WO2011024367A1 - 窒化物半導体装置 - Google Patents

窒化物半導体装置 Download PDF

Info

Publication number
WO2011024367A1
WO2011024367A1 PCT/JP2010/004368 JP2010004368W WO2011024367A1 WO 2011024367 A1 WO2011024367 A1 WO 2011024367A1 JP 2010004368 W JP2010004368 W JP 2010004368W WO 2011024367 A1 WO2011024367 A1 WO 2011024367A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
region
semiconductor device
layer
electrode
Prior art date
Application number
PCT/JP2010/004368
Other languages
English (en)
French (fr)
Inventor
梅田英和
按田義治
上田哲三
田中毅
上田大助
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201080037631.0A priority Critical patent/CN102484124B/zh
Priority to JP2011528642A priority patent/JP5526136B2/ja
Priority to PCT/JP2010/005205 priority patent/WO2011024440A1/ja
Publication of WO2011024367A1 publication Critical patent/WO2011024367A1/ja
Priority to US13/402,631 priority patent/US8872227B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/4175Source or drain electrodes for field effect devices for lateral devices where the connection to the source or drain region is done through at least one part of the semiconductor substrate thickness, e.g. with connecting sink or with via-hole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate

Definitions

  • the present disclosure relates to a nitride semiconductor device, and more particularly, to a semiconductor device using a nitride semiconductor applicable as a power transistor or the like used in a power supply circuit.
  • Nitride semiconductors typified by gallium nitride (GaN) are attracting attention as materials for high-frequency semiconductor devices or high-power semiconductor devices.
  • the use of a silicon (Si) substrate or the like as a substrate for forming a semiconductor device using a nitride semiconductor has been studied.
  • the diameter of the Si substrate can be easily increased. If the Si substrate is used as a substrate on which the nitride semiconductor is grown, the cost of the semiconductor device using the nitride semiconductor can be greatly reduced.
  • a through electrode is provided so as to penetrate the nitride semiconductor layer and the Si substrate, and the electrode formed on the back surface of the Si substrate is connected to the source electrode or the drain electrode via the through electrode. It is done to connect with.
  • the back electrode and the source or drain electrode are electrically connected, a high voltage is applied between the source or drain electrode and the back electrode. For this reason, it is necessary to increase the vertical breakdown voltage of the semiconductor device.
  • the longitudinal breakdown voltage of the semiconductor device formed on the Si substrate is determined by the breakdown voltage of the nitride semiconductor layer grown on the Si substrate and the breakdown voltage of the Si substrate.
  • the breakdown voltage of the nitride semiconductor layer it is necessary to increase the thickness of the nitride semiconductor layer.
  • the lattice constant and the thermal expansion coefficient of Si and nitride semiconductor are greatly different, there is a limit to the thickness of the nitride semiconductor that can be formed on the Si substrate.
  • the present inventors have found that the longitudinal breakdown voltage of the semiconductor device hardly changes even when the breakdown voltage of the Si substrate is increased. It has also been found that similar problems occur not only in the Si substrate but also in other semiconductor substrates such as a silicon carbide (SiC) substrate and a gallium arsenide (GaAs) substrate.
  • SiC silicon carbide
  • GaAs gallium arsenide
  • This disclosure is based on the knowledge found by the inventors of the present application, and an object thereof is to realize a nitride semiconductor device having an improved vertical breakdown voltage when a semiconductor substrate is used.
  • a nitride semiconductor device includes a semiconductor substrate having an interface current blocking region.
  • an exemplary nitride semiconductor device includes a semiconductor substrate, a nitride semiconductor layer formed on the semiconductor substrate, a back electrode formed on a surface of the semiconductor substrate opposite to the nitride semiconductor layer, and nitride
  • the semiconductor substrate has a normal region and an interface current blocking region surrounding the normal region
  • the nitride semiconductor layer has a device region and a through electrode connected to the back surface electrode.
  • the device region has a device isolation region surrounding the device region, the device region is formed on the normal region, and the interface current blocking region contains impurities and has a potential against carriers generated at the interface between the nitride semiconductor layer and the semiconductor substrate. It forms a barrier.
  • the exemplary nitride semiconductor device includes an interface current blocking region that contains an impurity and serves as a potential barrier against carriers generated at the interface between the nitride semiconductor layer and the semiconductor substrate. For this reason, it is possible to suppress the formation of a current path at the interface between the nitride semiconductor layer and the semiconductor substrate. Therefore, the current flows not inside the side surface of the semiconductor substrate but inside the semiconductor substrate, and the vertical breakdown voltage of the semiconductor substrate contributes to the vertical breakdown voltage of the nitride semiconductor device. As a result, the vertical breakdown voltage of the nitride semiconductor device can be significantly improved.
  • the interface current blocking region includes impurities of the same conductivity type as the normal region, and the impurity concentration of the interface current blocking region is different from the normal region even if the impurity concentration is higher than that of the normal region.
  • the structure may include a conductivity type impurity.
  • the first region includes an impurity having the same conductivity type as that of the normal region, and a second region including an impurity having a conductivity type different from that of the normal region, and the impurity concentration of the first region is higher than that of the normal region.
  • the first region and the second region may be formed at a distance from each other.
  • the interface current blocking region may be formed in a portion of the semiconductor substrate except directly under the element region.
  • the interface current blocking region may be exposed on the side surface of the semiconductor substrate.
  • the nitride semiconductor layer may be formed so as to expose the outer edge portion of the semiconductor substrate. With such a configuration, it is possible to avoid the influence of the current path generated in the nitride semiconductor layer.
  • the nitride semiconductor layer includes a first layer and a second layer formed on the first layer and having a band gap larger than that of the first layer. It is good also as a structure.
  • a source electrode, a drain electrode, and a gate electrode may be further provided.
  • the nitride semiconductor layer has a third layer containing p-type impurities selectively formed on the second layer, and the gate electrode is formed on the third layer. It is good also as a structure.
  • the through electrode may be connected to any one of the source electrode, the drain electrode, and the gate electrode.
  • the illustrated nitride semiconductor device may further include a cathode electrode and an anode electrode formed on the nitride semiconductor layer.
  • the through electrode may be connected to the cathode electrode or the anode electrode.
  • the impurity concentration in the current blocking region may be 1 ⁇ 10 16 cm ⁇ 3 or more.
  • the through electrode may be surrounded by the interface current blocking region on the upper surface of the semiconductor substrate.
  • the through electrode may be provided so as to penetrate the interface current blocking region.
  • the vertical breakdown voltage of the nitride semiconductor device can be improved when a semiconductor substrate is used.
  • (A) And (b) shows the semiconductor device which concerns on one Embodiment, (a) is a top view, (b) is sectional drawing in the Ib-Ib line
  • (A) And (b) shows the semiconductor device which concerns on the modification of one Embodiment, (a) is a top view, (b) is sectional drawing in the IIIb-IIIb line
  • (A) And (b) shows the semiconductor device which concerns on the modification of one Embodiment, (a) is a top view, (b) is sectional drawing in the IVb-IVb line
  • (A) And (b) shows the semiconductor device which concerns on the modification of one Embodiment, (a) is a top view, (b) is sectional drawing in the Vb-Vb line
  • AlGaN represents a ternary mixed crystal Al x Ga 1-x N (where 0 ⁇ x ⁇ 1).
  • Multi-element mixed crystals are abbreviated as arrangements of constituent element symbols, such as AlInN, GaInN, and the like.
  • a nitride semiconductor Al x Ga 1 -xy In y N (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x + y ⁇ 1) is abbreviated as AlGaInN.
  • Undoped means that no impurities are intentionally introduced.
  • a nitride semiconductor layer having a constant film thickness is formed on various p-type Si substrates and n-type Si substrates having different carrier concentrations as an evaluation semiconductor device, and the longitudinal breakdown voltage of the formed evaluation semiconductor device is measured.
  • the longitudinal breakdown voltage of the semiconductor device for evaluation is predicted to be the sum of the vertical breakdown voltage of the Si substrate and the vertical breakdown voltage of the nitride semiconductor layer. It is known that the breakdown voltage of Si greatly changes depending on the carrier concentration. In general, as the carrier concentration of Si is lower, the width of the depletion layer is larger, so that the breakdown voltage tends to increase. Accordingly, it is expected that the vertical breakdown voltage of the evaluation semiconductor device formed on the Si substrate having a low carrier concentration is increased. However, the value of the longitudinal breakdown voltage of the semiconductor device for evaluation obtained by the measurement became almost constant regardless of the carrier concentration of the Si substrate. This indicates that the vertical breakdown voltage of the Si substrate hardly contributes to the vertical breakdown voltage of the semiconductor device for evaluation.
  • the inventors of the present application measured the capacitance of the semiconductor device for evaluation. Thereby, in the nitride semiconductor layer formed on the p-type Si substrate, when a positive voltage is applied to the nitride semiconductor layer with reference to the p-type Si substrate, the vicinity of the interface between the p-type Si substrate and the nitride semiconductor layer is obtained. It was found that p-type Si was inverted to n-type, and a high concentration electron inversion layer was formed. Further, it has been found that when a negative voltage is applied to the nitride semiconductor layer with reference to the p-type Si substrate, a hole accumulation layer is formed at the interface between the p-type Si substrate and the nitride semiconductor layer.
  • nitride semiconductor formed on an n-type Si substrate when a negative voltage is applied to the nitride semiconductor layer with respect to the n-type Si substrate, the n-type near the interface between the n-type Si substrate and the nitride semiconductor is applied. It has been found that the semiconductor layer is inverted to p-type and a high concentration hole inversion layer is formed. It was also found that when a positive voltage is applied to the nitride semiconductor layer with respect to the n-type Si substrate, an electron storage layer is formed at the interface between the n-type Si substrate and the nitride semiconductor layer.
  • the Si substrate When a carrier layer such as an electron inversion layer, an electron accumulation layer, a hole inversion layer, and a hole accumulation layer is formed at the interface between the nitride semiconductor layer and the Si substrate, the Si substrate is formed at the interface between the nitride semiconductor layer and the Si substrate. A current path is formed to reach the side surface. For this reason, when a vertical voltage is applied to the nitride semiconductor layer, the current flows not through the Si substrate but through a current path formed at the interface between the nitride semiconductor layer and the Si substrate and the side surface of the Si substrate. Therefore, the vertical breakdown voltage of the Si substrate hardly contributes to the vertical breakdown voltage of the semiconductor device.
  • a carrier layer such as an electron inversion layer, an electron accumulation layer, a hole inversion layer, and a hole accumulation layer
  • a hole accumulation layer When a carrier layer such as an electron inversion layer, an electron accumulation layer, a hole inversion layer, and a hole accumulation layer is formed at the interface between the nitride semiconductor
  • the formation of the carrier layer at the interface between the nitride semiconductor and the Si substrate can be detected by improving the technique for crystal growth of the nitride semiconductor layer on the Si substrate. Improvement of the crystal growth technique has made it possible to grow a nitride semiconductor having high crystallinity on a Si substrate. Thereby, the composition change at the interface between the Si substrate and the nitride semiconductor layer suddenly occurs in a narrow range, and it is considered that the so-called interface steepness is improved, thereby generating a carrier layer.
  • FIG. 1A and 1B show a semiconductor device according to the first embodiment.
  • FIG. 1A shows a planar configuration
  • FIG. 1B shows a cross-sectional configuration taken along line Ib-Ib in FIG. .
  • the semiconductor device of this embodiment is a heterojunction field effect transistor (HFET), and includes a semiconductor substrate 101 and a nitride semiconductor layer 102 formed on the semiconductor substrate 101.
  • the semiconductor substrate 101 is a p-type Si substrate whose principal surface has a (111) plane orientation.
  • the nitride semiconductor layer 102 includes a buffer layer 121, a channel layer 122, and a cap layer 123 that are sequentially formed on the main surface of the semiconductor substrate 101.
  • the buffer layer 121 is made of, for example, AlN that is a nitride semiconductor.
  • the channel layer 122 is made of undoped GaN having a thickness of 1 ⁇ m, for example.
  • the cap layer 123 is made of undoped AlGaN having a thickness of 25 nm, for example.
  • the Al composition ratio of the cap layer 123 may be about 25%.
  • the nitride semiconductor layer 102 has an element region 102A and an element isolation region 102B formed so as to surround the element region 102A.
  • the element isolation region 102B is formed so as to reach a lower side than the interface between the cap layer 123 and the channel layer 122, and has a higher resistance than the element region 102A.
  • the element isolation region 102B may be formed by ion implantation of a nonconductive impurity such as argon.
  • a source electrode 131, a drain electrode 132, and a gate electrode 133 are formed on the element region 102A.
  • the source electrode 131 and the drain electrode 132 are in ohmic contact with a two-dimensional electron gas layer formed at the interface between the cap layer 123 and the channel layer 122.
  • the source electrode 131 and the drain electrode 132 may be a laminated film of titanium and aluminum, for example.
  • the gate electrode 133 is in Schottky junction with the cap layer 123.
  • the gate electrode 133 may be a stacked film of nickel and gold, for example.
  • the gate electrode 133 is formed so as to cross the element region 102A and straddle the element isolation region 102B. Note that the source electrode 131 and the drain electrode 132 may have the same configuration.
  • a passivation film 141 made of silicon nitride (SiN) having a thickness of 200 nm is formed so as to cover the surface of the nitride semiconductor layer 102.
  • a back electrode 135 made of aluminum or the like is formed on the surface (back surface) opposite to the nitride semiconductor layer 102 in the semiconductor substrate 101.
  • a through electrode 113 is formed so as to penetrate the nitride semiconductor layer 102 and the semiconductor substrate 101, and the through electrode 113 connects the source electrode 131 and the back electrode 135.
  • the semiconductor substrate 101 has a normal region 101A and an interface current blocking region 101B.
  • the interfacial current blocking region 101B is a region containing a higher concentration of p-type impurities than the normal region 101A.
  • the interface current blocking region 101 ⁇ / b> B is in contact with the buffer layer 121. Further, it is formed so as to surround the element region 102 ⁇ / b> A in plan view, and is exposed on the side surface of the semiconductor substrate 101.
  • the through electrode 113 is formed so as to penetrate the element isolation region 102B in the nitride semiconductor layer 102 in order to insulate it from the channel. However, it is not necessarily insulated from the channel. Further, the semiconductor substrate 101 is formed so as to penetrate the interface current blocking region 101B.
  • the occurrence of a current path at the interface between the buffer layer 121 and the semiconductor substrate 101 is suppressed, and the current cannot reach the through electrode 113 and the side surface of the semiconductor substrate 101.
  • the leakage current flows so as to penetrate the semiconductor substrate 101 in the vertical direction, and the vertical breakdown voltage of the semiconductor substrate 101 contributes to the vertical breakdown voltage of the semiconductor device. It becomes possible to greatly improve.
  • the vertical breakdown voltage of the semiconductor device is determined by the vertical breakdown voltage of the nitride semiconductor layer 102 and the vertical breakdown voltage of the semiconductor substrate 101.
  • the vertical breakdown voltage of the semiconductor device increases as the vertical breakdown voltage of the semiconductor substrate 101 increases.
  • the vertical breakdown voltage of the semiconductor substrate 101 is determined by the thickness of the semiconductor substrate 101 and the concentration of impurities contained in the semiconductor substrate 101.
  • FIG. 2 shows the relationship between the thickness and impurity concentration of the Si substrate and the breakdown voltage. As shown in FIG. 2, the lower the impurity concentration contained in the semiconductor substrate 101, the higher the vertical breakdown voltage of the semiconductor substrate 101. Therefore, the impurity concentration of the semiconductor substrate 101 is preferably low.
  • the impurity concentration is preferably set to 1 ⁇ 10 12 cm -3 of about ⁇ 1 ⁇ 10 16 cm -3 or so.
  • the interfacial current blocking region 101B may be a potential barrier against electrons. Therefore, when the semiconductor substrate 101 is p-type, the interface current blocking region 101B may be a region having a higher concentration of p-type impurities than the normal region 101A.
  • concentration of the p-type impurity contained in the normal region 101A is about 1 ⁇ 10 12 cm ⁇ 3 to about 1 ⁇ 10 16 cm ⁇ 3 , it may be about 1 ⁇ 10 16 cm ⁇ 3 or more.
  • it is preferably about 1 ⁇ 10 18 cm ⁇ 3 or more, more preferably about 1 ⁇ 10 19 cm ⁇ 3 or more.
  • the impurity concentration is preferably higher, too high it becomes difficult ion implantation or the like, it is preferably not more than about 1 ⁇ 10 21 cm -3 for influence on the crystallinity of the substrate may occur.
  • the interface current blocking region 101B flows in the vertical direction in the element region 102A, and the current that reaches the interface between the nitride semiconductor layer 102 and the semiconductor substrate 101 laterally passes through the interface between the nitride semiconductor layer 102 and the semiconductor substrate 101. It is only necessary to prevent the through electrode 113 and the side surface of the semiconductor substrate 101 from flowing. For this reason, the interface current blocking region 101B may be formed so as to surround the element region 102A in plan view. In consideration of current spread in the nitride semiconductor layer 102, it is preferable that the interface current blocking region 101 ⁇ / b> B reaches the side surface of the semiconductor substrate 101.
  • the element region 102A is not the interface current blocking region 101B but the normal region 101A.
  • the term “below the element region 102A” refers to a position on the lower side of the element region 102A that overlaps the element region 102A in plan view. However, there is no problem even if a part immediately below the element region 102A becomes the interface current blocking region 101B.
  • the current flowing in the vertical direction by the through electrode 113 may flow in the horizontal direction at the interface between the nitride semiconductor layer 102 and the semiconductor substrate 101.
  • the through electrode 113 is surrounded by the interface current blocking region 101 ⁇ / b> B on the upper surface of the semiconductor substrate 101. For this reason, it is also possible to suppress a current from flowing laterally from the through electrode 113 at the interface between the nitride semiconductor layer 102 and the semiconductor substrate 101.
  • the boundary between the interfacial current blocking region 101B and the normal region 101A is preferably a chamfered shape with no corners in order to suppress local concentration of the electric field.
  • the planar shape of the boundary between the interface current blocking region 101B and the normal region 101A is a rectangular shape with rounded corners, a rounded rectangular shape, an oval shape, or the like. It is preferable to do.
  • the cross-sectional shape may be a rectangular shape or an elliptical fan shape having a curved portion with chamfered corners at the boundary between the interface current blocking region 101B and the normal region 101A. preferable.
  • the boundary between the interface current blocking region 101B and the normal region 101A may have a shape with corners.
  • a positive voltage is applied to the drain electrode 132
  • a negative voltage may be applied to the drain electrode 132 with respect to the source electrode 131 in a state where the channel between the source electrode 131 and the drain electrode 132 is closed.
  • an electric field is formed from the semiconductor substrate 101 toward the drain electrode 132.
  • a hole accumulation region is formed at the interface between the buffer layer 121 and the semiconductor substrate 101. Therefore, in order to suppress the occurrence of a current path at the interface between the buffer layer 121 and the semiconductor substrate 101, an interface current blocking region 101C containing an n-type impurity that serves as a potential barrier against holes as shown in FIG. May be formed.
  • the drain electrode 132 and the back electrode 135 may be connected by the through electrode 113.
  • the concentration of the n-type impurity in the interface current blocking region 101C may be any value as long as a potential barrier can be formed, and may be about 1 ⁇ 10 16 cm ⁇ 3 or more. Furthermore, in order to enhance the function as a potential barrier, it is preferably about 1 ⁇ 10 18 cm ⁇ 3 or more, more preferably about 1 ⁇ 10 19 cm ⁇ 3 or more.
  • the impurity concentration is preferably high, but if it is too high, the crystallinity of the substrate is affected, so that it is preferably about 1 ⁇ 10 21 cm ⁇ 3 or less.
  • an interface current blocking region 101D having a first region 111 containing a p-type impurity and a second region 112 containing an n-type impurity may be formed as shown in FIG.
  • the first region 111 serves as a potential barrier against electrons
  • the second region 112 serves as a potential barrier against holes. Therefore, even when a positive voltage is applied to the drain electrode 132 and a negative voltage is applied to the drain electrode 132, a current path is prevented from being generated at the interface between the buffer layer 121 and the semiconductor substrate 101. be able to.
  • the through electrode 113 is surrounded by a first region 111 formed outside on the upper surface of the semiconductor substrate 101. For this reason, it is possible to suppress a current from flowing laterally from the through electrode 113 at the interface between the nitride semiconductor layer 102 and the semiconductor substrate 101.
  • first region 111 and the second region 112 are formed with a space therebetween. By forming the first region 111 and the second region 112 at an interval, a tunnel current can be prevented from flowing at the interface between the first region 111 and the second region 112.
  • FIG. 4 shows an example in which the first region 111 is formed outside the second region 112, but the second region 112 may be formed outside the first region 111.
  • the through electrode 113 may be surrounded by the second region formed outside.
  • FIG. 4 shows an example in which the first region 111 and the second region 112 are formed one by one, but a plurality of the first regions 111 and the second regions 112 are alternately formed. May be.
  • the through electrode 113 may be surrounded by the first region or the second region formed on the outermost side.
  • the semiconductor substrate 101 may be n-type.
  • the semiconductor substrate 101 may be n-type.
  • an electron storage layer is formed at the interface between the buffer layer 121 and the semiconductor substrate 101 when the positive voltage of the drain electrode 132 is applied with reference to the source electrode 131. . Therefore, by forming the p-type interface current blocking region, it is possible to make it difficult to form a current path at the interface between the buffer layer 121 and the semiconductor substrate 101.
  • a negative voltage of the drain electrode 132 is applied with reference to the source electrode 131, a hole inversion layer is formed at the interface between the buffer layer 121 and the semiconductor substrate 101.
  • the interface current blocking region may be both p-type and n-type.
  • the gate electrode 133 forms a Schottky junction with the cap layer 123.
  • a p-type nitride semiconductor layer 124 made of p-type GaN, AlGaN or the like is formed on the cap layer 123, and the gate electrode 133 forms an ohmic junction with the p-type nitride semiconductor layer 124. You may make it do. In this case, a normally-off transistor can be obtained.
  • the semiconductor element formed on the semiconductor substrate is not limited to a transistor such as an HFET, and may be a diode, for example.
  • a transistor such as an HFET
  • an anode electrode 137 that is a Schottky electrode and a cathode electrode 138 that is an ohmic electrode may be formed on the element region 102A.
  • a PN junction diode can be obtained by forming an anode electrode through a p-type nitride semiconductor layer.
  • the semiconductor device of this embodiment can suppress the generation of a current path at the interface between the nitride semiconductor layer and the semiconductor substrate.
  • a current path may also be formed inside the nitride semiconductor layer.
  • FIG. 8 has a configuration in which the nitride semiconductor layer 102 is selectively removed and the outer edge portion of the semiconductor substrate 101 is exposed. With such a configuration, a leakage current is generated on the side surface of the semiconductor substrate 101 not only through the interface between the buffer layer 121 and the semiconductor substrate 101 but also through a current path generated at the interface between the channel layer 122 and the buffer layer 121. The flow can be avoided. For this reason, the vertical breakdown voltage of the semiconductor device can be improved more effectively.
  • the element isolation region 102B may not be formed. However, if the element isolation region 102B is formed, an effect of reducing the leakage current flowing through the side surface of the nitride semiconductor layer 102 can be obtained.
  • the source electrode 131 and the through electrode 113 may be connected by a wiring 114 formed on the surface of the nitride semiconductor layer 102.
  • the interface current blocking region is a region containing n-type or p-type impurities, but both the region containing n-type impurities and the region containing p-type impurities are used. It is good also as a structure to have.
  • transistors and diodes in which a channel layer and a cap layer are formed of a nitride semiconductor
  • transistors and diodes may be used.
  • a bipolar transistor using a nitride semiconductor, a PN junction diode, a PIN junction diode, or the like may be used.
  • the present invention can be applied to all semiconductor devices having a nitride semiconductor layer and a through electrode penetrating the semiconductor substrate. Note that the through electrode may be configured to be connected to the gate electrode.
  • the semiconductor substrate is an Si substrate.
  • a silicon carbide (SiC) substrate a gallium arsenide (GaAs) substrate, a gallium nitride (GaN) substrate, a zinc oxide (ZnO) substrate, or the like may be used instead of the Si substrate.
  • the p-type impurity may be boron (B) or the like
  • the n-type impurity may be phosphorus (P) or the like.
  • the element isolation region may reach the buffer layer. Further, it may reach the semiconductor substrate.
  • the element isolation region may be formed by implanting impurities that do not contribute to the conductivity type such as argon (Ar).
  • a semiconductor device can improve a vertical breakdown voltage in a semiconductor device using a nitride semiconductor formed on a semiconductor substrate, and is particularly applicable as a power transistor used in a power supply circuit. Useful as a device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 窒化物半導体装置は、半導体基板101と、半導体基板の上に形成された窒化物半導体層102と、半導体基板の窒化物半導体層と反対側の面に形成された裏面電極135と、窒化物半導体層及び半導体基板を貫通し、裏面電極と接続された貫通電極113とを備えている。半導体基板は、通常領域101A及び通常領域を囲む界面電流阻止領域101Bを有している。窒化物半導体層は、素子領域102A及び素子領域を囲む素子分離領域102Bを有している。素子領域は、通常領域の上に形成され、界面電流阻止領域は、不純物を含み且つ窒化物半導体層と半導体基板との界面に生じるキャリアに対してポテンシャル障壁を形成している。

Description

窒化物半導体装置
 本開示は、窒化物半導体装置に関し、特に電源回路に用いるパワートランジスタ等として適用可能な窒化物半導体を用いた半導体装置に関する。
 窒化ガリウム(GaN)に代表される窒化物半導体は、高周波用半導体装置又は高出力半導体装置の材料として注目されている。窒化物半導体を用いた半導体装置を形成する基板としてシリコン(Si)基板等を用いることが検討されている。Si基板は容易に大口径化することが可能であり、窒化物半導体を成長させる基板としてSi基板を用いれば、窒化物半導体を用いた半導体装置のコストを大きく低減できる。
 Si基板上に窒化物半導体を用いた半導体装置を形成した場合、Si基板の電位がデバイス動作に影響を及ぼす。このため、Si基板の電位を安定させるために、窒化物半導体層及びSi基板を貫通するように貫通電極を設け、Si基板の裏面に形成した電極が貫通電極を介して、ソース電極又はドレイン電極と接続することが行われている。裏面電極とソース電極又はドレイン電極とを電気的に接続すると、ソース電極又はドレイン電極と裏面電極との間に高電圧がかかる。このため、半導体装置の縦方向耐圧を大きくする必要がある。Si基板上に形成された半導体装置の縦方向耐圧は、Si基板上に成長した窒化物半導体層の耐圧と、Si基板の耐圧とによって決まる。窒化物半導体層の耐圧を大きくするためには、窒化物半導体層の膜厚を厚くする必要がある。しかし、Siと窒化物半導体とは格子定数及び熱膨張係数が大きく異なるため、Si基板上に形成できる窒化物半導体の膜厚には限界がある。
 このため、Si基板の耐圧を大きくすることにより、半導体装置の縦方向耐圧を向上させることが検討されている(例えば、特許文献1を参照。)。
特開2005-217049号公報
 しかしながら、本願発明者らはSi基板の耐圧を大きくしても半導体装置の縦方向耐圧がほとんど変化しないことを見出した。また、Si基板だけでなく炭化珪素(SiC)基板及び砒化ガリウム(GaAs)基板等の他の半導体の基板においても同様の問題が生じることを見出した。
 本開示は、本願発明者らが見出した知見に基づき、半導体基板を用いた場合において、縦方向耐圧を向上した窒化物半導体装置を実現できるようにすることを目的とする。
 前記の目的を達成するため、本開示は窒化物半導体装置を、界面電流阻止領域を有する半導体基板を備えている構成とする。
 具体的に、例示の窒化物半導体装置は半導体基板と、半導体基板の上に形成された窒化物半導体層と、半導体基板の窒化物半導体層と反対側の面に形成された裏面電極と、窒化物半導体層及び半導体基板を貫通し、裏面電極と接続された貫通電極とを備え、半導体基板は、通常領域及び通常領域を囲む界面電流阻止領域を有し、窒化物半導体層は、素子領域及び素子領域を囲む素子分離領域を有し、素子領域は、通常領域の上に形成され、界面電流阻止領域は、不純物を含み且つ窒化物半導体層と半導体基板との界面に生じるキャリアに対してポテンシャル障壁を形成している。
 例示の窒化物半導体装置は、不純物を含み、窒化物半導体層と半導体基板との界面に生じるキャリアに対してポテンシャル障壁となる界面電流阻止領域を有している。このため、窒化物半導体層と半導体基板との界面に電流パスが形成されることを抑えることができる。従って、電流は半導体基板の側面ではなく半導体基板の内部を流れるようになり、窒化物半導体装置の縦方向耐圧に半導体基板の縦方向耐圧が寄与する。その結果、窒化物半導体装置の縦方向耐圧を大幅に向上させることが可能となる。
 例示の窒化物半導体装置において、界面電流阻止領域は、通常領域と同一の導電型の不純物を含み、界面電流阻止領域の不純物濃度は、通常領域よりも高い構成であっても、通常領域と異なる導電型の不純物を含む構成であってもよい。
 さらに、通常領域と同一の導電型の不純物を含む第1の領域と、通常領域と異なる導電型の不純物を含む第2の領域とを有し、第1の領域の不純物濃度は、通常領域よりも高い構成であってもよい。この場合において、第1の領域と第2の領域とは互いに間隔をおいて形成されていてもよい。
 例示の窒化物半導体装置において、界面電流阻止領域は、半導体基板における素子領域の直下を除く部分に形成されていてもよい。
 例示の窒化物半導体装置において、界面電流阻止領域は、半導体基板の側面に露出していてもよい。
 例示の窒化物半導体装置において、窒化物半導体層は、半導体基板の外縁部を露出するように形成されていてもよい。このような構成とすることにより、窒化物半導体層内に生じる電流パスの影響も回避することが可能となる。
 例示の窒化物半導体装置において、窒化物半導体層は、第1の層と、該第1の層の上に形成され第1の層よりもバンドギャップが大きい第2の層とを有している構成としてもよい。この場合において、ソース電極、ドレイン電極及びゲート電極をさらに備えていてもよい。さらに、窒化物半導体層は、第2の層の上に選択的に形成された、p型の不純物を含む第3の層を有し、ゲート電極は第3の層の上に形成されている構成としてもよい。
 例示の窒化物半導体装置において、貫通電極はソース電極、ドレイン電極及びゲート電極のいずれか1つと接続されていてもよい。
 また、例示の窒化物半導体装置は、窒化物半導体層の上に形成されたカソード電極及びアノード電極をさらに備えている構成としてもよい。
 例示の窒化物半導体装置において、貫通電極はカソード電極又はアノード電極と接続されていてもよい。
 例示の窒化物半導体装置において、電流阻止領域の不純物濃度は、1×1016cm-3以上とすればよい。
 例示の窒化物半導体装置において、貫通電極は半導体基板の上面において界面電流阻止領域に囲まれていてもよい。
 例示の窒化物半導体装置において、貫通電極は界面電流阻止領域を貫通するように設けられていてもよい。
 本開示に係る半導体装置によれば、半導体基板を用いた場合において、窒化物半導体装置の縦方向耐圧を向上させることができる。
(a)及び(b)は一実施形態に係る半導体装置を示し、(a)は平面図であり、(b)は(a)のIb-Ib線における断面図である。 シリコン基板のキャリア濃度と耐圧との関係を示すグラフである。 (a)及び(b)は一実施形態の変形例に係る半導体装置を示し、(a)は平面図であり、(b)は(a)のIIIb-IIIb線における断面図である。 (a)及び(b)は一実施形態の変形例に係る半導体装置を示し、(a)は平面図であり、(b)は(a)のIVb-IVb線における断面図である。 (a)及び(b)は一実施形態の変形例に係る半導体装置を示し、(a)は平面図であり、(b)は(a)のVb-Vb線における断面図である。 (a)及び(b)は一実施形態の変形例に係る半導体装置を示し、(a)は平面図であり、(b)は(a)のVIb-VIb線における断面図である。 (a)及び(b)は一実施形態の変形例に係る半導体装置を示し、(a)は平面図であり、(b)は(a)のVIIb-VIIb線における断面図である。 (a)及び(b)は一実施形態の変形例に係る半導体装置を示し、(a)は平面図であり、(b)は(a)のVIIIb-VIIIb線における断面図である。
 本明細書においてAlGaNとは、3元混晶AlxGa1-xN(但し0≦x≦1)のことを表す。多元混晶はそれぞれの構成元素記号の配列、例えばAlInN、GaInN等と略記する。例えば、窒化物半導体AlxGa1-x-yInyN(但し0≦x≦1、0≦y≦1、x+y≦1)はAlGaInNと略記する。また、アンドープは、不純物が意図的に導入されていないことを意味する。
 まず、本願発明者らが見出した、半導体基板の耐圧と半導体装置の縦方向耐圧との関係について説明する。
 まず、評価用半導体装置としてキャリア濃度が異なる種々のp型Si基板及びn型Si基板の上に一定の膜厚の窒化物半導体層を形成し、形成した評価用半導体装置の縦方向耐圧を測定した。評価用半導体装置の縦方向耐圧は、Si基板の縦方向耐圧と窒化物半導体層の縦方向耐圧の合計値となることが予測される。Siは、そのキャリア濃度により破壊耐圧が大きく変化することが知られている。一般に、Siはキャリア濃度が低いほど空乏層の幅が大きくなるため、破壊耐圧が大きくなる傾向がある。従って、キャリア濃度が低いSi基板上に形成した評価用半導体装置の縦方向耐圧が高くなることが期待される。しかし、測定により得られた評価用半導体装置の縦方向耐圧の値は、Si基板のキャリア濃度に依存せずほぼ一定となった。これは、評価用半導体装置の縦方向耐圧にSi基板の縦方向耐圧がほとんど寄与していないことを示している。
 さらに、本願発明者らは評価用半導体装置について電気容量の測定を行った。これにより、p型Si基板上に形成した窒化物半導体層において、p型Si基板を基準として窒化物半導体層に正の電圧を印加すると、p型Si基板と窒化物半導体層との界面付近のp型Siがn型に反転し、高濃度の電子反転層が形成されることを見出した。また、p型Si基板を基準として窒化物半導体層に負の電圧を印加すると、p型Si基板と窒化物半導体層との界面に正孔蓄積層が形成されることを見出した。
 同様に、n型Si基板上に形成した窒化物半導体においては、n型Si基板を基準として窒化物半導体層に負の電圧を印加すると、n型Si基板と窒化物半導体の界面付近のn型半導体層がp型に反転し、高濃度の正孔反転層が形成されることを見出した。また、n型Si基板を基準として窒化物半導体層に正の電圧を印加すると、n型Si基板と窒化物半導体層の界面に電子蓄積層が形成されることを見出した。
 窒化物半導体層とSi基板との界面に電子反転層、電子蓄積層、正孔反転層及び正孔蓄積層といったキャリア層が形成されると、窒化物半導体層とSi基板との界面においてSi基板の側面に達する電流パスが形成される。このため、窒化物半導体層に縦方向の電圧を印加すると、電流はSi基板内ではなく、窒化物半導体層とSi基板との界面に形成された電流パス及びSi基板の側面を伝って流れる。従って、Si基板の縦方向耐圧は半導体装置の縦方向耐圧にほとんど寄与しない。
 このような、窒化物半導体とSi基板の界面におけるキャリア層の形成は、窒化物半導体層をSi基板上に結晶成長する技術が向上したことにより検出が可能となったと考えられる。結晶成長技術の向上により、高い結晶性を有する窒化物半導体をSi基板上に成長することが可能になった。これにより、Si基板と窒化物半導体層との界面における組成の切り替わりが狭い範囲で急激に生じるようになり、いわゆる界面急峻性が向上することにより、キャリア層が生じるためであると考えられる。
 以下に、窒化物半導体層とSi基板との界面に生じる電流パスの影響を抑え、縦方向耐圧を向上した半導体装置について詳細に説明する。
 図1(a)及び(b)は第1の実施形態に係る半導体装置であり、(a)は平面構成を示し、(b)は(a)のIb-Ib線における断面構成を示している。図1に示すように本実施形態の半導体装置は、ヘテロ接合電界効果トランジスタ(HFET)であり、半導体基板101と、半導体基板101の上に形成された窒化物半導体層102とを有している。本実施形態において半導体基板101は、主面の面方位が(111)面であるp型Si基板である。窒化物半導体層102は、半導体基板101の主面上に順次形成されたバッファ層121と、チャネル層122と、キャップ層123とを有している。バッファ層121は、例えば窒化物半導体であるAlNからなる。チャネル層122は、例えば厚さが1μmのアンドープGaNからなる。キャップ層123は、例えば厚さが25nmのアンドープAlGaNからなる。キャップ層123のAl組成比は25%程度とすればよい。
 窒化物半導体層102は、素子領域102Aと素子領域102Aを囲むように形成された素子分離領域102Bとを有している。素子分離領域102Bは、キャップ層123とチャネル層122との界面よりも下側に達するように形成され、素子領域102Aよりも高抵抗な領域である。素子分離領域102Bは、例えばアルゴン等の非導電性の不純物をイオン注入することにより形成すればよい。
 素子領域102Aの上には、ソース電極131、ドレイン電極132及びゲート電極133が形成されている。ソース電極131及びドレイン電極132はキャップ層123とチャネル層122との界面に形成される2次元電子ガス層とオーミック接合している。ソース電極131及びドレイン電極132は、例えばチタンとアルミニウムとの積層膜等とすればよい。ゲート電極133はキャップ層123とショットキー接合している。ゲート電極133は、例えばニッケルと金との積層膜とすればよい。ゲート電極133は、素子領域102Aを横断し、素子分離領域102Bに跨るように形成されている。なお、ソース電極131及びドレイン電極132についても同様の構成としてもよい。
 窒化物半導体層102の表面を覆うように、厚さが200nmの窒化シリコン(SiN)からなるパッシベーション膜141が形成されている。半導体基板101における窒化物半導体層102と反対側の面(裏面)には、アルミニウム等からなる裏面電極135が形成されている。さらに、窒化物半導体層102及び半導体基板101を貫通するように貫通電極113が形成され、貫通電極113はソース電極131と裏面電極135とを接続している。
 半導体基板101は、通常領域101Aと界面電流阻止領域101Bとを有している。界面電流阻止領域101Bは、通常領域101Aよりも高濃度のp型不純物を含む領域である。図1において、界面電流阻止領域101Bは、バッファ層121と接している。また、平面視において素子領域102Aを囲むように形成されており、半導体基板101の側面に露出している。貫通電極113は、チャネルと絶縁するために窒化物半導体層102において素子分離領域102Bを貫通するように形成されている。但し、必ずしもチャネルと絶縁されている必要はない。また、半導体基板101において、界面電流阻止領域101Bを貫通するように形成されている。
 次に、本実施形態の半導体装置の動作について説明する。ソース電極131と貫通電極113及び裏面電極135とが接続されている場合において、ソース電極131の電位を基準として、ドレイン電極132に正の電圧が印加されている場合を考える。この場合、ゲート電極133に負の電圧が印加されていると、HFETはオフ状態となるため、ドレイン電極132から半導体基板101に向かって電界が形成される。これにより、p型の半導体基板101とバッファ層121との界面に電子反転層が形成される。しかし、高濃度のp型不純物を含む界面電流阻止領域101Bは、電子に対してポテンシャル障壁となる。従って、バッファ層121と半導体基板101との界面に電流パスが生じることが抑えられ、貫通電極113及び半導体基板101の側面に電流が到達できなくなる。その結果、リーク電流は半導体基板101を縦方向に貫通するように流れるようになり、半導体装置の縦方向耐圧に半導体基板101の縦方向耐圧が寄与することになり、半導体装置の縦方向耐圧を大幅に向上させることが可能となる。
 本実施形態の半導体装置においては、半導体装置の縦方向耐圧は、窒化物半導体層102の縦方向耐圧と半導体基板101の縦方向耐圧とによって決まる。窒化物半導体層102の膜厚が一定の場合には、半導体装置の縦方向耐圧は半導体基板101の縦方向耐圧が大きいほど大きくなる。半導体基板101の縦方向耐圧は、半導体基板101の厚さと、半導体基板101に含まれる不純物の濃度とによって決まる。図2は、Si基板の厚さ及び不純物濃度と耐圧との関係を示している。図2に示すように、半導体基板101に含まれる不純物濃度が低いほど、半導体基板101の縦方向耐圧は高くなる。従って、半導体基板101の不純物濃度は低い方が好ましい。半導体基板101がSi基板である場合には、不純物濃度は1×1012cm-3程度~1×1016cm-3程度とすることが好ましい。
 本実施形態の半導体装置においては、界面電流阻止領域101Bは、電子に対してポテンシャル障壁となればよい。従って、半導体基板101がp型である場合、界面電流阻止領域101Bは通常領域101Aよりもp型不純物の濃度が高い領域であればよい。通常領域101Aに含まれるp型不純物の濃度が1×1012cm-3程度~1×1016cm-3程度の場合には、1×1016cm-3程度以上とすればよい。さらに、ポテンシャル障壁としての機能を高めるためには、1×1018cm-3程度以上とすることが好ましく、さらに好ましくは1×1019cm-3程度以上とすればよい。不純物濃度は高い方が好ましいが、高くしすぎるとイオン注入等が困難となり、基板の結晶性等にも影響が出るため1×1021cm-3程度以下とすることが好ましい。
 界面電流阻止領域101Bは、素子領域102A中を縦方向に流れ、窒化物半導体層102と半導体基板101との界面に達した電流が、窒化物半導体層102と半導体基板101との界面を横方向に流れて、貫通電極113及び半導体基板101の側面に達しないようにできればよい。このため、界面電流阻止領域101Bは、平面視において素子領域102Aを囲むように形成すればよい。また、窒化物半導体層102における電流の拡がりを考慮すると、界面電流阻止領域101Bが半導体基板101の側面に達している方が好ましい。また、半導体基板101を縦方向に電流が流れる経路を形成するためには、素子領域102Aの直下は界面電流阻止領域101Bとせず、通常領域101Aとすることが好ましい。なお、素子領域102Aの直下とは、素子領域102Aの下側のうち、平面視において素子領域102Aと重なり合う位置をいう。但し、素子領域102Aの直下の一部が界面電流阻止領域101Bとなっていても問題ない。
 また、貫通電極113により縦方向に流れる電流は、窒化物半導体層102と半導体基板101との界面を横方向に流れるおそれがある。しかし、本実施形態においては、貫通電極113は半導体基板101の上面において界面電流阻止領域101Bに取り囲まれている。このため、窒化物半導体層102と半導体基板101との界面において、貫通電極113から横方向に電流が流れることを抑えることも可能となる。
 界面電流阻止領域101Bと通常領域101Aとの境界は、電界の局所的な集中を抑制するため、角がない面取りされた形状とすることが好ましい。例えば、図1(a)に示すように、界面電流阻止領域101Bと通常領域101Aとの境界の平面形状は角部が面取りされ曲線となった長方形状、角丸長方形状又は長円形状等とすることが好ましい。また、図1(b)に示すように断面形状についても、界面電流阻止領域101Bと通常領域101Aとの境界において角部が面取りされて曲線となった長方形状又は楕円扇形状等とすることが好ましい。但し、界面電流阻止領域101Bと通常領域101Aとの境界は角部がある形状であってもよい。
 本実施形態において、ドレイン電極132に正の電圧が印加される場合について説明した。しかし、半導体装置の用途によっては、ソース電極131とドレイン電極132との間のチャネルを閉じた状態において、ソース電極131を基準としてドレイン電極132に負の電圧が印加される場合もある。この場合には、半導体基板101からドレイン電極132に向かって電界が形成される。これにより、バッファ層121と半導体基板101との界面には正孔蓄積領域が形成される。従って、バッファ層121と半導体基板101との界面に電流パスが生じることを抑えるためには、図3に示すように正孔に対してポテンシャル障壁となる、n型不純物を含む界面電流阻止領域101Cを形成すればよい。また、この場合には、貫通電極113によりドレイン電極132と裏面電極135とを接続すればよい。
 界面電流阻止領域101Cにおけるn型不純物の濃度は、ポテンシャル障壁が形成できればどのような値であってもよく、1×1016cm-3程度以上とすればよい。さらに、ポテンシャル障壁としての機能を高めるためには、1×1018cm-3程度以上とすることが好ましく、さらに好ましくは1×1019cm-3程度以上とすればよい。不純物濃度は高い方が好ましいが、高くしすぎると基板の結晶性等に影響が出るため1×1021cm-3程度以下とすることが好ましい。
 また、ドレイン電極132に正の電圧が印加される状態と、負の電圧が印加される状態とを切り替える動作が要求される場合がある。この場合には、図4に示すようにp型不純物を含む第1の領域111とn型不純物を含む第2の領域112とを有する界面電流阻止領域101Dを形成すればよい。第1の領域111は電子に対してポテンシャル障壁となり、第2の領域112は正孔に対してポテンシャル障壁となる。従って、ドレイン電極132に正の電圧が印加された状態においても、ドレイン電極132に負の電圧が印加された状態においても、バッファ層121と半導体基板101との界面に電流パスが生じることを抑えることができる。
 図4において、貫通電極113は、半導体基板101の上面において外側に形成された第1の領域111に囲まれている。このため、窒化物半導体層102と半導体基板101との界面において貫通電極113から、横方向に電流が流れることも抑えることができる。
 第1の領域111と第2の領域112とは互いに間隔をおいて形成されていることが好ましい。第1の領域111と第2の領域112とを間隔をおいて形成することにより、第1の領域111と第2の領域112との界面においてトンネル電流が流れることを抑えることができる。
 図4において第1の領域111が第2の領域112よりも外側に形成された例を示したが、第2の領域112が第1の領域111よりも外側に形成されていてもよい。この場合には、貫通電極113は、外側に形成された第2の領域に囲まれるようにすればよい。
 図4においては、第1の領域111と第2の領域112とが1つずつ形成されている例を示したが、第1の領域111と第2の領域112とは交互に複数形成されていてもよい。この場合には、貫通電極113は最も外側に形成された第1の領域又は第2の領域に囲まれるようにすればよい。
 本実施形態においては、半導体基板101がp型である場合について説明した。しかし、半導体基板101はn型であってもよい。半導体基板101がn型の場合には、ソース電極131を基準としてドレイン電極132の正の電圧が印加される場合には、バッファ層121と半導体基板101との界面に電子蓄積層が形成される。従って、p型の界面電流阻止領域を形成することにより、バッファ層121と半導体基板101との界面に電流パスが形成されにくくすることができる。一方、ソース電極131を基準としてドレイン電極132の負の電圧が印加される場合には、バッファ層121と半導体基板101との界面に正孔反転層が形成される。従って、n型の界面電流阻止領域を形成することにより、バッファ層121と半導体基板101との界面に電流パスが形成されにくくすることができる。ドレイン電極132に正の電圧及び負の電圧のいずれもが印加される場合には、界面電流阻止領域をp型とn型との両方とすればよい。
 本実施形態において、ゲート電極133は、キャップ層123とショットキー接合を形成するようにした。しかし、図5に示すようにキャップ層123の上にp型のGaN又はAlGaN等からなるp型窒化物半導体層124を形成し、ゲート電極133はp型窒化物半導体層124とオーミック接合を形成するようにしてもよい。この場合にはノーマリオフ型のトランジスタとすることが可能となる。
 また、半導体基板の上に形成する半導体素子はHFET等のトランジスタに限らず、例えばダイオードとしてもよい。この場合には、図6及び図7に示すように、素子領域102Aの上にショットキー電極であるアノード電極137とオーミック電極であるカソード電極138とを形成すればよい。また、p型の窒化物半導体層を介してアノード電極を形成すればPN接合ダイオードとすることができる。
 本実施形態の半導体装置は、窒化物半導体層と半導体基板との界面における電流パスの発生を抑えることができる。しかし、複数の層が積層された窒化物半導体層の場合、窒化物半導体層の内部にも電流パスが形成されるおそれがある。図8に示す例は、窒化物半導体層102を選択的に除去し、半導体基板101の外縁部が露出した構成を有している。このような構成とすれば、バッファ層121と半導体基板101との界面だけでなく、チャネル層122とバッファ層121との界面に生じた電流パスを介して、リーク電流が半導体基板101の側面に流れることを回避できる。このため、さらに効果的に半導体装置の縦方向耐圧を向上させることができる。
 図8において、窒化物半導体層102は物理的に分離されているため、素子分離領域102Bは形成しなくてもよい。しかし、素子分離領域102Bを形成すれば、窒化物半導体層102の側面を流れるリーク電流を低減できるという効果が得られる。ソース電極131と貫通電極113とは、窒化物半導体層102の表面に形成した配線114により接続すればよい。
 なお、図6~図8に示した例において、界面電流阻止領域はn型又はp型の不純物を含む領域としたが、n型の不純物を含む領域とp型の不純物を含む領域の両方を有する構成としてもよい。
 また、窒化物半導体によりチャネル層及びキャップ層を形成したトランジスタ及びダイオードの例を示したが、他のトランジスタやダイオードでもよい。例えば、窒化物半導体を用いたバイポーラトランジスタ、PN接合ダイオード及びPIN接合ダイオード等としてもよい。さらには、窒化物半導体層及び半導体基板を貫通する貫通電極を有する全ての半導体装置に適用することが可能である。なお、貫通電極は、ゲート電極と接続されている構成であってもよい。
 本実施形態において、半導体基板がSi基板である例を示した。しかし、Si基板に代えて炭化珪素(SiC)基板、砒化ガリウム(GaAs)基板、窒化ガリウム(GaN)基板又は酸化亜鉛(ZnO)基板等を用いてもよい。半導体基板がSi基板である場合には、p型の不純物はホウ素(B)等とすればよく、n型の不純物はリン(P)等とすればよい。
 また、本実施形態において、素子分離領域がバッファ層に達していない例を示した。しかし、素子分離領域はバッファ層に達していてもよい。さらに、半導体基板に達していてもよい。素子分離領域は、アルゴン(Ar)等の導電型に寄与しない不純物を注入することにより形成すればよい。
 本開示に係る半導体装置は、半導体基板の上に形成された窒化物半導体を用いた半導体装置において縦方向耐圧を向上させることができ、特に電源回路に用いるパワートランジスタ等として適用可能な窒化物半導体装置として有用である。
101   半導体基板
101A  通常領域
101B  界面電流阻止領域
101C  界面電流阻止領域
101D  界面電流阻止領域
102   窒化物半導体層
102A  素子領域
102B  素子分離領域
106   窒化物半導体層
106A  素子領域
106B  素子分離領域
111   第1の領域
112   第2の領域
113   貫通電極
114   配線
121   バッファ層
122   チャネル層
123   キャップ層
124   p型窒化物半導体層
131   ソース電極
132   ドレイン電極
133   ゲート電極
135   裏面電極
137   アノード電極
138   カソード電極
141   パッシベーション膜

Claims (17)

  1.  半導体基板と、
     前記半導体基板の上に形成された窒化物半導体層と、
     前記半導体基板の前記窒化物半導体層と反対側の面に形成された裏面電極と、
     前記窒化物半導体層及び半導体基板を貫通し、前記裏面電極と接続された貫通電極とを備え、
     前記半導体基板は、通常領域及び該通常領域を囲む界面電流阻止領域を有し、
     前記窒化物半導体層は、素子領域及び該素子領域を囲む素子分離領域を有し、
     前記素子領域は、前記通常領域の上に形成され、
     前記界面電流阻止領域は、不純物を含み且つ前記窒化物半導体層と前記半導体基板との界面に生じるキャリアに対してポテンシャル障壁を形成していることを特徴とする窒化物半導体装置。
  2.  前記界面電流阻止領域は、前記通常領域と同一の導電型の不純物を含み、
     前記界面電流阻止領域の不純物濃度は、前記通常領域よりも高いことを特徴とする請求項1に記載の窒化物半導体装置。
  3.  前記界面電流阻止領域は、前記通常領域と異なる導電型の不純物を含むことを特徴とする請求項1に記載の窒化物半導体装置。
  4.  前記界面電流阻止領域は、前記通常領域と同一の導電型の不純物を含む第1の領域と、前記通常領域と異なる導電型の不純物を含む第2の領域とを有し、
     前記第1の領域の不純物濃度は、前記通常領域よりも高いことを特徴とする請求項1に記載の窒化物半導体装置。
  5.  前記第1の領域と前記第2の領域とは互いに間隔をおいて形成されていることを特徴とする請求項4に記載の窒化物半導体装置。
  6.  前記界面電流阻止領域は、前記半導体基板における前記素子領域の直下を除く部分に形成されていることを特徴とする請求項1に記載の窒化物半導体装置。
  7.  前記界面電流阻止領域は、前記半導体基板の側面に露出していることを特徴とする請求項1に記載の窒化物半導体装置。
  8.  前記窒化物半導体層は、前記半導体基板の外縁部を露出するように形成されていることを特徴とする請求項1に記載の窒化物半導体装置。
  9.  前記窒化物半導体層は、第1の層と、該第1の層の上に形成され前記第1の層よりもバンドギャップが大きい第2の層とを有していることを特徴とする請求項1に記載の窒化物半導体装置。
  10.  前記窒化物半導体層の上に形成されたソース電極、ドレイン電極及びゲート電極をさらに備えていることを特徴とする請求項1に記載の窒化物半導体装置。
  11.  前記窒化物半導体層は、前記第2の層の上に選択的に形成された、p型の不純物を含む第3の層を有し、
     前記ゲート電極は前記第3の層の上に形成されていることを特徴とする請求項10に記載の窒化物半導体装置。
  12.  前記貫通電極は、前記ソース電極、ドレイン電極及びゲート電極のいずれか1つと接続されていることを特徴とする請求項10に記載の窒化物半導体装置。
  13.  前記窒化物半導体層の上に形成されたカソード電極及びアノード電極をさらに備えていることを特徴とする請求項1に記載の窒化物半導体装置。
  14.  前記貫通電極は、前記カソード電極又は前記アノード電極と接続されていることを特徴とする請求項13に記載の窒化物半導体装置。
  15.  前記電流阻止領域の不純物濃度は、1×1016cm-3以上であることを特徴とする請求項1に記載の窒化物半導体装置。
  16.  前記貫通電極は、前記半導体基板の上面において、前記界面電流阻止領域に囲まれていることを特徴とする請求項1に記載の窒化物半導体装置。
  17.  前記貫通電極は前記界面電流阻止領域を貫通するように形成されていることを特徴とする請求項1に記載の窒化物半導体装置。
PCT/JP2010/004368 2009-08-27 2010-07-02 窒化物半導体装置 WO2011024367A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080037631.0A CN102484124B (zh) 2009-08-27 2010-08-24 氮化物半导体装置
JP2011528642A JP5526136B2 (ja) 2009-08-27 2010-08-24 窒化物半導体装置
PCT/JP2010/005205 WO2011024440A1 (ja) 2009-08-27 2010-08-24 窒化物半導体装置
US13/402,631 US8872227B2 (en) 2009-08-27 2012-02-22 Nitride semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009196501 2009-08-27
JP2009-196501 2009-08-27

Publications (1)

Publication Number Publication Date
WO2011024367A1 true WO2011024367A1 (ja) 2011-03-03

Family

ID=43627490

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/004368 WO2011024367A1 (ja) 2009-08-27 2010-07-02 窒化物半導体装置
PCT/JP2010/005205 WO2011024440A1 (ja) 2009-08-27 2010-08-24 窒化物半導体装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005205 WO2011024440A1 (ja) 2009-08-27 2010-08-24 窒化物半導体装置

Country Status (4)

Country Link
US (1) US8872227B2 (ja)
JP (1) JP5526136B2 (ja)
CN (1) CN102484124B (ja)
WO (2) WO2011024367A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018301A1 (ja) * 2011-07-29 2013-02-07 パナソニック株式会社 半導体装置
US20130341682A1 (en) * 2011-02-23 2013-12-26 Panasonic Corporation Nitride semiconductor device
JP2015056557A (ja) * 2013-09-12 2015-03-23 株式会社東芝 半導体装置
JP2019169552A (ja) * 2018-03-22 2019-10-03 ローム株式会社 窒化物半導体装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8981434B2 (en) * 2009-08-31 2015-03-17 Renesas Electronics Corporation Semiconductor device and field effect transistor
US8502273B2 (en) * 2010-10-20 2013-08-06 National Semiconductor Corporation Group III-nitride HEMT having a well region formed on the surface of substrate and contacted the buffer layer to increase breakdown voltage and the method for forming the same
US8513703B2 (en) * 2010-10-20 2013-08-20 National Semiconductor Corporation Group III-nitride HEMT with multi-layered substrate having a second layer of one conductivity type touching a top surface of a first layers of different conductivity type and a method for forming the same
JP5879805B2 (ja) * 2011-08-09 2016-03-08 富士通株式会社 スイッチング素子及びこれを用いた電源装置
JP6054620B2 (ja) * 2012-03-29 2016-12-27 トランスフォーム・ジャパン株式会社 化合物半導体装置及びその製造方法
JP2013229449A (ja) * 2012-04-25 2013-11-07 Advanced Power Device Research Association 窒化物系半導体素子
CN107359196B (zh) * 2012-09-12 2020-07-14 松下知识产权经营株式会社 半导体装置
CN103117303B (zh) * 2013-02-07 2016-08-17 苏州晶湛半导体有限公司 一种氮化物功率器件及其制造方法
JP6110163B2 (ja) * 2013-03-06 2017-04-05 トランスフォーム・ジャパン株式会社 半導体装置とその製造方法
KR101458566B1 (ko) * 2013-05-21 2014-11-07 재단법인대구경북과학기술원 정류소자 및 그의 제조 방법
JP6143598B2 (ja) * 2013-08-01 2017-06-07 株式会社東芝 半導体装置
JP2015056556A (ja) 2013-09-12 2015-03-23 株式会社東芝 半導体装置
JPWO2015059854A1 (ja) * 2013-10-25 2017-03-09 パナソニックIpマネジメント株式会社 ゲート駆動装置
WO2015125471A1 (ja) * 2014-02-21 2015-08-27 パナソニック株式会社 電界効果トランジスタ
JP6319028B2 (ja) * 2014-10-03 2018-05-09 三菱電機株式会社 半導体装置
WO2016143265A1 (ja) * 2015-03-11 2016-09-15 パナソニック株式会社 窒化物半導体装置
US9923060B2 (en) 2015-05-29 2018-03-20 Analog Devices, Inc. Gallium nitride apparatus with a trap rich region
JP6520785B2 (ja) * 2016-03-24 2019-05-29 豊田合成株式会社 半導体装置の製造方法
US11114543B2 (en) * 2017-01-24 2021-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Group III-V device structure
US11588024B2 (en) * 2017-03-17 2023-02-21 Infineon Technologies Austria Ag High voltage blocking III-V semiconductor device
JP6809330B2 (ja) 2017-03-28 2021-01-06 豊田合成株式会社 半導体装置の製造方法
DE112017007491B4 (de) 2017-04-28 2023-04-27 Mitsubishi Electric Corporation Halbleitervorrichtung
JP7029778B2 (ja) * 2017-05-31 2022-03-04 株式会社テンシックス 半導体素子及びその製造方法
JP6905395B2 (ja) 2017-06-16 2021-07-21 株式会社東芝 半導体装置
CN219040486U (zh) * 2020-01-16 2023-05-16 华为技术有限公司 一种氮化物半导体晶体管及电子设备
CN111312712A (zh) * 2020-02-25 2020-06-19 英诺赛科(珠海)科技有限公司 半导体器件及其制造方法
JP2022167237A (ja) * 2021-04-22 2022-11-04 有限会社Mtec 半導体素子の製造方法及び縦型mosfet素子

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021789A (ja) * 1997-08-29 2000-01-21 Toshiba Corp 窒化物系半導体素子、発光素子及びその製造方法
JP2004327891A (ja) * 2003-04-28 2004-11-18 Nissan Motor Co Ltd 半導体装置
JP2004342810A (ja) * 2003-05-15 2004-12-02 Fujitsu Ltd 化合物半導体装置
JP2005217049A (ja) * 2004-01-28 2005-08-11 Sanken Electric Co Ltd 半導体装置
JP2006507683A (ja) * 2002-11-26 2006-03-02 クリー インコーポレイテッド ソース領域の下にp型埋込み層を備えたトランジスタ及びその作製方法。
JP2006216671A (ja) * 2005-02-02 2006-08-17 Toshiba Corp 窒素化合物半導体素子
JP2006339561A (ja) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd 電界効果トランジスタ及びその製造方法
JP2007208037A (ja) * 2006-02-02 2007-08-16 Sanken Electric Co Ltd 半導体素子
WO2007145279A1 (ja) * 2006-06-15 2007-12-21 The Furukawa Electric Co., Ltd. Iii族窒化物半導体を用いたノーマリオフ型電界効果トランジスタ及びその製造方法
JP2008177515A (ja) * 2006-12-21 2008-07-31 Toyota Central R&D Labs Inc 半導体装置とその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015979A (en) 1997-08-29 2000-01-18 Kabushiki Kaisha Toshiba Nitride-based semiconductor element and method for manufacturing the same
JP2002176226A (ja) * 2000-09-22 2002-06-21 Toshiba Corp 光素子およびその製造方法
JP5048230B2 (ja) 2005-03-30 2012-10-17 オンセミコンダクター・トレーディング・リミテッド 半導体装置およびその製造方法
CN100505300C (zh) * 2005-03-30 2009-06-24 三洋电机株式会社 半导体装置及其制造方法
JP2007273649A (ja) * 2006-03-30 2007-10-18 Eudyna Devices Inc 半導体装置および半導体装置製造用基板並びにその製造方法
JP5180468B2 (ja) * 2006-12-21 2013-04-10 オンセミコンダクター・トレーディング・リミテッド 半導体装置及びその製造方法
JP5242068B2 (ja) * 2007-03-23 2013-07-24 古河電気工業株式会社 GaN系半導体デバイスおよびその製造方法
CN101320750A (zh) * 2007-06-06 2008-12-10 西安能讯微电子有限公司 Hemt器件及其制造方法
CN101477993B (zh) * 2009-01-15 2011-05-11 电子科技大学 基于自隔离技术的介质场增强soi耐压结构

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021789A (ja) * 1997-08-29 2000-01-21 Toshiba Corp 窒化物系半導体素子、発光素子及びその製造方法
JP2006507683A (ja) * 2002-11-26 2006-03-02 クリー インコーポレイテッド ソース領域の下にp型埋込み層を備えたトランジスタ及びその作製方法。
JP2004327891A (ja) * 2003-04-28 2004-11-18 Nissan Motor Co Ltd 半導体装置
JP2004342810A (ja) * 2003-05-15 2004-12-02 Fujitsu Ltd 化合物半導体装置
JP2005217049A (ja) * 2004-01-28 2005-08-11 Sanken Electric Co Ltd 半導体装置
JP2006216671A (ja) * 2005-02-02 2006-08-17 Toshiba Corp 窒素化合物半導体素子
JP2006339561A (ja) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd 電界効果トランジスタ及びその製造方法
JP2007208037A (ja) * 2006-02-02 2007-08-16 Sanken Electric Co Ltd 半導体素子
WO2007145279A1 (ja) * 2006-06-15 2007-12-21 The Furukawa Electric Co., Ltd. Iii族窒化物半導体を用いたノーマリオフ型電界効果トランジスタ及びその製造方法
JP2008177515A (ja) * 2006-12-21 2008-07-31 Toyota Central R&D Labs Inc 半導体装置とその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130341682A1 (en) * 2011-02-23 2013-12-26 Panasonic Corporation Nitride semiconductor device
US8884332B2 (en) * 2011-02-23 2014-11-11 Panasonic Corporation Nitride semiconductor device
WO2013018301A1 (ja) * 2011-07-29 2013-02-07 パナソニック株式会社 半導体装置
US9761670B2 (en) 2011-07-29 2017-09-12 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device composed of AlGaInN layers with inactive regions
JP2015056557A (ja) * 2013-09-12 2015-03-23 株式会社東芝 半導体装置
JP2019169552A (ja) * 2018-03-22 2019-10-03 ローム株式会社 窒化物半導体装置
JP7082508B2 (ja) 2018-03-22 2022-06-08 ローム株式会社 窒化物半導体装置

Also Published As

Publication number Publication date
CN102484124B (zh) 2015-08-26
US8872227B2 (en) 2014-10-28
JP5526136B2 (ja) 2014-06-18
CN102484124A (zh) 2012-05-30
WO2011024440A1 (ja) 2011-03-03
US20120153355A1 (en) 2012-06-21
JPWO2011024440A1 (ja) 2013-01-24

Similar Documents

Publication Publication Date Title
JP5526136B2 (ja) 窒化物半導体装置
US8390029B2 (en) Semiconductor device for reducing and/or preventing current collapse
US8884333B2 (en) Nitride semiconductor device
JP4478175B2 (ja) 半導体装置
US8519439B2 (en) Nitride semiconductor element with N-face semiconductor crystal layer
US8525184B2 (en) Semiconductor device and method for manufacturing same
JP5942204B2 (ja) 半導体装置
US20100207164A1 (en) Field effect transistor
WO2017138505A1 (ja) 半導体装置
JP5645304B2 (ja) ダイオード
JP6665157B2 (ja) 窒化物半導体装置
JP2013069785A (ja) 窒化物半導体装置
JP2011029507A (ja) 半導体装置
JP2012227456A (ja) 半導体装置
US8884332B2 (en) Nitride semiconductor device
JP2013179376A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP