screen printing so as to exclude the concave portion 5 formed by the through-hole 5 ′ and the vicinity thereof.
  • a paste layer 7 is formed.
  • the reflective film paste used for screen printing is the same as the above-mentioned conductor paste, for example, a metal powder mainly composed of copper, silver, gold, etc., a vehicle such as ethyl cellulose, and a solvent, etc. are added if necessary.
  • a metal powder mainly composed of copper, silver, gold, etc., a vehicle such as ethyl cellulose, and a solvent, etc.
  • Specific examples of the metal material for the conductive paste include silver, a silver palladium mixture, a silver palladium alloy, a silver platinum mixture, a silver platinum alloy, and the like.
  • a silver paste is preferably used.
  • As a silver paste in order to improve adhesive strength, 5 mass% or less of glass frit can also be included.
  • the reflective film substantially made of silver means a reflective film containing 90% by mass or more of silver, and a reflective film made of a silver alloy is also allowed.
  • palladium may contain up to 10% by mass and platinum up to 3% by mass.
  • the thickness of the formed reflective film paste layer 7 is adjusted such that the finally obtained reflective film has the desired film thickness.
  • the distance between the end of the reflective layer 7 and the end of the overcoat glass film 8 covering this is in the above desired range, that is, preferably 10 to 50 ⁇ m
  • the screen printing range on the surface of the reflective film paste layer 7 of the overcoat glass paste layer 8 is adjusted in consideration of the screen printing position of the overcoat glass paste layer 8 so as to be more preferably 20 to 30 ⁇ m.
  • An unsintered light emitting element mounting substrate 1 is obtained by forming an overcoat glass paste layer 8 to be an overcoat glass film by screen printing so as to exclude the recess 5 and the vicinity thereof.
  • the method for screen-printing the overcoat glass paste layer 8 is not particularly limited, but the width (w) of the non-coated portion in the vicinity of the recess 5 in the finally obtained light-emitting element mounting substrate is the preferred width 20 described above. It is preferable to print so as to be ⁇ 80 ⁇ m.
  • the film thickness of the overcoat glass paste layer 8 to be formed is adjusted so that the film thickness of the finally obtained overcoat glass film becomes the desired film thickness.
  • the overcoat glass paste a paste obtained by adding a vehicle such as ethyl cellulose to a glass powder (glass powder for glass film), a solvent or the like as required, can be used. Any glass powder for glass film may be used as long as it can be fired simultaneously with the main body forming member 2A and the covering green sheet 2b to obtain a film-like glass, and its 50% particle size (D 50 ) is 0.5 ⁇ m or more. 2 ⁇ m or less is preferable.
  • the surface roughness Ra of the overcoat glass film 8 can be adjusted, for example, by adjusting the particle size of the glass film glass powder. That is, the surface roughness Ra can be reduced by using a glass powder for glass film that melts sufficiently during firing and has excellent fluidity.
  • step (D) Firing step After the step (C), degreasing is performed to remove a binder or the like as necessary, and firing for sintering a glass ceramic composition or the like is performed to obtain the light emitting element mounting substrate 1. .
  • Degreasing is preferably performed by holding at a temperature of 500 ° C. to 600 ° C. for 1 hour to 10 hours, for example.
  • the degreasing temperature is less than 500 ° C. or the degreasing time is less than 1 hour, the binder or the like may not be sufficiently removed.
  • the degreasing temperature is 600 ° C. and the degreasing time is about 10 hours, the binder and the like can be sufficiently removed.
  • the productivity may be lowered.
  • the firing is performed by adjusting the time appropriately in the temperature range of 800 ° C. to 930 ° C. in order to make the base body have a dense structure and considering the productivity of the substrate body. Specifically, it is preferable to hold at a temperature of 850 ° C. or higher and 900 ° C. or lower for 20 minutes or longer and 60 minutes or shorter, particularly preferably at a temperature of 860 ° C. or higher and 880 ° C. or lower. If the firing temperature is less than 800 ° C., the base body may not be obtained as a dense structure. On the other hand, if the firing temperature exceeds 930 ° C., the productivity may decrease due to deformation of the substrate body.
  • the manufacturing method of the second aspect of the present invention is a method for manufacturing a light-emitting element mounting substrate, which includes the following steps (A), (B) ′, (C) ′, and (D).
  • steps (A), (B) ′, (C) ′, and (D) An example of the embodiment will be described with reference to FIG. More specifically, it is preferable to manufacture the light emitting element mounting substrate of the present invention by following the steps (A) to (D) described below in this order.
  • step C 'mounting the non-sintered light emitting device by laminating the covering member on the main surface of the main body forming member with the wiring conductor paste layer facing the through-hole and the overcoat glass paste layer facing upward
  • member lamination step A step of obtaining a substrate for use (hereinafter referred to as “member lamination step”)
  • step D) A step of firing the unsintered light emitting element mounting substrate at 800 to 930 ° C. (similar to the step (D) of the first aspect, referred to as “firing step”).
  • the manufacturing method according to the second aspect is the manufacturing method according to the first aspect, in which the green sheet laminate is prepared in the step (B), and then the reflective film is formed on the surface of the coating green sheet in the step (C).
  • the step of forming the paste layer for overcoat and the overcoat glass paste layer changing the order, (B) on the surface to be the mounting surface of the covering green sheet 2b having the through-hole 5 'in the step,
  • the reflective film paste layer 7 and the overcoat glass paste layer 8 it is a manufacturing method having the same steps as the manufacturing method of the first aspect except that it is laminated with the main body forming member in the step (C) ′. is there. That is, in the manufacturing method of the second aspect, (A) the main body forming member preparation step and (D) the firing step are exactly the same as the manufacturing method of the first aspect.
  • FIG. 5A is a view showing a cross section of the main body forming member 2A obtained by the process including the above (A) process, and is the same view as FIG. 4A above. is there.
  • the main body forming member 2A is manufactured by a method similar to the method described in the embodiment of the first aspect.
  • FIG. 5 (B)' shows a cross-sectional view of (b-2), which is a member that finally constitutes the mounting surface of the light emitting element mounting substrate of the present invention.
  • the process of producing member 2B is shown typically.
  • (B-1) is a cross-sectional view of the covering green sheet 2b constituting the mounting surface of the light emitting element mounting substrate, having a through hole 5 ′ penetrating in the thickness direction in the wiring conductor corresponding portion of the light emitting element mounting substrate.
  • a reflective film paste layer 7 is formed by screen printing on the surface of the covering green sheet 2b shown in (b-1) on which the light emitting element is mounted so as to remove the through-hole 5 'and the vicinity of the through-hole 5'.
  • an overcoat glass paste layer 8 by screen printing so as to cover the whole including the end portion of the film paste layer 7 and to remove the through-hole 5 ′ and the vicinity thereof, as shown in (b-2).
  • the covering member 2B is obtained.
  • the covering green sheet 2b having the through hole 5 ′ penetrating in the thickness direction in the wiring conductor corresponding portion of the light emitting element mounting substrate shown in (b-1) is the step (B) of the embodiment of the first aspect. It can be produced by a method similar to that described above. Further, the covering member 2B shown in (b-2) is screen-printed so as to exclude the through-hole 5 ′ and the vicinity thereof on the surface to be the mounting surface of the covering green sheet 2b having the through-hole 5 ′.
  • the overcoat glass paste layer 8 is formed by screen printing so as to form the reflective film paste layer 7 by covering the entire surface including the end of the reflective film paste layer 7 and excluding the through-hole 5 'and the vicinity thereof. As for the method of forming, a method similar to the method described in the step (C) of the embodiment of the first aspect is possible.
  • the covering member 2B obtained in the step (B) is placed on the main surface of the main body forming member 2A obtained in the step (A) from the through hole 5' to the wiring conductor paste.
  • the overcoat glass paste layer 8 faces the layer 3 and becomes the outermost layer, that is, the outermost layer, and is integrated by thermocompression bonding, the unfired portion shown in FIG.
  • a light emitting element mounting substrate 1 is produced.
  • the unsintered light emitting element mounting substrate 1 obtained in this way has the unsintered light emitting element mounting shown in FIG. 4C described in the embodiment of the manufacturing method of the first aspect. It has the same configuration as the substrate 1 for use.
  • step (D) Firing Step The firing of the unsintered light emitting element mounting substrate 1 obtained in the step (C) ′ can be performed by the same method as described in the embodiment of the first aspect.
  • the main body green sheet 2a and the covering green sheet 2b are not necessarily made of a single green sheet, and are a laminate of a plurality of green sheets. There may be. Further, the order of forming each part can be appropriately changed as long as the light emitting element mounting substrate 1 can be manufactured.
  • Example 1 A test light-emitting device having the same structure as that of the light-emitting device shown in FIG. 3 was manufactured by the method described below (the manufacturing method according to the second aspect of the present invention). In Example 1, a silver reflective film was used as the reflective film. Also in the description of the following examples, as in the case described above, the members used for the production, the layers to be formed, and the like are the same as those used for the members, layers, etc. before and after firing.
  • a green sheet 2a for main body and a green sheet 2b for covering for manufacturing a main body substrate of the light emitting element mounting substrate 1 were prepared.
  • the glass powder for producing the green sheet 2a for the main body and the green sheet 2b for coating has a glass composition of mol% in terms of the following oxides, SiO 2 is 60.4 mol%, and B 2 O 3 is 15 Glass raw materials were mixed and mixed so that 6 mol%, Al 2 O 3 was 6 mol%, CaO was 15 mol%, K 2 O was 1 mol%, and Na 2 O was 2 mol%, and this raw material mixture was put in a platinum crucible. After melting at 1600 ° C. for 60 minutes, the molten glass was poured out and cooled. The obtained glass was pulverized with an alumina ball mill for 40 hours to produce a glass powder for a substrate body. In addition, ethyl alcohol was used as a solvent for pulverization.
  • a glass ceramic composition was produced by blending and mixing the substrate body glass powder to 40% by mass and the alumina filler (trade name: AL-45H, manufactured by Showa Denko KK) to 60% by mass. 50 g of this glass ceramic composition, 15 g of an organic solvent (mixed with toluene, xylene, 2-propanol, 2-butanol in a mass ratio of 4: 2: 2: 1), a plasticizer (di-2-ethylhexyl phthalate) 2.5 g, 5 g of polyvinyl butyral as a binder (trade name: PVK # 3000K, manufactured by Denka) and 0.5 g of a dispersant (trade name: BYK180, manufactured by Big Chemie) were blended and mixed to prepare a slurry. .
  • an organic solvent mixed with toluene, xylene, 2-propanol, 2-butanol in a mass ratio of 4: 2: 2: 1
  • a plasticizer di-2
  • the slurry is applied on a PET film by a doctor blade method and dried to produce a green sheet for a main body having a fired thickness of 0.15 mm, and for a coating having a fired thickness of 0.10 mm.
  • a green sheet was produced.
  • conductive powder silver powder, manufactured by Daiken Chemical Industry Co., Ltd., trade name: S550
  • ethyl cellulose as a vehicle are blended at a mass ratio of 85:15, and used as a solvent so that the solid content is 85% by mass.
  • the mixture was kneaded in a porcelain mortar for 1 hour, and further dispersed three times with three rolls to produce a metal paste (conductor paste).
  • a through hole having a diameter of 0.3 mm is formed in a portion corresponding to the through conductor paste layer 6 of the green sheet 2a for the main body using a hole puncher, and the metal paste is filled by screen printing to paste the through conductor paste layer 6
  • the body forming member 2A was manufactured by forming the conductor paste layer 4 for external electrode terminals and the wiring conductor paste layer 3.
  • the coating green sheet 2b is formed with a through-hole 5 'corresponding to the concave portion 5 after lamination, and a silver reflective film paste layer is formed on the surface by screen printing so as to exclude the through-hole 5' and the vicinity thereof. 7 and further covering the entire portion including the end portion of the silver reflective film paste layer 7 and forming an overcoat glass paste layer 8 by screen printing so as to exclude the through-hole 5 ′ and the vicinity thereof.
  • a member 2B was obtained.
  • the above-mentioned paste for silver reflecting film is a mixture of silver powder (trade name: S400-2, manufactured by Daiken Chemical Industry Co., Ltd.) and ethyl cellulose as a vehicle in a mass ratio of 90:10, and has a solid content of 87. After being dispersed in ⁇ -terpineol as a solvent so as to be in mass%, the mixture was kneaded in a porcelain mortar for 1 hour, and further dispersed three times with three rolls.
  • the glass powder for glass films used for preparation of the said overcoat glass paste was manufactured as follows. First, as a glass composition, a glass raw material is blended so that SiO 2 is 81.6 mol%, B 2 O 3 is 16.6 mol%, and K 2 O is 1.8 mol% in terms of mol% in terms of the following oxides. The raw material mixture was put in a platinum crucible and melted at 1600 ° C. for 60 minutes, and then the molten glass was poured out and cooled. The obtained glass was pulverized with an alumina ball mill for 8 to 60 hours to obtain a glass powder for glass film.
  • the glass powder for glass film is 60% by mass and the resin component (containing ethyl cellulose and ⁇ -terpineol in a mass ratio of 85:15) is 40% by mass, 1 in a porcelain mortar.
  • An overcoat glass paste was prepared by kneading for a period of time and further dispersing three times with three rolls.
  • the covering member 2B obtained above is arranged so that the wiring conductor paste layer 3 faces the through hole 5 'on the main surface of the main body forming member 2A, and the overcoat glass paste layer 8 is on the upper side, that is, the outermost layer.
  • degreasing is performed by holding at 550 ° C. for 5 hours, and further holding at 870 ° C. for 30 minutes to perform baking.
  • the light emitting element mounting substrate 1 was manufactured.
  • the width of the uncoated portion of the substrate body indicated by “w” in FIG.
  • the light emitting diode device 11 was mounted on the light emitting device mounting substrate 1 manufactured according to Example 1 to manufacture a light emitting device 10 as shown in FIG.
  • one light emitting diode element 11 (made by Showa Denko, trade name: GQ2CR460Z) is mounted on the mounting portion 22 and a die bond material (trade name: KER-3000-M2 made by Shin-Etsu Chemical Co., Ltd.).
  • a sealing agent trade name: SCR-1016A, manufactured by Shin-Etsu Chemical Co., Ltd.
  • a phosphor made by Kasei Optonix, trade name: P46-Y3 containing 20% by mass with respect to the sealing agent was used.
  • the light-emitting device 10 according to the present invention thus obtained and a light-emitting device having a configuration corresponding to the conventional light-emitting device described below, that is, a light-emitting element mounting substrate in which a silver reflecting film and a wiring conductor are formed on the same plane.
  • the total luminous flux was measured by the following measuring method and compared.
  • the light emitting device according to the present invention had a 5% luminous flux improvement as compared with the conventional light emitting device.
  • the total luminous flux was measured using an LED total luminous flux measuring device SOLIDLAMBDA, CCD, LED, MONITOR, and PLUS manufactured by Spectra Corp.
  • Example 2 The same substrate body glass powder as in Example 1 was used, the substrate body glass powder was 38% by mass, alumina filler (manufactured by Showa Denko KK, trade name: AL-45H) was 38% by mass, zirconia filler (first rare A glass ceramic composition is manufactured by mixing and mixing so that the elemental chemical industry, trade name: HSY-3F-J) is 24% by mass, and the other components are mounted in the same manner as in Example 1 A substrate 1 was prepared. The light emitting diode element 11 was mounted on the light emitting element mounting substrate 1 manufactured as described above, and the light emitting device 10 as shown in FIG. 3 was manufactured in the same manner as described above.
  • alumina filler manufactured by Showa Denko KK, trade name: AL-45H
  • zirconia filler first rare A glass ceramic composition is manufactured by mixing and mixing so that the elemental chemical industry, trade name: HSY-3F-J
  • the total luminous flux was compared with the conventional light emitting device described above.
  • the light emitting device according to the present invention had a 5% luminous flux compared to the conventional light emitting device. It was improving.
  • the area of the gap provided in order to obtain insulation between the metal reflection film formed on the substrate and the wiring conductor portion is small, and the light extraction efficiency when the light emitting device is mounted to form a light emitting device is excellent.
  • a light emitting element mounting substrate can be obtained. According to the light emitting device using the light emitting element mounting substrate of the present invention, since the gap area between the wiring conductor of the light emitting element mounting substrate and the reflective film is small, the light is emitted from the light emitting element to the substrate body. Can be suppressed, the light extraction efficiency can be increased, and light can be emitted with high brightness.
  • Such a light emitting device can be suitably used as a backlight for a mobile phone, a large liquid crystal display, etc., illumination for automobiles or decoration, and other light sources.
  • SYMBOLS 1 Light emitting element mounting substrate, 2 ... Substrate main body, 3 ... Wiring conductor, 5 ... Recessed part (step part), 7 ... Reflective film, 8 ... Overcoat glass film, 9 ... Substrate mounting surface non-coated part 10 ... Light emitting device , 11 ... light emitting element, 21 ... mounting surface, 22 ... mounting portion, 23 ... non-mounting surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

 発光素子搭載用のLTCC基板において、基板上に形成される金属反射膜と配線導体部の絶縁を得るために設けられるギャップが低減された発光素子搭載用基板、その製造方法および発光装置を提供する。 ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物の焼結体からなり、一部が発光素子の搭載される搭載部となる搭載面を有する基板本体と、基板本体の搭載面に設けられた搭載面と高さの異なる段差部に配設された、発光素子の電極と電気的に接続される配線導体と、段差部およびその周囲近傍を除く搭載面に形成された反射膜と、反射膜の端縁を含む全体を覆いかつ段差部およびその周囲近傍を除くように搭載面に設けられたオーバーコートガラス膜と、を有することを特徴とする発光素子搭載用基板。

Description

発光素子搭載用基板、その製造方法および発光装置
 本発明は、発光素子搭載用基板、その製造方法および発光装置に関する。
 近年、発光ダイオード素子(チップ)の高輝度、白色化に伴い、携帯電話や大型液晶TVのバックライト等として発光ダイオード素子を用いた発光装置が使用されている。しかしながら、発光ダイオード素子の高輝度化に伴って発熱量が増加し、その温度が過度に上昇するために、必ずしも十分な発光輝度を得られない。このため発光ダイオード素子等の発光素子を搭載するための発光素子用基板として、発光素子から発生する熱を速やかに放散し、十分な発光輝度を得られるものが求められている。
 従来、発光素子搭載用基板として、例えばアルミナ基板が用いられている。また、アルミナ基板の熱伝導率が約15~20W/m・Kと必ずしも高くないことから、より高い熱伝導率を有する窒化アルミニウム基板を用いることも検討されている。
 しかしながら、窒化アルミニウム基板は、原料コストが高く、また難焼結性であることから高温焼成が必要となり、プロセスコストが高くなりやすい。さらに、窒化アルミニウム基板の熱膨張係数は4×10-6~5×10-6/℃と小さく、汎用品である9×10-6/℃以上の熱膨張係数を持つプリント基板に実装した場合、熱膨張差により必ずしも十分な接続信頼性を得ることができない。
 このような問題を解決するために、発光素子搭載用基板として低温同時焼成セラミック基板(以下、LTCC基板という)を用いることが検討されている。LTCC基板は、例えば、ガラスとアルミナフィラーとからなり、これらの屈折率差が大きく、またこれらの界面が多く、その厚みが利用する波長より大きいことから、高い反射率が得られる。これにより、発光素子からの光を効率よく利用し、結果として発熱量を低減できる。また、光による劣化の少ない無機酸化物からなるために、長期間に渡って安定した色調を保持できる。
 LTCC基板は発光素子搭載用基板として、上記のように高い反射率を有することをひとつの特徴とする。さらに発光素子が発光する光を可能な限り前方に反射させることを目的として、LTCC基板の表面に銀反射膜を施し、この銀反射膜の表面に酸化や硫化を防止するためのオーバーコートガラスを設ける等の試みがなされるようになった。ここで、発光素子搭載用のLTCC基板上に銀反射膜を設ける場合、その面積はできるだけ大きい方が光取り出し効率は高くなるが、同一平面に一対の配線導体を備えるため絶縁を確保するためのギャップを設ける必要がある。
 しかし、この絶縁のために形成されたギャップからはLTCC基板内に光が入射し、その入射した光のほとんどが基板内を拡散反射し再放射が困難となることから、ギャップの存在が基板の反射率の低下をまねくという問題があった。そこで、発光素子搭載用のLTCC基板においては、発光素子の光取り出し効率を向上させるために、このギャップの面積を可能な限り小さくする技術の開発が望まれていた。
 このような、発光素子搭載用基板における絶縁部分による反射効率の低下を解決する技術としては、例えば、特許文献1や特許文献2に記載されているように、上記LTCC基板の構造を改良したものが知られている。特許文献1では、発光素子搭載用基板上の配線導体間のギャップを解消するために、金属からなる光反射層とこれを覆う形に絶縁層を形成し、その絶縁層上に配線導体を施した構成の発光素子搭載用基板に関する発明が開示されている。また、特許文献2には、窒化アルミニウム基板上の導体配線パターン間の隙間から基板内に光が入射するのを解消するために、窒化アルミニウム基板上に導体配線パターンと、基板を構成する窒化アルミニウム組成物とは焼結温度が異なる窒化アルミニウムペーストからなる絶縁層が設けられた構成の発光素子搭載用基板に関する発明が開示されている。しかし、上記のように基板上に反射膜と配線導体を有するLTCC基板において、反射膜と配線導体間のギャップを解消しようとする試みについては、未だ知られていない。
特開2006-100444号公報 特開2008-34513号公報
 本発明は、上記問題を解決するためになされたものであって、発光素子搭載用のLTCC基板において、基板上に形成される金属反射膜と配線導体部の絶縁を得るために設けられるギャップが低減された発光素子搭載用基板およびその製造方法の提供を目的とする。
 本発明の発光素子搭載用基板は、ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物の焼結体からなり、一部が発光素子の搭載される搭載部となる搭載面を有する基板本体と、前記基板本体の搭載面に設けられた前記搭載面と高さの異なる段差部に配設された、発光素子の電極と電気的に接続される配線導体と、前記段差部およびその周囲近傍を除く搭載面に形成された反射膜と、前記反射膜の端縁を含む全体を覆いかつ前記段差部およびその周囲近傍を除くように搭載面に設けられたオーバーコートガラス膜と、を有することを特徴とする。
 なお、反射膜の構成材料としては、銀のほか、銀とパラジウムとからなる金属粉末、銀と白金とからなる金属粉末が使用可能である。これらの中でも本発明においては、高反射率を有する実質的に銀からなる反射膜が好ましい。ここにおいて、実質的に銀からなる反射膜とは、反射膜が銀ペーストにより形成される場合、銀ペーストに含まれるペースト形成のための成分が、形成された反射膜に残存して含まれても良いこと、あるいは銀の耐久性向上のための他の成分を含んでも良いことを意味する。実質的に銀からなる反射膜とは、銀を90質量%以上含む反射膜を意味し、銀合金を許容する。たとえば、パラジウムであれば10質量%、白金であれば3質量%まで含んでもよい。
 本発明の発光素子搭載用基板においては、前記搭載面に設けられた段差部は、凹部であることが好ましい。
 本発明の発光素子搭載用基板においては、前記段差部周囲近傍の基板搭載面に反射膜とオーバーコートガラス膜による被覆層が形成されていない部分、すなわち非コート部が形成される。この非コート部の幅は、20~80μmが好ましい。なお、非コート部の幅は、全ての部分で20~80μmの範囲になくてもよく、殆どの部分で幅がこの範囲であれば好ましい。すなわち、上記段差部の周囲の全周のどこか一部に極端に幅の広いところや狭いところが、形成されているものも含まれることを意味する。ただし、非コート部の幅は最大となる箇所でも110μm以下、最小となる箇所でも10μm以上であることが好ましい。
 本発明の発光素子搭載用基板においては、前記搭載面と前記段差部との高さの差は、50~200μmが好ましい。
 また、本発明は、前記基板本体が搭載面に前記搭載面と高さの異なる段差部を有する構成を、ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物からなる、形状の異なる複数のグリーンシートを積層することにより形成し、前記配線導体、反射膜およびオーバーコートガラス膜の形成をスクリーン印刷により行うことを特徴とする上記本発明の発光素子搭載用基板の製造方法を提供する。
 本発明の製造方法において、前記基板本体の搭載面に設けられた段差部が凹部である場合の製造方法として、下記(A)工程~(D)工程を含む発光素子搭載用基板の製造方法(以下、本発明の「第1の態様の製造方法」という)を提供する。
(A)ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物を用いて前記発光素子搭載用基板の主として本体基板を構成する本体用グリーンシートを作製し、前記本体用グリーンシートの主面上の所定位置にスクリーン印刷により配線導体ペースト層を配設して本体形成部材を得る工程。
(B)前記ガラスセラミックス組成物からなり前記発光素子搭載用基板の配線導体相当部に厚さ方向に貫通する貫通孔を有する、前記発光素子搭載用基板の搭載面を構成する被覆用グリーンシートを作製し、前記本体形成部材の主面上に前記貫通孔から配線導体ペースト層を臨むように積層してグリーンシート積層体を得る工程。
(C)前記グリーンシート積層体の被覆用グリーンシート表面に前記貫通孔およびその周囲近傍を除くようにスクリーン印刷により反射膜用ペースト層を形成し、さらに反射膜用ペースト層の端部を含む全体を覆い、かつ前記貫通孔およびその周囲近傍を除くように、スクリーン印刷によりオーバーコートガラスペースト層を形成して未焼結発光素子搭載用基板を得る工程。
(D)前記未焼結発光素子搭載用基板を800~930℃で焼成する工程。
 また、前記基板本体の搭載面に設けられた段差部が凹部である場合の本発明の別の態様の製造方法として、下記(A)工程、(B)’工程、(C)’工程および(D)工程を含む発光素子搭載用基板を製造する方法(以下、本発明の「第2の態様の製造方法」という)を提供する。
(A)ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物を用いて前記発光素子搭載用基板の主として本体基板を構成する本体用グリーンシートを作製し、前記本体用グリーンシートの主面上の所定位置にスクリーン印刷により配線導体ペースト層を配設して本体形成部材を得る工程。
(B)’前記ガラスセラミックス組成物からなり前記発光素子搭載用基板の配線導体相当部に厚さ方向に貫通する貫通孔を有する、前記発光素子搭載用基板の搭載面を構成する被覆用グリーンシートを作製し、得られた被覆用グリーンシートの前記搭載面となる表面に前記貫通孔およびその周囲近傍を除くようにスクリーン印刷により反射膜用ペースト層を形成し、さらに反射膜用ペースト層の端部を含む全体を覆い、かつ前記貫通孔およびその周囲近傍を除くように、スクリーン印刷によりオーバーコートガラスペースト層を形成して被覆用部材を得る工程。
(C)’前記本体形成部材の主面上に、前記貫通孔から配線導体ペースト層を臨み、かつ前記オーバーコートガラスペースト層を上側にして前記被覆用部材を積層して未焼結発光素子搭載用基板を得る工程。
(D)前記未焼結発光素子搭載用基板を800~930℃で焼成する工程。
 本発明の発光装置は、本発明の上記発光素子搭載用基板と、当該発光素子搭載用基板の搭載部に搭載された発光素子とを有することを特徴とする。
 本発明の発光装置においては、本発明の上記発光素子搭載用基板の搭載面に設けられた段差部に配設された配線導体と、当該発光素子搭載用基板の搭載部に搭載された発光素子が有する一対の電極のそれぞれと、前記配線導体がワイヤボンデイングにより一対一の関係で接続されていることが好ましい。
 本発明によれば、基板上に形成される金属反射膜と配線導体部の絶縁を得るために設けられるギャップの面積が小さく、発光素子を搭載して発光装置とした際の光取り出し効率に優れる発光素子搭載用基板を提供することが可能である。
本発明の発光素子搭載用基板の一実施形態を上から見た平面図である。 図1に示す発光素子搭載用基板の実施形態の図1におけるX-X’線に相当する部分の断面図である。 本発明の発光素子搭載用基板を用いた発光装置の一例を示す断面図である。 本発明の発光素子搭載用基板の第1の態様の製造方法の一実施形態を模式的に示す図である。 本発明の発光素子搭載用基板の第2の態様の製造方法の一実施形態を模式的に示す図である。 実施例において比較のために用いた従来構成の発光素子搭載用基板を有する発光装置の断面を示す図である。
 以下に、図を参照しながら本発明の実施の形態を説明する。
 本発明の発光素子搭載用基板は、ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物の焼結体からなり、一部が発光素子の搭載される搭載部となる搭載面を有する基板本体と、前記基板本体の搭載面に設けられた前記搭載面と高さの異なる段差部に配設された、発光素子の電極と電気的に接続される配線導体と、前記段差部およびその周囲近傍を除く搭載面に形成された反射膜と、前記反射膜の端縁を含む全体を覆いかつ前記段差部およびその周囲近傍を除くように搭載面に設けられたオーバーコートガラス膜と、を有することを特徴とする。
 本発明によれば、基板本体の反射膜が設けられる発光素子搭載面と、発光素子の電極と電気的に接続される配線導体を配設する面に段差(高低差)を持たせることにより、反射膜と配線導体の間のギャップ面積を小さくすることを可能としたものである。これにより、この発光素子搭載用基板上に、発光素子が搭載されて発光装置として使用する場合に、発光素子から発光された光がギャップから基板内に入射するのを減少させることが可能となり、光取り出し効率の高い発光装置とすることが可能となる。
 図1は、本発明の発光素子搭載用基板の一実施形態を上から見た平面図であり、図2は図1に示す発光素子搭載用基板の実施形態の図1におけるX-X’線に相当する部分の断面図である。
 発光素子搭載用基板1は、発光素子搭載用基板1を主として構成する略平板状の基板本体2を有している。基板本体2は、ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物の焼結体からなり、一方の面(図2中、上側)が発光素子の搭載される搭載面21となっており、この略中央部が実際に発光素子の搭載される搭載部22となっている。また、他方の面は、発光素子の搭載されない非搭載面23とされている。基板本体2は、発光素子の搭載時、その後の使用時における損傷等を抑制する観点から、例えば抗折強度は250MPa以上が好ましい。
 基板本体の形状、厚さ、大きさ等は特に制限されず、通常、発光素子搭載用基板として使用するものと同様とすることができる。また基板本体2を構成するガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物の焼結体の原料組成、焼結条件等については、後述する発光素子搭載用基板の製造方法において説明する。
 基板本体2は、搭載面21の一部に凹部5を有し、凹部5の底面に発光素子と電気的に接続される配線導体3が設けられている。非搭載面23には、外部回路と電気的に接続される外部電極端子4が設けられ、基板本体2の内部に、上記配線導体3と外部電極端子4とを電気的に接続する貫通導体6が設けられている。
 配線導体3は、基板本体の非コート部分ができないように凹部5の底面全体に亘って配設される。配線導体の構成は、通常、発光素子搭載用基板に用いられる配線導体と同様の構成であれば特に制限されないが、好ましい厚さとして5~15μmが挙げられる。なお、構成材料については、後述の製造方法において説明する。外部電極端子4および貫通導体6の形状や構成材料としては、通常、発光素子搭載用基板に使用するものと同様のものであれば、特に制限なく使用できる。また、外部電極端子4および貫通導体6の配置についても、配線導体3から外部電極(図示せず)に電気的に接続されるように配置されていれば、特に制限されるものではない。
 なお、この実施形態においては、配線導体3を配設するための搭載面21と高さの異なる段差部として搭載面21に凹部5が設けられているが、凹部に替えて凸部を設け、凸部の最も高い部分に配線導体を配設してもよい。段差部の形状は、凹部、凸部ともに側壁が搭載面に対して垂直であり、凹部であれば最も低い部分(底部)が、また凸部であれば最も高い部分が搭載面に対して水平である形状が好ましい。なお、段差部の形状は、製造の容易性を考慮すれば、凹部であることが好ましい。
 また、発光素子搭載用基板を上から見た場合の段差部の位置、大きさ、形状等は、従来の発光素子搭載用基板において必要とされる配線導体の位置、大きさ、形状等と同様にできる。さらに、この実施形態においては、基板本体が搭載面側に有する凹部の個数は2個であるが、発光素子搭載用基板が必要とされる配線導体の個数に応じて適宜調整可能である。
 ここで、段差部の配線導体を配設する面と、基板本体の搭載面の距離、すなわち高低差(例えば、図2においてはhで示される)については、50~200μmが好ましく、100~150μmがより好ましい。この高低差が50μm未満であると、配線導体と反射膜との距離が十分に確保されない場合があり、200μmを超えると、凹部の側壁の壁面からの光の入射が大きくなり、光取り出し効率が低下することがある。
 発光素子搭載用基板1においては、搭載面21の凹部5およびその周囲近傍を除く表面に、反射膜7が形成され、反射膜7上にその端部を含み反射膜7全体を覆い、かつ凹部5およびその周囲近傍を除くようにオーバーコートガラス膜8が設けられている。この実施形態においては、上記搭載面21に凹部5が形成され、その凹部5の底部に配線導体3が設けられていることにより、基体本体2の搭載面21において、反射膜7およびオーバーコートガラス膜8が形成されていない非コート部9の面積を小さくできる。
 ここで、反射膜7の膜厚は、発光素子搭載用基板が用いられる発光装置の設計にもよるが、十分な反射性能を得るために5μm以上が好ましく、経済性、基体との熱膨張差による変形等を考慮すると50μm以下が好ましい。また、オーバーコートガラス膜8の膜厚についても同様に、発光素子搭載用基板が用いられる発光装置の設計にもよるが、熱伝達性および、基体との熱膨張差による変形等を勘案すると10~50μmが好ましい。反射膜、オーバーコートガラス膜に関する原料組成は、後述の製造方法において説明する。
 ここで、図1および図2において「w」で示した上記非コート部9の幅は、20~80μmが好ましく、30~50μmがより好ましい。この非コート部9の幅が、80μmを超えると発光素子から発光された光が基板内に入射する量が増え、結果として光取り出し効率の低下をまねく場合がある。また、20μm未満であると製造面で不具合を生じる場合がある。
 また、反射層7の末端とこれを覆うオーバーコートガラス膜8の末端の間の距離については、反射層が外部の劣化要因から十分に保護される範囲でできる限り短い距離とすることが好ましい。具体的には、10~50μmが好ましく、20~30μmがより好ましい。この距離が10μm未満では、反射層の露出により、反射層構成材料の酸化や硫化等が発生して反射率が低下するおそれがあり、50μmを超えると基板本体がオーバーコートガラス膜8のみで被覆された領域が増えることで反射率が低下することがある。
 なお、図示されていないが、熱抵抗を低減するために基板本体2の内部にサーマルビアが埋設されていてもよい。サーマルビアは、例えば搭載部22より小さい柱状のものであり、搭載部22の直下に複数設けられる。サーマルビアを設ける場合には、搭載面21に達しないように、非搭載面23から搭載面21の近傍にかけて設けることが好ましい。このような配置とすることで、搭載面21、特に搭載部22の平坦度を向上でき、熱抵抗を低減し、また発光素子を搭載したときの傾きも抑制できる。
 以上、本発明の発光素子搭載用基板の実施形態について一例を挙げて説明したが、本発明の発光素子搭載用基板はこれに限定されるものではない。本発明の趣旨に反しない限度において、また必要に応じて、その構成を適宜変更できる。
 本発明の発光素子搭載用基板を用いて、その搭載部に発光素子を搭載することで発光装置、例えば、図3に示す発光装置を作製する。
 図3に示す発光装置10は、発光素子搭載用基板1の搭載部22に発光ダイオード素子等の発光素子11が搭載されたものである。発光素子11は、搭載部22に接着剤を用いて固定され、その図示しない電極がボンディングワイヤ13によって配線導体3に電気的に接続されている。そして、発光素子11やボンディングワイヤ13を覆うようにモールド材14が設けられて発光装置10が構成されている。
 本発明の発光素子搭載用基板を用いた発光装置10によれば、発光素子搭載用基板1の配線導体3と反射膜7の間のギャップ面積が少ないことから、発光素子11が発光する光の基板本体への入射を抑制し、光取り出し効率を高くでき高輝度に発光させられる。このような発光装置10は、例えば携帯電話や大型液晶ディスプレイ等のバックライト、自動車用あるいは装飾用の照明、その他の光源として好適に使用できる。
 本発明の発光素子搭載用基板は、以下のようにして製造する。
 なお、以下の説明では、その製造に用いる部材、形成される層等について、完成品の部材と同一の符号を付して説明する。
 基板本体が搭載面に搭載面と高さの異なる段差部を有する構成の本発明の発光素子搭載用基板は、例えば、ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物を用いて作製された形状の異なる複数のグリーンシートを積層して作製できる。また、配線導体、反射膜およびオーバーコートガラス膜の形成はスクリーン印刷で行うことができる。以下、単にグリーンシートといえば、ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物からなるグリーンシートを意味する。
 本発明の発光素子搭載用基板の段差部が凹部である場合は、例えば、所望の位置にスクリーン印刷で配線導体ペースト層を形成したグリーンシート上に、この配線導体ペースト層相当部分に貫通孔を有する被覆用グリーンシートを積層し、その上に貫通孔とその周辺部を除いて反射膜用ペースト層およびオーバーコートガラスペースト層をスクリーン印刷して未焼成発光素子搭載用基板を作製し、これを焼成することで本発明の発光素子搭載用基板を製造する。
 また、本発明の発光素子搭載用基板の段差部が凸部である場合は、基板本体を形成するグリーンシート上の配線導体を形成させたい箇所に、表面に配線導体ペースト層が形成されたグリーンシート小片を積層し、この積層部分とその周辺部を除いて反射膜用ペースト層およびオーバーコートガラスペースト層をスクリーン印刷して未焼成発光素子搭載用基板を作製し、これを焼成することで本発明の発光素子搭載用基板を製造する。
 本発明の製造方法において、前記基板本体の搭載面に設けられた段差部が凹部である場合の製造方法として、上に挙げた第1の態様の製造方法および第2の態様の製造方法について以下に説明する。
 本発明の第1の態様の製造方法は、具体的には、下記(A)工程~(D)工程を含む発光素子搭載用基板の製造方法であり、その実施形態の一例について図4を参照して説明する。より具体的には、下記する(A)工程~(D)工程の各工程をこの順に従って本発明の発光素子搭載用基板を製造するのが好ましい。
(A)ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物を用いて前記発光素子搭載用基板の主として本体基板を構成する本体用グリーンシートを作製し、前記本体用グリーンシートの主面上の所定位置にスクリーン印刷により配線導体ペースト層を配設して本体形成部材を得る工程(以下、「本体形成部材作製工程」という)。
(B)前記ガラスセラミックス組成物からなり前記発光素子搭載用基板の配線導体相当部に厚さ方向に貫通する貫通孔を有する、前記発光素子搭載用基板の搭載面を構成する被覆用グリーンシートを作製し、前記本体形成部材の主面上に前記貫通孔から配線導体ペースト層を臨むように積層してグリーンシート積層体を得る工程(以下「グリーンシート積層体作製工程」という)。
(C)前記グリーンシート積層体の被覆用グリーンシート表面に前記貫通孔およびその周囲近傍を除くようにスクリーン印刷により反射膜用ペースト層を形成し、さらに反射膜用ペースト層の端部を含む全体を覆いかつ前記貫通孔およびその周囲近傍を除くように、スクリーン印刷によりオーバーコートガラスペースト層を形成して未焼結発光素子搭載用基板を得る工程(以下、「反射膜用ペースト層等形成工程」という)。
(D)前記未焼結発光素子搭載用基板を800~930℃で焼成する工程(以下、「焼成工程」という)。
 さらに、(A)工程~(D)工程の各工程について、以下に図面を参照しながら詳細に説明する。
(A)本体形成部材作製工程
 図4(A)は、上記(A)工程を含む工程により得られた本体形成部材2Aの断面を示す図である。本体形成部材2Aは、上記(A)工程により本体用グリーンシート2aの主面上に配線導体ペースト層3が形成され、さらに最終的に発光素子搭載用基板の非搭載面23となるもう一方の面上に外部電極端子用導体ペースト層4、および配線導体ペースト層3と外部電極端子用導体ペースト層4を電気的に接続するための貫通導体用ペースト層6が形成された構成を有する。
 本体用グリーンシート2aは、ガラス粉末(基板本体用ガラス粉末)とセラミックスフィラーとを含むガラスセラミックス組成物にバインダー、必要に応じて可塑剤、分散剤、溶剤等を添加してスラリーを調製し、これをドクターブレード法等によりシート状に成形し、乾燥させ製造する。
 基板本体用ガラス粉末は、必ずしも限定されないが、ガラス転移点(Tg)が550℃以上700℃以下のものが好ましい。ガラス転移点(Tg)が550℃未満の場合、脱脂が困難となるおそれがあり、700℃を超える場合、収縮開始温度が高くなり、寸法精度が低下するおそれがある。
 また、800℃以上930℃以下で焼成したときに結晶が析出するものが好ましい。結晶が析出しないものの場合、十分な機械的強度が得られないおそれがある。さらに、DTA(示差熱分析)により測定される結晶化ピーク温度(Tc)が880℃以下のものが好ましい。結晶化ピーク温度(Tc)が880℃を超える場合、寸法精度が低下するおそれがある。
 このような基板本体用ガラス粉末のガラス組成としては、下記酸化物換算のmol%表示で、例えばSiOを57mol%以上65mol%以下、Bを13mol%以上18mol%以下、CaOを9mol%以上23mol%以下、Alを3mol%以上8mol%以下、KOおよびNaOから選ばれる少なくとも一方を含み、KO、NaO、またはKOとNaOとを、0.5mol%以上6mol%以下含有するものが好ましい。このような組成のガラス粉末を用いることで、本体基板表面の平坦度を向上させることが容易となる。
 ここで、SiOは、ガラスのネットワークフォーマとなるものである。SiOの含有量が57mol%未満の場合、安定なガラスを得ることが難しく、また化学的耐久性も低下するおそれがある。一方、SiOの含有量が65mol%を超える場合、ガラス溶融温度やガラス転移点(Tg)が過度に高くなるおそれある。SiOの含有量は、好ましくは58mol%以上、より好ましくは59mol%以上、特に好ましくは60mol%以上である。また、SiOの含有量は、好ましくは64mol%以下、より好ましくは63mol%以下である。
 Bは、ガラスのネットワークフォーマとなるものである。Bの含有量が13mol%未満の場合、ガラス溶融温度やガラス転移点(Tg)が過度に高くなるおそれがある。一方、Bの含有量が18mol%を超える場合、安定なガラスを得ることが難しく、また化学的耐久性も低下するおそれがある。Bの含有量は、好ましくは14mol%以上、より好ましくは15mol%以上である。また、Bの含有量は、好ましくは17mol%以下、より好ましくは16mol%以下である。
 Alは、ガラスの安定性、化学的耐久性、および強度を高めるために添加される。Alの含有量が3mol%未満の場合、ガラスが不安定となるおそれがある。一方、Alの含有量が8mol%を超える場合、ガラス溶融温度やガラス転移点(Tg)が過度に高くなるおそれがある。Alの含有量は、好ましくは4mol%以上、より好ましくは5mol%以上である。また、Alの含有量は、好ましくは7mol%以下、より好ましくは6mol%以下である。
 CaOは、ガラスの安定性や結晶の析出性を高めると共に、ガラス溶融温度やガラス転移点(Tg)を低下させるために添加される。CaOの含有量が9mol%未満の場合、ガラス溶融温度が過度に高くなるおそれがある。一方、CaOの含有量が23mol%を超える場合、ガラスが不安定となるおそれがある。CaOの含有量は、好ましくは12mol%以上、より好ましくは13mol%以上、特に好ましくは14mol%以上である。また、CaOの含有量は、好ましくは22mol%以下、より好ましくは21mol%以下、特に好ましくは20mol%以下である。
 KO、NaOは、ガラス転移点(Tg)を低下させるために添加される。KO、またはNaOの含有量、またはKOおよびNaOの合計した含有量が0.5mol%未満の場合、ガラス溶融温度やガラス転移点(Tg)が過度に高くなるおそれがある。一方、KO、またはNaOの含有量、またはKOおよびNaOの合計した含有量が6mol%を超える場合、化学的耐久性、特に耐酸性が低下するおそれがあり、電気的絶縁性も低下するおそれがある。KO、またはNaOの含有量、またはKOおよびNaOの合計した含有量は、0.8mol%以上5mol%以下であることが好ましい。
 なお、基板本体用ガラス粉末は、必ずしも上記成分に限定されず、ガラス転移点(Tg)等の諸特性を満たす範囲で他の成分を含有できる。他の成分を含有する場合、その合計した含有量は10mol%以下が好ましい。
 基板本体用ガラス粉末は、上記したような組成のガラスとなるようにガラス原料を配合、混合し、溶融法によってガラスを製造し、得られたガラスを乾式粉砕法や湿式粉砕法によって粉砕することにより得られる。湿式粉砕法の場合、溶媒として水の使用が好ましい。粉砕は、例えばロールミル、ボールミル、ジェットミル等の粉砕機を用いて行う。
 基板本体用ガラス粉末の50%粒径(D50)は0.5μm以上2μm以下が好ましい。基板本体用ガラス粉末の50%粒径が0.5μm未満の場合、ガラス粉末が凝集しやすく、取り扱いが困難となると共に、均一に分散させにくくなる。一方、基板本体用ガラス粉末の50%粒径が2μmを超える場合、ガラス軟化温度の上昇や焼結不足が発生するおそれがある。粒径の調整は、例えば粉砕後に必要に応じて分級により行う。なお、本明細書中で示される粉末の粒径は、レーザ回折・散乱法による粒子径測定装置(日機装社製、商品名:MT3100II)により測定したものである。
 一方、セラミックスフィラーとしては、融点が1500℃以上であって、従来からLTCC基板の製造に用いられるものを特に制限なく使用でき、例えばアルミナ粉末、ジルコニア粉末、またはアルミナ粉末とジルコニア粉末との混合物を好適に使用できる。セラミックスフィラーの50%粒径(D50)は、例えば0.5μm以上4μm以下が好ましい。上記以外にも白色セラミックスフィラーは存在するが、発光素子搭載用支持体への不具合を生じるおそれがあるため、使用は避けた方がよい。この不具合には、例えば、光反射率の低下、強度の低下、焼結性の低下、熱膨張係数の低下による実装基板(例えば、ガラスエポキシ基板など)との熱膨張係数差の増大である。
 このような基板本体用ガラス粉末とセラミックスフィラーとを、例えば基板本体用ガラス粉末が30質量%以上50質量%以下、セラミックスフィラーが50質量%以上70質量%以下となるように配合、混合することによりガラスセラミックス組成物が得られる。また、このガラスセラミックス組成物に、バインダー、必要に応じて可塑剤、分散剤、溶剤等の添加によりスラリーが得られる。
 バインダーとしては、例えばポリビニルブチラール、アクリル樹脂等を好適に使用できる。可塑剤としては、例えばフタル酸ジブチル、フタル酸ジオクチル、フタル酸ブチルベンジル等を使用できる。また、溶剤としては、トルエン、キシレン、2-プロパノール、2-ブタノール等の有機溶剤を好適に使用できる。
 このようにして得られたスラリーをドクターブレード法等によりシート状に成形し、乾燥させることで、本体用グリーンシート2aを製造することができる。
 次いで、このようにして得られた本体用グリーンシート2aの一方の主面に配線導体ペースト層3を形成し((A)工程)、さらに他方の主面に外部電極端子用導体ペースト層4、および貫通導体用ペースト層6を形成することで、図4(A)に断面を示す本体形成部材2Aとする。
 配線導体ペースト層3、外部電極端子用導体ペースト層4、および貫通導体用ペースト層6の形成方法としては、スクリーン印刷法により導体ペーストを塗布する方法、あるいは塗布、充填する方法が挙げられる。導体ペーストとしては、例えば銅、銀、金等を主成分とする金属粉末に、エチルセルロース等のビヒクル、必要に応じて溶剤等を添加してペースト状としたものを使用できる。なお、上記金属粉末としては、銀からなる金属粉末、銀と白金からなる金属粉末、または銀とパラジウムからなる金属粉末が好ましく用いられる。
 なお、図示していないが本体用グリーンシート2aは、未焼成サーマルビアを有していてもよく、その場合、未焼成サーマルビアの形成は、本発明の製造方法における(A)工程を含む本体形成部材の作製工程において行われる。
(B)グリーンシート積層体作製工程
 図4(B)は、(B)工程で積層される上記(A)工程で得られた本体形成部材2Aと被覆用グリーンシート2bの積層前の断面を示す図である。
 被覆用グリーンシート2bは、ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物からなり、得られる発光素子搭載用基板の配線導体相当部に厚さ方向に貫通する貫通孔5’を有する。被覆用グリーンシート2bは、最終的には本発明の発光素子搭載用基板の搭載面を構成する部材である。貫通孔5’は、被覆用グリーンシート2bと本体形成部材2Aとの積層後は、搭載面における凹部となる。
 被覆用グリーンシート2bは、上記本体用グリーンシート2aと同様の材料成分を用い、同様の製造方法により製造されるグリーンシートに、上記貫通孔5’を形成させることにより作製できる。
 ここで、作製される被覆用グリーンシート2bの膜厚により、搭載面における凹部の深さが決定する。積層、焼成後の凹部の深さ(h)として、上記したように、好ましい値である50~200μmとなるように被覆用グリーンシート2bの膜厚が調整される。
 貫通孔5’の形成は、例えばパンチング等の通常グリーンシートに貫通孔を形成する方法と同様の方法により、特に制限なく行うことができる。なお、被覆用グリーンシート2bが有する貫通孔5’は、その大きさが本体形成部材2Aが主面に有する配線導体ペースト層3の大きさより小さく形成されることが好ましい。貫通孔5’の大きさは、具体的には、本体形成部材2Aと被覆用グリーンシート2bを積層した際に、配線導体ペースト層3と被覆用グリーンシート2bの重なり幅が50~150μmとなるような大きさとすることが好ましい。
 被覆用グリーンシート2bを本体形成部材2Aの主面上に貫通孔5’から配線導体ペースト層3を臨むように重ね合わせて、熱圧着により一体化してグリーンシート積層体2とする。
(C)反射膜用ペースト層等形成工程
 図4(C)は、上記(B)工程で積層されて得られたグリーンシート積層体2の被覆用グリーンシート2b表面に(C)工程によって反射膜用ペースト層7とオーバーコートガラスペースト層8を順に形成して得られた未焼結発光素子搭載用基板1の断面を示す図である。
 (C)工程においては、グリーンシート積層体2の被覆用グリーンシート2b表面に、貫通孔5’により形成された凹部5およびその周囲近傍を除くように、スクリーン印刷により反射膜となる反射膜用ペースト層7を形成させる。スクリーン印刷に用いる反射膜用ペーストとしては、上記導体ペーストと同様のもの、例えば、銅、銀、金等を主成分とする金属粉末に、エチルセルロース等のビヒクル、必要に応じて溶剤等を添加してペースト状としたものを使用できる。導体ペースト用の金属材料としては、具体的に、銀、銀パラジウム混合物、銀パラジウム合金、銀白金混合物、銀白金合金等が挙げられるが、高反射率を有することから銀を95質量%以上含有する銀ペーストが好ましく用いられる。銀ペーストとしては、密着強度を向上させるため、ガラスフリットを5質量%以下含むこともできる。本発明の一つの好ましい態様において、実質的に銀からなる反射膜とは、銀を90質量%以上含む反射膜を意味し、銀合金からなる反射膜も許容する。例えば、パラジウムであれば10質量%、白金であれば3質量%まで含んでもよい。
 形成される反射膜用ペースト層7の膜厚は、最終的に得られる反射膜の膜厚が上記所望の膜厚となるように調整される。
 また、最終的に得られる発光素子搭載用基板において、反射層7の末端とこれを覆うオーバーコートガラス膜8の末端との間の距離が、上記所望の範囲、すなわち、好ましくは10~50μm、より好ましくは20~30μmとなるように、オーバーコートガラスペースト層8のスクリーン印刷位置を勘案しながら、オーバーコートガラスペースト層8の反射膜用ペースト層7面上へのスクリーン印刷範囲を調整する。
 上記反射膜用ペースト層7を形成した後、グリーンシート積層体2の被覆用グリーンシート2b表面に、反射膜用ペースト層7の端部を含む全体を覆い、かつ貫通孔5’により形成された凹部5およびその周囲近傍を除くように、スクリーン印刷によりオーバーコートガラス膜となるオーバーコートガラスペースト層8を形成することで未焼結発光素子搭載用基板1を得る。
 ここで、オーバーコートガラスペースト層8をスクリーン印刷する方法は特に制限されないが、最終的に得られる発光素子搭載用基板において凹部5周囲近傍の非コート部の幅(w)が、上記好ましい幅20~80μmとなるように印刷することが好ましい。形成されるオーバーコートガラスペースト層8の膜厚は、最終的に得られるオーバーコートガラス膜の膜厚が上記所望の膜厚となるように調整される。
 オーバーコートガラスペーストは、ガラス粉末(ガラス膜用ガラス粉末)に、エチルセルロース等のビヒクル、必要に応じて溶剤等を添加してペースト状としたものを使用できる。
 ガラス膜用ガラス粉末としては、本体形成部材2Aや被覆用グリーンシート2bと同時に焼成して膜状のガラスを得られるものであればよく、その50%粒径(D50)は0.5μm以上2μm以下が好ましい。また、オーバーコートガラス膜8の表面粗さRaの調整は、例えばこのガラス膜用ガラス粉末の粒度の調整により行える。すなわち、ガラス膜用ガラス粉末として、焼成時に十分に溶融し、流動性に優れるものを用いることで、表面粗さRaを小さくできる。
(D)焼成工程
 上記(C)工程後、必要に応じてバインダー等を除去するための脱脂を行い、ガラスセラミックス組成物等を焼結させるための焼成を行って発光素子搭載用基板1とする。
 脱脂は、例えば500℃以上600℃以下の温度で1時間以上10時間以下保持することにより行うことが好ましい。脱脂温度が500℃未満もしくは脱脂時間が1時間未満の場合、バインダー等を十分に除去できないおそれがある。脱脂温度は600℃、脱脂時間は10時間程度とすれば、十分にバインダー等を除去できる。一方、脱脂温度が600℃を超えるとかえって生産性等が低下するおそれがある。
 また、焼成は、基体本体を緻密な構造とするため、また基板本体の生産性を考慮して、800℃~930℃の温度範囲で適宜時間を調整することで行う。具体的には、850℃以上900℃以下の温度で20分以上60分以下保持することが好ましく、特に860℃以上880℃以下の温度で行うことが好ましい。焼成温度が800℃未満では、基体本体が緻密な構造のものとして得られないおそれがある。一方、焼成温度は930℃を超えると基板本体が変形するなど生産性等が低下するおそれがある。また、上記導体ペーストや反射膜用ペーストとして、銀を主成分とする金属粉末を含有する金属ペーストを用いた場合、焼成温度が880℃を超えると、過度に軟化するために所定の形状を維持できなくなるおそれがある。
 本発明の第2の態様の製造方法は、具体的には、下記(A)工程、(B)’工程、(C)’工程、および(D)工程を含む発光素子搭載用基板の製造方法であり、その実施形態の一例について図5を参照して説明する。より具体的には、下記する(A)工程~(D)工程の各工程をこの順に従って本発明の発光素子搭載用基板を製造するのが好ましい。
 さらに、(A)工程~(D)工程の各工程について、以下に図面を参照しながら詳細に説明する。
(A)ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物を用いて、前記発光素子搭載用基板の主として本体基板を構成する本体用グリーンシートを作製し、前記本体用グリーンシートの主面上の所定位置にスクリーン印刷により配線導体ペースト層を配設して本体形成部材を得る工程(上記第1の態様の(A)工程と同様であり、「本体形成部材作製工程」という。)、
(B)’前記ガラスセラミックス組成物からなり前記発光素子搭載用基板の配線導体相当部に厚さ方向に貫通する貫通孔を有する、前記発光素子搭載用基板の搭載面を構成する被覆用グリーンシートを作製し、得られた被覆用グリーンシートの前記搭載面となる表面に前記貫通孔およびその周囲近傍を除くようにスクリーン印刷により反射膜用ペースト層を形成し、さらに反射膜用ペースト層の端部を含む全体を覆い、かつ前記貫通孔およびその周囲近傍を除くように、スクリーン印刷によりオーバーコートガラスペースト層を形成して被覆用部材を得る工程(以下、「被覆用部材作製工程」という。)、
(C)’前記本体形成部材の主面上に、前記貫通孔から配線導体ペースト層を臨み、かつ前記オーバーコートガラスペースト層を上側にして前記被覆用部材を積層して未焼結発光素子搭載用基板を得る工程(以下、「部材積層工程」という。)、
(D)前記未焼結発光素子搭載用基板を800~930℃で焼成する工程(上記第1の態様の(D)工程と同様であり、「焼成工程」という)。
 ここで、第2の態様の製造方法は、上記第1の態様の製造方法において、(B)工程でグリーンシート積層体を作製した後、(C)工程で被覆用グリーンシート表面に、反射膜用ペースト層とオーバーコートガラスペースト層を形成する工程であったものを、順番を変えて、(B)’工程で貫通孔5’を有する被覆用グリーンシート2bの上記搭載面となる表面に、反射膜用ペースト層7とオーバーコートガラスペースト層8を形成した後、(C)’工程で本体形成部材と積層した以外は、上記第1の態様の製造方法と同様の工程を有する製造方法である。すなわち、第2の態様の製造方法においては、(A)本体形成部材作製工程および(D)焼成工程は、上記第1の態様の製造方法と全く同様である。
(A)本体形成部材作製工程
 図5(A)は、上記(A)工程を含む工程により得られた本体形成部材2Aの断面を示す図であり、上記図4(A)と同様の図である。本体形成部材2Aは、上記第1の態様の実施形態で説明した方法と同様の方法で作製する。
(B)’被覆用部材作製工程
 図5(B)’は、(b-2)に断面図を示す、最終的に本発明の発光素子搭載用基板の搭載面を構成する部材である被覆用部材2Bを作製する工程を模式的に示すものである。(b-1)は、発光素子搭載用基板の配線導体相当部に厚さ方向に貫通する貫通孔5’を有する、発光素子搭載用基板の搭載面を構成する被覆用グリーンシート2bの断面を示す図である。この(b-1)に示す被覆用グリーンシート2bの発光素子搭載面となる表面に上記貫通孔5’およびその周囲近傍を除くようにスクリーン印刷により反射膜用ペースト層7を形成し、さらに反射膜用ペースト層7の端部を含む全体を覆い、かつ上記貫通孔5’およびその周囲近傍を除くように、スクリーン印刷によりオーバーコートガラスペースト層8を形成することにより(b-2)に示す被覆用部材2Bが得られる。
 (b-1)に示す発光素子搭載用基板の配線導体相当部に厚さ方向に貫通する貫通孔5’を有する被覆用グリーンシート2bは、上記第1の態様の実施形態の(B)工程で説明したのと同様の方法により作製することができる。
 また、(b-2)に示す被覆用部材2Bは、上記貫通孔5’を有する被覆用グリーンシート2bの上記搭載面となる表面に上記貫通孔5’およびその周囲近傍を除くようにスクリーン印刷により反射膜用ペースト層7を形成し、さらに反射膜用ペースト層7の端部を含む全体を覆いかつ上記貫通孔5’およびその周囲近傍を除くように、スクリーン印刷によりオーバーコートガラスペースト層8を形成する方法については、上記第1の態様の実施形態の(C)工程で説明した方法と同様の方法が可能である。
(C)’部材積層工程
 次いで、上記(B)工程で得られた被覆用部材2Bを、上記(A)工程で得られた本体形成部材2Aの主面上に貫通孔5’から配線導体ペースト層3を臨むように、かつオーバーコートガラスペースト層8が上側、つまり最外層になるように重ね合わせて、熱圧着により一体化することで、図5(C)’に断面図を示す未焼結発光素子搭載用基板1を作製する。
 なお、このようにして得られる未焼結発光素子搭載用基板1は、上記第1の態様の製造方法の実施形態で説明した図4(C)に断面図を示す、未焼結発光素子搭載用基板1と同様の構成を有するものである。
(D)焼成工程
 上記(C)’工程で得られた未焼結発光素子搭載用基板1の焼成は、上記第1の態様の実施形態で説明したのと同様の方法で行うことができる。
 以上、発光素子搭載用基板1の製造方法について説明したが、本体用グリーンシート2aや被覆用グリーンシート2bは必ずしも単一のグリーンシートからなる必要はなく、複数枚のグリーンシートを積層したものであってもよい。また、各部の形成順序等についても、発光素子搭載用基板1の製造が可能な限度において適宜変更することができる。
 以下に、本発明の実施例を説明する。なお本発明はこれら実施例に限定されるものではない。
[実施例1]
 以下に説明する方法(本発明の第2の態様の製造方法)により、図3に示した発光装置と同様の構造の試験用発光装置を作製した。なお、実施例1においては反射膜として銀反射膜を用いた。また、以下の実施例の説明においても、上記と同様に、その製造に用いられる部材、形成される層等については、焼成の前後で部材、層等に用いる符号は同じとした。
 まず、発光素子搭載用基板1の本体基板を作製するための本体用グリーンシート2aと被覆用グリーンシート2bを作製した。本体用グリーンシート2aと被覆用グリーンシート2bとを製造するためのガラス粉末としては、ガラス組成として、下記酸化物換算のmol%表示で、SiOが60.4mol%、Bが15.6mol%、Alが6mol%、CaOが15mol%、KOが1mol%、NaOが2mol%となるようにガラス原料を配合、混合し、この原料混合物を白金ルツボに入れて1600℃で60分間溶融させた後、この溶融状態のガラスを流し出し冷却した。得られたガラスをアルミナ製ボールミルにより40時間粉砕して基板本体用のガラス粉末を製造した。なお、粉砕時の溶媒にはエチルアルコールを用いた。
 この基板本体用ガラス粉末が40質量%、アルミナフィラー(昭和電工社製、商品名:AL-45H)が60質量%となるように配合し、混合することによりガラスセラミックス組成物を製造した。このガラスセラミックス組成物50gに、有機溶剤(トルエン、キシレン、2-プロパノール、2-ブタノールを質量比4:2:2:1で混合したもの)15g、可塑剤(フタル酸ジ-2-エチルヘキシル)2.5g、バインダーとしてのポリビニルブチラール(デンカ社製、商品名:PVK#3000K)5g、さらに分散剤(ビックケミー社製、商品名:BYK180)0.5gを配合し、混合してスラリーを調製した。
 このスラリーをPETフィルム上にドクターブレード法により塗布し、乾燥させ、焼成後の厚さが0.15mmとなる本体用グリーンシートを製造すると共に、焼成後の厚さが0.10mmとなる被覆用グリーンシートを製造した。
 一方、導電性粉末(銀粉末、大研化学工業社製、商品名:S550)、ビヒクルとしてのエチルセルロースを質量比85:15の割合で配合し、固形分が85質量%となるように溶剤としてのαテレピネオールに分散した後、磁器乳鉢中で1時間混練を行い、さらに三本ロールにて3回分散を行って金属ペースト(導体用ペースト)を製造した。
 本体用グリーンシート2aの貫通導体用ペースト層6に相当する部分に孔空け機を用いて直径0.3mmの貫通孔を形成し、スクリーン印刷法により金属ペーストを充填して貫通導体用ペースト層6を形成すると共に、外部電極端子用導体ペースト層4、配線導体ペースト層3を形成して本体形成部材2Aを製造した。
 また、被覆用グリーンシート2bには、積層後の凹部5に相当する貫通孔5’を形成し、その表面に貫通孔5’およびその周囲近傍を除くようにスクリーン印刷により銀反射膜用ペースト層7を形成し、さらに銀反射膜用ペースト層7の端部を含む全体を覆い、かつ貫通孔5’およびその周囲近傍を除くように、スクリーン印刷によりオーバーコートガラスペースト層8を形成して被覆用部材2Bとした。
 なお、上記銀反射膜用ペーストは、銀粉末(大研化学工業社製、商品名:S400-2)と、ビヒクルとしてのエチルセルロースとを質量比90:10の割合で配合し、固形分が87質量%となるように溶剤としてのαテレピネオールに分散した後、磁器乳鉢中で1時間混練を行い、さらに三本ロールにて3回分散を行って製造した。
 また、上記オーバーコートガラスペーストの調製に用いたガラス膜用ガラス粉末は以下のようにして製造した。まず、ガラス組成として、下記酸化物換算のmol%表示で、SiOが81.6mol%、Bが16.6mol%、KOが1.8mol%となるようにガラス原料を配合、混合し、この原料混合物を白金ルツボに入れて1600℃で60分間溶融させた後、この溶融状態のガラスを流し出し冷却した。得られたガラスをアルミナ製ボールミルにより8~60時間粉砕してガラス膜用ガラス粉末とした。このガラス膜用ガラス粉末が60質量%、樹脂成分(エチルセルロースとαテレピネオールとを質量比で85:15の割合で含有するもの)が40質量%となるように配合した後、磁器乳鉢中で1時間混練し、さらに三本ロールにて3回分散を行うことによりオーバーコートガラスペーストを調製した。
 上記で得られた被覆用部材2Bを、本体形成部材2Aの主面上に貫通孔5’から配線導体ペースト層3を臨むように、かつオーバーコートガラスペースト層8が上側、つまり最外層になるように重ね合わせて、熱圧着することにより一体化して未焼成発光素子搭載用基板1とした後、550℃で5時間保持して脱脂を行い、さらに870℃で30分間保持して焼成を行って発光素子搭載用基板1を製造した。得られた発光素子搭載用基板1において、発光素子搭載面における基板本体の非コート部の幅(図3において「w」で示される)は、任意に選択された10箇所の平均で50μmであり、発光素子搭載面と配線導体3が形成された凹部5底辺の高さの差(図3において「h」で示される)は100μmであった。
 上記実施例1により作製された発光素子搭載用基板1に発光ダイオード素子11を搭載して図3の通りの発光装置10を作製した。この発光装置の作製に当たっては、搭載部22に発光ダイオード素子11(昭和電工社製、商品名:GQ2CR460Z)を1つ、ダイボンド材(信越化学工業社製、商品名:KER-3000-M2)により固定し、さらに封止剤(信越化学工業社製、商品名:SCR-1016A)を用いて図3に示すモールド材14を構成するように封止した。封止剤には蛍光体(化成オプトニクス社製、商品名:P46-Y3)を封止剤に対して20質量%含有したものを用いた。
 このようにして得られた本発明に係る発光装置10と、下記する従来の発光装置に相当する構成の発光装置、すなわち銀反射膜と配線導体が同一平面上に形成された発光素子搭載基板を用いた発光装置について、全光束を以下の測定方法により測定し、比較したところ、本発明に係る発光装置は、従来の発光装置に比べて5%光束量が向上していた。
 <従来の発光装置>
 銀反射膜7がオーバーガラス膜8により端部を含んで被覆された構成と配線導体3が発光素子搭載面上、同一平面に配設された以外は、上記実施例1と同様の発光素子搭載用基板を用いた、図6に示す従来の構成の試験用発光装置を作製した。なお、用いた発光素子搭載用基板において、発光素子搭載面における基板本体の非コート部の幅(図6において「w’」で示される)は、任意に選択された10箇所の平均で150μmであった。
 全光束の測定は、スペクトラコープ社製LED全光束測定装置SOLIDLAMBDA・CCD・LED・MONITOR・PLUSを用いて行った。積分球は6インチ、電圧/電流発生器としてはアドバンテスト社製R6243を用いた。またLED素子には35mAを印加して測定した。
[実施例2]
 実施例1と同じ基板本体用ガラス粉末を用い、この基板本体用ガラス粉末が38質量%、アルミナフィラー(昭和電工社製、商品名:AL-45H)が38質量%、ジルコニアフィラー(第一稀元素化学工業社製、商品名:HSY-3F-J)が24質量%となるように配合し、混合することによりガラスセラミックス組成物を製造し、他は実施例1と同様にして発光素子搭載用基板1を作製した。このように作製された発光素子搭載用基板1に発光ダイオード素子11を搭載して、上記と同様に図3の通りの発光装置10を作製した。
 この実施例2に基づき得られた発光装置10についても、上記の従来の発光装置と、全光束を比較したところ、本発明に係る発光装置は、従来の発光装置に比べて5%光束量が向上していた。
 本発明によれば、基板上に形成される金属反射膜と配線導体部の絶縁を得るために設けられるギャップの面積が小さく、発光素子を搭載して発光装置とした際の光取り出し効率に優れる発光素子搭載用基板を得ることができる。
そして、本発明の発光素子搭載用基板を用いた発光装置によれば、発光素子搭載用基板の配線導体と反射膜の間のギャップ面積が少ないことから、発光素子が発光する光の基板本体への入射を抑制し、光取り出し効率を高くでき高輝度に発光させることができる。このような発光装置は、例えば携帯電話や大型液晶ディスプレイ等のバックライト、自動車用あるいは装飾用の照明、その他の光源として好適に用いることができる。
 なお、2010年1月28日に出願された日本特許出願2010-017225号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
1…発光素子搭載用基板、2…基板本体、3…配線導体、5…凹部(段差部)、7…反射膜、8…オーバーコートガラス膜、9…基板搭載面非コート部
10…発光装置、11…発光素子、21…搭載面、22…搭載部、23…非搭載面

Claims (10)

  1.  ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物の焼結体からなり、一部が発光素子が搭載される搭載部となる搭載面を有する基板本体と、
     前記基板本体の搭載面に設けられた前記搭載面と高さの異なる段差部に配設された、発光素子の電極と電気的に接続される配線導体と、
     前記段差部およびその周囲近傍を除く搭載面に形成された反射膜と、
     前記反射膜の端縁を含む全体を覆い、かつ前記段差部およびその周囲近傍を除くように搭載面に設けられたオーバーコートガラス膜と、
    を有することを特徴とする発光素子搭載用基板。
  2.  前記段差部が、凹部である請求項1に記載の発光素子搭載用基板。
  3.  前記段差部周囲近傍における基板搭載面の非コート部の幅が、20~80μmである請求項1または2に記載の発光素子搭載用基板。
  4.  前記搭載面と前記段差部との高さの差が、50~200μmである請求項1~3のいずれか1項に記載の発光素子搭載用基板。
  5.  前記反射膜が実質的に銀からなることを特徴とする請求項1~4のいずれか1項に記載の発光素子搭載用基板。
  6.  請求項1~5のいずれか1項に記載の発光素子搭載用基板を製造する方法であって、前記基板本体が搭載面に前記搭載面と高さの異なる段差部を有する構成を、ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物からなる形状の異なる複数のグリーンシートを積層することにより形成し、前記配線導体、反射膜およびオーバーコートガラス膜の形成をスクリーン印刷により行うことを特徴とする発光素子搭載用基板の製造方法。
  7.  下記(A)工程、(B)工程、(C)工程および(D)工程を含む、請求項1~5のいずれか1項に記載の発光素子搭載用基板を製造することを特徴とする発光素子搭載用基板の製造方法。
    (A)ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物を用いて前記発光素子搭載用基板の主として本体基板を構成する本体用グリーンシートを作製し、前記本体用グリーンシートの主面上の所定位置にスクリーン印刷により配線導体ペースト層を配設して本体形成部材を得る工程。
    (B)前記ガラスセラミックス組成物からなり前記発光素子搭載用基板の配線導体相当部に厚さ方向に貫通する貫通孔を有する、前記発光素子搭載用基板の搭載面を構成する被覆用グリーンシートを作製し、前記本体形成部材の主面上に前記貫通孔から配線導体ペースト層を臨むように積層してグリーンシート積層体を得る工程。
    (C)前記グリーンシート積層体の被覆用グリーンシート表面に前記貫通孔およびその周囲近傍を除くようにスクリーン印刷により反射膜用ペースト層を形成し、さらに反射膜用ペースト層の端部を含む全体を覆い、かつ前記貫通孔およびその周囲近傍を除くように、スクリーン印刷によりオーバーコートガラスペースト層を形成して未焼結発光素子搭載用基板を得る工程。
    (D)前記未焼結発光素子搭載用基板を800~930℃で焼成する工程。
  8.  下記(A)工程、(B)’工程、(C)’工程および(D)工程を含む、請求項1~5のいずれか1項に記載の発光素子搭載用基板を製造することを特徴とする発光素子搭載用基板の製造方法。
    (A)ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物を用いて前記発光素子搭載用基板の主として本体基板を構成する本体用グリーンシートを作製し、前記本体用グリーンシートの主面上の所定位置にスクリーン印刷により配線導体ペースト層を配設して本体形成部材を得る工程。
    (B)’前記ガラスセラミックス組成物からなり前記発光素子搭載用基板の配線導体相当部に厚さ方向に貫通する貫通孔を有する、前記発光素子搭載用基板の搭載面を構成する被覆用グリーンシートを作製し、得られた被覆用グリーンシートの前記搭載面となる表面に前記貫通孔およびその周囲近傍を除くようにスクリーン印刷により反射膜用ペースト層を形成し、さらに反射膜用ペースト層の端部を含む全体を覆い、かつ前記貫通孔およびその周囲近傍を除くように、スクリーン印刷によりオーバーコートガラスペースト層を形成して被覆用部材を得る工程。
    (C)’前記本体形成部材の主面上に、前記貫通孔から配線導体ペースト層を臨み、かつ前記オーバーコートガラスペースト層を上側にして前記被覆用部材を積層して未焼結発光素子搭載用基板を得る工程。
    (D)前記未焼結発光素子搭載用基板を800~930℃で焼成する工程。
  9.  請求項1~5のいずれか1項に記載の発光素子搭載用基板と、当該発光素子搭載用基板の搭載部に搭載された発光素子とを有することを特徴とする発光装置。
  10.  前記発光素子搭載用基板の搭載面に設けられた段差部に配設された配線導体と、当該発光素子搭載用基板の搭載部に搭載された発光素子が有する一対の電極のそれぞれと、前記配線導体がワイヤボンデイングにより一対一の関係で接続されている請求項9に記載の発光装置。
PCT/JP2010/071928 2010-01-28 2010-12-07 発光素子搭載用基板、その製造方法および発光装置 WO2011092945A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011551698A JPWO2011092945A1 (ja) 2010-01-28 2010-12-07 発光素子搭載用基板、その製造方法および発光装置
CN2010800498040A CN102598323A (zh) 2010-01-28 2010-12-07 发光元件搭载用基板、其制造方法及发光装置
EP10844699A EP2530749A1 (en) 2010-01-28 2010-12-07 Substrate for mounting light emitting element, method for producing same, and light emitting device
KR1020127011024A KR20120124387A (ko) 2010-01-28 2010-12-07 발광 소자 탑재용 기판, 그 제조 방법 및 발광 장치
US13/537,895 US20120275166A1 (en) 2010-01-28 2012-06-29 Substrate for mounting light-emitting element, its production process and light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-017225 2010-01-28
JP2010017225 2010-01-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/537,895 Continuation US20120275166A1 (en) 2010-01-28 2012-06-29 Substrate for mounting light-emitting element, its production process and light-emitting device

Publications (1)

Publication Number Publication Date
WO2011092945A1 true WO2011092945A1 (ja) 2011-08-04

Family

ID=44318946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071928 WO2011092945A1 (ja) 2010-01-28 2010-12-07 発光素子搭載用基板、その製造方法および発光装置

Country Status (7)

Country Link
US (1) US20120275166A1 (ja)
EP (1) EP2530749A1 (ja)
JP (1) JPWO2011092945A1 (ja)
KR (1) KR20120124387A (ja)
CN (1) CN102598323A (ja)
TW (1) TW201128813A (ja)
WO (1) WO2011092945A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569603A (zh) * 2012-01-13 2012-07-11 张家港市金港镇东南电子厂 一种led陶瓷基板及其制作方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT14124U1 (de) * 2012-02-13 2015-04-15 Tridonic Jennersdorf Gmbh LED-Modul mit Flächenverguß
JP2014111719A (ja) * 2012-11-12 2014-06-19 Panasonic Corp 積層板、金属張積層板、プリント配線板、多層プリント配線板
CN106463465B (zh) * 2014-05-28 2019-02-15 日本特殊陶业株式会社 布线基板
WO2019172336A1 (ja) * 2018-03-08 2019-09-12 京セラ株式会社 発光素子搭載用基板および発光装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971472A (ja) * 1995-08-31 1997-03-18 Sumitomo Metal Mining Co Ltd ガラスセラミック基板の製造方法
JP2002111210A (ja) * 2000-09-28 2002-04-12 Kyocera Corp 配線基板およびその製造方法
JP2006100444A (ja) * 2004-09-28 2006-04-13 Kyocera Corp 発光素子搭載基板およびそれを用いた発光装置
JP2006324317A (ja) * 2005-05-17 2006-11-30 Kyoritsu Elex Co Ltd 発光ダイオード及び発光ダイオード用パッケージ
JP2006344691A (ja) * 2005-06-07 2006-12-21 Fujikura Ltd 発光素子実装用基板および発光素子モジュール
JP2007121613A (ja) * 2005-10-27 2007-05-17 Kyocera Corp 光反射体、発光素子搭載用配線基板、および発光装置
JP2010017225A (ja) 2008-07-08 2010-01-28 Takasago Thermal Eng Co Ltd インフルエンザ感染防止クリーンブース

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1476289A (zh) * 2002-08-15 2004-02-18 联测科技股份有限公司 印刷电路板的焊垫结构
JP2005210056A (ja) * 2003-12-25 2005-08-04 Ngk Spark Plug Co Ltd Led用セラミックパッケージ
JP2006005091A (ja) * 2004-06-16 2006-01-05 Ngk Spark Plug Co Ltd 発光素子用パッケージ
KR101154801B1 (ko) * 2004-12-03 2012-07-03 엔지케이 스파크 플러그 캄파니 리미티드 세라믹 기판 및 발광 소자 수납용 세라믹 패키지
JP4720825B2 (ja) * 2005-04-01 2011-07-13 パナソニック株式会社 バリスタ
JP5104490B2 (ja) * 2007-04-16 2012-12-19 豊田合成株式会社 発光装置及びその製造方法
JP4962270B2 (ja) * 2007-10-31 2012-06-27 日亜化学工業株式会社 発光装置及びこれの製造方法
JP2009231440A (ja) * 2008-03-21 2009-10-08 Nippon Carbide Ind Co Inc 発光素子搭載用配線基板及び発光装置
JP5345363B2 (ja) * 2008-06-24 2013-11-20 シャープ株式会社 発光装置
JP5596410B2 (ja) * 2010-05-18 2014-09-24 スタンレー電気株式会社 半導体発光装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971472A (ja) * 1995-08-31 1997-03-18 Sumitomo Metal Mining Co Ltd ガラスセラミック基板の製造方法
JP2002111210A (ja) * 2000-09-28 2002-04-12 Kyocera Corp 配線基板およびその製造方法
JP2006100444A (ja) * 2004-09-28 2006-04-13 Kyocera Corp 発光素子搭載基板およびそれを用いた発光装置
JP2006324317A (ja) * 2005-05-17 2006-11-30 Kyoritsu Elex Co Ltd 発光ダイオード及び発光ダイオード用パッケージ
JP2006344691A (ja) * 2005-06-07 2006-12-21 Fujikura Ltd 発光素子実装用基板および発光素子モジュール
JP2007121613A (ja) * 2005-10-27 2007-05-17 Kyocera Corp 光反射体、発光素子搭載用配線基板、および発光装置
JP2010017225A (ja) 2008-07-08 2010-01-28 Takasago Thermal Eng Co Ltd インフルエンザ感染防止クリーンブース

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569603A (zh) * 2012-01-13 2012-07-11 张家港市金港镇东南电子厂 一种led陶瓷基板及其制作方法

Also Published As

Publication number Publication date
TW201128813A (en) 2011-08-16
EP2530749A1 (en) 2012-12-05
KR20120124387A (ko) 2012-11-13
JPWO2011092945A1 (ja) 2013-05-30
US20120275166A1 (en) 2012-11-01
CN102598323A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5640632B2 (ja) 発光装置
JP5729375B2 (ja) 発光装置
JP5742353B2 (ja) 発光素子用基板および発光装置
JP5499960B2 (ja) 素子用基板、発光装置
JP2011228653A (ja) 発光素子用基板および発光装置
US20120018759A1 (en) Substrate for mounting light-emitting element, production process thereof and light-emitting device
WO2011092945A1 (ja) 発光素子搭載用基板、その製造方法および発光装置
JP5644771B2 (ja) 発光素子用基板および発光装置
JPWO2012067203A1 (ja) 発光素子用基板および発光装置
WO2013141322A1 (ja) 発光素子用基板の製造方法、発光素子用基板、および発光装置
JP2014067965A (ja) 発光装置
JP5725029B2 (ja) 発光素子搭載用基板および発光装置
JP2012209310A (ja) 発光素子用基板および発光装置
JP5812092B2 (ja) 発光素子用基板および発光装置
JP2012074478A (ja) 発光素子用基板および発光装置
WO2012067204A1 (ja) 発光素子用基板および発光装置
JP2011176302A (ja) 発光素子搭載用基板およびその製造方法
JP2013239546A (ja) 発光素子搭載用基板および発光装置
JP2011176303A (ja) 発光素子搭載用基板およびその製造方法
JP2012248593A (ja) 発光素子用基板および発光装置
JP2015070088A (ja) 発光素子用基板および発光装置
JP2012033781A (ja) 発光素子搭載用基板および発光装置
JP2011228652A (ja) 発光素子用基板および発光装置
JP2012238855A (ja) 発光素子用基板および発光装置
JP2011176110A (ja) 発光素子用基板および発光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080049804.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844699

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551698

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127011024

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010844699

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE