WO2011087002A1 - ウリ科植物病害抵抗性増強剤およびそれを用いた植物病害防除法 - Google Patents

ウリ科植物病害抵抗性増強剤およびそれを用いた植物病害防除法 Download PDF

Info

Publication number
WO2011087002A1
WO2011087002A1 PCT/JP2011/050302 JP2011050302W WO2011087002A1 WO 2011087002 A1 WO2011087002 A1 WO 2011087002A1 JP 2011050302 W JP2011050302 W JP 2011050302W WO 2011087002 A1 WO2011087002 A1 WO 2011087002A1
Authority
WO
WIPO (PCT)
Prior art keywords
disease resistance
plant
disease
glutamic acid
cucumber
Prior art date
Application number
PCT/JP2011/050302
Other languages
English (en)
French (fr)
Inventor
大亮 五十嵐
直樹 角谷
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to ES11732872.4T priority Critical patent/ES2574905T3/es
Priority to JP2011549978A priority patent/JP5790507B2/ja
Priority to EP11732872.4A priority patent/EP2524597B1/en
Publication of WO2011087002A1 publication Critical patent/WO2011087002A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/44Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/36Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings

Definitions

  • the present invention relates to a cucurbitaceae plant disease resistance enhancer and a disease control method that contain amino acids as an active ingredient and have a low environmental load and are safe for users and consumers.
  • pesticides that control diseases by directly acting on plant pathogens such as bactericides to control diseases of agricultural crops
  • pesticides that control crop diseases by increasing the disease resistance of plants themselves are used.
  • Many types of pesticides that directly act on plant pathogens, such as bactericides show bactericidal effects on pathogenic bacteria, but there are many cases where mutants resistant to pesticides appear due to continuous use.
  • resistance-inducing pesticides do not act directly on pathogenic bacteria, but control disease infection by inducing plant resistance, and so far, resistance mutants against this type of pesticide have emerged. Cases are not allowed.
  • resistance-inducing pesticides have little bactericidal action on living organisms, it is considered that the burden on the environment including organisms other than plants is relatively small.
  • probenazole (trade name: oryzate. Meiji Pharmaceutical Co., Ltd.), benzothiazole (BTH) acibenzoral S methyl (ASM, trade name: Vion. Syngenta Sakai Japan) Co., Ltd.), thiadiazole carboxamide-based thianidyl (trade name: Vuget. Nippon Agricultural Chemicals Co., Ltd.) is sold.
  • Patent Document 1 a polysaccharide degradation product
  • Patent Document 2 cerebrosides
  • Patent Document 3 jasmonic acid
  • Patent Document 3 chitin oligo Sugar
  • Non-Patent Document 1 ⁇ -1,3- and ⁇ -1,6-glucan oligosaccharide
  • Non-Patent Document 2 bile acid
  • Patent Document 4 peptidoglycan
  • Non-Patent Document 3 Lipopolysaccharide
  • Non-Patent Document 1 It is known that there are effects such as accumulation of related proteins and induction of hypersensitive cell death (for example, Non-Patent Document 1).
  • Patent Document 5 a method for controlling infection of pathogenic bacteria by spraying the supernatant of a proline fermentation solution by Corynebacterium bacteria (Patent Document 5), and an extract obtained by heat-treating microbial cells in an acidic solution A plant disease resistance enhancer is also disclosed (Patent Document 6).
  • Non-patent document 5 L-glutamic acid (Non-patent document 5) or proline (Non-patent document 6) has been reported to control or suppress the diseases of rice or pearl millet, respectively.
  • sulfur-containing amino acids Patent Documents 7 and 8
  • aminobutyric acid Patent Document 7
  • glycine Patent Document 9
  • plant diseases can be controlled by the application of mixed fertilizers containing amino acids (Patent Documents 10, 11, and 12), but these are not the effects of amino acids alone, and are due to disease resistance induction. is not.
  • Patent Document 13 plant disease control by an amino acid mixture (proline, methionine, phenylalanine) (Patent Document 13) has been reported, it is not an effect by a single amino acid, nor is it due to disease resistance induction. Furthermore, although there has been a report on disease control by fermentation liquid of lysine or glutamic acid (Patent Document 14), no data is described, the active ingredient is unknown, and it is not clear whether it is due to disease resistance induction. .
  • amino acid mixture proline, methionine, phenylalanine
  • Non-patent Documents 8) It is not described whether phenylalanine treatment actually suppresses invasion or infection of pathogenic bacteria.
  • JP-A-5-331016 Japanese Patent No. 2846610 Japanese Patent Laid-Open No. 11-29412 JP 2006-219372 JP Japanese Patent Laid-Open No. 6-80530 International Publication No. WO / 2009/088074 JP2003-34607 Patent No. 4287515
  • Chinese Patent Publication No. 1640233A Chinese Patent Publication No. 1316893C
  • Chinese Patent Publication No. 1328769A China Patent Publication No. 101182270A China Patent Publication No. 101142925A
  • An object of the present invention is to provide a plant disease resistance enhancer that is highly safe and inexpensive for consumers and users, and a plant disease control method using the same.
  • the present inventors searched for plant disease resistance inducers and found that amino acids have high disease resistance induction activity.
  • amino acids have high disease resistance induction activity.
  • application of glutamic acid, threonine, serine or proline to plants results in an increase in chitinase activity, which is an index of disease resistance-inducing activity, and causes remarkable disease resistance induction.
  • these amino acid processing showed the high control effect with respect to diseases, such as a cucumber powdery mildew and cucumber anthracnose, and completed this invention.
  • a disease resistance enhancer for cucurbitaceae plants comprising an amino acid selected from the group consisting of glutamic acid, threonine, serine and proline.
  • the disease resistance enhancer wherein the amino acid is glutamic acid and further contains alanine and / or threonine.
  • the disease resistance enhancer which is applied to a Cucurbitaceae plant by foliar spraying.
  • the disease resistance enhancer wherein the cucurbitaceae plant is cucumber, melon, pumpkin, or watermelon.
  • the disease resistance enhancer, wherein the disease is cucumber powdery mildew or cucumber anthrax.
  • the disease resistance enhancer comprising 1 to 200 mM of each of the amino acids.
  • the disease resistance enhancer comprising 0.2 to 100 mM glutamic acid and further containing 0.2 to 100 mM alanine and / or threonine.
  • the disease resistance enhancer, wherein the amino acid is L-form.
  • a method for controlling a disease of a cucurbitaceae plant characterized by treating the cucurbitaceae plant with the disease control agent.
  • the amino acid is applied in an amount of 1 to 200 mM / 100 to 5000 L / ha, and when it contains a plurality of kinds, the total amount is 0.4 to 200 mM / 100 to 5000 L / ha. Said method being applied.
  • the disease resistance enhancer, wherein the cucurbitaceae plant is cucumber.
  • the disease resistance enhancer comprising 1 to 200 mM of glutamic acid.
  • the disease resistance enhancer, wherein glutamic acid is L-glutamic acid.
  • a method for controlling diseases of cucurbitaceae plants which comprises applying the disease control agent to the rhizosphere of cucurbitaceae plants.
  • chitinase mU / g protein chitinase mU / g protein.
  • control Control.
  • colony number Number of colonies.
  • lesion number Number of lesions.
  • the disease resistance enhancer for cucurbitaceae plants of the present invention contains an amino acid selected from the group consisting of glutamic acid, threonine, serine and proline as an active ingredient.
  • the amino acid contained in the disease resistance enhancer may be any of glutamic acid, threonine, serine, and proline.
  • glutamic acid it is preferable to further contain threonine and / or alanine.
  • Each amino acid may be in the L-form or D-form, and may be a mixture containing the L-form and D-form at an arbitrary ratio, but the L-form is preferred.
  • the amino acid is preferably composed of glutamic acid, threonine, serine, or proline alone, or glutamic acid and threonine, glutamic acid and alanine, or a mixture of glutamic acid, threonine, and alanine.
  • the amino acid may contain amino acids other than these amino acids, but preferably does not contain them.
  • Glutamic acid may be a free form or a salt such as an ammonium salt, a sodium salt, or a potassium salt.
  • the form of the amino acid is not particularly limited as long as it contains the amino acid, and may be a commercially available reagent, a refined product or a crude product produced by a fermentation method, an extract from a marine product, or a protein.
  • a composition containing the amino acid such as a hydrolyzate thereof may also be used.
  • chitinase activity in tissues increases.
  • the chitinase activity increasing action by glutamic acid is further enhanced when combined with threonine and / or alanine.
  • Plant disease resistance refers to the production of active oxygen, which is often caused by plants to control the spread of bacteria, filamentous fungi, etc., the accumulation of antibacterial proteins and antibacterial compounds, the strengthening of cell walls, and bactericidal enzymes such as chitinase and glucanase It is enhanced by a series of reactions represented by the accumulation of. It is known that there is a correlation between chitinase activity and disease resistance enhancement. For example, Irving, H. et al. (Physiological and molecular plant pathology, 1990, 37: 355-366) found that systemic acquired resistance (SAR) occurred when K 2 HPO 4 was sprayed onto cucumbers.
  • SAR systemic acquired resistance
  • the resistance to cucumber anthracnose and cucumber powdery mildew is increased by applying glutamic acid or serine alone, or mixed application of glutamic acid and alanine, and by applying glutamic acid, slenion, or serine. It was shown that resistance to melon anthracnose increased, and the correlation between chitinase activity and disease resistance enhancement was confirmed. Therefore, proline which has been shown to have an activity to increase the chitinase activity of plants is also considered to have a disease resistance enhancing action.
  • the plant disease resistance enhancer may contain any component other than the amino acid.
  • Such components include solvents, carriers, pH adjusters, spreading agents for increasing the spreading power to plants, surfactants for increasing the permeability to plants, etc., for enhancing the fertilization effect.
  • Fertilizer components such as minerals, agricultural chemical components, binders, extenders and the like. As these components, components usually used for agricultural chemicals, fertilizers and the like can be used as long as the effects of the present invention are not impaired.
  • the plant disease resistance enhancer may be a composition containing an amino acid and other components, that is, a composition for enhancing plant disease resistance.
  • the plant disease resistance enhancer may be composed only of amino acids.
  • a solid or powdery plant disease resistance enhancer may be dissolved or dispersed in a solvent such as water.
  • the content of amino acids in the plant disease resistance enhancer is not particularly limited, and can be appropriately set according to the application rate described later.
  • the content of the amino acid in the plant disease resistance enhancer is not particularly limited as long as an effective amount for enhancing the disease resistance can be applied, but when the amino acid is contained alone, for example, usually 1 to 200 mM, preferably 2 to 100 mM.
  • the content of each amino acid is usually 1 to 200 mM, preferably 2 to 100 mM.
  • glutamic acid When glutamic acid is used in combination with alanine and / or threonion, glutamic acid is 0.2 to 100 mM, preferably 1 to 50 mM, and alanine and / or threonine alone or in total 0.2 to 100 mM, preferably 1 It is preferable to contain ⁇ 50 mM.
  • concentration is a density
  • the cucurbitaceae plant that is the target of the plant disease resistance enhancer is not particularly limited, and examples thereof include cucumber, melon, pumpkin, and watermelon.
  • the target diseases are not particularly limited, and include plant diseases caused by, for example, filamentous fungi, bacteria, and viruses.
  • plant diseases caused by, for example, filamentous fungi, bacteria, and viruses.
  • typical diseases of cucurbitaceous plants Cucumber soft rot, cucumber root rot, cucumber gray mold, cucumber downy mildew, melon blight, melon powdery mildew, melon brown spot, melon black spot, melon anthracnose, melon vine blight, melon Examples include vine split disease, melon seedling blight, melon soft rot, melon root rot, melon gray mold, and melon downy mildew.
  • cucumber powdery mildew and cucumber anthrax are particularly effective.
  • pathogens of these diseases include cucumber powdery mildew (Erysiphe polygoni), cucumber anthracnose fungus [Colletotrichum orbiculare (syn. C. orbiculare)], and the like.
  • the disease resistance enhancer can be enhanced by applying the disease resistance enhancer to the cucurbitaceae plant.
  • the method of application is not particularly limited, and includes spraying to plants, spraying to the rhizosphere, such as surface spraying to soil, irrigation or mixing with soil, or application treatment to plants or immersion treatment to roots. It is done. Among these, spraying on a plant body, for example, spraying on a leaf surface is preferable.
  • spraying to the rhizosphere is also preferable.
  • the plant disease control method of the present invention has a main purpose of preventing disease, and is preferably used prior to the time when the disease occurs. However, even after the occurrence of a disease, an effect of suppressing the expansion or attenuating the disease can be expected.
  • the dose of the disease resistance enhancer may vary depending on the concentration of the active ingredient, the time of application, the frequency of application, the type of plant, the cultivation density, the growth stage, the application method, and the like.
  • 1 to 200 mM is usually 100 to 5000 L / ha, preferably 2 to 100 mM is 500 to 1000 L / ha, glutamic acid and
  • the total amount is usually 0.4 to 200 mM, preferably 100 to 5000 L / ha, and preferably 2 to 100 mM, 500 to 1000 L / ha.
  • the amount ratio (molar ratio) of glutamic acid and threonion is usually 10: 1 to 1: 2, preferably 5: 1 to 1: 1.
  • the amount ratio (molar ratio) of glutamic acid and alanine is usually 10: 1 to 1: 2, preferably 5: 1 to 1: 1.
  • glutamic acid, snileon, and alanine are used in combination, they can be set according to the above application rate.
  • the application amount is the same as that of foliar application with the above glutamic acid alone.
  • the number of times of application may be one time or a plurality of times, and can be appropriately set according to the occurrence or sign of disease.
  • amino acids used in the following examples are L-forms.
  • Example 1 Evaluation of plant disease resistance induction using enzyme activity as an index (1) Cultivation and application method of plant body The disease resistance induction evaluation of cucumber was performed using cotyledons and first true leaves. In the evaluation of cotyledons, a plant cultivated for 1 week after seeding cucumber (variety “Tokiwa Chichi”) in horticultural culture soil (Powersoil; Kureha Chemical Co., Ltd.) was used. In the evaluation with true leaves, cucumbers (variety “Yoyoha”) were cultivated for 2 weeks after sowing in horticultural culture soil (Powersoil; Kureha Chemical Co., Ltd.).
  • Each plant was cultivated at a temperature in the incubator of 23 to 25 ° C., a daily period of 14 hours of light, and a light intensity of approximately 100 ⁇ mol m ⁇ 2 s ⁇ 1 .
  • Approach BI Korean foliar spray treatment
  • Approach BI was added at a 1/1000 concentration as a spreading agent.
  • the treatment solution was dropped at about 2 ⁇ L at 25 locations, and the dropped area was collected as a sample for enzyme activity measurement.
  • each solution was sprayed with a spray of about 1 mL / 100 cm 2 , and 2 cm square of the central part of the leaves was collected as a sample for measuring enzyme activity.
  • the measurement was performed by 360 nm excitation and 450 nm emission. Based on the standard value obtained using 4MU (4-methylumbelliferone) as a standard substance, the amount of enzyme that reacts at 1 ⁇ mol per minute was defined as 1 unit.
  • FIG. 1 shows the results obtained by applying various amino acid solutions to cucumber cotyledons at a single concentration of 100 mM and measuring the enzyme activity after 48 hours.
  • FIG. 1 shows the average value and SD of three replicate experiments. It was found that sodium glutamate (hereinafter referred to as “glutamic acid”), serine, and proline have an effect of increasing chitinase activity, which is a marker for inducing disease resistance.
  • glutamate hereinafter referred to as “glutamic acid”
  • serine serine
  • proline have an effect of increasing chitinase activity, which is a marker for inducing disease resistance.
  • FIG. 2 shows the results of measuring the enzyme activity after 48 hours by applying each amino acid solution at a concentration of 20 mM each, alone or mixed, to cucumber true leaves.
  • FIG. 2 shows the average value and SD of three replicate experiments. It was found that threonine has an effect of increasing chitinase activity, which is a marker for inducing disease resistance. Moreover, it turned out that activity is strengthened by adding alanine and threonine to glutamic acid.
  • Fig. 6 shows the results of mixing glutamic acid (5 mM or 10 mM) and alanine or threonine (2 mM or 5 mM), applying the mixture to cucumber cotyledons, and measuring the enzyme activity after 48 hours.
  • glutamic acid 5 mM or 10 mM
  • alanine or threonine (2 mM or 5 mM)
  • the average of duplicate experiments is indicated by a bar and the individual value is indicated by a circle.
  • glutamic acid alone had little effect, but a clear effect was observed with a mixture of alanine or threonine (2 mM or 5 mM).
  • Example 2 Control effect of cucumber powdery mildew and cucumber anthracnose (1) Cultivation and application method of plant body
  • cucumber variety "Yotsuba” was cultivated for gardening (power soil; Kureha Chemical Industry Co., Ltd.) ) And plants cultivated for 2 weeks after sowing.
  • the incubator was cultivated at a temperature of 23 to 25 ° C., a daily period of 14 hours light, and a light intensity of about 100 ⁇ mol m ⁇ 2 s ⁇ 1 .
  • Each sample solution was spray-inoculated with each of the following pathogenic bacteria 48 hours after foliar application. 1/1000 amount of Approach BI (Kao Co., Ltd.) was added to the spray solution.
  • Cucumber powdery mildew (Sphaerotheca fuliginea) was isolated from the leaf surface naturally occurring in the field. The obtained pathogen was maintained by infecting a plant on the 11th day after sowing in a constant temperature incubator at 23 to 25 ° C. every 2 weeks, and used for the following experiments. 50 mM or 20 mM glutamic acid, 20 mM serine, 20 mM alanine, and a mixture of 20 mM glutamic acid and 20 mM alanine were sprayed on the first true leaf of cucumber 2 weeks after sowing, and 48 hours later, cucumber powdery mildew (Erysiphe polygoni ).
  • Inoculation was performed by spraying the conical spore suspension (2 ⁇ 10 5 conidia / mL) on the leaf surface. Evaluation was performed by measuring the number of colonies generated in each treated leaf 10 days after inoculation. The results are shown in FIG. The mean and SD of 3 to 6 replicate experiments are shown for each. Compared with the control, it was shown that infection with pathogenic bacteria can be significantly controlled by foliar application of glutamic acid, serine, glutamic acid and alanine mixed solution. On the other hand, it was shown that foliar spraying of alanine cannot control pathogen infection.
  • FIG. 8 shows the results of evaluation by measuring the number of diseased lesions occurring on each treated leaf 7 days after inoculation. The mean and SD of three replicate experiments are shown. As shown in FIG. 8, it was shown that infection with pathogenic bacteria can be significantly controlled by foliar application of glutamic acid, a mixed solution of glutamic acid and alanine, serine, or threonine as compared with the control.
  • Example 3 Control effect of melon anthrax (1) Cultivation and application method of plant body
  • melon variety "Lenon”
  • horticultural soil power soil; Kureha Chemical Industry Co., Ltd.
  • Plants grown for 2 weeks were used.
  • the incubator was cultivated at a temperature of 23 to 25 ° C., a daily period of 14 hours light, and a light intensity of about 100 ⁇ mol m ⁇ 2 s ⁇ 1 .
  • Each sample solution was spray-inoculated with each of the following pathogenic bacteria 48 hours after foliar application. 1/1000 amount of Approach BI (Kao Co., Ltd.) was added to the spray solution.
  • Table 1 shows the results of the evaluation, with the index being evaluated as four stages: [0: no disease symptoms, 1: disease occurs in less than 20% of leaves, 2: disease occurs in 20% or more of leaves, 3: partial death] .
  • Table 1 it was shown that infection with pathogenic bacteria can be significantly controlled by foliar application of glutamic acid, threonine or serine as compared with the control.
  • Example 4 Control effect of cucumber anthracnose on cucumber by application of amino acid rhizosphere 2 weeks after sowing, cucumber roots were soaked in 10 mM glutamic acid solution and 48 hours later, cucumber anthracnose fungus [Colletotrichum lagenarium (synth C. orbiculare)]. Inoculation was performed by spraying the conical spore suspension (1 ⁇ 10 5 conidia / mL) on the leaf surface. After spray inoculation, the plants were infected with cucurbit anthracnose fungi by allowing them to stand for 24 hours in a dark place and in a wet room.
  • FIG. 9 shows the results of evaluation by measuring the number of diseased lesions occurring on each treated leaf 7 days after inoculation. The mean and SD of three replicate experiments are shown. As shown in FIG. 9, it was shown that the infection with pathogenic bacteria can be significantly controlled by applying rhizosphere of glutamic acid as compared with the control.
  • the disease resistance enhancer for cucurbitaceae plants of the present invention is highly safe and can be produced at low cost. Moreover, the disease resistance of Cucurbitaceae plants can be effectively enhanced by the method of the present invention.
  • Agricultural chemicals that act directly against phytopathogenic fungi such as fungicides, often show resistance mutants to drugs with continued use, but resistance-induced pesticides are resistant mutants of drugs. It is known that is difficult to appear and can be used for a long time.
  • the amino acid that is an active ingredient of the disease resistance enhancer of the present invention is not a direct bactericidal action against pathogenic bacteria, but prevents disease infection by inducing disease resistance, and resistance mutants appear. It is difficult to expect and can be used over a long period of time, and is extremely useful in industry.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Cultivation Of Plants (AREA)

Abstract

グルタミン酸、スレオニン、セリン及びプロリンからなる群から選ばれるアミノ酸を含むウリ科植物の病害抵抗性増強剤でキュウリ、メロン、カボチャ、又はスイカ等のウリ科植物を処理することにより、キュウリうどんこ病、キュウリ炭疽病、メロンうどん粉病、メロン炭疽病等の病害を防除する。

Description

ウリ科植物病害抵抗性増強剤およびそれを用いた植物病害防除法
 本発明は、アミノ酸を有効成分として、環境負荷が少なく、かつ使用者および消費者にとって安全なウリ科植物病害抵抗性増強剤及び病害防除方法に関する。
 農作物の病害を防除するために、殺菌剤など植物病原菌に直接作用させることで病害を防除する農薬のほかに、植物自体が有する病害抵抗性を高めることで作物の病害を防除する農薬(抵抗性誘導型農薬)が使用されている。殺菌剤など植物病原菌に対して直接作用するタイプの農薬は、病原菌に対して殺菌効果を示すものが多いが、継続的な使用により農薬に対して抵抗性変異株が出現する場合が多い。他方、抵抗性誘導型農薬は、直接病原菌に作用するのではなく、植物の抵抗性を誘導することで病害感染を防除することから、これまでにこのタイプの農薬に対する抵抗性変異株が出現した事例は認められていない。さらに、抵抗性誘導型農薬は、生物に対する殺菌作用が少ないために、植物以外の生物を含めた環境への負荷は比較的少ないと考えられている。
 これまで植物の病害抵抗性誘導を目的とした農薬として、プロベナゾール(商品名:オリゼメート。明治製薬(株))、ベンゾチアゾール系(BTH)のアシベンゾラルSメチル(ASM、商品名:バイオン。シンジェンタ ジャパン(株))、チアジアゾールカルボキサミド系のチアニジル(商品名:ブイゲット。日本農薬(株))が販売されている。
 また、病害抵抗性を誘導する天然物由来の物質としては、多糖体分解物(例えば、特許文献1)、セレブロシド類(例えば、特許文献2)、ジャスモン酸(例えば、特許文献3)、キチンオリゴ糖(例えば、非特許文献1)、β-1,3-およびβ-1,6-グルカンオリゴ糖(例えば、非特許文献2)、胆汁酸(特許文献4)、ペプチドグリカン(非特許文献3)、リポポリサッカライド(非特許文献4)などが報告されている。これらの物質はエリシターと呼ばれており、病原菌に対して抗菌活性をもつファイトアレキシン(phytoalexins)の蓄積、病原菌の細胞壁を溶解するキチナーゼやβ-1,3-グルカナーゼなどのPRタンパク質(Pathogenesis-related proteins)の蓄積、過敏感細胞死の誘導等の効果があることが知られている(例えば、非特許文献1)。
 また、コリネバクテリウム属細菌によるプロリン発酵液の上清の散布により病原菌の感染を防除する方法(特許文献5)、及び、微生物菌体を酸性溶液中で加熱処理することにより得られる抽出液を含む植物用病害耐性増強剤も開示されている(特許文献6)。
 アミノ酸に関しては、L-グルタミン酸(非特許文献5)、又はプロリン(非特許文献6)が、各々イネ又はトウジンビエの病害を防除又は抑制することが報告されているが、ウリ科植物については記載されていない。また、含硫アミノ酸(特許文献7、8)、アミノ酪酸(特許文献7)、又はグリシン(特許文献9)は、微生物やグルコース等と組合わせることによって、植物の病害を防除、又は病害抵抗性を高めることが報告されているが、アミノ酸単独の効果ではない。さらに、アミノ酸を含む混合肥料(特許文献10、11、12)の施用により植物病害を防除し得ることが報告されているが、これらもアミノ酸単独の効果ではなく、また、病害抵抗性誘導によるものではない。また、アミノ酸混合物(プロリン、メチオニン、フェニルアラニン)(特許文献13)、による植物病害防除も報告されているが、単独のアミノ酸による効果ではなく、病害抵抗性誘導によるものでもない。さらに、リジン又はグルタミン酸の発酵液による病害防除について報告されているが(特許文献14)、データは記載されておらず、有効成分が不明であり、病害抵抗性誘導によるものであるかも明らかではない。また、DL-フェニルアラニンでシコクビエの葉を処理するとフェノール物質の合成が促進されること、それをイネごま葉枯病菌の胞子発芽と発芽管伸長を阻害することが報告されているが(非特許文献8)、実際にフェニルアラニン処理が病原菌の侵入や感染を抑制するのかどうかは記載されていない。
 ウリ科植物であるキュウリに対するアミノ酸単独での病害抵抗性誘導に関しては、アラニンが報告されているが(非特許文献7)、他のアミノ酸については開示されていない。
特開平5-331016号公報 特許第2846610号公報 特開平11-29412号公報 特開2006-219372公報 特開平6-80530号公報 国際公開第WO/2009/088074号 特開2003-34607公報 特許第4287515号 中国特許公開第1640233A 中国特許公報第1316893C 中国特許公開第1328769A 中国特許公開第101182270A 中国特許公開第101142925A 中国特許公報第1155543C
Yamada A. et. al., Biosci. Biotech. Biochem., 1993, 57(3):405-409 Yamaguchi, T. et. al., Plant Cell, 2000, 12:817-826 Gust, A.A. et. al., J. Biol. Chem., 2007, 282:32338-32348 Newman, M.A. et al., Plant J. 2002, 29:487-495 Voleti, S.R. et al., Crop Protection, 2008, 27:1398-1402 Raj, S.N. et al., Phytoparasitica, 2004, 32:523-527 Park, K.S. et al., Folia Microbiol. 2009, 54:322-326 Purushothaman, D. et al., Current Science, 1974, 43: 47-49
 本発明は、消費者および使用者に対して安全性が高く、安価な植物病害抵抗性増強剤とそれを用いた植物病害防除法を提供することを課題とする。
 本発明者らは、植物の病害抵抗性誘導物質を探索したところ、アミノ酸に高い病害抵抗性誘導活性があることを発見した。特に、グルタミン酸、スレオニン、セリン又はプロリンを植物に施用することで病害抵抗性誘導活性の指標であるキチナーゼ活性の上昇が認められ、顕著な病害抵抗性誘導が引き起こされることを見出した。そして、これらのアミノ酸処理がキュウリうどん粉病菌やキュウリ炭疽病のような病害に対して高い防除効果を示すことを確認し、本発明を完成させた。
 すなわち本発明は、以下のとおりである。
(1)グルタミン酸、スレオニン、セリン及びプロリンからなる群から選ばれるアミノ酸を含むウリ科植物の病害抵抗性増強剤。
(2)前記アミノ酸がグルタミン酸であり、さらにアラニン及び/又はスレオニンを含む、前記病害抵抗性増強剤。
(3)葉面散布によりウリ科植物に施用される、前記病害抵抗性増強剤。
(4)ウリ科植物がキュウリ、メロン、カボチャ、又はスイカである、前記病害抵抗性増強剤。
(5)病害が、キュウリうどんこ病、又はキュウリ炭疽病である、前記病害抵抗性増強剤。
(6)前記アミノ酸を、各々1~200mM含む、前記病害抵抗性増強剤。
(7)グルタミン酸を0.2~100mM含み、さらにアラニン及び/又はスレオニンを0.2~100mM含む、前記病害抵抗性増強剤。
(8)前記アミノ酸がL-体である、前記病害抵抗性増強剤。
(9)前記病害防除剤でウリ科植物を処理することを特徴とする、ウリ科植物の病害を防除する方法。
(10)前記病害防除剤を、前記アミノ酸を単独で含む場合は1~200mM/100~5000L/ヘクタール、複数種含む場合は合計量で0.4~200mM/100~5000L/ヘクタールの施用量で施用される、前記方法。
(11)グルタミン酸を含むウリ科植物の病害抵抗性増強剤であって、ウリ科植物の根圏に施用される、病害抵抗性増強剤。
(12)ウリ科植物がキュウリである、前記病害抵抗性増強剤。
(13)グルタミン酸を1~200mM含む前記病害抵抗性増強剤。
(14)グルタミン酸がL-グルタミン酸である、前記病害抵抗性増強剤。
(15)前記病害防除剤をウリ科植物の根圏に施用することを特徴とする、ウリ科植物の病害を防除する方法。
アミノ酸の葉面散布によるキュウリ子葉における病害抵抗性誘導効果を示す図。chitinase mU/g protein:キチナーゼmU/gタンパク質。control:コントロール。 アミノ酸の葉面散布によるキュウリ本葉における病害抵抗性誘導効果を示す図。 アミノ酸の葉面散布によるカボチャにおける病害抵抗性誘導効果を示す図。 アミノ酸の葉面散布によるメロンにおける病害抵抗性誘導効果を示す図。 アミノ酸の葉面散布によるスイカにおける病害抵抗性誘導効果を示す図。 アミノ酸混合液の葉面散布によるキュウリ子葉における病害抵抗性誘導効果を示す図。 アミノ酸の葉面散布によるキュウリうどん粉病の防除効果を示す図。colony number:コロニー数。 アミノ酸の葉面散布によるキュウリ炭疽病の防除効果を示す図。lesion number:病斑数。 アミノ酸の根圏施用によるキュウリ炭疽病の防除効果を示す図。
 以下、本発明を詳細に説明する。
 本発明のウリ科植物の病害抵抗性増強剤は、グルタミン酸、スレオニン、セリン、プロリンからなる群から選ばれるアミノ酸を有効成分として含む。病害抵抗性増強剤に含まれるアミノ酸は、グルタミン酸、スレオニン、セリン、プロリンのいずれでもよい。
 また、病害抵抗性増強剤がグルタミン酸を含む場合は、さらにスレオニン及び/またはアラニンを含むことが好ましい。
 前記各アミノ酸は、L-体、D-体のいずれであってもよく、L-体及びD-体を任意の割合で含む混合物であってもよいが、L-体が好ましい。
 前記アミノ酸としては、グルタミン酸、スレオニン、セリン、もしくはプロリン単独、又はグルタミン酸及びスレオニン、グルタミン酸及びアラニン、もしくはグルタミン酸、スレオニン及びアラニンの混合物からなることが好ましい。アミノ酸は、これらのアミノ酸以外のアミノ酸を含んでいてもよいが、含まないことが好ましい。
 グルタミン酸は、フリー体でもよく、アンモニウム塩、ナトリウム塩、カリウム塩等の塩であってもよい。
 前記アミノ酸は、そのアミノ酸を含む限り形態は特に制限されず、一般に販売されている試薬、発酵法で製造した精製品又は粗精製品であってもよく、また、海産物からの抽出物、又はタンパク質の加水分解物など、前記アミノ酸を含む組成物であってもよい。
 実施例に示すように、グルタミン酸、スレオニン、セリン又はプロリン酸をウリ科植物に施用すると、植物の葉のような組織中のキチナーゼ活性が上昇する。また、グルタミン酸によるキチナーゼ活性上昇作用は、スレオニン及び/またはアラニンと組み合わせるとさらに高まる。
 植物病害抵抗性は、植物がしばしば細菌、糸状菌などの感染時にその拡大を防除する為に引き起こされる活性酸素の産生、抗菌タンパク質、抗菌化合物の蓄積、細胞壁の強化、キチナーゼ、グルカナーゼ等の殺菌酵素の蓄積に代表される一連の反応によって増強される。キチナーゼ活性と病害抵抗性増強との間には相関関係があることが知られている。例えば、Irving, H.ら(Physiological and molecular plant pathology, 1990, 37:355-366)は、K2HPO4をキュウリに葉面散布すると、全身獲得抵抗性(Systemic Acquired Resistance; SAR)が起きてキュウリ炭疽病を抑制できると記載しており、キチナーゼ活性の上昇をSARの指標として用いている。また、Schlumbaum, A.ら(Nature, 1986, 324:365-367)は、マメ科植物が病原菌に感染した際の応答として、抗菌酵素であるキチナーゼの活性が上昇することを報告している。
 そして、実施例に示すように、グルタミン酸またはセリンを単独で施用、またはグルタミン酸とアラニンの混合施用によって、キュウリ炭疽病及びキュウリうどん粉病に対する抵抗性が高まり、また、グルタミン酸、スレニオン、又はセリンの施用によって、メロン炭疽病に対する抵抗性が高まることが示され、キチナーゼ活性と病害抵抗性増強との相関関係が確かめられた。したがって、植物のキチナーゼ活性を上昇させる活性を有することが示されたプロリンも、病害抵抗性増強作用を有すると考えられる。
 植物病害抵抗性増強剤は、前記アミノ酸以外に、任意の成分を含んでいてもよい。このような成分としては、溶媒、担体、pH調整剤、植物体への展着力を高めるための展着剤、植物への浸透性を高めるための界面活性剤等の成分、肥効を高めるためのミネラル等の肥料成分、農薬成分、バインダー、増量剤等が挙げられる。これらの成分としては、本発明の効果を損わない限り、通常農薬、肥料等に用いられている成分を用いることができる。
 溶媒としては、水、アルコール等が挙げられる。担体としては、炭酸カルシウム、珪藻土、パーライト等の鉱物系担体や植物系担体が挙げられる。
 上記のように、植物病害抵抗性増強剤は、アミノ酸及びその他の成分を含む組成物、すなわち植物病害抵抗性増強用組成物であってもよい。しかし、植物病害抵抗性増強剤は、アミノ酸のみからなるものであってもよい。
 また、使用に際して、固体状又は粉体状の植物病害抵抗性増強剤を、水等の溶媒に溶解又は分散させてもよい。
 植物病害抵抗性増強剤におけるアミノ酸の含量は特に制限されず、後述の施用量に応じて適宜設定することができる。例えば、植物病害抵抗性増強剤におけるアミノ酸の含量は、病害抵抗性増強に有効な量が施用できる限り特に制限されないが、アミノ酸を単独で含む場合は、例えば、通常1~200mM、好ましくは2~100mMである。アミノ酸を複数種含む場合は、各々のアミノ酸の含量は、通常、1~200mM、好ましくは2~100mMである。また、グルタミン酸と、アラニン及び/又はスレニオンを併用する場合は、グルタミン酸を0.2~100mM、好ましくは1~50mM、アラニン及び/又はスレオニンを単独で又は合計で0.2~100mM、好ましくは1~50mM含むことが好ましい。尚、前記濃度は、植物病害抵抗性増強剤が固形又は粉体状の場合は、使用時に溶液にしたときの濃度である。
 植物病害抵抗性増強剤の対象となるウリ科植物は特に制限されず、キュウリ、メロン、カボチャ、スイカなどが挙げられる。
 植物の一般的な病害抵抗性反応は病原菌に対して非特異的であることから、対象病害としては特に制限されず、例えば糸状菌、細菌、ウイルスを原因とする植物病害が含まれる。ウリ科植物の代表的な病害の例としてキュウリ青枯病、キュウリうどんこ病、キュウリ褐斑病、キュウリ黒斑病、キュウリ炭疽病、キュウリつる枯病、キュウリつる割病、キュウリ苗立枯病、キュウリ軟腐病、キュウリ根腐病、キュウリ灰色かび病、キュウリべと病、メロン青枯病、メロンうどんこ病、メロン褐斑病、メロン黒斑病、メロン炭疽病、メロンつる枯病、メロンつる割病、メロン苗立枯病、メロン軟腐病、メロン根腐病、メロン灰色かび病、メロンべと病などが挙げられる。これらの中では、特にキュウリうどん粉病、及びキュウリ炭疽病に有効である。これらの病害の病原菌としては、キュウリうどんこ病菌(Erysiphe polygoni)、キュウリ炭疽病菌[Colletotrichum orbiculare (syn. C. orbiculare)]などが挙げられる。
 病害抵抗性増強剤を、ウリ科植物に施用することにより、上記のような病害に対する抵抗性を増強することができる。施用の方法は特に制限されないが、植物体への散布、根圏への散布、例えば土壌への表面散布、潅注もしくは土壌への混合、又は植物体への塗布処理もしくは根への浸漬処理が挙げられる。これらの中では、植物体への散布、例えば葉面への散布が好ましい。また、病害抵抗性増強剤がグルタミン酸を含む場合は、根圏への散布も好ましい。
 また、本発明の植物病害防除法は、病害の予防を主な目的としており、病害が発生する時期に先駆けて使用することが好ましい。ただし、病害の発生後であってもその拡大を抑制したり、病害を減弱する効果は期待できる。
 病害抵抗性増強剤の施用量は、有効成分の濃度、施用時期、施用回数、植物の種類、栽培密度、生育段階、施用方法等によっても異なり得る。葉面散布では、施用量は、例えば、グルタミン酸、スレオニン、セリン、プロリン単独の場合は、通常1~200mMを100~5000L/ヘクタール、好ましくは2~100mMを500~1000L/ヘクタールであり、グルタミン酸及びスレオニン、又はグルタミン酸及びアラニンを併用する場合は、合計量で通常0.4~200mMを100~5000L/ヘクタール、好ましくは2~100mMを500~1000L/ヘクタールが好ましい。グルタミン酸及びスレニオンを併用する場合は、グルタミン酸及びスレニオンの量比(モル比)は通常10:1~1:2、好ましくは5:1~1:1が好ましい。また、グルタミン酸及びアラニンを併用する場合はグルタミン酸及びアラニンの量比(モル比)は、通常10:1~1:2、好ましくは5:1~1:1が好ましい。グルタミン酸、スニレオン及びアラニンを併用する場合は、上記施用量に準じて設定することができる。また、グルタミン酸を根圏に施用する場合も、施用量は上記のグルタミン酸単独での葉面散布と同様である。施用回数は、一回でもよく、複数回であってもよく、病害の発生又は予兆に応じて適宜設定することができる。
 以下、実施例をもって本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。下記実施例で用いたアミノ酸はL-体である。
〔実施例1〕酵素活性を指標とした植物病害抵抗性誘導の評価
(1)植物体の栽培と散布方法
 キュウリの病害抵抗性誘導評価は、子葉と第一本葉を用いて行なった。子葉での評価では、キュウリ(品種「ときわ地這」)を園芸用培養土(パワーソイル; 呉羽化学工業株式会社)で播種後1週間栽培した植物を用いた。本葉での評価では、キュウリ(品種「四葉」)を園芸用培養土(パワーソイル; 呉羽化学工業株式会社)で播種後2週間栽培した植物を用いた。
 かぼちゃ(品種「ほっこり姫」)、メロン(品種「レノン」)、スイカ(品種「紅こだま」)の評価は園芸用培養土(パワーソイル; 呉羽化学工業株式会社)で播種後2週間栽培した植物体の第一本葉を用いて行なった
 各植物は、培養庫内の温度は23~25℃、日周は14時間明期、光強度はおよそ100μmol m-2 s-1で栽培した。通常の葉面散布処理において、展着剤としてアプローチBI(花王(株)。「アプローチBI」は同社の登録商標である。)を1/1000濃度で添加した。子葉への処理では、処理液をおよそ2μLずつ25箇所に滴下し、滴下した領域を酵素活性測定用試料として回収した。本葉への処理では、各溶液をおよそ1 mL/100 cm2程度霧吹きで噴霧処理し、葉の中心部分の2cm四方を酵素活性測定用試料として回収した。
(2)酵素抽出
 上記の酵素活性測定用試料をサンプリング後、直ちに液体窒素で凍結し、-80℃で保存した。凍結状態のまま植物破砕機MM300 MIXER MILL GRINDER (Retsch)により破砕し、300μLの抽出バッファー[100 mM NaH2PO4 / Na2HPO4(pH6.0), 1 mM DTT, protease inhibitor/complete mini EDTA free (Roche社)]に懸濁した。10,000 rpm 5分間の遠心分離後の上清を、0.22μmフィルターに通し不溶物を除去した。得られた画分を粗抽出画分とし、Bradford法によるタンパク質濃度測定後、酵素活性測定に用いた。
(3)キチナーゼ活性測定
 キチナーゼ活性は、McCreathらによる方法(McCreath, K. et al., J. Microbiol. Methods 14:229-237, 1992)により測定した。基質である4MU-(GlcNAc)3 (4-methylumbelliferyl-β-d-N,N',N''-triacetylchitobiose; SIGMA M5639)は、最終濃度0.4mMになるように50% エタノール中に溶解し、-20℃で保存した。使用時に10倍に希釈し、基質溶液とした。上記粗抽出画分を1μg/μLに調整した。各試料50μLずつを96穴プレート上で37℃10分間プレインキュベーションした後に、基質溶液50μLを添加し37℃で反応を開始した。
 キュウリ子葉を用いた実験では、反応開始後30分後、及び90分後、キュウリ、カボチャ、メロン本葉を用いた実験では反応開始後90分後、及び120分後、スイカ本葉を用いた実験では反応開始後60分後、及び120分後に、反応液に100μLの1M Gly/NaOH buffer (pH 10.2)を添加し、反応を停止した。反応、及び反応停止は96ウェルプレート上で行い、最終量200μLとした。液面の泡を完全に除去した後に、蛍光検出用プレートリーダーSpectraMax M2 (Molecular Devices)を用いて蛍光強度を測定した。蛍光測定では、360 nmエキサイテイーション、450 nmエミッションにより測定した。4MU(4-methylumbelliferone)を標準物質として求めた標準値にもとづき、1分間に1μmol反応する酵素量を1ユニットと定義した。
(4)結果
 各種アミノ酸溶液をそれぞれ単独の100 mM濃度でキュウリ子葉に施用し、48時間後の酵素活性を測定した結果を図1に示す。図1には、それぞれ3反復の実験の平均値とSDを示した。グルタミン酸ナトリウム(以下、「グルタミン酸」と記載する。)、セリン、プロリンに、病害抵抗性誘導のマーカーであるキチナーゼ活性を上昇させる効果があることが判った。
 各種アミノ酸溶液をそれぞれ20 mM濃度で、単独または混合してキュウリ本葉に施用し、48時間後の酵素活性を測定した結果を図2に示す。図2には、それぞれ3反復の実験の平均値とSDを示した。スレオニンに、病害抵抗性誘導のマーカーであるキチナーゼ活性を上昇させる効果があることが判った。また、グルタミン酸にアラニンとスレオニンが添加されることで活性が強化されることが判った。
 各種アミノ酸溶液をそれぞれ20 mM濃度でカボチャ、メロン、スイカ本葉に施用し、48時間後の酵素活性を測定した結果をそれぞれ図3、図4、図5に示す。図3、図4、図5には、それぞれ3反復の実験の平均値とSDを示した。グルタミン酸、スレオニン、セリン、プロリンに、病害抵抗性誘導のマーカーであるキチナーゼ活性を上昇させる効果があることが判った。
 グルタミン酸(5mMまたは10mM)とアラニンまたはスレオニン(2mMまたは5mM)を混合し、キュウリ子葉に施用し、48時間後の酵素活性を測定した結果を図6に示す。それぞれ2反復の実験の平均値を棒で、個別の値を丸で示した。前記濃度ではグルタミン酸単独ではほとんど効果が認められなかったが、アラニンまたはスレオニン(2mMまたは5mM)との混合液では明瞭な効果が認められた。
〔実施例2〕キュウリうどん粉病およびキュウリ炭疽病の防除効果
(1)植物体の栽培と散布方法
 実験には、キュウリ(品種「四葉」)を園芸用培養土(パワーソイル; 呉羽化学工業株式会社)で播種後2週間栽培した植物を用いた。培養庫内の温度は23~25℃、日周は14時間明期、光強度はおよそ100μmol m-2 s-1で栽培した。各試料溶液を葉面散布後48時間後に、下記の各病原菌を噴霧接種した。散布溶液には、アプローチBI(花王(株))を1/1000量添加した。
(2)キュウリうどん粉病防除評価
 キュウリうどん粉病菌(Sphaerotheca fuliginea)は、圃場で自然発生した葉面から単離した。得られた病原菌は、23~25℃の恒温培養器内で、播種後11日目の植物に2週間毎に感染させることで維持し、以下の実験に用いた。
 50mMまたは20mMグルタミン酸、20mMセリン、20mMアラニン、20 mMグルタミン酸と20 mMアラニンの混合液、をそれぞれ播種後2週間後のキュウリの第一本葉に散布し、その48時間後にキュウリうどん粉病菌(Erysiphe polygoni)を接種した。接種は、分生胞子懸濁液(2×10分生胞子/mL)を葉面に噴霧することにより行った。接種10日後に、各処理葉に発生したコロニー数を測定することで評価を行った。結果を図7に示す。それぞれ3から6反復の実験の平均値とSDを示した。対照と比較し、グルタミン酸、セリン、グルタミン酸とアラニン混合液の葉面散布により有意に病原菌の感染を防除できることが示された。一方でアラニンの葉面散布では病原菌の感染を防除できないことが示された。
(3)キュウリ炭疽病防除評価
 50mMグルタミン酸、20mMグルタミン酸と20mMアラニンの混合液、20mMグルタミン酸、20mMセリン、20mMスレオニンを、それぞれ播種後2週間後のキュウリの第一本葉に噴霧し、その48時間後にウリ類炭疽粉病菌[Colletotrichum lagenarium (syn. C. orbiculare)]を接種した。接種は、分生胞子懸濁液(1×10分生胞子/mL)を葉面に噴霧することにより行った。噴霧接種後、暗所、湿室下に24時間静置することにより、ウリ類炭疽病菌を植物に感染させた。接種7日後に各処理葉に発生した罹病性病斑数を測定することで、評価を行った結果を図8に示す。それぞれ3反復の実験の平均値とSDを示した。図8に示すとおり、対照と比較し、グルタミン酸、グルタミン酸とアラニンの混合液、セリン、またはスレオニンの葉面散布により有意に病原菌の感染を防除できることが示された。
〔実施例3〕メロン炭疽病の防除効果
(1)植物体の栽培と散布方法
 実験には、メロン(品種「レノン」)を園芸用培養土(パワーソイル; 呉羽化学工業株式会社)で播種後2週間栽培した植物を用いた。培養庫内の温度は23~25℃、日周は14時間明期、光強度はおよそ100μmol m-2 s-1で栽培した。各試料溶液を葉面散布後48時間後に、下記の各病原菌を噴霧接種した。散布溶液には、アプローチBI(花王(株))を1/1000量添加した。
(2)メロン炭疽病防除評価
 20mMグルタミン酸、20mMセリン、20 mMスレオニンを、それぞれ播種後2週間後のメロンの第一本葉に噴霧し、その48時間後にウリ類炭疽粉病菌[Colletotrichum lagenarium (syn. C. orbiculare)]を接種した。接種は、分生胞子懸濁液(1×10分生胞子/mL)を葉面に噴霧することにより行った。噴霧接種後、暗所、湿室下に24時間静置することにより、ウリ類炭疽病菌を植物に感染させた。評価は罹病程度を発病度として数値化して比較を行なった。すなわち指標を[0:無病徴、1:葉の20%未満で発病、2:葉の20%以上で発病、3:部分的に枯死]の4段階として評価を行なった結果を表1に示す。それぞれ3個体に施用し、各個体の発病度を示した。表1に示すとおり、対照と比較し、グルタミン酸、スレオニン又はセリンの葉面散布により有意に病原菌の感染を防除できることが示された。
Figure JPOXMLDOC01-appb-T000001
〔実施例4〕アミノ酸の根圏施用によるキュウリに対するウリ類炭疽病の防除効果
 播種後2週間後のキュウリの根を10mMグルタミン酸溶液に浸し、その48時間後にウリ類炭疽粉病菌[Colletotrichum lagenarium (syn. C. orbiculare)]を接種した。接種は、分生胞子懸濁液(1×10分生胞子/mL)を葉面に噴霧することにより行った。噴霧接種後、暗所、湿室下に24時間静置することにより、ウリ類炭疽病菌を植物に感染させた。接種7日後に各処理葉に発生した罹病性病斑数を測定することで、評価を行った結果を図9に示す。それぞれ3反復の実験の平均値とSDを示した。図9に示すとおり、対照と比較し、グルタミン酸の根圏施用により有意に病原菌の感染を防除できることが示された。
産業上の利用分野
 本発明のウリ科植物の病害抵抗性増強剤は、安全性が高く、安価に製造することができる。また、本発明の方法により、ウリ科植物の病害抵抗性を効果的に増強することができる。
 殺菌剤のような植物病原菌に対して直接作用するタイプの農薬は、継続的な使用により薬剤に対する抵抗性変異株が出現することが多いが、抵抗性誘導型農薬は、薬剤の抵抗性変異株が出現しにくく、長期間にわたる使用が可能であることが知られている。本発明の病害抵抗性増強剤の有効成分であるアミノ酸は、病原菌に対する直接的な殺菌作用ではなく、病害抵抗性を誘導することによって病原菌の感染を防ぐものであり、抵抗性変異株が出現しにくく、長期間にわたる使用が可能であることが期待でき、産業上極めて有用である。

Claims (15)

  1.  グルタミン酸、スレオニン、セリン及びプロリンからなる群から選ばれるアミノ酸を含むウリ科植物の病害抵抗性増強剤。
  2.  前記アミノ酸がグルタミン酸であり、さらにアラニン及び/又はスレオニンを含む、請求項1に記載の病害抵抗性増強剤。
  3.  葉面散布によりウリ科植物に施用される、請求項1又は2に記載の病害抵抗性増強剤。
  4.  ウリ科植物がキュウリ、メロン、カボチャ、又はスイカである、請求項1~3のいずれか一項に記載の病害抵抗性増強剤。
  5.  病害が、キュウリうどんこ病、又はキュウリ炭疽病である、請求項1~4のいずれか一項に記載の病害抵抗性増強剤。
  6.  前記アミノ酸を、各々1~200mM含む、請求項1~5のいずれか一項に記載の病害抵抗性増強剤。
  7.  グルタミン酸を0.2~100mM含み、さらにアラニン及び/又はスレオニンを0.2~100mM含む 、請求項1~5のいずれか一項に記載の病害抵抗性増強剤。
  8.  前記アミノ酸がL-体である、請求項1~7のいずれか一項に記載の病害抵抗性増強剤。
  9.  請求項1~8のいずれか一項に記載の病害防除剤でウリ科植物を処理することを特徴とする、ウリ科植物の病害を防除する方法。
  10.  前記病害防除剤を、前記アミノ酸を単独で含む場合は1~200mM/100~5000L/ヘクタール、複数種含む場合は合計量で0.4~200mM/100~5000L/ヘクタールの施用量で施用される、請求項9に記載の方法。
  11.  グルタミン酸を含むウリ科植物の病害抵抗性増強剤であって、ウリ科植物の根圏に施用される、病害抵抗性増強剤。
  12.  ウリ科植物がキュウリである、請求項11に記載の病害抵抗性増強剤。
  13.  グルタミン酸を1~200mM含む、請求項11又は12に記載の病害抵抗性増強剤。
  14.  グルタミン酸がL-グルタミン酸である、請求項11~13のいずれか一項に記載の病害抵抗性増強剤。
  15.  請求項11~14のいずれか一項に記載の病害防除剤をウリ科植物の根圏に施用することを特徴とする、ウリ科植物の病害を防除する方法。
PCT/JP2011/050302 2010-01-13 2011-01-12 ウリ科植物病害抵抗性増強剤およびそれを用いた植物病害防除法 WO2011087002A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES11732872.4T ES2574905T3 (es) 2010-01-13 2011-01-12 Uso de un agente para potenciar la resistencia a la enfermedad de la planta Cucurbitaceae y un procedimiento para controlar enfermedades de las plantas usando el agente
JP2011549978A JP5790507B2 (ja) 2010-01-13 2011-01-12 ウリ科植物病害抵抗性増強剤およびそれを用いた植物病害防除法
EP11732872.4A EP2524597B1 (en) 2010-01-13 2011-01-12 Use of an agent for enhancing resistance to disease of cucurbitaceae plant and a method for controlling plant disease using the agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010005329 2010-01-13
JP2010-005329 2010-01-13

Publications (1)

Publication Number Publication Date
WO2011087002A1 true WO2011087002A1 (ja) 2011-07-21

Family

ID=44304276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050302 WO2011087002A1 (ja) 2010-01-13 2011-01-12 ウリ科植物病害抵抗性増強剤およびそれを用いた植物病害防除法

Country Status (4)

Country Link
EP (1) EP2524597B1 (ja)
JP (1) JP5790507B2 (ja)
ES (1) ES2574905T3 (ja)
WO (1) WO2011087002A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211124A (ja) * 2011-03-24 2012-11-01 National Agriculture & Food Research Organization 青枯病抵抗性誘導剤及び青枯病防除方法
JP2014039515A (ja) * 2012-08-23 2014-03-06 Kyoto Univ 炭疽病菌による宿主感染を抑制する活性を評価する方法、及び前記活性を有する物質をスクリーニングする方法
JP2014094895A (ja) * 2012-11-07 2014-05-22 Hiroshima Univ うどん粉病の防除薬及び防除方法
CN107810950A (zh) * 2017-10-19 2018-03-20 广西壮族自治区金秀瑶族自治县科学技术情报研究所 一种八角炭疽病的防治方法
WO2019172277A1 (ja) 2018-03-05 2019-09-12 味の素株式会社 植物の病害抵抗性誘導用または植物の病害防除用の組成物
WO2020255934A1 (ja) * 2019-06-17 2020-12-24 昭和電工株式会社 アミノ酸又はその塩とオリゴ糖を含む植物活力剤ならびにその使用
WO2020255933A1 (ja) * 2019-06-17 2020-12-24 昭和電工株式会社 セロオリゴ糖を含む植物活力剤及びその使用
JPWO2020255932A1 (ja) * 2019-06-17 2020-12-24
KR102688862B1 (ko) 2019-06-17 2024-07-29 가부시끼가이샤 레조낙 외생 엘리시터 및 내생 엘리시터를 포함하는 식물 활력제 및 그 사용

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6306252B1 (ja) * 2017-07-31 2018-04-04 タキイ種苗株式会社 セイヨウカボチャ植物のうどんこ病抵抗性マーカー、うどんこ病抵抗性セイヨウカボチャ植物、それを用いたうどんこ病抵抗性セイヨウカボチャ植物の製造方法、およびセイヨウカボチャ植物へのうどんこ病抵抗性の付与方法
CN111387195B (zh) * 2020-04-21 2021-05-28 吴文君 一种防治植物白粉病的方法
CN111937884B (zh) * 2020-08-24 2022-01-07 江苏明德立达作物科技有限公司 一种用于黄瓜的植物生长调节组合物、制备方法及其应用
CN114009433A (zh) * 2021-12-13 2022-02-08 云南硕农农业科技有限公司 一种能防治植物白粉病的组合物及其应用

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558831A (ja) * 1991-08-30 1993-03-09 Reiko Kosaka 植物成長促進、鮮度維持剤
JPH05331016A (ja) 1992-05-29 1993-12-14 Dainippon Pharmaceut Co Ltd ファイトアレキシンの誘導剤
JPH0680530A (ja) 1992-09-01 1994-03-22 Mitsui Toatsu Chem Inc 植物病害防除方法
JP2846610B2 (ja) 1995-11-02 1999-01-13 株式会社植物防御システム研究所 稲にファイトアレキシンの生成を誘導するエリシターのスクリーニング方法及び稲病害防除剤
JPH1129412A (ja) 1997-07-09 1999-02-02 Kagaku Gijutsu Shinko Jigyodan ファイトアレキシン誘導剤
JP2001199812A (ja) * 2000-01-14 2001-07-24 Koyama Hightech Kenkyusho:Kk 植物成長促進剤
CN1328769A (zh) 2001-07-26 2002-01-02 张世家 一种含有水溶性壳聚糖的农用组合物
JP2002204623A (ja) * 2001-01-09 2002-07-23 Toho Leo Co 果物等の植物の糖度を上昇させる糖度調整剤と、その糖度調整剤を用いた糖度上昇方法
JP2003034607A (ja) 2001-07-17 2003-02-07 Ts Shokubutsu Kenkyusho:Kk 植物病害防除方法
JP2003531839A (ja) * 2000-05-02 2003-10-28 エメラルド・バイオアグリカルチャー・コーポレーション グルタミン酸およびグリコール酸を使用する植物の生産性を向上させる方法
JP2003342105A (ja) * 2002-03-20 2003-12-03 Showa Denko Kk キトサンを含む植物の耐病性及び成長を向上する組成物
CN1155543C (zh) 2000-06-16 2004-06-30 广西化工生物技术研究所 氨基酸复合液体肥
CN1640233A (zh) 2004-12-28 2005-07-20 中国农业科学院蔬菜花卉研究所 防治植物真菌病害的方法
JP2006219372A (ja) 2003-01-17 2006-08-24 Meiji Seika Kaisha Ltd 植物病害防除剤およびその剤を用いた植物病害防除法
CN1316893C (zh) 2006-01-06 2007-05-23 胡小安 一种植物生长调节剂
JP2008044854A (ja) * 2006-08-10 2008-02-28 Kyoei Seika:Kk 植物成長活性剤およびその植物成長活性剤を用いた植物生育方法
CN101142925A (zh) 2007-11-02 2008-03-19 祖小力 一种植物抗逆增产制剂
CN101182270A (zh) 2007-10-22 2008-05-21 李海涛 农作物用有机酸无机盐复合剂及其制备方法
JP4287515B2 (ja) 1998-09-22 2009-07-01 博 河合 植物病害の予防用組成物およびその使用方法
WO2009088074A1 (ja) 2008-01-11 2009-07-16 Ajinomoto Co., Inc. 植物用病害耐性増強剤およびそれを用いた植物病害防除法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124241A (en) * 1998-10-29 2000-09-26 Auxien Corporation Method for increasing plant productivity using glutamic acid and glycolic acid
JP4741547B2 (ja) * 2007-04-26 2011-08-03 学校法人東京農業大学 梅漬調味廃液の農業利用法
JP2012010694A (ja) * 2010-06-01 2012-01-19 Ajinomoto Co Inc 植物のアレロパシー効果、および/またはファイトアレキシン生産の増強用薬剤

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558831A (ja) * 1991-08-30 1993-03-09 Reiko Kosaka 植物成長促進、鮮度維持剤
JPH05331016A (ja) 1992-05-29 1993-12-14 Dainippon Pharmaceut Co Ltd ファイトアレキシンの誘導剤
JPH0680530A (ja) 1992-09-01 1994-03-22 Mitsui Toatsu Chem Inc 植物病害防除方法
JP2846610B2 (ja) 1995-11-02 1999-01-13 株式会社植物防御システム研究所 稲にファイトアレキシンの生成を誘導するエリシターのスクリーニング方法及び稲病害防除剤
JPH1129412A (ja) 1997-07-09 1999-02-02 Kagaku Gijutsu Shinko Jigyodan ファイトアレキシン誘導剤
JP4287515B2 (ja) 1998-09-22 2009-07-01 博 河合 植物病害の予防用組成物およびその使用方法
JP2001199812A (ja) * 2000-01-14 2001-07-24 Koyama Hightech Kenkyusho:Kk 植物成長促進剤
JP2003531839A (ja) * 2000-05-02 2003-10-28 エメラルド・バイオアグリカルチャー・コーポレーション グルタミン酸およびグリコール酸を使用する植物の生産性を向上させる方法
CN1155543C (zh) 2000-06-16 2004-06-30 广西化工生物技术研究所 氨基酸复合液体肥
JP2002204623A (ja) * 2001-01-09 2002-07-23 Toho Leo Co 果物等の植物の糖度を上昇させる糖度調整剤と、その糖度調整剤を用いた糖度上昇方法
JP2003034607A (ja) 2001-07-17 2003-02-07 Ts Shokubutsu Kenkyusho:Kk 植物病害防除方法
CN1328769A (zh) 2001-07-26 2002-01-02 张世家 一种含有水溶性壳聚糖的农用组合物
JP2003342105A (ja) * 2002-03-20 2003-12-03 Showa Denko Kk キトサンを含む植物の耐病性及び成長を向上する組成物
JP2006219372A (ja) 2003-01-17 2006-08-24 Meiji Seika Kaisha Ltd 植物病害防除剤およびその剤を用いた植物病害防除法
CN1640233A (zh) 2004-12-28 2005-07-20 中国农业科学院蔬菜花卉研究所 防治植物真菌病害的方法
CN1316893C (zh) 2006-01-06 2007-05-23 胡小安 一种植物生长调节剂
JP2008044854A (ja) * 2006-08-10 2008-02-28 Kyoei Seika:Kk 植物成長活性剤およびその植物成長活性剤を用いた植物生育方法
CN101182270A (zh) 2007-10-22 2008-05-21 李海涛 农作物用有机酸无机盐复合剂及其制备方法
CN101142925A (zh) 2007-11-02 2008-03-19 祖小力 一种植物抗逆增产制剂
WO2009088074A1 (ja) 2008-01-11 2009-07-16 Ajinomoto Co., Inc. 植物用病害耐性増強剤およびそれを用いた植物病害防除法

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
GUST, A.A. ET AL., J. BIOL. CHEM., vol. 282, 2007, pages 32338 - 32348
K. S. PARK ET AL.: "L-Alanine Augments Rhizobacteria-Induced Systemic Resistance in Cucumber", FOLIA MICROBIOL., vol. 54, no. 4, 2009, pages 322 - 326, XP008155696 *
MCCREATH, K. ET AL., J. MICROBIOL. METHODS, vol. 14, 1992, pages 229 - 237
NATURE, vol. 324, 1986, pages 365 - 367
NEWMAN, M.A. ET AL., PLANT J., vol. 29, 2002, pages 487 - 495
PARK, K.S. ET AL., FOLIA MICROBIOL., vol. 54, 2009, pages 322 - 326
PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, vol. 37, 1990, pages 355 - 366
PURUSHOTHAMAN, D. ET AL., CURRENT SCIENCE, vol. 43, 1974, pages 47 - 49
RAJ, S.N. ET AL., PHYTOPARASITICA, vol. 32, 2004, pages 523 - 527
See also references of EP2524597A4 *
VOLETI, S.R. ET AL., CROP PROTECTION, vol. 27, 2008, pages 1398 - 1402
YAMADA, A. ET AL., BIOSCI. BIOTECH. BIOCHEM., vol. 57, no. 3, 1993, pages 405 - 409
YAMAGUCHI, T. ET AL., PLANT CELL, vol. 12, 2000, pages 817 - 826

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211124A (ja) * 2011-03-24 2012-11-01 National Agriculture & Food Research Organization 青枯病抵抗性誘導剤及び青枯病防除方法
JP2014039515A (ja) * 2012-08-23 2014-03-06 Kyoto Univ 炭疽病菌による宿主感染を抑制する活性を評価する方法、及び前記活性を有する物質をスクリーニングする方法
JP2014094895A (ja) * 2012-11-07 2014-05-22 Hiroshima Univ うどん粉病の防除薬及び防除方法
CN107810950A (zh) * 2017-10-19 2018-03-20 广西壮族自治区金秀瑶族自治县科学技术情报研究所 一种八角炭疽病的防治方法
CN107810950B (zh) * 2017-10-19 2020-12-04 广西壮族自治区金秀瑶族自治县科学技术情报研究所 一种八角炭疽病的防治方法
WO2019172277A1 (ja) 2018-03-05 2019-09-12 味の素株式会社 植物の病害抵抗性誘導用または植物の病害防除用の組成物
JPWO2020255932A1 (ja) * 2019-06-17 2020-12-24
WO2020255933A1 (ja) * 2019-06-17 2020-12-24 昭和電工株式会社 セロオリゴ糖を含む植物活力剤及びその使用
WO2020255934A1 (ja) * 2019-06-17 2020-12-24 昭和電工株式会社 アミノ酸又はその塩とオリゴ糖を含む植物活力剤ならびにその使用
JPWO2020255933A1 (ja) * 2019-06-17 2020-12-24
WO2020255932A1 (ja) * 2019-06-17 2020-12-24 昭和電工株式会社 外生エリシター及び内生エリシターを含む植物活力剤ならびにその使用
JPWO2020255934A1 (ja) * 2019-06-17 2020-12-24
CN113993380A (zh) * 2019-06-17 2022-01-28 昭和电工株式会社 包含外源性激发子和内源性激发子的植物活力剂、及其使用
CN113993379A (zh) * 2019-06-17 2022-01-28 昭和电工株式会社 包含氨基酸或其盐、和寡糖的植物活力剂、及其使用
CN114007423A (zh) * 2019-06-17 2022-02-01 昭和电工株式会社 包含纤维寡糖的植物活力剂及其使用
CN113993380B (zh) * 2019-06-17 2023-12-22 株式会社力森诺科 包含外源性激发子和内源性激发子的植物活力剂、及其使用
JP7435606B2 (ja) 2019-06-17 2024-02-21 株式会社レゾナック セロオリゴ糖を含む植物活力剤及びその使用
KR102688862B1 (ko) 2019-06-17 2024-07-29 가부시끼가이샤 레조낙 외생 엘리시터 및 내생 엘리시터를 포함하는 식물 활력제 및 그 사용

Also Published As

Publication number Publication date
EP2524597A1 (en) 2012-11-21
EP2524597A4 (en) 2013-08-21
JPWO2011087002A1 (ja) 2013-05-20
JP5790507B2 (ja) 2015-10-07
EP2524597B1 (en) 2016-03-16
ES2574905T3 (es) 2016-06-23

Similar Documents

Publication Publication Date Title
JP5790507B2 (ja) ウリ科植物病害抵抗性増強剤およびそれを用いた植物病害防除法
Fu et al. Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab.
Konappa et al. Evaluation of biological efficacy of Trichoderma asperellum against tomato bacterial wilt caused by Ralstonia solanacearum
Madhaiyan et al. Plant growth–promoting Methylobacterium induces defense responses in groundnut (Arachis hypogaea L.) compared with rot pathogens
Liljeroth et al. Induced resistance in potato to Phytphthora infestans—effects of BABA in greenhouse and field tests with different potato varieties
Nozari et al. Streptomyces spp. enhance vegetative growth of maize plants under saline stress
Patel et al. Combined application of Ascophyllum nodosum extract and chitosan synergistically activates host-defense of peas against powdery mildew
Nagpal et al. Coordination of Mesorhizobium sp. and endophytic bacteria as elicitor of biocontrol against Fusarium wilt in chickpea
WO2012046758A1 (ja) イネ科植物病害抵抗性増強剤およびそれを用いたイネ科植物の病害防除法
WO2019172277A1 (ja) 植物の病害抵抗性誘導用または植物の病害防除用の組成物
García-Garijo et al. Metabolic responses in root nodules of Phaseolus vulgaris and Vicia sativa exposed to the imazamox herbicide
Devaiah et al. Induction of systemic resistance in pearl millet (Pennisetum glaucum) against downy mildew (Sclerospora graminicola) by Datura metel extract
RU2646160C2 (ru) Штамм бактерий pseudomonas fluorescens для защиты растений от фитопатогенных грибов и бактерий и стимуляции роста растений
Das et al. Seed biopriming with potential bioagents influences physiological processes and plant defense enzymes to ameliorate sheath blight induced yield loss in rice (Oryza sativa L.)
CA2951582A1 (en) Method for prophylaxis of infections in crops and ornamentals, preferably in viticulture, and in woody plants
Jha et al. Enhancement of disease resistance, growth potential, and biochemical markers in maize plants by inoculation with plant growth-promoting bacteria under biotic stress
Khalil et al. Involvement of secondary metabolites and extracellular lytic enzymes produced by plant growth promoting rhizobacteria in inhibiting the soilborne pathogens in faba bean plants
Shoaib et al. Mineral fertilizers improve defense related responses and reduce early blight disease in tomato (Solanum lycopersicum L.)
Kumar et al. Secondary metabolites from cyanobacteria: a potential source for plant growth promotion and disease management
Ratnayake et al. Soil application of rice husk as a natural silicon source to enhance some chemical defense responses against foliar fungal pathogens and growth performance of Bitter Gourd (Momordica charantia L.)
KR101867896B1 (ko) 복합비료 조성물
Aldayel et al. Bacillus Amyloliquefaciens IKMM and Zinc Nanoparticles as Biocontrol Candidate Induce the Systemic Resistance by Producing Antioxidants in Tomato Plants Challenged with Early Blight Pathogen
Swift Plant growth-promoting bacteria from Western Australian soils
Mahadevaswamy et al. Rhizobial elicitor molecule signaling muskmelon defense against gummy stem blight disease involving innate immune response
Nguyen et al. Exploration of a multifunctional biocontrol agent Streptomyces sp. JCK-8055 for the management of apple fire blight

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011549978

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011732872

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE