WO2009088074A1 - 植物用病害耐性増強剤およびそれを用いた植物病害防除法 - Google Patents

植物用病害耐性増強剤およびそれを用いた植物病害防除法 Download PDF

Info

Publication number
WO2009088074A1
WO2009088074A1 PCT/JP2009/050216 JP2009050216W WO2009088074A1 WO 2009088074 A1 WO2009088074 A1 WO 2009088074A1 JP 2009050216 W JP2009050216 W JP 2009050216W WO 2009088074 A1 WO2009088074 A1 WO 2009088074A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
disease resistance
heat treatment
activity
plant
Prior art date
Application number
PCT/JP2009/050216
Other languages
English (en)
French (fr)
Inventor
Daisuke Igarashi
Taito Takeda
Takashi Ishizaki
Kazuhiko Totsuka
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to JP2009548967A priority Critical patent/JP5434597B2/ja
Priority to EP09700633.2A priority patent/EP2241186B1/en
Priority to PL09700633T priority patent/PL2241186T3/pl
Priority to ES09700633.2T priority patent/ES2485990T3/es
Publication of WO2009088074A1 publication Critical patent/WO2009088074A1/ja
Priority to US12/833,590 priority patent/US9173407B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • A01N63/22Bacillus
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom

Definitions

  • the present invention relates to a plant disease resistance enhancer and a plant disease control method that use microorganisms as a raw material and have a low environmental impact and are safe for users and consumers.
  • pesticides aimed at inducing disease resistance in plants include probenazole (trade name: oryzate), benzothiazole (BTH) acibenzoral S methyl (ASM, trade name: Vion), and thiadiazole carboxamide-based thianidyl (trade name: (Vuget) is sold.
  • polysaccharide degradation products for example, refer to Patent Document 1
  • cerebrosides for example, refer to Patent Document 2, Patent Document 3, and Non-Patent Document 1
  • jasmonic acid for example, , Patent Document 4 and Non-Patent Document 2
  • chitin oligosaccharide for example, see Non-Patent Document 3
  • ⁇ -1,3- and ⁇ -1,6-glucan oligosaccharide for example, Non-Patent Document 4, Patent Document 5 and Non-Patent Document 6
  • bile acid see Patent Document 5 and Non-Patent Document 8
  • peptidoglycan see Non-Patent Document 9
  • lipopolysaccharide see Non-Patent Document 10.
  • JP-A-5-331016 Japanese Patent No. 2846610 International Publication No.98 / 47364 Japanese Patent Laid-Open No. 11-29412 JP 2006-219372
  • An object of the present invention is to provide a plant disease resistance enhancer that is highly safe and inexpensive for consumers and users and a plant disease control method using the same based on the above-mentioned background.
  • the present inventors searched for a disease resistance inducing substance and found that the extract obtained by heat-treating microorganisms in an acidic solution has a high disease resistance inducing activity. In other words, it was found that when the extract was sprayed on plants, production of active oxygen, chitinase activity, and glucanase activity were increased, leading to remarkable disease resistance induction. Furthermore, it discovered that it had a high control effect with respect to the infection of rice blast and Brassicaceae black spot bacterial disease. The present inventors have also found that addition of a metal such as zinc and / or copper further increases the disease resistance induction by the extract or improves the sustainability. The present invention has been completed based on the above findings.
  • the present invention is as follows.
  • a plant disease resistance enhancer comprising an extract obtained by heat-treating microbial cells in an acidic solution.
  • the disease resistance enhancer according to (1) wherein the heat treatment in an acidic solution is a treatment of heating to 70 ° C. or higher in a solution having a pH of 6 or lower.
  • the disease resistance enhancer according to (1) or (2) wherein the microorganism is Escherichia bacteria, coryneform bacteria, Pantoea bacteria, Bacillus bacteria, yeast, lactic acid bacteria, or acetic acid bacteria.
  • the disease resistance enhancer according to any one of (1) to (3) which is a foliar spray.
  • the disease resistance enhancer according to any one of (1) to (4) further comprising a metal.
  • a method for controlling a plant disease which comprises treating the plant with the disease resistance enhancer according to any one of (1) to (6).
  • C is a control (spreading zone of spreading agent only), 1 is a Corynebacterium acid heat treatment solution, 2 is a Corynebacterium heat treatment solution (no pH adjustment: pH 6.3), 3 is a Corynebacterium untreated solution (pH 6.3) The activity when foliar is sprayed.
  • C is control (spreading zone of spreading agent only), 1 is E.
  • coli acid heat treatment solution 2 is E. coli heat treatment solution (no pH adjustment: pH 6.3), 3 is E. coli untreated It shows the activity when a liquid (pH 6.3) is sprayed on the leaves.
  • C is a control (foliar spraying zone of spreading agent only), and 1 is an activity when the acid heat treatment liquid is sprayed on the foliage.
  • C is a control (foliar sprayed area of spreading agent only)
  • 1 is Corynebacterium cell suspension (pH 6)
  • 2 is a solution of Corynebacterium cell suspension (pH 6) heated at 75 ° C for 60 minutes
  • 3 Shows the activity when sprayed liquids of Corynebacterium cell suspension (pH 6) heated at 95 ° C for 60 minutes.
  • the effect of heat treatment was examined using a solution obtained by diluting 1/10 of the bacterial cell treatment solution. The figure which shows the effect with respect to chitinase activity of Arabidopsis thaliana by the activated sludge process liquid.
  • C is a control (foliar spraying zone of spreading agent only), and 1 is the activity when the activated sludge treatment solution is diluted 1/20 and sprayed on the foliage.
  • C is the control (spreading zone of spreading agent only), 1 is Corynebacterium acid heat treatment solution, 2 is Corynebacterium acid heat treatment solution + zinc (0.01% w / v), 3 is zinc (0.01% w / v) The activity when foliar is sprayed.
  • the upper row shows the results for 24 hours after the treatment, and the lower row shows the results for 72 hours after the treatment.
  • C is a control (spreading zone of spreading agent only)
  • 1 is E. coli acid heat treatment solution
  • 2 is E. coli acid heat treatment solution + zinc (0.01% w / v)
  • 3 is zinc (0.01%) It shows the activity when f / w is sprayed on the foliage.
  • C is a control (spreading zone of spreading agent only), 1 is Corynebacterium acid heat treatment liquid, 2 is Corynebacterium acid heat treatment liquid + Cu (0.01% w / v), 3 is E. coli acid heat treatment liquid, 4 shows the activity when sprayed with E. coli acidic heat treatment solution + Cu (0.01% w / v).
  • C is the control (foliar sprayed area of the spreading agent only), 1 in (A) shows the activity when foliar sprayed with 100 mg / L of peptidoglycan, and 1 in (B).
  • C is a control (foliar sprayed area of the spreading agent only), and 1 is the activity when the proline fermentation supernatant (amino acid 50 ppm) is sprayed on the foliage.
  • (A) is a photograph of Arabidopsis leaves, the left two leaves are untreated (control), and the right two leaves are pretreated with Corynebacterium acid heat treatment solution and then infected with pathogenic bacteria .
  • (B) is the number of pathogenic bacteria per unit weight of leaves. The figure which shows the effect with respect to the glucanase activity of rice by each microbial acidic heat processing liquid.
  • C is a control (foliar spray zone of spreading agent only), 1 is Corynebacterium acid heat treatment solution, 2 is E. coli acid heat treatment solution, 3 is Pantoea acid heat treatment solution, 4 is Bacillus acid heat treatment solution Shows the activity when sprayed.
  • the figure which shows the infection control effect of the rice blast disease by the Corynebacterium acidic heat processing liquid is the control (spreading agent approach BI (Kao) spraying zone), 1 is pretreatment with spreading agent plus Corynebacteriume acid heat treatment solution, the vertical axis of the graph is the lesions per leaf Indicates a number. It shows asparagus by Corynebacterium acidic heat-treated solution, strawberries, active oxygen (H 2 O 2) generation amount of grapes. The leaves of each plant were treated and the amount of active oxygen generated was measured. The value was shown by relative fluorescent units (RFU).
  • RFU relative fluorescent units
  • C represents a control
  • 1 represents the amount of active oxygen generated when a solution (100 ppm) after treating the molecular weight fraction (5 kDa or more and 30 kDa or less) of a Corynebacterium acidic heat-treated solution.
  • the figure which shows the effect with respect to chitinase activity of the cabbage by a Corynebacterium acidic heat processing liquid. The treatment solution was poured into cabbage leaves cultivated for 3 weeks after sowing, and chitinase activity was measured 48 hours later.
  • C represents a control
  • 1 represents activity when treated with a Corynebacterium acidic heat treatment solution.
  • C represents a control
  • 1 represents activity when treated with an acidic heat treatment solution of Saccharomyces cerevisiae.
  • C is the control (spreading agent approach BI (Kao) spraying zone)
  • 1 is the pretreatment with the spreading agent plus Saccharomyces cerevisiae acid heat treatment solution
  • the vertical axis of the graph is the disease per leaf Indicates the number of spots.
  • C indicates a control
  • 1 indicates the expression level of the PBZ1 gene normalized by the expression level of RAc1 when the acidic heat treatment solution of Corynebacterium is treated.
  • microorganisms refer to eukaryotes such as yeast and fungi, and prokaryotes such as bacteria or actinomycetes, and are not limited to gram-positive and gram-negative bacteria.
  • eukaryotes such as yeast and fungi
  • prokaryotes such as bacteria or actinomycetes
  • gram-positive and gram-negative bacteria Preferably, coryneform bacteria, Bacillus bacteria, Escherichia bacteria, Pantoea bacteria, lactic acid bacteria, acetic acid bacteria, yeasts and the like can be used.
  • Examples of the genus Escherichia include Escherichia coli (E. coli) and the like.
  • Pantoea bacteria include Pantoea ananatis.
  • Examples of Bacillus bacteria include Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus pumilus and the like.
  • Examples of yeast include Saccharomyces yeasts such as Saccharomyces cerevisiae, Pichia yeasts such as Pichia pastoris, Hansenula yeasts such as Hansenula polymorpha, Candida yeasts such as Candida utilis, Shishisaccharomyces pombe, etc.
  • lactic acid bacteria examples include Lactobacillus bacteria such as Lactobacillus casei, Lactococcus bacteria such as Lactococcus lactis, and Bifidobacterium bacteria such as Bifidobacterium bifidum.
  • acetic acid bacteria examples include Acetobacter bacteria such as Acetobacter aceti.
  • the acid heat treatment is preferably performed in an acidic solution having a pH of 6 or less, more preferably 5 or less, even more preferably 4 or less, and particularly preferably 3 or less. Although a minimum is not restrict
  • the heating condition is not particularly limited, but it is generally performed in the range of 70 ° C to 200 ° C.
  • the heat treatment is preferably performed at 75 ° C. or higher, more preferably 90 ° C. or higher, further preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher.
  • the heating is usually performed for 1 minute to 120 minutes, preferably 10 minutes to 60 minutes.
  • the microbial cells it is preferable to heat the microbial cells after suspending them in water, a buffer solution, a medium or the like to make them acidic.
  • the culture solution (fermentation solution) containing microbial cells used for the fermentation production of substances such as amino acids may be heated after being acidified.
  • organic sludge containing microorganisms or the like may be suspended in water or a buffer solution and acidified, and then heated.
  • organic sludge examples include sewage sludge discharged from a normal sewage treatment plant, sludge discharged from various organic wastewater biological treatment apparatuses, excess sludge and dehydrated materials thereof, and the like. It is to be noted that the acidic heat treatment is preferably carried out by suspending the concentration of microbial cells at 50 mg to 200 g (dry weight) / L.
  • the extract obtained by acid heat treatment (hereinafter also referred to as acid heat treatment liquid) can be used as a disease resistance enhancer after removing the cells by centrifugation or membrane separation. It may be used while containing.
  • the application concentration of the disease resistance enhancer of the present invention can be prepared by diluting or concentrating to an appropriate concentration according to the kind of plant, the growth stage, and the application method. A fraction fractionated by molecular weight can also be used.
  • Plant disease resistance-inducing activity refers to the production of active oxygen, antimicrobial proteins, accumulation of antimicrobial compounds, cell wall strengthening, chitinase, glucanase, etc. It is a series of reactions represented by accumulation of bactericidal enzymes. This activity can be evaluated by measuring the enzyme activity of chitinase or glucanase and measuring active oxygen according to the method described in the Examples. It can also be evaluated by examining the expression level of disease resistance-related genes such as PBZ1 gene by RT-PCR.
  • Examples of the method for applying the disease resistance enhancer of the present invention include spraying on a plant body (foliar spraying agent, etc.) or coating treatment, soaking treatment in roots, mixing treatment in soil, and the like.
  • the plant disease control method of the present invention is mainly intended for prevention of diseases, it is preferably used prior to the time when the diseases occur. However, even after the occurrence of a disease, an effect of suppressing the expansion or attenuating the disease can be expected.
  • the disease resistance enhancer of the present invention may contain other components. Examples of the other components include metals such as zinc and copper. The effect is exhibited even by spraying the acidic heat treatment liquid of the microorganism, but the effect can be increased and sustained by adding a metal such as zinc or copper.
  • the concentration of the metal is preferably in a concentration range such that the weight of the metal is 0.0001% to 10% (w / v) at the time of application.
  • a metal such as zinc or copper is preferably added to the disease resistance enhancer of the present invention in the form of a salt so as to form ions in the solution.
  • the crop to be targeted by the disease resistance enhancer of the present invention is not particularly limited and can be applied to general cultivated plants.
  • grasses rice, barley, wheat, corn, oat, shiba, etc.
  • Eggplant plants tomatoes, eggplants, potatoes, etc.
  • Cucurbitaceae plants cucumbers, melons, pumpkins, etc.
  • legumes peas, soybeans, kidney beans, alfalfa, groundnuts, broad beans, etc.
  • cruciferous plants radish, Chinese cabbage, Cabbage, Komatsuna, Nanohana, Chingensai, Arabidopsis, etc., Rosaceae (strawberry, apple, pear, etc.), Mulberry family (such as mulberry), Aoiaceae (such as cotton), Aceraceae (carrot, parsley, celery, etc.), Lily Family (Onion, Onion, Asparagus, etc.), Asteraceae (burdock, sunflower, chry
  • target diseases include all plant diseases caused by filamentous fungi, bacteria, and viruses.
  • rice blast fungus Magnaporthe grisea
  • rice sesame leaf blight fungus Cochliobolus miyabeanus
  • black spot bacterial disease potato powdery scab (Spongospora subterranea), potato plague fungus (Phytophthora infestans)
  • soybean downy mildew Peronospora) manshurica
  • barley powdery mildew Eryshiphe graminis f. sp. hordei
  • wheat powdery mildew Eryshiphe graminis f. sp.
  • the disease resistance enhancer of the present invention is prepared by mixing an acidic heat treatment solution of microorganisms with an appropriate additive and adding it to a plant in any form such as solution, powder, granule, emulsion, wettable powder, oil, aerosol, and flowable. May be used. Furthermore, if desired, a buffer solution or the like is added to adjust the pH, and a spreading agent, a surfactant, or the like can be added to improve the plant permeability, spreading property, or the like.
  • Example 1 Preparation method of plant disease resistance enhancer derived from microorganisms Escherichia coli, Corynebacterium glutamicum, Pantoea ananatis, Bacillus subtilis, or Saccharomyces cerevisiae was used as the microorganism.
  • Various cells were cultured to about 1.5-2.0 g (dry weight) per 100 mL of the culture solution.
  • media described in JP-A-2005-278643, JP-A-2003-259861, RE-Table 01/090310, etc. were used. Each bacterial cell was collected by centrifugation at 6,000 rpm, washed 3 times with pure water, and then suspended in 100 mL of pure water per 1.5-2.0 g (dry weight).
  • H 2 SO 4 was added to adjust the pH to 3.2, and then heat treatment was performed using an autoclave at 121 ° C. for 30 minutes. The obtained solution was centrifuged at 10,000 rpm to remove insoluble components. The supernatant obtained here was used as an acidic heat treatment solution in the subsequent experiments. For treatment of plant bodies, a solution diluted 100 times was used unless otherwise specified.
  • the diurnal period was 14 hours light and the light intensity was cultivated for 21 days at approximately 100 ⁇ mol m ⁇ 2 s ⁇ 1 .
  • the spraying effect by each solution was evaluated for plants cultivated on an agar medium or rock wool, and unless otherwise specified, treated the plant with a solution prepared by diluting 100 times according to the method described in Example 1, The enzyme activity in the leaves was measured 24 hours after the treatment.
  • Approach BI Kao
  • Chitinase activity measurement Chitinase activity was determined by the method by McCreath et al. (J. Microbiol. Methods 14: 229-1992).
  • the substrate 4MU- (GlcNAc) 3 (SIGMA M5639) was dissolved in 50% ethanol to a final concentration of 0.4 mM and stored at ⁇ 20 ° C. When used, the substrate solution was diluted 10 times.
  • the extracted crude extract was adjusted to 6-8 ⁇ g / ⁇ L, and 50 ⁇ L was used for the reaction. After preincubation for 10 minutes at 37 ° C. on a 96-well plate, 50 ⁇ L of the substrate solution was added, and the reaction was started at 37 ° C.
  • reaction amount was defined as 1 unit of the amount of enzyme that reacts at 1 ⁇ mol per minute based on the standard value obtained by using 4-MU (methylumbelliferone) as a substrate.
  • reaction amount was defined as 1 unit of the enzyme that reacts at 1 ⁇ mol per minute.
  • FIG. 1 shows the results of evaluation of plants sprayed with an acidic heat treatment solution of Corynebacterium cells.
  • a dramatic increase in chitinase / glucanase activity was observed by spraying a solution that had been heat-treated under acidic conditions, as compared to the case where the cells were heated or acid-treated.
  • FIG. 2 shows the results of evaluation performed on E. coli cells.
  • heat treatment under acidic conditions was shown to extract disease resistance inducers very effectively.
  • the heat treatment liquid under acidic conditions of Pantoea and Bacillus cells was evaluated.
  • FIG. 3 in all cases, an increase in chitinase activity was observed, indicating that there was a disease resistance inducing effect.
  • FIG. 5 shows the results when the obtained solution was centrifuged at 10,000 rpm and the supernatant obtained by removing insoluble components was used as the acidic heat treatment solution.
  • the acid heat treatment liquid of microorganisms contained in excess sludge also has a disease resistance inducing effect. From these results, it was found that disease resistance inducers were extracted from microorganisms by heat-treating various cells under acidic conditions.
  • FIG. 6 and FIG. 7 show the results of verifying the effect when ZnSO 4 is mixed in the spray solution with a zinc Zn weight ratio of 0.01%. Compared with the case of the bacterial cell acidic heat treatment solution or Zn alone, the bacterial cell acidic heat treatment solution + Zn tended to increase the enzyme activity.
  • Example 3 Infection control effect of black spot bacterial disease on Arabidopsis thaliana Pseudomonas syrinagae pv. Maculicola was cultured in YEP medium for 24 hours. The cultured cells were collected at 3,000 rpm and suspended in 10 mM MgSO 4 aqueous solution so as to be 5 ⁇ 10 6 cfu / mL. The bacterial cell suspension was injected into the leaves with a 1 mL syringe without a needle and infected. Observations were made on the third day after infection to confirm morbidity. In the test, the pretreatment was carried out by spraying only the spreading agent or spreading agent + acid heat treatment solution, and 24 hours later, the pathogen was infected. As shown in FIG. 11, it was shown that the infection was remarkably suppressed in the spreader + acid heat treatment liquid as compared with the spreader alone.
  • Example 4 Disease Resistance Induction and Rice Blast Infection Control Effect in Rice (1) Rice Cultivation and Dispersal Method Rice (variety: Nipponbare) seeds are soaked in water for 3 days to germinate and grow horticultural soil (power soil (Kanto fertilizer) Kogyo Co., Ltd. (Kureha Chemical Industry Co., Ltd.)) and vermiculite (S.K.Agri Co., Ltd.) mixed at a ratio of 4: 1) and cultivated in a greenhouse. In the greenhouse, the plant was cultivated in natural light for 14 days, and plants of the true leaf 4.5 leaf age were used as samples.
  • horticultural soil power soil (Kanto fertilizer) Kogyo Co., Ltd. (Kureha Chemical Industry Co., Ltd.)
  • vermiculite S.K.Agri Co., Ltd.
  • reaction amount was defined as 1 unit of the enzyme that reacts at 1 ⁇ mol per minute.
  • Example 2 Rice was treated with a solution prepared by the method described in Example 1 that had been heat-treated under acidic conditions of Corynebacterium cells without dilution, and glucanase activity was measured 24 hours later. As shown in FIG. 12, it was shown that the glucanase activity was significantly increased by spraying the bacterial cell acidic heat treatment solution as compared with the control.
  • control value (average number of lesions in the control group ⁇ average number of lesions in the sample treatment group / average number of lesions in the control group) ⁇ 100. As shown in FIG. 13, it was shown that infection with pathogenic bacteria can be significantly controlled by spraying the bacterial cell acidic heat treatment solution as compared with the control.
  • Example 5 Disease Resistance Induction Evaluation Using Active Oxygen Production in Various Plants Each plant was sown in soil-metromix (Hyponex Japan), and the light intensity was about 100 ⁇ mol m ⁇ 2 s ⁇ 1 , 14 hours light period, 10 Fresh true leaves of plants cultivated for 21 days in a time-dark cycle were used for evaluation.
  • the measurement of active oxygen (H 2 O 2 ) was performed by changing the method of Kunze et al. (Plant Cell, 16, 3496-2004). Plant leaves are cut into 3mm squares, soaked in sterilized water overnight, and each cell (1. Corynebacterium, 2. E. coli, 3. Bacillus, 4. Pantoea, 5. Saccharomyces cerevisiae) is heated by acid.
  • the treatment solution used was a solution obtained by fractionating a Corynebacterium acidic heat treatment solution from 5 kDa to 30 kDa by ultrafiltration.
  • an ultrafiltration filter (Amicon Ultra-15 centrifugal filter; 30K NMWL, 5K NMWL; Millipore) was used for molecular weight fractionation. The measurement was compared with the control using the relative fluorescence intensity as the amount of active oxygen generated. As shown in FIG. 14, it was shown that the fraction solution induces significant active oxygen production even in the treatment of asparagus, strawberries, and grapes.
  • Example 7 Effect of Corynebacterium treatment solution on cabbage chitinase activity After seeding cabbage on soil and cultivating for 3 weeks, the first true leaf was infused with 10-fold diluted Corynebacterium acid heat treatment solution and measured for chitinase activity 48 hours later did. The control was water treated. As shown in FIG. 15, it was shown that chitinase activity was significantly increased by spraying the bacterial cell acidic heat treatment solution compared to the control.
  • Example 8 Effect on rice by Saccharomyces cerevisiae acid heat treatment solution
  • the effect on rice by Saccharomyces cerevisiae acid heat treatment solution was examined by measuring the increase in glucanase activity and the infection control effect.
  • FIG. 16 it was shown that the glucanase activity was significantly increased by spraying the Saccharomyces cerevisiae acidic heat treatment solution (diluted at 1 ⁇ ), and as shown in FIG. 17, the Saccharomyces cerevisiae acidic heat treatment solution (5 ⁇ It was shown that infection with pathogenic bacteria can be significantly controlled by application of (dilution).
  • Example 9 Induction of disease resistance gene expression by heat treatment of bacterial acid to rice roots
  • a 1 mL chip filled with an agar medium supplemented with 0.8% Agar in OptMS inorganic salt culture medium (Table 1) was set on a chip rack, and sterilized rice (cultivar: Koshihikari) seeds were sown on the medium.
  • the chip was cultivated for 1 week with the cut end cut off about 20 mm or less from the lower end so that the roots could extend, and the cut end immersed in pure water to prevent drying.
  • Rice seedlings grown on the chip were fitted with a 20 mm thick styrene foam float and floated in a food pack (C-AP Fruit 200, Chuo Chemical Co., Ltd.) containing OptMS 1L.
  • ABI PRISM 7500 was used, and the reaction conditions were 95 ° C for 15 seconds and 60 ° C for 60 seconds in 40 cycles.
  • the reagent used was Power SYBR Green PCR Master Mix (Applied Biosystems).
  • RAc1 RAP code, Os11g0163100
  • PBZ1 RAP code, Os12g0555200
  • the following primers were used for expression of each gene: 5'-CCCCTTGTGTGTGACAATGG-3 '(SEQ ID NO: 1), 5'-CCCTGGGCGCATCGT-3' (SEQ ID NO: 2) (RAc1), 5'-GGAGCAGGAGAAGATGATCG-3 '(SEQ ID NO: 1) 3) and 5'-TTCTTCTCACATGCGACCAC-3 '(SEQ ID NO: 4) (PBZ1).
  • the expression level of PBZ1 was normalized by the expression level of RAc1. The results are shown in FIG. When roots were treated, it was shown that the expression level of PBZ1 gene increased in roots.
  • the disease resistance enhancer of the present invention can be easily obtained by heat treatment (acid heat treatment) of microbial cells contained in various microbial cell residues and organic sludge after fermentation of amino acids and the like in an acidic solution.
  • heat treatment acid heat treatment
  • large-scale preparation can be easily achieved in terms of cost.
  • Many types of pesticides that act directly against plant pathogens such as bactericides, show bactericidal effects against pathogens, but they are resistant to the emergence of mutants that are resistant to drugs through continuous use.
  • Inducible pesticides are known to be resistant to resistant mutants of drugs and can be used over a long period of time. For this reason, the fact that acid heat treatment liquids of microbial cells prevent disease infection by inducing disease resistance rather than antibacterial activity means that resistant mutants are unlikely to appear and are used for a long time. Since it is possible, it is extremely useful in the industry.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental Sciences (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 微生物の酸性加熱処理液からなる病害耐性増強剤を植物に処理することで病害耐性を誘導することにより病原菌の感染を防除する。

Description

植物用病害耐性増強剤およびそれを用いた植物病害防除法
 本発明は微生物を原料として、環境負荷が少なくかつ使用者および消費者にとって安全な植物用病害耐性増強剤と植物の病害防除方法に関する。
 農作物の病害を防除するために、殺菌剤など植物病原菌に直接作用することで病害を防除する農薬のほかに、植物自体が有する病害耐性を高めることで作物の病害を防除する農薬(耐性誘導型農薬)が使用されている。殺菌剤など植物病原菌に対して直接作用するタイプの農薬は、病原菌に対して殺菌効果を示すものが多いが、継続的な使用により薬剤に対して耐性変異株が出現する場合が多い。他方、耐性誘導型農薬は、直接病原菌に作用するのではなく、植物の耐性を誘導することで病害感染を防除することから、これまでにこのタイプの農薬の耐性変異株が出現した事例は認められていない。さらに、耐性誘導型農薬は、生物に対する殺菌作用が少ないために、植物以外の生物を含めた環境への負荷は比較的少ないと考えられている。
 これまで植物の病害耐性誘導を目的とした農薬は、プロベナゾール(商品名:オリゼメート)、ベンゾチアゾール系(BTH)のアシベンゾラルSメチル(ASM、商品名:バイオン)、チアジアゾールカルボキサミド系のチアニジル(商品名:ブイゲット)が販売されている。
 また、天然物由来の病害耐性誘導物質では、多糖体分解物(例えば、特許文献1参照。)、セレブロシド類(例えば、特許文献2、特許文献3及び非特許文献1参照)、ジャスモン酸(例えば、特許文献4及び非特許文献2参照)、キチンオリゴ糖(例えば、非特許文献3参照)、β-1,3-およびβ-1,6-グルカンオリゴ糖(例えば、非特許文献4、非特許文献5及び非特許文献6参照)、胆汁酸(特許文献5および非特許文献8参照)、ペプチドグリカン(非特許文献9参照)、リポポリサッカライド(非特許文献10参照)などが報告されている。これら物質はエリシターと呼ばれており、病原菌に対して抗菌活性をもつファイトアレキシン(phytoalexins)の蓄積、病原菌の細胞壁を溶解するキチナーゼやβ-1,3-グルカナーゼなどのPRタンパク(Pathogenesis-related proteins)の蓄積、過敏感細胞死の誘導等の効果があることが知られている(例えば、非特許文献3及び非特許文献7参照)。
 また、コリネバクテリウムによるプロリン発酵液の上清の散布により病原菌の感染を防除する方法(特許文献6)が知られているが、酸性条件下で微生物を加熱処理して得られる溶液の効果は知られていない。
特開平5-331016号公報 特許第2846610号公報 国際公開98/47364号公報 特開平11-29412号公報 特開2006-219372号公報 特開平6-80530号公報 Koga J. et. al., J. Biol. Chem., 1998, 48, 27, p.31985-31991 Nojiri H. et. al., Plant Physiol., 1996, 110, p.387-392 Yamada A. et. al., Biosci. Biotech. Biochem., 1993, 57, 3, p.405-409 Sharp J . K. et al., J. Biol. Chem., 1984, 259, p.11312-11320 Sharp J. K. et. al., J. Biol. Chem., 1984, 259, p.11321-11336 Yamaguchi T. et. al., Plant Cell, 2000, 12, p.817-826 Keen N. T., Plant Mol. Biol., 1992, 19, p.109-122 Koga J. et. al., Plant Physiol. 2006, 140, p.1475-1483 Gust A. A. et. al., J. Biol. Chem., 2007, 2007 in press Newman M,.A, Plant J. 2002, 29, p.487-495.
 本発明の目的は、上述の背景にもとづき、消費者および使用者に対して安全性が高く、安価な植物用病害耐性増強剤とそれを用いた植物病害防除法を提供することである。
 本発明者らは病害耐性誘導物質を探索したところ、微生物を酸性溶液中で加熱処理することで得られる抽出液に高い病害耐性誘導活性があることを発見した。すなわち当該抽出液を植物に散布することで活性酸素の産生、キチナーゼ活性、グルカナーゼ活性の上昇が認められ、顕著な病害耐性誘導が引き起こされることを見出した。さらにイネいもち病、アブラナ科黒斑細菌病の感染に対して高い防除効果を有することを見出した。本発明者らはまた亜鉛及び/又は銅などの金属を添加することで当該抽出液による病害耐性誘導がさらに増加、または持続性が向上することを見出した。以上の発見に基づいて本発明を完成させた。
 本発明は以下のとおりである。
(1)微生物菌体を酸性溶液中で加熱処理することにより得られる抽出液を含む、植物用病害耐性増強剤。
(2)酸性溶液中での加熱処理が、pH6以下の溶液中で70℃以上に加熱する処理である、(1)記載の病害耐性増強剤。
(3)微生物がEscherichia属細菌、コリネ型細菌、Pantoea属細菌、Bacillus属細菌、酵母、乳酸菌、酢酸菌であることを特徴とする(1)または(2)記載の病害耐性増強剤。(4)葉面散布剤であることを特徴とする(1)~(3)のいずれかに記載の病害耐性増強剤。
(5)さらに金属を含むことを特徴とする(1)~(4)のいずれかに記載の病害耐性増強剤。
(6)金属が亜鉛及び/又は銅である(5)記載の病害耐性増強剤。
(7)(1)~(6)のいずれかに記載の病害耐性増強剤で植物を処理することを特徴とする、植物の病害を防除する方法。
Corynebacterium処理液による、シロイヌナズナのキチナーゼ活性またはグルカナーゼ活性に対する効果を示す図。Cは対照(展着剤のみの葉面散布区)、1はCorynebacterium酸性加熱処理液、2はCorynebacterium加熱処理液(pH調整なし:pH6.3)、3はCorynebacterium未処理液(pH6.3)を葉面散布したときの活性を示す。 E. coli処理液による、シロイヌナズナのキチナーゼ活性またはグルカナーゼ活性に対する効果を示す図。Cは対照(展着剤のみの葉面散布区)、1はE. coli酸性加熱処理液、2はE. coli加熱処理液(pH調整なし:pH6.3)、3はE. coli未処理液(pH6.3)を葉面散布したときの活性を示す。 Bacillus処理液(A)またはPantoea処理液(B)による、シロイヌナズナのキチナーゼ活性に対する効果を示す図。Cは対照(展着剤のみの葉面散布区)、1は酸性加熱処理液を葉面散布したときの活性を示す。 Corynebacterium処理液による、シロイヌナズナのキチナーゼ活性に対する効果を示す図。Cは対照(展着剤のみの葉面散布区)、1はCorynebacterium菌体懸濁液(pH6),2はCorynebacterium菌体懸濁液(pH6)を75℃で60分加熱処理した液,3はCorynebacterium菌体懸濁液(pH6)を95℃で60分加熱処理した液,をそれぞれ散布したときの活性を示す。本実験は菌体処理液を1/10希釈した溶液を用いて,加熱処理の効果を検討した。 活性汚泥処理液による、シロイヌナズナのキチナーゼ活性に対する効果を示す図。Cは対照(展着剤のみの葉面散布区)、1は活性汚泥処理液を1/20希釈して葉面散布したときの活性を示す。 Corynebacterium処理液と亜鉛による、シロイヌナズナのキチナーゼ活性またはグルカナーゼ活性に対する効果を示す図。Cは対照(展着剤のみの葉面散布区)、1はCorynebacterium酸性加熱処理液、2はCorynebacterium酸性加熱処理液+亜鉛(0.01% w/v)、3は亜鉛(0.01% w/v)を葉面散布したときの活性を示す。上段は処理後24時間、下段は処理後72時間の結果を示す。 E. coli処理液と亜鉛による、シロイヌナズナのキチナーゼ活性またはグルカナーゼ活性に対する効果を示す図。Cは対照(展着剤のみの葉面散布区)、1はE. coli酸性加熱処理液、2はE. coli酸性加熱処理液+亜鉛(0.01% w/v)、3は亜鉛(0.01% w/v)を葉面散布したときの活性を示す。 CorynebacteriumとE.coli処理液と銅による、シロイヌナズナのキチナーゼ活性に対する効果を示す図。Cは対照(展着剤のみの葉面散布区)、1はCorynebacterium酸性加熱処理液、2はCorynebacterium酸性加熱処理液+Cu(0.01% w/v)、3はE.coli酸性加熱処理液、4はE.coli酸性加熱処理液+Cu(0.01% w/v)をそれぞれ散布したときの活性を示す。 ペプチドグリカン(A)またはLPS(B)による、シロイヌナズナのキチナーゼ活性に対する効果を示す図。Cは対照(展着剤のみの葉面散布区)、(A)の1はペプチドグリカン100mg/L,(B)の1はLPS 100mg/Lを葉面散布したときの活性を示す。 プロリン発酵液上清(アミノ酸50ppm)による、シロイヌナズナのキチナーゼ活性またはグルカナーゼ活性に対する効果を示す図。Cは対照(展着剤のみの葉面散布区)、1はプロリン発酵液上清(アミノ酸50ppm)を葉面散布したときの活性を示す。 Corynebacterium酸性加熱処理液による、シロイヌナズナへの黒斑細菌病の感染防除効果を示す図。(A)はシロイヌナズナの葉の写真であり、左の2枚の葉は非処理(対照)、右の2枚の葉はCorynebacterium酸性加熱処理液で前処理した後に病原菌を感染させたものである。(B)は葉の単位重量あたりにおける病原菌の数である。 各微生物酸性加熱処理液による、イネのグルカナーゼ活性に対する効果を示す図。Cは対照(展着剤のみの葉面散布区)、1はCorynebacterium酸性加熱処理液、2はE. coli酸性加熱処理液、3はPantoea 酸性加熱処理液、4はBacillus酸性加熱処理液を葉面散布したときの活性を示す。 Corynebacterium酸性加熱処理液によるイネのいもち病の感染防除効果を示す図。Cは対照(展着剤アプローチBI(花王)散布区)、1は展着剤にCorynebacteriume酸性加熱処理液を加えたもので前処理をしたものであり、グラフの縦軸は葉あたりの病斑数を示す。 Corynebacterium酸性加熱処理液によるアスパラガス、イチゴ、ブドウの活性酸素(H2O2)発生量を示す図。各植物の葉に処理を行ない、活性酸素の発生量を測定した。値は相対的な蛍光値(RFU; relative fluorescent units)で示した。Cは対照、1はCorynebacterium酸性加熱処理液を分子量分画(5kDa以上、30kDa以下)した後の液(100ppm)を処理したときの活性酸素の発生量を示す。 Corynebacterium酸性加熱処理液によるキャベツのキチナーゼ活性に対する効果を示す図。播種後3週間栽培したキャベツの葉に処理液を注入し、48時間後のキチナーゼ活性を測定した。Cは対照、1はCorynebacterium酸性加熱処理液を処理したときの活性を示す。 Saccharomyces cerevisiae酸性加熱処理液によるイネのグルカナーゼ活性に対する効果を示す図。Cは対照、1はSaccharomyces cerevisiae酸性加熱処理液を処理したときの活性を示す。 Saccharomyces cerevisiae酸性加熱処理液によるイネのいもち病の感染防除効果を示す図。Cは対照(展着剤アプローチBI(花王)散布区)、1は展着剤にSaccharomyces cerevisiae酸性加熱処理液を加えたもので前処理をしたものであり、グラフの縦軸は葉あたりの病斑数を示す。 イネの根に対する菌体酸加熱処理液処理による病害抵抗性遺伝子発現誘導効果を示す図。Cは対照、1はCorynebacterium酸性加熱処理液を処理したときのRAc1の発現量で標準化されたPBZ1遺伝子の発現量を示す。
 本発明において微生物とは、酵母や菌類などの真核生物と、バクテリアあるいは放線菌などの原核生物を指し、グラム陽性、グラム陰性菌を限定しない。
 好ましくは、コリネ型細菌、バチルス属細菌、エシェリヒア属細菌、パントエア属細菌、乳酸菌、酢酸菌、酵母等が使用できる。
 コリネ型細菌としては、コリネバクテリウム・アセトアシドフィラム、コリネバクテリウム・アセトグルタミカム、コリネバクテリウム・アルカノリティカム、コリネバクテリウム・アンモニアゲネス、コリネバクテリウム・カルナエ、コリネバクテリウム・グルタミカム、コリネバクテリウム・リリウム、コリネバクテリウム・メラセコーラ、コリネバクテリウム・サーモアミノゲネス、コリネバクテリウム・ハーキュリス等のコリネバクテリウム属細菌やブレビバクテリウム・ディバリカタム、ブレビバクテリウム・フラバム、ブレビバクテリウム・インマリオフィラム、ブレビバクテリウム・ラクトファーメンタム、ブレビバクテリウム・ロゼウム、ブレビバクテリウム・サッカロリティカム、ブレビバクテリウム・チオゲニタリス、ブレビバクテリウム・アルバム、ブレビバクテリウム・セリヌム等のブレビバクテリウム属細菌、ミクロバクテリウム・アンモニアフィラム等のミクロバクテリウム属細菌等が例示される。
 エシェリヒア属細菌としては、エシェリヒア・コリ(E. coli)等が挙げられる。
 パントエア属細菌としてはパントエア・アナナティス等が挙げられる。
バチルス属細菌としては、バチルス・ズブチリス、バチルス・アミロリケファシエンス、バチルス・プミルス等が挙げられる。
 酵母としては、サッカロミセス・セレビジエ等のサッカロミセス属酵母、ピキア・パストリス等のピキア属酵母、ハンセヌラ・ポリモルファ等のハンセヌラ属酵母、キャンディダ・ユティリス等のキャンディダ属酵母、シゾサッカロミセス・ポンベ等のシゾサッカロミセス属酵母などが挙げられる。
 乳酸菌としては、ラクトバチルス・カゼイなどのラクトバチルス属細菌、ラクトコッカス・ラクチスなどのラクトコッカス属細菌、ビフィドバクテリウム・ビフィドゥムなどのビフィドバクテリウム属細菌が挙げられる。
 酢酸菌としては、アセトバクター・アセチなどのアセトバクター属細菌が挙げられる。
 本発明において、酸性加熱処理とは、好ましくはpH6以下、より好ましくはpH5以下、さらに好ましくはpH4以下、特に好ましくはpH3以下の酸性溶液中で加熱処理を行えばよい。下限は特に制限されないが、pH1が例示される。加熱条件は特に限定されないが70℃~200℃の範囲で行うのが一般的である。尚、好ましくは75℃以上、より好ましくは90℃以上、さらに好ましくは100℃以上、特に好ましくは120℃以上に加熱処理するのが望ましい。加熱は通常1分~120分、好ましくは10分~60分間加熱行えばよい。
 微生物の菌体を水や緩衝液や培地などに懸濁し、酸性にした後に、加熱することが好ましい。なお、培養終了後の微生物菌体を含む培養液を酸性にした後に、加熱してもよい。例えば、アミノ酸などの物質の発酵生産に使用した微生物菌体を含む培養液(発酵液)を酸性にした後に、加熱してもよい。さらには、微生物を含む有機性汚泥などを水や緩衝液に懸濁し、酸性にした後に、加熱してもよい。有機性汚泥としては、通常の下水処理場から排出される下水汚泥や各種の有機性廃水の生物処理装置から排出される汚泥、及びそれらの余剰汚泥や脱水物などが例示される。なお、酸性加熱処理を行う際には、微生物菌体の濃度を50mg~200g(乾燥重量)/Lに懸濁して行うことが好ましい。
 酸性加熱処理することによって得られる抽出液(以下、酸性加熱処理液ともいう)は、遠心分離や膜分離などで菌体を除いた後に、病害耐性増強剤として使用することができるが、菌体を含んだまま使用してもよい。
 本発明の病害耐性増強剤の施用濃度は植物の種類、生育ステージ、施用方法により適切な濃度に希釈又は濃縮して調製することができる。また、分子量で分画した画分を用いることもできる。
 植物病害抵抗誘導活性とは、植物がしばしば細菌、糸状菌などの感染時にその拡大を防除する為に引き起こされる活性酸素の産生、抗菌タンパク質、抗菌化合物の蓄積、細胞壁の強化、キチナーゼ、グルカナーゼ等の殺菌酵素の蓄積に代表される一連の反応である。本活性は実施例記載の方法に従い、キチナーゼまたはグルカナーゼの酵素活性測定および活性酸素測定などにより評価することが可能である。また、PBZ1遺伝子など病害抵抗性関連遺伝子の発現量をRT-PCRなどで調べることによっても評価することができる。
 本発明の病害耐性増強剤の施用方法の例としては、植物体への散布(葉面散布剤など)または塗布処理や根への浸漬処理、土壌への混合処理などが挙げられる。また、本発明の植物病害防除法は、病害の予防を主な目的としているため、病害が発生する時期に先駆けて使用することが好ましい。ただし、病害の発生後であってもその拡大を抑制したり、病害を減弱する効果は期待できる。
 本発明の病害耐性増強剤は、その他の成分を含んでもよい。その他の成分としては、亜鉛や銅などの金属が挙げられる。微生物の酸性加熱処理液の散布でも効果は発揮されるが、亜鉛や銅などの金属を添加することでその効果を増加、持続させることができる。金属の濃度は、金属の重量として施用時に0.0001%~10%(w/v)になるような濃度範囲が好ましい。亜鉛や銅などの金属は、溶液中でイオンを形成するように、塩の形で本発明の病害耐性増強剤に加えることが好ましい。
 本発明の病害耐性増強剤の対象となる作物は特に制限されず、栽培植物一般を対象とすることができるが、例えば、イネ科植物(イネ、オオムギ、コムギ、トウモロコシ、エンバク、シバなど)、ナス科植物(トマト、ナス、ジャガイモなど)、ウリ科植物(キュウリ、メロン、カボチャなど)、マメ科植物(エンドウ、ダイズ、インゲンマメ、アルファルファ、ラッカセイ、ソラマメなど)、アブラナ科植物(ダイコン、ハクサイ、キャベツ、コマツナ、ナノハナ、チンゲンサイ、シロイヌナズナなど)、バラ科植物(イチゴ、リンゴ、ナシなど)、クワ科(クワなど)、アオイ科(ワタなど)、セリ科(ニンジン、パセリ、セロリーなど)、ユリ科(ネギ、タマネギ、アスパラガスなど)、キク科(ゴボウ、ヒマワリ、キク、シュンギク、ベニバナ、レタスなど)、ブドウ科(ブドウなど)などである。
 植物の一般的な病害抵抗反応は病原菌に対して非特異的であることから、対象病害としては、糸状菌、細菌、ウイルスを原因とする植物病害すべてが含まれる。例えば、イネいもち病菌(Magnaporthe grisea)、イネごま葉枯病菌(Cochliobolus miyabeanus)、黒斑細菌病、ジャガイモ粉状そうか病菌(Spongospora subterranea)、ジャガイモ疫病菌(Phytophthora infestans)、ダイズべと病菌(Peronospora manshurica)、オオムギうどんこ病菌(Eryshiphe graminis f. sp. hordei)、コムギうどんこ病菌(Eryshiphe graminis f. sp. tritici)、ムギ類赤かび病菌(Gibberella zeae)、エンドウ褐紋病菌(Mycosphaerella pinodes)、ムギ類雪腐大粒菌核病菌(Sclerotinia borealis)、コムギ赤さび病菌(Puccinia recondita)、トウモロコシ黒穂病菌(Ustilago maydis)、オオムギ株腐病菌(Ceratobasidium gramineum)、ジャガイモ黒あざ病菌(Rhizoctonia solani)、イネ紋枯れ病(Rhizoctonia solani)、ジャガイモ夏疫病菌(Alternaria solani)、ダイズ紫斑病菌(Cercospora kikuchii)、サツマイモつる割病菌(Fusarium oxysporum f. sp. batatas)、メロンつる割病菌(Fusarium oxysporum f. sp. melonis)、レタス根腐病菌(Fusarium oxysporum f. sp. lactucae)、トマト萎凋病菌(Fusarium oxysporum f. sp. lycopersici)、ホウレンソウ萎凋病菌(Fusarium oxysporum f. sp. spinaciae)、トマト半身萎凋病菌(Verticillium dahliae)、アブラナ科根こぶ病菌(Plasmodiophora brassicae)、キュウリ苗立枯病菌(Pythium debaryanum)、イチゴ灰色かび病菌(Botrytis cinerea)、トマト炭そ病菌(Colletotrichum phomoides)、オオムギ、コムギ黒節病菌(Pseudomonas syringae pv. syringae)、ジャガイモ黒あし病菌(Erwiniasubsp. atroseptica)、イネ白葉枯病菌(Xanthomonas campestris pv. oryzae)、ジャガイモそうか病菌(Streptomyces scabies)、ムギ類萎縮ウイルス(Soil-borne wheat mosaic virus)、ダイズモザイクウイルス(Soybean mosaic virus)、アルファルファモザイクウイルス(Alfalfa mosaic virus)、ジャガイモ葉巻ウイルス(Potato leafroll virus)による病害などが挙げられる。
 本発明の病害耐性増強剤は微生物の酸性加熱処理液を適当な添加物と混合して液剤、粉剤、粒剤、乳剤、水和剤、油剤、エアゾール、フロアブル剤などのいずれの形態で植物に使用してもよい。さらに所望により緩衝液などを加えてpHを調整し、展着剤や界面活性剤などを加えて植物への浸透性、展着性などの改良を図ることもできる。
 以下、実施例をもって本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。
実施例1 微生物由来の植物用病害耐性増強剤の調製法
 微生物菌体はEscherichia coli、Corynebacterium glutamicum、Pantoea ananatis、Bacillus subtilis、またはSaccharomyces cerevisiaeを用いた。各種菌体は培養液100mLあたりおよそ1.5-2.0g(乾燥重量)まで培養を行なった。培養には特開2005-278643、特開2003-259861、再表01/090310などに記載の培地を用いた。
 各菌体は6,000rpmで遠心分離して回収し、純水で3回洗浄を行なった後、1.5-2.0g(乾燥重量)につき純水100mLに懸濁した。H2SO4を添加してpH3.2に調整した後、121℃で30分間オートクレーブを用いて加熱処理を行なった。得られた溶液を10,000rpmで遠心分離し、不溶成分を除去した。ここで得られた上清を酸性加熱処理液として以降の実験に用いた。植物体への処理には特に記載のない場合は100倍に希釈した溶液を用いた。
実施例2 酵素活性を指標とした植物病害耐性誘導の評価
(1)植物体の栽培と散布方法
 シロイヌナズナ寒天栽培はOptMS無機塩類培養液(表1)に1 % sucrose、0.8 % agarを加えた培地で2週間栽培した植物を用いた。日周は16時間明期で光強度はおよそ70μmol m-2s-1で栽培した。シロイヌナズナのロックウール栽培は5cm角のロックウール(日東紡社製・サイズV)を用いた。肥料としてOptMS無機塩類培養液(表1)を用いた。日周は14時間明期で光強度はおよそ100μmol m-2 s-1で21日間栽培し、地上部のうち葉柄以外すべてをサンプルとした。各溶液による散布効果は寒天培地またはロックウールで栽培した植物に対して評価し、特に記載のない場合は、実施例1記載の方法で調製した溶液を100倍希釈したもので植物を処理し、処理後24時間の葉内の酵素活性を測定した。散布溶液には展着剤としてアプローチBI (花王)を1/1000濃度で添加した。
Figure JPOXMLDOC01-appb-T000001
(2)酵素抽出
 酵素活性測定用に植物をサンプリングした後、直ちに液体窒素で凍結し、-80℃で保存した。凍結状態のまま植物破砕機MM300(QIAGEN)により破砕し500μLの抽出バッファー[100 mM Na3PO4 (pH6.0)、1 mM DTT、protease inhibitor / complete mini EDTA free (Roche)]に溶かした。10,000 rpm 5分間の遠心分離後の上清を0.22 μmフィルターに通し不溶化物を除去した。濃縮および脱塩を目的として限外ろ過フィルターUFV5BG00 (Millipore)に通した。1.5 mlの抽出バッファーを3回に分けて通すことで脱塩を行なった。ここで得られた画分を粗抽出画分とし、Bradford法によるタンパク質濃度測定後、酵素活性測定に用いた。
(3)キチナーゼ活性測定
 キチナーゼ活性はMcCreathらによる方法(J. Microbiol. Methods 14:229- 1992)により求めた。基質である4MU-(GlcNAc)3 (SIGMA M5639)は最終濃度0.4mMになるように50% エタノール中に溶解し-20℃で保存した。使用時に10倍に希釈し基質溶液とした。抽出した粗抽出液を6-8μg/μLに調製し50μLを反応に用いた。96穴プレート上で37℃で10分間のプレインキュベーション後に基質溶液50μLを添加し37℃で反応を開始した。反応開始後30分、150分後に反応液に100μLの1M Gly / NaOH buffer (pH 10.2)を添加し反応を停止した。反応、停止は96ウェルプレート上で行い、最終量200μLとした。液面の泡を完全に除去した後に蛍光検出用プレートリーダー(WALLAC 1420 ARVO-SX)を用いて蛍光強度を測定した。蛍光測定では360nmエキサイテイーション、450nmエミッションにより測定した。反応量は4-MU(メチルウンベリフェロン)を基質をして求めた標準値にもとづき1分間に1μmol反応する酵素量を1ユニットと定義した。
(4)グルカナーゼ活性測定
 シロイヌナズナにおけるグルカナーゼ活性測定はAonoらの方法(Appl Environ Microbiol. 58:520- 1992)に従って行なった。可溶性多糖であるラミナリン分解法を用いた。基質であるlaminarin (SIGMA L9634)は最終濃度5mg/mlとなるように滅菌水に溶解し-20℃で保存した。抽出した粗抽出液を6-8μg/μLに調製し50μLに基質溶液50μLを添加し、37℃で反応を開始した。反応開始後180分、360分後に反応液100μLを500μLのDNS溶液(5g/L dinitrosalicylic acid、16g/L NaOH、300g/L 酒石酸ナトリウムカリウム4水和物)に添加し、98℃で10分間加熱後氷上で急冷し発色させた。DNS法はMillerによる方法(Anal Chem 31: 426- 1959)により行い、発色後540nmの吸収量にもとづき活性を求めた。反応量はglucoseを基質として求めた標準値にもとづき1分間に1μmol反応する酵素量を1ユニットと定義した。
 Corynebacterium菌体の酸性加熱処理液を散布した植物の評価の結果を図1に示した。菌体を加熱または酸性処理した場合に比べて酸性条件下で加熱処理した溶液を散布することで飛躍的なキチナーゼ・グルカナーゼ活性の上昇が認められた。E.coli菌体を材料に行なった評価の結果を図2に示した。Corynebacteriumと同様に酸性条件下での加熱処理が極めて効果的に病害耐性誘導物質を抽出させることが示された。同様にPantoea、Bacillus菌体の酸性条件下での加熱処理液の評価を行なった。図3に示すとおり、いずれもキチナーゼ活性の上昇が認められ、病害耐性誘導効果があることが示された。
 また、pH6の溶液中で加熱処理を行って得られたCorynebacterium菌体の酸性加熱処理液を散布した植物の評価の結果を図4に示した。その結果、pH6,75℃で加熱することによって得られた処理液でもキチナーゼ活性の上昇が認められ、病害耐性誘導効果があることが示された。
 また、アミノ酸発酵廃液を主成分とする工場排水の活性汚泥処理装置より発生した余剰汚泥を脱水し、H2SO4水溶液を添加してpH3.2に調整した後、121℃で20分間加熱処理を行った後、得られた溶液を10,000rpmで遠心分離し、不溶成分を除去して得られた上清を酸性加熱処理液として用いた場合の結果を図5に示す。その結果、余剰汚泥に含まれる微生物の酸性加熱処理液にも、病害耐性誘導効果があることが示された。
 これらの結果から、様々な菌体を酸性条件下で加熱処理することで微生物から病害耐性誘導物質が抽出されることが判った。
 ZnSO4を亜鉛Znの重量比率0.01%として散布液に混合した場合の効果を検証した結果を図6と図7で示した。菌体酸性加熱処理液やZn単独の場合と比較して、菌体酸性加熱処理液+Znでは、酵素活性上昇が強くなる傾向が認められた。この効果はCorynebacterium(図6)およびE.coli(図7)菌体で共通に認められ、特にグルカナーゼの活性において顕著であった。さらに処理後24時間よりも72時間目においてその効果は顕著であり、持続的に効果を発揮させる上でZnの添加が有効であることが示された。
 また、CuSO4を銅Cuの重量比率0.01%として散布液に混合した場合の効果を検証した結果を図8で示した。その結果、各種菌体酸性加熱処理液にCuを加えた場合には酵素活性上昇が強くなる傾向が認められた。
比較例 既知の病害耐性誘導物質との効果比較
 過去に菌体の細胞壁を構成するペプチドグリカンやリポポリサッカライド(LPS)を植物が認識し、病害耐性誘導が引き起こされることが報告されており、それらの物質との効果の比較を行なった。ペプチドグリカンはinvivogen社製の標品(PGN-ECndss ultrapure)をリポポリサッカライドはシグマ製の標品(L8643)を用い、それぞれ効果があることが示されている100mg/L濃度でシロイヌナズナへの葉面散布を行い24時間後の酵素活性を測定した。図9に示すとおり、これらの物質ではキチナーゼの活性上昇は認められず、菌体酸性加熱処理液の葉面散布時の病害耐性誘導効果がこれらの物質よりも顕著に強いことが示された。
 また、プロリン(Pro)発酵液の上清の散布により、病原菌の感染が防除できるとの先行知見(特開平6-80530号公報)にもとづき、これと本願の菌体酸性加熱処理液との効果の比較検討を実施した。Pro発酵菌体(コリネバクテリウム グルタミカムATCC21159)は文献に記載の方法で培養を行い、アミノ酸分析計(日立 L-8800)を用いてアミノ酸分析を行った。植物体への処理にはアミノ酸の総量が50ppmとなるように希釈した溶液を用いた。図10で示すとおり、Pro発酵液上清の葉面散布では有意な酵素活性上昇は認められなかった。
実施例3 シロイヌナズナへの黒斑細菌病の感染防除効果
 病原菌であるPseudomonas syrinagae pv. maculicolaはYEP培地で24時間培養した。培養後の菌体を3,000rpmで回収し、5x106cfu/mLとなるように10mM MgSO4水溶液に懸濁した。菌体懸濁液を針をつけていない1mLシリンジにて葉内に注入し感染させた。感染後3日目に観察を行い、被病性を確認した。
 試験では、前処理を展着剤のみまたは展着剤+酸性加熱処理液を散布して行い、その24時間後に病原菌を感染させた。図11に示すとおり、展着剤のみに比べ、展着剤+酸性加熱処理液では顕著に感染が抑制されていることが示された。
実施例4 イネにおける病害耐性誘導とイネいもち病感染防除効果
(1)イネの栽培と散布方法
 イネ(品種:日本晴)種子を3日間水に浸して催芽し、園芸用培土(パワーソイル(関東肥料工業株式会社(呉羽化学工業株式会社))とバーミキュライト(エス・ケー・アグリ株式会社)を4:1で混合したもの)に播種して、温室内で栽培した。温室では自然光で14日間栽培し、本葉4.5葉齢期の植物をサンプルとして用いた。
(2)グルカナーゼ活性測定
 イネにおけるグルカナーゼ活性測定はInuiらの方法(Biosci Biotechnol Biochem. 61: 975- 1997)に従って行なった。試料(酸性加熱処理液)は本葉4.5葉齢期の第4本葉の表面10ヶ所に2μLずつのせ、24時間後にこの葉を液体窒素で凍結後、ホモジナイズ抽出した。抽出した粗抽出液100μLに900μLの基質溶液(1% Curdlan (SIGMA C7821), 50mM Na2HPO4-citric buffer, (pH5.0))を添加し、37℃で反応を開始した。反応開始60分後に反応液50μLを200μLのDNS溶液(5g/L dinitrosalicylic acid, 16g/L NaOH, 300g/L 酒石酸ナトリウムカリウム4水和物)に添加し、98℃で10分間加熱後、氷上で急冷し発色させた。DNS法はMillerによる方法(Anal Chem 31: 426- 1959)により行い、発色後540nmの吸収量にもとづき活性を求めた。反応量はglucoseを基質として求めた標準値にもとづき1分間に1μmol反応する酵素量を1ユニットと定義した。
実施例1記載の方法で調製した、Corynebacterium菌体の酸性条件下で加熱処理した溶液を希釈せずに用いてイネを処理し、その24時間後のグルカナーゼ活性を測定した。図12で示すとおり、対照と比較し、菌体酸性加熱処理液の散布により有意にグルカナーゼ活性が上昇することが示された。
(3)イネへのイネいもち病の感染防除効果
 本葉4.5葉齢期のイネの葉全体に実施例1記載の方法で調製したCorynebacterium菌体の酸性加熱処理液を10倍希釈した試料をスプレーし、24時間栽培した後、イネいもち病菌(学名:Magnaporthe oryzae)の分生胞子懸濁液(1×10分生胞子/mL)を噴霧接種した。噴霧接種後、暗所、湿室下に24時間放置することにより、いもち病菌を感染させた。接種6日後に各処理区の第4本葉に発生した罹病性病斑数を測定することにより防除価を算出した。防除価の算出は、防除価=(対照区平均病斑数-各区の試料処理区平均病斑数/対照区平均病斑数)×100とした。図13に示すとおり、対照と比較し、菌体酸性加熱処理液の散布により有意に病原菌の感染を防除できることが示された。
実施例5 各種植物における活性酸素産生を指標とした病害耐性誘導評価
 各植物は土-メトロミックス(ハイポネックスジャパン)に播種し、光強度はおよそ100μmol m-2 s-1、14時間明期、10時間暗期のサイクルで、21日間栽培した植物の新鮮な本葉を評価に用いた。
 活性酸素(H2O2)の測定には、Kunzeらの方法(Plant Cell, 16, 3496- 2004)を変更して行なった。植物の葉を約3mm四方に裁断し、一晩滅菌水に漬けた後に、各菌体(1.Corynebacterium、2.E.coli、3.Bacillus、4.Pantoea、5.Saccharomyces cerevisiae)の酸性加熱処理液を含む水溶液に移しH2O2を発生させて、その水溶液を反応液(50mMリン酸バッファー(pH5.8)、 5μM Amplex Red (Invitrogen)、1μg/mL Horseradish Peroxidase (Sigma Aldrich P8515) に添加し、Excitation 544nm、Emission 590nmで測定した。各実験は4反復以上繰り返し以下の基準に従って判定を行なった。
(判定方法)
1) 各実験回において,平均値が対照よりも5倍以上増加(+2)、2倍以上増加(+1)
2) 各実験回において,有意差検定を行ないp値が<0.01の場合は(+2)、<0.05の場合(+1)
3) 総和を実験回で割り、1以上を(++)、0.5以上を(+)と表記した。
 表2に示すとおり、様々な植物で活性酸素の発生が確認できたことから、菌体酸性加熱処理液の処理による病害耐性誘導が種特異的ではないことが示された。
 表2中の1はCorynebacterium glutamicum,2はE.coli,3はBacillus subtilis,4はPantoea ananatis,5はSaccharomyces cerevisiaeの酸加熱処理液による葉片からの活性酸素発生測定の結果を示す.またn.d.は測定せずを意味する.
Figure JPOXMLDOC01-appb-T000002
実施例6 アスパラガス、イチゴ、ブドウの活性酸素産生を指標とした病害抵抗性誘導評価
活性酸素の測定は基本的に実施例5記載の方法で行なった。アスパラガスは実施例5記載の方法で1ヶ月間栽培した植物体から葉を回収し、活性酸素発生を測定した。イチゴとブドウはそれぞれ苗を購入し、温室内、25℃で2-3週間栽培し順化した後に健全な葉を選んで回収し、活性酸素発生を測定した。処理液はCorynebacterium酸性加熱処理液を限外ろ過により5kDa以上から30kDa以下に分画した液を用いた。限外ろ過には分子量分画は限外ろ過フィルター(Amicon Ultra-15 centrifugal filter; 30K NMWL, 5K NMWL; Millipore)を用いた。測定は相対的な蛍光強度を活性酸素発生量としてコントロールと比較した。図14に示す通り、上記分画液はアスパラガス、イチゴ、ブドウへの処理においても顕著な活性酸素産生を誘導することが示された。
実施例7
Corynebacterium処理液によるキャベツのキチナーゼ活性に対する効果
キャベツを土に播種し、3週間栽培後、第一番目の本葉にCorynebacterium酸性加熱処理液を10倍希釈で注入処理し48時間後のキチナーゼ活性を測定した。対照は水処理を行なった。図15に示す通り、対照と比較し菌体酸性加熱処理液の散布により有意にキチナーゼ活性が上昇していることが示された。
実施例8
Saccharomyces cerevisiae酸性加熱処理液によるイネに対する効果
実施例4記載の方法に従い、Saccharomyces cerevisiae酸性加熱処理液によるイネに対する効果をグルカナーゼ活性の上昇および感染防除効果を測定することで調べた。図16に示す通り、Saccharomyces cerevisiae酸性加熱処理液(等倍希釈)の散布により有意にグルカナーゼ活性が上昇していることが示され、また図17に示す通り、Saccharomyces cerevisiae酸性加熱処理液(5倍希釈)の散布により有意に病原菌の感染を防除できることが示された。
実施例9 イネの根に対する菌体酸加熱処理液処理による病害抵抗性遺伝子発現誘導
OptMS無機塩類培養培地(表1)に0.8% Agarを加えた寒天培地を充填した1mLチップをチップラックにセットし、培地上に滅菌済みのイネ(品種:コシヒカリ)の種子を播種した。チップは根が伸展できるよう下端から約20mm以下の部分を切り落とし、乾燥を防ぐため切り口を純水に漬けた状態で1週間栽培した。チップ上で成長したイネ幼苗に厚さ20mmの発泡スチロールの浮きを装着し、OptMS 1Lを入れたフードパック(C-APフルーツ200、 中央化学(株))に浮かべた。この状態でさらに1週間栽培し、トータルで2週間栽培した4.5葉期のイネを実験材料とした。テクノポット(住友ベークライト(株))の底部に処理液を100mL入れ、水耕栽培で2週間生育させたイネを根が処理液に十分浸る状態で発泡スチロールごと浮かべた。処理液は20%濃度のCorynebacterium酸性加熱処理液を用いた。発泡スチロールはあらかじめテクノポットに収まるサイズに調整した。栽培は恒温植物インキュベーター(コイトトロン、小糸工業(株))内で、日周16時間明期8時間暗期、温度28℃、光強度約150μmol m-2 s-1で行った。根への処理後15時間後にサンプリングを行ない,サンプルは根全体を1サンプルとした。各サンプルからRNeasy Plant Mini Kit (QIAGEN) を用いてtotal RNAを抽出した。Total RNAをRNase free DNase Set (QIAGEN)を用いてDNase処理した後、逆転写酵素High Capacity cDNA Reverse Transcription Kit ( Applied Biosystems)を用いてoligo dT primerから逆転写を行ない、合成した1本鎖cDNAを鋳型として定量PCRを行なった。定量PCRはABI PRISM 7500を用い、反応条件は95℃ 15秒 60℃ 60秒を40サイクルで行った。試薬はPower SYBR Green PCR Master Mix(Applied Biosystems)を用いた。定量する遺伝子にはハウスキーピング遺伝子としてRAc1 (RAP code、 Os11g0163100)、病害抵抗性関連遺伝子としてPBZ1 (RAP code、 Os12g0555200)を用いた。各遺伝子発現用プライマーは以下を用いた:5’-CCCCTTGTGTGTGACAATGG -3’(配列番号1)と5’-CCCTGGGCGCATCGT-3’ (配列番号2)(RAc1)、 5’-GGAGCAGGAGAAGATGATCG-3’ (配列番号3)と5’-TTCTTCTCACATGCGACCAC-3’ (配列番号4)(PBZ1)。PBZ1の発現量はRAc1の発現量で標準化した。結果を図18に示す。根に処理した場合、根においてはPBZ1遺伝子発現量が増加することが示された。
 本発明の病害耐性増強剤はアミノ酸等の発酵を行なった後の各種微生物菌体残渣や有機性汚泥に含まれる微生物菌体を酸性溶液中で加熱処理(酸性加熱処理)することで容易に得られ、さらに低濃度(例えば、菌体乾燥重量200mg/Lを酸性加熱処理)で効果が発揮されることから、コスト面、大量調製が容易に達成されることができる。
 殺菌剤など植物病原菌に対して直接作用するタイプの農薬は、病原菌に対して殺菌効果を示すものが多いが、継続的な使用により薬剤に対して耐性変異株が出現するのに対して、耐性誘導型農薬は、薬剤の耐性変異株が出現しにくく、長期間にわたる使用が可能であることが知られている。このようなことから、微生物菌体の酸性加熱処理液が抗菌活性よりはむしろ、病害耐性を誘導することによって病原菌の感染を防ぐということは、耐性変異株が出現しにくく、長期間にわたる使用が可能であるために、産業上極めて有用である。

Claims (7)

  1. 微生物菌体を酸性溶液中で加熱処理することにより得られる抽出液を含む、植物用病害耐性増強剤。
  2. 酸性溶液中での加熱処理が、pH6以下の溶液中で70℃以上に加熱する処理である、請求項1記載の病害耐性増強剤。
  3. 微生物がEscherichia属細菌、コリネ型細菌、Pantoea属細菌、Bacillus属細菌、酵母、乳酸菌、または酢酸菌である、請求項1または2記載の病害耐性増強剤。
  4. 葉面散布剤である、請求項1~3のいずれか一項に記載の病害耐性増強剤。
  5. さらに金属を含む、請求項1~4のいずれか一項に記載の病害耐性増強剤。
  6. 金属が亜鉛及び/又は銅である、請求項5記載の病害耐性増強剤。
  7. 請求項1~6のいずれか一項に記載の病害耐性増強剤で植物を処理することを特徴とする、植物の病害を防除する方法。
PCT/JP2009/050216 2008-01-11 2009-01-09 植物用病害耐性増強剤およびそれを用いた植物病害防除法 WO2009088074A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009548967A JP5434597B2 (ja) 2008-01-11 2009-01-09 植物用病害耐性増強剤およびそれを用いた植物病害防除法
EP09700633.2A EP2241186B1 (en) 2008-01-11 2009-01-09 Use of disease resistance enhancer for plants and method of controlling plant disease by using the same
PL09700633T PL2241186T3 (pl) 2008-01-11 2009-01-09 Zastosowanie środka podwyższającego odporność roślin na choroby i sposób zwalczania chorób roślin z jego użyciem
ES09700633.2T ES2485990T3 (es) 2008-01-11 2009-01-09 Uso de potenciador de resistencia a la enfermedad para plantas y procedimiento de control de una enfermedad de planta usando el mismo
US12/833,590 US9173407B2 (en) 2008-01-11 2010-07-09 Disease resistance enhancer for plants and method of controlling plant disease by using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008004833 2008-01-11
JP2008-004833 2008-01-11
JP2008221563 2008-08-29
JP2008-221563 2008-08-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/833,590 Continuation US9173407B2 (en) 2008-01-11 2010-07-09 Disease resistance enhancer for plants and method of controlling plant disease by using the same

Publications (1)

Publication Number Publication Date
WO2009088074A1 true WO2009088074A1 (ja) 2009-07-16

Family

ID=40853183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050216 WO2009088074A1 (ja) 2008-01-11 2009-01-09 植物用病害耐性増強剤およびそれを用いた植物病害防除法

Country Status (7)

Country Link
US (1) US9173407B2 (ja)
EP (1) EP2241186B1 (ja)
JP (1) JP5434597B2 (ja)
ES (1) ES2485990T3 (ja)
PE (2) PE20140847A1 (ja)
PL (1) PL2241186T3 (ja)
WO (1) WO2009088074A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037086A1 (ja) * 2009-09-28 2011-03-31 有限会社バイオメディカルリサーチグループ 植物育成剤、植物病害抵抗性誘導剤及び病害防除方法
WO2011087002A1 (ja) 2010-01-13 2011-07-21 味の素株式会社 ウリ科植物病害抵抗性増強剤およびそれを用いた植物病害防除法
WO2012157699A1 (ja) * 2011-05-18 2012-11-22 味の素株式会社 動物用免疫賦活剤、それを含む飼料及びその製造方法
WO2013065439A1 (ja) 2011-11-01 2013-05-10 味の素株式会社 植物ウイルスの感染抑制剤およびそれを用いた植物ウイルス感染抑制方法
JP2013169176A (ja) * 2012-02-21 2013-09-02 Asahi Group Holdings Ltd 植物の育苗方法及び植物の栽培方法
CN106190911A (zh) * 2016-07-22 2016-12-07 四川省农业科学院植物保护研究所 一种秸秆腐熟及防治十字花科作物根肿病的农地处理方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0805370B1 (pt) * 2008-12-16 2017-12-05 União Brasileira De Educação E Assistência Mantenedora Da Puc Rs Process of production of bacterial extract, composition composing composition of bacterial extract and process of stimulation of plant defense
JP6812974B2 (ja) 2015-08-11 2021-01-13 味の素株式会社 果実の着色を促進させる農園芸用資材及び植物の栽培方法
CN110468053B (zh) * 2018-05-15 2021-05-07 北京市园林科学研究院 一种毡状地丝霉菌菌株及其在生物防治中的应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331016A (ja) 1992-05-29 1993-12-14 Dainippon Pharmaceut Co Ltd ファイトアレキシンの誘導剤
JPH0680530A (ja) 1992-09-01 1994-03-22 Mitsui Toatsu Chem Inc 植物病害防除方法
WO1998047364A1 (fr) 1997-04-21 1998-10-29 Plant Biological Defense System Laboratories Procede de selection d'un eliciteur induisant la production de phytoalexine dans le riz et agent de lutte contre les maladies du riz contenant cet eliciteur comme ingredient actif
JP2846610B2 (ja) 1995-11-02 1999-01-13 株式会社植物防御システム研究所 稲にファイトアレキシンの生成を誘導するエリシターのスクリーニング方法及び稲病害防除剤
JPH1129412A (ja) 1997-07-09 1999-02-02 Kagaku Gijutsu Shinko Jigyodan ファイトアレキシン誘導剤
WO2001090310A1 (en) 2000-05-25 2001-11-29 Ajinomoto Co., Inc. PROCESS FOR PRODUCING η-GLUTAMYLCYSTEINE
JP2003259861A (ja) 2002-02-11 2003-09-16 Ajinomoto Co Inc プリンヌクレオシドおよびヌクレオチドの製造方法
JP2005278643A (ja) 2004-03-04 2005-10-13 Ajinomoto Co Inc L−グルタミン酸生産微生物及びl−グルタミン酸の製造法
JP2006219372A (ja) 2003-01-17 2006-08-24 Meiji Seika Kaisha Ltd 植物病害防除剤およびその剤を用いた植物病害防除法
JP2007070292A (ja) * 2005-09-07 2007-03-22 Asahi Breweries Ltd 植物病害抵抗性遺伝子活性化用組成物
JP2007077065A (ja) * 2005-09-14 2007-03-29 Meiji Univ 単子葉植物の病害抵抗性誘導剤
JP2007530032A (ja) * 2004-03-24 2007-11-01 コリア リサーチ インスティチュート オブ ケミカル テクノロジー 拮抗作用を有する枯草菌株を用いた植物病の防除方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940127B2 (ja) * 1975-12-17 1984-09-28 鐘淵化学工業株式会社 コウシヨクブツウイルスセイカクブンノセイゾウホウ
JPS5341423A (en) * 1976-09-27 1978-04-14 Kanegafuchi Chem Ind Co Ltd Antivirals for plants
US6060429A (en) * 1994-07-25 2000-05-09 State of Israel--Ministry of Agriculture Composition and method for controlling plant diseases caused by fungi
FR2792501B1 (fr) * 1999-04-26 2004-02-06 Elf Atochem Agri Sa Traitement phytosanitaire des plantes par un chelate de cuivre soluble libere graduellement in situ a partir d'une source de cuivre non chelate et d'un chelate et compositions utilisables a cet effet
ATE318926T1 (de) 2003-05-26 2006-03-15 Ajinomoto Kk Verfahren zur herstellung von cadaverindicarboxylat und dessen verwendung zur herstellung von nylon
CN1313006C (zh) * 2004-07-23 2007-05-02 天津市农业生物技术研究中心 含有酵母细胞提取物的植物抗病诱导剂
JP2008004833A (ja) * 2006-06-23 2008-01-10 Sanken Electric Co Ltd 電流検出装置及びこれを使用した電力供給装置
JP4928312B2 (ja) * 2007-03-12 2012-05-09 住友化学株式会社 押出成形装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331016A (ja) 1992-05-29 1993-12-14 Dainippon Pharmaceut Co Ltd ファイトアレキシンの誘導剤
JPH0680530A (ja) 1992-09-01 1994-03-22 Mitsui Toatsu Chem Inc 植物病害防除方法
JP2846610B2 (ja) 1995-11-02 1999-01-13 株式会社植物防御システム研究所 稲にファイトアレキシンの生成を誘導するエリシターのスクリーニング方法及び稲病害防除剤
WO1998047364A1 (fr) 1997-04-21 1998-10-29 Plant Biological Defense System Laboratories Procede de selection d'un eliciteur induisant la production de phytoalexine dans le riz et agent de lutte contre les maladies du riz contenant cet eliciteur comme ingredient actif
JPH1129412A (ja) 1997-07-09 1999-02-02 Kagaku Gijutsu Shinko Jigyodan ファイトアレキシン誘導剤
WO2001090310A1 (en) 2000-05-25 2001-11-29 Ajinomoto Co., Inc. PROCESS FOR PRODUCING η-GLUTAMYLCYSTEINE
JP2003259861A (ja) 2002-02-11 2003-09-16 Ajinomoto Co Inc プリンヌクレオシドおよびヌクレオチドの製造方法
JP2006219372A (ja) 2003-01-17 2006-08-24 Meiji Seika Kaisha Ltd 植物病害防除剤およびその剤を用いた植物病害防除法
JP2005278643A (ja) 2004-03-04 2005-10-13 Ajinomoto Co Inc L−グルタミン酸生産微生物及びl−グルタミン酸の製造法
JP2007530032A (ja) * 2004-03-24 2007-11-01 コリア リサーチ インスティチュート オブ ケミカル テクノロジー 拮抗作用を有する枯草菌株を用いた植物病の防除方法
JP2007070292A (ja) * 2005-09-07 2007-03-22 Asahi Breweries Ltd 植物病害抵抗性遺伝子活性化用組成物
JP2007077065A (ja) * 2005-09-14 2007-03-29 Meiji Univ 単子葉植物の病害抵抗性誘導剤

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
AONO ET AL., APPL ENVIRON MICROBIOL., vol. 58, pages 520 - 1992
GUST A. A., J. BIOL. CHEM., 2007
INUI ET AL., BIOSCI BIOTECHNOL BIOCHEM., vol. 61, pages 975 - 1997
KEEN N. T., PLANT MOL. BIOL., vol. 19, 1992, pages 109 - 122
KOGA J. ET AL., PLANT PHYSIOL., vol. 140, 2006, pages 1475 - 1483
KOGA J., J. BIOL. CHEM., vol. 48, no. 27, 1998, pages 31985 - 31991
KUNZE ET AL., PLANT CELL, vol. 16, pages 3496 - 2004
MCCREATH ET AL., J. MICROBIOL. METHODS, vol. 14, pages 229 - 1992
MILLER ET AL., ANAL CHEM, vol. 31, pages 426 - 1959
NEWMAN M,.A, PLANT J., vol. 29, 2002, pages 487 - 495
NOJIRI H. ET AL., PLANT PHYSIOL., vol. 110, 1996, pages 387 - 392
See also references of EP2241186A4
SHARP J. K. ET AL., J. BIOL. CHERN., vol. 259, 1984, pages 11312 - 11320
SHARP J. K., J. BIOL. CHEM., vol. 259, 1984, pages 11321 - 11336
YAMADA A., BIOSCI. BIOTECH. BIOCHEM., vol. 57, no. 3, 1993, pages 405 - 409
YAMAGUCHI T., PLANT CELL, vol. 12, 2000, pages 817 - 826

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037086A1 (ja) * 2009-09-28 2011-03-31 有限会社バイオメディカルリサーチグループ 植物育成剤、植物病害抵抗性誘導剤及び病害防除方法
WO2011087002A1 (ja) 2010-01-13 2011-07-21 味の素株式会社 ウリ科植物病害抵抗性増強剤およびそれを用いた植物病害防除法
WO2012157699A1 (ja) * 2011-05-18 2012-11-22 味の素株式会社 動物用免疫賦活剤、それを含む飼料及びその製造方法
US20140065186A1 (en) * 2011-05-18 2014-03-06 Ajinomoto Co., Inc. Immunostimulant for Animals, Feed Containing the Same, and Method for Producing the Same
JPWO2012157699A1 (ja) * 2011-05-18 2014-07-31 味の素株式会社 動物用免疫賦活剤、それを含む飼料及びその製造方法
WO2013065439A1 (ja) 2011-11-01 2013-05-10 味の素株式会社 植物ウイルスの感染抑制剤およびそれを用いた植物ウイルス感染抑制方法
US20140219993A1 (en) * 2011-11-01 2014-08-07 Ajinomoto Co., Inc. Plant virus infection inhibitor and a method for inhibiting plant virus infection using the same
JP2013169176A (ja) * 2012-02-21 2013-09-02 Asahi Group Holdings Ltd 植物の育苗方法及び植物の栽培方法
CN106190911A (zh) * 2016-07-22 2016-12-07 四川省农业科学院植物保护研究所 一种秸秆腐熟及防治十字花科作物根肿病的农地处理方法

Also Published As

Publication number Publication date
PE20091354A1 (es) 2009-09-06
PL2241186T3 (pl) 2014-08-29
EP2241186A4 (en) 2013-08-21
JP5434597B2 (ja) 2014-03-05
JPWO2009088074A1 (ja) 2011-05-26
PE20140847A1 (es) 2014-07-23
EP2241186B1 (en) 2014-05-07
ES2485990T3 (es) 2014-08-14
EP2241186A1 (en) 2010-10-20
US20100330055A1 (en) 2010-12-30
US9173407B2 (en) 2015-11-03

Similar Documents

Publication Publication Date Title
JP5434597B2 (ja) 植物用病害耐性増強剤およびそれを用いた植物病害防除法
Aiello et al. Postharvest biocontrol ability of Pseudomonas synxantha against Monilinia fructicola and Monilinia fructigena on stone fruit
Moya-Elizondo et al. Integrated management of Fusarium crown rot of wheat using fungicide seed treatment, cultivar resistance, and induction of systemic acquired resistance (SAR)
Konappa et al. Evaluation of biological efficacy of Trichoderma asperellum against tomato bacterial wilt caused by Ralstonia solanacearum
KR101569737B1 (ko) 벼 근권에서 분리된 신규 식물 내생세균 바실러스 오리지콜라 및 이를 이용한 천연식물 보호 및 식물 강화제 개발
CA2984075C (en) Microbial compositions and methods for bioprotection
Ramamoorthy et al. Induction of defense-related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f. sp. lycopersici
Konappa et al. Lactic acid bacteria mediated induction of defense enzymes to enhance the resistance in tomato against Ralstonia solanacearum causing bacterial wilt
Singh et al. Seed biopriming with microbial inoculant triggers local and systemic defense responses against Rhizoctonia solani causing banded leaf and sheath blight in maize (Zea mays L.)
Tortora et al. Protection of strawberry plants (Fragaria ananassa Duch.) against anthracnose disease induced by Azospirillum brasilense
Chandrasekaran et al. Expression of β-1, 3-glucanase (GLU) and phenylalanine ammonia-lyase (PAL) genes and their enzymes in tomato plants induced after treatment with Bacillus subtilis CBR05 against Xanthomonas campestris pv. vesicatoria
Hammami et al. Isolation and characterization of rhizosphere bacteria for the biocontrol of the damping-off disease of tomatoes in Tunisia
KR20140127670A (ko) 식물 내생세균 바실러스 메칠로트로피쿠스 yc7007 균주 및 이를 이용한 다기능 생물농약 및 미생물비료 개발
Loganathan et al. Trichoderma and chitin mixture based bioformulation for the management of head rot (Sclerotinia sclerotiorum (Lib.) deBary)–root-knot (Meloidogyne incognita Kofoid and White; Chitwood) complex diseases of cabbage
Sabbagh et al. Systemic resistance induced by Trichoderma harzianum and Glomus mossea on cucumber damping-off disease caused by Phytophthora melonis
Ahmed Efficiency of some antioxidants and bioagents in controlling Rhizoctonia damping-off of snap bean
KR101524651B1 (ko) 스트렙토마이세스 그리시우스 s4-7&#39;&#39; 균주 또는 이의 배양액을 유효성분으로 함유하는 식물병 방제용 조성물
Sun et al. Control efficiency and expressions of resistance genes in tomato plants treated with ε-poly-L-lysine against Botrytis cinerea
Radjacommare et al. PGPR mediates induction of pathogenesis-related (PR) proteins against the infection of blast pathogen in resistant and susceptible ragi [Eleusine coracana (L.) Gaertner] cultivars
Park et al. Hyaluronic acid of Streptococcus sp. as a potent elicitor for induction of systemic resistance against plant diseases
Chernin et al. The use of ACC deaminase to increase the tolerance of plants to various phytopathogens
Hariharan et al. Role of Trichoderma spp. in biocontrol of plant diseases
Karnwal Screening and identification of abiotic stress-responsive efficient antifungal Pseudomonas spp. from rice rhizospheric soil
Ezziyyani et al. Production of Pathogenesis-Related proteins during the induction of resistance to Phytophthora capsici in pepper plants treated with Burkholderia cepacia and Trichoderma harzianum in combination compatible
Rostami et al. Characterisation of rice-associated antagonistic pseudomonads and their application in combination with plant resistance inducer molecules for the control of sheath blight disease of rice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09700633

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009548967

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009700633

Country of ref document: EP