WO2011030558A1 - 多端子型電力変換装置、多端子型電力授受装置及び電力ネットワークシステム - Google Patents

多端子型電力変換装置、多端子型電力授受装置及び電力ネットワークシステム Download PDF

Info

Publication number
WO2011030558A1
WO2011030558A1 PCT/JP2010/005563 JP2010005563W WO2011030558A1 WO 2011030558 A1 WO2011030558 A1 WO 2011030558A1 JP 2010005563 W JP2010005563 W JP 2010005563W WO 2011030558 A1 WO2011030558 A1 WO 2011030558A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
terminal
interchange
systems
converter
Prior art date
Application number
PCT/JP2010/005563
Other languages
English (en)
French (fr)
Inventor
阿部 力也
Original Assignee
Abe Rikiya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010145715A external-priority patent/JP5612920B2/ja
Application filed by Abe Rikiya filed Critical Abe Rikiya
Priority to AU2010293719A priority Critical patent/AU2010293719C1/en
Priority to US13/395,407 priority patent/US9013902B2/en
Priority to CN201080040094.5A priority patent/CN102484369B/zh
Priority to EP10815158.0A priority patent/EP2477297A4/en
Priority to CA2773994A priority patent/CA2773994A1/en
Publication of WO2011030558A1 publication Critical patent/WO2011030558A1/ja
Priority to IN2382DEN2012 priority patent/IN2012DN02382A/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/443Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/45Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M5/4505Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators

Definitions

  • the present invention relates to a multi-terminal power conversion device, a multi-terminal power transfer device, and a power network system, and more specifically, via a multi-terminal power conversion device or a multi-terminal power transfer device installed in each power system.
  • Multi-terminal power converter, multi-terminal power transfer device that enables specified power to be interchanged between specified power systems for a specified time by connecting multiple power systems asynchronously to each other And a power network system.
  • the power company controls the load fluctuation within several tens of seconds at the governor-free power plant, and frequency fluctuation (AFC) within 20 minutes.
  • a power plant with a function which controls load fluctuations on the order of several hours by the planned output increase / decrease of the steam power plant, and instantly matches the supply and demand.
  • the generator in the system is configured by a group of synchronous generators and has a control characteristic called a drooping characteristic.
  • This characteristic adjusts the output in a direction to increase the rotational speed of its own generator when the system frequency is lowered, and conversely to decrease the rotational speed when the system frequency is increased. In this way, all the generators in the system cooperate to keep the frequency constant. Further, since these synchronous generators are rotating machines having a large inertial force, they have the power to stabilize the frequency in the region without being affected by some system frequency fluctuations. These are expressed in terms of generator synchronization power.
  • These power supplies are inverter power supplies that detect the frequency of the system and synchronize with it, or are induction machine power supplies that follow the system.Therefore, if the fluctuation is large, the frequency stability of the system is rather impaired. ing. Therefore, there is a concern that the large-scale introduction of renewable energy power sources with large fluctuations will significantly reduce the synchronization power if the current system configuration remains as it is, and cause failures such as large-scale power outages.
  • the first conventional method is a method for strengthening the power backbone system. This will strengthen the high-voltage interconnection line, install a BTB loop controller, increase the capacity of the frequency converter station, increase the capacity of the Hokkaido Honshu DC interconnection line, etc., such as gas turbine power generation as a backup power source and variable speed hydroelectric power generation facilities This will prepare for fluctuations in the renewable energy power source.
  • Patent Documents 1 and 2 are related to this method.
  • the second conventional method is to suppress the output of distributed power sources and to suppress demand.
  • output suppression solar power generation and wind power generation are being considered to make a circuit to suppress output by a signal from an electric power company.
  • Patent Documents 3 and 4 are related to this method.
  • the third conventional method is a method of performing power interchange between a plurality of power systems and a backbone system.
  • a plurality of power systems into which unstable power sources such as renewable energy are introduced in large quantities are connected by some form of power interchange device, and power is interchanged.
  • Patent Document 9 regarding the fusion of power and communication.
  • Japanese Patent Laid-Open No. 11-146560 Japanese Patent Laid-Open No. 11-98694 JP 2008-1828598 A JP 2007-189840 A JP 2003-324850 A JP 2007-89250 A International Publication No. 2004-073136 Japanese Patent No. 3934518 JP 2003-152756 A
  • the conventional techniques have the following problems from the viewpoint of the power system for introducing a large amount of renewable energy power sources having no synchronization power.
  • the first conventional method is intended to strengthen the backbone system.
  • Patent Document 1 a plurality of regional systems to be controlled are connected between the regional systems according to the system status at the control execution time. It is said that the stability of the electric power system is increased by freely changing the target system range using the on / off operation of the switch.
  • the source of each regional system is the same synchronous system, and it is only a proposal to change the flow of the tidal current according to the change of the system constant. This method does not solve the problem when the number of renewable energy power sources that do not have synchronization power increases.
  • Patent Document 2 proposes a power interchange command device in a power interconnection system in which a plurality of power systems are interconnected by a BTB type power converter. According to the specification, it is proposed to measure all demand and supply for each power grid in a power grid of multiple power grids, collect all the demand imbalance information in the center, and distribute power according to a predetermined share It has become.
  • Patent Document 3 proposes a wind power generation system that suppresses fluctuations in output power of a wind power generation device that exceeds the maximum output capacity and charge capacity of the power storage device.
  • Patent Document 4 proposes that the state of the system is constantly monitored, and when necessary, the control of the generator is combined with the suppression of the generator output to achieve finer control.
  • demand-side restraints have been developed mainly in the United States in terms of smart grids and smart meters. These methods are technologies for suppressing power generation or demand, and none of them is a technology for achieving the purpose of introducing a large amount of renewable energy power sources.
  • Patent Document 5 proposes a “power supply and demand adjustment system that controls the interchange of power by exchanging various kinds of information with each other via a communication network while allowing interchange of electric power via a transmission and distribution network”.
  • it is basically a method of frequently separating systems in a conventional synchronous system, and cannot be said to be a technique for achieving the purpose of introducing a large amount of renewable energy power sources.
  • Patent Document 6 proposes system isolation and connection optimization using a loop controller, but it is also a method of frequently separating distribution networks connected to a synchronous system.
  • Patent Document 7 proposes an “electric power system in which a plurality of electric power suppliers and electric power suppliers including electric power devices and electric power supply and demand control devices are interconnected, and which allows mutual power interchange”. It is a simple concept and has the following defects in electrical circuits.
  • interconnected lines connecting multiple consumers are “branched power supply and demand lines, rosary power supply and demand lines, radial power supply and demand lines, mesh power supply and demand lines, or a combination of these power supply and demand lines”
  • Such a connection entails a complicated tidal current problem at the same time, and at the same time increases the short-circuit capacity, leading to an increase in circuit breaker capacity and a complicated protection system.
  • There is also a proposal to do this with a DC interconnection line but this significantly increases the short-circuit capacity of the DC interconnection line, and the difficulty of designing the interconnection line, such as installing a DC breaker or dividing the line, is high. .
  • one of the supply and demanders becomes a voltage source, maintains the voltage of the interconnection line, and supplies power
  • the supply and demander of this company supplies current according to this voltage, and the demander and demander who is in the position of receiving power receives current according to this voltage.
  • the voltage source fluctuates greatly in such a small system, and shakes all the supply and demanders connected to this interconnection line. Since supply and demand of this system is performed via communication, the reliability depends on communication. Such an electric circuit configuration is not realistic.
  • Patent Document 8 a proposal is made in which a power storage device is added to DC multi-terminal power transmission assuming a plurality of remote islands.
  • practical DC multi-terminal power transmission has hardly been realized. This is due to the fact that a high-speed communication line is indispensable in order to control the total sum of power between a plurality of terminals to zero, and cannot be controlled well in reality.
  • the actual operating sites are limited to the SACOI project in Italy (200 kV, 200 MW, 3 terminals) and the Quebec-New England project (450 V, 2,000 MW, 3 terminals) in the United States. The latter was planned with 5 terminals, but the plan was reduced to 3 terminals due to controllability issues and the like, and bidirectional power interchange was limited to only one of them.
  • the operation can be stably performed with a plurality of DC multi-terminals by incorporating the power storage device.
  • this system contains the following fundamental defects. First, since the distance length of the DC transmission line is increased, the probability of an accident at a DC cable or a connection portion is increased. If a large number of DC circuit breakers, etc. are not arranged at the branch point, the electric circuit cannot be separated when an accident occurs in the DC section, resulting in a power failure of the entire system. Next, the total power zero control between all terminals including the power storage device must be secured by the communication line, and the reliability of the control depends on the communication reliability. These issues are not related to the presence or absence of power storage. However, since power storage becomes more complicated, DC transmission with four or more terminals is not realistic.
  • the power network using BTB type interconnection devices has the following problems.
  • the BTB type interconnection device requires an interconnection device in an order proportional to the square of the number of interconnection power systems. Furthermore, it is necessary to perform cooperative control between them. This creates not only an increase in the number of converters but also a difficult problem of coordinated control between devices of different installation periods and manufacturers.
  • the conventional method requires a central command device, and means for collecting information in the center, its communication circuit, and means for transmitting commands. is there. Furthermore, in view of the importance of the reliability of the power supply system, measures such as duplication were required. In a new power system in which multiple distributed power system systems are constantly reorganized and increased, such conventional methods generate enormous capital investment and uninterrupted maintenance support, which burdens network administrators. It tends to be enormous.
  • Patent Document 9 shows an example in which a power line and a communication circuit are integrated in a home or building.
  • this is a concept of an Internet line using a power outlet. It does not include concepts related to control.
  • the present invention has been made in view of such a problem, and the object of the present invention is to divide an existing power system into a plurality of independent power systems, and connect each other via existing or new transmission lines. It is intended to provide a multi-terminal power converter, a multi-terminal power transfer device, and a power network system that can be stably operated in conjunction with each other.
  • the present invention is a multi-terminal power converter, a self-excited power converter that bi-directionally converts power, and a voltage / current / power that passes through the self-excited power converter.
  • Three or more power conversion units having a voltage / current / power measuring instrument that measures voltage, a common bus connecting one terminal of the power conversion unit in parallel, and the voltage / current / power measuring instrument. Based on the measured value, the plurality of power conversion units are controlled in a coordinated manner so that the sum of the power flowing from the power conversion unit to the common bus and the power sent from the common bus to the power conversion unit becomes zero.
  • a control unit that controls the power conversion unit so that power is asynchronously exchanged between external circuits to which the other terminal of the power conversion unit is connected.
  • a large number of interconnection networks can be formed, and the power necessary for the power system to be independent is complemented with each other.
  • the interconnection device capacity and network line capacity are greatly reduced.
  • the main power supply system does not need to be subject to fluctuations in the renewable energy power supply, it is not necessary to have an excessive interconnection capacity, and a conventional high-quality power supply system can be maintained.
  • the power network system allows any power to be interchanged between specific power devices and power systems.
  • a power interchange procedure for making a reservation based on transaction conditions is determined, and by adding information to the interchanged power, flexible accommodation can be performed and the result of the power transaction can be recorded.
  • each power system can be independent by connecting to other power systems and the main power system without having excessive power generation facilities and storage devices, which is advantageous for the region.
  • New renewable energy power sources can be freely incorporated into the power system.
  • solar power alone is nearly 1,000 times the energy consumed by civilization annually, and that even in Japan, when solar panels are laid on unused land, about 8 times the power consumption can be obtained.
  • the present invention greatly contributes to the large-scale introduction of these renewable energies.
  • FIG. 1 is a diagram for explaining power transfer in the synchronous system.
  • FIG. 2A is a diagram for explaining power transfer in an asynchronous system using the present invention.
  • FIG. 2B is a diagram for explaining power transfer in an asynchronous system using the present invention.
  • FIG. 2C is a diagram for explaining power transfer in an asynchronous system using the present invention.
  • FIG. 2D is a diagram for explaining power transfer in an asynchronous system using the present invention.
  • FIG. 3A shows the principle of power interchange by power conversion in a synchronous system.
  • FIG. 3B shows the principle of power interchange by power conversion using the present invention in an asynchronous system.
  • FIG. 4 is a diagram showing the relationship between FIG. 4A and FIG. 4B.
  • FIG. 4 is a diagram showing the relationship between FIG. 4A and FIG. 4B.
  • FIG. 4A is a diagram showing an overview of the power network system of the present invention.
  • FIG. 4B is a diagram showing an overview of the power network system of the present invention.
  • FIG. 5A is a diagram showing a simplified diagram of a multi-terminal power converter.
  • FIG. 5B is a diagram illustrating a multi-terminal power converter.
  • FIG. 6 is a diagram showing a detailed structure of the multi-terminal power converter.
  • FIG. 7 is a diagram illustrating a configuration of the power storage device connection circuit.
  • FIG. 8 is a diagram showing a connection example of the power network of the present invention.
  • FIG. 9A is a diagram showing the number of BTB type interconnection devices in a power network composed of eight power systems.
  • FIG. 9A is a diagram showing the number of BTB type interconnection devices in a power network composed of eight power systems.
  • FIG. 9B is a diagram showing the number of multi-terminal power conversion devices in a power network including eight power systems.
  • FIG. 10A is a diagram showing power interchange using a BTB type interconnection device.
  • FIG. 10B is a diagram illustrating power accommodation using a multi-terminal power converter.
  • FIG. 11 is a diagram showing a configuration of a power network according to the present invention in which a WAN / LAN of a communication circuit is constructed with an external data communication path.
  • FIG. 12 is a diagram showing a configuration of a power network according to the present invention in which a WAN / LAN of a communication circuit is constructed by a power line carrier communication path.
  • FIG. 13 is a diagram showing a configuration of a communication control system in the multi-terminal power conversion device.
  • FIG. 10A is a diagram showing power interchange using a BTB type interconnection device.
  • FIG. 10B is a diagram illustrating power accommodation using a multi-terminal power converter.
  • FIG. 11 is
  • FIG. 14 is a diagram showing a configuration of a communication control system in the power equipment control terminal device.
  • FIG. 15 shows a routing table.
  • FIG. 16 is a diagram illustrating a simulation result of the multi-terminal power converter.
  • FIG. 17A is a diagram illustrating a conventional power transmission line operation method.
  • FIG. 17B is a diagram showing an independent operation method for an existing power transmission line according to the present invention.
  • FIG. 18 is a diagram showing an independent operation method for existing power transmission lines.
  • FIG. 19 is a diagram illustrating superimposed power transmission.
  • FIG. 20 is a diagram for explaining time-sharing power transmission.
  • FIG. 21 is a diagram for explaining multi-route power transmission.
  • FIG. 22 is a diagram for explaining virtual transaction accommodation.
  • FIG. 23 is a diagram for explaining virtual transaction accommodation.
  • FIG. 24 is a diagram for explaining virtual transaction accommodation.
  • FIG. 25 is a diagram for explaining the principle of the time synchronization method.
  • FIG. 26A is a diagram schematically illustrating a first power accommodation request stage of power accommodation.
  • FIG. 26B is a diagram schematically illustrating a first power accommodation request stage of power accommodation.
  • FIG. 27A is a diagram schematically illustrating a second power accommodation request stage of power accommodation.
  • FIG. 27B is a diagram schematically illustrating a second power accommodation request stage of power accommodation.
  • FIG. 28A is a diagram showing a power waveform on the interconnection electric line.
  • FIG. 28B is a diagram schematically illustrating the power interchange routing stage.
  • FIG. 29 is a diagram illustrating a configuration of a power network when a power system connected to the multi-terminal power conversion apparatus is a direct current.
  • FIG. 30 is a diagram showing various forms of power interchange.
  • FIG. 31 is a diagram showing an example of the power transaction book.
  • FIG. 32 is a diagram showing an example of disassembling the actual power accommodation into accommodation parts.
  • FIG. 33 is a diagram showing an accident protection system and a switching procedure.
  • FIG. 34 is a diagram illustrating the operation procedure of the device operation system according to the state of the connected power system.
  • FIG. 35 is a diagram showing a bypass circuit in the multi-terminal power converter.
  • FIG. 36 is a diagram showing a drawer configuration of the multi-terminal power converter.
  • FIG. 37A is a diagram illustrating a state in which a three-terminal multi-terminal power converter is connected to power systems having different frequencies.
  • FIG. 37B is a diagram showing a simulation result when the power accommodation direction is continuously and seamlessly changed in the state shown in FIG. 37A.
  • FIG. 1 shows a conventional AC synchronous system in which four power systems (nodes 120-1 to 120-4) are connected by six interconnection electric lines (links 121-1 to 121-4).
  • the interconnection line has a reactor component 19 of line inductance L.
  • FIG. 2A shows an AC asynchronous system of the present invention.
  • four nodes are connected to six links via the A connection terminal and the B connection terminal of the multi-terminal power conversion device 1. It is tied with.
  • the AC filter, connecting reactor or transformer are omitted in the figure.
  • the four nodes are synchronized with voltage V, phase 0, and frequency ⁇ / 2 ⁇ .
  • the voltage of the node c is lowered or the phase is delayed by ⁇ . If the normal voltage is lowered, the power equipment in the power system is adversely affected, so the phase is delayed.
  • the phase of the node c is delayed by ⁇ , a phase difference ⁇ is generated between all the adjacent nodes a, b, and d.
  • the flowing currents are Idc, Iac, and Ibc, and these currents have the same magnitude. Since the voltage is the same, the incoming power is the same. That is, power is received from three nodes. This is the same even if the voltage V is changed without changing the phase. That is, in the AC synchronous system, when one node transmits and receives power, it always affects adjacent nodes.
  • the magnitude of the voltage V is the same between the four nodes, but the frequencies are different from ⁇ a / 2 ⁇ , ⁇ b / 2 ⁇ , ⁇ c / 2 ⁇ , and ⁇ d / 2 ⁇ , and are synchronized.
  • all bidirectional power converters 10 are stopped (black triangle state).
  • the power converter 10 connected to the node a and the power converter 10 connected to the node c are operated (white triangle state) here.
  • the power converter 10 connecting the node a and the node c is operating, and all the other power converters 10 are stopped. Therefore, power is interchanged only between the links ac, and the other nodes b and d are not affected at all.
  • FIG. 2B there are bidirectional power converter pairs 23-1, 23-2 between node a and node b and between node b and node c.
  • the bidirectional power converter pair 23 sends W1 and W2 power per unit time from the node a to the node b.
  • the bidirectional power converter pair 23-2 sends W2 power per unit time from the node b.
  • the power of the subtraction W1 is sent to the node b.
  • the destination information header instructed to send the powers W1 + W2 and W2 to the bidirectional power converter pairs 23-1 and 23-2, respectively, is sent as a signal, so that such power interchange is possible.
  • FIG. 2C illustrates time-sharing power transmission in which different power is divided and sent to different substations.
  • the bidirectional power converter pair 23-1 first receives a destination information header instructing to send W1 power per unit time, and sends W1 from node a to node b. At this time, since the bidirectional power converter pair 23-2 is not operating, power is not accommodated in the node c.
  • a destination information header for sending power of W2 per unit time to node c gives instructions to both bidirectional power converter pairs 23-1, 23-2, and both bidirectional power converter pairs are simultaneously set to the magnitude of W2. Let's get it running. As a result, W2 is sent from the node a to the node c. At this time, the node b only passes power. In this way, power can be accommodated for different purposes at different times.
  • the advantage of this method is that power can be sent to different destinations at the maximum output of the bidirectional power converter pair. This is similar to the concept of packet in communication, and can be called packet power. The amount of electric power for a certain time can be handled as one unit at the maximum output of the converter.
  • FIG. 2D illustrates multi-route power transmission that uses a plurality of different power transmission circuits to simultaneously send different power to a substation.
  • both bidirectional power converter pairs 23-1 and 23-2 are instructed to send the power of W1, and at the same time, the bidirectional power converter pair 23-3 is fed with the power of W2.
  • the power of W1 + W2 is sent from the node a via a different route to the node c.
  • FIGS. 3A and 3B show the case of the AC synchronous system corresponding to FIG.
  • the nodes a, b, c, and d have the same voltage V, and the vector diagram when the phase is delayed by ⁇ only for the node c is shown.
  • FIG. 3B shows a case of an AC asynchronous system corresponding to FIG. 2A.
  • the power at node a is forward converted to direct current by the power converter. Subsequently, it is inversely converted to AC Vinv synchronized with the frequency ⁇ c / 2 ⁇ of the node c.
  • the complex voltage Vinv can take an arbitrary value by the PWM signal applied to the power converter. If the magnitude of Vinv is Vx and the phase difference from Vc is ⁇ and synchronized with Vc, the reactance of the transformer or reactor between Vinv and Vc is L, and the voltage of ⁇ V is applied to both ends thereof. A difference occurs.
  • the magnitude Vx of the complex voltage Vinv and the phase difference ⁇ between Vinv and Vc can be made arbitrarily, so that the magnitude and direction of exchange of active power and reactive power can be arbitrarily designed.
  • the power network of the conventional synchronous system is a comb type or a radial type in which power flows from the upstream side to the downstream side, avoiding a mesh-like link.
  • the power flow calculation can be calculated by solving the linear simultaneous equations, so that the calculation is much more difficult than the synchronous interconnection. Becomes easier.
  • the multi-terminal power conversion device 1 of the present invention can supply both active power and reactive power simultaneously in an arbitrary size with one input / output terminal.
  • a power system including a renewable energy power source when a power system including a renewable energy power source is independent by performing power interchange between power devices in the system, and it is still expected that the supply and demand balance will be lost, a plurality of asynchronous communication systems are established with other power systems. Independent power can be complemented by sharing power through the system route. As a result, output fluctuations derived from renewable energy power sources are absorbed inside the power system or absorbed by the asynchronous interconnection network with other power systems. Less affected. As a result, the synchronization power of the main power system can be maintained, stabilized in cooperation with a plurality of power system networks, and a large amount of renewable energy power sources can be introduced into the power system.
  • the present invention relates to a multi-terminal type power conversion device and multi-terminal type power transfer that allow arbitrary power to be interchanged between a plurality of asynchronous power systems or to supply reactive power necessary for voltage maintenance.
  • the present invention relates to a device and a power network system.
  • Outline of power network system 4A and 4B show an example of the overall image of the power network system of the present invention.
  • six independent power systems 3-1 to 3-4 and 3-6 and a power device system 4 are shown.
  • Each has a power bus 6, and a power generator 61, a power storage device 62, and a power device such as a load of a general consumer (not shown) are connected to the power bus 6.
  • the power equipment system 4 is displayed as an example of a special power equipment system 4 to which a single power equipment is connected.
  • the power systems are connected by a multi-terminal power conversion device 1.
  • the multi-terminal type power conversion device 1 includes a plurality of self-excited power converters 10 connected in parallel via a common bus 203 and connected to a circuit breaker 8, a disconnector 9, and a power line carrier communication terminal station 13.
  • the power equipment control terminal devices 12 installed in the power systems 3-1, 3-3 and 4-4 and the power equipment system 4 also include a power line carrier communication terminal station 13. Each is assigned a unique IP address 14.
  • the power systems 3-1 to 3-4, 3-6 and the power equipment system 4 are connected to each other via the interconnection line 7.
  • the power bus 6 and the interconnecting power line 7 also have a function as a power line carrier communication path.
  • the power system 3-1 has two power buses 6, which are connected via a transformer 11 with a power line carrier communication bypass. In the present specification, this is referred to as “an asynchronous interconnection network system between power systems”.
  • this communication system uses a dedicated electric wire or optical fiber cable, A wireless device may be used.
  • the power systems 3-1 to 3-4 and 3-6 and the power equipment system 4, including the main power system 5, are all independent power systems that do not require synchronization with each other.
  • a multi-terminal power converter 1 is installed in each power bus 6 from the power systems 3-1 to 3-4.
  • the multi-terminal type power converter 1 has an A connection terminal 201 composed of a circuit breaker 8, a disconnector 9, and a self-excited power converter 10, and a B connection terminal 202 composed of a circuit breaker 8 and a disconnector 9.
  • the connection on the main power system side may be a simple disconnector and circuit breaker, or the B connection terminal 202 may be used.
  • the power converter 10 of the A connection terminal 201 of the power systems 3-1 and 3-2 is synchronized with the system voltage, power can be exchanged.
  • the multi-terminal power conversion device 1 can be placed on the main power system 5 side and connected to each power system via the A connection terminal 201. In this case, the connection power system only needs to have a B connection terminal 202 that does not have a self-excited power conversion function.
  • the multi-terminal type power conversion device 1 is configured such that at least one of the A connection terminals 201 forward-converts the power of the connection destination power system into direct current, and then the remaining A connection terminals 201 group through the direct current common bus 203. At least one of them is reverse-converted and sent in synchronization with the voltage, phase and frequency of the connected power system so that the sum of the power flowing into DC common bus 203 and the power sent from there is zero. It is characterized by controlling.
  • connection terminal 201 of the multi-terminal power conversion device 1 installed in the power system 3-1 is connected to the power systems 3-2 to 3-4 via the interconnection line 7.
  • the B connection terminal 202 is the connection partner.
  • the A connection terminal 201 of the multi-terminal power conversion device 1 installed in the power system 3-2 is connected to the B connection terminal 202 of the multi-terminal power conversion device 1 installed in the power systems 3-3 and 3-4. It is connected via the system electric line 7.
  • the A connection terminal 201 of the multi-terminal power conversion device 1 installed in the power system 3-3 is connected to the B connection terminal 202 of the multi-terminal power conversion device 1 installed in the power system 3-4. Connect through.
  • the multi-terminal type power conversion device 1 installed in the power system 3-3 includes a BTB type converter and a B connection terminal 202 that match the A connection terminals 201 for two circuits back to back.
  • the multi-terminal type power converter 1 installed in the power system 3-4 does not have the A connection terminal 201, and is all configured by the B connection terminal 202.
  • the multi-terminal power conversion device 1 installed on the power bus of the lower voltage class of the power system 3-1 is directly connected to the power device of the power device single system 4. If this power device is a power storage device, the self-excited power converter 10 of the A connection terminal 201 creates an appropriate DC voltage, and charging / discharging becomes possible. Further, if the power device is a wind power generator using an AC generator, the A connection terminal 201 creates independent AC power, and the AC power generated by the wind power generator is used as a DC voltage on the DC common bus 203. By performing forward conversion according to the above, it is possible to control the wind power generator to be grid-connected.
  • the A connection terminal 201 performs DC conversion so that power can be accommodated. If this electric power device is an internal combustion engine generator such as diesel, the A connection terminal 201 produces independent AC power, and control is also possible in which the internal combustion engine generator is connected to the grid. It is also possible to develop a renewable energy generator incorporating a new power generation control method based on the combination with the multi-terminal power conversion device 1.
  • the A connection terminal 201 connected to the power system 3-6 is directly connected to the power bus without a breaker on the power bus. Such a connection method is possible when the power supply capacity of the A connection terminal 201 can sufficiently cover the load of the power system 3-6 and the breaking capacity can sufficiently cut off the fault current when an accident occurs in the power system 3-6. It is.
  • Each power system shown in FIGS. 4A and 4B is a conventional synchronous system.
  • a power generator 61 In the self-supporting power system, there are a power generator 61, a power storage device 62, and a load (not shown) via a circuit breaker 8 below the power bus 6, and these are collectively referred to as a power device.
  • a power device control terminal device 12 having a power control unit that controls input / output of power and a communication unit that transmits an external signal thereto is added to the power device.
  • the power equipment control terminal device 12 is a communication data terminal end (DTE) and serves as a power control interface.
  • DTE communication data terminal end
  • this network is referred to as an “in-power system synchronous network system”.
  • a plurality of asynchronous interconnection systems between power systems in which a plurality of asynchronous power systems having arbitrary voltages, phases, and frequencies including the backbone power system are connected by the multi-terminal power conversion device 1 By connecting a power device control terminal apparatus 12 to a power device installed in a self-supporting power system and connecting it with a synchronous network system in the power system, and integrating power control, power devices between different power systems
  • a power network system that enables power interchange and simultaneous and asynchronous power interchange among a plurality of power systems.
  • asynchronous interconnection network system between power systems and “synchronous network system within power system” are connected through the connection terminals of the multi-terminal type power conversion device 1 and integrated into a control system. Can be sent to a specific power device in another power system.
  • the generated power is excessively generated in one power system, it is absorbed by many power systems in the vicinity, and conversely, when the output is insufficient, from the power storage device or power generator of the peripheral power system
  • the power can be sent to the power storage device of the power system via a plurality of networks.
  • a small power system alone causes frequent frequency instability, instantaneous voltage drop, power outages, etc., and it is difficult to introduce power sources with unstable output such as solar cells and wind power generation. It is necessary to introduce a renewable energy power source.
  • power devices can be shared by connecting a small power system with the multi-terminal power conversion device 1 and making it an asynchronous interconnection network, eliminating problems such as frequency instability, instantaneous voltage drop, and power outage.
  • natural energy can be introduced, and the shift away from fossil fuels can be promoted.
  • Such a transition step to the power network system of the present invention is to establish a self-supporting power system by introducing necessary power equipment and the power equipment control terminal device 12 into the power system below the existing substation, and between the substations.
  • the first step is to install the multi-terminal power conversion device 1 between the conventional power transmission line and the substation bus to be connected and asynchronously connect with other power systems and the main power system.
  • the next step is to gradually increase the number of interconnected power systems along with the increase in the amount of renewable energy power sources introduced, and to reduce the power interchanged from the main power system accordingly. In this way, it is possible to shift to the power network system of the present invention without difficulty.
  • FIG. 5A and 5B illustrate the structure of the multi-terminal power conversion device 1.
  • FIG. 5A shows the power converter 10, the disconnector 9, and the circuit breaker 8 in the expression so far.
  • the disconnecting device and the circuit breaker are expressed as an integral type, but there are also a separated type.
  • VA in FIG. 5B is a slightly more accurate representation of the multi-terminal power conversion device 1 in FIG. 5A.
  • the power converter 10 in FIG. 5B is a three-phase full-bridge bidirectional converter.
  • FIG. 5B in addition to the power converter 10, the disconnector 9, and the circuit breaker 8, a configuration example including a capacitor 17, a reactor 19, an AC filter and surge arrester 20-1, a DC filter and a DC smoothing reactor 20-2. Show. Although not shown, a voltage-adjustable transformer is installed as necessary.
  • FIG. 6 shows in more detail the structure of the multi-terminal power converter 1 for asynchronously interconnecting multiple power systems and individually performing power control.
  • This multi-terminal power converter 1 plays a role of distributing power between different power systems. This enables power interchange between specific power systems, which is impossible with conventional synchronous power systems, while reducing the number of power converters 10, improving control flexibility and reliability, and power conversion. The number of times can be reduced and power loss can be reduced.
  • the multi-terminal power converter 1 has an A connection terminal 201 composed of a circuit breaker 8, a disconnector 9, and a self-excited power converter 10, and a B connection terminal 202 composed of a circuit breaker 8 and a disconnector 9.
  • FIG. 6 shows an example in which the power line carrier communication terminal station 13 is used, but this is not necessary when using an external data network.
  • the voltage / current / power meter 16 includes a type that calculates power based on voltage and current and a type that installs a dedicated power meter. Moreover, the measuring device 16 has what is installed in the direct current common bus
  • a dedicated wattmeter 16 for transactions.
  • the combination of the A connection terminal 201 and the voltage / current / power measuring device 16 is referred to as a power conversion unit.
  • This record of power is stored in a dedicated recording device 103 and used for power transactions. That is, when a power interchange transaction occurs between two power systems, one power interchange action is explicitly distinguished from another power interchange action by associating and recording the power conversion related information and the transaction related information. It becomes possible.
  • the recording device 103 stores basic data related to the payment of power charges generated as a result of power interchange. These data are preferably backed up regularly and further duplicated. The data required for power trading is determined individually, but the installed recorder must comply with the trading laws and regulations.
  • the common bus 203 has a direct current, but the common bus 203 may be an alternating current. There is also a form using a power conversion circuit such as a matrix converter or a triac.
  • the DC voltage stabilizing capacitor 17 is used when the common bus 203 is DC.
  • the configuration of the A connection terminal 201 in FIG. 6 includes a mechanical disconnector 9 that can cut a circuit, a circuit breaker 8 having a necessary breaking capacity, and a self-excited bidirectional power converter 10, and a configuration of the B connection terminal 202. Consists only of a mechanical disconnector 9 capable of cutting the circuit and a breaker 8 having the necessary breaking capacity.
  • the A connection terminal 201 has one terminal connected to the common bus 203 and the other terminal connected to the power system or the interconnected electrical line in which the multi-terminal power converter 1 is installed and another multi-terminal power converter. 1 to another power system.
  • the power of each power system is forward-converted into predetermined DC power, or the power is reverse-converted in synchronization with the voltage, phase, and frequency of the connected power system from the common bus 203 and transmitted.
  • the common bus 203 is controlled so that a plurality of A connection terminals 201 are connected in parallel, and the sum of the inflow power and the output power between the A connection terminals 201 becomes zero. It is possible to connect a power storage device or a secondary battery to the common bus 203. At this time, charging / discharging control of the power storage device and the secondary battery may be incorporated in the input / output power total zero control of the common bus 203. A power storage device or a secondary battery can be placed on the connection destination side of the A connection terminal 201, and charging / discharging can be performed by converter control of the A connection terminal 201.
  • FIG. 7 (1) in which the power storage device 702 is directly connected to the common bus 203, and the power storage device 702 is connected to the DC / DC converter 701.
  • FIG. 7 (2) is shown in FIG.
  • necessary power can be supplied to the common bus 203 or excessive power can be absorbed.
  • the multi-terminal power converter 1 can use the following control method. If the power storage device 702 is not provided, one of the input / output terminals maintains the DC voltage of the common DC bus 203, the other terminal performs active power control, and the portion where the sum is excessive or insufficient is A common method is to make up for the input / output terminals that are performing the maintenance.
  • the DC voltage is maintained by the power storage device 702, so that all input / output terminals can perform active power control.
  • the power storage device 702 will compensate for the excess or deficiency.
  • the charge amount measurement system becomes important.
  • the DC voltage often changes due to a change in the battery charge (SOC).
  • SOC battery charge
  • the DC voltage may not change so much due to a change in the battery charge (SOC).
  • SOC battery charge
  • the B connection terminal 202 is an input / output terminal that is paired with the A connection terminal 201 of another multi-terminal type power conversion device 1 installed in another power system connected via the interconnection electric line. Although it is possible to use the A connection terminal 201 instead of the B connection terminal 202, two self-excited power converters 10 are sufficient between the connected power systems. It is desirable to connect the B connection terminal 202 which does not have the self-excited power converter 10 to the connection electric wire path connected to the 1 A connection terminal 201 in order to reduce the conversion loss.
  • the power capacity transferred by the own system can be increased.
  • one A connection terminal 201 of each of the plurality of multi-terminal power converters 1 is connected to the own system one by one, the power capacity transferred by the own system can be increased and the number of connectable power systems can be increased. .
  • the forward conversion side of the self-excited power converter 10 of the A connection terminal 201 is connected in parallel by the common bus 203, and a capacitor for maintaining a voltage is installed in the common bus 203.
  • a DC filter and a surge arrester may be additionally installed as necessary.
  • the connection destination is an AC power system
  • the reverse conversion side of the self-excited power converter 10 has at least one of an AC reactor and an AC transformer and, if necessary, an AC filter and a surge arrester, and the connection destination is a DC power system. In some cases, it has a smoothing condenser and, if necessary, a smoothing reactor.
  • the multi-terminal power converter 1 includes a DC voltage, an AC voltage, an active power, a reactive power, a current, a phase synchronization, a PWM gate control of each A connection terminal 201, and a circuit breaker of the A connection terminal 201 and the B connection terminal 202.
  • a terminal control device 102 that controls the disconnector 9 and a common control device 101 that performs start / stop, setting of each input / output terminal received / transmitted power and total power cooperative control by controlling the terminal control device 102; It is controlled by a power control system consisting of
  • the common control device 101 can communicate with another multi-terminal power conversion device 1 via the communication control device 104, and can perform power transactions between the multi-terminal power conversion devices.
  • a combination of the common control device 101 and the terminal control device 102 is referred to as a control unit.
  • Each terminal of the multi-terminal type power conversion device 1 may be different in capacity. If the capacity is the same, the control constants can be unified, and there is no restriction on power distribution, which is efficient. For power transmission / reception, power can be equally distributed to all terminals, different power can be distributed, or time sharing can be performed while observing the usage status of the interconnected electric lines.
  • a recording device 103 that records the value of the voltage / current / power measuring device 16 of each A connection terminal 201 and the power interchange profile data so that it can be used for power trading can be provided.
  • the voltage / current / power measuring device 16 has a structure in which automatic calibration can be performed at any time by operating the power converter 10 with software described later.
  • a voltage / current measuring device used for control can be used or calculated using the data.
  • any interconnection line connecting any two power systems has no branch in the middle, and has an A connection terminal 201 of the multi-terminal power converter 1 at one end of the interconnection line, and the other end.
  • an asynchronous interconnection network system between power systems having the B connection terminal 202 can be constructed.
  • the cooperative control among a plurality of BTB type interconnection devices is complicated because the control timing is different in different installation times and manufacturers, but the multi-terminal power conversion device 1 of the present invention is integrated. Therefore, comprehensive control is possible including not only cooperative control between the A connection terminals 201 but also operation control of the B connection terminal 202.
  • connection terminals to be connected to a plurality of AC or DC power systems and to exchange power with each other.
  • the one-to-one power interchange was used, but the present invention enables the one-to-N and N-to-N power interchange.
  • the power and phase can be controlled independently, so that any active power can be sent in any direction and any reactive power can be independently increased to any magnitude. Therefore, the voltage can be controlled.
  • the connected power system becomes no-voltage, power can be supplied in the self-sustaining mode.
  • the DC bus is sealed in a closed cubicle, so that the probability of grounding or short circuit accidents can be minimized.
  • FIG. 8 is a connection example of a power network in which 1/2 ⁇ N ⁇ (N ⁇ 1) power interchange links are generated between N power systems in the present invention.
  • a form of a multi-terminal type asynchronous system interconnection device 1 that interconnects asynchronous power systems 3-1 to 3-5 is shown.
  • the A connection terminal 201 of the multi-terminal power conversion device 1-1 installed in the power system 3-1 is connected to the multi-terminal power conversion devices 1-2 to 1- installed in the power systems 3-2 to 3-5. 5 is connected to the B connection terminal 202 via the interconnection line 7 to form a network with the power system 3-1.
  • the group A connection terminals 201 of the multi-terminal power converter 1-2 installed in the power system 3-2 are multi-terminal power converters 1-3-1 installed in the power systems 3-3-3-5. It is connected to the B connection terminal 202 of ⁇ 5 via the interconnection line 7 to form a network with the power system 3-2.
  • the A connection terminal 201 group of the multi-terminal power conversion device 1-3 installed in the power system 3-3 is the multi-terminal power conversion device 1-4, 1 installed in the power system 3-4, 3-5. It is connected to the B connection terminal 202 of ⁇ 5 via the interconnection electric line to form a network with the power system 3-3.
  • the A connection terminal 201 of the multi-terminal power conversion device 1-4 installed in the power system 3-4 is connected to the B connection terminal 202 of the multi-terminal power conversion device 1-5 installed in the power system 3-5.
  • the network is connected to the electric power system 3-4 by connecting via the system electric line. In the network between the five power systems shown in FIG. 8, ten asynchronous power interchange links are generated.
  • N 10
  • N 30, there are 435 links. Since a plurality of multi-terminal power converters can be placed in one power system, the number of theoretical links can be further increased.
  • FIG. 9A and 9B illustrate the number of interconnection devices when the number of connected power systems increases.
  • the number of BTB type interconnection devices is 1/2 ⁇ N ⁇ (N ⁇ 1) units, but in FIG. 9B of the present invention, N units may be used.
  • power interchange using the multi-terminal type power conversion device of the present invention leads to a reduction in the number of required devices, ease of control, reduction in capital investment, and the like, compared to a BTB type interconnection device and a loop controller. It has the characteristics.
  • 10A and 10B show that when a plurality of power systems are connected by the multi-terminal type power conversion device of the present invention, the number of power conversions can be reduced as compared with the case of connecting by a conventional BTB type interconnection device. It shows that decreases.
  • FIG. 10A shows a case where a BTB type converter is installed on each link.
  • AC / DC conversion and orthogonal transformation are performed between the nodes da, and AC / DC conversion and orthogonal transformation are also performed between the nodes ac, resulting in a total of four power conversions. Loss is also proportional to this.
  • FIG. 10B of the present invention shows a case where the multi-terminal type power converter of the present invention is installed.
  • power conversion is performed twice in total, once between nodes da and once between nodes ac. Power loss is also halved.
  • the number of converters is 12 in the conventional FIG. 10A, and 9 in FIG. 10B of the present invention.
  • the number of devices is six in FIG. 10A, but four in FIG. 10B.
  • the multi-terminal power conversion device of the present invention has advantages in terms of power loss and the number of facilities compared to the BTB type interconnection device.
  • a plurality of multi-terminal power conversion devices 1 can be installed in one power system, and a plurality of interconnection lines can be installed in one power interchange route.
  • a plurality of multi-terminal power conversion devices 1 can be installed in one power system, and a plurality of interconnection lines can be installed in one power interchange route.
  • connection terminal 201 At one end of the interconnecting electric wire path and the B connection terminal 202 at the other end. There is no hindrance to power interchange even as a device or as the A connection terminal 201.
  • the power converter 10 Since the power converter 10 is capable of grid-linked operation and independent operation, in such a power system, when any power system goes into a complete power failure, the power converter 10 is provided as a voltage source for restoration. can do. Accident recovery is facilitated by proceeding with recovery by connecting the power supply in the power system to this voltage source. In this power system, there are a plurality of power supply routes at this time, which is advantageous for a recovery operation in the event of an accident.
  • 6 is a power bus, and a circuit breaker 8 and a disconnecting switch 9 are connected to the bus to connect power devices such as a power generator 61 and a power storage device 62. Supply power through cable.
  • a power device control terminal device 12 is added to the power device, and power control can be performed through this.
  • the power equipment control terminal device 12 has a built-in communication terminal station that can communicate with the outside, and can control power interchange and collect power information by giving individual IP addresses to each device as will be described later.
  • 4A and 4B show an example in which the power line carrier communication terminal station 13 is incorporated. If the power equipment control terminal device 12 is used, it is possible to control power interchange between power equipment even in the same power system.
  • a power bus 6 of a lower voltage class is also shown through a transformer. 4A and 4B, the power line carrier communication bypass-equipped transformer 11 is illustrated in order to enable power line carrier communication described later.
  • the electric power bus 6 is usually classified into three types of extra high voltage, high voltage, and low voltage.
  • loads of general consumers are connected for each voltage class.
  • a plurality of power systems 3-1 to 3-4 and 3-6 are configured by these loads, power generation facilities, power storage facilities, and the like.
  • the specifications of various electric power systems are defined in Japan's electric power system with extra high voltage exceeding 7,000V, high voltage exceeding 600V and up to 7,000V, and low voltage below 600V.
  • the transition to the self-supporting power system can be performed smoothly.
  • a power device control terminal device 12 that can acquire power information or give a power control signal to a power device in the power system, power adjustment can be performed between the power devices. It is possible to balance supply and demand between total power generation and total consumption in the power system, and to keep the frequency and voltage constant, that is, the power system can be independent. As the amount of the renewable energy power source increases, the fluctuation increases, so that it is necessary to adjust the power with the power storage device, but this is also possible by control using the power equipment control terminal device 12.
  • Communication terminal stations 25-1 and 25-2 (data terminal end: DTE) installed at the A connection terminal 201 of the multi-terminal type power conversion device 1-1 and the B connection terminal 202 of the multi-terminal type power conversion device 1-2 are In addition to acquiring information related to electric power and transmitting it to the CPU, the external data communication path or the power line carrier communication path is used as the data communication path to exchange signals with the outside.
  • the external data communication path an optical cable, a LAN cable, a metal cable, a wireless cable, or a coaxial cable can be used as the external data communication path.
  • an information control system for power interchange between power systems becomes a communication system similar to LAN and WAN on the Internet, and a flexible communication control form can be constructed.
  • the power in the system is synchronized at any moment, so a communication system necessary for power control is required to be fast and highly reliable.
  • a mechanism in which individual power generation devices perform control based on the frequency and voltage of the power system was the mainstream.
  • the power storage device is premised on an electric power network that ensures the independence of individual electric power systems, reliability is more important than high-speed communication systems.
  • FIG. 11 shows a WAN by giving communication addresses to the main terminals of the multi-terminal type power converters 1-1 and 1-2 and their input / output terminals, and electric devices 1102-1 and 1102-2 in the power system.
  • communication between different power system power devices or between multiple power systems becomes possible, and control instructions regarding power interchange can be given to the input / output terminals of the multi-terminal power converters 1-1 and 1-2.
  • a possible power system can be constructed.
  • a MAC address specific to an input / output terminal, an assigned IP address, a subnet mask, an address table describing a default gateway, and a gateway for routing between the multi-terminal power converters 1-1 and 1-2 An address table describing a MAC address, an assigned IP address, a subnet mask, and a default gateway unique to the power equipment control terminal devices 12-1 and 12-2 in the LAN.
  • a server having a routing table describing a gateway for routing between the power equipment control terminal devices 12-1 and 12-2, the multi-terminal power conversion device 1 can be used using the TCP / IP communication protocol.
  • -1, 1-2 input / output terminals and power Power network system capable of communicating between devices controlling device 12-1 and 12-2 can be constructed.
  • an address table and a routing table can be placed inside each of the multi-terminal power converters 1-1 and 1-2 so that information can be exchanged and always kept up-to-date.
  • IP address information can be exchanged by placing in the WAN a server having a routing table that describes a gateway for routing between the multi-terminal power converters 1-1 and 1-2. . Further, instead of the server, a routing table can be placed inside each of the multi-terminal power converters 1-1 and 1-2 so that information can be exchanged so that the latest state is always maintained.
  • the individual power device control terminal devices 12-1 and 12-2 can be specified, so that information for passing power between them can be exchanged.
  • Information on power devices in the LAN can be centrally managed by an address server installed in the power system.
  • the power device control terminal devices 12-1 and 12-2 can manage the necessary addresses, but the destinations whose addresses are not known can be known by making an inquiry to the address server.
  • the address server can be placed in the multi-terminal power converters 1-1 and 1-2 installed in the power system.
  • a WAN / LAN is constructed using the interconnection line 7 and the power cable as a transmission path for communication signals. Match. If the interconnection line 7 or the power cable is disconnected or the related equipment is stopped, the communication circuit is also released or stopped, so that no communication signal flows through the circuit. As a result, the latest state of the power system can be grasped without checking the complicated state.
  • a digital power line carrier of 192 kbps has already been put into practical use. The amount of information of a power interchange signal, which will be described later, needs only about several kilobits for all communications, so the band can be said to be a sufficient speed.
  • the communication path and the electrical line are made physically the same, so there is no need to install a new communication path facility according to the electrical line, and the soundness of the line can be confirmed. There are several advantages such as being able to do it automatically.
  • FIG. 13 illustrates a communication system in the multi-terminal power conversion device 1.
  • the power line carrier communication terminal station 1306 connected to the interconnection line coupling device 1307 having the connection terminal 1308 is a port for external data communication.
  • Information obtained from the power line carrier communication terminal station 1306 is transmitted to the data terminal end (DTE) 1305 and processed by the CPU 1301.
  • DTE data terminal end
  • each of the multi-terminal power conversion device 1 and its connection terminal 1308 has a unique IP address, communicates with the outside, and performs operations of a storage device and a routing algorithm for acting as an address server.
  • Basic devices such as a CPU 1301 and memories 1302 and 1303 can be included.
  • a power source 1304 supplies power to these basic devices.
  • One of the power line carrier communication terminal stations 1306 is connected to a communication system in the power system, and assigns an IP address to the power equipment control terminal device 12 in the LAN.
  • the multi-terminal power conversion device 1 of the parent device holds an address table for grasping the MAC address and IP address of the power device control terminal device 12 in the memory 1303, and the address table is stored in the multi-terminal power conversion device 1 of the child device. Also share with.
  • the power line carrier communication terminal station 1306 installed at the other connection terminal 1308 of the multi-terminal power converter 1 communicates with the other multi-terminal power converter 1 in the WAN to create a routing table and store it in the memory. Save in 1303.
  • the interconnection line itself that supplies power by using the power line carrier communication terminal station 1306 becomes a communication line, whether the communicable route physically coincides with the route through which power can be transmitted and whether communication is possible or not. Thus, it is possible to confirm whether or not the route allows power interchange. In other words, if the power line breaks or the related equipment is stopped, the communication circuit is also released or stopped, so no communication signal flows through the circuit. You can grasp the latest status. Routes that cannot be communicated are automatically excluded from the routing algorithm, eliminating the need for unnecessary confirmation procedures.
  • FIG. 14 illustrates a communication system in the power equipment control terminal device 12.
  • the power equipment control terminal device 12 is a power equipment having a CPU 1401 that performs calculation related to power interchange request / acceptance, a memory 1402, a storage device 1403 that stores an address table and a routing table, a power supply 1404, and an input / output terminal 1409 for the power equipment.
  • a control device 1408 is provided.
  • the power equipment control terminal device 12 in the power system has its own MAC address and IP address, and information on the Default Gateway corresponding to the communication port when going out of the LAN. This usually corresponds to the IP address of the A connection terminal 201 connected to its own power system of the multi-terminal power conversion device 1.
  • the power line carrier communication terminal station 1406 connected to the interconnection line coupling device 1407 having a connection terminal connected to the distribution line 1410 and the power equipment control device 1408 is a port for external data communication.
  • the same mechanism is used for communication terminals of optical cables and coaxial cables.
  • Information obtained from the power line carrier communication terminal station 1406 is transmitted to the data terminal end (DTE) 1405 and processed by the CPU.
  • DTE data terminal end
  • the LAN has an address table for communicating with other power devices in the LAN, and it is shared with other power line carrier communication terminal stations 1406 and is always kept up-to-date. As a result, it is possible to know to which address a power device in the LAN outputs a signal when communicating with another power device.
  • the amount of power generated by a power source that is relatively fluctuating is measured and information is output through an external communication circuit, or diesel power generation.
  • Control the output by giving an output increase / decrease command to a generator that can easily adjust the output, such as a power generator or a gas engine generator, give information on the state of charge (SOC) of the power storage device, and control the amount of charge / discharge Or information on power devices that consume power can be output to the outside.
  • SOC state of charge
  • the SOC of the power storage device is maintained at around 50%, and when the output of solar power generation or wind power generation is expected, the output is absorbed. Therefore, when the output is expected to be lower than 50%, the predictive control is preferably maintained higher than 50% in order to output from the battery.
  • FIGS. 4A and 4B show an example of a communication system using power line carrier communication.
  • a power line carrier communication terminal station 13 is installed in the power equipment control terminal device 12, and each IP address 14 is shown. Moreover, the power line carrier communication terminal station 13 is also installed in each connection terminal of the multi-terminal type power converter 1, and each IP address 14 is displayed.
  • an address management method there are a method of manually giving an address to each multi-terminal power converter 1 and a method of automatically giving it.
  • manual operation an address change operation occurs with the change of the multi-terminal power conversion device 1.
  • automatic when a new installation or power is turned on, the device side transmits its own MAC address and requests assignment of a new IP address.
  • all address change operations are performed automatically, so the burden on the system administrator is small.
  • a WAN / LAN When power line carrier communication is used as a communication path, a WAN / LAN is constructed using a communication line or power cable as a transmission path for communication signals. Match. If the electric line is disconnected or the related equipment is stopped, the communication circuit is also released or stopped, so that no communication signal flows through the circuit. As a result, the latest state of the power system can be grasped without checking the complicated state. As described above, a digital power line carrier of 192 kbps has already been put into practical use for a 66 kV transmission line. The amount of information of a power interchange signal, which will be described later, needs only about several kilobits for all communications, so the band can be said to be a sufficient speed.
  • transformers, circuit breakers, disconnectors, capacitors, reactors, etc. that are not suitable for power line carrier communications in the power system, and because the communication signal is greatly attenuated depending on the impedance of other connected devices, There may be a partial bypass or an amplifier.
  • the multi-terminal power conversion device 1 exchanges information with each other, like an Internet router, and always keeps the addresses of adjacent multi-terminal power conversion devices 1 and their respective input / output terminals. It is possible to grasp and necessary power can be sent to a distant power system while converting power like a bucket relay, so that necessary routing information can always be grasped.
  • the present invention proposes a specific means for realizing the concept.
  • the multi-terminal power conversion system according to the present invention is arranged adjacent to one section in the substation premises, and information necessary for the control is controlled by the CPU 1401 to gate the power semiconductor element, and the storage device Is characterized in that the power conversion related information and the transaction related information are associated and digitally recorded.
  • FIG. 15 is an example of a routing table created using the IP address assigned in the example of the power network system of FIG.
  • Tables 1501 to 1504 and 1506 are routing tables held by the multi-terminal power conversion device 1 installed in the power systems 3-1 to 3-4 and 3-6.
  • the table 1505 is connected to the power equipment system 4.
  • 2 is a routing table held by the multi-terminal power conversion device 1.
  • the first table 1501 describes a gateway when connecting from the multi-terminal power conversion device 1 installed in the power system 3-1 to another power system.
  • Subnet mask is 255.255.255.0
  • Network 192.168.2.0 means that the first 24 bits are a common group. This means the power system 3-2.
  • Gateway 192.168.0.7 that is, the B connection connected to the power system 3-1 in the multi-terminal power conversion device 1 installed in the power system 3-2 It shows that the terminal 202 is passed first.
  • the A connection of the multi-terminal power conversion device 1 connected to the power bus of the power system 3-1, for example, from the power equipment system 4 to any of the power systems 3-1 to 3-4 192.168.1.1 of the terminal 201 becomes Gateway.
  • the routing table to the connection destination is held by all the multi-terminal power converters 1 and the contents are exchanged between the multi-terminal power converters so that the latest routing map in the WAN / LAN is obtained. Can be shared.
  • communication can be performed between the multi-terminal power conversion device 1 and the power equipment control terminal device 12 using the TCP / IP communication protocol, and the physical address, error control, order Standardization of control, flow control, collision avoidance, etc. becomes possible.
  • the power network system of the present invention by using such a TCP / IP communication protocol, power is interchanged with other power systems through WAN / LAN as needed while giving priority to independence in the power system.
  • a system for requesting can be established.
  • the IP address can be given either statically or dynamically. In the static case, the IP address is given as specific to the physical device. In the dynamic case, a request from the physical device is given. The address is given according to the system and the address is changed according to the system change.
  • FIG. 16 shows the simulation of multi-terminal power conversion using MatLab-Simlink-SimPowerSystems.
  • the forward converter side was omitted and a DC power source was substituted.
  • the reverse converter side was made a parallel circuit of single-phase PWM inverters, and three circuits were made.
  • the battery of DC ⁇ 400V was substituted for the DC bus side.
  • the two batteries were grounded, the middle of each inverter leg was connected in series with a 1 ohm resistor and a 5 mH reactor, and the voltage generated in the resistance section was observed.
  • the internal resistance of the PWM inverter was 1 milliohm and the snubber resistance was 0.01 milliohm.
  • Three-phase single-phase PWM inverters were arranged in parallel, and control signals of phase 0 degree at a frequency of 50 Hz, phase 60 degrees at a frequency of 51 Hz, and phase -30 degrees at a frequency of 49 Hz were given. As a result, it operated normally, and an AC output with an amplitude of AC 350 V, a phase of 0 degree at a frequency of 50 Hz, a phase of 60 degrees at a frequency of 51 Hz, and a phase of -30 degrees at a frequency of 49 Hz was obtained.
  • FIG. 37A shows a state in which the three-terminal multi-terminal power conversion device 1 is connected to power systems having different frequencies
  • FIG. 37B shows the power interchange direction continuously and seamlessly in the state shown in FIG. 37A. The simulation result when changing is shown. This simulation was performed by the power simulation software PSIM.
  • the power converter 10-1 of the multi-terminal power converter 1 is connected to the power system 3-1 having a frequency of 60 Hz, and the power converter 10-2 is a power system 3-2 having a frequency of 50 Hz.
  • the power converter 10-3 is connected to the power system 3-3 having a frequency of 40 Hz.
  • the power converter 10-1 and the power converter 10-2 By increasing the control signal of the power converter 10-1 and the control signal of the power converter 10-2 in the opposite directions from time 0.05 seconds to 0.06 seconds, the power converter 10-1 and the power converter It can be seen that the current value of 10-2 starts to increase and the currents of the power converter 10-1 and the power converter 10-2 have the same value from the time 0.06 seconds to the time 0.08 seconds. This means that power is being transmitted from the power system 3-1 (60 Hz) to the power system 3-2 (50 Hz).
  • the control signal of the power converter 10-1 returns to 0, while the control signal of the power converter 10-3 increases to reverse the direction of the power converter 10-2. Has increased to the same value.
  • the power system 3-3 (40 Hz) has sent power to the power system 3-2 instead of the power system 3-1. This state is maintained from time 0.09 seconds to time 0.12 seconds.
  • control signal of power converter 10-1 increases, and the control signals of power converter 10-2 and power converter 10-3 increase in the opposite direction.
  • the sum is controlled to be equal to the value of the power converter 10-1, and this state is maintained from the time 0.13 seconds to the time 0.19 seconds.
  • the multi-terminal power conversion device 1 of the present invention can continuously change the power interchange direction not only in the synchronous system but also in three or more power systems that are not synchronized. This means that power routing based on the control signal is possible.
  • the above-described complicated power interchange procedure can be stored in a computer, and power interchange can be automatically performed. Moreover, this power interchange procedure can also share a program and perform distributed processing so that any of the multi-terminal type power converters 1 can be implemented.
  • connection terminals of the multi-terminal power conversion device 1 are independently connected to each line of the transmission line 22 that has an even number of lines and is operated in parallel, and independent power interchange operation is performed for each line. An example of doing this is shown.
  • the transmission lines in a normal synchronous system are transmitted as a set of two lines so that 100% of power can be transmitted even when one line is interrupted in an extra high voltage system exceeding 6,000 volts. It is common.
  • One line is installed on each side of the transmission tower and is laid to the same destination. Therefore, when two lines are operated, the operation is 50%, and the facility utilization rate is 50% at the maximum.
  • the power flow is uniquely determined by the impedance distribution of the transmission line. This is referred to herein as passive power flow.
  • the rated capacity of the transmission line is designed based on the passive maximum power flow assumed in the power flow distribution in the long-term prospect. Is significantly below 50%.
  • the multi-terminal power conversion device 1 can actively flow a power flow having a necessary size and direction. That is, the power system of the present invention is an active power flow. Therefore, when the connection terminal of the multi-terminal power conversion device 1 of the present invention is independently connected to each line of the two-line power transmission line, since one line is cut off as in the prior art, from the time of two-line operation. It is not necessary to operate 50% of each, and when one line is cut off, it can be dealt with by transmitting power from another route.
  • FIG. 17A shows an example in which power is transmitted to three power systems A, B, and C.
  • 100% of power is transmitted from A to C, and two transmission lines are both operated in parallel at 50%.
  • FIG. 17B is an example of independent operation of each transmission line in the power system of the present invention.
  • the route drawn at the top of the two transmission lines can transmit power from the power system A to the power system C with 100% capacity.
  • the route depicted in the lower part of the two transmission lines allows power to be transmitted from the power system A to the power system B with 100% capacity. It is also possible to transmit power from the power system B to the power system C with 100% capacity.
  • Each power converter 10 has a rating commensurate with its transmission capacity.
  • the power system B becomes insufficient in power, but the power system C can increase the output and back up 100% with the route to the power system B.
  • connection terminals of the multi-terminal type power conversion device 1 can independently and actively send power of a desired size to the transmission line, so that the equipment utilization rate can be increased up to 100%.
  • the power can be actively sent by the power converter 10, it is possible to increase the average operating rate of the two-line power transmission facility throughout the year to a maximum of 200%.
  • FIG. 18 illustrates the case of four transmission lines. In this example, there are six wires on both sides of the transmission line. In general, the destinations are often different for each two lines, but the part that passes through a common route is illustrated.
  • FIG. 18 shows an example in which a four-line power transmission route goes from power system A via power systems B, C, D, E, and F.
  • the place where the line is directly connected to each power system from each power transmission tower is disconnected or the circuit breaker 9 is installed for open operation.
  • the device 1 is drawn.
  • the independent operation is performed asynchronously for each connection terminal.
  • the line 2 has a power interchange route between the power systems AC, between the power systems CE, and between the power systems connected to the power system E and the line 2.
  • the line 3 has a power interchange route between the power systems A and D and between the power system D and the power system to which the line 3 is connected.
  • the line 4 has established a power interchange route between the power systems A and F and between the power system F and the power system to which the line 4 is connected.
  • the method of creating a power interchange route is not limited to the above example, but should be considered on a case-by-case basis.
  • the power interchange route created by this is asynchronous interconnection, it becomes a route that can send and receive active power and reactive power of any size, and if the power system has the remaining capacity, Can be used up to full rated capacity.
  • the fluctuation at the time of the accident can reduce the influence on the power system by the high-speed gate block of the power converter 10.
  • backup of power storage devices and the like may be required, but it is easier to make capital investment than enhancing transmission lines.
  • the power interchange route obtained by such a device constitutes a power network similar to the power interchange route of FIG.
  • Power transmission method 3 an electric power system has been devised that enables five electric power interchange methods of superposition type electric power transmission, time sharing power transmission, multi-route power transmission, power compression accommodation, and virtual transaction accommodation.
  • FIG. 19 shows that the multi-terminal type power conversion device 1 is installed in each substation lead-in portion of the transmission line, performs information communication between the devices, and uses the same transmission line to simultaneously apply different power to a plurality of substations.
  • the superposition type electric power transmission which transmits electric power is explained.
  • the power converter pair 23-1 sends the power of W1 and W2 per unit time to the power system 3-2, and at the same timing, the power converter pair 23-2 supplies the power of W2 per unit time to the power system 3-2.
  • the electric power is sent from the electric power system 3-3 toward the electric power system 3-3, the electric power of the subtraction W1 is supplied to the electric power system 3-2.
  • the destination information header 1901 instructed to send the power of W1 + W2 and W2 to the power converter pair 23-1 and the power converter pair 23-2, respectively, is sent as a signal, so that such power interchange is possible.
  • FIG. 20 illustrates time-sharing power transmission in which different power is divided and sent to different substations.
  • the power systems 3-1 to 3-3 and the power converter pairs 23-1 and 23-2 similar to those in FIG. 10 are provided.
  • the power converter pair 23-1 has power W1 per unit time.
  • the destination information header 1901 instructed to send out W1 is sent to the power system 3-2.
  • a destination information header 1901 for sending W2 power per unit time to the power system 3-3 gives instructions to both the power converter pair 23-1 and the power converter pair 23-2, and both power converters are simultaneously connected. Operate at the size of W2.
  • W2 is transmitted from the power system 3-1 to the power system 3-3.
  • only power passes through the power system 3-2. In this way, power can be accommodated for different purposes at different times.
  • the advantage of this method is that power can be sent to different destinations at the maximum output of the power converter. This is similar to the concept of packet in communication, and can be called packet power.
  • the maximum output of the power converter can be handled as a unit of power for a certain period of time. This can also be called digital power.
  • FIG. 21 illustrates multi-route power transmission that uses a plurality of different power transmission circuits to simultaneously send different power to one substation.
  • FIGS. 19 and 20 there are a power converter pair 23-1 and a power converter pair 23-2 between the power systems 3-1 to 3-3, but in addition, the power systems 3-1 and 3-3
  • the power systems 3-1 and 3-3 There is also a power transmission route between and a power converter pair 23-3.
  • information is sent to send power W1 to both power converter pairs 23-1 and 23-2, and information is sent to power converter pair 23-3 to send power W2.
  • the power of W1 + W2 is sent from the power system 3-1 to the power system 3-3 via a different route.
  • FIG. 22 illustrates power compression accommodation that reduces power conversion and transmission loss by compressing or canceling power transmission amount by combining power transmission requests in the opposite direction.
  • W1 kW
  • W1 kW
  • W1 kW
  • W1 kW
  • W1 and -W1 flows between the electric power systems 3-1, 3-5, and this is canceled out, so that the electric power systems 3-1, 3-5
  • the installed multi-terminal power converter 1 does not have to operate. Thereby, a power conversion loss and a power transmission loss are reduced.
  • ⁇ ⁇ Loss can be minimized by actively combining such power interchange plans. If each power system has a power storage device, it can be adjusted by shifting the time or adjusting the output. When information such as a power generation source is added to power energy, such a reverse power transaction may occur. In some power systems, wind power generation is required, and the power system with wind power generation, on the contrary, requires power derived from cheap fossil fuels. .
  • FIG. 23 illustrates virtual power transaction interchange that enables power interchange between power systems that are not connected to each other by transmission lines using power information that is traded with the power storage device.
  • the power system 2310 has only the photovoltaic power generation PV
  • the power system 2320 has only the diesel power generation DG.
  • the DG power is supplied to the customer of the power system 2310 by the virtual power transaction in which the power storage amount in the power storage device 2311 and the power storage device 2321 installed in each is performed in order from t0 to t2. An example in which PV power can be sold to other customers will be described.
  • the power storage devices 2311 and 2321 are charged with PV-derived power and DG-derived power, respectively.
  • This transaction is preferably accompanied by a bond-like form or means such as bills, certificates or cash settlement.
  • DG power can be sold in the power system 2310 and PV power can be sold in the power system 2320.
  • PV power can be sold in the power system 2320.
  • FIG. 24 illustrates virtual transaction accommodation when both power systems 2410 and 2420 have PV, DG, and power storage.
  • the effect of the invention of the superimposed power transmission is that the power to be sent to another power system can be added to the target substation via the other power system. Even if there is no direct transmission route to the target power system, the necessary power can be sent.
  • time sharing is greater than that of superimposed power transmission in which the total power sent to each power system is limited to the capacity of the multi-terminal power converter 1.
  • each power can be increased up to the maximum rated capacity of the multi-terminal power converter 1.
  • the effect of the invention of multi-route power transmission is that in the case of a synchronous system, a loop current and a cross current are generated, resulting in passive power distribution determined by the impedance of the power transmission network. If terminal type power converter 1 is used, since the electric power sent from one of many systems to one electric power system is each asynchronous, it can receive all without interfering with each other, and can send electric power actively.
  • the invention of power compression accommodation can compress the actual amount of power conversion by adjusting the time constraints and size constraints of a large number of power accommodation requests between a plurality of power systems. As a result, power loss associated with power conversion and power interchange of the entire power system can be reduced.
  • the invention of virtual power trading uses the multi-terminal power conversion device 1 to perform actual power transmission between power systems that are not connected to a power transmission line or even when a power transmission line is connected. Power can be accommodated in a way that is not. This makes it possible to create certificate transactions, futures transactions, and derivative financial products that combine these.
  • Time synchronization method relate to a plurality of power converters arranged between a plurality of power systems, a time synchronization electric waveform propagating on a power line created by the power converter, and a time synchronization transmitting the meaning of the electric waveform.
  • the time synchronization information transmission network system is characterized in that time synchronization among a plurality of power converters is achieved by combining both the electronic information and the electronic information.
  • a plurality of power converters can be operated at the same size or stopped at the same time by combining a relatively small amount of information contained in the electric waveform appearing on the power line and a large amount of electronic information explaining its meaning. It is possible to change the size on the way.
  • the power converter pair 23-1 and the power converter pair 23-2 are driven at the same timing and with the same magnitude between the power systems 3-1 to 3-3. Indicates that power can be sent from the power system 3-1 to the power system 3-3 without receiving power or without receiving power. This is called time synchronization.
  • the power converter is prepared for operation by transmitting in advance the meaning of small information via another external data communication path.
  • a way to go is conceivable. This is a method of achieving time synchronization by a combination of the time synchronization electric waveform and the time synchronization electronic information according to the present invention.
  • a signal is put on the voltage waveform, but the peak of the voltage waveform 2500 has a lot of noise, so the timing of putting the signal can be zero-cross where the voltage is zero.
  • a power line carrier communication signal can be put on the voltage waveform.
  • a signal can be put on the current waveform. It is also possible to cause the power converter pair 23-1 itself to generate a signal.
  • the time synchronization electric waveform is not limited to one, but can be given meaning as a combination of several electric waveforms. If a combination is used, time synchronization can be achieved using only the electrical waveform for time synchronization. For example, by using two or more electrical waveforms to generate a warning signal before a certain cycle of driving start, preparation is performed, or by changing the number of cycles to be spaced to make a countdown signal, the timing of driving start is matched You can do that.
  • time synchronization electric waveform 2500 propagating on the power line created by the power converter pair 23-1, and the time synchronization electronic information transmitting the meaning of the electric waveform 2500, a plurality of times are obtained. It is characterized by time synchronization between power converters, and time synchronization can be achieved by the following procedure.
  • a unique voltage waveform, current waveform, active power waveform, reactive power waveform, change in magnitude, change in phase, change in phase vector, change in space vector locus in the power converter pair 23-1 at the transmission source And a combination start / end warning signal or start / stop signal (collectively referred to as electric waveform profiles 2500a to 2500d) and sent to the power circuit in advance by another communication channel 2501 or the like.
  • Information is transmitted to the power converter pair 23-2 to be synchronized by the information route.
  • the power converter pair 23-2 that has received the information performs detection circuit configuration and software settings so that these electrical waveform profiles can be quickly detected as time-synchronized electrical waveforms, and prepares to synchronize the power conversion accordingly. Do.
  • the power converter pair 23-2 starts preparations necessary for power conversion, and a predetermined number of times from the warning signal.
  • the time synchronization of the plurality of power converter pairs 23-1 and 23-2 can be achieved by a method such as starting power conversion after a zero-crossing cycle of the current voltage.
  • the electrical waveform profile can be simplified and the influence of noise can be reduced.
  • the present invention by further transmitting coordinated time synchronization electronic information to a plurality of multi-terminal power converters 1, the power conversion operations of the plurality of multi-terminal power converters 1 are synchronized. Therefore, power can be accommodated far away via the plurality of multi-terminal power converters 1.
  • the electrical waveform can be simple, increasing the flexibility of the usable electrical waveform and its implementation method.
  • the combination of the electrical waveform and the electronic information reduces the time restrictions on the electronic information, and increases the degree of freedom of usable data lines and communication means.
  • Another embodiment of the present invention is characterized in that the time synchronization electric waveform in the power system is based on a current waveform.
  • the BTB type power converter rectifies alternating current with one power converter to create direct current, and then turns on and off the DC section voltage with the other power converter several thousand to several tens of thousands of times per second. A sinusoidal voltage is averaged by changing.
  • the target current can be sent or drawn.
  • an electrical waveform profile with a relatively high amount of information can be obtained. be able to.
  • the electrical waveform for time synchronization is a current, it can be created by the power converter itself of the multi-terminal power converter, and various electrical waveforms can be created by combining the size, phase, and timing.
  • the power conversion equipment of the power converter including the control system also serves as the electrical waveform creation equipment as it is, no additional equipment is required and the economy is high.
  • Another embodiment of the present invention is characterized in that in the power system, the time synchronization electronic information is a power line carrier communication signal propagating on the power line.
  • a power line carrier system in which electronic information for time synchronization is transmitted on the same line as the power line through which the electric waveform for time synchronization is propagated, electronic information can be sent due to physical failure such as power line disconnection or grounding. If there is no response, there is no reply, so it is easy to find a problem with the power line.
  • a power line carrier signal can be used as an electrical waveform for time synchronization, and inserted at the zero cross timing of the voltage to replace the electrical waveform profile for time synchronization.
  • the electrical waveform for time synchronization is voltage
  • a circuit that bypasses a current reactor, an AC filter, or the like is added, it can be created by the power converter itself of the multi-terminal power converter.
  • the voltage information generated by the power converter has a frequency of several kHz to several tens of kHz, and can increase the amount of information compared to the electric waveform due to current.
  • an electrical waveform with more information can be obtained by adding a device for adding a voltage waveform to the transmission line.
  • the same power transmission line can be used for the electronic information for time synchronization, and there is no need to newly install a communication path for electronic information.
  • the equipment other than the power converter is a power line carrier communication equipment
  • the equipment and control can be shared when the power line is created by placing a high frequency voltage waveform on the power transmission line.
  • the communication path and the electric line can be made physically the same, and even if a new electric line is made, there is no need to install a new communication line, and the soundness of the line is automatically confirmed.
  • merits such as being able to do it.
  • FIG. 26A and 26B show a first power accommodation request stage in the power network system.
  • FIG. 26A shows a state in which any one of the multi-terminal power conversion devices 1 or power devices in the power system 2601 is sending a general inquiry with a desired transaction condition 2600a to other power system devices and devices.
  • FIG. 26B shows a state in which the power system 2602 capable of power interchange responds to the inquiry with a possible transaction condition 2600b.
  • the IP packet transmitted by the power interchange request source in the power system 2601 in the first power interchange request stage includes at least information on the source IP address, multicast IP address, and desired transaction condition 2600a, and the power in the power system 2602
  • the IP packet to which the accommodation response destination responds includes at least information on the source IP address, the reply destination IP address, and the possible transaction condition 2600b.
  • FIGS. 27A and 27B show a second power interchange request stage in the power network system.
  • FIG. 27A shows a state in which the reservation transaction condition 2600c is transmitted to the multi-terminal power conversion device 1 installed in the power system 2602 that has returned that power can be accommodated
  • FIG. 27B shows the power system 2602. Shows a state of replying with a reservation confirmation condition 2600d.
  • the IP packet transmitted by the power interchange request source in the power system 2601 in the second power interchange request stage includes at least information on the source IP address, the destination IP address, and the reservation transaction conditions, and the power in the power system 2602
  • the IP packet to which the accommodation response destination responds includes information on the source IP address, the reply destination IP address, and the reservation confirmation condition.
  • routing route selection stage After the power interchange partner and the power interchange profile are determined, (1) multiple routing route selection stage, (2) routing profile collection stage, (3) power accommodation route selection stage, (4) routing reservation stage, (5) The routing is determined through a routing determination stage, (6) a monitoring stage for implementing power interchange, and (7) a determination stage of an emergency routing method in an abnormal situation.
  • FIG. 28A and 28B conceptually illustrate a situation where power is finally accommodated when a reservation time comes.
  • the burden per route is reduced, and even if a failure or the like occurs, the influence is small, and flexible network operation such as finding an alternative route immediately becomes possible.
  • FIG. 28A will be described later.
  • an inquiry is made to a large number of unspecified devices, the power interchange options are expanded, a plurality of power devices and multi-terminal power conversion devices 1 that request a certain algorithm for power interchange are specified and reserved. be able to.
  • the reserved power device and the multi-terminal power conversion device 1 return an acceptance response, thereby confirming the power interchange.
  • Responses such as changes immediately before the start of accommodation and accidents during accommodation can also be included in the power accommodation algorithm of this claim.
  • the power device or the multi-terminal power conversion device 1 that has received the power request can examine whether or not it can cope with the desired transaction condition. It can be set as the electric power network system which includes a transaction form.
  • the power device or the multi-terminal power conversion device 1 that has received the power interchange reservation is provided with a step of reconfirming the reservation transaction conditions, and after the confirmation, such a reliability that it can convey its final transaction conditions. It can be set as the electric power network system which includes a high transaction form.
  • the present invention can construct a power network system capable of optimized power interchange routing. If there are multiple demands for power interchange, there is a huge choice of which route should be used, including interchange from the main power grid, to reduce the overall power loss, whether there are any physical restrictions, or including transaction price information. However, it is possible to solve the routing problem by including power loss in the price information and placing importance on economics and solving the optimization problem under physical constraints.
  • the other power systems 3-2 to 3-4, 3-6 and the power equipment system 4 are inquired with the power interchange profile with the power interchange profile.
  • the multi-terminal type power conversion device 1 installed in the power system 3-1 includes the multi-terminal type power conversion installed in the other power systems 3-2 to 3-4, 3-6 and the power equipment system 4.
  • the contents of the device 1 are inquired to the gateway (Broad Casting).
  • the gateway Broad Casting
  • the port 192.168.4.2 of the power device control terminal device 12 of the G4 is connected to the power system 3-1.
  • a reply is made with a power interchange profile that is compatible with the power equipment control terminal device communication port 192.168.1.3 of the power storage device B1.
  • FIG. 29 is an example when the power system to which the multi-terminal power converter 1 is connected is a direct current.
  • the power system is expressed by each of the solar power generation device 2900 and the power storage device 29011 units.
  • this configuration may be a minimum component and other power devices not shown may be connected.
  • the part (1) is an example in which the A connection terminal 201 is directly connected to the direct current connection portion of the power storage device 2901 and the photovoltaic power generation device 2900, and the DC voltage created here is the charge / discharge of the power storage device. Control is in progress. In this case, there is a high possibility that the PV optimal control of photovoltaic power generation does not work efficiently, but since the number of power converters can be reduced, such connection is also possible for small-scale power interchange.
  • the photovoltaic power generation device 2900 is connected to one A connection terminal 201, the power storage device 2901 is connected to another A connection terminal 201, and the other A connection terminal 201 is a wind power generation device 2905.
  • This is an example of being connected to other AC or DC power system 2906.
  • the A connection terminal 201 can replace the VI optimal control of the solar power generation device 2900 and the charge / discharge control of the power storage device 2901.
  • an AC reactor or transformer is required at the outlet of the A connection terminal 201.
  • (3) is an example in which one of the A connection terminals 201 directly provides power to the AC home appliance 2902. Although not shown, a reactor or a transformer is required in this case.
  • a multi-terminal power conversion device 1 is used for DC connection to form a large power network system. be able to.
  • a small customer alone will cause a failure due to battery depletion or solar cell failure.
  • networking makes it possible to share power equipment and reduce the overall equipment reserve ratio, thus improving the reliability of the network system. Can be increased. In developing countries, etc., villages and towns have separate DC power systems and can be used where there is no interconnection.
  • ⁇ DC networking is not recommended because the interruption current at the time of an accident usually increases.
  • a gate block can be applied in the event of an accident. Since the gate block is high-speed and can cut off direct current, it is possible to construct a network with direct current that could not be constructed without a direct current circuit breaker.
  • the IP packet transmitted by the power interchange request source in the first power interchange request stage includes at least information on the source IP address, multicast IP address, and desired transaction conditions.
  • the IP packet to which the power interchange response destination responds includes at least information on the source IP address, reply destination IP address, and possible transaction conditions.
  • the desired transaction conditions here are the desired interchange active power direction and magnitude, the desired interchange reactive power direction and magnitude, the desired accommodation start time, the desired accommodation end time, the desired accommodation price upper limit, the desired accommodation price lower limit, and the generation of accommodation power. It is composed of the desired attributes of the source, and possible transaction conditions are possible interchangeable active power direction and size, possible interchange reactive power direction and size, possible interchange start time, possible interchange end time, possible interchangeable price, and possible interchangeable power generation source It is characterized by comprising When there is no power device that can respond within the same power system, or when requesting accommodation from another power system from the beginning, for all other multi-terminal power converters at the first power accommodation request stage A similar procedure is performed.
  • the IP packet transmitted by the power interchange request source in the second power interchange request stage includes at least information on a source IP address, a destination IP address, and a reservation transaction condition.
  • the IP packet to be received includes information on the source IP address, the reply destination IP address, and the reservation confirmation condition.
  • reservation transaction conditions here are: reservation number, reservation interchange active power direction and size, reservation interchange reactive power direction and size, reservation interchange start time, reservation interchange end time, reservation interchange price, reservation interchange power generation source
  • Reservation confirmation condition consists of reservation confirmation number, reservation confirmation interchange active power direction and size, reservation confirmation interchangeable reactive power direction and size, reservation confirmation accommodation start time, reservation confirmation accommodation end time, reservation confirmation accommodation It consists of the attribute of price / reservation fixed power generation source.
  • routing algorithm After the power accommodation partner and the power accommodation profile are determined, (1) a plurality of routing route selection stages, (2) a routing profile collection stage, (3) a power accommodation route selection stage, and (4) a routing reservation stage. , (5) a routing determination stage, (6) a monitoring stage for implementing power interchange, and (7) an emergency routing method in an abnormal situation.
  • the power device or multi-terminal power conversion device that has received the response determines whether to make a reservation in consideration of the transaction conditions. This step may be repeated several times if negotiation is required. Select a candidate who meets the conditions from the candidates, and make a reservation for power accommodation, including the size, direction, time, price, and power generation source of active / reactive power, and the situation on the side of receiving it If there is no problem including the change of, etc., the reservation for power interchange is confirmed by sending a reservation confirmation reply with the above conditions.
  • an IP packet including a reservation transaction condition is transmitted, and the other party returns an IP packet including a condition indicating that the reservation is confirmed.
  • a series of power interchange reservation procedures is completed and executed when the reservation time comes.
  • the power equipment 1102-2 installed in the power system 3-2 requests the power interchange to the power equipment 1102-1 installed in the power system 3-1, the following procedure is performed. Will be implemented. (1) If the IP address of the control terminal device 1101-2 of the power device 1102-2 is IP001, the LAN is inquired about whether there is a power device capable of accommodating power in the LAN. (2) When there is no power device that can be used in the LAN, the inquiry is transferred to the WAN via the B connection terminal 202 (IP002) of the multi-terminal power converter 1-2 installed in the power system 3-2. Is done. (3) Inquiries are made simultaneously in the WAN, and the connection terminals of the multi-terminal power conversion device 1-1 connected to the WAN make an inquiry to each LAN.
  • the reservation number For practical use, it is desirable to include information such as the reservation number, the output increase rate at the start of power interchange, the output decrease rate at the time of interchange suspension, and time.
  • the power interchange profile even when the change in the magnitude of power is complicated, it can be converted into a power packet for simple exchange. For example, 1 hour worth of 1 kWh is treated as one power packet at every hour on the hour, and only the number and start time are converted into information, or the unit price of one power packet is set in advance every month. It is possible to simplify the reservation process.
  • the route is sequentially routed to the route having the lower priority in the routing selected first.
  • the total power loss can be kept small by performing power interchange routing in such a procedure.
  • FIG. 30 is a diagram for explaining various modes of power interchange.
  • the example (1) is an example in which power interchange is performed between the power interchange request transmission source power device 3001a and the power interchange request reception destination power device 3001b in the same power system. This can be achieved by communication within the LAN. In the power system, there are many cases where the power storage device uses the power generated by the wind power generator for charging, or the power storage device compensates for the shortage of demand. This case is also handled by the reservation procedure. Since the time required for this procedure is within several tens of milliseconds depending on the communication speed, a response close to a real-time response can be obtained.
  • the example of (2) is a case where the power accommodation request source multi-terminal power converter 3002 makes an inquiry about power accommodation to the power accommodation request receiving power device 3001b in the power system. In this case, the demand is gathered as a multi-terminal type power conversion device without specifying the requested device, including a request from the WAN side and a request from the LAN side.
  • the example of (3) is a power interchange request source multi-terminal power converter 3002 and a power interchange request receiver multi-terminal power converter 3004, which performs power interchange including the multi-terminal power converter 3003 through which it passes. It is an example. This is a case in which the supply and demand of the power system is predicted, and the multi-terminal power converter makes a judgment by making a determination on its own.
  • the example of (4) is a case where the power interchange request source power device 3001a is specified, but the corresponding counterpart is the power system and not the specific power device. This is a case where a plurality of power systems with a balance between supply and demand perform power interchange with a plurality of power source devices. For example, there is a case where a sudden increase in wind power generation is absorbed by a peripheral power system, or a power storage device having a small remaining amount is charged by a peripheral power system in cooperation.
  • the example of (5) is a case where the power interchange request transmission source power device 3001a specifies the power interchange request reception destination power device 3005 of another power system and interchanges power. As a result, the concept that a consumer purchases electric power from an arbitrary power generation source is embodied.
  • FIG. 28A is a diagram showing a power waveform on the interconnection line indicated by XXVIIIA in FIG. 28B.
  • the accommodation power 2801 has an IP packet including information on a source IP address, a destination IP address, and transaction conditions before and / or after that. Although this is expressed as header information 2800a and footer information 2800b in the figure, they are the same.
  • digital signals can be transmitted before or after digital transmission power, or before and after, and transmitted as digital power with a tag to which a power source and destination and power transmission conditions are added.
  • the header information 2800a and footer information 2800b can use the PWM signal of the self-excited power converter of the multi-terminal power converter 1 as a signal source. In this case, if an appropriate AC filter bypass is used, a communication signal can be generated by the self-excited power converter itself.
  • a signal from a digital signal processor (DSP) or a central processing unit (CPU) can also be directly input to the power line carrier signal generator.
  • DSP digital signal processor
  • CPU central processing unit
  • the power storage device the synchronicity of power interchange is not strict, so it is possible to operate such as dividing the interchanged power into packets and transmitting it through another route.
  • the capacity of the interconnection line 7 is insufficient, it is possible to divide the accommodation power 2801 into several parts and to detour to another interconnection line route.
  • the present invention makes it possible to perform a variety of power operations such as time-sharing operation of the interconnected power line route, and to accurately record the power interchange.
  • IP information attached before, after, or at any one of the transmission power is used for collation with reservation information, power transfer record, route change record, emergency transaction record, etc. it can.
  • header information 2800a and footer information 2800b signal transmission timing in the case of power line carrier communication, the self-excited power converter is stopped for several cycles and transmitted in the meantime, thereby reducing noise derived from the power converter and the reliability of information Can be increased.
  • a DSP or CPU can generate not only power but also information by a PWM signal or an IP signal.
  • the IP tag is transmitted immediately before the power generated by the soot, and can start the power control of the receiving multi-terminal power conversion device 1 or the power equipment control terminal device 12. Similarly, it is transmitted at the end of the generated power, and the power control of the receiving multi-terminal power conversion device 1 or the power equipment control terminal device 12 can be terminated.
  • FIG. 31 is an example of a power transaction book describing power transactions.
  • an actual transaction is characterized in that a power loss associated with power conversion or power transmission occurs, so that a column for recording it is provided.
  • the power transaction book can also describe virtual transactions.
  • a feature is that a description is made on both the input side and the output side, and a record such as a bond, a bill, or a certificate is used instead of cash income / expenditure.
  • every user or business operator can record power transactions through power journals such as bank passbooks and journals such as double-entry bookkeeping for the purchase and sale of power. It becomes possible to distinguish.
  • This record can be recorded in the transaction book because the transaction date and time, transaction volume, power generation energy source, power generation company, storage company, price, power loss, CO2 value, RPS value, green power value, etc. can be recorded in the transaction book. Managed as power with information. As a result, the information and the power are fused, and the power can be identified.
  • This record is certified by a third-party public institution, traded and settled. This third party role is like a bank in finance. And any user or business operator can record power transactions by distinguishing them from other power transactions through journals such as bank book and power account book, etc. .
  • FIG. 32 is an example in which the change in the electric energy is disassembled into power interchangeable parts of the minimum unit. There are at least three types of these parts: an output only part, an input only part, and a part having an input / output and having a loss (called an interchangeable part).
  • the output from the power system 3-1 is represented by output parts
  • the loss at the converter is represented by interchangeable parts
  • the loss at the transmission line is represented by interchangeable parts
  • to the power system 3-2 is represented by input parts.
  • power interchange in a certain power interchange route is expressed as a simple sum of parts, so that the loss sharing in the case where a plurality of power interchanges can be easily separated into parts.
  • a market will be created in which the added value is separated and traded. This takes the form of a securities function in finance.
  • Control program First, the program for controlling the entire system of the multi-terminal type power converter recognizes the driver software for the input / output terminal, power converter circuit, control circuit, communication circuit, measurement circuit, protection circuit, recording circuit, and more detailed circuit, Even different hardware can function as a circuit of the multi-terminal power conversion device 1.
  • the program of the present invention can be applied from hardware aspects such as prevention of chain power failure to software aspects such as power transactions. It has a basic operating system that handles a wide range of content.
  • the entire system can be controlled with the same concept, and software upgrades and bug fixes are made to all devices via an external communication line. , Can be processed remotely from a remote.
  • the basic operating system for the multi-terminal power conversion device 1 will be developed as being commonly installed in all devices. This is common software for a “power system” in which a large number of multi-terminal power converters 1 are linked and operate cooperatively.
  • the calibration of the voltage / current / power measuring instrument and the abnormality detection procedure which are the basis of power trading, become the basic algorithm of the basic operating system.
  • the power loss minimization algorithm is also the basis of the basic operating system.
  • a program that controls multiple multi-terminal power converters in a coordinated manner handles a wide range of contents, from hardware aspects such as preventing chain blackout accidents to software aspects such as power transactions, and has a wide range of fields. Create industry.
  • a combination of basic operating system and driver enables a base that can centrally manage the minimum operation protocol common to a wide range of industries from power equipment to home appliances.
  • the basic operating system and driver version can be upgraded through the communication system, and a system that can always incorporate the latest technology can be constructed.
  • FIG. 33 illustrates an accident protection system. It is possible to have a power interchange route protection circuit that secures the maximum power interchange route by having the following components and cutting off the minimum necessary circuit. This eliminates the need for unnecessary blocking when an abnormality is recovered only by the gate block. Further, it is possible to disconnect only the connection terminal that has become overcurrent and continue power interchange with other connection terminals. The connection terminal that has become overcurrent is a system that can resume operation as soon as it is restored.
  • FIG. 33 (A-1) is an input / output terminal overcurrent protection circuit.
  • the connection terminal 202 is an input / output terminal protection circuit that opens the circuit breaker.
  • FIG. 33 (A-2) shows a DC bus protection circuit.
  • a DC ammeter is installed in the DC section of each A connection terminal 201 and the total current of all terminals is no longer zero, the gate block of all power converters is timed. It is a power converter DC bus protection circuit for performing.
  • FIG. 33 (A-3) is a multi-terminal type power converter protection circuit.
  • a power meter When a power meter is installed in each input / output terminal receiving unit connected to the power system and the total power of all terminals is no longer zero, a time limit is applied.
  • This is a multi-terminal power converter protection circuit that opens the input / output terminal full circuit breaker. The case where an accident occurs inside the multi-terminal power conversion device 1 is assumed, and the expansion of the accident can be minimized by the gate block operating faster than the circuit breaker.
  • the fault isolation circuit can be minimized, and the remaining multi-terminal power conversion device 1 can be functioned with the stop circuit portion minimized. Power interchange route can be secured.
  • FIG. 33 (B-1) and FIG. 33 (B-2) exemplify switching of input / output terminals at the time of an accident.
  • the top terminal When power is exchanged from the top terminal to the second terminal as shown in FIG. 33 (B-1), the top terminal is connected to an overcurrent or the like as shown in FIG. 33 (B-2). Can be switched to supply power from the fourth terminal to the second terminal by quickly turning on the gate block of the power converter of this circuit.
  • the I / O terminal where the accident occurred can be restarted as soon as it is restored.
  • the abnormality is recovered only by the gate block, it is possible to return to the initial state without performing unnecessary blocking.
  • the multi-terminal type power conversion device 1 allows each A connection terminal 201 to be set so that the sum of the powers P1 to P4 in FIG. 33 becomes zero, that is, the sum of the power flowing from the input / output terminals and the power flowing out is zero. Control to become.
  • the most common method is that a unit other than the DC voltage maintaining unit inputs and outputs the requested power, and the DC voltage maintaining unit compensates for the excess or deficiency of the power.
  • the device operation system performs an operation of closing the disconnecting device 9 and the circuit breaker 8 of the connection terminal when the connection destination of each connection terminal is not yet connected, and starts power supply. Similarly, when stopping, the circuit breaker 8 is opened as necessary, and then the disconnector 9 is opened to disconnect the connection.
  • the disconnector 9 is closed when each A connection terminal is synchronized, the voltage, frequency, and phase of the connection destination are measured, and the connection destination 3402 is a voltage system (independent system).
  • a parallel synchronous closing operation that closes the circuit breaker 8 is performed.
  • the grid-connected operation mode it is possible to control the voltage by supplying not only the power of power factor 1 but also the reactive power by changing the power factor by shifting the phase.
  • the multi-terminal power conversion device 1 can perform power transmission / reception between systems.
  • connection destination 3403 When the connection destination 3403 is a non-voltage system, a voltage / frequency conforming to the connection destination rating is created by the power converter 10, and then the circuit breaker 8 is closed to supply a power to the connection destination. It is possible to provide a device operation system that performs a self-sustaining operation mode. As a result, the multi-terminal power conversion device 1 can function as a power supply, and can supply power to an emergency power supply circuit or the like of the connected power system to contribute to restart.
  • the multi-terminal type power conversion device 1 of the present invention is installed as an integrated system in a substation premises, it is possible to grasp operating conditions such as DC voltage, current, and control angle of a plurality of converters and to perform intensive control. And easy to protect. Start and stop all converters at once, start and stop them individually, coordinated control system to prevent excess or deficiency of power between converters, and control in concert when power flow is reversed
  • the tidal current reversal method and the system that centrally protects the entire system in the event of a failure or accident have the advantage that it can be centrally managed in one place.
  • the use of power semiconductor elements dramatically increases the power interruption speed compared to conventional circuit breakers.
  • the power system is subdivided, and the multi-terminal power conversion device 1 of the present invention is connected to the connection between the power systems. By using it, the possibility of causing a chain blackout can be reduced.
  • the multi-terminal power converters 1-1, 1-3 to 1-5 installed in the power systems 3-1, 3-3 to 3-5
  • the power system 3-2 of the multi-terminal type power converters 1-1, 1-3 to 1-5 is detected at high speed from the multi-terminal type power converter 1-2 installed in the power system 3-2.
  • the A connection terminal 201 and the B connection terminal 202 on the side are stopped.
  • the A connection terminal 201 on the power system 3-1 side of the multi-terminal power conversion device 1-1 and the A connection terminal 201 connected to the power systems 3-3 to 3-5 can be continuously used. It is possible to continue power interchange between the power systems 3-1, 3-3 to 3-5.
  • the entire multi-terminal power converter 1-2 or the A connection terminal 201 on the power system 3-2 side of the multi-terminal power converter 1-2 can be stopped at high speed. This also makes the power systems 3-1, 3-3 to 3-5 hardly affected by the accident. The power that has been accommodated in the other system via the power system 3-2 is quickly changed to the accommodation using another route.
  • the other A connection terminals 201 of the multi-terminal power conversion device 1-2 can be used as they are.
  • the A connection terminal 201 connected to the power systems 3-3 to 3-5 of the terminal type power converter 1-2 can be continuously used, and the power system 3-through the multi-terminal power converter 1-2. Power interchange between 3 and 3-5 is also possible.
  • the chain-type large-scale power outage can be suppressed, the amount of natural energy introduced can be increased, thereby reducing the dependence on fossil fuels and contributing to the reduction of greenhouse gases.
  • FIG. 35 shows the four-terminal multi-terminal power conversion device 1, but the number of terminals is not limited to this.
  • FIG. 35 shows an example in which bypass circuits of the circuit breaker 8 and the disconnect circuit 9 are installed at all locations where any two of the four terminals are connected, but the form of the bypass circuit is not limited to this. Absent.
  • the stopped self-excited power converter 10 can be made non-voltage, repair and update can be easily performed.
  • FIG. 36 shows a structure in which each A connection terminal 201 is built in a cabinet that can be pulled out and a plurality of cabinets are built in one cubicle in the multi-terminal type power conversion device 1.
  • 201 and the common bus terminal can be separated from the A connection terminal 201 side connection portion and the common bus connection portion in the cubicle.
  • FIG. 36 shows a state 3602 in which the fourth A connection terminal 201 from the top is pulled out from the multi-terminal power conversion device 1.
  • connection terminal 201 and the power storage device unit 3603 are connected to the common bus 203 by an insertion terminal 3601.
  • This structure is the same as that normally used in metal clad switchgears for power systems.
  • the power conversion element When pulling out, the power conversion element is gate-blocked, the circuit breaker 8 is opened, the disconnector 9 is opened, and an interlock structure that can be pulled out after an electric shock is not generated is incorporated. Yes.
  • the disconnector 9 may have a structure that doubles by disconnecting.
  • the circuit breaker 8 can be replaced by a gate block. In that case, the disconnecting device 9 and the circuit breaker 8 in the drawing can be omitted.
  • the circuit of the power storage device unit 3603 can be pulled out.
  • an accessory such as a capacitor may be charged, an interlock mechanism that can be pulled out after confirming no voltage is incorporated.
  • the entire multi-terminal power conversion device 1 has an integrated cubicle configuration composed of a large number of cabinets that can be pulled out, first, the connection terminals are stopped and the cabinet is pulled out to pull out.
  • the circuit can be made non-voltage, and electrical work safety can be ensured.
  • Japanese power systems are divided into high-voltage power systems up to 2,000 kW. Therefore, the power system which is a plurality of consumers among homes, condominiums, apartments, buildings, stores, supermarkets, and factories having a maximum power consumption of 2,000 kW or less can have a high voltage class.
  • the network of high-voltage power boards and the pole transformers installed on the power poles found in the city are 6.6 kV high voltage, and are stepped down to 220 V / 110 V, which is a low voltage, and supplied to commercial facilities and homes.
  • a practical self-excited power converter is an insulated gate bipolar transistor (IGBT), and a large-capacity, high-breakdown voltage can be used for a high-voltage system.
  • IGBT insulated gate bipolar transistor
  • the interconnection line of the present invention In the high voltage class, a large number of distribution lines are stretched and can be used as the interconnection line of the present invention. Therefore, if the regional distribution network is a group of power systems and the size is within about 2,000 kW, an asynchronous interconnection network can be constructed with the multi-terminal power conversion device 1 using IGBT, and a new connection is established. There is less need to install system electrical lines. Since the existing power cable can be used, the cost of transition to the power network system of the present invention can be reduced. Furthermore, it can be used in an extra high voltage power system by using a high capacity IGBT and raising the voltage with a transformer.
  • a self-supporting power system is configured when introducing a renewable energy power source into the system, fluctuations given to the power system side are reduced, and an incentive to promote the introduction of renewable energy works. It is also an effective option when connecting small-scale power systems in developing countries to create large-scale networks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 本発明は、既存の電力系統を自立した複数の電力系統に分割し、既存又は新設の送電線を経由して、相互に連系して安定に運用できる多端子型電力変換装置、多端子型電力授受装置及び電力ネットワークシステムを提供する。基幹電力系統を含む複数の非同期である電力系統を接続し、流入する電力と送出する電力の総和がゼロとなるよう電力制御することを特徴とする多端子型電力変換装置によって構成される複数の電力系統間非同期連系ネットワークシステムと、自立した電力系統内に設置される電力機器の電力制御を行う手段を有する電力機器制御端末装置によって構成される電力系統内同期ネットワークシステムとを接続し、電力制御と通信制御を統合することによって、異電力系統電力機器間の電力融通や、複数電力系統間での同時かつ非同期な電力融通が可能になる電力ネットワークシステムを構築する。

Description

多端子型電力変換装置、多端子型電力授受装置及び電力ネットワークシステム
 本発明は、多端子型電力変換装置、多端子型電力授受装置及び電力ネットワークシステムに関し、より詳細には、各電力系統に設置された多端子型電力変換装置又は多端子型電力授受装置を介して複数の電力系統間を相互に非同期に接続することにより、指定した電力系統間で、指定した電力を指定した時間融通することを可能にする多端子型電力変換装置、多端子型電力授受装置及び電力ネットワークシステムに関する。
 通常、電力の供給はそのほとんどが電力会社の電力系統から基幹電力系統の送配電網を通じて行われている。電力系統の周波数は需要(負荷)と供給(出力)のバランスで決定されるため、電力会社は数十秒以内の負荷変動をガバナーフリー発電所で、20分以内の負荷変動を周波数制御(AFC)機能付きの発電所で、数時間オーダーの負荷変動を汽力発電所の計画的出力増減で制御し、需要と供給を瞬時々々で一致させている。系統内の発電機は、同期発電機群で構成され、垂下特性と呼ばれる制御特性を有している。この特性は系統周波数が下がると自身の発電機の回転数を上げる方向に、また逆に系統周波数が上がると回転数を下げる方向に出力を調整するものである。このようにして系統内の全発電機が協力して、周波数を一定に保とうとする特性がある。また、これらの同期発電機は大きな慣性力を持った回転機であるので多少の系統周波数動揺には影響をうけずに域内の周波数を安定化させる力を有している。これらは発電機の同期化力という言葉で表現される。
 日本では、東側で50Hz、西側で60Hzの2つの系統に分離されているため、周波数安定のための需給制御はそれぞれ個別独立に行われているが、この制御によりそれぞれの域内の周波数はそれぞれの域内のどの場所でも1つの値に同期されている。
 一方、近年、地球温暖化問題の対応ならびに化石燃料高騰の影響を受け、風力発電・太陽光発電・バイオ燃料発電などに代表される再生可能エネルギー電源の導入が加速している。
 政府は、2020 年度には2,800万kW、2040年には5,300万kWの太陽光発電を導入する目標をたてているが、一方で、2009年7月の「低炭素電力供給システムに関する研究会報告書」において、現状の電力系統のままでは、太陽光発電は2020年度時点で1,300万kW程度しか導入できないと報告している。
 これは太陽光発電、風力発電などの一部の再生可能エネルギー電源が基本的に同期を強化する力すなわち同期化力を持たないことに起因している。
 これらの電源は、系統の周波数を検出してそれに同期させて電流を送り込むインバータ電源又は系統に追従する誘導機型電源であるため、変動が大きいとむしろ系統の周波数安定性を損なう性質を有している。従って変動の大きい再生可能エネルギー電源の大量導入は現状の系統構成のままでは著しく同期化力を損ない、大規模な停電などの障害を引き起こす懸念がある。
 この問題を解決し、再生可能エネルギー電源を大量導入するためには、従来の概念にない新しい電力システムを構想し、現在の電力システムから重大な困難なく移行していく手順が示されなくてはならない。しかしながら従来技術の中にはこのような文献や報告が存在しない。
 従来技術の中で、大量の不安定電源を同期系統に接続される際の問題の対策としては、以下のようないくつかの提案がなされている。それらは大別すると次の3つの方法に分類される。
 第1の従来方法は電力基幹系統を強化する方法である。これは高圧連系線の強化やBTB型ループコントローラの設置、周波数変換所の容量増大、北海道本州直流連系線の容量増大などを図り、バックアップ電源としてのガスタービン発電や可変速水力発電設備などの増大により再生可能エネルギー電源の変動に備えるものである。この方法にかかわるものとしては以下の特許文献1、2がある。
 第2の従来方法は、分散電源の出力抑制ならびに需要抑制である。出力抑制については太陽光発電や風力発電は電力会社からの信号で出力を抑制する回路の義務化が検討されている。この方法にかかわるものとしては以下の特許文献3、4がある。
 第3の従来方法は、複数の電力系統間や基幹系統との間で電力の融通を行う方法である。再生可能エネルギーのような不安定電源を大量に導入された複数の電力系統を何らかの形の電力融通装置で接続し、相互に電力を融通する方法である。この方法には以下の特許文献5、6、7、8がある。
 また、電力と通信の融合に関して以下の特許文献9がある。
特開平11-146560号公報 特開平11-98694号公報 特開2008-1828598号公報 特開2007-189840号公報 特開2003-324850号公報 特開2007-89250号公報 国際公開2004-073136号公報 特許3934518号公報 特開2003-152756号公報
 しかしながら、従来技術は同期化力を持たない再生可能エネルギー電源を大量導入するための電力システムの観点からみると、これらの従来手法には以下のような問題点が存在する。
 第1の従来手法は、基幹系統の強化を目的とするものであるが、例えば、特許文献1では複数の制御対象とする地域系統を制御実行時刻における系統状況に応じて各地域系統間を接続している開閉器の入り切り操作を用いて、自由に対象系統範囲を変更することにより電力系統の安定度を高めるとしている。しかし、各地域系統の元は同じ同期系統であり、単に系統の定数の変化に合わせて潮流の流れ方を変える提案に過ぎない。この方法では同期化力を持たない再生可能エネルギー電源が増大した時の解決にはならない。
 また、特許文献2では、複数の電力系統においてBTB型の電力変換器で連系した電力連系系統における電力融通指令装置について提案している。明細書によれば、複数電力系統の電力連系で、電力系統毎に需要と供給をすべて測定し、その需要不均衡情報をすべてセンターに集めてあらかじめ定められた分担に従って電力を配分するという提案になっている。
 実施例で記述されている北海道・本州直流連携の制御方法のような2系統間における電力融通方法としては、実現可能であるが、対象となる電力系統の数やその中の需要家数や太陽光発電設備などが急速に増加し、電力系統構成が急速に変化していく電力システムにおいては、複数電力系統のすべての需要と供給を電力系統毎に常時把握する中央制御システムを維持することは極めて困難な課題となる。
 第2の従来手法は出力や需要の抑制であるが、例えば、特許文献3では蓄電装置の最大出力能力及び充電容量を超える風力発電装置の出力電力変動分を抑制する風力発電システムが提案されている。また特許文献4では、系統の状態を常に監視し、必要な時には発電機遮断と発電機出力の抑制を組み合わせることで、よりきめ細かい抑制を図ることが提案されている。需要側の抑制については、近年スマートグリッドやスマートメーターというような表現で米国を中心に開発が進んでいる。これらの方法は、発電もしくは需要の抑制技術であり、いずれも再生可能エネルギー電源を大量に導入するという目的を達成するための技術とはいえない。
 第3の従来手法では、複数の電力系統間や基幹系統との間で電力の融通を行う手法が提案されている。
 例えば特許文献5では、「送配電線網を介して電力を相互に融通するとともに、通信網を介して相互に各種情報をやり取りすることにより電力の融通を制御する電力需給調整システム」を提案しているが、基本的に従来型の同期系統の中で系統の切り分けをこまめに行う方法であって、再生可能エネルギー電源を大量に導入するという目的を達成するための技術とはいえない。
 特許文献6では、ループコントローラを使用して系統の切り分けや接続の最適化について提案しているが、やはり同期系統につながった配電網の切り分けをこまめに行う方法である。
 これらの方法では、基本的にすべての電力需要家が基幹電力系統に依存しているため、再生可能エネルギー電源の増大が同期化力を弱めてしまうという課題には答えていない。
 特許文献7では、「電力機器と電力需給制御機器とを備えた電力需給家の複数が相互接続されてなる電力システムにおいて、相互に電力融通を行う電力システム」を提案しているが、抽象的な概念になっていて電気回路的に以下のような欠陥がある。
 まず複数の需要家をつなぐ連系線路が、「分枝状電力需給線路、数珠つなぎ状電力需給線路、放射状電力需給線路、網状電力需給線路又はこれらを組み合わせた電力需給線路」となっているが、こういった接続は、電気的には複雑な潮流問題を内包すると同時に、短絡容量が大きくなるため、遮断器容量の増大や保護システムの複雑化を招くことになる。また、これを直流連系線路で行うという提案もなされているが、これは直流連系線の短絡容量を著しく増大させ、直流遮断器の設置や線路の分断など連系線設計の難度が高い。
 さらにこの提案では、1本の線路に複数の需給家が電力制御機器を通じてつながっているが、需給家と需給家の間で電力を融通するには、2つの電力制御機器を通過するため、回路が冗長となっており、損失も大きくなる。
 さらに、1本の連系線路上で複数の需給家が過不足なく電力を融通しあうには、いずれかの需給家が電圧源となり、連系線路の電圧を維持し、電力を供給する立場の需給家はこの電圧に合わせて電流を供給し、電力をもらう立場の需給家はこの電圧に合わせて電流をもらうことになる。この制御に時間遅れが発生すると、このような小さな系統では電圧源が大きくふらつき、この連系線路に接続している需給家すべてに動揺を与える。この系統の需給は、通信を介して行われるので信頼度は通信に依存することになる。このような電気回路構成は、現実味がない。
 特許文献8では、複数の離島などを想定した直流多端子送電に電力貯蔵装置を加えた提案を行っている。しかし、現実の直流多端子送電は実現されたものがほとんどない。これは、複数の端子間での電力の総和をゼロに制御するために高速な通信回線が不可欠であり、現実にはうまく制御できないことに起因している。実際に稼働している地点はイタリアのSACOIプロジェクト(200kV、200MW、3端子)とアメリカのQuebec-New Englandプロジェクト(450V、2,000MW、3端子)に限られその後の計画はない。後者は5端子で計画されたが、制御性の課題などにより3端子に計画縮小した上、双方向の電力融通はそのうちの1端子だけになった。
 本特許文献によれば、電力貯蔵装置を取り込むことにより、複数の直流多端子で安定に運転できると主張している。しかしながら、本方式には次のような根本的な欠陥が内包されている。まず、直流送電線の距離長が長くなるため、直流ケーブルや接続部などでの事故確率が高まる。直流遮断器などを分岐点に多数配置しないと、直流部で事故が起きたときの電路切り分けができず、全系統停電になる。次に電力貯蔵装置を含めた全端子間の電力総和ゼロ制御は、通信回線で担保されなければならず、制御の信頼性が通信信頼性に依存することになる。これらの課題は電力貯蔵のあるなしにかかわらないが、電力貯蔵があるとさらに複雑になるため、4端子以上の直流送電は現実味が薄い。
 以上のように、従来文献には再生可能エネルギーの大量導入を可能にする為の電力システムについて、直截的な例が見当たらないものの、従来文献を参考にすると、現在の基幹電力系統を、再生可能エネルギー電源と分散電源と需要で構成される多数の電力系統に分割し、電力貯蔵装置を導入して独自に需給バランスをとって周波数と電圧を安定させ(電力系統の自立と呼ぶ)、その上で、BTBやループコントローラのような連系装置(以下BTB型連系装置と呼ぶ)で相互にネットワーク連系線で接続する方法が有効であることが比較的容易に想起できる。
 しかし、BTB型連系装置による電力ネットワークには以下のような課題がある。まず、電力融通制御装置面においては、BTB型連系装置では連系する電力系統の数の2乗に比例するオーダーの連系装置が必要となる。さらにその間で協調制御をおこなう必要がある。これは変換器数の増大のみならず、設置時期やメーカーの異なる装置間での協調制御という困難な課題を生み出す。
 さらに複数の電力系統を連続して電力融通する場合、電力が通過するだけの電力系統では電力変換が2度行われ、変換損失が大きくなるという問題がある。
 また、電力母線に故障が発生すると、その電力系統を経由する電力融通ルートはすべて停止し、健全な電力系統にまで波及するという問題がある。
 さらに通信システム面において、複数の電力系統間で電力融通を行うためには、ネットワークのルートが増えるにつれ、通信システムも複雑化し、高額な初期投資と保守費用が必要となる。信頼度を維持しなければならない通信ルートや通信機器が膨大になり、改造や新増設と対応が困難になる。さらに任意の電力機器から別の電力系統内の任意の電力機器に電力を融通するという新しいコンセプトを実現することは、従来の通信方法では、設備対応の困難さや初期投資の大きさ、保守コストの増大といった課題がある。
 次に制御システム面において、このような電力融通を行う際、従来の方法では、中央指令装置が必要であり、中央に情報を集める手段と、その通信回路、さらに指令を発信する手段が必要である。さらに、電源系統の信頼性の重要さに鑑み、二重化などの措置が必要であった。分散した複数の電力系統システムが常に再編され増大していくような新しい電力システムにおいては、このような従来の方法では膨大な設備投資と間断のない保守対応が発生し、ネットワーク管理者の負担が膨大になりがちである。
 さらに複数電力系統間で電力融通を行う場合、すべての電力系統から融通可能な有効・無効電力の大きさや量、時間、電力価格の情報を得て、電力ルートの制限を加味して、融通すべきルート選定、複数ルートの組み合わせを決定し、各融通装置に通達し実行させる必要がある。
 電力網と通信網の複合した概念については、特許文献9に家庭やビル内における電力線と通信回路の融合した例が示されているものの、これはコンセントを使ったインターネット回線の概念であり、電力融通制御に関する概念は含まれていない。
 以上のことから、再生可能エネルギーを大量導入するためには、個々の電力系統の中で再生可能エネルギーと他の電源・負荷及び電力貯蔵装置等の電力機器の需給をバランスさせて自立させ、過不足が生じる部分について、基幹電力系統も含め、他の電力系統と非同期に接続して電力を融通し合える効率的な連系装置を開発する必要があり、さらにそれら電力機器の制御、全体をコントロールする効率的で柔軟な制御システム、その通信基盤となる通信システム、最適な電力融通アルゴリズムの開発等の課題を解決し総合的な電力システムを構築する必要があることがわかる。
 本発明は、このような課題に鑑みてなされたもので、その目的とするところは、既存の電力系統を自立した複数の電力系統に分割し、既存又は新設の送電線を経由して、相互に連系して安定に運用できる多端子型電力変換装置、多端子型電力授受装置及び電力ネットワークシステムを提供することにある。
 上記の課題を解決するために、本発明は、多端子型電力変換装置であって、双方向に電力変換する自励式電力変換器と、前記自励式電力変換器を通過する電圧・電流・電力を測定する電圧・電流・電力測定器とを有する3以上の電力変換ユニットと、前記電力変換ユニットの一方の端子同士を並列に接続する共通母線と、前記電圧・電流・電力測定器で測定された測定値に基づき、前記電力変換ユニットから前記共通母線に流入する電力と前記共通母線から前記電力変換ユニットに送出する電力との総和がゼロとなるよう複数の前記電力変換ユニットを協調して制御し、前記電力変換ユニットの他方の端子が接続された外部回路間で非同期に電力融通するように前記電力変換ユニットを制御する制御ユニットとを備えている。
 本発明のように、複数の電力系統を非同期連系多端子型電力変換装置で接続すれば、第1に多数の連系線ネットワークができ、電力系統が自立するのに必要な電力を互いに補完しあい、連系装置容量及びネットワーク回線の容量は大幅に低減される。このようにして電力系統間ネットワークが増えれば増えるほど、融通電力が増えるため電力系統内への再生可能エネルギー電源の導入量を増やすことができる。基幹電源系統は、再生可能エネルギー電源の変動を受け持たなくて済むため、連系容量を過大に持つ必要がなくなり、従来の高品質な電源系統を維持することができる。
 第2に本発明の電力ネットワークシステムにより特定の電力機器や電力系統間で任意の電力を融通しあうことが可能になる。電力融通に当たっては、取引条件をもとに予約を行う電力融通手順が定められ、融通電力に情報を付加することで柔軟な融通が行なえ、電力取引の結果を記録することができるようになる。
 第3にそれぞれの電力系統は、過大な発電設備や貯蔵装置を持たなくても他の電力系統とのネットワークや基幹電源系統との間でも連系することによって自立することができるので地域にとり有利な再生可能エネルギー電源を自由に電力系統内に取り込むことができるようになる。太陽光発電だけでも人類の年間に消費するエネルギーの1,000倍近くあり、日本でも未利用地に太陽光パネルを敷いた場合、電力消費の8倍程度得られるというNEDO調査結果もある。本発明は、これらの再生可能エネルギーの大量導入に大きく寄与する。
図1は同期系統での電力授受を説明するための図である。 図2Aは本発明を用いて非同期系統での電力授受を説明するための図である。 図2Bは本発明を用いて非同期系統での電力授受を説明するための図である。 図2Cは本発明を用いて非同期系統での電力授受を説明するための図である。 図2Dは本発明を用いて非同期系統での電力授受を説明するための図である。 図3Aは同期系統における電力変換による電力融通の原理を示したものである。 図3Bは非同期系統において本発明を用いた電力変換による電力融通の原理を示したものである。 図4は図4Aと図4Bとの関係を示す図である。 図4Aは本発明の電力ネットワークシステムの全体像を示した図である。 図4Bは本発明の電力ネットワークシステムの全体像を示した図である。 図5Aは多端子型電力変換装置の簡略図を示した図である。 図5Bは多端子型電力変換装置を示した図である。 図6は多端子型電力変換装置の詳細構造を示した図である。 図7は電力貯蔵装置接続回路の構成を示す図である。 図8は本発明の電力ネットワークの接続例を示す図である。 図9Aは8つの電力系統からなる電力ネットワークにおけるBTB型連系装置の装置数を示す図である。 図9Bは8つの電力系統からなる電力ネットワークにおける多端子型電力変換装置の装置数を示す図である。 図10AはBTB型連系装置を用いた電力融通を示す図である。 図10Bは多端子型電力変換装置を用いた電力融通を示す図である。 図11は通信回路のWAN/LANを外部データ通信路で構築した本発明の電力ネットワークの構成を示す図である。 図12は通信回路のWAN/LANを電力線搬送通信路で構築した本発明の電力ネットワークの構成を示す図である。 図13は多端子型電力変換装置内の通信制御システムの構成を示す図である。 図14は電力機器制御端末装置内の通信制御システムの構成を示す図である。 図15はルーティングテーブルを示す図である。 図16は多端子型電力変換装置のシミュレーション結果を示す図である。 図17Aは従来の送電線運用方法を示す図である。 図17Bは本発明の既設送電線の独立運用方法を示す図である。 図18は既設送電線の独立運用方法を示す図である。 図19は重畳型電力送電を説明する図である。 図20はタイムシェアリング送電を説明する図である。 図21は複数ルート送電を説明する図である。 図22は仮想取引融通を説明する図である。 図23は仮想取引融通を説明する図である。 図24は仮想取引融通を説明する図である。 図25は時刻同期方法の原理を説明する図である。 図26Aは電力融通の第1の電力融通要求段階を模式的に説明する図である。 図26Bは電力融通の第1の電力融通要求段階を模式的に説明する図である。 図27Aは電力融通の第2の電力融通要求段階を模式的に説明する図である。 図27Bは電力融通の第2の電力融通要求段階を模式的に説明する図である。 図28Aは連系電線路上の電力波形を示す図である。 図28Bは電力融通ルーティング段階を模式的に説明する図である。 図29は多端子型電力変換装置が接続する電力系統が直流の場合の電力ネットワークの構成を示す図である。 図30はさまざまな電力融通の形態を示す図である。 図31は電力取引簿の一例を示す図である。 図32は電力の融通実態を融通パーツに分解した一例を示す図である。 図33は事故時保護システムと切り替え手順を示す図である。 図34は接続先電力系統の状態による機器操作システムの操作手順を説明する図である。 図35は多端子電力変換装置内のバイパス回路を示す図である。 図36は多端子電力変換装置の引き出し構成を示す図である。 図37Aは3端子の多端子型電力変換装置が、それぞれ異なる周波数の電力系統に接続した状態を示す図である。 図37Bは図37Aに示した状態において電力の融通方向を連続的にシームレスに変化させた場合のシミュレーション結果を示す図である。
 はじめに、従来型の交流同期系統での電力融通と、本発明の基本原理である電力変換による電力融通との差異について説明する。
 図1が従来型の交流同期系統で4つの電力系統(ノード120-1~120-4)を6つの連系電線路(リンク121-1~121-4)で結んだものである。連系電線路には線路インダクタンスLのリアクトル成分19がある。図2Aは、本発明の交流非同期系統で、同様に4つのノード(ノード30-1~30-4)を、多端子型電力変換装置1のA接続端子とB接続端子を介して6つのリンクで結んだものである。簡単のために図中には交流フィルターや接続用リアクトルもしくは変圧器を省略してある。
 図1の回路網の初期状態は、4つのノードが電圧V、位相0、周波数ω/2πで同期している。この状態からノードcに電力を送るためには、ノードcの電圧を下げるか、位相をθだけ遅らすか、いずれかの方法をとる。通常電圧を下げると、その電力系統内の電力機器に悪影響が出るので位相を遅らす方法をとる。ノードcの位相をθだけ遅らせると、隣接するa、b、dすべてのノードとの間に位相差θが生じる。これにより流れる電流はIdc、Iac、Ibcとなり、これらは同じ大きさの電流となる。電圧が同じなので流入する電力も同じになる。すなわち電力を3つのノードから受け取ることになる。これは、位相を変えずに電圧Vを変えても同じことである。すなわち、交流同期系統では、1つのノードが電力授受を行う際に、必ず隣接するノードに影響を与えてしまう。
 図2Aの回路網の初期状態は、電圧Vの大きさは4つのノード間で等しいが、周波数はそれぞれ、ωa/2π、ωb/2π、ωc/2π、ωd/2πと異なっており、同期していない。最初はすべての双方向電力変換器10が停止している状態(黒色の三角形の状態)とする。この状態から、ノードcに電力を送るために、ここではノードaに接続している電力変換器10とノードcに接続している電力変換器10を動作(白抜きの三角形の状態)させる。これで、図示されているように、ノードaとノードcを結ぶ電力変換器10だけが運転しており、他の電力変換器10はすべて停止している状態となる。従って、リンクacの間でだけ電力が融通され、他のノードbとノードdは全く影響を受けない。
 図2Bは、ノードaとノードbとの間、ノードbとノードcとの間の双方向電力変換器対23-1、23-2がある。双方向電力変換器対23が単位時間当たりW1とW2の電力をノードaからノードbに対して送り出し、同じタイミングで双方向電力変換器対23-2が単位時間当たりW2の電力をノードbからノードcに向かって送りこむと、ノードbには差し引きW1の電力が送りこまれたことになる。双方向電力変換器対23-1、23-2に、それぞれW1+W2とW2の電力を送りこむよう指示した行き先情報ヘッダーが信号として送られることにより、このような電力融通が可能となる。
 図2Cは、異なる変電所に異なる電力を時間的に分割して送るタイムシェアリング送電について説明している。双方向電力変換器対23-1にはまず、単位時間当たりW1の電力を送り出すよう指示した行き先情報ヘッダーが来て、W1をノードaからノードbに送りだす。このとき双方向電力変換器対23-2は稼働していないのでノードcには電力は融通されていない。次いで、ノードcに単位時間当たりW2の電力を送る行き先情報ヘッダーが双方向電力変換器対23-1、23-2の両方に指示を与え、両方の双方向電力変換器対を同時にW2の大きさで稼働させる。これによりノードaからノードcにW2が送られる。このときノードbは電力が通過するだけである。このようにして、時間を区切って電力を異なる目的に融通することができる。
 この方式の利点は、双方向電力変換器対の最大出力で電力を異なる目的地に時間を区切って送れるところにある。これは、通信で言うところのパケットの概念に類似しており、パケット電力ということができる。変換器の最大出力で一定時間の電力量を1単位として取り扱うことができる。
 図2Dは、複数の異なる送電回路を使用して1つの変電所に異なる電力を同時に送る複数ルート送電について説明している。ノードaとノードbの間、ノードaとノードcの間、ノードbとノードcとの間にそれぞれ双方向電力変換器対23-1~23-3がある。この例では、双方向電力変換器対23-1と23-2の両方にW1の電力を送るよう情報を与え、同時に双方向電力変換器対23-3には、W2の電力を送るように情報を与える。これらにより、ノードcには、W1+W2の電力がノードaから異なるルートを経由して送られる。
 このように、本発明では、任意の数のノードとの間で所望の電力を融通することが可能になる。
 ここで、図1、図2Aにおける電圧・電流ベクトルの状態を、図3A、3Bにそれぞれ図示した。図3Aは、図1に対応した交流同期系統の場合である。ノードa、b、c、dが同じ電圧Vであり、ノードcについてのみ位相をθだけ遅らした時のベクトル図を示している。このとき、リンクac、bc、dc間の線路リアクトル(L)の両端に電圧差ΔVが発生し、ΔV/ωLの大きさの電流I(=Iac=Ibc=Idc)が、ΔVの位相に90度遅れて流れる。図3Aでは、各ベクトルの電圧Vが等しいので、電圧ベクトルの作る三角形は二等辺三角形になり、電流位相はθ/2になる。
I=ΔV/jωL=(V-V・ejθ)/jωL
となり、ノードcに流入する複素電力は、ノードa、b、dの3方向から同じ大きさのIが流れ込むので以下の通りとなる。
P+jQ=V・3・I (ただし、IはIの共役複素数)
=V・3・V(1-e-jθ)/(-jωL)
=3・(V/ωL)・j(e-jθ-1)
=3・(V/ωL)・sinθ+j・3・(V/ωL)・(cosθ-1)
 一方、図3Bは、図2Aに対応した交流非同期系統の場合である。ノードaの電力は電力変換器で直流に順変換される。ついでノードcの周波数ωc/2πに同期した交流Vinvに逆変換される。ノードcの複素電圧Vcの大きさをVとし、位相を0としたとき、電力変換器に与えるPWM信号により、複素電圧Vinvは任意の値をとることができる。Vinvの大きさをVxとし、Vcとの位相差をφとしてVcと同期させれば、VinvとVcの間にある変圧器又はリアクトルのリアクタンスの大きさをLとすると、その両端にΔVの電圧差が発生する。すなわち、Vinv=Vx・e(jωct+φ)、Vc=V・ejωct、ΔV=Vc-Vinvとすれば、リアクトルLを流れる電流Iは、
I=ΔV/jωL= (V-Vx・ejφ)/ jωL
また、授受できる電力は、
P+jQ=V・I
=V・(V-Vx・e)/(-jωL)
=V・Vx・sinφ/ωL+j・(V-V・Vx・cosφ) /ωL
となる。
 以上により、複素電圧Vinvの電圧の大きさVxと、VinvとVcとの位相差φが、任意に作れるので、有効電力と無効電力の授受の大きさ・方向が任意に設計できる。
 従来型の電力系統では、いわゆる網目状のリンクを増やすと、隣接するノードが影響しあって潮流計算が複雑になる。また、事故時には多方面から大電流が流れ込み遮断器の容量を超えてしまい、事故遮断できなくなることがある。このため、従来の同期系統の電力網は網目状のリンクを避け、上流から下流側に向かって電力が流れていく、くし型や放射状型になっている。
 これに対して、本発明の多端子型電力変換装置1による非同期連系回路網の場合、潮流計算は、線形連立方程式を解くことで解が求められるので同期連系に比べて、格段に計算が楽になる。
 また、一般的な同期系統では、発電機が作り出す有効電力と無効電力とには一定の関係があり、お互いに独立して作り出すことはできない。従って、発電機で有効電力を作り周波数を調整するのとは別に、系統にコンデンサー設備を入れて無効電力を作り出すことにより電圧調整を行っている。それに対し、本発明の多端子型電力変換装置1は1つの入出力端子で、有効電力と無効電力の両方を任意の大きさで同時に供給できる。
 本発明では、再生可能エネルギー電源を内包した電力系統が、系統内の電力機器間で電力融通を行って自立し、それでも需給バランスが崩れると予想される場合、他の電力系統と複数の非同期連系ルートを通じて、電力を融通し合うことにより、自立を補完し合える。また、これにより、再生可能エネルギー電源由来の出力変動は、電力系統の内部で吸収されるか、他の電力系統との非同期連系ネットワークで吸収されるようになるため、基幹電力系統は変動の影響を受けにくくなる。その結果、基幹電力系統の同期化力を維持でき、複数の電力系統ネットワークと協調して安定化し、再生可能エネルギー電源を電力系統に大量に導入することが可能になる。
 本発明は、複数の非同期電力系統間で任意の電力を融通しあったり、電圧維持に必要な無効電力を供給しあったりすることが可能にする多端子型電力変換装置、多端子型電力授受装置及び電力ネットワークシステムに関するものである。
 以下、図面を参照し、本発明の実施形態について説明する。
(電力ネットワークシステム概要)
 図4A、4Bは、本発明の電力ネットワークシステムの全体像の一例を示している。この図では、自立した電力系統3-1~3-4、3-6及び電力機器系統4まで、6つ示されている。それぞれに電力母線6があり、その下に発電装置61、電力貯蔵装置62ならびに図示していないが一般需要家の負荷等の電力機器が接続されている。ただし、電力機器系統4は単独の電力機器が接続される特殊な電力機器系統4の例として表示している。電力系統間は、多端子型電力変換装置1によって接続されている。
 多端子型電力変換装置1は、共通母線203を介して並列接続された、遮断器8、断路器9、電力線搬送通信端局13が接続された複数の自励式電力変換器10を備える。電力系統3-1、3-3、3-4及び電力機器系統4に設置された電力機器制御端末装置12も、電力線搬送通信端局13を備えており、これら各電力線搬送通信端局13にはそれぞれ固有のIPアドレス14が割り振られている。
 電力系統3-1~3-4、3-6及び電力機器系統4は連系電線路7を介して相互に接続している。尚、ここで示した構成では、電力母線6及び連系電線路7は電力線搬送通信路としての機能も有する。電力系統3-1には2本の電力母線6があるが、これらは電力線搬送通信バイパス付き変圧器11を介して接続されている。本願明細書では、これを「電力系統間非同期連系ネットワークシステム」と呼ぶ。尚、ここでは多端子型電力変換装置1間の通信システムとして電力線搬送通信端局13を用いた場合を示したが、この通信システムは、通信専用の電線又は光ファイバケーブルを用いたものや、無線を用いたものであっても良い。
 各電力系統3-1~3-4、3-6及び電力機器系統4は基幹電力系統5も含めてすべてお互いに同期を必要としない自立電力系統である。電力系統3-1~3-4までの各電力母線6には多端子型電力変換装置1が設置されている。多端子型電力変換装置1には遮断器8、断路器9、自励式電力変換器10で構成されるA接続端子201と遮断器8、断路器9で構成されるB接続端子202がある。
 電力系統3-1、3-2のように、基幹電力系統5とA接続端子201と連系電線路7を介して接続することも可能である。この場合、図示されていないが基幹電力系統側の接続は単純な断路器と遮断器でよいし、B接続端子202でもよい。電力系統3-1、3-2のA接続端子201の電力変換器10が系統電圧に同期させれば電力の授受を行うことができる。もちろん基幹電力系統5側に多端子型電力変換装置1を置き、A接続端子201を介して各電力系統に接続することができる。この場合接続先電力系統には、自励式電力変換機能を有さないB接続端子202があればよい。
 多端子型電力変換装置1は、後述するように各A接続端子201の少なくとも1つが接続先の電力系統の電力を直流に順変換したのち、直流共通母線203を通じて、残りのA接続端子201群の少なくとも1つが接続先の電力系統の電圧・位相・周波数に同期させて電力を逆変換して送出し、直流共通母線203に流入する電力とそこから送出する電力の総和がゼロとなるよう電力制御することを特徴とする。
 電力系統3-1に設置された多端子型電力変換装置1のA接続端子201は、連系電線路7を介して、電力系統3-2~3-4に接続されている。接続先の電力系統では、B接続端子202が、接続相手となっている。
 電力系統3-2に設置された多端子型電力変換装置1のA接続端子201は、電力系統3-3、3-4に設置された多端子型電力変換装置1のB接続端子202と連系電線路7を介して接続している。
 電力系統3-3に設置された多端子型電力変換装置1のA接続端子201は、電力系統3-4に設置された多端子型電力変換装置1のB接続端子202と連系電線路7を介して接続する。この例では電力系統3-3に設置された多端子型電力変換装置1は、A接続端子201を2回路背中あわせにつき合わせるBTB型変換器とB接続端子202から構成されている。
 電力系統3-4に設置された多端子型電力変換装置1は、A接続端子201を持たず、すべてB接続端子202から構成されている。
 電力系統3-1の下位の電圧階級の電力母線に設置された多端子型電力変換装置1は、電力機器単独系統4の電力機器に直接接続されている。この電力機器が電力貯蔵装置であれば、A接続端子201の自励式電力変換器10が適切な直流電圧を作りだし、充放電が可能になる。また、この電力機器が交流発電機を用いる風力発電機などであれば、A接続端子201が、自立した交流電力を作りだし、それに風力発電機が発電する交流電力を直流共通母線203上の直流電圧に合わせて順変換することにより、風力発電機を系統連系するような制御も可能である。
 この電力機器が太陽光発電装置や燃料電池発電装置であれば、A接続端子201が直流変換を行うことで電力融通できる。この電力機器が、ディーゼルなどの内燃機関発電機であれば、A接続端子201が、自立した交流電力を作りだし、それに内燃機関発電機が系統連系するような制御も可能である。この多端子型電力変換装置1との組み合わせを前提とした新しい発電制御方式を組み込んだ再生可能エネルギー発電機の開発も可能である。
 電力系統3-6に接続されたA接続端子201は、受電側が電力母線に遮断器を介さず、直結している。A接続端子201の給電容量が電力系統3-6の負荷を十分賄え、遮断容量が電力系統3-6で事故が起きた場合の故障電流を十分遮断できる場合、このような接続方法が可能である。
 図4A、4Bでは、電力系統3-6と電力系統3-2~3-4及び電力機器系統4との間を非同期連系接続した連系電線路7は示されていないが、3つの多端子型電力変換装置1と電力系統3-1とが連系し電力融通を行うことが可能である。
 図4A,4Bに示される各電力系統の中は、従来型の同期系統である。自立した電力系統内には、電力母線6の下位に遮断器8を介して、発電装置61・電力貯蔵装置62・図示されていないが負荷があり、これらを電力機器と総称している。電力機器には電力の入出力を制御する電力制御部とそこに外部信号を伝える通信手段とを有する電力機器制御端末装置12を付加している。電力機器制御端末装置12は通信データターミナルエンド(DTE)であり、かつ電力制御インターフェースの役割を果たす。これにより、後述する通信システムと通信プロトコルに準じて通信を行い、同じ電力系統内で、たとえば風力発電機と電力貯蔵装置の出力を調整制御することが可能になった。このネットワークを本発明では、「電力系統内同期ネットワークシステム」と呼ぶ。
 図4A、4Bは、基幹電力系統を含む任意の電圧・位相・周波数を持つ複数の非同期である電力系統を多端子型電力変換装置1によって接続した複数の電力系統間非同期連系ネットワークシステムと、自立した電力系統内に設置される電力機器に電力機器制御端末装置12を付加して構成した電力系統内同期ネットワークシステムとを接続し、電力制御を統合することによって、異電力系統電力機器間の電力融通や、複数電力系統間での同時かつ非同期な電力融通が可能になる電力ネットワークシステムの代表例である。
 上述した「電力系統間非同期連系ネットワークシステム」と「電力系統内同期ネットワークシステム」とを多端子型電力変換装置1の接続端子を通じて接続し、制御統合することで、電力系統内の特定電力機器の発電電力を別の電力系統の特定の電力機器に送ることが可能になる。これにより、1つの電力系統で発電電力が過剰に発生したときに周辺の多くの電力系統に吸収させることや、逆に出力が不足したときに、周辺の電力系統の電力貯蔵装置や発電装置から、複数のネットワークを経由してその電力系統の電力貯蔵装置に電力を送り込こんだりすることができるようになる。
 これらにより、日本や欧州・米国のような基幹電力系統が確立したところで、変電所以下の電力系統を分離・非同期化して再生可能エネルギー電源を大量に導入していくことができる。
 また、開発途上国など村落・町・市などの分散した小さな交流電力系統が分散し、点在しているところが多い。
 小さな電力系統単独では周波数不安定や瞬時電圧低下・停電等が頻発し、太陽電池や風力発電などの出力の不安定な電源は導入が困難であるが、こういう地点こそ、化石燃料からいち早く脱却すべきであって自然エネルギー電源の導入が必要である。
 本発明の利用により、小さな電力系統を多端子型電力変換装置1で接続し、非同期連系ネットワーク化していくことで電力機器を共用でき、周波数不安定や瞬時電圧低下・停電等の問題が解消できる上、自然エネルギーの導入も可能になり化石燃料からの脱却を推進できる。
 このような本発明の電力ネットワークシステムへの移行ステップは、既存の変電所以下の電力系統に、必要な電力機器と電力機器制御端末装置12を導入して自立した電力系統とし、変電所間を接続する従来の送電線と変電所母線との間に多端子型電力変換装置1を設置して他の電力系統や基幹電力系統と非同期連系することを最初のステップとする。再生可能エネルギー電源の導入量増大に併行して、連系電力系統を徐々に増やしていき、それに伴い基幹電力系統からの融通電力を減らしていくことが次のステップとなる。このようにして無理なく本発明の電力ネットワークシステムに移行していくことが可能である。
(多端子型電力変換装置)
 図5A、5Bは、多端子型電力変換装置1の構造を図示したものである。図5Aは今までの表現の電力変換器10と断路器9と遮断器8である。ここでは断路器と遮断器を一体型のもので表現しているが、分離型のものもある。図5BのVAは、図5Aの多端子型電力変換装置1をもう少し正確に表現したものである。図5Bの電力変換器10は3相のフルブリッジ双方向変換器である。図5Bでは、電力変換器10、断路器9、遮断器8に加えて、コンデンサー17、リアクトル19、交流フィルター及びサージアレスター20-1、直流フィルター及び直流平滑リアクトル20-2を備えた構成例を示している。図示していないが、電圧調整が可能な変圧器が必要に応じて設置される。
 図6は、多数の電力系統が相互に非同期連系し、個別に電力制御を行うための多端子型電力変換装置1の構造をさらに詳しく図示したものである。この多端子型電力変換装置1は異なる電力系統間で電力を分配する役割を果たす。これにより、従来の同期電力系統では不可能であった特定の電力系統間での電力融通を、電力変換器10の数を削減しつつ可能にし、制御自由度と信頼度を向上し、電力変換の回数も削減し、電力損失を減少させることができる。
 多端子型電力変換装置1には遮断器8、断路器9、自励式電力変換器10で構成されるA接続端子201と遮断器8、断路器9で構成されるB接続端子202がある。まず、図6では電力線搬送通信端局13を使用した例を示しているが、外部データネットワークを使用する場合は不要となる。電圧・電流・電力測定器16は、電圧・電流により電力を計算するタイプのものと専用の電力測定器を設置するタイプのものとがある。また、同測定器16は直流共通母線203に設置するものと、交流側に設置するものとがあり、それぞれタイプが異なる。この測定値は電力の取引にも使用することが可能である。さらに、取引用に別途専用の電力計16を用意することも可能である。電圧・電流・電力測定器16がA接続端子201の順変換側に設置されることを特徴とするものと逆変換側に設置されることを特徴とするものとがある。尚、本明細書中では、A接続端子201と電圧・電流・電力測定器16を合わせたものを電力変換ユニットと呼ぶこととする。
 この電力の記録は専用の記録装置103に保存され、電力取引に使用される。すなわち、2つの電力系統間で電力融通取引が発生したとき、その電力変換関連情報と取引関連情報を関連付けて記録することにより、一つの電力融通行為を他の電力融通行為と明示的に区別することが可能になる。また、記録装置103には電力融通を行った結果発生する電力料金精算に関わる基礎データが蓄積される。これらのデータは定期的にバックアップされ、さらに二重化されるのが望ましい。電力取引について必要なデータについては、個別に定められるが、設置記録計は取引用の法規に準拠したものでなければならない。
 図6では、共通母線203が直流のものを例示しているが、共通母線203を交流にする場合もある。マトリックスコンバーターやトライアック等の電力変換回路を用いる形態もある。直流電圧安定化用キャパシター17は共通母線203が直流の場合に使用される。
 図6のA接続端子201の構成は、回路を切断できる機械式断路器9と、必要な遮断容量を持つ遮断器8と、自励式双方向電力変換器10からなり、B接続端子202の構成は、回路を切断できる機械式断路器9と、必要な遮断容量を持つ遮断器8とだけからなる。多端子型電力変換装置1にはA接続端子201とB接続端子202の両方があるものと、A接続端子201だけのものと、B接続端子202だけのものの3種類がある。尚、本願明細書では、接続端子がB接続端子202だけからなる多端子電力変換装置1を、A接続端子201を含む多端子型電力変換装置1と区別するために多端子型電力授受装置と呼ぶこともある。
 A接続端子201は、一方の端子が共通母線203に接続され、他方の端子がその多端子型電力変換装置1の設置されている電力系統又は連系電線路及び別の多端子型電力変換装置1を介して別の電力系統に接続される。各電力系統の電力を所定の直流電力に順変換したり、共通母線203から接続先の電力系統の電圧・位相・周波数に同期させて電力を逆変換して送出したりする。
 共通母線203は、複数のA接続端子201を並列接続し、A接続端子201間での流入する電力と送出する電力の総和がゼロとなるよう制御されている。共通母線203には、電力貯蔵装置や二次電池を接続することは可能である。このときは、共通母線203の入出力電力総和ゼロ制御に、電力貯蔵装置や二次電池の充放電制御を組み込めばよい。電力貯蔵装置や二次電池をA接続端子201の接続先側に置き、A接続端子201の変換器制御で充放電を行うこともできる。
 図7に、多端子型電力変換装置1において、共通母線203が直流である場合、電力貯蔵装置702を共通母線203に直結した図7(1)と、電力貯蔵装置702をDC/DCコンバータ701を経由して接続した図7(2)とについて示している。これらにより共通母線203に必要な電力を供給したり、過剰な電力を吸収したりすることができる。
 多端子型電力変換装置1は、次のような制御方式を用いることができる。電力貯蔵装置702を持たない場合は、入出力端子のいずれかが、共通直流母線203の直流電圧維持を行い、他の端子が有効電力制御を行い、総和に過不足が生ずる部分を、直流電圧維持を行っている入出力端子が補う方法が一般的である。
 電力貯蔵装置702を共通母線203に接続する場合、直流電圧維持が電力貯蔵装置702によって行われるので、すべての入出力端子が有効電力制御を行うことができる。過不足が生じた部分は電力貯蔵装置702が補うことになる。
 この場合、電力貯蔵装置702の充電量を正確に把握しておかないと過充電・過放電が起こる可能性があるため、充電量測定システムが重要になる。
 電力貯蔵装置702が二次電池である場合、電池の充電量(SOC)の変化により直流電圧が変化するものが多い。この場合、直流共通母線203に接続するには図7(2)のケースとして直流母線の電圧を維持する必要がある。
 電力貯蔵装置702が二次電池である場合、電池の充電量(SOC)の変化により直流電圧があまり変化しないものもある。この場合、直流共通母線203に接続するには図7(1)のケースとして直流母線に直結させることができる。
 B接続端子202は、連系電線路を介して接続される別の電力系統に設置される、別の多端子型電力変換装置1のA接続端子201と対をなす入出力端子である。B接続端子202の代わりにA接続端子201を使用することも可能だが、接続された電力系統間には自励式電力変換器10は2つで十分であるので、別の多端子型電力変換装置1のA接続端子201に接続されている連係電線路には変換ロス低減のために自励式電力変換器10を有さないB接続端子202を接続するのが望ましい。
 また、1つの多端子型電力変換装置1のA接続端子201を複数、自系統に接続すれば自系統が授受する電力容量を増大することができる。さらに、複数の多端子型電力変換装置1のA接続端子201をひとつずつ、自系統に接続すれば、自系統が授受する電力容量を増大するとともに接続可能な電力系統の数も増やすことができる。
 共通母線203が直流の場合、A接続端子201の自励式電力変換器10の順変換側が共通母線203で並列接続され、共通母線203には電圧維持のためのコンデンサーが設置されている。尚、必要に応じて直流フィルター及びサージアレスターをさらに追加して設置してもよい。自励式電力変換器10の逆変換側は接続先が交流電力系統の場合は交流リアクトル及び交流変圧器の少なくとも一方と必要に応じて交流フィルター及びサージアレスターを有し、接続先が直流電力系統の場合は平滑用コンデンサー及び必要に応じて平滑用リアクトルを有する。
 この多端子型電力変換装置1は、各A接続端子201の直流電圧・交流電圧・有効電力・無効電力・電流・位相同期・PWMゲート制御、ならびにA接続端子201及びB接続端子202の遮断器8、断路器9の制御を行う端子制御装置102と、端子制御装置102を制御することにより、起動・停止・各入出力端子受送電電力設定ならびに全電力協調制御を行う共通制御装置101と、からなる電力制御システムによって制御される。また、共通制御装置101は、通信制御装置104を介して他の多端子型電力変換装置1と通信可能であり、多端子型電力変換装置間で電力取引を行うことができる。尚、本明細書中では、共通制御装置101及び端子制御装置102を合わせたものを制御ユニットと呼ぶこととする。
 多端子型電力変換装置1の各端子は容量の異同を問わない。同一容量であればより制御定数など統一でき、電力分配の制約もないため効率的である。電力の送受については全端子に等しく電力を分配したり、異なる電力を配分したり、連系電線路の使用状況を見ながらタイムシェアリングして間欠的に送ることもできる。
 電力取引システムとして、各A接続端子201の電圧・電流・電力測定器16の値と電力融通プロファイルデータとを電力取引に使用できるように記録する記録装置103を具備することができる。電圧・電流・電力測定器16は、後述するソフトウェアで電力変換器10を動作させて、随時自動校正を行うことができる構造となっている。電力量の計測には、制御用に使用する電圧・電流測定デバイスを流用したり、そのデータを用いて計算したりすることもできる。
 このように電力変換器10を組み合わせた直流電圧を維持するユニットと、電力を制御するユニットとを組み合わせ、すべての電力の出入りをシステム内に設置する中央演算処理装置によって統括制御することにより、複数の電力系統に対し、電力を融通分配する多端子型電力変換システムが構築できる。
 これらにより任意の2つの電力系統を接続するどの連系電線路も途中に分岐がなく、連系電線路のどちらか一端に多端子型電力変換装置1のA接続端子201を有し、他端にB接続端子202を有する電力系統間非同期連系ネットワークシステムが構築できる。この多端子型電力変換装置1を用いることにより、後述するように、従来のBTB型連系装置に比べて必要な電力変換器10の数が減り、電力融通時の変換回数も半分にすることができる。
 また、複数のBTB型連系装置間での協調制御は、設置時期やメーカーが異なる中での制御協調になり、複雑になるが、本発明の多端子型電力変換装置1は、一体型であるためA接続端子201間の協調制御のみならずB接続端子202の操作制御まで含めて総合的に制御可能となる。
 これにより、接続端子が複数の交流もしくは直流電力系統と接続し、相互に電力を融通することができる。BTBやループコントローラでは、1対1の電力融通であったが、本発明は、1対Nや、N対Nの電力融通が可能になる。
 自励式電力変換器10の採用により、系統連系モードの場合、電力と位相を独立に制御できるため、任意の有効電力を任意の方向に送れるとともに、独立して任意の無効電力を任意の大きさで発生できるので、電圧の制御も可能となる。また、自励式のため、接続先電力系統が無電圧になった場合、自立モードで電力を供給することができる。
 また、一体型構造をとることにより、直流母線部は閉鎖されたキュービクルに密閉されるため、接地や短絡の事故の確率を極小化できる。
 また、B接続端子202も一体化することにより、遮断器・断路器の開閉制御も自動化でき、必要な電力情報を得ることができる。これにより電力ネットワークシステムの一体制御が可能になる。
(非同期連系ネットワーク)
 図8は本発明における、N個の電力系統間において、1/2・N・(N-1)の電力融通リンクが生成される電力ネットワークの接続例である。非同期の電力系統3-1~3-5を連系する多端子型非同期系統連系装置1の形態が示されている。電力系統3-1に設置された多端子型電力変換装置1-1のA接続端子201は、電力系統3-2~3-5に設置された多端子型電力変換装置1-2~1-5のB接続端子202と連系電線路7を介して接続して、電力系統3-1とのネットワークを構成している。電力系統3-2に設置された多端子型電力変換装置1-2のA接続端子201群は、電力系統3-3~3-5に設置された多端子型電力変換装置1-3~1-5のB接続端子202と連系電線路7を介して接続して、電力系統3-2とのネットワークを構成している。電力系統3-3に設置された多端子型電力変換装置1-3のA接続端子201群は、電力系統3-4、3-5に設置された多端子型電力変換装置1-4、1-5のB接続端子202と連系電線路を介して接続して、電力系統3-3とのネットワークを構成している。電力系統3-4に設置された多端子型電力変換装置1-4のA接続端子201は、電力系統3-5に設置された多端子型電力変換装置1-5のB接続端子202と連系電線路を介して接続して、電力系統3-4とのネットワークを構成している。図8に示した5つの電力系統間のネットワークでは、10本の非同期電力融通リンクが生成される。
 このようにしてN個の電力系統間においては1/2・N・(N-1)の電力融通リンクが生成される。従来のくし型電源系統では、N個の電力系統に対し、N+1の電力融通リンクが作られるが、本方式では、Nの2乗に比例したリンク数となり、Nが大きくなるについて、電力融通の柔軟性が大きくなる。連系電線路の容量や多端子型電力変換装置1-1~1-5の接続端子の容量もNの2乗に比例して小さくできるようになることを特徴としている。
 これにより、たとえばN=10の場合、理論的には45リンクの非同期電力融通リンクが生成される。N=20の場合190リンク、N=30の場合435リンクにもなる。1つの電力系統に多端子型電力変換装置を複数置くことができるので理論的リンク数はさらに増やすことができる。
 図9A、9Bは、接続する電力系統が増えたときの連系装置の数をイメージしたものである。従来の図9AではBTB型連系装置の数が、1/2・N・(N-1)台必要になるが、本発明の図9BではN台でよい。このように、本発明の多端子型電力変換装置を用いた電力融通は、BTB型連系装置やループコントローラに比べて、必要機器数の低減、制御の容易さ、設備投資の低減などにつながるという特徴を有する。
 たとえばN=5の場合、理論的には10本の非同期電力融通リンクが生成される。このようにして、N=6の場合15本、N=7の場合21本と増えていき、N=20の場合190本のリンクができる。1つの電力系統に多端子型電力変換装置は複数置くことができるので理論的リンク数はさらに増やすことができる。
 あるノードから別のノードへ、一定の電力を流す場合、複数のリンクをつなげば選択できるルートはさらに多数生まれる。このうち最適なものを1つだけ選択する方法もあるが、複数のルートを同時に使用して電力を分散して流すことで、それぞれのルートを流れる電力は少なくて済むようになる。
 また、複数のノードが複数の電力融通を要求している場合、適切なルートとタイミングを組み合わせることにより、電力の潮流を相殺することが可能になる。従って電力変換器10や連系電線路での電力損失の総和が最小となるようなルーティング選定アルゴリズムが重要になる。
 図10A、10Bは、複数の電力系統を本発明の多端子型電力変換装置で接続した場合、従来型のBTB型連系装置で接続した場合に比べ、電力変換の回数が少なくて済み電力損失が減ることを示したものである。
 図10A、10Bでは、4つのノードa、b、c、d間でノードdからノードcへ電力を送る際に、ノードaを経由する2つのケースを比較している。従来の図10Aでは、BTB型変換器を各リンクに設置したケースを示す。この場合、ノードda間で交直変換、直交変換を行い、ノードac間でも交直変換、直交変換を行うため、計4回の電力変換となる。損失もこれに比例する。
 一方、本発明の図10Bでは、本発明の多端子型電力変換装置を設置したケースを示す。この場合、ノードda間で1回、ノードac間で1回の計2回の電力変換となる。電力損失も半分となる。変換器の数も、従来の図10Aでは12個あるのに対し、本発明の図10Bでは9個である。装置の数としては図10Aでは6台となるが、図10Bでは4台である。
 このように、本発明の多端子型電力変換装置は、BTB型連系装置に比べ電力損失面からも設備台数面からも優位性を持っている。
 また、1つの電力系統に複数の多端子型電力変換装置1が設置されることも可能であり、1つの電力融通ルートに複数の連系電線路が設置されることも可能である。しかし、任意の2つの電力系統を接続するA接続端子201とB接続端子202の間に挟まれた連系電線路には途中に分岐がないことが、キルヒホッフの法則を利用する上で重要である。
 電力ネットワークシステムを機能させる上で、連系電線路のどちらか一端にA接続端子201を有し、他端にB接続端子202を有することが望ましいが、B接続端子202の代わりに単純な遮断器としても、もしくはA接続端子201としても電力融通には支障がない。
 図8では、5つの電力系統にすべての組み合わせルートを介して接続する図となっているが、これらすべてのルートが必要であるわけでもなく、ルート1つに対して電力変換素子が一組である必要もない。
 電力変換器10は系統連係運転も自立運転も可能であるので、このような電力システムにおいて、いずれかの電力系統が全停電に陥った時に、この電力変換器10を復旧用の電圧源として提供することができる。電力系統内の電源をこの電圧源に系統連系させる形で復旧を進めていくことで事故復旧が容易になる。この際の電源ルートは、本電力システムにおいては複数あるので、事故時の復旧操作に有利である。
 何らかの理由により電力系統が、他の電力系統と分離された時、その電力系統の発電と消費がほぼ等しいと、その電力系統が単独で運転継続する単独運転という現象が起きる可能性がある。仮に単独運転になった時でも、後述する時刻同期用電気波形を常時検出していれば、それが検出できなくなったときを持って単独運転になったと判断することが可能である。
 これは上流から下流へ電力を流す同期系統の際に上流が停電しているのにもかかわらず、下流に電圧があって、作業員が気付かずに感電する事故があることから問題になる現象である。
 本発明が提案する電力システムでは、電力供給ルートが複数あるので、単独運転になりにくく、各電力系統が同期していなくても電力を融通できる非同期連系となっているので、上流にも下流にも電圧がある。作業安全は無電圧確認という原則で実施すればよい。
(同期連系ネットワーク)
 図4A、4Bに基づいて、本発明の電力機器端末制御装置12を付加した電力機器が設置された電力系統内同期系統ネットワークシステムについて説明する。
 電力系統3-1~3-4、3-6の中において、6は電力母線であり、この母線に遮断器8、断路器9が接続され発電装置61や電力貯蔵装置62などの電力機器にケーブルを通じて電力を供給する。
 電力機器には、電力機器制御端末装置12を付加しており、これを通じて電力制御をおこなうことができる。電力機器制御端末装置12には、外部との通信ができる通信端局が内蔵されており、後述するように各装置に個別のIPアドレスを与えて電力融通制御や電力情報収集を行うことができる。図4A、4Bでは、電力線搬送通信端局13が内蔵された例が示されている。電力機器制御端末装置12を使用すれば、同一電力系統内でも電力機器間での電力融通制御が可能になる。
 電力系統3-1では、変圧器を介して下位の電圧階級の電力母線6も示されている。図4A、4Bでは、後述する電力線搬送通信も可能とするため、電力線搬送通信バイパス付変圧器11を図示している。電力母線6は通常、特別高圧・高圧・低圧の3分類となっており、ここには図示していないが、その電圧階級ごとに、一般需要家の負荷が接続されている。これらの負荷や発電設備・電力貯蔵設備などにより複数の電力系統3-1~3-4、3-6が構成される。
 日本の電力系統は、7,000Vを超えるものを特別高圧、600Vを超え7,000Vまでを高圧、600V以下を低圧として様々な電力機器の仕様が定められている。本発明では、従来型配電網の仕組みを踏襲することで、自立型電力系統への移行をスムーズに行うことができる。
 また、電力系統内の電力機器に、その電力情報を取得したり、電力制御信号を与えたりできる電力機器制御端末装置12を付加することによって、電力機器の間で電力調整を行えるようになると、電力系統内の総発電量と総消費量の需給バランスをとり、周波数と電圧を一定に保つこと、すなわち電力系統の自立が可能になる。再生可能エネルギー電源の量が増えると、変動が大きくなるため、電力貯蔵装置との電力調整が必要になるが、これも電力機器制御端末装置12を用いた制御で可能になる。
(通信システム1)
 まず図11に基づいて、本発明の通信システムの構成を説明する。多端子型電力変換装置1-1のA接続端子201、多端子型電力変換装置1-2のB接続端子202に設置され通信端局25-1、25-2(データターミナルエンド:DTE)は、電力に関わる情報を取得し、CPUに伝えるとともに、外部データ通信路もしくは電力線搬送通信路をデータ通信路として外部との信号の授受をおこなう。外部データ通信路としてはて、光ケーブル・LANケーブル・メタルケーブル・無線・同軸ケーブルを使用することが可能である。
 本発明では、電力系統間の電力融通の情報制御系がインターネットにおけるLANとWANに類似の通信系統となって、柔軟な通信制御形態が構築できる。従来の同期電力系統では、系統内の電力はどの瞬間を取っても同期していたため、電力制御に必要な通信系は高速で信頼性の高いものを要求されていた。しかし、電力制御を通信に頼るのはリスクが大きく、実際には電力系統の周波数や電圧を元に個々の発電機器が制御を行うという仕組みが主流であった。
 本発明では、電力貯蔵装置が個々の電力系統の自立を担保する電力ネットワークを前提としているため、通信系の高速性よりも、むしろ確実性が重要となる。
 図11は、多端子型電力変換装置1-1、1-2本体とその入出力端子のそれぞれに通信用アドレスを与えてWANを構成し、電力系統内の電気機器1102-1、1102-2の出力を制御するために付加された電力機器制御端末装置12-1、12-2にも通信用アドレスを与えてLANを構成し、その両者を接続し、通信を統合するシステムを例示している。これによって、異電力系統電力機器間や、複数電力系統間での通信が可能になり、多端子型電力変換装置1-1、1-2の入出力端子に電力融通に関する制御指示を与えることが可能になる電力システムが構築できる。
 WANの中に、入出力端子固有のMACアドレス、割り当てられたIPアドレス、サブネットマスク、デフォルトゲートウェイを記述したアドレステーブル及び多端子型電力変換装置1-1、1-2間をルーティングする際のゲートウェイを記述したルーティングテーブルを保有するサーバーを置き、LANの中に、電力機器制御端末装置12-1、12-2固有のMACアドレス、割り当てられたIPアドレス、サブネットマスク、デフォルトゲートウェイを記述したアドレステーブル及び電力機器制御端末装置12-1、12-2間をルーティングする際のゲートウェイを記述したルーティングテーブルを保有するサーバーを置けば、TCP/IP通信プロトコルを使用して、多端子型電力変換装置1-1、1-2の入出力端子及び電力機器制御端末装置12-1、12-2の間で通信することができる電力ネットワークシステムが構築できる。さらに、サーバーの替わりに、各多端子型電力変換装置1-1、1-2の内部にアドレステーブル及びルーティングテーブルを置いて情報を交換し合って常に最新の状態に維持することもできる。
 IPアドレスがあれば、多端子型電力変換装置1-1、1-2間をルーティングする際のゲートウェイを記述したルーティングテーブルを有するサーバーをWAN内に置くことによって、情報のやり取りを行うことができる。さらに、サーバーの替わりに、各多端子型電力変換装置1-1、1-2の内部にルーティングテーブルを置いて情報を交換し合って常に最新の状態に維持することもできる。
 また、IPアドレスがあれば、個々の電力機器制御端末装置12-1、12-2を特定できるため、その間で電力を融通したりするための情報をやり取りできる。その電力系統内に設置されたアドレスサーバーにより、LANの中の電力機器の情報を一元管理することができる。電力機器制御端末装置12-1、12-2でも必要なアドレスを管理することができるがアドレスがわからない相手先については、アドレスサーバーに問い合わせをすることで知ることができる。アドレスサーバーは、その電力系統に設置された多端子型電力変換装置1-1、1-2の中におくことができる。
(通信システム2)
 図12に基づいて、本発明の電力線搬送通信を用いた通信システムの構成を説明する。多端子型電力変換装置1-1、1-2のA接続端子201、B接続端子202、電力系統内の電気機器1102-1、1102-2の出力を制御するために付加された電力機器制御端末装置12-1、12-2などに設置されたデータターミナルエンド25-1、25-1(DTE)は、電力に関わる情報を取得し、CPUに伝えるとともに、電力系統内においては電力ケーブルなどから構成される電力線搬送通信LANに、電力系統間に関しては連系電線路7から構成される電力線搬送通信WANに、電力線搬送通信端局13を介して情報を伝送する。
 この例では、電力線搬送通信を用いるため、連系電線路7や電力ケーブルを通信信号の伝送路としてWAN/LANが構築されるので、これにより、通信が可能なルートが電力を送れるルートと物理的に一致する。連系電線路7や電力ケーブルが断線したり、関連設備を停止したりすると、通信回路も解放されたり停止したりするので、その回路に通信信号は流れない。これにより、複雑な状態確認などなしに、電力システムの最新状態が把握できる。66kV系の送電線では、すでに192kbpsのデジタル式電力線搬送が実用化されている。後述する電力融通信号の情報量は、すべての交信に数キロビット程度しか必要ないため、上記帯域は十分な速度といえる。
 6.6kVや440V及び220V系の配電系統では、現在のところ600bps程度のかなり遅いアナログ式電力線搬送装置が実用化されているのみである。これはいまだに規制が厳しいためであり、いずれ技術の進歩とあいまってこの規制が緩和されるものと思われる。この遅い搬送速度でも後述する電力融通予約を行うには十分である。電力機器1102-1、1102-2の起動・停止・更新・新増設・廃止などの変化に対し、電力線搬送通信を採用していれば、電力線の使用開始とともに、自動的に新しいIPアドレスを付加してくれるのでネットワーク技術者の負担が軽減される。
 以下に示すように電力線搬送を使用して通信路と電線路を物理的に同じものにすることにより、電線路に合わせて新たな通信路施設する必要がなくなるうえ、線路の健全性の確認が自動的に行えるなど、複数のメリットがある。
 また、異なる多端子型電力変換装置1-1、1-2の2以上のA接続端子対を介して電力を融通する場合、A接続端子対間でより緻密な時刻同期が必要になるが、その場合には上述の通信信号に加え、電力波形に乗せた信号を併せて用いることにより実現可能になる。電力波形に乗せた信号を用いた時刻同期の詳細については後述する。
(通信制御システム1)
 図13は多端子型電力変換装置1内の通信システムを図示したものである。
 図13では、接続端子1308を有する連系電線路結合装置1307に接続された電力線搬送通信端局1306が外部データ通信のポートになっているが、もちろん光ケーブルや同軸ケーブルの通信端局でも同じ仕組みとなる。電力線搬送通信端局1306から得られた情報はデータターミナルエンド(DTE)1305に伝えられ、CPU1301で処理される。これにより多端子型電力変換装置1とその接続端子1308が1つずつ、唯一無二のIPアドレスを持ち、外部と通信し、アドレスサーバーの役割を果たすための記憶装置やルーティングアルゴリズムの演算を行うCPU1301やメモリ1302、1303等の基本的デバイスを有することができる。電源1304がそれら基本デバイスに電力を供給している。
 電力線搬送通信端局1306の1つは、電力系統内の通信システムと接続しており、LAN内の電力機器制御端末装置12にIPアドレスを割り当てる。そのLAN内に多端子型電力変換装置1が複数ある時は、その中で順位づけをして、いずれか1台が親機になってIPアドレス割り当てを行う。親機の多端子型電力変換装置1は、電力機器制御端末装置12のMACアドレス、IPアドレスを把握するアドレステーブルをメモリ1303に保持し、そのアドレステーブルを子機の多端子型電力変換装置1とも共有する。多端子型電力変換装置1の他の接続端子1308に設置された電力線搬送通信端局1306は、WAN内の他の多端子型電力変換装置1と通信してルーティングテーブルを作成し、それをメモリ1303内に保存する。
 また、電力線搬送通信端局1306を用いることにより電力を流す連系電線路そのものが通信線路となるため、通信が可能なルートが電力を送れるルートと物理的に一致し、通信が可能か否かによって電力融通が可能なルートであるか否かを確認することができる。すなわち、電線路が断線したり、関連設備を停止したりすると、通信回路も解放されたり停止したりするので、その回路に通信信号は流れないため、複雑な状態確認などなしに、電力システムの最新状態が把握できる。通信が出来ないルートは自動的にルーティングアルゴリズムから除外されるので無駄な確認手順が不要となる。
(通信制御システム2)
 図14は電力機器制御端末装置12内の通信システムを図示したものである。
 電力機器制御端末装置12は、電力融通依頼・受諾関連の演算を行うCPU1401、メモリ1402、アドレステーブル、ルーティングテーブルを格納する記憶装置1403、電源1404、電力機器との入出力端子1409を有する電力機器制御装置1408を備える。電力系統内の電力機器制御端末装置12は、自分のMACアドレスとIPアドレス、さらにLANの外に出るときの通信ポートにあたるDefault GatewayのIPアドレスの情報を持っている。これは通常、多端子型電力変換装置1の自分の電力系統に接続しているA接続端子201のIPアドレスにあたる。
 図14では、配電線路1410に接続される接続端子を有する連系電線路結合装置1407及び電力機器制御装置1408に接続された電力線搬送通信端局1406が外部データ通信のポートになっているが、もちろん光ケーブルや同軸ケーブルの通信端局でも同じ仕組みとなる。電力線搬送通信端局1406から得られた情報はデータターミナルエンド(DTE)1405に伝えられ、CPUで処理される。
 また、LAN内の他の電力機器に対して通信を行うためのアドレステーブルを持ち、それを他の電力線搬送通信端局1406と共有し、常に最新の状態に保っている。これにより、LAN内の電力機器が、他の電力機器と通信を行う際に、どのアドレスに信号を出すかがわかる。
 電力機器制御端末装置12内のこのような通信システムをそなえることにより、太陽光発電・風力発電等の比較的変動の激しい電源の発電量を測定して外部通信回路を通じて情報を出したり、ディーゼル発電機やガスエンジン発電機等出力調整が容易な発電機に出力増減指令を伝えて制御したり、電力貯蔵装置の充電量(State of charge:SOC)の情報を出したり、充放電量を制御したり、電力消費をする電力機器の情報を外部に出したりすることができる。
 電力機器のアルゴリズムによっては電力融通に関わる情報を、予測し前もって融通予約を行うことも可能である。また、その時点の情報をもって一定時間後の電力融通予約をしておくことも電力系統自立に有効な手段となる。電力系統の特徴ごとに様々なアルゴリズムが考えられるが、一般的には電力貯蔵装置のSOCを50%前後に維持し、太陽光発電や風力発電の出力増加が予想されるときにはその出力を吸収するために50%より低めに、出力減少が予想されるときには電池より出力するために50%より高めに維持しておく予測制御が好適である。
 図4A、4Bでは、電力線搬送通信による通信システムの例が示されている。電力機器制御端末装置12に電力線搬送通信端局13が設置され、それぞれのIPアドレス14が示されている。また、多端子型電力変換装置1の各接続端子にも電力線搬送通信端局13が設置され、それぞれのIPアドレス14が表示されている。
 アドレス管理の方法としては、各多端子型電力変換装置1に手動でアドレスを与える方法と自動で与える方法がある。手動の場合、多端子型電力変換装置1の変更に伴いアドレス変更作業が生じる。自動の場合は、新しく設置されたり、電源が入ったりすると、装置側から自分のMACアドレスを発信して、新しいIPアドレスの割り当てを要求することになる。自動の場合、アドレス変更作業などはすべて自動で行われるので、システム管理者の負担が小さい。
 通信路として電力線搬送通信を用いる場合、連系電線路や電力ケーブルを通信信号の伝送路としてWAN/LANが構築されるので、これにより、通信が可能なルートが電力を送れるルートと物理的に一致する。電線路が断線したり、関連設備を停止したりすると、通信回路も解放されたり停止したりするので、その回路に通信信号は流れない。これにより、複雑な状態確認などなしに、電力システムの最新状態が把握できる。前述したように、66kV系の送電線では、すでに192kbpsのデジタル式電力線搬送が実用化されている。後述する電力融通信号の情報量は、すべての交信に数キロビット程度しか必要ないため、上記帯域は十分な速度といえる。尚、電力系統内には、電力線搬送通信に適さない変圧器や遮断器・断路器・コンデンサー・リアクトル等がある上、接続されている他の機器のインピーダンスによっては通信信号の減衰が大きいため、部分的にバイパスを設けたり、増幅器を必要としたりする可能性がある。
 多端子型電力変換装置1は、インターネットのルーターのように、多端子型電力変換装置1相互に情報を交換し、隣接する多端子型電力変換装置1やそれらの各入出力端子のアドレスを常に把握することができ、必要な電力をバケツリレーのように電力変換しながら遠方の電力系統に送っていくことができ、そのために必要なルーティング情報を常に把握しておくことができる。
 これは、従来の電力融通のメカニズムが、中央給電指令所のような共通のセンターにすべての情報を集め、そこからすべての指令が出てくる方式に比べると、分散制御方式とでもいうべきもので大きく異なる概念であり、本発明はそれを実現する具体的手段を提案している。
 また、本発明の多端子型電力変換システムは、変電所構内の一区画に隣接して配置されるものとなり、その制御に必要な情報はCPU1401により電力用半導体素子のゲート制御を行い、記憶装置により電力変換関連情報と取引関連情報を関連付けてデジタル記録することを特徴としている。
(ルーティングテーブル)
 図15は、図4の電力ネットワークシステムの例で割り当てられているIPアドレスを使って作成した、ルーティングテーブルの一例である。テーブル1501~1504、1506は電力系統3-1~3-4、3-6に設置された多端子型電力変換装置1が保持するルーティングテーブルであり、テーブル1505は電力機器系統4に接続している多端子型電力変換装置1が保持するルーティングテーブルである。
 最初のテーブル1501には、電力系統3-1に設置された多端子型電力変換装置1から、他の電力系統に接続するときのゲートウェイが記されている。ここでSubnet maskが、255.255.255.0のとき、Network192.168.2.0とは、最初の24ビットが共通の群であることを意味する。これは電力系統3-2を意味している。電力系統3-2に到達するには、Gateway192.168.0.7、すなわち電力系統3-2に設置された多端子型電力変換装置1のうち電力系統3-1と接続されているB接続端子202を最初に通るということを示している。
 同様に電力系統3-1から電力系統3-3に到達するためには、ルーティングテーブルのNetwork192.168.3.0を見ればよく、その時Gatewayは192.168.0.9となる。同様に電力系統3-1から電力系統3-4に到達するためには、ルーティングテーブルのNetwork192.168.4.0を見ればよく、その時Gatewayは192.168.0.11となる。別の例として、たとえば電力機器系統4から、電力系統3-1~3-4のいずれに接続するにも、電力系統3-1の電力母線に接続した多端子型電力変換装置1のA接続端子201の192.168.1.1がGatewayになる。
 このようにして、接続先へのルーティングテーブルを、すべての多端子型電力変換装置1が保有し、その内容を多端子型電力変換装置間で交換してWAN/LAN内の最新のルーティングマップを共有することができる。これにより、本発明の電力ネットワークシステムにおいて、TCP/IP通信プロトコルを使用して多端子型電力変換装置1及び電力機器制御端末装置12の間で通信することができ、物理アドレス、誤り制御、順序制御、フロー制御、衝突回避などの標準化が可能となる。
 本発明の電力ネットワークシステムでは、このようなTCP/IP通信プロトコルを使用することにより、電力系統内での自立を優先しながら、必要に応じて、WAN/LANを通じて他の電力系統に電力融通を依頼する仕組みが構築できる。IPアドレスは静的・動的のいずれでも与えることができ、静的な場合は、IPアドレスを物理的な機器に固有のものとして与えるが、動的な場合は、物理的な機器からのリクエストに応じて、付与されるものであり、システムの変化に応じてアドレスも変化する柔軟なシステムとなる。
(送電方法1-1)
 図16は、多端子型電力変換のシミュレーションをMatLab-Simulink-SimPowerSystemsを利用して実施したものである。簡単のために順変換器側を省略し、DC電源で代用した。逆変換器側は単相PWMインバータの並列回路にし、3回路のものを作成した。
 DC母線側はDC±400Vの電池で代用した。2つの電池間に接地を取り、各々のインバータレグの中間を1オームの抵抗と5mHのリアクトルで直列接続し、抵抗部に発生する電圧を観測した。PWMインバータの内部抵抗は1ミリオームでスナバー抵抗は0.01ミリオームとした。
 単相PWMインバータを3回路並列にし、それぞれ周波数50Hzで位相0度、周波数51Hzで位相60度、周波数49Hzで位相-30度という制御信号を与えた。その結果、正常に動作し、それぞれ振幅AC350Vで、周波数50Hzで位相0度、周波数51Hzで位相60度、周波数49Hzで位相-30度の交流出力を得た。
 図示してはいないが単相PWMインバータを3回路並列にし、それぞれ周波数50Hzで位相0度、周波数30Hzで位相50度、周波数0Hz(すなわち直流)という制御信号を与えた。その結果、正常に動作し、それぞれ自在な周波数と位相、さらに直流も作成できることがシミュレーションできた。
(送電方法1-2)
図37Aは、3端子の多端子型電力変換装置1が、それぞれ異なる周波数の電力系統に接続した状態を示し、図37Bは、図37Aに示した状態において電力の融通方向を連続的にシームレスに変化させた場合のシミュレーション結果を示す。このシミュレーションは、電力シミュレーションソフトウェアのPSIMによって行ったものである。
 この例では、多端子型電力変換装置1の電力変換器10-1が60Hzの周波数を持つ電力系統3-1に接続し、電力変換器10-2が50Hzの周波数を持つ電力系統3-2に接続し、電力変換器10-3が40Hzの周波数を持つ電力系統3-3に接続している。
 時間0.05秒から0.06秒にかけて、電力変換器10-1の制御信号と電力変換器10-2の制御信号を逆方向に増加させることにより、電力変換器10-1と電力変換器10-2の電流値が増大し始め、時間0.06秒から時間0.08秒までは電力変換器10-1と電力変換器10-2の電流が同じ値をとっていることがわかる。これは、電力系統3-1(60Hz)から電力系統3-2(50Hz)に電力が送られていることを意味している。
 時間0.08秒から時間0.09秒にかけて電力変換器10-1の制御信号は0に戻り、一方電力変換器10-3の制御信号が増大して、電力変換器10-2と逆方向の同じ値まで増加している。これは、電力系統3-1に代わって電力系統3-3(40Hz)が、電力系統3-2に電力を送るようになったことを意味している。時間0.09秒から時間0.12秒まではこの状態が維持されている。
 時間0.12秒から時間0.13秒にかけては、電力変換器10-1の制御信号が増大し、電力変換器10-2と電力変換器10-3の制御信号が反対方向に増加して、その和が、電力変換器10-1の値に等しくなるように制御され、時間0.13秒から時間0.19秒までこの状態が維持されている。
 これは、電力系統3-1から、電力系統3-2と電力系統3-3の両方に電力が送られていることを意味している。
 その後、時間0.19秒から時間0.20秒にかけて、すべての制御信号が0に減少し、各電力変換器を通過する電流値が0になっている。
 このシミュレーションの示すように、本発明の多端子型電力変換装置1は、同期系統はもちろん、同期していない3以上の電力系統間でも連続的に電力融通方向を変化させることができる。これは制御信号に基づいた電力ルーティングが可能であることを意味している。
 本発明は、上述した複雑な電力融通手順を計算機の中に記憶させ、自動的に電力融通を行うことができるようになる。また、本電力融通手順は多端子型電力変換装置1のいずれもが実施できるようにプログラムを共有し分散処理することもできる。
(送電方法2)
 図17A、17Bは、偶数回線数を持ち並列に運用されている送電線22の各回線に対し多端子型電力変換装置1の接続端子が独立に接続し、回線ごとに独立の電力融通運用を行う例を示したものである。
 通常の同期系統における送電線は、6,000ボルトを超える特別高圧系では、1回線が遮断されたときでも100%の電力が送電できるように、2回線で1組とされて送電されているのが一般的である。送電鉄塔の両側に1回線ずつ設置されて同じ目的地まで敷設されている。従って2回線運用時は、それぞれ50%運用となり、設備利用率は最大50%となる。しかも、同期系統では送電線のインピーダンスの分布により、電力潮流が一義的に定まってしまう。これをここでは受動的電力潮流と呼ぶ。送電線の定格容量は、長期見通しにおける電力潮流分布で想定される受動的な最大潮流をもとに設計するため、定格を満たす潮流が流れることはまれであり、年間を通じた設備の平均稼働率は50%を大幅に下回る。
 一方、多端子型電力変換装置1は、能動的に必要な大きさと方向の電力潮流を流すことができる。すなわち、本発明の電力システムは能動的電力潮流である。従って、本発明の多端子型電力変換装置1の接続端子を2回線送電線のそれぞれの回線に独立に接続した場合、従来のように1回線が遮断されたときのために2回線運用時からそれぞれ50%運用しなくてもよく、1回線が遮断されたときには別の経路から送電することによって対処することができる。
 図17Aは、A、B、Cの3つの電力系統に電力を送電している例を示している。この例では、簡単のためにAからCに100%の電力が送電され、2回線ある送電線はともに50%で並列運用されている例になっている。
 図17Bは、本発明の電力システムにおける送電線各回線の独立運用の事例である。送電線2回線のうち上部に描かれているルートは、電力系統Aから電力系統Cへ100%容量で電力を送電することが可能になっている。送電線2回線のうち下部に描かれているルートは、まず電力系統Aから電力系統Bへ100%容量で電力を送電することが可能になっている。電力系統Bから電力系統Cに対してもやはり100%容量で電力を送電することが可能になっている。各電力変換器10はその送電容量に見合った定格となっている。
 仮に、電力系統Aからそれぞれの送電ルートに100%ずつ送電しているとした場合に、上部ルートが停止した場合、電力系統Cが電力不足となるが、電力系統Bが出力を増加させて電力系統Cへのルートで100%をバックアップすることができる。
 同様に、仮に、下部ルートが停止した場合、電力系統Bが電力不足となるが、電力系統Cが出力を増加させて電力系統Bへのルートで100%をバックアップすることができる。
 いずれの場合も、バックアップする電力系統の負担は大きいが、二次電池などの普及により短時間のバックアップは現行技術でも十分可能である。この方法は送電線の増強に比べて、可能性が高い。
 従って、多端子型電力変換装置1の接続端子は独立にかつ能動的に目的とする大きさの電力を送電線に送り込むことができるので設備利用率をそれぞれ最大100%まで上げることができる。
 また、独立接続箇所ごとに2回線の入力ができるので、別ルートからそれぞれ100%ずつ、合わせて200%の電力を受け取ることが可能になる。
 さらに、電力変換器10により能動的に電力を送り込めるので年間を通じた2回線送電設備の平均稼働率を最大200%まで上げることが可能となる。
 図18は、4回線の送電線の場合を図示したものである。送電線の両側に6本ずつ電線が通っているものが、この例である。通常は、2回線ずつ行き先が異なることが多いが、そのうち共通のルートを通っている部分について図示したものである。
 図18では、電力系統Aから4回線の送電ルートが電力系統B、C、D、E、Fを経由して行く例を示した。この例では、回線が各送電鉄塔から、各電力系統に引き込まれるところで直接接続しているところを切り離しもしくは遮断器9を設置して開放運用しており、送電線の両端を多端子型電力変換装置1に引き込んでいる。多端子型電力変換装置1の中では、接続端子毎に非同期に独立運用がなされている。
 回線1では、図18から明らかなように電力系統A-B間、電力系統B-C間、電力系統C-D間、電力系統D-E間、電力系統E-F間、電力系統F-回線1の接続先の電力系統間、の電力融通ルートができたことになる。
 回線2では、図18から明らかなように電力系統A-C間、電力系統C-E間、電力系統E-回線2の接続先の電力系統間、の電力融通ルートができたことになる。
 回線3では、図18から明らかなように電力系統A-D間、電力系統D-回線3の接続先の電力系統間、の電力融通ルートができたことになる。
 回線4では、図18から明らかなように電力系統A-F間、電力系統F-回線4の接続先の電力系統間、の電力融通ルートができたことになる。
 電力融通ルートの作り方は、上記の例に限ったものではなく、ケースバイケースによって検討されるべきものである。
 これにより作られた電力融通ルートは、非同期連系であるため、任意の大きさの有効電力・無効電力を送ることも受けることもできるルートとなり、電力系統にその余力があれば、送電線の定格容量一杯まで使うことができる。
 事故時の変動は、電力変換器10の高速なゲートブロックにより、電力系統に与える影響を少なくすることができる。電力の過不足については、電力貯蔵装置などのバックアップが必要となる場合もあるが、送電線の増強より容易な設備投資となる。
 このような工夫で得られた電力融通ルートは、図8の電力融通ルートに類似の電力ネットワークを構成する。
(送電方法3)
 この中で、重畳型電力送電、タイムシェアリング送電、複数ルート送電、電力圧縮融通、仮想取引融通の5つの電力融通方法を可能にする電力システムについて考案している。
 図19は、多端子型電力変換装置1を送電線の変電所引き込み部のそれぞれに設置し、装置間相互に情報通信を行い、同じ送電回線を使用して、複数変電所に異なる電力を同時に送電する重畳型電力送電について説明している。電力系統3-1~3-3があり、その間にそれぞれ電力変換器対23-1と電力変換器対23-2がある。電力変換器対23-1が単位時間当たりW1とW2の電力を電力系統3-2に対して送り出し、同じタイミングで電力変換器対23-2が単位時間当たりW2の電力を電力系統3-2から電力系統3-3に向かって送りこむと、電力系統3-2には差し引きW1の電力が送りこまれたことになる。電力変換器対23-1と電力変換器対23-2に、それぞれW1+W2とW2の電力を送りこむよう指示した行き先情報ヘッダー1901が信号として送られることにより、このような電力融通が可能となる。
 図20は、異なる変電所に異なる電力を時間的に分割して送るタイムシェアリング送電について説明している。図10と同様の電力系統3-1~3-3と電力変換器対23-1、23-2を有しているが、電力変換器対23-1にはまず、単位時間当たりW1の電力を送り出すよう指示した行き先情報ヘッダー1901来て、W1を電力系統3-2に送りだす。このとき電力変換器対23-2は稼働していないので電力系統3-3には電力は融通されていない。次いで、電力系統3-3に単位時間当たりW2の電力を送る行き先情報ヘッダー1901が電力変換器対23-1と電力変換器対23-2の両方に指示を与え、両方の電力変換器を同時にW2の大きさで稼働させる。これにより電力系統3-1から電力系統3-3にW2が送られる。このとき電力系統3-2は電力が通過するだけである。このようにして、時間を区切って電力を異なる目的に融通することができる。
 この方式の利点は、電力変換器の最大出力で電力を異なる目的地に時間を区切って送れるところにある。これは、通信で言うところのパケットの概念に類似しており、パケット電力ということができる。電力変換器の最大出力で一定時間の電力量を1単位として取り扱うことができる。これをデジタル電力と呼ぶこともできる。
 図21は、複数の異なる送電回路を使用して1つの変電所に異なる電力を同時に送る複数ルート送電について説明している。図19、20と同様に電力系統3-1~3-3の間に電力変換器対23-1と電力変換器対23-2があるが、それに加えて電力系統3-1と3-3との間にも送電ルートがありその間に電力変換器対23-3がある。この例では、電力変換器対23-1と23-2の両方にW1の電力を送るよう情報を与え、同時に電力変換器対23-3には、W2の電力を送るように情報を与える。これらにより、電力系統3-3には、W1+W2の電力が電力系統3-1から異なるルートを経由して送られる。尚、ここでは、電力系統3-1に電力変換器対23-1、23-3が接続される構成例を示したが、この議論は、これら電力変換器対23-1、23-3を、3つの電力変換器が共通母線で並列に接続された本発明の多端子型電力変換装置に置き換えても同様に成り立つ。
 図22は、逆方向の電力送電要求を組み合わせて送電量を圧縮もしくは相殺することで電力変換及び送電ロスを減少させる電力圧縮融通について説明している。図の例では、電力系統3-1から電力系統3-4に電力系統3-5を経由してW1(kW)が送られ、電力系統3-1から電力系統3-1に電力系統3-5を経由してW1(kW)が送られている。この場合、図から明らかなように電力系統3-1、3-5の間では、W1と-W1の電力が流れることになり、これは相殺されるので電力系統3-1、3-5に設置された多端子型電力変換装置1は稼働しなくてもよいことになる。これにより、電力変換ロスと送電ロスが軽減される。
 このような電力融通計画を積極的に組み合わせることによりロスを最小化することができる。各電力系統に電力貯蔵装置があれば、時間をずらしたり出力の大きさを合わせたりして調整することができる。電力エネルギーに、発電ソースのような情報が付加されることにより、このような逆方向の電力取引が発生する場合がある。ある電力系統で、風力発電の電力を必要とし、風力発電を有する電力系統が逆に安価な化石燃料由来の電力を必要とする例など、これに限らず逆方向の取引が発生する場合がある。
 図23は、送電線によって相互に接続されていない電力系統間において、電力貯蔵装置と取引する電力情報を使って電力融通を可能にする、電力の仮想取引融通について説明している。
 図23では電力系統2310と電力系統2320があり、連系線が接続されていない。電力系統2310は太陽光発電PVのみを持ち、電力系統2320はディーゼル発電DGのみを持つ。それぞれに設置された、電力貯蔵装置2311と電力貯蔵装置2321の中の電力貯蔵量が、t0からt2の順番で行われる仮想的電力取引により、電力系統2310の顧客にDG電力を、電力系統2320の顧客にPV電力を販売できる例について説明する。
 時刻t0において、電力貯蔵装置2311と2321はそれぞれPV由来の電力と、DG由来の電力で充電されている。
 時刻t1で、電力貯蔵装置間でDGとPVを同量仮想交換する。この取引は債券のような形や、手形や証書や現金決済などの手段を伴うことが望ましい。
 時刻t2で、電力系統2310内ではDG電力を、電力系統2320内ではPV電力を販売することができる。これにより実際に電力が送電されなくても、仮想取引融通を行うことができる。
 時刻t1で、DGとPVを同量取引する場合、電力量として同量とする考え方もあれば、金額として同額とする考え方もある。また、同量とせずに差分を別な形で取引することもできる。債権を先物取引したり、デリバティブ商品を作ったりすることもできる。
 図24は、両電力系統2410、2420ともPVとDGと電力貯蔵を持っている場合の仮想取引融通について説明する。
 時刻t2までは、上述と同じである。時刻t3では、それぞれDGとPVを持っているのでそれを発電して其々の電力貯蔵装置2411、2421を充電する。時刻t4で電力系統2410のDGと電力系統2420のPVを再度仮想交換すれば、時刻t0の状態と同じに戻り、かつそれぞれの顧客に異なる系統の電気を販売することができる。
 本発明では、第1に、重畳型電力送電の発明の効果は、他の電力系統に送る電力に上乗せして他の電力系統を経由して目的の変電所に電力を送ることができることにより、目的の電力系統までの直通の送電ルートがなくても必要な電力を送ることができる。
 第2に、タイムシェアリング送電の発明による効果は、個々の電力系統に送る電力の総和が多端子型電力変換装置1の容量の大きさに制限される重畳型電力送電に比べて、タイムシェアリング送電の場合には一つ一つの電力を多端子型電力変換装置1の最大定格容量まで大きくすることができる。
 第3に、複数ルート送電の発明による効果は、同期系統の場合にはループ電流や横流が発生し、送電ネットワークのインピーダンスによってきまる受動的な電力配分になってしまうのに対し、本発明の多端子型電力変換装置1を用いれば、多数の系統から一つの電力系統に送られる電力がそれぞれ非同期であるので、お互いに干渉せずにすべてを受け取ることができ、能動的に電力を送りこめる。
 第4に、電力圧縮融通の発明は、複数の電力系統間における多数の電力融通要求の時間的制約や大きさの制約を調整することにより、実際の電力変換量を圧縮することができる。これにより電力システム全体の電力変換ならびに電力融通に伴う電力損失を小さくすることができる。
 第5に、仮想電力取引の発明は、多端子型電力変換装置1を使用することにより、送電線が接続していない電力系統間や、あるいは送電線が接続していても実際の送電を行わない方法で電力を融通できる。これにより証書取引、先物取引やこれらを組み合わせた派生金融商品を生み出すことができる。
(時刻同期方法)
 これらの発明は、複数の電力系統間に配置された複数の電力変換器において、電力変換器が作り出した電力線路上を伝搬する時刻同期用電気波形と、その電気波形の持つ意味を伝送する時刻同期用電子情報との両者を組み合わせることにより複数電力変換器間の時刻同期をとることを特徴とする時刻同期情報伝達ネットワークシステムである。
 この発明により、電力線上に現れる電気波形の持つ比較的少ない情報と、その意味を説明する多量の電子情報とを組み合わせて、複数の電力変換器を同時に同じ大きさで動作させたり、停止させたり、途中で大きさを変更させたりすることが可能になる。
 図25は電力系統3-1~3-3の間で、電力変換器対23-1と電力変換器対23-2を同じタイミングで同じ大きさで駆動させることにより、電力系統3-2には電力を送りこまずに、あるいは電力を受け取らずに、電力系統3-1から電力系統3-3に電力を送ることができることを示している。これを時刻同期させるという。
 このように、電圧波形に乗せられる情報量は限られているので、少ない情報の持つ意味を、別の外部データ通信路を経由して、あらかじめ送信しておくことにより電力変換器の動作準備を行っておく方法が考えられる。これが本発明の言うところの時刻同期用電気波形と時刻同期用電子情報の組み合わせで時刻同期をとる方法である。
 図25では、電圧波形に信号を乗せているが、電圧波形2500のピークはノイズが多いので、信号を乗せるタイミングを電圧がゼロになるゼロクロスにすることもできる。また、電圧波形に電力線搬送通信信号を乗せることもできる。電圧波形に信号を乗せる代わりに、電流波形に信号をのせることもできる。信号を電力変換器対23-1そのものに信号を作らせることもできる。
 時刻同期用電気波形は1つとは限らず、いくつかの電気波形の組み合わせとしてそれに意味を持たせることもできる。組み合わせを使えば、時刻同期用電気波形だけで時刻同期をとることもできる。たとえば2つ以上の電気波形を用いて駆動開始の一定サイクル前に予告信号を発生させて準備を行うことや、間隔をあけるサイクル数を変化させてカウントダウン信号とすることによって駆動開始のタイミングを合わせることなどができる。
 また、時刻同期用電子情報として、GPS時刻情報を使用したり、電波時計信号を使ったりして、電力変換器対23-1、23-2の時計を同期させて、時刻同期を図る方法もある。この場合時刻同期用電気波形は不要となる。
 本発明では、電力変換器対23-1が作り出した電力線路上を伝搬する時刻同期用電気波形2500と、その電気波形2500の持つ意味を伝送する時刻同期用電子情報との両者を組み合わせることにより複数電力変換器間の時刻同期をとることを特徴としており、以下のような手順で時刻同期をとることができる。
 たとえば、送電元の電力変換器対23-1において独特の電圧波形、電流波形、有効電力波形、無効電力波形、これらの大きさの変化、位相の変化、位相ベクトルの変化、空間ベクトル軌跡の変化、及びそれらを組み合わせた開始・終了予告信号やスタート・ストップ信号(これらを総称して電気波形プロファイル2500a~2500dと呼ぶ)を作って電力回路に送りこむことを、あらかじめ外部通信路2501などの別の情報ルートにより同期させる電力変換器対23-2に情報として伝えておく。
 情報を受け取った電力変換器対23-2は、これらの電気波形プロファイルを、時刻同期用電気波形として速やかに検出できるように検出回路構成やソフトウェア設定を行い、それによって電力変換を同期させる準備を行う。
 予定された時刻付近で電力線路にあらかじめ伝えられた予告信号の電気波形プロファイルが検出されると、電力変換器対23-2は電力変換に必要な準備を開始し、予告信号からあらかじめ定めた回数の電圧のゼロクロッシングサイクル後に電力変換を開始するなどの方法で複数の電力変換器対23-1、23-2の時刻同期をとることができる。
 また、確認のために予め時刻同期用電子情報で定めた直前信号を検出したら、その検出確認直後に電力変換を開始するなどのアルゴリズムを持つこともできる。
 電力変換中に、あらかじめ時刻同期用電子情報で定めた電気波形プロファイルを送出して、電力変換の大きさをあらかじめ定めた出力変化率に基づいて増減することもできる。
 電力変換の停止に当たっても、電力変換中にあらかじめあらかじめ時刻同期用電子情報で定めた電気波形プロファイルを検出したら、一定ゼロクロッシングサイクル後に一定変化率で電力変換の大きさを小さくしていき、停止信号の検出を持って停止することができる。
 予め、どのような手続きと電気波形プロファイルを使用するかを、時刻同期用電子情報として伝送しておくことにより、電気波形プロファイルを単純なものとしてノイズの影響を小さくすることができる。
 このように、光のスピードで伝達できるが情報量の少ない電気波形プロファイルと、別ルートで送る情報量の豊富な時刻同期用電子情報とを組み合わせることにより、離れた場所にある複数の多端子型電力変換装置1の時刻同期をとることが可能となる。電力線搬送通信(PLC)を用いる場合は、電気波形と情報が同一のルートを通過するので、ルートの物理的健全性の確認も併せて行うことができるメリットがある。
 本発明では、さらに、複数の多端子型電力変換装置1に、協調した時刻同期用電子情報を伝えておくことにより、複数の多端子型電力変換装置1の電力変換動作を同期させて行うことができるため、複数の多端子型電力変換装置1を経由して電力を遠方に融通することができる。
 また、電気波形と電子情報の組み合わせによることにより、電気波形はシンプルなものでよくなり、使用可能な電気波形とその実現方法の自由度が高まる。そして、電気波形と電子情報の組み合わせによることにより、電子情報の時間的制約が小さくなり、使用可能なデータ回線や通信手段の自由度が高まる。
 また、電気波形と電子情報の双方とも手法の自由度が高まるため、通信事業者や電力変換器メーカーの事業参入機会が拡大し健全な競争が生まれる。
 本発明の別の実施例では、電力システムにおける時刻同期用電気波形が、電流波形を基本とするものであることを特徴とするものである。
 BTB型電力変換器は、片方の電力変換器で交流を整流し、直流を作り、ついでもう片方の電力変換器で直流部電圧を、1秒間に数千から数万回オンオフしてその時間間隔を変化させることにより平均して正弦波電圧を作りだす。
 この電圧と直列リアクトルを挟んで接続される電力系統との間で周波数を同期させ、若干の位相差を付けることにより、目的の電流を送り込んだり、引き込んだりすることができる。
 電力変換器の出力回路にはリアクトルや平滑用のコンデンサーが使われていることが一般的であるので、前述した電圧波形、電流波形、有効電力波形、無効電力波形、これらの大きさの変化、位相ベクトルの変化、空間ベクトル軌跡の変化、及びそれらを組み合わせた開始・終了予告信号やスタート・ストップ信号等の電気波形プロファイルを電気回路に送りこむ場合、電気回路そのものの工夫が必要である場合が多い。しかし、電流波形は、リアクトルの平滑作用のために変化速度は遅くなるが、電力変換器のデジタルシグナルプロセッサーへの信号の工夫だけで実現することができ、特別な電気回路の工夫が不要であるため経済的な手法であるといえる。
 電流波形を基本として電流の位相を測定してその位相シフトを検出する方法や3相電流の空間ベクトルの相対位相変化などを組み合わせることにより、より高速で情報量の比較的多い電気波形プロファイルとすることができる。
 時刻同期用電気波形が電流の場合、多端子型電力変換装置の電力変換器そのもので作り出すことができ、大きさ、位相、タイミングを組み合わせて多様な電気波形を作ることができる。
 また、電気波形信号授受の段階で、電力変換器とその制御システムの動作確認を行うことになるので、異常を速やかに検出し、事故を未然に防ぐことができる。
 さらに、制御システムを含む電力変換器の電力変換用設備が、そのまま電気波形作成設備を兼ねるため、追加設備が不要となり経済性が高い。
 本発明の別の実施例では、電力システムにおいて、時刻同期用電子情報が、電力線路上を伝搬する電力線搬送通信信号であることを特徴とするものである。
 時刻同期用電子情報が、時刻同期用電気波形が伝搬される電力線路と同じ線路の上を送信される電力線搬送方式を採用すると、電力線路の断線や接地など物理的障害により、電子情報が送れない場合は返信もないため、電力線路の不具合が容易に発見できる。
 時刻同期用電子情報に限らず、時刻同期用電気波形として電力線搬送信号を使用し、電圧のゼロクロスのタイミングに挿入して時刻同期用電気波形プロファイルの代替とすることができる。
 時刻同期用電気波形が電圧の場合、第1に、電流リアクトルやACフィルターなどをバイパスする回路を追加すれば、多端子型電力変換装置の電力変換器そのもので作り出すことができる。
 第2に、電力変換器で作られた電圧情報は、数kHzから十数kHzの周波数を持ち、電流による電気波形に比べて、情報量を多くすることができる。
 第3に、電力変換器以外の設備で時刻同期用電気波形を作る場合は、送電線に電圧波形を付加する装置を追加すれば、より情報量の多い電気波形とすることができる。
 第4に、電力変換器以外の設備で時刻同期用電気波形を作る場合は、時刻同期用電子情報も同じ送電線を使うことができ、電子情報用通信路を新たに設置する必要がなくなる。
 第5に、送電線が高電圧であるため、電子情報のセキュリティが高まる。
 電力変換器以外の設備が電力線搬送通信設備の場合は、送電線に高周波電圧波形を乗せて作成する場合は、設備と制御を共通化できるメリットがある。電力線搬送方式の場合、通信路と電線路を物理的に同じものにすることができ、新しい電線路ができても新たな通信路を施設する必要がなくなるうえ、線路の健全性の確認が自動的に行えるなどのメリットもある。
(電力取引方法1)
 図26A、26Bは、電力ネットワークシステムにおける第1の電力融通要求段階を示している。図26Aは、電力系統2601のいずれかの多端子型電力変換装置1又は電力機器が、他の電力系統の装置及び機器に対して希望取引条件2600aを付けて一斉問い合わせを発信している状態を示し、図26Bは、その問い合わせに対して電力融通可能な電力系統2602が可能取引条件2600bを付けて返信している状態を示している。
 第1の電力融通要求段階における電力系統2601内の電力融通要求元の発信するIPパケットは、少なくとも、発信元IPアドレス・マルチキャストIPアドレス・希望取引条件2600aの情報を含み、電力系統2602内の電力融通応答先が応信するIPパケットは、少なくとも、応信元IPアドレス・返信先IPアドレス・可能取引条件2600bの情報を含む。
 図27A、27Bは、電力ネットワークシステムにおける第2の電力融通要求段階を示している。図27Aは、電力融通可能との返信があった電力系統2602に設置された多端子型電力変換装置1に対して予約取引条件2600cを発信している状態を示し、図27Bは、電力系統2602が予約確定条件2600dを付けて返信している状態を示している。
 第2の電力融通要求段階における電力系統2601内の電力融通要求元の発信するIPパケットは、少なくとも、発信元IPアドレス・受取先IPアドレス・予約取引条件の情報を含み、電力系統2602内の電力融通応答先が応信するIPパケットは、応信元IPアドレス・返信先IPアドレス・予約確定条件の情報を含む。
 電力融通相手先と電力融通プロファイルが決定したのち、(1)ルーティング経路の複数選定段階、(2)ルーティングプロファイル収集段階、(3)電力融通ルート選定段階、(4)ルーティング予約段階、(5)ルーティング確定段階、(6)電力融通実施の監視段階、(7)異常事態における緊急ルーティング方法の確定段階をへてルーティングが決定する。
 図28A、28Bは、予約の時間が来たときに最終的に電力が融通されていく状況を概念的に図示したものである。複数のルートを経由することで、1ルートあたりの負担が減り、故障などが発生しても影響が小さく、代替ルートがすぐ見つかるなど柔軟なネットワーク運用が可能になる。図28Aについては後述する。
 電力融通開始にあたっては、予約時間が来た時に、取引条件に定められた、小さな電力変化率で融通を開始することにより、電力融通のミスマッチを防ぐことが可能である。また、予約時間が来た時に、再度融通開始信号を送ることが可能である。
 本発明においては、不特定多数の機器に問い合わせをして、電力融通選択肢を広げ、一定のアルゴリズムに電力融通を依頼する電力機器や多端子型電力変換装置1を複数特定して、予約をすることができる。予約をされた電力機器や多端子型電力変換装置1が、応諾の返信をすることによって電力融通が確定する。融通開始直前の変更や、融通中の事故などの対応も本請求項の電力融通アルゴリズムの中に含むことができる。ルーティングについては、複数の電力融通要求を組み合わせることで電力損失の少なくなるルート選定が望ましい。これら電力融通要求手順に関わる一連の動作は、数日前、数時間前、数分前、数秒前と常に変更可能な状況におけることが望ましい。
 また、電力要求を受信した電力機器又は多端子型電力変換装置1は、希望取引条件に対し、対応できるかどうか検討でき、対応できる場合、自身の可能取引条件を伝えることができるような柔軟な取引形態を内包する電力ネットワークシステムとすることができる。
 さらに、電力融通予約を受信した電力機器又は多端子型電力変換装置1は、予約取引条件に対し、再度確認するステップが設けられ、確認後、自身の確定取引条件を伝えることができるような信頼度の高い取引形態を内包する電力ネットワークシステムとすることができる。
 いずれかの手続きにおいて問題が発生した場合はひとつ前の手順に戻る。
 また、本発明は、最適化された電力融通ルーティングが可能な電力ネットワークシステムが構築できる。電力融通要求が複数ある場合、基幹電力系統からの融通も含めてどのルートを使うと全体の電力ロスが少なくて済むか、物理的な制約はないか、取引価格情報も含めると膨大な選択肢が生じるが、電力ロスを価格情報に含めて経済性を重視し、物理制約条件下での最適化問題を解くことでルーティング問題を解決できる。
(電力取引方法2)
 ここで、本発明の電力取引の具体的手順について図4A、4Bの構成に基づき説明する。電力系統3-1の電力貯蔵装置B1の電池残量SOCが少なくなり、電力系統の自立に支障が出そうであると予測されたとき、
(1)電力貯蔵装置B1の電力機器制御端末装置12は自己の通信ポート192.168.1.3を通じて、まず、電力系統3-1内の他の電力機器に、融通を打診するため後述する手順で一斉問い合わせ(Broad Casting)を発信する。
(2)対応できる発電装置の返信が電力系統内から得られなかった場合、次にDefault Gatewayである電力系統3-1に設置された多端子型電力変換装置1の192.168.1.1のポートに対して、他の電力系統3-2~3-4、3-6及び電力機器系統4に、対応できる電力機器がないか、電力融通プロファイルをつけて問い合わせを発信する。
(3)電力系統3-1に設置された多端子型電力変換装置1は、他の電力系統3-2~3-4、3-6及び電力機器系統4に設置された多端子型電力変換装置1のGatewayに対してその内容を一斉問い合わせ(Broad Casting)する。
(4)例えば、電力系統3-4に設置された多端子型電力変換装置1が系統の状態を見て対応できるときは、192.168.0.11のB接続端子202が、自分のIPアドレスと融通電力プロファイルを、電力系統3-1の電力貯蔵装置B1の電力機器制御端末装置通信ポート192.168.1.3に返信する。
(5)あるいは電力系統3-4の発電装置G4が、電力融通可能であると判断した時は、G4の電力機器制御端末装置12のポート192.168.4.2から電力系統3-1の電力貯蔵装置B1の電力機器制御端末装置通信ポート192.168.1.3に対応可能な電力融通プロファイルをつけて返信する。
 以上のような手順で、電力系統3-1の電力貯蔵装置B1に、電力系統3-4の発電装置G4が電気を供給する手続きが進められる。これにより、ある電力系統の自立のために必要な電力量を他の電力系統が選択的に供給するという、従来不可能であった電力融通が可能になる。また、同様にして、ある電力系統の自然エネルギー由来の電源が、過分な電力を発生してしまう時、他のたくさんの電力系統内の電力貯蔵装置に分散して吸収してもらうことが可能である。これらにより、電力機器の共有化が促進され、個別に用意するより少ないリソースで目的を達成できるようになる。
(電力取引方法3)
 図29は、多端子型電力変換装置1が接続する電力系統が直流の場合の例である。図29では電力系統が太陽光発電装置2900と電力貯蔵装置29011台ずつで表現されているが、この構成が最低限の構成要素で他に図示されていない電力機器が接続されていてもよい。
 (1)の部分は、A接続端子201が、電力貯蔵装置2901と太陽光発電装置2900の直流接続部に直接接続している例であり、ここで作られるDC電圧が電力貯蔵装置の充放電制御を行っている。この場合太陽光発電のV-I最適制御は、効率的に働かない可能性が高いが、電力変換器の数を減らせるので、小規模の電力融通ではこのような接続も可能である。
 (2)の部分は、1つのA接続端子201に太陽光発電装置2900が接続され、別のA接続端子201に電力貯蔵装置2901が接続され、他のA接続端子201は、風力発電装置2905や他の交流又は直流電力系統2906に接続されている例である。太陽光発電装置2900のV-I最適制御や、電力貯蔵装置2901の充放電制御をA接続端子201が代替できる。交流系統に接続する場合は、図示してはいないがA接続端子201出口に交流リアクトル又は変圧器が必要となる。
 (3)の部分は、A接続端子201のうちの1つが直接AC家電機器2902に電力を提供している例である。図示されていないがこの際はリアクトル又は変圧器が必要である。
 これにより、太陽電池と蓄電池で電力を得ているような小さな直流電力系統又は直流需要家が数多くある場合、それらを多端子型電力変換装置1で直流接続することで大きな電力ネットワークシステムにしていくことができる。小さな需要家単独では電池の枯渇や太陽電池の故障などで障害が起きてしまうが、ネットワーク化することで電力機器を共用でき、全体の設備予備率も下げることができ、ネットワークシステムの信頼性を高めることができる。開発途上国などにおいて、村・町などが個別に直流電力系統を持っており連系がないところにおいても使用できる。
 直流のネットワーク化は、通常、事故時の遮断電流が大きくなっていくため推奨されない。しかし本発明は、すべての連系線が多端子型電力変換装置1の接続端子と接続しているため、事故時にはゲートブロックをかけることができる。ゲートブロックは高速であり、直流を遮断することができるので、従来直流遮断器なしには構築できなかった直流でのネットワークが構築可能となる。
(電力取引方法4)
 本発明の電力融通方法は、電力ネットワークシステムにおいて、第1の電力融通要求段階における電力融通要求元の発信するIPパケットは、少なくとも、発信元IPアドレス・マルチキャストIPアドレス・希望取引条件の情報を含むことを特徴とし、電力融通応答先が応信するIPパケットは、少なくとも、応信元IPアドレス・返信先IPアドレス・可能取引条件の情報を含むことを特徴とするものである。
 ここでいう希望取引条件とは、希望融通有効電力方向と大きさ・希望融通無効電力方向と大きさ・希望融通開始時間・希望融通終了時間・希望融通価格上限・希望融通価格下限・融通電力発生源の希望属性からなり、可能取引条件とは、可能融通有効電力方向と大きさ・可能融通無効電力方向と大きさ・可能融通開始時間・可能融通終了時間・可能融通価格・可能融通電力発生源の属性、からなることを特徴とする。同一の電力系統内にこたえられる電力機器がない場合や最初から他の電力系統に融通を依頼する場合は、第1の電力融通要求段階で、他のすべての多端子型電力変換装置に対して同様の手順を実施する。
 第2の電力融通要求段階における電力融通要求元の発信するIPパケットは、少なくとも、発信元IPアドレス・受取先IPアドレス・予約取引条件の情報を含むことを特徴とし、電力融通応答先が応信するIPパケットは、応信元IPアドレス・返信先IPアドレス・予約確定条件の情報を含むことを特徴とするものである。
 ここでいう予約取引条件とは、予約番号・予約融通有効電力方向と大きさ・予約融通無効電力方向と大きさ・予約融通開始時間・予約融通終了時間・予約融通価格・予約融通電力発生源の属性からなり、予約確定条件とは、予約確定番号・予約確定融通有効電力方向と大きさ・予約確定融通可能無効電力方向と大きさ・予約確定融通開始時間・予約確定融通終了時間・予約確定融通価格・予約確定融通電力発生源の属性からなることを特徴とする。
 ルーティングアルゴリズムは、電力融通相手先と電力融通プロファイルが決定したのち、(1)ルーティング経路の複数選定段階、(2)ルーティングプロファイル収集段階、(3)電力融通ルート選定段階、(4)ルーティング予約段階、(5)ルーティング確定段階、(6)電力融通実施の監視段階、(7)異常事態における緊急ルーティング方法を有することを特徴とする。
 これにより信頼性の高い電力融通方法を実施する手順が構築できる。応信を受けた電力機器もしくは多端子型電力変換装置は、取引条件などを勘案して、予約を行うかどうか決定する。交渉が必要な場合はこのステップが何度か繰り返されることもある。候補者の中から条件の折り合うものを選んで、電力融通の予約を、有効・無効電力の大きさ、方向、時間、価格、電力発生源を含めて予約を申し入れ、それを受け取った側で状況の変化などを含めて問題なければ予約確定の返信を上記の条件付きで送ることで電力融通の予約が確定する。
 確定したところで予約取引条件を含んだIPパケットを発信し、相手先はそれに対して予約が確定した旨の条件を含んだIPパケットを返信する。これにより一連の電力融通予約手順は終了し、予約時間が来た時に実行される。
 以上の流れを図11又は図12により、模式的に説明する。
 この図では電力系統3-1内に設置されている電力機器1102-1に対して電力系統3-2内に設置されている電力機器1102-2が電力融通を依頼する場合以下のような手順で実施される。
(1) 電力機器1102-2の制御端末装置1101-2のIPアドレスが、仮にIP001とした場合、LAN内で、電力を融通してくれる電力機器があるかをLANに問い合わせる。
(2) LAN内に対応できる電力機器がない場合、電力系統3-2に設置された多端子型電力変換装置1-2のB接続端子202(IP002)を経由してWANに、問い合わせが転送される。
(3) WAN内で、一斉問い合わせを行い、WANに接続されている多端子型電力変換装置1-1の接続端子は、それぞれのLANに問い合わせを行う。
(4) その結果電力系統3-1の電力機器1102-1が対応することになった場合、IP001からIP005に対する電力融通予約がなされる。
(5) 次に、ルーティングプロトコルにしたがい複数のルートが選定される。図中には1つのルートしか示されていないが、通常複数ルートを使用する。
(6) 図では、IP001からIP002、IP003、IP004、IP005のルートを通じて電力機器1に到達することがわかり、このルーティングが記録される。(7) 予約時間が来ると、IP002,IP003,IP004の遮断器は閉じ、対応する電力変換器が電力を移動させる。
(8) 同時に、IP001とIP005の電力機器制御端末装置12-2、12-1も電力制御を開始し、その結果、IP001からIP005に電力が融通される。
 実用上は、予約番番号、電力の融通開始時の出力上昇率、融通停止時の出力減少率、時間などの情報が含まれていることが、スムーズな電力融通を行う上で望ましい。
 電力融通プロファイルにおいて、電力の大きさの変化が複雑な時もこれを電力パケット化して単純なやりとりとすることが可能である。たとえば毎正時ごとに1時間分1kWHを1電力パケットとして扱い、その個数と開始時間のみを情報化するとか、1電力パケットの単価を毎月あらかじめ定めて置くなどの方法で、情報を簡略化し、予約プロセスを簡略化することが可能である。
 これにより最適なルート選定を行うことができる。まず融通ルート上にある電力変換器の数の少ない順にあらかじめ定めたルート数まで選定し、それらについて電力融通を予約した時間帯における多端子型電力変換装置接続端子の通過可能容量・連系電線路の通過可能容量・多端子型電力変換装置の通過損失・連系電線路の通過損失等のルーティングプロファイルを収集する。
 次にルーティング経路に起因する総合電力損失を最小にする組み合わせを優先するアルゴリズムに従って、ルートを選定する。これに基づいて、該当する多端子型電力変換装置接続端子に対して必要な電力変換プロファイルの実施を予約する。その後、当該多端子型電力変換装置接続端子からの応諾を持って確定する。
 実際に確定した電力融通が実施されたかどうかを監視する際、当該多端子型電力変換装置及び電力機器制御端末装置とのIP通信を通じて行う。異常事態においては最初に選定したルーティングにおいて優先順位の低かったルートに順次ルーティングする。このような手順で電力融通のルーティングを行うことで総合電力損失を小さく抑えることができる。
(電力取引方法5)
 図30は、さまざまな電力融通の形態について説明する図である。
(1)の例は、同じ電力系統内で、電力融通要求発信元電力機器3001aと電力融通要求受信先電力機器3001bとの間で電力融通が行われる例である。これは、LAN内での通信で目的が達成できる。電力系統内で、風力発電機が発生した電力を電力貯蔵装置が充電に使用したり、需要の不足分を電力貯蔵装置が補ったりなど多くのケースがある。この場合も予約手続きで対応される。この手続きに必要な時間は、通信速度によるが数十ミリセカンド以内であるので、リアルタイム応答に近いレスポンスが得られる。
(2)の例は、電力融通要求発信元多端子型電力変換装置3002が、電力系統内の電力融通要求受信先電力機器3001bに電力融通の問い合わせを行うケースである。この場合は、WAN側からの要請の場合もLAN側からの要請の場合も含め、要請してきた機器を特定させずに、多端子型電力変換装置として需要をとりまとめている。
(3)の例は、電力融通要求発信元多端子型電力変換装置3002と電力融通要求受信先多端子型電力変換装置3004で、経由する多端子型電力変換装置3003も含めて電力融通を行う例である。自らの電力系統の需給を予測して、多端子型電力変換装置が自ら判断して需給予約を行うケースである。
(4)の例は、電力融通要求発信元電力機器3001aが特定されるが、対応する相手が電力系統であって特定の電力機器でない場合である。需給バランスに余裕のある電力系統が、複数で発信元の電力機器に対して電力融通を行うケースにあたる。たとえば、急激な風力発電電力の増加を周辺電力系統で吸収する場合や、残量が少なくなった電力貯蔵装置を周辺の電力系統が協力して充電する場合などがある。
(5)の例は、電力融通要求発信元電力機器3001aが、他電力系統の電力融通要求受信先電力機器3005を特定して電力を融通し合うケースである。これにより需要家が任意の発電ソースの電力を購入するなどの概念が具体化する。
(電力取引方法6)
 図28Aは、図28BのXXVIIIAで示す連系電線路上の電力波形を示す図である。融通電力2801は、その前及び後、あるいはいずれか一方に、発信元IPアドレス・受取先IPアドレス・取引条件の情報を含むIPパケットを有している。これは、図中ではヘッダー情報2800aとフッター情報2800bと表現しているが同じものである。電力線搬送通信の場合であれば、デジタル信号をデジタル送電電力の前又は後、あるいは前後に付け、電力の発信元と送付先及び送電条件を付加したタグ付きデジタル電力として送電することができる。
 このヘッダー情報2800aとフッター情報2800bは、多端子型電力変換装置1の自励式電力変換器のPWM信号を信号源とすることができる。この場合、適切な交流フィルターバイパスを用いれば、自励式電力変換器そのもので通信信号を作り出すこともできる。またデジタルシグナルプロセッサー(DSP)又は、中央演算処理装置(CPU)の信号を直接電力線搬送信号生成装置の入力とすることもできる。
 この情報を用いれば電力を識別して管理することができ、電力融通が容易になる。電力貯蔵装置のおかげで電力融通の同時性は厳しくないため、融通電力をパケットに分割して別ルートで送電するなどの運用も可能になる。連系電線路7の容量が足りないケースが発生した時は、融通電力2801をいくつかに分割して別な連系電線路ルートに迂回するなどのおようが可能となる。
 本発明は、連系電線路ルートのタイムシェアリング運用など多彩な電力運用を行うことを可能にし、電力融通の記録も正確にすることができる。電力線搬送通信を用いて、送電電力の前後、あるいはいずれか1か所につけられたIP情報は、予約情報との照合、電力授受の記録、ルート変更の記録、緊急融通等電力取引の記録に使用できる。
 電力線搬送通信の場合のヘッダー情報2800aとフッター情報2800b信号送出タイミングとして、自励式電力変換器を数サイクル停止してその間に送出することにより、電力変換器由来のノイズを低減し、情報の信頼性を高めることができる。
 これにより、融通する電力にIPによるタグをつけることができる。電力ネットワークシステムにおいて、DSP又は、CPUはPWM信号やIP信号により、電力のみならず、情報も作り出せる。IPタグは、 発生する電力の直前に発信され、受取先の多端子型電力変換装置1又は、電力機器制御端末装置12の電力制御を開始させることができる。同様に発生した電力の最後に発信され、受取先の多端子型電力変換装置1又は、電力機器制御端末装置12の電力制御を終了させることができる。
 また、予めやり取りした予約取引条件に含まれる予約融通開始時間・予約融通終了時間だけで制御した場合に生じうる、送り手と受け手のミスマッチを解消し、電圧上昇や周波数上昇などの不具合を防ぐことができる。外部データ通信網を使う場合でも可能であるが、電力線搬送で情報と電力を送る場合は同じルートを使うので時間差がなくなり、好適である。これにより、電力を識別することが可能になる。
(電力取引簿)
 図31は電力取引を、記述した電力取引簿の例である。この中で実際の取引には、電力変換や送電に伴う電力損失が発生するため、それを記録する欄が設けられていることが特徴である。またこの電力取引簿は、仮想取引も記述できる。仮想取引の場合は、入力側と出力側双方に対記載を行うことが特徴であり、現金収入・支出の代わりに債権や手形、証書のような記録を行うことが特徴である。
 このような記録方法をとることにより、あらゆるユーザーや事業者が、電力の売買に関して銀行通帳のような電力取引簿や複式簿記のような仕訳を通じ、電力の取引を記録し、他の電力取引と区別することができるようになる。
 この記録は、取引日時、取引量、発電エネルギー源、発電事業者、貯蔵事業者、価格、電力損失、CO2価値、RPS価値、グリーン電力価値、なども取引簿に記録することが出来るため多彩な情報を有する電力として管理される。これにより情報と電力が融合し、電力を識別することができるようになる。
 この記録は、第三者公的機関で認定され、取引され決済される。この第三者機関の役割は、金融における銀行のようなものとなる。そして、あらゆるユーザーや事業者が、電力の売買に関して銀行通帳のような電力取引簿や複式簿記のような仕訳を通じ、他の電力取引と区別して、電力の取引を記録することができるようになる。
 また、この記録可能性により、電力を識別することができるようになるため、電力そのものの価値に加え、風力発電や太陽光発電、石油火力、原子力など発電ソースの違い、発電事業者の違い、貯蔵事業者の違いから生まれる付加的な価値を有するようになる。
さらに、CO2価値、RPS価値、グリーン電力価値、など政策的につくられる価値も有するようになる。
 その他に、これらの電力価値、付加的価値、政策的価値に加え、それらの価値から派生するデリバティブ商品、天候や風況予想と組み合わせた保険商品も価値を生み出し、それらの取引市場が生まれる可能性がある。
 図32は、電力量の変化を、最小単位の電力融通パーツに分解した例である。
このパーツは、少なくとも3種類あり、出力のみのパーツ、入力のみのパーツ、入出力を持ち損失を有するパーツ(融通パーツと呼ぶ)である。
 図32は、電力系統3-1から、出力が出るところを、出力パーツで表し、変換器での損失を融通パーツで表し、送電線での損失を融通パーツで表し、電力系統3-2への入力を入力パーツで表している。
 これらのパーツ表記により、ある電力融通ルートでの電力融通は、単純なパーツの和で表されるので、複数の電力融通が重なり合うケースにおける損失の分担もパーツに分離することで容易に表記できる。
 これにより、電力量を正確に測定するためのハードウェア市場が生まれ、それを収集し、電力損失を加味して一元管理する認定するソフトウェア市場が生まれる。
 また、多様な電力取引を決済し、電力損失を最小化して利益につなげるようなサービスを提供する組織とそのビジネスが生まれる。これは、金融における銀行機能のような形態になる。
 さらに、電力取引の市場に加えて、その付加価値を分離して取引する市場が生まれる。これは金融における証券機能のような形態になる。
(制御プログラム)
 まず、多端子型電力変換装置全体システムを制御するプログラムは、入出力端子、電力変換回路、制御回路、通信回路、計測回路、保護回路、記録回路及びさらに詳細な回路のドライバーソフトウェアを認識し、異なるハードウェアであっても多端子型電力変換装置1の回路として機能させることができる。
 また、複数の多端子型電力変換装置同士でも、連系協調して制御する必要があるため、本発明のプログラムは、連鎖停電事故防止のようなハード面から、電力取引のようなソフト面まで幅広い内容を取り扱う基本オペレーティングシステムを備えたものとなる。
 さらに、共通の基本オペレーティングシステムを持つことにより、全体システムを同じ思想を持って制御できるようになる上、外部通信回線を通じて、全装置に対してソフトウェアのバージョンアップを行ったり、バグを修正したり、することが遠隔から分散型に処理できる。
 これらにより、最低限のオペレーションプロトコルが一元管理できる基盤ができる。
 多端子型電力変換装置1用の基本オペレーティングシステムは、すべての装置に共通で搭載されるものとして開発される。これは、多数の多端子型電力変換装置1が連系して協調動作する「電力システム」の共通のソフトウェアとなる。
 また、適宜リモートバージョンアップすることにより経済性と利便性上の課題も解決するプログラムを提供するものとなる。
 さらに、電力取引の基本となる、電圧・電流・電力測定器の校正と異常検出手続きは、基本オペレーティングシステムの根幹アルゴリズムとなる。その他、電力損失最小化アルゴリズムも基本オペレーティングシステムの根幹となる。
 まず、多端子型電力変換装置全体システムを制御するプログラムは、従来のような一品生産主義にとってかわり、標準化が行われ、学習効果を得て、より優れた製品に成長していくことにより、大きな経済効果が生まれる。
 また、多端子型電力変換装置1の接続端子、電力変換回路、制御回路、通信回路、計測回路、保護回路のドライバーソフトウェアが開発されることにより、異なる製品でも多端子型電力変換装置1に組み込むことができるようになり、多数の事業者の事業参入機会が拡大する。
 さらに、複数の多端子型電力変換装置を連系協調して制御するプログラムは、連鎖停電事故防止のようなハード面から、電力取引のようなソフト面まで幅広い内容を取り扱うものとなり、すそ野の広い産業を生み出す。
 また、従来の電力システムを制御するプログラムが、多くの事業者が開発することによって、ばらばらなものになりがちであるのに対し、基本オペレーティングシステムを共通にすることにより、全体システムを同じ思想を持って制御できるようになる。
 また、基本オペレーティングシステムとドライバーの組み合わせにより、電力用機器から家電製品まで幅広い産業に共通の最低限のオペレーションプロトコルが一元管理できる基盤ができる。
 さらに、通信システムを通じて、基本オペレーティングシステムとドライバーのバージョンアップを図り、つねに最新の技術を取り込める仕組みを構築できる。
(保護回路1)
(事故時保護システム)
 図33は、事故時保護システムを例示している。以下のようなものを持ち、必要最小限の回路の遮断を行うことによって、最大限の電力融通ルートを確保する電力融通ルート保護回路を具備することが可能である。これにより、ゲートブロックだけで異常が復旧する場合に不要な遮断を行わずに済む。また、過電流になった接続端子だけを切り離し、他の接続端子で電力融通を継続することが可能である。過電流になった接続端子も、復旧次第、運転再開が可能なシステムとなっている。
 図33(A-1)は入出力端子過電流保護回路であり、各入出力端子において個々の設定電流以上に電流が流れた時に、A接続端子201においてはゲートブロックと遮断器開操作、B接続端子202においては遮断器開操作を行う入出力端子保護回路である。
 図33(A-2)は直流母線保護回路であり、各A接続端子201の直流部に直流電流計を設置し全端子電流総和がゼロでなくなった時に、時限を以て全電力変換器のゲートブロックを行う電力変換器直流母線保護回路である。
 図33(A-3)は多端子型電力変換装置保護回路であり、電力系統の接続する各入出力端子受電部に電力計を設置し全端子の電力総和がゼロでなくなった時に、時限を以て入出力端子全遮断器を開操作する多端子型電力変換装置保護回路である。多端子型電力変換装置1の内部で事故が起こった場合を想定しており、遮断器より動作の速いゲートブロックにより事故の拡大を最小限に収めることができる。
 これらの保護回路を作動させる順番を定めておくことで、事故時切り分け回路を最小限にすることができ、停止回路部分を最小にしたまま、残りの部分の多端子型電力変換装置1を機能させ、電力融通ルートを確保することができる。
 図33(B-1)、図33(B-2)は、事故時の入出力端子切り替えを例示している。図33(B-1)のように1番上の端子から2番目の端子に電力融通を行っているとき、図33(B-2)のように、一番上の端子が、過電流などを含む事故を起こした時、速やかにこの回路の電力変換器のゲートブロックをかけて電力を停止し、4番目の端子から2番目の端子に電力を供給するように切り替えることができる。さらに、事故のあった入出力端子だけを遮断器8や断路器9で切り離し、他の入出力端子で電力融通を継続することが可能である。事故のあった入出力端子も、復旧次第、運転再開が可能なシステムとなっている。ゲートブロックだけで異常が復旧する場合には、不要な遮断を行わずに初期状態に戻すことが可能である。
 また、多端子型電力変換装置1は、各A接続端子201を、図33の電力P1~P4の和がゼロになるように、すなわち入出力端子から流入する電力と流出する電力の総和がゼロになるように制御する。これには、直流電圧維持ユニットを除くほかのユニットが、要求を受けた電力を入出力し、電力の過不足部分を直流電圧維持ユニットが補う方式がもっとも一般的である。
 また、後述するように電力貯蔵装置を直流共通母線203に接続する場合は、すべてのユニットが要求を受けた電力を入出力し、電力の過不足部分を電力貯蔵装置が補いつつ、直流電圧も維持する制御方式とすることができる。
(保護回路2)
 機器操作システムは、各接続端子の接続先に、未だ接続がなされていないときに接続端子の断路器9と遮断器8を閉じる操作を行い、電力供給を開始するものである。同様に停止の際は、必要に応じ遮断器8を開き、次いで断路器9を開いて接続を切り離すものである。
 図34に示すように、機器操作システムとして、各A接続端子同期投入時に断路器9を閉じ操作し、接続先の電圧・周波数・位相を測定し、接続先3402が有電圧系統(自立系統)であるときは、電力変換器10の電圧・周波数・位相を接続先3402の電圧・周波数・位相に同期させてから遮断器8を閉じる並列同期投入操作(系統連系運転モード)を行う。系統連系運転モードでは力率1の電力のみならず、位相をずらして力率を変化させ、無効電力を供給することによって、電圧を制御することも可能となる。これにより、多端子型電力変換装置1は系統間で電力の送受電を行うことができる。
 接続先3403が無電圧系統であるときには、接続先定格に準拠した電圧・周波数を電力変換器10で作成してから、遮断器8を閉じ、接続先に電源を供給する自立運転投入操作回路(自立運転モード)を行う機器操作システムを具備することができる。これにより、多端子型電力変換装置1は電源として機能することができ、接続先電力系統の非常用電源回路などへの電力供給を行って、再起動に資することが可能となる。
 本発明の多端子型電力変換装置1は、変電所構内に一体型のシステムとして設置されるため、複数の変換器の直流電圧、電流、制御角などの運転状況の把握や、集中的な制御や保護が容易になる。全変換器を一括で起動停止したり、個々に起動・停止したり、変換器間で電力の過不足が生じないようにする協調制御方式、電力の流れが反転する際に協調して制御する潮流反転方式、故障や事故が起きた時に全体を集中保護するシステムなどが一か所で集中管理できるという利点がある。
 また、新たな送電線や、直流連系線を設置することなく、既存の交流送電線に多端子型電力変換装置1の外部端子を直接接続することで、隣接する複数の電力系統に対し、電圧、周波数、位相が異なる場合でも、任意の大きさの有効電力を能動的に、1つの系統から複数の系統へ同時に送受したり、複数の系統から複数の系統に送受したりできるようになる。
 さらに、電力用半導体素子を使用することにより、従来の遮断器に比べて電力の遮断速度が飛躍的に速まる。これにより、太陽光発電や風力発電が電力需要の大部分を賄うような状況になった場合でも、電力系統を細分化し、電力系統間の接続部に本発明の多端子型電力変換装置1を使用することにより、連鎖大停電を引き起こす可能性を小さくすることができる。
(ネットワーク安定性)
 図8を使って説明する。既存の電気系統が図のように電力系統3-1から電力系統3-5に細分化されている例と考えた場合、その連系部分の多端子型電力変換装置1-1~1-5は図8に示すような接続になる。
 仮に電力系統3-2に事故が起こり、停電した場合、電力系統3-1、3-3~3-5に設置された多端子型電力変換装置1-1、1-3~1-5は、電力系統3-2に設置された多端子型電力変換装置1-2から高速に停電を検出して多端子型電力変換装置1-1、1-3~1-5の電力系統3-2側のA接続端子201及びB接続端子202を停止する。これにより多端子型電力変換装置1-1の電力系統3-1側のA接続端子201と電力系統3-3~3-5に接続しているA接続端子201も継続して使用できるため、電力系統3-1、3-3~3-5間での電力融通が継続して可能である。
 また、多端子型電力変換装置1-1、1-3~1-5の電力系統3-2側のA接続端子201及びB接続端子202を停止する代わりに、電力系統3-2に設置された多端子型電力変換装置1-2全体、又は多端子型電力変換装置1-2の電力系統3-2側のA接続端子201を高速に停止させることもできる。これによっても、電力系統3-1、3-3~3-5は事故の影響をほとんど受けなくて済む。電力系統3-2を経由して他の系統に融通されていた電力は、速やかに他のルートを使った融通に変更される。多端子型電力変換装置1-2の電力系統3-2側のA接続端子201のみ停止させた場合、多端子型電力変換装置1-2の他のA接続端子201はそのまま使用できるため、多端子型電力変換装置1-2の電力系統3-3~3-5に接続しているA接続端子201が継続して使用でき、多端子型電力変換装置1-2を介した電力系統3-3~3-5間での電力融通も継続して可能である。
 尚、作業安全性の面からは、上述の多端子型電力変換装置1-1、1-3~1-5の電力系統3-2側のA接続端子201及びB接続端子202の停止と、多端子型電力変換装置1-2全体又は多端子型電力変換装置1-2の電力系統3-2側A接続端子201の停止との両方を行うことが望ましい。
 本発明では、巨大な同期系統を多端子型電力変換装置1で非同期に分離するので、小さな送電事故を起点とする連鎖型大規模停電を抑制することができる。
 また、変動の多い自然エネルギー電源による電圧変動、周波数変動に起因する部分的系統停止を起点とする連鎖型大規模停電を抑制することができる。
 さらに、連鎖型大規模停電を抑制できるために自然エネルギー導入量を拡大することができ、よって化石燃料依存度を低減し、温室効果ガスの削減に寄与することができる。
(接続端子間バイパス)
 図35は、4端子の多端子型電力変換装置1を示しているが、端子数はこれに限るものではない。図35では、4端子のうちの任意の2端子を接続するすべての箇所に遮断器8と断路器9のバイパス回路を設置した例を示しているが、バイパス回路の形態はこれに限るものではない。
 この構成により、多端子型電力変換装置の任意の2つのA接続端子201がそれぞれ接続している2つの電力系統が同期している場合、各A接続端子の自励式電力変換器10をバイパスすることで電力変換損失を削減することができる。
 また、停止した自励式電力変換器10を無電圧化することができるので、修理や更新を容易に行うことができる。
 さらに、同期系統と非同期系統を簡単に切り替えることができるようになり、複数の電力系統の電力ルーティングネットワーク構成を柔軟に変更し、より最適な構成としていくことができる。
(接続端子の保守性)
 図36は、多端子型電力変換装置1において、各A接続端子201が引き出し可能なキャビネットに内蔵され、複数のキャビネットが1つのキュービクルに内蔵された構造を持ち、キャビネットを引き出すことによってA接続端子201と共通母線端子が、キュービクル内のA接続端子201側接続部と共通母線接続部から切り離すことができる例を示している。このような構造を規格化して、プラグアンドプレイのような脱着認識を行うことができるようにすることにより、電力機器のアドホックな拡張が可能になり、保守活動の容易さを生みだすことを可能にする電力システムを提供できる。図36では、上から4番目のA接続端子201が多端子型電力変換装置1から引き出されている状態3602を示す。
 各A接続端子201や電力貯蔵装置ユニット3603は、差し込み端子3601で共通母線203に接続されている。この構造は、電力系統のメタルクラッドスイッチギアなどで通常使われているものと同じである。
 引き出すにあたって、電力変換素子をゲートブロックし、遮断器8を開操作して、断路器9を開き、電気的衝撃が発生しない状態となってから引き出し可能となるようなインターロック構造が組み込まれている。断路器9は、引き出すことで断路することを兼ねる構造としてもよい。遮断器8はゲートブロックで代用することも可能であり、その場合図中の断路器9と遮断器8は不要とすることもできる。
 電力貯蔵装置ユニット3603の回路も同様に引き出し可能とすることができる。この場合、コンデンサーなどの付属部品が充電されていることがあるため、無電圧を確認して引き出し可能となるインターロック機構が組み込まれている。
 このように、多端子型電力変換装置1全体が多数の引き出し可能なキャビネット群で構成される一体型キュービクル構成となっている場合、まず、接続端子を停止し、キャビネットを引き出すことにより、引き出した回路を無電圧とすることができ、電気的な作業安全確保をはかることができる。
 また、キャビネットを引き出すことにより、点検・ロック・交換などに必要な作業スペースを確保することができ、物理的な作業安全確保をはかることができる。
 さらに、引き出すことにより、情報ネットワークも切断されるように設計されている場合は、他の多端子型電力変換装置1に当該回路が使用不能になったことを、自動的に伝えることができる。
(ネットワークの単位)
 日本の電力系統では2,000kWまでは高圧電力系統に区分されている。したがって最大使用電力2,000kW以下からなる、家庭、マンション、アパート、ビル、店舗、スーパー、工場のうちいずれか複数の需要家である電力系統は、電圧階級を高圧とすることができる。市中に見かける高圧受電盤のネットワークや電柱に設置されている柱上変圧器は高圧6.6kVであり、そこから低圧の220V/110Vに降圧されて業務用設備や家庭に供給されている。
 自励型の電力変換器として実用的なものは絶縁ゲートバイポーラトランジスタ (IGBT)であり、大容量、高耐圧のものは、高圧電圧系統に使用できる。
 高圧電圧階級では、配電線が非常に多く張り巡らされており、本発明の連系電線路として利用できる。従って、地域単位の配電網をひとまとまりの電力系統とし、その大きさを概ね2,000kW以内とすれば、IGBTを使用した多端子型電力変換装置1で非同期連系ネットワークが構築でき、改めて連系電線路を設置する必要が少なくなる。既存の電力ケーブルを流用できるため本発明の電力ネットワークシステムへの移行費用が小さくて済む。さらに、高容量のIGBTを使用し、変圧器で電圧を上げることで特別高圧電力系統においても使用できる。
 再生可能エネルギー電源を系統に導入する際に自立した電力系統を構成するので、電力系統側に与える変動が小さくなり、再生可能エネルギー導入促進インセンティブが働く。また、開発途上国などでの小規模電力系統を接続して大規模ネットワーク化する際にも有効な選択肢となる。

Claims (5)

  1.  双方向に電力変換する自励式電力変換器と、前記自励式電力変換器を通過する電圧・電流・電力を測定する電圧・電流・電力測定器とを有する3以上の電力変換ユニットと、
     前記電力変換ユニットの一方の端子同士を並列に接続する共通母線と、
     前記電圧・電流・電力測定器で測定された測定値に基づき、前記電力変換ユニットから前記共通母線に流入する電力と前記共通母線から前記電力変換ユニットに送出する電力との総和がゼロとなるよう複数の前記電力変換ユニットを協調して制御し、前記電力変換ユニットの他方の端子が接続された外部回路間で非同期に電力融通するように前記電力変換ユニットを制御する制御ユニットと
    を備えたことを特徴とする多端子型電力変換装置。
  2.  前記制御ユニットが外部機器との間で電力融通に関する制御情報を通信可能にする、前記制御ユニットに接続された通信制御ユニットをさらに備えたことを特徴とする請求項1に記載の多端子型電力変換装置。
  3.  一方の端子が前記外部回路に接続され、他方の端子が他の前記多端子型電力変換装置の前記電力変換ユニットの他方の端子に電線路を介して接続可能な電力授受器をさらに備えたことを特徴とする請求項1に記載の多端子型電力変換装置。
  4.  一方の端子が外部回路に接続され、他方の端子が請求項2に記載の多端子型電力変換装置の前記電力変換ユニットの他方の端子に電線路を介して接続可能な複数の電力授受器と、
     前記多端子型電力変換装置の通信制御ユニットとの間で電力融通に関する制御情報を通信可能にする電力授受通信制御ユニットと
     を備えたことを特徴とする多端子型電力授受装置。
  5.  請求項2又は3に記載の多端子型電力変換装置である第1の電力ルータと、
     請求項3に記載の多端子型電力変換装置及び請求項4に記載の多端子型電力授受装置の少なくともいずれかである第2の電力ルータと、
     前記第1の電力ルータと前記第2の電力ルータとは前記多端子型電力変換装置の電力変換ユニットの他方の端子と前記多端子型電力変換装置又は前記多端子型電力授受装置の電力授受器の他方の端子とを接続する連系電線路と、
     前記第1及び第2の電力ルータの他方の端子に通信用アドレスを与えるように前記第1及び第2の電力ルータの通信制御ユニット又は電力授受通信制御ユニット間を接続して構成されたWANと、
     を備え、
     前記第1及び第2の電力ルータに接続された外部回路間で電力融通するために、電力融通を行う外部回路間を結ぶ前記連系電線路を含む送電経路上の前記第1及び第2の電力ルータ間で、前記通信用アドレスに基づき、各前記電力変換ユニットが行う電力変換の大きさ、方向、開始終了時刻の情報を送受信することを特徴とする電力ネットワークシステム。
PCT/JP2010/005563 2009-09-10 2010-09-10 多端子型電力変換装置、多端子型電力授受装置及び電力ネットワークシステム WO2011030558A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2010293719A AU2010293719C1 (en) 2009-09-10 2010-09-10 Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
US13/395,407 US9013902B2 (en) 2009-09-10 2010-09-10 Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
CN201080040094.5A CN102484369B (zh) 2009-09-10 2010-09-10 多端子型电力变换装置、多端子型电力受给装置以及电力网络***
EP10815158.0A EP2477297A4 (en) 2009-09-10 2010-09-10 POWER CONVERSION DEVICE WITH MULTIPLE CONNECTIONS, POWER TRANSMISSION DEVICE WITH MULTIPLE CONNECTIONS AND ELECTRICITY NETWORK SYSTEM
CA2773994A CA2773994A1 (en) 2009-09-10 2010-09-10 Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
IN2382DEN2012 IN2012DN02382A (ja) 2009-09-10 2012-03-20

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-208744 2009-09-10
JP2009208744A JP4783453B2 (ja) 2009-09-10 2009-09-10 多端子型非同期連系装置、電力機器制御端末装置と電力ネットワークシステムおよびその制御方法
JP2010-145715 2010-06-27
JP2010145715A JP5612920B2 (ja) 2010-06-27 2010-06-27 多端子型電力変換装置と電力システムならびにその制御プログラム

Publications (1)

Publication Number Publication Date
WO2011030558A1 true WO2011030558A1 (ja) 2011-03-17

Family

ID=43732237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005563 WO2011030558A1 (ja) 2009-09-10 2010-09-10 多端子型電力変換装置、多端子型電力授受装置及び電力ネットワークシステム

Country Status (8)

Country Link
US (1) US9013902B2 (ja)
EP (1) EP2477297A4 (ja)
JP (2) JP4783453B2 (ja)
CN (1) CN102484369B (ja)
AU (1) AU2010293719C1 (ja)
CA (1) CA2773994A1 (ja)
IN (1) IN2012DN02382A (ja)
WO (1) WO2011030558A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135020A (zh) * 2013-02-06 2013-06-05 上海交通大学 一种考虑多种分布式电源接入的灵活组态实验平台
WO2014024665A1 (ja) * 2012-08-08 2014-02-13 株式会社日立製作所 配電系統の断線事故検出方法および配電設備管理システム
WO2014041724A1 (ja) * 2012-09-14 2014-03-20 日本電気株式会社 送配電システム、コントローラ、ルータ、送配電方法及びプログラムを格納した非一時的なコンピュータ可読媒体
WO2014061259A1 (ja) * 2012-10-19 2014-04-24 日本電気株式会社 電力ルータ、電力ネットワークシステム、電力融通方法、および電力ルータの運転制御プログラム
WO2014091646A1 (ja) * 2012-12-10 2014-06-19 日本電気株式会社 電力ルータ、電力ネットワークシステム、電力ルータの運転制御方法、および電力ルータの運転制御プログラムが格納された非一時的なコンピュータ可読媒体
CN106300654A (zh) * 2015-05-28 2017-01-04 国家电网公司 基于智能延时的主动配网分散式电压控制***及控制方法
EP3133715A4 (en) * 2014-04-18 2017-12-20 National Institute of Information and Communication Technology Resource management system
WO2018174208A1 (ja) * 2017-03-22 2018-09-27 矢崎総業株式会社 電力供給システム
JP2018161040A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
US10168728B2 (en) 2013-01-25 2019-01-01 Nec Corporation Power network system, power identification method, and power router
CN110309566A (zh) * 2019-06-20 2019-10-08 昆明电力交易中心有限责任公司 一种中长期电力交易出清规则仿真***和方法
WO2023199376A1 (ja) * 2022-04-11 2023-10-19 日本電信電話株式会社 制御装置、給電システム、制御方法およびプログラム

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263894B2 (en) * 2007-03-21 2016-02-16 Sandia Corporation Customized electric power storage device for inclusion in a collective microgrid
JP2011101534A (ja) * 2009-11-06 2011-05-19 Panasonic Electric Works Co Ltd 電力融通システム
US8447435B1 (en) * 2010-04-15 2013-05-21 Science Applications International Corporation System and method for routing power across multiple microgrids having DC and AC buses
US8781640B1 (en) 2010-04-15 2014-07-15 Science Applications International Corporation System and method for controlling states of a DC and AC bus microgrid
US8164217B1 (en) 2010-04-15 2012-04-24 Science Applications International Corporation System and method for management of a DC and AC bus microgrid
CN102236833B (zh) * 2010-04-30 2016-04-06 新奥科技发展有限公司 实现能源优化利用的泛能网及提供能源交易和服务的方法
US9760140B1 (en) 2010-07-03 2017-09-12 Best Energy Reduction Technologies, Llc Method, system and apparatus for monitoring and measuring power usage by a device
US9331524B1 (en) 2010-07-03 2016-05-03 Best Energy Reduction Technologies, Llc Method, system and apparatus for monitoring and measuring power usage
US9007186B1 (en) 2010-07-03 2015-04-14 Best Energy Reduction Technologies, Llc Method and apparatus for controlling power to a device
EP2700061A4 (en) * 2011-04-22 2014-11-19 Expanergy Llc SYSTEMS AND METHOD FOR ANALYZING ENERGY CONSUMPTION
US9006925B2 (en) * 2011-05-31 2015-04-14 General Electric Company Distribution protection system and method
JP5214000B2 (ja) * 2011-07-27 2013-06-19 中国電力株式会社 太陽光発電量把握システム及びこれを用いた負荷予想装置、負荷調整装置
EP2555141A1 (en) * 2011-08-03 2013-02-06 Alcatel Lucent A method, a system, a server, a control element, a computer program and a computer program product for operating a power grid having decentralized control elements
JP5364768B2 (ja) 2011-09-26 2013-12-11 株式会社東芝 電力需給スケジューリング装置
CA2856887C (en) 2011-11-28 2021-06-15 Expanergy, Llc Energy search engine with autonomous control
JP5927917B2 (ja) * 2012-01-11 2016-06-01 ソニー株式会社 バッテリ装置
JP5503677B2 (ja) * 2012-03-06 2014-05-28 ヤフー株式会社 システム、情報処理方法及びコンピュータ・プログラム
US10169832B2 (en) * 2013-05-08 2019-01-01 Instant Access Networks, Llc Method and instrumentation for sustainable energy load flow management system performing as resilient adaptive microgrid system
CN104662764A (zh) * 2012-05-24 2015-05-27 大阪瓦斯株式会社 电力供给***
EP2856598B1 (en) * 2012-06-01 2023-07-19 The University of Hong Kong Input ac voltage control bi-directional power converters
JP5951371B2 (ja) * 2012-07-03 2016-07-13 株式会社東芝 電力系統監視制御システム
US9825462B2 (en) * 2012-07-06 2017-11-21 Nec Corporation Power network system, control method for power network system, and control program for power network system
WO2014020951A1 (ja) 2012-07-30 2014-02-06 日本電気株式会社 グリッド統合制御装置、グリッド制御システム、グリッド制御装置、プログラム、及び制御方法
US10782721B2 (en) * 2012-08-27 2020-09-22 Stem, Inc. Method and apparatus for balancing power on a per phase basis in multi-phase electrical load facilities using an energy storage system
WO2014033893A1 (ja) * 2012-08-31 2014-03-06 株式会社日立製作所 電力融通グループ作成方法、および電力融通グループ作成装置
WO2014033892A1 (ja) * 2012-08-31 2014-03-06 株式会社日立製作所 電力融通ルート作成方法、並びに電力融通ルート作成装置
JP2014079089A (ja) * 2012-10-10 2014-05-01 Rikiya Abe デジタルグリッドルータの制御方法
CA2809011C (en) * 2012-11-06 2018-07-17 Mcmaster University Adaptive energy management system
JP6079790B2 (ja) * 2013-01-15 2017-02-15 日本電気株式会社 電力ネットワークシステムの運用方法
JPWO2014115557A1 (ja) 2013-01-28 2017-01-26 日本電気株式会社 電力ルータとその運転制御方法及びプログラム、電力ネットワークシステム、管理装置の制御プログラム
JP6095550B2 (ja) * 2013-02-06 2017-03-15 三菱電機株式会社 開閉装置、および電力制御システム
US9306391B2 (en) 2013-03-15 2016-04-05 General Electric Company Direct current transmission and distribution system and method of operating the same
EP2797217A1 (en) * 2013-04-23 2014-10-29 ABB Technology AG Distributed controllers for a power electronics converter
WO2014185036A1 (ja) * 2013-05-17 2014-11-20 日本電気株式会社 電力ネットワークシステム並びに電力調整装置及び方法
WO2014185035A1 (ja) * 2013-05-17 2014-11-20 日本電気株式会社 電力ネットワークシステム並びに電力調整装置及び方法
JPWO2014203520A1 (ja) * 2013-06-20 2017-02-23 日本電気株式会社 電力ネットワークシステム、電力融通方法、電力ルータ及び制御装置
JP6092730B2 (ja) * 2013-07-19 2017-03-08 株式会社日立製作所 電力制御システムおよび電力制御方法
JPWO2015015770A1 (ja) * 2013-08-01 2017-03-02 日本電気株式会社 制御装置、電力管理システム及び蓄電装置管理方法
US10097008B2 (en) 2013-09-10 2018-10-09 Nec Corporation Power network system and control method thereof, computer readable media, power router and management server
CN105960746B (zh) 2013-11-18 2018-12-25 伦斯勒理工学院 形成和操作多终端电力***的方法
EP3093951A4 (en) * 2014-01-08 2017-09-20 Sony Corporation Power control device and power control method
JP2015139256A (ja) * 2014-01-21 2015-07-30 公立大学法人大阪市立大学 直接中継型電力パケット配電ネットワーク
JP6133447B2 (ja) 2014-02-13 2017-05-24 株式会社日立製作所 電力融通管理システムおよび電力融通管理方法
JP6251608B2 (ja) * 2014-03-13 2017-12-20 株式会社Nttファシリティーズ 電力融通システム、及び電力融通方法
SG11201608505VA (en) * 2014-04-17 2016-11-29 Univ Keio Power-control-network system, control device, and control program
JP2015226365A (ja) 2014-05-27 2015-12-14 日本電気株式会社 電力ネットワークシステム、電力制御方法、電力ルータ、制御装置および制御プログラム
JP6237514B2 (ja) 2014-07-17 2017-11-29 ソニー株式会社 送受電制御装置、送受電制御方法及び送受電制御システム
WO2016013191A1 (ja) 2014-07-23 2016-01-28 日本電気株式会社 電力ルータ、電力送受電システム、電力送受電方法、および電力送受電用プログラムが記憶された記憶媒体
JP6248859B2 (ja) 2014-08-08 2017-12-20 ソニー株式会社 電力供給装置、電力供給方法及び電力供給システム
CN104283215B (zh) * 2014-10-29 2017-01-25 上海电力学院 一种智能分布式配电终端的检测试验方法及装置
US11171492B2 (en) 2014-12-22 2021-11-09 Gip Ag Electrical power distributor and method for distributing electrical power
DE102014119431A1 (de) * 2014-12-22 2016-06-23 Gip Ag Elektrischer Leistungsverteiler und Verfahren zum Verteilen elektrischer Leistung
US9929594B2 (en) * 2015-05-26 2018-03-27 The Aes Corporation Modular energy storage method and system
JP6863564B2 (ja) * 2015-05-29 2021-04-21 国立大学法人 東京大学 電力変換器、電力ネットワークシステムおよびその制御方法
JP2017011855A (ja) * 2015-06-19 2017-01-12 株式会社東芝 蓄電池の制御装置及び直流送電システム
DE102015109967A1 (de) * 2015-06-22 2016-12-22 Gip Ag Vorrichtung und Verfahren zum bidirektionalen Verbinden zweier Stromnetze
JP2017028863A (ja) * 2015-07-22 2017-02-02 富士電機株式会社 電力融通計画装置及びプログラム
CN105186489B (zh) * 2015-07-31 2017-08-01 大连理工大学 一种电力网络最大功率调节量的计算方法
US10042342B1 (en) 2015-10-08 2018-08-07 Best Energy Reduction Technologies, Llc Monitoring and measuring power usage and temperature
CN108449955B (zh) * 2015-10-21 2021-06-29 英诺吉创新有限公司 供应***的计量器和供应***
US9826387B2 (en) * 2015-11-04 2017-11-21 Abb Technology Oy Indicating a drive status in communications
JP6715464B2 (ja) 2015-11-06 2020-07-01 パナソニックIpマネジメント株式会社 電力送信装置及び電力受信装置
EP3220656A1 (en) * 2016-03-16 2017-09-20 ABB Technology Oy Communicating industrial device data in a communications system
CN107342793B (zh) 2016-04-28 2021-06-29 松下知识产权经营株式会社 电力发送装置、电力接收装置以及电力传送***
CN107437823B (zh) * 2016-05-27 2022-03-08 松下知识产权经营株式会社 电力传送***
TWI729144B (zh) * 2016-05-30 2021-06-01 美商明亮光源能源公司 熱光伏打電力產生器、其網路及用於彼等之方法
CN107508471B (zh) 2016-06-14 2020-11-06 松下知识产权经营株式会社 电力转换电路、电力转换装置、电力发送装置、电力接收装置以及电力传送***
JP6049960B1 (ja) * 2016-08-01 2016-12-21 三菱電機株式会社 電力制御システム、および制御装置
US10291029B2 (en) * 2016-08-18 2019-05-14 General Electric Technology Gmbh Enhanced island management application for power grid systems
CN109906536B (zh) * 2016-10-12 2022-12-27 维斯塔斯风力***集团公司 与风力发电厂中的无功功率控制有关的改进
WO2018088379A1 (ja) 2016-11-08 2018-05-17 パナソニックIpマネジメント株式会社 電力伝送システム
JP6990886B2 (ja) 2016-12-09 2022-01-12 パナソニックIpマネジメント株式会社 電力伝送システム
FR3060890B1 (fr) * 2016-12-19 2019-08-23 Electricite De France Transmission d'energie electrique entre entites usageres d'un reseau de distribution
CN110168830A (zh) 2017-01-06 2019-08-23 松下知识产权经营株式会社 电力传输***
JP7002052B2 (ja) 2017-03-03 2022-02-04 パナソニックIpマネジメント株式会社 電力伝送システム
JP6967747B2 (ja) 2017-03-03 2021-11-17 パナソニックIpマネジメント株式会社 電力伝送システム
US11201472B2 (en) 2017-03-03 2021-12-14 Panasonic Intellectual Property Management Co., Ltd. Power transmission system capable of preventing power transmission efficiency from degrading due to frequency mismatch and loss of synchronization
CN110192316B (zh) 2017-03-03 2022-12-27 松下知识产权经营株式会社 电力传输***
US10566793B2 (en) * 2017-09-29 2020-02-18 Mitsubishi Electric Research Laboratories, Inc. Systems and methods for distributed synchronization of micro-grids with multiple points of interconnection
CN107800130B (zh) * 2017-11-06 2020-04-14 许继电气股份有限公司 多端有源柔性直流***多换流站的功率控制方法及***
CN111615856A (zh) * 2018-02-13 2020-09-01 中兴通讯股份有限公司 用于执行多rat网络中的通信的***和方法
CN108846214A (zh) * 2018-06-21 2018-11-20 国网冀北电力有限公司 变电站的全路径光纤光缆端口节点遍历检索方法及其设备
CN108819800B (zh) * 2018-06-26 2021-06-01 贾晶艳 多流制电力机车的网侧变流装置的处理方法及装置
US11791650B2 (en) * 2019-03-18 2023-10-17 Texas Instruments Incorporated Multiple output charging system and controller
JP7288356B2 (ja) * 2019-06-28 2023-06-07 古河電気工業株式会社 電力ネットワークシステム
US11984725B2 (en) 2019-09-11 2024-05-14 Hitachi Energy Ltd Flexible interconnection device and method for controlling a flexible interconnection device
JP7370211B2 (ja) * 2019-10-11 2023-10-27 国立大学法人電気通信大学 ヴァーチャルグリッドハブポートユニット、ヴァーチャルグリッド制御装置、ヴァーチャルグリッドシステム、プログラム
WO2021111967A1 (ja) 2019-12-03 2021-06-10 古河電気工業株式会社 電力ネットワークおよび電力ネットワークの変更方法
JP2023513440A (ja) * 2020-01-24 2023-03-31 カミンズ パワー ジェネレイション インコーポレイテッド 任意のトポロジー用の電力システム順序付け方式
US11228177B2 (en) * 2020-03-20 2022-01-18 Ming-Tsung Chen Power control system
JP6852831B1 (ja) 2020-07-22 2021-03-31 富士電機株式会社 制御装置、制御方法、およびプログラム
EP4012871B1 (de) * 2020-12-08 2023-06-07 Gip Ag Verfahren zum gerichteten übertragen von energie in form von energiepaketen
EP4164079A1 (en) * 2021-10-07 2023-04-12 Siemens Energy Global GmbH & Co. KG Electrical transmission system for flexible consumers
US20230133042A1 (en) * 2021-11-02 2023-05-04 OneStep Power Solutions Inc. System, apparatus, and method for testing of an electrical system
WO2024106420A1 (ja) * 2022-11-18 2024-05-23 門左衛門合同会社 電源中継装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198694A (ja) 1997-09-19 1999-04-09 Hitachi Ltd 電力連系融通指令装置
JPH11146560A (ja) 1997-11-04 1999-05-28 Hitachi Ltd 疎結合電力系統制御装置
JP2003152756A (ja) 2001-11-15 2003-05-23 Ntt Power & Building Facilities Inc 電力線通信システムにおける電力線通信ルータ及びネットワーク設定方法
JP2003324850A (ja) 2002-04-26 2003-11-14 Nippon Telegr & Teleph Corp <Ntt> 電力需給調整システムおよび電力需要家制御装置
WO2004073136A1 (ja) 2003-02-13 2004-08-26 Vpec, Inc. 電力システム
JP2006129585A (ja) * 2004-10-27 2006-05-18 Hitachi Ltd 直流配電システムの制御装置及び変換器制御装置
JP2007089250A (ja) 2005-09-20 2007-04-05 Central Res Inst Of Electric Power Ind ループコントローラの配置最適化方法、配置最適化装置および配置最適化プログラム
JP3934518B2 (ja) 2002-09-25 2007-06-20 東芝三菱電機産業システム株式会社 電力需給システム
JP2007166746A (ja) * 2005-12-12 2007-06-28 Aisin Seiki Co Ltd 分散型電源システム
JP2007189840A (ja) 2006-01-13 2007-07-26 Toshiba Corp 電力系統安定化装置
JP2008104269A (ja) * 2006-10-18 2008-05-01 Toho Gas Co Ltd マイクログリッドの需給管理システム
JP2008182858A (ja) 2007-01-26 2008-08-07 Ricoh Co Ltd 給電装置及び給電システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311214B2 (ja) * 1995-09-05 2002-08-05 東京電力株式会社 電力変換装置の制御装置
US5740023A (en) * 1996-05-24 1998-04-14 Lucent Technologies Inc. Control system for a modular power supply and method of operation thereof
KR100430930B1 (ko) * 2000-02-25 2004-05-12 가부시끼가이샤 도시바 Pwm 제어형 전력 변환 장치
JP4284879B2 (ja) * 2001-03-19 2009-06-24 三菱電機株式会社 電力変換装置
US6437462B1 (en) * 2001-12-10 2002-08-20 Delphi Technologies, Inc. Bi-directional DC/DC converter and control method therefor
JP2004073136A (ja) 2002-08-21 2004-03-11 Daiwa Seiko Inc 中通し釣竿用処理用具
JP2005223986A (ja) * 2004-02-04 2005-08-18 Toshiba Corp 電力系統の連系システムと電力制御方法
US7596002B2 (en) * 2004-06-25 2009-09-29 General Electric Company Power conversion system and method
JP4592659B2 (ja) * 2006-08-30 2010-12-01 株式会社東芝 電力系統の連系システム
JPWO2008047400A1 (ja) * 2006-10-16 2010-02-18 Vpec株式会社 電力システム
US7518266B2 (en) * 2006-11-01 2009-04-14 Electric Power Research Institute, Inc. Method and apparatus for improving AC transmission system dispatchability, system stability, and power flow controllability using DC transmission systems
JP4796974B2 (ja) 2007-01-26 2011-10-19 株式会社日立産機システム 風力発電装置と蓄電装置のハイブリッドシステム,風力発電システム,電力制御装置
JP5562326B2 (ja) * 2008-06-06 2014-07-30 パワー タギング テクノロジーズ インテリジェントな電力システムおよびその使用の方法
DK2236821T3 (en) * 2009-04-03 2017-03-20 Xemc Darwind Bv Island operation of wind farm.

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198694A (ja) 1997-09-19 1999-04-09 Hitachi Ltd 電力連系融通指令装置
JPH11146560A (ja) 1997-11-04 1999-05-28 Hitachi Ltd 疎結合電力系統制御装置
JP2003152756A (ja) 2001-11-15 2003-05-23 Ntt Power & Building Facilities Inc 電力線通信システムにおける電力線通信ルータ及びネットワーク設定方法
JP2003324850A (ja) 2002-04-26 2003-11-14 Nippon Telegr & Teleph Corp <Ntt> 電力需給調整システムおよび電力需要家制御装置
JP3934518B2 (ja) 2002-09-25 2007-06-20 東芝三菱電機産業システム株式会社 電力需給システム
WO2004073136A1 (ja) 2003-02-13 2004-08-26 Vpec, Inc. 電力システム
JP2006129585A (ja) * 2004-10-27 2006-05-18 Hitachi Ltd 直流配電システムの制御装置及び変換器制御装置
JP2007089250A (ja) 2005-09-20 2007-04-05 Central Res Inst Of Electric Power Ind ループコントローラの配置最適化方法、配置最適化装置および配置最適化プログラム
JP2007166746A (ja) * 2005-12-12 2007-06-28 Aisin Seiki Co Ltd 分散型電源システム
JP2007189840A (ja) 2006-01-13 2007-07-26 Toshiba Corp 電力系統安定化装置
JP2008104269A (ja) * 2006-10-18 2008-05-01 Toho Gas Co Ltd マイクログリッドの需給管理システム
JP2008182858A (ja) 2007-01-26 2008-08-07 Ricoh Co Ltd 給電装置及び給電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2477297A4 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024665A1 (ja) * 2012-08-08 2014-02-13 株式会社日立製作所 配電系統の断線事故検出方法および配電設備管理システム
JP2014036482A (ja) * 2012-08-08 2014-02-24 Hitachi Ltd 配電系統の断線事故検出方法および配電設備管理システム
WO2014041724A1 (ja) * 2012-09-14 2014-03-20 日本電気株式会社 送配電システム、コントローラ、ルータ、送配電方法及びプログラムを格納した非一時的なコンピュータ可読媒体
WO2014061259A1 (ja) * 2012-10-19 2014-04-24 日本電気株式会社 電力ルータ、電力ネットワークシステム、電力融通方法、および電力ルータの運転制御プログラム
AU2013333292B2 (en) * 2012-10-19 2015-12-03 Rikiya Abe Power router, power network system, power interchange method, and operation control program of power router
JPWO2014061259A1 (ja) * 2012-10-19 2016-09-05 阿部 力也 電力ルータ、電力ネットワークシステム、電力融通方法、および電力ルータの運転制御プログラム
WO2014091646A1 (ja) * 2012-12-10 2014-06-19 日本電気株式会社 電力ルータ、電力ネットワークシステム、電力ルータの運転制御方法、および電力ルータの運転制御プログラムが格納された非一時的なコンピュータ可読媒体
JPWO2014091646A1 (ja) * 2012-12-10 2017-01-05 日本電気株式会社 電力ルータ、電力ネットワークシステム、電力ルータの運転制御方法、および電力ルータの運転制御プログラム
US10168728B2 (en) 2013-01-25 2019-01-01 Nec Corporation Power network system, power identification method, and power router
CN103135020A (zh) * 2013-02-06 2013-06-05 上海交通大学 一种考虑多种分布式电源接入的灵活组态实验平台
EP3133715A4 (en) * 2014-04-18 2017-12-20 National Institute of Information and Communication Technology Resource management system
CN106300654A (zh) * 2015-05-28 2017-01-04 国家电网公司 基于智能延时的主动配网分散式电压控制***及控制方法
JP2018161027A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161030A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161040A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161039A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161036A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161038A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161032A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161035A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161028A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161033A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161031A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161029A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161034A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
WO2018174208A1 (ja) * 2017-03-22 2018-09-27 矢崎総業株式会社 電力供給システム
CN110309566A (zh) * 2019-06-20 2019-10-08 昆明电力交易中心有限责任公司 一种中长期电力交易出清规则仿真***和方法
CN110309566B (zh) * 2019-06-20 2020-08-04 昆明电力交易中心有限责任公司 一种中长期电力交易出清规则仿真***和方法
WO2023199376A1 (ja) * 2022-04-11 2023-10-19 日本電信電話株式会社 制御装置、給電システム、制御方法およびプログラム

Also Published As

Publication number Publication date
EP2477297A1 (en) 2012-07-18
AU2010293719C1 (en) 2014-07-10
IN2012DN02382A (ja) 2015-08-21
CN102484369A (zh) 2012-05-30
AU2010293719A1 (en) 2012-05-03
CN102484369B (zh) 2015-12-16
US20120173035A1 (en) 2012-07-05
AU2010293719B2 (en) 2014-02-06
EP2477297A4 (en) 2015-04-01
JP5249382B2 (ja) 2013-07-31
US9013902B2 (en) 2015-04-21
JP2011061970A (ja) 2011-03-24
JP4783453B2 (ja) 2011-09-28
CA2773994A1 (en) 2011-03-17
JP2011182641A (ja) 2011-09-15

Similar Documents

Publication Publication Date Title
WO2011030558A1 (ja) 多端子型電力変換装置、多端子型電力授受装置及び電力ネットワークシステム
JP5612920B2 (ja) 多端子型電力変換装置と電力システムならびにその制御プログラム
JP5612718B2 (ja) 多端子型非同期連系装置、電力機器制御端末装置と電力ネットワークシステムおよびその制御方法
Choudhury A comprehensive review on issues, investigations, control and protection trends, technical challenges and future directions for Microgrid technology
Brearley et al. A review on issues and approaches for microgrid protection
Venkata et al. Microgrid protection: Advancing the state of the art
Emmanuel et al. Evolution of dispatchable photovoltaic system integration with the electric power network for smart grid applications: A review
Bhaskara et al. Microgrids—A review of modeling, control, protection, simulation and future potential
Rahman et al. Coordinated control of three-phase AC and DC type EV–ESSs for efficient hybrid microgrid operations
Bansal Power system protection in smart grid environment
Khorasani et al. Smart grid realization with introducing unified power quality conditioner integrated with DC microgrid
JP2014241721A (ja) 多端子型電力変換装置と電力システムならびにその制御プログラム
Sood et al. Microgrids architectures
Laaksonen et al. Islanding detection during intended island operation of nested microgrid
Häger et al. ICOEUR project results on improving observability and flexibility of large scale transmission systems
Wang et al. From distribution feeder to microgrid: An insight on opportunities and challenges
Rahmann et al. The role of smart grids in the low carbon emission problem
Girbau-Llistuella et al. Smart rural grid pilot in Spain
Bilakanti et al. A novel approach for bump-less connection of microgrids with the grid
AU2014202377B2 (en) Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
Almagrahi Modeling, control and techno-economic analysis of Karabuk university microgrid
Gómez-Aleixandre et al. Design and Control of a Hybrid 48v/375v/400Vac AC/DC Microgrid
JP2014239625A (ja) 系統連系電力制御装置および系統連系電力制御方法
Arachchige Determination of requirements for smooth operating mode transition and development of a fast islanding detection technique for microgrids
Kumar et al. A review of microgrid protection for addressing challenges and solutions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040094.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815158

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13395407

Country of ref document: US

Ref document number: 2773994

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010815158

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2382/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010293719

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010293719

Country of ref document: AU

Date of ref document: 20100910

Kind code of ref document: A