WO2011021415A1 - 造水方法 - Google Patents

造水方法 Download PDF

Info

Publication number
WO2011021415A1
WO2011021415A1 PCT/JP2010/058524 JP2010058524W WO2011021415A1 WO 2011021415 A1 WO2011021415 A1 WO 2011021415A1 JP 2010058524 W JP2010058524 W JP 2010058524W WO 2011021415 A1 WO2011021415 A1 WO 2011021415A1
Authority
WO
WIPO (PCT)
Prior art keywords
drug
water
semipermeable membrane
meter
injected
Prior art date
Application number
PCT/JP2010/058524
Other languages
English (en)
French (fr)
Inventor
荻原稚子
高畠寛生
谷口雅英
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to SG2012008561A priority Critical patent/SG178304A1/en
Priority to JP2010523211A priority patent/JP5691519B2/ja
Priority to MX2012001959A priority patent/MX2012001959A/es
Priority to US13/391,347 priority patent/US9309138B2/en
Priority to AU2010285913A priority patent/AU2010285913C1/en
Priority to CN2010800342174A priority patent/CN102471101A/zh
Priority to EP10809761.9A priority patent/EP2468684A4/en
Publication of WO2011021415A1 publication Critical patent/WO2011021415A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/029Multistep processes comprising different kinds of membrane processes selected from reverse osmosis, hyperfiltration or nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/162Use of acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/164Use of bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens

Definitions

  • the present invention relates to a water production method using a composite water treatment technology, and relates to a water production method for producing fresh water by using a plurality of treated waters A and B having different osmotic pressures as raw water and using a desalination technology. It is.
  • microfiltration membranes and ultrafiltration membranes can be applied to water purification processes that produce industrial water and tap water from river water, groundwater and sewage treatment liquids, pretreatment and membrane separation in seawater desalination reverse osmosis membrane treatment processes.
  • Application to the activated sludge method is mentioned.
  • Nanofiltration membranes and reverse osmosis membranes can be applied to ion removal, seawater desalination, and wastewater reuse processes.
  • Non-Patent Document 1 a membrane treatment system that integrates advanced sewage treatment and seawater desalination has been developed (Non-Patent Document 1 and Non-Patent Document 2).
  • this technology after treating sewage with the membrane separation activated sludge method, fresh water is produced using a reverse osmosis membrane, and the concentrated water produced as a by-product during the reverse osmosis membrane separation is joined to seawater. Therefore, the salt concentration in the seawater to be supplied decreases, and the specifications of the booster pump in the operation of the reverse osmosis membrane separation used for seawater desalination can be kept lower than in the past, resulting in a more energy-saving system. .
  • the surface of the semipermeable membrane or the inside of a semipermeable membrane treatment device is generally formed by the adhesion of organic matter or turbidity, the scale of metal ions, or the formation of a biofilm by the growth of microorganisms.
  • Occurrence of clogging phenomenon may cause troubles such as a decrease in water production and an increase in pressure.
  • biofilm formation is mainly caused by raw water-derived microorganisms and substrates (carbon sources and nutrients), and the place where microorganisms grow is not only in the semipermeable membrane surface or in the semipermeable membrane treatment equipment, Since it is included in the upstream piping, it often causes trouble.
  • reverse osmosis membrane treatment is performed using water obtained by treating sewage by the membrane separation activated sludge method as raw water. Fresh water is obtained, however, the reverse osmosis membrane concentrated water that is normally discarded is mixed with seawater and further treated with a reverse osmosis membrane. Concentrated water is an environment in which microorganisms are prone to grow because the carbon source and nutrients that are the substrate of microorganisms are concentrated from biologically treated water. There was a problem of causing.
  • the chemicals used in the upstream reverse osmosis membrane are passed through the concentrated water piping to the downstream reverse osmosis membrane.
  • the drug used for the reverse osmosis membrane in the former stage can be reused in the concentrated water pipe and the reverse osmosis membrane in the latter stage, but the cleaning / sterilizing effect may be reduced when the drug is reused.
  • the optimal chemicals may be different between the upstream reverse osmosis membrane, the concentrated water pipe, and the downstream reverse osmosis membrane, so that the washing / sterilizing effect is insufficient between the concentrated water pipe and the downstream reverse osmosis membrane.
  • the seawater side is also known to add chemicals such as sodium hypochlorite immediately after water intake, but it disappears due to pipe sterilization or after merging and mixing with the reverse osmosis membrane concentrated water on the sewage side If it is diluted, the subsequent cleaning / sterilizing effect becomes insufficient, and a biofilm is formed in the mixed water pipe, which may block the mixed water pipe, the reverse osmosis membrane treatment device, or its security filter. was there. Furthermore, after the seawater and the reverse osmosis membrane concentrated water on the sewage side are joined and mixed, there are problems such as reduction of cleaning / sterilizing effect and generation of harmful gases by mixing both chemicals or neutralizing agents. .
  • the drug when the drug is injected into the supply water of the reverse osmosis membrane treatment apparatus at the latter stage, the drug is excessively injected, such as newly injected, even though the same type of drug is supplied from the upstream, or There was a problem that the effect of the newly injected drug was reduced by the effect of the drug supplied from the upstream and the neutralizing agent.
  • Patent Document 1 a method is known in which at least one drug is added to the supply water and concentrated water of the reverse osmosis membrane, and the drug is recycled by circulating the concentrated water to the supply water.
  • it is not a method related to a system that treats multiple types of raw water, but a method that can effectively use chemicals in a fresh water generation system that uses a complex water treatment technology to reliably clean / sterilize pipes and tanks.
  • a method that can effectively use chemicals in a fresh water generation system that uses a complex water treatment technology to reliably clean / sterilize pipes and tanks. was not in the prior art.
  • An object of the present invention is to suppress a trouble caused by biofilm formation and to inject and inject a bactericidal agent and a neutralizing agent in a water production method using a composite water treatment technique in which a plurality of membrane units using semipermeable membranes are arranged. It is to provide a fresh water generation system that can efficiently use water.
  • the fresh water generation method of the present invention has any of the following configurations.
  • Treated water A is treated with the semipermeable membrane treatment apparatus A to produce fresh water, and the concentrated water A generated when treated with the semipermeable membrane treatment apparatus A is mixed with the treated water B, and the mixing is performed.
  • a fresh water production method for producing fresh water by treating water with a semipermeable membrane treatment apparatus B a first chemical is injected into treated water A continuously or intermittently, and a second chemical is injected into treated water B.
  • a water production method characterized by injecting continuously or intermittently.
  • the third medicine is continuously or intermittently injected into the concentrated water A, and / or the fourth medicine is continuously or intermittently injected into the mixed water ( The fresh water generation method as described in 1).
  • the concentration of the first drug in the concentrated water A at the time of discharge from the semipermeable membrane treatment apparatus A is greater than the concentration of the first drug in the treated water A at the time of supply to the semipermeable membrane treatment apparatus A.
  • the fresh water generation method according to any one of (1) to (3), wherein a certain first neutralizing agent is injected continuously or intermittently.
  • the first neutralizing agent is a neutralizing agent having an effect of eliminating or reducing the cleaning effect and the bactericidal effect of at least one drug selected from the first drug, the third drug, and the fourth drug.
  • the first drug, the second drug, and the third drug are selected. Any one of (2) to (6), wherein a second neutralizing agent having an effect of eliminating or reducing the cleaning effect and the bactericidal effect of at least one drug is continuously or intermittently injected. Fresh water generation method.
  • the fourth drug is injected when the second neutralizer and the fourth drug are injected intermittently and the injection of the second neutralizer is stopped (7) ) Fresh water generation method.
  • a pH meter, an ORP meter, a chlorine concentration meter, an EC meter, a TOC meter, ammonia between the water mixing means for mixing the concentrated water A and the water to be treated B and the fourth chemical injection means comprising a first meter selected from a meter, a TN meter, and a DO meter, and determining an injection amount of the fourth drug based on an instruction value of the first meter.
  • the fresh water generation method according to (14) characterized in that it is determined based on a measured value obtained by the first ORP meter, and injection stop is determined by a measured value measured by the second ORP meter.
  • the ORP value of the concentrated water A is measured, and when the ORP value exceeds a specified value, the concentrated water A is discharged outside the apparatus, and the semipermeable membrane treatment of the semipermeable membrane treatment apparatus B is performed.
  • the semipermeable membrane treatment apparatus A is a semipermeable membrane treatment apparatus provided with a chlorine-resistant semipermeable membrane, and the first drug is a chlorinated drug (1) to (16)
  • the semipermeable membrane treatment apparatus B is a semipermeable membrane treatment apparatus provided with a chlorine-resistant semipermeable membrane, and at least one selected from the second drug, the third drug, and the fourth drug
  • the second chemical is a chlorinated chemical, and nitrogen-containing water is supplied as the treated water A, and / or nitrogen is contained in the treated water A, the concentrated water A, or the mixed water.
  • the fresh water generation method according to any one of (1) to (17), wherein a drug is injected.
  • the first chemical injected into the treated water A cleans / sterilizes the pipe for feeding the treated water A to the semipermeable membrane treatment apparatus A and the semipermeable membrane treatment apparatus A. After that, at least a part is mixed in the concentrated water A, and the piping for feeding the concentrated water A to the water mixing means is washed / sterilized. Furthermore, since the concentrated water A containing the first chemical is mixed with the treated water B, the water mixing means for mixing the concentrated water A and the treated water B and the semipermeable membrane processing apparatus B are used for cleaning / sterilization. Can cover at least some of the necessary drugs.
  • the second chemical injected into the water to be treated B cleans / sterilizes the pipe for feeding the water to be treated B to the semipermeable membrane treatment apparatus B, the water mixing means, and the semipermeable membrane treatment apparatus B.
  • the drug is injected at the two upstream locations, at least the semi-permeable membrane treatment device that is in contact with the water to be treated and the concentrated water that is liable to generate microorganisms and the upstream piping are all in contact with the drug. A bactericidal effect can be obtained.
  • the concentrated water A pipe of the semipermeable membrane treatment apparatus A can be effectively washed / sterilized by injecting the third chemical continuously or intermittently.
  • the concentrated water A is obtained by concentrating the raw water of the semipermeable membrane treatment apparatus A, and the substrate concentration of the microorganism is increased, so that a biofilm is easily formed in the pipe.
  • using different chemicals suitable for the semipermeable membrane treatment device and the piping, and supplementing when the chemical is digested by the semipermeable membrane treatment device improving the cleaning / sterilizing effect and reducing the amount of chemical used Can be achieved.
  • the semipermeable membrane treatment apparatus B can be effectively sterilized by continuously or intermittently injecting the fourth drug into the mixed water.
  • the first drug and / or the second drug and / or the third drug are added to the upstream side, but as the drug exerts a cleaning / disinfecting effect, the effect is gradually consumed, and thus the cleaning / disinfecting effect May become insufficient.
  • the concentrated water A pipe is obtained by combining the first drug capable of maintaining the concentration of the drug remaining on the concentrated water A side of the semipermeable membrane treatment apparatus A and the semipermeable membrane treatment apparatus A.
  • the cleaning / sterilizing effect can be expected.
  • the chemical concentration of the concentrated water A is X times the chemical concentration at the raw water inlet (primary side) of the semipermeable membrane treatment apparatus A.
  • the first neutralizing agent has an effect of eliminating or reducing the cleaning / sterilizing effect of the first drug and / or the third drug and / or the fourth drug.
  • it is a neutralizing agent and the second chemical agent reduces the function of the semipermeable membrane treatment apparatus B, before the concentrated water A and the treated water B of the semipermeable membrane treatment apparatus A are mixed.
  • By eliminating or reducing the effect of the second drug it is possible to maintain the cleaning / sterilizing effect of the first drug and / or the third drug and / or the fourth drug.
  • the first neutralizing agent when the first neutralizing agent is not injected, the first neutralizing agent is injected by injecting the first agent and / or the third agent and / or the fourth agent, It is possible to further reduce the chance of contact with the first agent and / or the third agent and / or the fourth agent, and the cleaning / sterilizing effect of the first agent and / or the third agent and / or the fourth agent. Can be sustained.
  • any one of the first drug, the second drug, and the third drug reduces the function of the semipermeable membrane processing apparatus B
  • these drugs are used in the semipermeable membrane processing apparatus B. It is preferable that the effect disappears or is reduced before being supplied. Therefore, the function of the semipermeable membrane processing apparatus B can be maintained by injecting the second neutralizing agent before these chemicals are supplied to the semipermeable membrane processing apparatus B to reduce the effect of the chemical. it can.
  • the cleaning / sterilization of the semipermeable membrane processing apparatus B is not sufficient by itself, the semipermeable membrane processing apparatus B is cleaned / sterilized by injecting the fourth chemical after injecting the second neutralizing agent. can do.
  • the fourth drug when the cleaning / sterilizing effect of the fourth drug disappears or is reduced by the second neutralizing agent, the fourth drug is injected when the injection of the second neutralizing agent is stopped, as in the invention of claim 8.
  • the fourth drug can suppress that the effect of a 4th chemical
  • the semi-permeable membrane is obtained by using, for the second agent, the third agent, or the fourth agent, the same type of agent as the first agent that is injected mainly to sterilize the semi-permeable membrane processing apparatus A.
  • the first drug remaining in the concentrated water A of the processing apparatus A can be effectively used.
  • the agent is supplemented with the second agent, the third agent, or the fourth agent so that the cleaning / disinfecting effect is expressed.
  • the injection amount can be reduced.
  • by injecting the second agent, the third agent, or the fourth agent at the time of injecting the first agent it becomes possible to adjust the concentration to the minimum necessary amount that exhibits the cleaning / sterilizing effect.
  • the semipermeable membrane treatment apparatus B is mainly cleaned / sterilized with the same kind of medicine as the first medicine, the second medicine or the third medicine injected upstream from the injection point of the fourth medicine. Therefore, by using the fourth medicine injected for the purpose, it is possible to effectively use the remaining medicine injected on the upstream side.
  • the amount of the medicine injected can be reduced by supplementing the fourth drug so that the cleaning / sterilizing effect is expressed. .
  • the indicated value of the first meter is a meter based on the neutralizer concentration that neutralizes the fourth drug, and the neutralizer concentration flowing into the fourth drug injection point based on the indicated value of the first meter is determined.
  • pH potential Hydrogen
  • pH indicates the degree of acidity or alkalinity of the substance. The lower the pH, the stronger the acidity. Conversely, the higher the pH, the stronger the alkalinity.
  • the pH is often less than 6 or more than 8.
  • a known measuring device can be used as a pH meter for measuring pH.
  • the ORP (Oxidation-Reduction-Potential) value is a value of an oxidation-reduction potential, and is a potential generated when electrons are transferred in an oxidation-reduction reaction. Since the oxidizing agent takes electrons from other substances, the ORP value becomes positive. On the other hand, the reducing agent gives electrons to other substances, and thus the ORP value becomes negative. Furthermore, it can be said that the higher the ORP value, the stronger the oxidizing power, and the lower the negative value, the higher the reducing power. In general, it is said that the ORP value of free chlorine is 750 mV or more, and is a strong oxidizing agent. In the present invention, a known measuring instrument can be used as the ORP meter for measuring the ORP.
  • the chlorine concentration is a concentration of free chlorine or a combination of free chlorine and combined chlorine.
  • Free chlorine has a bactericidal effect because it destroys microorganisms with a strong oxidizing power.
  • combined chlorine such as chloramine has a relatively strong bactericidal effect, although the effect is about a fraction of that of free chlorine.
  • a known measuring instrument can be used as a chlorine concentration meter for measuring the chlorine concentration.
  • EC Electrical Conductivity
  • EC Electrical Conductivity
  • a known measuring instrument can be used as an EC meter for measuring EC.
  • TOC Total Organic Carbon
  • TOC Total Organic Carbon
  • organic acids such as citric acid are carbon-containing drugs
  • the amount of drug can be measured by TOC.
  • a well-known measuring apparatus can be used as a TOC meter for measuring TOC.
  • Ammonia is an alkali, and when combined with chlorine, chloramine is produced, so that a bactericidal effect can be obtained.
  • a known measuring instrument can be used as an ammonia meter for measuring ammonia.
  • TN Total Nitrogen
  • a drug containing nitrogen such as chloramine, can measure the drug amount by TN.
  • a known measuring instrument can be used as a TN meter for measuring TN.
  • DO Dissolved Oxygen
  • DO Dissolved Oxygen
  • production of microorganisms can be suppressed by inject
  • a known measuring instrument can be used as the DO meter for measuring DO.
  • the first drug injected to clean / sterilize the semipermeable membrane treatment apparatus A is used as the second drug, the third drug, or the fourth drug. It becomes possible to enhance the cleaning / sterilizing effect of the pipe downstream from the one drug injection point and the semipermeable membrane treatment apparatus B. In general, when only one kind of drug is always used, microorganisms having resistance to the drug are likely to be generated. Therefore, by sterilizing the pipe or the semipermeable membrane treatment device using a different type of drug from the first drug as the second drug, the third drug, or the fourth drug, the generation of microorganisms having drug resistance is suppressed. , Can enhance the bactericidal effect.
  • the bactericidal effect can be further enhanced by injecting the second drug, the third drug, or the fourth drug when the injection of the first drug is stopped.
  • the first drug and the second drug, the third drug, or the fourth drug are mixed, negative effects such as reducing the bactericidal effect of one or generating harmful substances occur. In the case of a combination, the negative influence can be avoided.
  • the first drug, the second drug, or the third drug injected at the upstream side from the fourth drug injection point is injected mainly for sterilizing the semipermeable membrane treatment apparatus B.
  • the sterilizing effect of the semipermeable membrane treatment apparatus B can be enhanced by using the fourth chemical.
  • the semipermeable membrane is usually weak against strong oxidizing agents such as sodium hypochlorite, chlorine dioxide, hydrogen peroxide, etc.
  • the ORP value is measured on the upstream side and the reducing agent is injected. Control is often performed.
  • acid or alkali may be injected as a chemical, but the acid or alkali changes the ORP value.
  • the ORP value due to the oxidizing agent such as residual chlorine can be accurately grasped, and the appropriate amount according to the residual chlorine amount in the liquid By injecting the reducing agent, it is possible to reliably deactivate the residual chlorine and prevent the semipermeable membrane from being deteriorated by the residual chlorine.
  • the injection of the fifth drug is started, and the injection of the fifth drug is started.
  • the injection of the fifth drug is stopped, so that components that can deteriorate the semipermeable membrane such as residual chlorine are lost. Untreated water to be treated or mixed water is not generated, deterioration of the semipermeable membrane can be prevented, and a useless amount of chemical can be dispensed with.
  • a chlorine-based chemical such as sodium hypochlorite that is usually used for pipe sterilization can be used as the first chemical.
  • the concentrated water A pipe of the semipermeable membrane processing apparatus A and the semipermeable membrane processing apparatus B can be used for cleaning / sterilization.
  • a chlorine-resistant semipermeable membrane is used for the semipermeable membrane treatment apparatus B, and a chlorine-based chemical such as sodium hypochlorite, which is usually used for pipe sterilization, is used as the second chemical, the third chemical, or the third chemical.
  • a chlorine-based chemical such as sodium hypochlorite, which is usually used for pipe sterilization, is used as the second chemical, the third chemical, or the third chemical.
  • chloramine is generated by mixing the chlorine-containing liquid of the second drug and the nitrogen component contained in the water to be treated A or the injected nitrogen-containing drug, and the sterilizing effect of this chloramine allows the semipermeable membrane.
  • the processing apparatus B can be subjected to chemical cleaning. When the semipermeable membrane treatment apparatus B is not resistant to strong oxidizing agents such as free chlorine, chemical cleaning with chloramine is effective.
  • the treated water A contains nitrogen components such as sewage and livestock farming wastewater, the nitrogen component concentrated in the concentrated water A reacts with the chlorine-containing liquid injected as the second chemical to produce chloramine.
  • Pipes for feeding the water to be treated B are washed / sterilized with free chlorine with strong washing / sterilizing power, and this free chlorine is treated without being neutralized to prevent deterioration of the semipermeable membrane treatment apparatus B.
  • the semipermeable membrane treatment apparatus B can be cleaned / sterilized by reacting with the nitrogen component flowing from the water A to produce chloramine.
  • FIG. 1 is a diagram showing a flow of one embodiment of a fresh water generation system to which the present invention is applied.
  • This fresh water generation system has a semipermeable membrane treatment process A100 for semipermeable membrane treatment of treated water A1 with a semipermeable membrane treatment device A2, and a semipermeable membrane treatment for semitreated membrane B4 with semipermeable membrane treatment device B6. And a film processing process B200.
  • the to-be-treated water A feed pipe 101 for supplying the to-be-treated water A1 to the semipermeable membrane treatment apparatus A2 and the semipermeable membrane treatment to be installed in the to-be-treated water A feed pipe 101.
  • a booster pump 111 for supplying the treated water A1 to the apparatus A2, a semipermeable membrane treating apparatus A2 communicating with the treated water A feed pipe 101, and a secondary side of the semipermeable membrane treating apparatus A2 (membrane permeated water)
  • the first drug tank 10 for the first drug and the first drug for cleaning the semipermeable membrane treatment apparatus A2 and / or the treated water
  • a liquid supply pipe 101 with the chemical solution and a first drug delivery pump 11 as a first drug injection means for continuously or intermittently injecting into the treated water A.
  • the concentrated water A feed pipe 104 for supplying the concentrated water A to the mixed water tank 5 as the water mixing means the treated water B feed pipe 103, and the concentrated water A feed pipe 104.
  • Membrane permeate pipe 106 communicating with the next side (membrane permeate side), and semipermeable membrane treatment device 6, a concentrated water pipe 107 communicating with the primary side (treated water side), a second chemical tank 20 for second chemical for cleaning the treated water B liquid feeding pipe 103, and a second chemical And a second drug delivery pump 21 as second drug injection means for continuously or intermittently injecting into the water B to be treated.
  • the third medicine injection means for injecting the third medicine continuously or intermittently into the concentrated water A and / or the fourth medicine for injecting the fourth medicine continuously or intermittently into the mixed water. It is preferable to provide a medicine injection means.
  • the to-be-treated water A1 refers to supply water to be supplied to the semipermeable membrane treatment apparatus A2.
  • the properties and components of the treated water A1 are not particularly limited, and are, for example, sewage, factory wastewater, seawater, brine, lake water, river water, groundwater, and the like, and are active against these raw waters. Covered with biological and / or physical and / or chemical pretreatment such as sludge treatment, prefilter, microfiltration membrane treatment, ultrafiltration membrane treatment, activated carbon treatment, ozone treatment, ultraviolet irradiation treatment, etc.
  • the treated water A may be used to reduce fouling generated in the semipermeable membrane treatment apparatus A2.
  • the properties and components of the water to be treated B4 are the same as those of the water to be treated A, but if the raw water is combined so that the osmotic pressure of the concentrated water A is lower than the osmotic pressure of the water to be treated B.
  • the osmotic pressure of the water to be treated B can be lowered, and the pressure increase level of the water supplied to the semipermeable membrane treatment equipment B can be suppressed.
  • raw water having low osmotic pressure may be used as the water to be treated A
  • raw water having high osmotic pressure may be used as the water to be treated B
  • raw water having a low osmotic pressure water having a low salt concentration is preferably used
  • raw water having a high osmotic pressure water having a high salt concentration is preferably used.
  • water having a low salinity concentration generally include sewage, industrial wastewater, river water, or treated water after pretreatment thereof.
  • seawater, salt lake water, and brine are generally mentioned.
  • a combination of secondary treated water obtained by treating sewage wastewater by membrane separation activated sludge method as treated water A, and seawater as treated water B is exemplified.
  • biological and / or physical and / or physical treatment such as activated sludge treatment, prefilter, microfiltration membrane treatment, ultrafiltration membrane treatment, activated carbon treatment, ozone treatment, ultraviolet irradiation treatment, etc.
  • Chemical treatment or intermediate tanks may be provided.
  • the shape and material of the semipermeable membrane treatment apparatuses A and B are not particularly limited as long as they have a function of separating permeated water and concentrated water by the semipermeable membrane provided in the apparatus.
  • the semipermeable membrane is a semipermeable membrane that does not allow some components in the water to be treated to permeate.
  • a semipermeable membrane that does not allow permeation of a solvent and permeation of a solute can be given.
  • Examples of semipermeable membranes used in water treatment techniques include nanofiltration membranes and reverse osmosis membranes.
  • the nanofiltration membrane or reverse osmosis membrane is required to have a performance capable of reducing the solute contained in the water to be treated to a concentration that can be used as reclaimed water.
  • An NF membrane is defined as a reverse osmosis filtration membrane having an operating pressure of 1.5 MPa or less, a molecular weight cut off of 200 to 1,000, and a sodium chloride rejection of 90% or less.
  • a small and high blocking performance is called a reverse osmosis membrane (RO membrane).
  • a reverse osmosis membrane close to a nanofiltration membrane is also called a loose reverse osmosis membrane.
  • Nanofiltration membranes and reverse osmosis membranes have the shape of hollow fiber membranes or flat membranes, both of which can be applied in the present invention.
  • a fluid separation element in which a hollow fiber membrane or a flat membrane is housed in a housing can be used.
  • this fluid separation element uses a flat membrane as a nanofiltration membrane or a reverse osmosis membrane, for example, a nanofiltration membrane or a reverse osmosis membrane and a tricot around a cylindrical central pipe having a large number of holes.
  • a membrane unit including a permeated water flow path material such as a plastic net and a supply water flow path material such as a plastic net is wound and stored in a cylindrical casing.
  • a separation membrane module by connecting a plurality of fluid separation elements in series or in parallel.
  • the supplied water is supplied into the unit from one end, and the permeated water that has permeated the nanofiltration membrane or reverse osmosis membrane before reaching the other end flows to the central pipe. , Taken from the central pipe at the other end.
  • the feed water that has not permeated the nanofiltration membrane or reverse osmosis membrane is taken out as concentrated water at the other end.
  • Typical nanofiltration membranes / reverse osmosis membranes include cellulose acetate or polyamide asymmetric membranes and composite membranes having polyamide or polyurea active layers.
  • each pipe 107 is not particularly limited as long as it is a material / shape having a function of transferring liquid, but is preferably resistant to the properties of the liquid to be transferred, the properties of the chemical to be injected, and the applied pressure.
  • the booster pump 111 and the booster pump 112 are pumps having a boosting function for pressurizing the water to be treated A and the mixed water and supplying / separating the liquid to the semipermeable membrane treatment apparatus. If the osmotic pressure of the target liquid is low, install a supply pump that pressurizes by supplying the target liquid. If the osmotic pressure of the target liquid is high, perform a membrane permeation with a pump that delivers the target liquid. For this purpose, it is preferable to install a booster pump for boosting the target liquid and supplying it to the semipermeable membrane treatment apparatus.
  • the water mixing means is not particularly limited as long as it has a function of mixing the water to be treated B and the concentrated water A.
  • Examples thereof include a method using the mixed water tank 5, a method using a line mixer, and a method using a liquid feed pump.
  • the mixed water tank 5 can store mixed water and is not particularly limited as long as it does not deteriorate into a chemical solution such as a chemical or a neutralizing agent.
  • a tank with a stirrer is provided in the middle of the pipe, and a medicine or a neutralizing agent is injected into the tank and mixed with the stirrer.
  • a method of injecting a chemical or a neutralizing agent into a pipe and mixing with a pressure pump a method of installing a line mixer and mixing.
  • the chemical tank and the neutralizing agent tank can store chemicals such as chemicals and neutralizing agents, and are not particularly limited as long as the material does not deteriorate with the chemicals. Is used.
  • the drug injection means and the neutralizer injection means described later may be a continuous injection type in which a drug or a neutralizing agent is continuously injected, or an intermittent injection type in which ON / OFF is switched by a timer or a signal.
  • the first chemical mainly cleans / disinfects the treated water A liquid delivery pipe 101 and / or the semipermeable membrane treatment apparatus A2, and the second chemical mainly cleans / treats the treated water B liquid delivery pipe 103.
  • the third drug is injected mainly for cleaning / sterilizing the concentrated water feeding pipe 104, and the fourth drug is mainly injected for cleaning / sterilizing the semipermeable membrane treatment apparatus B6.
  • acids such as oxalic acid, citric acid, and sulfuric acid; reducing agents such as sodium bisulfite, sodium sulfite, sodium thiosulfate, and oxalic acid; alkalis such as sodium hydroxide and sodium ethylenediaminetetraacetate; hypochlorous acid Oxidizing agents such as sodium, chlorine dioxide and hydrogen peroxide; bactericides such as 2,2-dibromo-3-nitrilopropionamide (DBNPA) and chloramine; or other agents such as surfactants and scale inhibitors Can be appropriately selected and used.
  • reducing agents such as sodium bisulfite, sodium sulfite, sodium thiosulfate, and oxalic acid
  • alkalis such as sodium hydroxide and sodium ethylenediaminetetraacetate
  • hypochlorous acid Oxidizing agents such as sodium, chlorine dioxide and hydrogen peroxide
  • bactericides such as 2,2-dibromo-3-nitrilo
  • the semipermeable membrane is usually weak against strong oxidizing agents such as sodium hypochlorite, chlorine dioxide, and hydrogen peroxide
  • the semipermeable membrane treatment apparatus is mainly used except when applying a chlorine-resistant agent described later. It is preferable to use a bactericide other than the strong oxidizer for the first drug and the fourth drug used for cleaning / sterilizing the liquid.
  • these strong oxidizing agents are relatively inexpensive and have a strong sterilizing power, they are suitable for sterilizing pipes and can be used as the second and third chemicals.
  • the first chemical is mainly for cleaning / sterilizing the treated water A liquid feeding pipe 101 and / or the semipermeable membrane treatment apparatus A2. Distinguishing between cleaning / sterilization and cleaning / sterilization of the semipermeable membrane treatment apparatus A2, first, for cleaning / sterilization of the treated water A feed pipe 101, it is suitable for pipe cleaning / sterilization such as sodium hypochlorite.
  • a chemical that is suitable for pipe cleaning / sterilization but may reduce the performance of the semipermeable membrane treatment apparatus A2 is injected from the upstream side of the treated water A liquid-feeding pipe 101, and is moved along the downstream direction.
  • the treated water A liquid supply pipe 101 can be spread over a wider range. It is more preferable because it can be sterilized.
  • the concentration of the first drug in the concentrated water A at the time of discharge from the semipermeable membrane treatment apparatus A is such that the concentration of the first drug in the treated water A at the time of supply to the semipermeable membrane treatment apparatus A is It is preferred that the concentration be greater.
  • the chemical concentration of the concentrated water of the semipermeable membrane treatment apparatus A is the raw water of the semipermeable membrane treatment apparatus A. More preferably, the combination of the first drug and the semipermeable membrane treatment apparatus A is concentrated to X times the drug concentration at the inlet (primary side).
  • a reverse osmosis membrane is used as a semipermeable membrane, and a bactericide having a relatively high molecular weight such as 2,2-dibromo-3-nitrilopropionamide (DBNPA) is used, and the pH is adjusted. Then, a method of improving the separation performance by ionizing is mentioned.
  • DBNPA 2,2-dibromo-3-nitrilopropionamide
  • a first neutralizing agent that has an effect of eliminating or reducing the cleaning / sterilizing effect of the second drug is continuously or intermittently injected between the second drug injection unit and the water mixing unit. It is preferable to provide 1 neutralizer injection means.
  • the first neutralizing agent has an effect of eliminating or reducing the cleaning / sterilizing effect of at least one drug selected from the first drug, the third drug, and the fourth drug. It is more preferable that it is a harmony agent.
  • the first neutralizing agent is a neutralizing agent having an effect of eliminating or reducing the cleaning / disinfecting effect of the first drug and / or the third drug and / or the fourth drug.
  • the second drug degrades the function of the semipermeable membrane treatment apparatus B, before the concentrated water of the semipermeable membrane treatment apparatus A and the water to be treated B are mixed, By eliminating or reducing the effect, the cleaning / sterilizing effect of the first drug and / or the third drug and / or the fourth drug can be maintained.
  • the first neutralizing agent injection means is a first neutralizing agent injection means for intermittently injecting the first neutralizing agent
  • the first chemical injection means intermittently injects the first chemical.
  • First medicine injection means for injecting the first medicine, and when the first medicine injection means stops the injection of the first neutralizing agent by the first neutralizing agent injection means, the first medicine And / or the third drug injection means is a third drug injection means for intermittently injecting the third drug, and the third drug injection means.
  • the medicine injection means is a fourth medicine injection means for injecting the fourth medicine intermittently, and the fourth medicine injection hand But while stopping injection of the first neutralizing agent according to the first neutralizing agent injection means, and more preferably the fourth agent injection means for injecting a fourth drug.
  • a second meter 115 is provided between the second drug injecting means and the first neutralizing agent injecting means, and based on an instruction value of the second meter 115, the second drug injecting means It is further preferred to determine the dose of drug.
  • the first neutralizing agent and the second neutralizing agent described later are not particularly limited as long as they have an effect of eliminating or reducing the cleaning / sterilizing effect of the drug.
  • Specific combinations of drugs and corresponding neutralizing agents include those shown in Table 1.
  • the indication value of the second meter is a meter based on the same drug concentration as the second drug, and the drug concentration flowing into the first neutralizing agent injection point is estimated based on the command value of the second meter,
  • the injection amount of the first neutralizing agent By adjusting the injection amount of the first neutralizing agent, it is possible to neutralize the second agent without excess or deficiency.
  • By minimizing the injection amount of neutralizing agent it is possible to suppress the injection amount of neutralizing agent and negatively affect the downstream side by excessive neutralizing agent (reduction of semipermeable membrane performance, downstream chemicals / neutralization Disappearance / reduction of the effect of the agent, generation of toxic by-products, etc.).
  • a pH meter can be used as the second meter.
  • an ORP meter can be used as the second meter.
  • a chlorine concentration meter can also be used as the second meter.
  • the drug concentration is estimated from the indicated value of the second meter.
  • An arithmetic expression is determined in advance, a first neutralizing agent injection amount necessary for neutralizing the second drug is calculated from the arithmetic expression, and an amount of the first neutralization according to the first neutralizing agent injection amount is calculated.
  • At least one drug selected from the first drug, the second drug, and the third drug is provided between the water mixing unit and the fourth drug injection unit. It is preferable to provide a second neutralizing agent injection means for continuously or intermittently injecting the second neutralizing agent having an effect of eliminating or reducing the cleaning / sterilizing effect.
  • a second neutralizing agent injection means for continuously or intermittently injecting the second neutralizing agent having an effect of eliminating or reducing the cleaning / sterilizing effect.
  • the second neutralizing agent injecting means is a second neutralizing agent injecting means for injecting the second neutralizing agent intermittently, and the fourth chemical injecting means intermittently injects the fourth chemical.
  • the fourth medicine injection means stops the injection of the second neutralizing agent by the second neutralizing agent injection means, the fourth medicine is injected.
  • it is a fourth drug injection means for injecting.
  • the safety filter 113 for preventing the turbid component from flowing into the semipermeable membrane treatment apparatus B is installed on the mixed water feeding pipe 105, the water mixing means (water mixing tank 5) and the second are mixed. It is preferable to install between the neutralizing agent injection means.
  • the first drug and at least one drug selected from the second drug, the third drug, and the fourth drug are the same type of drug.
  • the agent is supplemented with the second agent, the third agent, or the fourth agent so that the cleaning / disinfecting effect is expressed. The injection amount can be reduced.
  • the second drug injection means is the second drug injection means for injecting the second drug when the first drug is injected by the first drug injection means, and / or
  • the third drug injection means is the third drug injection means for injecting the third drug when the first drug is injected by the first drug injection means, and / or the fourth drug. More preferably, the injection means is the fourth drug injection means for injecting the fourth drug when the first drug is injected by the first drug injection means.
  • the same kind of medicine means that the same kind of chemical is included.
  • the first drug and the second drug are acid drugs
  • the first drug and the second drug are regarded as the same type of drug.
  • alkali, strong oxidant, weak oxidant, cyan, and reducing agent systems are included.
  • the fourth medicine injection means and at least one medicine selected from the fourth medicine injected by the fourth medicine injection means, the first medicine, the second medicine, and the third medicine.
  • a first meter 114 is provided between the water mixing means and the fourth drug injecting means, and an injection amount of the fourth drug by the fourth drug injecting means based on an instruction value of the first meter 114 More preferably,
  • the indication value of the first meter 114 is a meter based on the same drug concentration as the fourth drug, and the concentration of the drug flowing into the fourth drug injection point is estimated based on the command value of the first meter 114.
  • a pH meter can be used as the first meter 114 when acid or alkali is used as the drug.
  • an ORP meter can be used as the first meter 114.
  • chlorine-containing water is used as a medicine
  • a chlorine concentration meter can be used as the first meter 114.
  • an arithmetic expression for estimating the medicine concentration from the instruction value of the first instrument 114 Is calculated in advance, the amount of drug injection required to express the cleaning / sterilizing effect is calculated from the arithmetic expression, and the amount of drug according to the amount of drug injection is injected so that the fourth drug feeding pump.
  • the indicated value of the first meter 114 is a meter based on the concentration of the neutralizing agent that neutralizes the fourth drug, and the neutralizer that flows into the fourth drug injection point based on the indicated value of the first meter 114
  • the effect of the fourth drug can be enhanced by estimating the concentration and adjusting the fourth drug addition amount and the start of injection.
  • the neutralizing agent is an acid or an alkali
  • a pH meter can be used as the first meter 114.
  • an ORP meter can be used as the first meter 114.
  • a chlorine concentration meter can also be used as the first meter 114.
  • the first drug and at least one drug selected from the second drug, the third drug, and the fourth drug are different drugs.
  • the second drug, the third drug, or the fourth drug uses a different type of drug from the first drug to clean / sterilize the piping or the semipermeable membrane treatment device, thereby generating a drug-resistant microorganism. It is possible to suppress and enhance the cleaning / sterilizing effect.
  • the second drug injection means is the second drug injection means for injecting the second drug when the first drug injection means is not injecting the first drug
  • the third medicine injection means is the third medicine injection means for injecting the third medicine when the first medicine is not injected by the first medicine injection means, and / or the fourth medicine. More preferably, the injection means is the fourth medicine injection means for injecting the fourth medicine when the first medicine is not injected by the first medicine injection means.
  • the different types of drugs mean that the chemical species as the main component are different, that is, they are not the same type of drugs.
  • the first drug is an acid and the second bactericide is a strong oxidant, they are considered different.
  • the fourth medicine injection means and at least one medicine selected from the fourth medicine injected by the fourth medicine injection means, the first medicine, the second medicine, and the third medicine.
  • a first meter 114 selected from a pH meter, an ORP meter, a chlorine concentration meter, an EC meter, a TOC meter, an ammonia meter, a TN meter, and a DO meter is provided between the water mixing unit and the fourth drug injection unit. More preferably, the injection amount of the fourth drug by the fourth drug injection means is determined based on the indicated value of the first meter 114.
  • the indicated value of the first meter 114 is a meter based on the concentration of the first drug, the second drug or the third drug, and the inflow water flowing into the fourth drug injection point based on the indicated value of the first meter 114
  • a pH meter can be used as the first meter 114 when acid or alkali is used as the drug.
  • an ORP meter can be used as the first meter 114.
  • a chlorine concentration meter can be used as the first meter 114.
  • an EC meter can be used as the first meter 114.
  • an organic acid such as citric acid
  • a TOC meter can be used as the first meter 114.
  • ammonia is used as the medicine
  • an ammonia meter can be used as the first meter 114.
  • a medicine containing nitrogen such as ammonia or chloramine is used as the medicine
  • a TN meter can be used as the first meter 114.
  • an agent that changes dissolved oxygen, such as sodium nitrite is used as the agent, a DO meter can be used as the first instrument 114.
  • the indication value of the first meter 114 is a meter based on the neutralizing agent concentration that neutralizes the fourth agent, and the concentration of the neutralizing agent flowing into the fourth agent injection point based on the indication value of the first meter 114 is determined.
  • the effect of the fourth drug can be enhanced.
  • the neutralizing agent is an acid or an alkali
  • a pH meter can be used as the first meter 114.
  • an ORP meter can be used as the first meter 114.
  • a chlorine concentration meter can also be used as the first meter 114.
  • the treatment water A or the treatment water B contains a strong oxidizing agent such as free chlorine to the extent that the semipermeable membrane is deteriorated, the semipermeable membrane treatment device A2 or the semipermeable membrane treatment device B6.
  • a strong oxidizing agent such as free chlorine
  • the system shown in FIG. 2 (the inventions of claims 14 and 15) is preferable.
  • an acid is used to reliably reduce and remove free chlorine from the water supplied to the semipermeable membrane.
  • an ORP meter is installed in the tank for injecting the fifth medicine, and the injection amount is adjusted so that the water in the tank has a specified ORP value, ORP Meter, drug injection point, ORP meter in order from the upstream side.
  • the first ORP meter 116 is upstream of the injection point of the fifth drug delivery pump 51
  • the second ORP meter 117 is downstream of the injection point
  • the first ORP meter 118 is upstream of the injection point of the fifth drug delivery pump 61
  • the injection point is downstream.
  • the second ORP meter 119 is installed at the same time, and the injection start / stop of the fifth drug is performed according to the respective ORP values.
  • the concentrated water A is water in which the water to be treated A is concentrated
  • the ORP value may exceed the specified value due to the water quality fluctuation of the water to be treated A.
  • the concentrated water A is mixed with the water to be treated B, there is a high possibility that the semipermeable membrane B is deteriorated, so that it is not used as the supply water to the semipermeable membrane B. It is preferable to discharge. Therefore, in FIG. 3 (flow diagram showing one embodiment of a fresh water generation system to which the invention of claim 16 is applied), the third ORP meter 120 for measuring the ORP value of the concentrated water A is connected to the concentrated water A feed pipe 104.
  • the three-way valve 121 is switched so that the outlet of the concentrated water A is on the drain pipe side from the mixed water tank, and the concentrated water A is used in the system. Drain outside.
  • the semi-permeable membrane treatment is stopped by stopping the booster pump 112 so that the semipermeable membrane treatment apparatus B6 is not damaged by the change in the mixed water amount or the osmotic pressure of the mixed water.
  • the semipermeable membrane treatment apparatus A is a semipermeable membrane treatment apparatus provided with a chlorine-resistant semipermeable membrane, and the first drug is a chlorinated drug.
  • a chlorine-based chemical such as sodium hypochlorite, which is usually used for pipe cleaning / sterilization, can be used as the first chemical.
  • the concentrated water pipe of the permeable membrane processing apparatus A and the semipermeable membrane processing apparatus B can be used for cleaning / sterilization.
  • the semipermeable membrane treatment apparatus B6 is a semipermeable membrane treatment apparatus provided with a chlorine-resistant semipermeable membrane, and at least one agent selected from the second agent, the third agent, and the fourth agent is a chlorine-based one. A drug is preferred. By taking this mode, it becomes possible to clean / sterilize the semipermeable membrane treatment apparatus B6 using the chlorinated chemical after pipe cleaning as it is.
  • the chlorine-resistant semipermeable membrane means that sodium chloride is blocked after an 1500 ppm aqueous solution of sodium chloride adjusted to pH 6.5 is operated for 30 minutes at 25 ° C. and operating pressure of 5 kg / cm 2.
  • the rate was set as the blocking rate A, and the same semipermeable membrane was immersed in an aqueous solution adjusted to pH 6.5 with potassium dihydrogen phosphate by adding 100 ppm of sodium hypochlorite to the above sodium chloride aqueous solution,
  • the sodium chloride rejection rate after operating for 30 minutes under an operating pressure of 5 kg / cm 2 is defined as the rejection rate B, it is a semipermeable membrane that satisfies B / A ⁇ 0.9. Examples thereof include a membrane and a polyamide membrane possessing chlorine resistance.
  • the semipermeable membrane treatment apparatus B6 can be subjected to chemical cleaning with this chloramine.
  • the semipermeable membrane treatment apparatus B6 is a polyamide-based semipermeable membrane and is deteriorated by chlorine-containing water, it is preferable to suppress biofouling with chloramine.
  • the nitrogen-containing water is, for example, livestock agricultural wastewater, human waste, sewage, and the like containing nitrogen-containing substances in the water and biologically treated with the activated sludge method.
  • Nitrogen-containing substances contained in nitrogen-containing water are nitrogenous organic compounds such as ammoniacal nitrogen, amino acids, and amines. The nitrogen component in the nitrogen-containing organic compound reacts with chlorine to produce chloramine.
  • the nitrogen-based component contained in the nitrogen-containing water when most of the nitrogen-based component contained in the nitrogen-containing water is ammoniacal nitrogen, it reacts with chlorine by the following reaction to produce monochloramine.
  • the concentration of ammoniacal nitrogen in the nitrogen-containing water is preferably 0.003 mg / l or more, and free chlorine in the concentrated water A flowing into the mixed water tank 13 The concentration is preferably 7 mg / l or less.
  • the chloramine concentration can be obtained by obtaining the total chlorine concentration, which is the sum of the chloramine concentration and the free chlorine concentration, and subtracting the free chlorine concentration from that concentration.
  • the mixed water flowing into the semipermeable membrane treatment apparatus B6 is sampled, and the total chlorine concentration and free chlorine concentration are measured under normal measurement conditions by the DPD method and the current method, or the absorptiometric method is used.
  • the total chlorine concentration and free chlorine concentration can be measured with a continuous automatic measuring instrument.
  • a chlorine concentration meter is attached to the mixed water feeding pipe 105 to perform continuous measurement, and the chloramine concentration in the mixed water flowing into the semipermeable membrane treatment apparatus B6 is measured. By this measurement, the chloramine concentration and the free chlorine concentration are monitored and treated so as to be maintained within a predetermined range.
  • chlorine in water exists in the form of free chlorine and combined chlorine.
  • the chlorine contained in the chlorine-containing water is in the form of free chlorine, and reacts with the nitrogen-containing substance to form combined chlorine.
  • Bound chlorine is chlorine present in the form of chloramine.
  • Chloramine is a generic name for monochloramine (NH 2 Cl), dichloramine (NHCl 2 ) and trichloramine (NCl 3 ).
  • the bactericidal power of dichloramine is stronger than that of monochloramine, and trichloramine has no bactericidal power.
  • the production ratio of chloramine changes under the influence of chlorine concentration, amine compound concentration, pH and the like.
  • the bactericidal power of chloramine is about 1/10 compared with free chlorine, and the bad influence given to a semipermeable membrane is much smaller than free chlorine.
  • Free chlorine is chlorine existing in the form of hypochlorous acid (HClO) or hypochlorite ion (ClO ⁇ ) generated by the reaction of a chlorine agent with water, and has strong disinfecting power and oxidizing power. Since free chlorine has a strong oxidizing power, if free chlorine is contained in the inflow water of the semipermeable membrane, the semipermeable membrane will be deteriorated, so that free chlorine is contained in the inflow water of the RO membrane or NF membrane. In such a case, there arises a problem that the quality of the processing liquid deteriorates due to deterioration of the film.
  • HEO hypochlorous acid
  • ClO ⁇ hypochlorite ion
  • the chloramine concentration contained in the mixed water supplied to the permeable membrane processing apparatus B6 is preferably 0.01 to 5 mg / l. If the chloramine concentration is less than 0.01 mg / l, biofouling cannot be suppressed. Further, when the chloramine concentration is higher than 5 mg / l, the functional layer of the membrane is deteriorated.
  • the present invention is a fresh water generation method using a composite water treatment technique in which a plurality of membrane units using semipermeable membranes are arranged, and a plurality of treated waters A and B having different osmotic pressures such as sewage and seawater.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

 半透膜を用いた膜ユニットを複数配置した複合的水処理技術を利用した造水方法において、バイオフィルム形成によるトラブルを抑制し、かつ、注入する薬剤および中和剤を効率的に有効利用することができる造水方法を提供するために、被処理水A1を半透膜処理装置A2で処理して淡水を製造するとともに、半透膜処理装置A2で処理した際に生じる濃縮水Aを被処理水B4に混合させ、その混合水を半透膜処理装置B6で処理して淡水を製造する造水方法において、被処理水A1に第1薬剤を連続的あるいは間欠的に注入し、かつ、被処理水B4に第2薬剤を連続的あるいは間欠的に注入する。

Description

造水方法
 本発明は、複合的な水処理技術を利用した造水方法に関するものであり、浸透圧が異なる複数の被処理水A、Bを原水とし、淡水化技術により淡水を製造する造水方法に関するものである。
 近年、分離膜に関する技術開発が進み、省スペース、省力化およびろ過水質向上等の特長を有するため、水処理をはじめ様々な用途での使用が拡大している。例えば、精密ろ過膜や限外ろ過膜は、河川水や地下水や下水処理液から工業用水や水道水を製造する浄水プロセスへの適用や、海水淡水化逆浸透膜処理工程における前処理、膜分離活性汚泥法への適用が挙げられる。ナノろ過膜や逆浸透膜は、イオン類の除去や、海水淡水化、廃水再利用プロセスへの適用が挙げられる。
 水不足が叫ばれる昨今の状況から、ナノろ過膜/逆浸透膜による海水淡水化が盛んに行われているが、浸透圧より高い供給圧力を必要とするナノろ過膜/逆浸透膜ろ過法では、ナノろ過膜/逆浸透膜に原水を供給する際に「昇圧ポンプ」と呼ばれるポンプで加圧しなければならない。つまり、ナノろ過膜/逆浸透膜に供給される原水の塩濃度が高いほど浸透圧が高くなるため、昇圧ポンプによってより高く加圧する必要性が出てくることになり、昇圧ポンプを稼動させるためのエネルギーが必要になってくる。
 これらの問題を解決すべく、例えば、下水の高度処理と海水淡水化を統合した膜処理システムが開発されている(非特許文献1や非特許文献2)。この技術によると、膜分離活性汚泥法で下水を処理した後、逆浸透膜を用いて淡水を生産し、さらに、この逆浸透膜分離の際に副生する濃縮水を海水に合流させているため、供給する海水中の塩濃度が低下し、海水淡水化に使用される逆浸透膜分離の運転における昇圧ポンプの仕様を従来よりも低く抑えることができるようになり、より省エネルギーなシステムとなる。
 ところで、半透膜を用いる造水システムでは、一般的に、有機物や濁質の付着、金属イオン類のスケールや微生物の増殖によるバイオフィルムの形成などによって半透膜表面や半透膜処理装置内に閉塞現象が起き、造水量の低下や圧力の上昇等のトラブルを引き起こすことがある。特に、バイオフィルムの形成は、原水由来の微生物や基質(炭素源や栄養塩)が主たる原因であり、微生物が増殖する箇所は、半透膜表面や半透膜処理装置内だけではなく、その上流の配管内も含まれるため、トラブルになることが多い。配管内で形成されたバイオフィルムが断続的に剥がれると、配管やタンク等の流路の閉塞や、上記のような半透膜処理装置のトラブルを促進させることとなる。このようなトラブルを抑制するためには、半透膜処理装置および配管を殺菌しておくことが必要となる。また、下水のような有機物の多い原水を半透膜処理する場合は、有機物が膜表面に付着し、それを基に微生物が増殖しやすくなるため、薬剤による半透膜処理装置の洗浄を行い、有機物を除去する必要がある。
 非特許文献1、非特許文献2に記載されたような下水の高度処理と海水淡水化を統合した造水システムの場合、下水を膜分離活性汚泥法で処理した水を原水として逆浸透膜処理し淡水を得るが、通常廃棄する逆浸透膜濃縮水を海水に混合してさらに逆浸透膜で処理することとなる。濃縮水は、微生物の基質となる炭素源や栄養塩が生物処理水より濃縮されているため、微生物が増殖しやすい環境となり、濃縮水配管に微生物膜が形成し、後段の逆浸透膜がトラブルを引き起こしてしまうという問題点があった。また、先述した下水の高度処理と海水淡水化を統合した造水システムにおいては、前段の逆浸透膜に使用した薬剤が濃縮水配管を経由して後段の逆浸透膜にも通水されるため、前段の逆浸透膜に使用した薬剤を濃縮水配管と後段の逆浸透膜でも再利用できるというメリットを有するが、薬剤を再利用する際には洗浄/殺菌効果が低下している場合があり、また前段の逆浸透膜、濃縮水配管、後段の逆浸透膜では最適な薬剤が異なる場合があるために、濃縮水配管と後段の逆浸透膜では洗浄/殺菌効果が不十分であるという問題点があった。
 さらに、海水側も取水直後に次亜塩素酸ナトリウムなどの薬剤を添加することが知られているが、配管殺菌のために消失したり、下水側の逆浸透膜濃縮水との合流・混合後に希釈されたりするなどして、その後の洗浄/殺菌効果が不十分となり、混合水配管内にバイオフィルムが形成し、混合水配管や逆浸透膜処理装置、またはその保安フィルターを閉塞してしまうことがあった。さらに、海水と下水側の逆浸透膜濃縮水との合流・混合後に、双方の薬剤または中和剤が混合されることによって、洗浄/殺菌効果の低減や有害ガスの発生などの問題があった。さらに、後段の逆浸透膜処理装置の供給水に薬剤を注入する際、同種の薬剤が上流より供給されているにも関わらず、新規に注入するなどして過分に薬剤を注入する、あるいは、上流より供給される薬剤や中和剤の効果によって新たに注入する薬剤の効果が低減されるなどの問題があった。
 また、特許文献1に記載されているように、少なくとも1つの薬剤を逆浸透膜の供給水と濃縮水とに添加し、濃縮水を供給水に循環して薬剤を再利用する方法が知られているが、異なる複数種の原水を処理するシステムに関する方法ではなく、複合的な水処理技術を利用した造水システムにおいて有効に薬剤を利用し、確実に配管やタンク等を洗浄/殺菌できる方法は従来の技術にはなかった。
米国特許出願公開第2006/0096920号公報
"神鋼環境ソら4者 経産省のモデル事業 周南市で実証実験"、[online]、平成21年3月5日、日本水道新聞、[平成21年7月2日検索]、インターネット< http://www.suido-gesuido.co.jp/blog/suido/2009/03/post_2780.html> "「低炭素社会に向けた技術シーズ発掘・社会システム実証モデル事業」の採択について"、[online]、平成21年3月2日、東レ株式会社プレスリリース、[平成21年7月2日検索]、インターネット< http://www.toray.co.jp/news/water/nr090302.html>
 本発明の目的は、半透膜を用いた膜ユニットを複数配置した複合的水処理技術を利用した造水方法において、バイオフィルム形成によるトラブルを抑制し、かつ、注入する殺菌剤および中和剤を効率的に有効利用することができる造水システムを提供することにある。
 上記目的を達成するために、本発明における造水方法は、以下の構成のいずれかからなる。
 (1)被処理水Aを半透膜処理装置Aで処理して淡水を製造するとともに、半透膜処理装置Aで処理した際に生じる濃縮水Aを被処理水Bに混合させ、その混合水を半透膜処理装置Bで処理して淡水を製造する造水方法において、被処理水Aに第1薬剤を連続的あるいは間欠的に注入し、かつ、被処理水Bに第2薬剤を連続的あるいは間欠的に注入することを特徴とする造水方法。
(2)前記濃縮水Aに、第3薬剤を連続的もしくは間欠的に注入すること、および/または、前記混合水に、第4薬剤を連続的もしくは間欠的に注入することを特徴とする(1)に記載の造水方法。
(3)前記半透膜処理装置Aからの排出時の前記濃縮水Aにおける前記第1薬剤の濃度が、半透膜処理装置Aへの供給時の被処理水Aにおける第1薬剤の濃度より大きいことを特徴とする(1)または(2)のいずれかに記載の造水方法。
 (4)前記第2薬剤の注入手段と、前記濃縮水Aと前記被処理水Bとを混合する水混合手段との間に、第2薬剤の洗浄効果や殺菌効果を消失あるいは低減させる効果のある第1中和剤を連続的もしくは間欠的に注入することを特徴とする(1)~(3)のいずれかに記載の造水方法。
(5)前記第1中和剤が、前記第1薬剤、前記第3薬剤、前記第4薬剤から選ばれる少なくとも1つの薬剤の洗浄効果や殺菌効果を消失あるいは低減させる効果のある中和剤であることを特徴とする(4)に記載の造水方法。
(6)前記第1中和剤を間欠的に注入し、かつ、第1中和剤の注入を停止している時に、第1薬剤を注入すること、および/または、第1中和剤の注入を停止している間に、第3薬剤を注入すること、および/または、第1中和剤の注入を停止している間に、第4薬剤を注入することを特徴とする(5)に記載の造水方法。
 (7)前記濃縮水Aと前記被処理水Bとを混合する水混合手段と、前記第4薬剤の注入手段との間に、前記第1薬剤、前記第2薬剤、前記第3薬剤から選ばれる少なくとも1つの薬剤の洗浄効果や殺菌効果を消失あるいは低減させる効果のある第2中和剤を連続的もしくは間欠的に注入することを特徴とする(2)~(6)のいずれかに記載の造水方法。
(8)前記第2中和剤および前記第4薬剤を間欠的に注入し、かつ、第2中和剤の注入を停止している時に、第4薬剤を注入することを特徴とする(7)に記載の造水方法。
(9)前記第1薬剤と、前記第2薬剤、前記第3薬剤、前記第4薬剤から選ばれる少なくとも1つの薬剤とが同種の薬剤である場合に、同種の薬剤の少なくとも一部が、第1薬剤と混合するように同種の薬剤を注入することを特徴とする(1)~(8)のいずれかに記載の造水方法。
 (10)前記第4薬剤と、前記第1薬剤、前記第2薬剤、前記第3薬剤から選ばれる少なくとも1つの薬剤とが同種の薬剤である場合に、同種の薬剤の少なくとも一部が、第4薬剤と混合するように同種の薬剤を注入することを特徴とする(2)~(8)のいずれかに記載の造水方法。
(11)前記第1薬剤と、前記第2薬剤、前記第3薬剤、前記第4薬剤から選ばれる少なくとも1つの薬剤とが異種の薬剤である場合に、異種の薬剤が、第1の薬剤と混合しないように異種の薬剤を注入することを特徴とする(1)~(8)のいずれかに記載の造水方法。
(12)前記第4薬剤と、前記第1薬剤、前記第2薬剤、前記第3薬剤から選ばれる少なくとも1つの薬剤とが異種の薬剤である場合に、異種の薬剤が、第4の薬剤と混合しないように異種の薬剤を注入することを特徴とする(2)~(8)のいずれかに記載の造水方法。
 (13)前記濃縮水Aと前記被処理水Bとを混合する水混合手段と、前記第4薬剤の注入手段との間にpH計、ORP計、塩素濃度計、EC計、TOC計、アンモニア計、TN計、DO計から選ばれる第1計器を備え、第1計器の指示値に基づいて、第4薬剤の注入量を決定することを特徴とする(10)に記載の造水方法。
(14)前記第1薬剤、前記第2薬剤、前記第3薬剤、前記第4薬剤から選ばれる少なくとも1つの薬剤が酸もしくはアルカリのいずれかである場合に、該薬剤の注入点よりも上流で、液のORP値を規定値以内に調整することを特徴とする(1)~(13)のいずれかに記載の造水方法。
(15)前記第1薬剤、前記第2薬剤、前記第3薬剤、前記第4薬剤から選ばれる少なくとも1つの薬剤が酸もしくはアルカリのいずれかである場合に、薬剤が酸もしくはアルカリである全ての薬剤の注入手段より上流側に、液のORP値を測定するための第1ORP計と、該液に第5薬剤として酸化剤あるいは還元剤を連続的あるいは間欠的に注入するための第5薬剤注入手段と、第5薬剤が注入された液のORP値を測定するための第2ORP計とを、上流側からその順で備え、第5薬剤注入手段で注入する酸化剤あるいは還元剤の注入開始を、前記第1ORP計での測定値により決定し、注入停止を、前記第2ORP計での測定値により決定することを特徴とする(14)に記載の造水方法。
 (16)濃縮水AのORP値を測定し、該ORP値が規定値を超えたときに、濃縮水Aを装置外に排出し、かつ、前記半透膜処理装置Bの半透膜処理を停止することを特徴とする(1)~(15)のいずれかに記載の造水方法。
(17)前記半透膜処理装置Aが、耐塩素性半透膜を備えた半透膜処理装置であり、かつ、前記第1薬剤が塩素系薬剤であることを特徴とする(1)~(16)のいずれかに記載の造水方法。
(18)前記半透膜処理装置Bが、耐塩素性半透膜を備えた半透膜処理装置であり、かつ、前記第2薬剤、前記第3薬剤、前記第4薬剤から選ばれる少なくとも1つの薬剤が塩素系薬剤であることを特徴とする(1)~(17)のいずれかに記載の造水方法。
(19)前記第2薬剤が塩素系薬剤であり、かつ、前記被処理水Aとして窒素含有水を供給すること、および/または、被処理水Aあるいは前記濃縮水Aあるいは前記混合水に窒素含有薬剤を注入することを特徴とする(1)~(17)のいずれかに記載の造水方法。
 本発明により得られる効果は以下の通りである。
 請求項1の発明では、被処理水Aに注入した第1薬剤は、被処理水Aを半透膜処理装置Aに送液するための配管と、半透膜処理装置Aとを洗浄/殺菌した後に、少なくとも一部が濃縮水Aに混入し、濃縮水Aを水混合手段に送液するための配管を洗浄/殺菌する。さらに、第1薬剤を含んだ濃縮水Aは被処理水Bと混合するため、濃縮水Aと被処理水Bとを混合する水混合手段と、半透膜処理装置Bとの洗浄/殺菌に必要な薬剤の少なくとも一部をまかなうことができる。また、被処理水Bに注入した第2薬剤は、被処理水Bを半透膜処理装置Bに送液するための配管と、水混合手段と、半透膜処理装置Bとを洗浄/殺菌する。このように、上流の2カ所において薬剤を注入するため、少なくとも微生物が発生しやすい被処理水や濃縮水が接触する半透膜処理装置およびその上流の配管は全て薬剤と接触するため、洗浄/殺菌効果を得ることができる。
 請求項2の発明では、第3薬剤を連続的もしくは間欠的に注入することによって、半透膜処理装置Aの濃縮水A配管を効果的に洗浄/殺菌することが可能である。濃縮水Aは、半透膜処理装置Aの原水を濃縮したものであり、微生物の基質濃度が高くなるため、配管内にバイオフィルムが形成しやすい。また、半透膜処理装置、配管それぞれに適した異なる薬剤を利用する、半透膜処理装置によって薬剤が消化されてしまう場合に補填することなどによって、洗浄/殺菌効果の向上、薬剤使用量低下を図ることが可能である。
 また、混合水に、第4薬剤を連続的もしくは間欠的に注入することによって、半透膜処理装置Bを効果的に殺菌可能である。上流側に第1薬剤および/または第2薬剤および/または第3薬剤を添加するが、薬剤が洗浄/殺菌効果を発揮するのに伴い、その効果は次第に消費されていくため、洗浄/殺菌効果が不十分となる場合がある。また、配管用とは異なる半透膜処理装置用の薬剤を使用することによって、洗浄/殺菌効果の向上を図ることも可能である。
 請求項3の発明では、半透膜処理装置Aの濃縮水A側に残余する薬剤の濃度を維持可能な第1薬剤と半透膜処理装置Aとの組合せとすることによって、濃縮水A配管の洗浄/殺菌効果を期待することができる。さらに、濃縮水Aが、被処理水Bと混合しX倍に希釈される場合、濃縮水Aの薬剤濃度が、半透膜処理装置Aの原水入口(一次側)の薬剤濃度のX倍に濃縮されるような第1薬剤と半透膜処理装置Aとの組合せとすることによって、水混合手段および混合水配管の洗浄/殺菌効果を期待することができる。
 請求項4の発明では、特に、第2薬剤が、半透膜処理装置Bの機能を低下させてしまう場合や、半透膜処理装置Aの濃縮水A側から供給される薬剤(第1薬剤および/または第2薬剤)の効果を消失あるいは低減させてしまう場合、これらを回避することが可能となる。
 特に、請求項5の発明のように、前記第1中和剤が、前記第1薬剤および/または前記第3薬剤および/または前記第4薬剤の洗浄/殺菌効果を消失あるいは低減させる効果のある中和剤であり、かつ、第2薬剤が、半透膜処理装置Bの機能を低下させてしまう場合、半透膜処理装置Aの濃縮水Aと被処理水Bとが混合される前に、第2薬剤の効果を消失あるいは低減させてしまうことによって、第1薬剤および/または第3薬剤および/または第4薬剤の洗浄/殺菌効果を持続させることが可能である。
 さらに、請求項6の発明のように、第1中和剤を注入しないときに、第1薬剤および/または第3薬剤および/または第4薬剤を注入することによって、第1中和剤と、第1薬剤および/または第3薬剤および/または第4薬剤とが接触する機会をさらに低減することが可能であり、第1薬剤および/または第3薬剤および/または第4薬剤の洗浄/殺菌効果を持続させることが可能である。
 請求項7の発明では、第1薬剤、第2薬剤、第3薬剤のいずれかの薬剤剤が半透膜処理装置Bの機能を低減させてしまう場合、これらの薬剤が半透膜処理装置Bに供給される前に、その効果を消失あるいは低減させてしまうことが好ましい。よって、これらの薬剤が半透膜処理装置Bに供給される前に第2中和剤を注入し薬剤の効果を低減させてしまうことにより、半透膜処理装置Bの機能を維持することができる。しかし、それだけでは、半透膜処理装置Bの洗浄/殺菌が不十分となるため、第2中和剤を注入した後に第4薬剤を注入することで、半透膜処理装置Bを洗浄/殺菌することができる。
 ここで、第2中和剤によって第4薬剤の洗浄/殺菌効果が消失もしくは低減される場合には、請求項8の発明のように、第2中和剤の注入停止時に第4薬剤を注入することによって、混合水中に残存する第2中和剤によって第4薬剤の効果を消失もしくは低減することを抑制し、半透膜処理装置Bの洗浄/殺菌効果を高めることができる。
 請求項9の発明では、主に半透膜処理装置Aを殺菌するために注入される第1薬剤と同種の薬剤を第2薬剤あるいは第3薬剤あるいは第4薬剤に用いることによって、半透膜処理装置Aの濃縮水Aに残存する第1薬剤を有効利用することが可能となる。一般的に、薬剤は、一定濃度以上で洗浄/殺菌効果が発現すると考えられるため、第2薬剤あるいは第3薬剤あるいは第4薬剤を洗浄/殺菌効果が発現されるように補充することで、薬剤注入量を削減することができる。特に、第1薬剤の注入時に第2薬剤あるいは第3薬剤あるいは第4薬剤を注入することで、洗浄/殺菌効果が発現する必要最小限の薬剤濃度に調整することが可能となる。
 請求項10の発明では、第4薬剤の注入点より上流側で注入される第1薬剤あるいは第2薬剤あるいは第3薬剤と同種の薬剤を、主に半透膜処理装置Bを洗浄/殺菌するために注入される第4薬剤に用いることによって、上流側で注入された残存薬剤を有効利用することが可能となる。一般的に、薬剤は、一定濃度以上で洗浄/殺菌効果が発現すると考えられるため、洗浄/殺菌効果が発現されるように第4薬剤を補充することで、薬剤注入量を削減することができる。
 特に、請求項13の発明のように、水混合手段と第4薬剤の注入点との間にpH計、ORP計、塩素濃度計、EC計、TOC計、アンモニア計、TN計、DO計から選ばれる第1計器を備え、該第1計器の指示値が第4薬剤と同種の薬剤濃度に基づく計器であり、該第1計器の指示値に基づいて第4薬剤の注入点に流入する薬剤濃度を推定し、第4薬剤添加量を調整することによって、洗浄/殺菌効果を発現する薬剤濃度の過不足を抑制することが可能となる。また、該第1計器の指示値が第4薬剤を中和する中和剤濃度に基づく計器であり、該第1計器の指示値に基づいて第4薬剤注入点に流入する中和剤濃度を推定し、第4薬剤添加量や注入開始を調整することによって、第4薬剤の効果を高めることができる。
 ここで、pH(potential Hydrogen)とは、物質の酸性、アルカリ性の度合いを示すものである。pHが小さいほど酸性が強く、逆にpHが大きいほどアルカリ性が強いとされる。一般的に微生物はpHが6~8の間で繁殖しやすいため、殺菌するためにはpHを6未満、もしくは、8以上にすることが多い。また、膜の洗浄では、酸洗浄でpHを2~4、アルカリ洗浄でpHを9~11にすることで、有機物やスケールの除去を行うことが多い。本発明において、pHを測定するためのpH計としては、公知の測定機器を使用することができる。
 ORP(Oxidation-Reduction Potential)値とは、酸化還元電位の値であり、酸化還元反応における電子の授受の際に発生する電位のことである。酸化剤は、他の物質から電子を奪うため、ORP値はプラスになり、反対に、還元剤は、他の物質に電子を与えるため、ORP値はマイナスになる。さらに、ORP値がプラスに高いほうが酸化力は強く、マイナスに低いほうが還元力は大きいといえる。一般的に、遊離塩素のORP値は750mV以上を示すといわれ、強酸化剤とされている。本発明において、ORPを測定するためのORP計としては、公知の測定機器を使用することができる。
 塩素濃度とは、遊離塩素濃度もしくは遊離塩素と結合塩素とをあわせた濃度のことである。遊離塩素は強い酸化力で微生物を破壊するため殺菌効果がある。また、クロラミンのような結合塩素も遊離塩素に比べるとおよそ数分の1の効果ではあるが比較的強い殺菌効果をもつ。本発明において、塩素濃度を測定するための塩素濃度計としては、公知の測定機器を使用することができる。
 EC(Electronic Conductivity)は電気伝導度と呼ばれ、水中のイオンが移動することで流れた電気量を計測することで、水の中に含まれるイオン濃度の総量を表す。ECが高いほうがイオン濃度は高いといえ、薬剤の注入量を計測することができる。本発明において、ECを測定するためのEC計としては、公知の測定機器を使用することができる。
 TOC(Total Organic Carbon)は全有機炭素のことで、水中の酸化されうる有機物の全量を炭素の量で示したものである。クエン酸などの有機酸は炭素を含む薬剤であるため、TOCによって薬剤量を計測することができる。本発明において、TOCを測定するためのTOC計としては、公知の測定機器を使用することができる。
 アンモニアはアルカリであり、また、塩素と結合するとクロラミンを生成するため、殺菌効果を得ることができる。本発明において、アンモニアを測定するためのアンモニア計としては、公知の測定機器を使用することができる。
 TN(Total Nitrogen)は全窒素のことで、有機および無機(アンモニア態・亜硝酸態・硝酸態)の窒素化合物の総量である。クロラミンなどの窒素を含有する薬剤はTNによって薬剤量を計測することができる。本発明において、TNを測定するためのTN計としては、公知の測定機器を使用することができる。
 DO(Dissolved Oxygen)は溶存酸素のことである。微生物は酸素を好む好気性のものや酸素が無い状態を好む嫌気性のものがおり、好気性微生物は液中のDOが無くなると抑制され、嫌気性微生物は液中にDOが存在すると抑制される。そのため、亜硝酸ナトリウムのように液中のDOを減少させる薬剤を注入し、DOを制御することで、微生物の発生を抑制することができる。本発明において、DOを測定するためのDO計としては、公知の測定機器を使用することができる。
 請求項11の発明では、主に半透膜処理装置Aを洗浄/殺菌するために注入される第1薬剤と異種の薬剤を第2薬剤あるいは第3薬剤あるいは第4薬剤に用いることによって、第1薬剤注入点より下流の配管および半透膜処理装置Bの洗浄/殺菌効果を高めることが可能となる。一般的に、1種の薬剤のみを常時使用する場合、その薬剤に対する耐性を備えた微生物が発生しやすくなる。そこで、第2薬剤あるいは第3薬剤あるいは第4薬剤として第1薬剤とは異なる種の薬剤を用いて配管または半透膜処理装置を殺菌することによって、薬剤耐性を備えた微生物の発生を抑制し、殺菌効果を高めることができる。
 特に、第1薬剤の注入停止時に第2薬剤あるいは第3薬剤あるいは第4薬剤を注入することで、殺菌効果をさらに高めることができる。また、第1薬剤と第2薬剤あるいは第3薬剤あるいは第4薬剤とが、混合することによって、一方の殺菌効果を低減させてしまったり、有害物質が発生したりするなどの負の影響が発生する組合せの場合、そのような負の影響を回避することが可能となる。
 請求項12の発明では、第4薬剤注入点より上流側で注入される第1薬剤あるいは第2薬剤あるいは第3薬剤と異種の薬剤を、主に半透膜処理装置Bを殺菌するために注入される第4薬剤に用いることによって、半透膜処理装置Bの殺菌効果を高めることができる。
 請求項14の発明では、通常、半透膜は、次亜塩素酸ナトリウム、二酸化塩素、過酸化水素などの強酸化剤には弱いため、上流側でORP値を測定し、還元剤を注入する制御を行うことが多い。一方、配管や半透膜処理装置の洗浄/殺菌のために、薬剤として酸やアルカリを注入することがあるが、酸やアルカリはORP値を変化させる。そのため、酸やアルカリを注入する前に液のORP値を測定することで、残留塩素等の酸化剤によるORP値を正確に把握することができ、液中の残留塩素量等に応じた適正量の還元剤を注入することで、残留塩素を確実に失活させることができ、残留塩素による半透膜の劣化を防ぐことができる。
 さらに、請求項15の発明では、第5薬剤の注入点よりも上流に設置した第1ORP計での測定値が規定値を超えた場合に第5薬剤の注入を開始し、第5薬剤の注入点よりも下流に設置した第2ORP計での測定値が規定値の範囲内になった場合に第5薬剤の注入を停止することで、残留塩素等の半透膜を劣化しうる成分が失活されていない被処理水あるいは混合水が発生せず、半透膜の劣化を防ぐことができ、かつ、無駄な薬剤量を注入しないで済ませることができる。
 請求項16の発明では、濃縮水Aとして、半透膜処理装置Bを劣化させるORP値をもつ濃縮水が生成したときには、その濃縮水Aを弁から系外に排出することにより半透膜処理装置Bの劣化を防ぐことができる。これに伴い、半透膜処理装置Bへの供給水量は減少し、かつ、半透膜処理装置Bへの供給水の浸透圧が変化するため、半透膜処理装置Bの運転を停止することで半透膜処理装置Bの破損を防ぐことができる。
 請求項17の発明では、半透膜処理装置Aに耐塩素性半透膜を用いることによって、通常配管殺菌に利用される次亜塩素酸ナトリウムなどの塩素系薬剤を第1薬剤として利用可能であり、半透膜処理装置Aの洗浄/殺菌後もそのまま半透膜処理装置Aの濃縮水A配管や半透膜処理装置Bの洗浄/殺菌に利用可能である。
 請求項18の発明では、半透膜処理装置Bに耐塩素性半透膜を用い、通常配管殺菌に利用される次亜塩素酸ナトリウムなどの塩素系薬剤を第2薬剤または第3薬剤または第4薬剤として利用することによって、配管洗浄後の塩素系薬剤をそのまま利用して半透膜処理装置Bを洗浄/殺菌可能となる。
 請求項19の発明では、第2薬剤の塩素含有液と被処理水Aに含まれる窒素成分あるいは注入した窒素含有薬剤との混合により、クロラミンを発生させ、このクロラミンの殺菌効果により、半透膜処理装置Bを薬液洗浄することができる。半透膜処理装置Bが遊離塩素等の強酸化剤に耐性が無い場合は、クロラミンによる薬液洗浄が有効である。被処理水Aが下水や畜産農業廃水等で窒素成分を含有している場合には、濃縮水Aでの濃縮した窒素成分と、第2薬剤として注入した塩素含有液とが反応してクロラミンを形成する。被処理水Bを送液する配管等は洗浄/殺菌力の強い遊離塩素で洗浄/殺菌を行い、この遊離塩素を半透膜処理装置Bの劣化防止のために中和することなく、被処理水Aから流入する窒素成分と反応させクロラミンを生成させることで、半透膜処理装置Bを洗浄/殺菌することができる。
本発明に係る造水システムの一実施態様を示すフロー図である。 本発明に係る造水システムの別の一実施態様を示すフロー図である。 本発明に係る造水システムのさらに別の一実施態様を示すフロー図である。
 以下、本発明の望ましい実施の形態を、図面を用いて説明する。ただし、本発明の範囲がこれらに限られるものではない。
 図1は本発明を適用した造水システムの一実施態様のフローを示す図である。この造水システムは、被処理水A1を半透膜処理装置A2で半透膜処理する半透膜処理プロセスA100と、被処理水B4を半透膜処理装置B6で半透膜処理する半透膜処理プロセスB200とを具備する。この半透膜処理プロセスA100では、被処理水A1を半透膜処理装置A2に供給するための被処理水A送液配管101と、被処理水A送液配管101に設置する半透膜処理装置A2に被処理水A1を供給するための昇圧ポンプ111と、被処理水A送液配管101に連通する半透膜処理装置A2と、半透膜処理装置A2の2次側(膜透過水側)に連通する膜透過水配管102と、半透膜処理装置A2および/または被処理水A送液配管101を薬液洗浄するための第1薬剤用の第1薬剤タンク10と、第1薬剤を連続的もしくは間欠的に被処理水Aに注入する第1薬剤注入手段としての第1薬剤送液ポンプ11とを備えている。
 また、半透膜処理プロセスB200では、被処理水B4を混合水タンク5に供給するための被処理水B送液配管103と、半透膜処理装置A2の1次側(被処理水側)に連通し、濃縮水Aを水混合手段としての混合水タンク5に供給するための濃縮水A送液配管104と、被処理水B送液配管103と濃縮水A送液配管104とに連通し被処理水B4と濃縮水Aを混合し混合水を得るための混合水タンク5と、混合水を半透膜処理装置B6に供給するための混合水送液配管105と、混合水送液配管105に設置し、半透膜処理装置B6に混合水を供給するための昇圧ポンプ112と、混合水送液配管105に連通する半透膜処理装置B6と、半透膜処理装置B6の2次側(膜透過水側)に連通する膜透過水配管106と、半透膜処理装置B6の1次側(被処理水側)に連通する濃縮水配管107と、被処理水B送液配管103を薬液洗浄するための第2薬剤用の第2薬剤タンク20と、第2薬剤を被処理水Bに連続的もしくは間欠的に注入する第2薬剤注入手段としての第2薬剤送液ポンプ21とを備えている。
 ここで、前記濃縮水Aに、第3薬剤を連続的もしくは間欠的に注入する第3薬剤注入手段、および/または、前記混合水に、第4薬剤を連続的もしくは間欠的に注入する第4薬剤注入手段を備えていることが好ましい。
 ここにおいて、被処理水A1は、半透膜処理装置A2に供給されるための供給水を指す。また被処理水A1の性状・成分は、特に限定されるものではなく、例えば、下水、工場廃水、海水、かん水、湖沼水、河川水、地下水などであり、また、これらの原水に対し、活性汚泥処理、プレフィルター、精密ろ過膜処理、限外ろ過膜処理、活性炭処理、オゾン処理、紫外線照射処理などの生物学的および/または物理的および/または化学的な前処理を施したものを被処理水Aとし、半透膜処理装置A2で発生するファウリングを低減させても良い。被処理水B4についても、その性状・成分は被処理水Aと同様であるが、前記濃縮水Aの浸透圧が前記被処理水Bの浸透圧よりも低くなるように、原水を組合せれば、濃縮水Aを混合することによって被処理水Bの浸透圧を低下でき、半透膜処理設備Bに供給する水の昇圧水準を抑えることができる。
 このような浸透圧の関係とするためには、被処理水Aとして浸透圧の低い原水を用い、被処理水Bとして、浸透圧の高い原水を用いればよい。浸透圧の低い原水としては、塩分濃度が低い水を用い、浸透圧の高い原水としては、塩分濃度が高い水を用いることが好ましい。塩分濃度が低い水としては、一般的に、下水、産業廃水、河川水、あるいはこれらを前処理した後の処理水が挙げられる。また、塩分濃度が高い水としては、一般的に、海水、塩湖水、かん水が挙げられる。具体的には、被処理水Aとして下廃水を膜分離活性汚泥法で処理した2次処理水、被処理水Bとして海水とする組合せなどが例示される。
 また、上記の各種配管の途中に、活性汚泥処理、プレフィルター、精密ろ過膜処理、限外ろ過膜処理、活性炭処理、オゾン処理、紫外線照射処理などの生物学的および/または物理的および/または化学的な処理や中間タンクなどを設けてもよい。
 また、半透膜処理装置AおよびBは、装置内に備えた半透膜によって、透過水と濃縮水とに分離する機能を有すものであれば、特に形状および素材は限定されない。ここで、半透膜とは、被処理水中の一部の成分を透過させない半透性の膜であり、例えば溶媒を透過させ溶質を透過させない半透性の膜が挙げられる。水処理技術で使用される半透膜の一例としては、ナノろ過膜や逆浸透膜が挙げられる。ナノろ過膜あるいは逆浸透膜は、被処理水中に含まれる溶質を再生水として利用可能な濃度まで低減することができる性能を有していることが要求される。具体的には、塩分やミネラル成分等、多種のイオン、例えばカルシウムイオン、マグネシウムイオン、硫酸イオンのような二価イオンや、ナトリウムイオン、カリウムイオン、塩素イオンのような一価イオン、また、フミン酸(分子量M≧100,000)、フルボ酸(分子量M=100~1,000)、アルコール、エーテル、糖類などをはじめとする溶解性有機物を阻止する性能を有することが求められる。NF膜とは、操作圧力が1.5MPa以下で、分画分子量が200~1,000で、塩化ナトリウム阻止率90%以下の逆浸透ろ過膜と定義されており、それよりも分画分子量の小さく、高い阻止性能を有するものを逆浸透膜(RO膜)という。また、逆浸透膜でもナノろ過膜に近いものはルース逆浸透膜とも呼ばれる。
 ナノろ過膜や逆浸透膜は、中空糸膜や平膜の形状があり、いずれも本発明において適用することができる。また、取り扱いを容易にするため中空糸膜や平膜を筐体に収めて流体分離素子(エレメント)としたものを用いることができる。この流体分離素子は、ナノろ過膜や逆浸透膜として平膜状のものを用いる場合、例えば、多数の孔を穿設した筒状の中心パイプの周囲に、ナノろ過膜あるいは逆浸透膜とトリコットなどの透過水流路材と、プラスチックネットなどの供給水流路材とを含む膜ユニットを巻回し、これらを円筒状の筐体に収めた構造とするのが好ましい。複数の流体分離素子を直列あるいは並列に接続して分離膜モジュールとすることも好ましい。この流体分離素子において、供給水は一方の端部からユニット内に供給され、他方の端部に到達するまでの間にナノろ過膜あるいは逆浸透膜を透過した透過水が、中心パイプへと流れ、他方の端部において中心パイプから取り出される。一方、ナノろ過膜あるいは逆浸透膜を透過しなかった供給水は、他方の端部において濃縮水として取り出される。
 これらナノろ過膜あるいは逆浸透膜の膜素材としては、酢酸セルロース、セルロース系のポリマー、ポリアミド、及びビニルポリマーなどの高分子材料を用いることができる。代表的なナノろ過膜/逆浸透膜としては、酢酸セルロース系またはポリアミド系の非対称膜、及び、ポリアミド系またはポリ尿素系の活性層を有する複合膜を挙げることができる。
 また、被処理水A送液配管101、膜透過水配管102、被処理水B送液配管103、濃縮水A送液配管104、混合水送液配管105、膜透過水配管106、濃縮水配管107の各配管は、液体を移送する機能を有する素材・形状であれば特に限定するものではないが、移送する液体の性状、注入する薬品の性状、加える圧力に耐性のあるものが好ましい。
 昇圧ポンプ111および昇圧ポンプ112は、それぞれ被処理水Aおよび混合水を加圧し、半透膜処理装置に液体を供給・分離するための昇圧機能を有しているポンプである。対象液の浸透圧が低い場合は、対象液を供給することにより加圧する供給ポンプを設置し、また、対象液の浸透圧が高い場合は、対象液を送液するポンプと、膜透過を実施するために対象液を昇圧して半透膜処理装置に供給するための昇圧ポンプとを設置することが好ましい。
 水混合手段は、被処理水Bと濃縮水Aとを混合する機能を有するものであれば、その方法、形式は特に限定しない。前記の混合水タンク5による方法、ラインミキサーによる方法、送液ポンプを利用する方法などが例示される。例えば、混合水タンク5としては、混合水を貯えることができ、薬剤や中和剤などの薬液に劣化しなければ特に制限されるものではなく、コンクリート槽、繊維強化プラスチック槽、プラスチック槽などが用いられる。槽内攪拌のための攪拌機を設けてもよい。
 また、薬剤注入手段および後述の中和剤注入手段としては、配管途中に攪拌機付きのタンクを設け、該タンクに薬剤あるいは中和剤を注入し攪拌機で混合する方法や、昇圧ポンプよりも上流側で配管内に薬剤あるいは中和剤を注入し昇圧ポンプで混合する方法や、ラインミキサーを設置し混合する方法などがある。また、薬剤タンクおよび中和剤タンクは、薬剤や中和剤などの薬剤を貯えることができ、該薬剤で劣化しない材質であれば特に制限されるものではなく、繊維強化プラスチック槽、プラスチック槽などが用いられる。また、薬剤注入手段および後述の中和剤注入手段は、薬剤や中和剤を連続的に注入する連続注入式でも良く、タイマーやシグナルなどでON/OFFを切り替える間欠注入式としても良い。
 また、第1薬剤は、主として被処理水A送液配管101および/または半透膜処理装置A2を洗浄/殺菌するために、第2薬剤は、主として被処理水B送液配管103を洗浄/殺菌するために、第3薬剤は、主として濃縮水送液配管104を洗浄/殺菌するために、第4薬剤は、主として半透膜処理装置B6を洗浄/殺菌するために、注入される。具体的には、シュウ酸やクエン酸、硫酸などの酸; 重亜硫酸ナトリウム、亜硫酸ナトリウム、チオ硫酸ナトリウム、シュウ酸などの還元剤; 水酸化ナトリウム、エチレンジアミン四酢酸ナトリウムなどのアルカリ; 次亜塩素酸ナトリウムや、二酸化塩素、過酸化水素などの酸化剤; 2,2-ジブロモ-3-ニトリロプロピオンアミド(DBNPA)、クロラミンなどの殺菌剤; もしくは、界面活性剤、スケール防止剤などのその他の薬剤を、適宜選択して使用することができる。
 ただし、通常、半透膜は、次亜塩素酸ナトリウム、二酸化塩素、過酸化水素などの強酸化剤には弱いため、後述の耐塩素性薬剤を適用する場合を除き、主として半透膜処理装置を洗浄/殺菌するために用いる第1薬剤および第4薬剤には、強酸化剤以外の殺菌剤を用いることが好ましい。一方、これらの強酸化剤は、比較的安価でありかつ殺菌力が強いことから、配管の殺菌には適しており、第2薬剤および第3薬剤として利用可能である。ただし、下流の半透膜処理装置Bの性能を低減させないために、第2薬剤として強酸化剤を利用する場合には、後述の第1中和剤および/または第2中和剤にて、第3薬剤として強酸化剤を利用する場合には、後述の第2中和剤にて、重亜硫酸ナトリウムなどの還元剤中和剤を用いて完全に中和することが好ましい。
 なお、前記の通り、第1薬剤は、主として被処理水A送液配管101および/または半透膜処理装置A2を洗浄/殺菌するためのものであるが、被処理水A送液配管101の洗浄/殺菌と半透膜処理装置A2の洗浄/殺菌を区別し、まず被処理水A送液配管101の洗浄/殺菌のために、次亜塩素酸ナトリウムなど配管洗浄/殺菌には適しているが半透膜処理装置A2の性能を低減させる恐れのある薬剤を注入し、還元剤である重亜硫酸ナトリウムなどの中和剤で中和し、さらに、半透膜処理装置Aの性能を低減させる恐れのない薬剤(酸、殺菌剤、弱酸化剤、シアン系殺菌剤、還元剤など)を注入してもよい。この場合、配管洗浄/殺菌には適しているが半透膜処理装置A2の性能を低減させる恐れのある薬剤を被処理水A送液配管101の上流側から注入し、下流方向に沿って中和剤、半透膜処理装置Aの性能を低減させる恐れのない薬剤の順に注入することが好ましい。また、中和剤と半透膜処理装置Aの性能を低減させる恐れのない薬剤を半透膜処理装置A2の直前の位置で注入することで、被処理水A送液配管101をより広範囲で殺菌することができるためさらに好ましい。
 また、前記半透膜処理装置Aからの排出時の前記濃縮水Aにおける前記第1薬剤の濃度が、前記半透膜処理装置Aへの供給時の前記被処理水Aにおける前記第1薬剤の濃度より大きいことが好ましい。また、半透膜処理装置Aの濃縮水が、被処理水Bと混合しX倍に希釈される場合、半透膜処理装置Aの濃縮水の薬剤濃度が、半透膜処理装置Aの原水入口(一次側)の薬剤濃度のX倍に濃縮されるような第1薬剤と半透膜処理装置Aとの組合せとすることがより好ましい。その達成手段として具体的には、半透膜として逆浸透膜を用い、2,2-ジブロモ-3-ニトリロプロピオンアミド(DBNPA)などの比較的分子量の大きい殺菌剤を用いることや、pHを調整しイオン化させることで分離性能を高める方法などが挙げられる。
 さらに、前記第2薬剤注入手段と前記水混合手段との間に、前記第2薬剤の洗浄/殺菌効果を消失あるいは低減させる効果のある第1中和剤を連続的もしくは間欠的に注入する第1中和剤注入手段を備えていることが好ましい。この態様をとることにより、第2薬剤が、半透膜処理装置Bの機能を低下させてしまう場合や、半透膜処理装置Aの濃縮水側から供給される薬剤(第1薬剤および/または第2薬剤)の効果を消失あるいは低減させてしまう場合、これらを回避することが可能となる。
 上記態様の場合、特に、前記第1中和剤が、前記第1薬剤、前記第3薬剤、前記第4薬剤から選ばれる少なくとも1つの薬剤の洗浄/殺菌効果を消失あるいは低減させる効果のある中和剤であることがさらに好ましい。この態様をとることにより、前記第1中和剤が、前記第1薬剤および/または前記第3薬剤および/または前記第4薬剤の洗浄/殺菌効果を消失あるいは低減させる効果のある中和剤であり、かつ、第2薬剤が、半透膜処理装置Bの機能を低下させてしまう場合、半透膜処理装置Aの濃縮水と被処理水Bとが混合される前に、第2薬剤の効果を消失あるいは低減させてしまうことによって、第1薬剤および/または第3薬剤および/または第4薬剤の洗浄/殺菌効果を持続させることが可能となる。
 また、前記第1中和剤注入手段が、前記第1中和剤を間欠的に注入する第1中和剤注入手段であり、かつ、前記第1薬剤注入手段が、前記第1薬剤を間欠的に注入する第1薬剤注入手段であり、かつ、該第1薬剤注入手段が、該第1中和剤注入手段による該第1中和剤の注入を停止している時に、該第1薬剤を注入する第1薬剤注入手段であること、および/または、前記第3薬剤注入手段が、前記第3薬剤を間欠的に注入する第3薬剤注入手段であり、かつ、該第3薬剤注入手段が、該第1中和剤注入手段による該第1中和剤の注入を停止している間に、該第3薬剤を注入する第3薬剤注入手段であること、および/または、前記第4薬剤注入手段が、前記第4薬剤を間欠的に注入する第4薬剤注入手段であり、かつ、該第4薬剤注入手段が、該第1中和剤注入手段による該第1中和剤の注入を停止している間に、該第4薬剤を注入する第4薬剤注入手段であることがより好ましい。この態様をとることにより、第1中和剤と、第1薬剤および/または第3薬剤および/または第4薬剤とが接触する機会をさらに低減することが可能であり、第1薬剤および/または第3薬剤および/または第4薬剤の殺菌効果を持続させることが可能である。
 さらに、前記第2薬剤注入手段と前記第1中和剤注入手段との間に第2計器115を備え、該第2計器115の指示値に基づいて、該第2薬剤注入手段による前記第2薬剤の注入量を決定することがさらに好ましい。
 ここで、第1中和剤および後述の第2中和剤は、薬剤の洗浄/殺菌効果を消失あるいは低減させる効果のあるものであれば特に限定されるものはない。具体的な薬剤とそれに対応する中和剤の組合せとしては、表1にまとめられるようなものがある。
Figure JPOXMLDOC01-appb-T000001
 また、該第2計器の指示値が第2薬剤と同種の薬剤濃度に基づく計器であり、該第2計器の指示値に基づいて第1中和剤注入点に流入する薬剤濃度を推定し、第1中和剤注入量を調整することによって、第2薬剤を過不足なく中和することが可能となる。これにより、中和剤注入量を最低限とすることで、中和剤注入量の抑制および過分な中和剤による下流側への負の影響(半透膜性能低減、下流の薬剤・中和剤効果の消失・低減、有毒副生成物の発生等)を抑制することができる。具体的には、第2薬剤として酸あるいはアルカリを用いたときには、第2計器としてpH計を用いることができる。また、第2薬剤として酸化剤あるいは還元剤を用いたときには、第2計器としてORP計を用いることができる。また、第2薬剤として塩素含有水を用いたときには、第2計器として塩素濃度計も利用できる。
 また、該第2計器の指示値に基づいて、該第1中和剤注入手段による前記第1中和剤の注入量を決定する方法としては、第2計器の指示値から薬剤濃度を推定する演算式を予め決定し、その演算式から第2薬剤を中和するために必要な第1中和剤注入量を計算し、当該第1中和剤注入量に応じた量の第1中和剤を注入するように第1中和剤送液ポンプの流量を変動させる方法や、予め複数種の第1中和剤送液ポンプを準備し、第2計器の指示値に応じてどのポンプをON/OFFとするのかを決定し実行する方法などがある。
 また、前記第4薬剤注入手段を備え、かつ、前記水混合手段と該第4薬剤注入手段との間に、前記第1薬剤、前記第2薬剤、前記第3薬剤から選ばれる少なくとも1つの薬剤の洗浄/殺菌効果を消失あるいは低減させる効果のある第2中和剤を連続的もしくは間欠的に注入する第2中和剤注入手段を備えていることが好ましい。この態様をとることにより、第1薬剤、第2薬剤、第3薬剤のいずれかの薬剤が半透膜処理装置Bの機能を低減させてしまう場合、これらの薬剤が半透膜処理装置Bに供給される前に第2中和剤を注入し薬剤の効果を低減させてしまうことにより、半透膜処理装置Bの機能を維持することができる。
 さらに、前記第2中和剤注入手段が、前記第2中和剤を間欠的に注入する第2中和剤注入手段であり、かつ、前記第4薬剤注入手段が、前記第4薬剤を間欠的に注入する第4薬剤注入手段であり、かつ、該第4薬剤注入手段が、該第2中和剤注入手段による該第2中和剤の注入を停止している時に、該第4薬剤を注入する第4薬剤注入手段であることが好ましい。この態様をとることにより、混合水中に残存する第2中和剤によって第4薬剤の効果を消失もしくは低減することを抑制し、半透膜処理装置Bの洗浄/殺菌効果を高めることができる。
 ここで、混合水送液配管105上に、半透膜処理装置Bに濁質成分が流入するのを防ぐための保安フィルター113を設置するときには、水混合手段(水混合タンク5)と第2中和剤注入手段との間に設置することが好ましい。
 また、前記第1薬剤と、前記第2薬剤、前記第3薬剤、前記第4薬剤から選ばれる少なくとも1つの薬剤とが同種の薬剤であることが好ましい。この態様をとることにより、半透膜処理装置Aの濃縮水に残存する第1薬剤を有効利用することが可能となる。一般的に、薬剤は、一定濃度以上で洗浄/殺菌効果が発現すると考えられるため、第2薬剤あるいは第3薬剤あるいは第4薬剤を洗浄/殺菌効果が発現されるように補充することで、薬剤注入量を削減することができる。
 さらに、前記第2薬剤注入手段が、前記第1薬剤注入手段によって前記第1薬剤を注入している時に、前記第2薬剤を注入する該第2薬剤注入手段であること、および/または、前記第3薬剤注入手段が、前記第1薬剤注入手段によって前記第1薬剤を注入している時に、前記第3薬剤を注入する該第3薬剤注入手段であること、および/または、前記第4薬剤注入手段が、前記第1薬剤注入手段によって前記第1薬剤を注入している時に、前記第4薬剤を注入する該第4薬剤注入手段であることがさらに好ましい。この態様をとることにより、洗浄/殺菌効果が発現する必要最小限の薬剤濃度に調整することが可能となる。
 ここで、同種の薬剤とは、同じ化学種の薬品を含むことを意味する。例えば、第1薬剤と第2薬剤がともに酸系の薬剤であれば、第1薬剤と第2薬剤は同種の薬剤と見なす。アルカリ系、強酸化剤系、弱酸化剤系、シアン系、還元剤系も同様である。
 また、前記第4薬剤注入手段を備え、かつ、該第4薬剤注入手段によって注入される前記第4薬剤と、前記第1薬剤、前記第2薬剤、前記第3薬剤から選ばれる少なくとも1つの薬剤とが同種の薬剤であることが好ましい。この態様をとることにより、上流側で注入された残存薬剤を有効利用することが可能となる。一般的に、薬剤は、一定濃度以上で洗浄/殺菌効果が発現すると考えられるため、洗浄/殺菌効果が発現されるように第4薬剤を補充することで、薬剤注入量を削減することができる。
 さらに、前記水混合手段と前記第4薬剤注入手段との間に第1計器114を備え、該第1計器114の指示値に基づいて、該第4薬剤注入手段による前記第4薬剤の注入量を決定することがさらに好ましい。
 ここで、該第1計器114の指示値が第4薬剤と同種の薬剤濃度に基づく計器であり、該第1計器114の指示値に基づいて第4薬剤注入点に流入する薬剤濃度を推定し、第4薬剤添加量を調整することによって、洗浄/殺菌効果を発現する薬剤濃度の過不足を抑制することが可能となる。具体的には、薬剤として酸あるいはアルカリを用いたときには、第1計器114としてpH計を用いることができる。また、薬剤として酸化剤あるいは還元剤を用いたときには、第1計器114としてORP計を用いることができる。また、薬剤として塩素含有水を用いたときには、第1計器114として塩素濃度計も利用できる。
 また、該第1計器114の指示値に基づいて、該第4薬剤注入手段による前記第4薬剤の注入量を決定する方法としては、第1計器114の指示値から薬剤濃度を推定する演算式を予め決定し、その演算式から洗浄/殺菌効果を発現するために必要な薬剤注入量を計算し、当該薬剤注入量に応じた量の薬剤を、注入するように第4薬剤送液ポンプの流量を変動させる方法や、予め複数種の第4薬剤送液ポンプを準備し、第1計器114の指示値に応じてどのポンプをON/OFFとするのかを決定し実行する方法などがある。
 また、該第1計器114の指示値が第4薬剤を中和する中和剤濃度に基づく計器であり、該第1計器114の指示値に基づいて第4薬剤注入点に流入する中和剤濃度を推定し、第4薬剤添加量や注入開始を調整することによって、第4薬剤の効果を高めることができる。具体的には、該中和剤が酸あるいはアルカリである場合には、第1計器114としてpH計を用いることができる。また、該中和剤が酸化剤あるいは還元剤である場合には、第1計器114としてORP計を用いることができる。また、中和剤として塩素含有水である場合には、第1計器114として塩素濃度計も利用できる。
 また、前記第1薬剤と、前記第2薬剤、前記第3薬剤、前記第4薬剤から選ばれる少なくとも1つの薬剤とが異種の薬剤であることが好ましい。この態様をとることにより、第1薬剤注入点より下流の配管および半透膜処理装置Bの洗浄/殺菌効果を高めることが可能となる。一般的に、1種の薬剤のみを常時使用する場合、その薬剤に対する耐性を備えた微生物が発生しやすくなる。そこで、第2薬剤あるいは第3薬剤あるいは第4薬剤として第1薬剤とは異なる種の薬剤を用いて配管または半透膜処理装置を洗浄/殺菌することによって、薬剤耐性を備えた微生物の発生を抑制し、洗浄/殺菌効果を高めることができる。
 さらに、前記第2薬剤注入手段が、前記第1薬剤注入手段によって前記第1薬剤を注入していない時に、前記第2薬剤を注入する該第2薬剤注入手段であること、および/または、前記第3薬剤注入手段が、前記第1薬剤注入手段によって前記第1薬剤を注入していない時に、前記第3薬剤を注入する該第3薬剤注入手段であること、および/または、前記第4薬剤注入手段が、前記第1薬剤注入手段によって前記第1薬剤を注入していない時に、前記第4薬剤を注入する該第4薬剤注入手段であることであることがさらに好ましい。この態様をとることにより、洗浄/殺菌効果をさらに高めることができる。また、第1薬剤と第2薬剤あるいは第3薬剤あるいは第4薬剤とが、混合することによって、一方の洗浄/殺菌効果を低減させてしまったり、有害物質が発生したりするなどの負の影響が発生する組合せの場合、そのような負の影響を回避することが可能となる。
 ここで、異種の薬剤とは、主成分となる化学種の薬品が異なること、即ち、前記同種の薬剤ではないことを意味する。例えば、第1薬剤が酸であり、第2殺菌剤が強酸化剤であれば異種とみなす。
 また、前記第4薬剤注入手段を備え、かつ、該第4薬剤注入手段によって注入される前記第4薬剤と、前記第1薬剤、前記第2薬剤、前記第3薬剤から選ばれる少なくとも1つの薬剤とが異種の薬剤であることが好ましい。この態様をとることにより、半透膜処理装置Bの洗浄/殺菌効果を高めることができる。
 さらに、前記水混合手段と前記第4薬剤注入手段との間にpH計、ORP計、塩素濃度計、EC計、TOC計、アンモニア計、TN計、DO計から選ばれる第1計器114を備え、第1計器114の指示値に基づいて、該第4薬剤注入手段による前記第4薬剤の注入量を決定することがさらに好ましい。
 ここで、第1計器114の指示値が第1薬剤または第2薬剤または第3薬剤の濃度に基づく計器であり、第1計器114の指示値に基づいて第4薬剤注入点に流入する流入水に第1薬剤または第2薬剤または第3薬剤が含まれないこと、もしくは一定濃度以下であることを確認し、第4薬剤注入の開始や注入量を調整することによって、洗浄/殺菌効果をさらに高めることが可能となる。具体的には、薬剤として酸あるいはアルカリを用いたときには、第1計器114としてpH計を用いることができる。また、薬剤として酸化剤あるいは還元剤を用いたときには、第1計器114としてORP計を用いることができる。また、薬剤として塩素含有水を用いたときには、第1計器114として塩素濃度計も利用できる。また、薬剤のECを測定し注入量を決定する場合は、第1計器114としてEC計を用いることができる。また、薬剤としてクエン酸などの有機酸を用いたときには、第1計器114としてTOC計を用いることができる。また、薬剤としてアンモニアを用いたときには、第1計器114としてアンモニア計を用いることができる。また、薬剤としてアンモニアやクロラミンのような窒素を含む薬剤を用いたときには、第1計器114としてTN計を用いることができる。また、薬剤として亜硝酸ナトリウムのような溶存酸素を変化させる薬剤を用いたときには、第1計器114としてDO計を用いることができる。
 また、第1計器114の指示値が第4薬剤を中和する中和剤濃度に基づく計器であり、第1計器114の指示値に基づいて第4薬剤注入点に流入する中和剤濃度を推定し、第4薬剤添加量や注入開始を調整することによって、第4薬剤の効果を高めることができる。具体的には、該中和剤が酸あるいはアルカリである場合には、第1計器114としてpH計を用いることができる。また、該中和剤が酸化剤あるいは還元剤である場合には、第1計器114としてORP計を用いることができる。また、中和剤として塩素含有水である場合には、第1計器114として塩素濃度計も利用できる。
 上記を満足する第1薬剤、第2薬剤、第3薬剤、第4薬剤、第1中和剤、第2中和剤の例を表2-1~表2-15に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 また、被処理水Aや被処理水B中に半透膜を劣化させる程度の遊離塩素等の強酸化剤が含まれている場合には、半透膜処理装置A2や半透膜処理装置B6を劣化させないために、ORP値制御で遊離塩素を還元剤により還元することが好ましいが、この場合において、ORP計による測定値が、注入する酸やアルカリによる悪影響を受けないようにするためには、図2に示すようなシステム(請求項14、15の発明)とすることが好ましい。第1薬剤タンク11あるいは第2薬剤タンク20あるいは第3薬剤タンク30あるいは第4薬剤タンク40が酸もしくはアルカリの場合、半透膜に供給する水から遊離塩素を確実に還元除去するために、酸もしくはアルカリを注入する場所よりも上流側で遊離塩素を還元させることが好ましい。混合水タンク5よりも上流に酸もしくはアルカリを注入する場合は、被処理水Aと被処理水Bとの両方で遊離塩素を還元除去することが好ましい。また、混合水タンク5よりも下流に酸もしくはアルカリを注入する場合は、混合水で遊離塩素を除去するのが、薬剤タンクが1台でよいため、好ましい。そのため、図2では、第1薬剤が酸もしくはアルカリの場合において、半透膜処理プロセスA100において、第5薬剤タンク50内の第5薬剤を第5薬剤送液ポンプ51により被処理水Aに注入し、また、半透膜処理プロセスBにおいては、第5薬剤タンク60内の第5薬剤を第5薬剤送液ポンプ61により被処理水Bに注入している。
 第5薬剤を注入する量を調整する方法としては、第5薬剤を注入するタンクにORP計を設置し、タンク内の水が規定のORP値になるように注入量を調整する方法や、ORP計、薬剤注入点、ORP計の順で上流側から配置し、薬剤注入点よりも上流側のORP計が規定値を超えた場合に薬剤の注入を開始し、薬剤注入点よりも下流側のORP計が規定値以内になった場合に薬剤の注入を停止する方法などが、確実に遊離塩素を還元することができ、半透膜に遊離塩素が流入せず、半透膜を劣化させないため、好ましい。図2では、第5薬剤送液ポンプ51の注入点上流に第1ORP計116、注入点下流に第2ORP計117、第5薬剤送液ポンプ61の注入点上流に第1ORP計118、注入点下流に第2ORP計119を設置し、それぞれのORP値によって第5薬剤の注入開始/停止を行っている。なお、第5薬剤送液ポンプとその下流のORP計の間にラインミキサーを設けると、液と第5薬剤が確実に混合するため、好ましい。
 また、濃縮水Aは、被処理水Aが濃縮された水であるため、被処理水Aの水質変動によってORP値が規定値を超える場合がある。この場合は、その濃縮水Aを被処理水Bに混合させると、半透膜Bが劣化してしまう可能性が高くなるので、半透膜Bへの供給水として使用せずに系外に排出することが好ましい。そのため、図3(請求項16の発明を適用した造水システムの一実施態様を示すフロー図)では、濃縮水AのORP値を測定するための第3ORP計120を濃縮水A送液配管104に設置し、第3ORP計120のORP値が規定値を超えた場合には、濃縮水Aの流出先が混合水タンクから排水管側となるように三方弁121を切り替え、濃縮水Aを系外に排水する。かつ、混合水量や混合水の浸透圧の変化により半透膜処理装置B6が破損しないように昇圧ポンプ112を停止して半透膜処理を停止する。
 また、前記半透膜処理装置Aが、耐塩素性半透膜を備えた半透膜処理装置であり、かつ、前記第1薬剤が塩素系薬剤であることが好ましい。この態様をとることにより、通常配管洗浄/殺菌に利用される次亜塩素酸ナトリウムなどの塩素系薬剤を第1薬剤として利用可能であり、半透膜処理装置Aの洗浄/殺菌後もそのまま半透膜処理装置Aの濃縮水配管や半透膜処理装置Bの洗浄/殺菌に利用可能となる。
 また、半透膜処理装置B6が、耐塩素性半透膜を備えた半透膜処理装置であり、かつ、第2薬剤、第3薬剤、第4薬剤から選ばれる少なくとも1つの薬剤が塩素系薬剤であることが好ましい。この態様をとることにより、配管洗浄後の塩素系薬剤をそのまま利用して半透膜処理装置B6を洗浄/殺菌可能となる。
 ここで、耐塩素性半透膜とは、半透膜をpH6.5に調整した塩化ナトリウムの1500ppm水溶液を25℃、操作圧力5kg/cmの条件下で30分間運転した後の塩化ナトリウム阻止率を阻止率Aとし、同じ半透膜を上記の塩化ナトリウム水溶液に次亜塩素酸ナトリウムを100ppm添加し、リン酸二水素カリウムでpH6.5に調整した水溶液中に48時間浸漬させた後、操作圧力5kg/cmの条件下で30分間運転した後の塩化ナトリウム阻止率を阻止率Bとしたとき、B/A≧0.9を満たす半透膜であり、素材としては、三酢酸セルロース膜や耐塩素性を保有したポリアミド膜が例示される。
 また、被処理水Bに注入する第2薬剤として塩素系薬剤を用いる場合、被処理水Aとして窒素含有水を供給するか、被処理水Aあるいは濃縮水Aあるいは混合水に窒素含有薬剤を注入する(請求項19の発明)と、塩素とアンモニア性窒素とが混合水タンク5内で反応してクロラミンが発生するので、このクロラミンにより半透膜処理装置B6を薬液洗浄することができる。特に、半透膜処理装置B6がポリアミド系の半透膜で塩素含有水によって劣化する場合は、クロラミンによってバイオファウリングを抑制することが好ましい。ここで、窒素含有水とは、例えば、水中に窒素含有物質を含む、畜産農業廃水、し尿、下水等、これらを活性汚泥法で生物処理した後の水である。窒素含有水中に含まれる窒素含有物質とは、アンモニア性窒素およびアミノ酸、アミン類など含窒素有機化合物のことである。この含窒素有機化合物中の窒素系成分は塩素と反応することで、クロラミンを生成する。
 例えば、窒素含有水中に含まれる窒素系成分のほとんどがアンモニア性窒素である場合、以下の反応により塩素と反応してモノクロラミンが生成される。
Figure JPOXMLDOC01-appb-C000017
 この場合、アンモニア性窒素1gにつき、約5gの塩素が消費され、約3.6gのモノクロラミンが生成される。クロラミン含有量を適正水準にするためには、窒素含有水中のアンモニア性窒素濃度は0.003mg/l以上であることが好ましく、また、混合水タンク13中に流入させる濃縮水A中の遊離塩素濃度は7mg/l以下とすることが好ましい。
 クロラミン濃度および遊離塩素濃度の測定には、DPD法、電流法、吸光光度法、などが用いられる。クロラミン濃度はクロラミン濃度と遊離塩素濃度をあわせた濃度である全塩素濃度を求めて、その濃度から遊離塩素濃度を引くことで求めることができる。例えば、半透膜処理装置B6に流入する混合水を採水し、DPD法および電流法により通常の測定条件で全塩素濃度および遊離塩素濃度の測定を行なうか、または、吸光光度法を用いた連続自動測定機器により全塩素濃度および遊離塩素濃度の測定を行なうことができる。連続自動測定機器による測定の場合は、塩素濃度計を混合水送液配管105に取り付けて連続測定を行ない、半透膜処理装置B6に流入する混合水中のクロラミン濃度を測定する。この測定により、クロラミン濃度や遊離塩素濃度を監視し、所定範囲内を維持されるように処置する。
 また、水中の塩素は遊離塩素と結合塩素の形で存在する。塩素含有水に含有される塩素は遊離塩素の形であり、窒素含有物質と反応することで結合塩素の形となる。結合塩素とはクロラミンの形で存在する塩素のことである。
 クロラミンとは、モノクロラミン(NHCl)、ジクロラミン(NHCl)およびトリクロラミン(NCl)の総称である。殺菌力はジクロラミンの方がモノクロラミンより強く、トリクロラミンには殺菌力はない。クロラミンの生成比率は塩素濃度やアミン化合物濃度、pHなどの影響を受け変化する。また、クロラミンの殺菌力は遊離塩素に比べると約10分の1であり、半透膜に与える悪影響も遊離塩素よりもはるかに小さい。
 遊離塩素とは、塩素剤が水と反応して生じる次亜塩素酸(HClO)や次亜塩素酸イオン(ClO)の形で存在する塩素のことで、強い消毒力と酸化力をもっている。遊離塩素は強い酸化力をもっているため、半透膜の流入水に遊離塩素が含まれている場合、半透膜は劣化してしまうので、RO膜やNF膜の流入水に遊離塩素が含まれる場合は膜の劣化により処理液質が悪化するという問題が生じる。
 また、混合水中のクロラミンにより半透膜処理装置B6での膜殺菌効果を十分に発揮しバイオファウリングの抑制を可能とし、かつ、半透膜の機能層の劣化を防止するためには、半透膜処理装置B6へ供給される混合水に含まれるクロラミン濃度を0.01~5mg/lとすることが好ましい。クロラミン濃度が0.01mg/l未満ではバイオファウリングの抑制をすることができない。また、クロラミン濃度が5mg/lより濃い場合、膜の機能層が劣化してしまう。
 本発明は、半透膜を用いた膜ユニットを複数配置した複合的な水処理技術を利用した造水方法であって、下水と海水のように浸透圧が異なる複数の被処理水A、Bを原水とし、淡水化技術により淡水を製造する場合に好適に適用することができる。さらに詳しくは、上水道における浄水処理分野や、工業用水、食品・医療プロセス用水、半導体関連洗浄用水といった産業用水製造分野などの造水装置として適用可能であって、省エネルギーかつ効率的に淡水を生産することができる。
1:被処理水A
2:半透膜処理装置A
3:膜透過水A
4:被処理水B
5:混合水タンク
6:半透膜処理装置B
7:膜透過水B
8:濃縮水B
10:第1薬剤タンク
11:第1薬剤送液ポンプ
20:第2薬剤タンク
21:第2薬剤送液ポンプ
30:第3薬剤タンク
31:第3薬剤送液ポンプ
40:第4薬剤タンク
41:第4薬剤送液ポンプ
50:第5薬剤タンク
51:第5薬剤送液ポンプ
60:第5薬剤タンク
61:第5薬剤送液ポンプ
70:第1中和剤タンク
71:第1中和剤送液ポンプ
80:第2中和剤タンク
81:第2中和剤送液ポンプ
100:半透膜処理プロセスA
101:被処理水A送液配管
102:膜透過水配管
103:被処理水B送液配管
104:濃縮水A送液配管
105:混合水送液配管
106:膜透過水配管
107:濃縮水配管
111:昇圧ポンプ
112:昇圧ポンプ
113:保安フィルター
114:第1計器
115:第2計器
116:第1ORP計
117:第2ORP計
118:第1ORP計
119:第2ORP計
120:第3ORP計
121:三方弁
200:半透膜処理プロセスB

Claims (19)

  1. 被処理水Aを半透膜処理装置Aで処理して淡水を製造するとともに、半透膜処理装置Aで処理した際に生じる濃縮水Aを被処理水Bに混合させ、その混合水を半透膜処理装置Bで処理して淡水を製造する造水方法において、被処理水Aに第1薬剤を連続的あるいは間欠的に注入し、かつ、被処理水Bに第2薬剤を連続的あるいは間欠的に注入することを特徴とする造水方法。
  2. 前記濃縮水Aに、第3薬剤を連続的もしくは間欠的に注入すること、および/または、前記混合水に、第4薬剤を連続的もしくは間欠的に注入することを特徴とする請求項1に記載の造水方法。
  3. 前記半透膜処理装置Aからの排出時の前記濃縮水Aにおける前記第1薬剤の濃度が、半透膜処理装置Aへの供給時の被処理水Aにおける第1薬剤の濃度より大きいことを特徴とする請求項1または2のいずれかに記載の造水方法。
  4. 前記第2薬剤の注入手段と、前記濃縮水Aと前記被処理水Bとを混合する水混合手段との間に、第2薬剤の洗浄効果や殺菌効果を消失あるいは低減させる効果のある第1中和剤を連続的もしくは間欠的に注入することを特徴とする請求項1~3のいずれかに記載の造水方法。
  5. 前記第1中和剤が、前記第1薬剤、前記第3薬剤、前記第4薬剤から選ばれる少なくとも1つの薬剤の洗浄効果や殺菌効果を消失あるいは低減させる効果のある中和剤であることを特徴とする請求項4に記載の造水方法。
  6. 前記第1中和剤を間欠的に注入し、かつ、第1中和剤の注入を停止している時に、第1薬剤を注入すること、および/または、第1中和剤の注入を停止している間に、第3薬剤を注入すること、および/または、第1中和剤の注入を停止している間に、第4薬剤を注入することを特徴とする請求項5に記載の造水方法。
  7. 前記濃縮水Aと前記被処理水Bとを混合する水混合手段と、前記第4薬剤の注入手段との間に、前記第1薬剤、前記第2薬剤、前記第3薬剤から選ばれる少なくとも1つの薬剤の洗浄効果や殺菌効果を消失あるいは低減させる効果のある第2中和剤を連続的もしくは間欠的に注入することを特徴とする請求項2~6のいずれかに記載の造水方法。
  8. 前記第2中和剤および前記第4薬剤を間欠的に注入し、かつ、第2中和剤の注入を停止している時に、第4薬剤を注入することを特徴とする請求項7に記載の造水方法。
  9. 前記第1薬剤と、前記第2薬剤、前記第3薬剤、前記第4薬剤から選ばれる少なくとも1つの薬剤とが同種の薬剤である場合に、同種の薬剤の少なくとも一部が、第1薬剤と混合するように同種の薬剤を注入することを特徴とする請求項1~8のいずれかに記載の造水方法。
  10. 前記第4薬剤と、前記第1薬剤、前記第2薬剤、前記第3薬剤から選ばれる少なくとも1つの薬剤とが同種の薬剤である場合に、同種の薬剤の少なくとも一部が、第4薬剤と混合するように同種の薬剤を注入することを特徴とする請求項2~8のいずれかに記載の造水方法。
  11. 前記第1薬剤と、前記第2薬剤、前記第3薬剤、前記第4薬剤から選ばれる少なくとも1つの薬剤とが異種の薬剤である場合に、異種の薬剤が、第1の薬剤と混合しないように異種の薬剤を注入することを特徴とする請求項1~8のいずれかに記載の造水方法。
  12. 前記第4薬剤と、前記第1薬剤、前記第2薬剤、前記第3薬剤から選ばれる少なくとも1つの薬剤とが異種の薬剤である場合に、異種の薬剤が、第4の薬剤と混合しないように異種の薬剤を注入することを特徴とする請求項2~8のいずれかに記載の造水方法。
  13. 前記濃縮水Aと前記被処理水Bとを混合する水混合手段と、前記第4薬剤の注入手段との間にpH計、ORP計、塩素濃度計、EC計、TOC計、アンモニア計、TN計、DO計から選ばれる第1計器を備え、第1計器の指示値に基づいて、第4薬剤の注入量を決定することを特徴とする請求項10に記載の造水方法。
  14. 前記第1薬剤、前記第2薬剤、前記第3薬剤、前記第4薬剤から選ばれる少なくとも1つの薬剤が酸もしくはアルカリのいずれかである場合に、該薬剤の注入点よりも上流で、液のORP値を規定値以内に調整することを特徴とする請求項1~13のいずれかに記載の造水方法。
  15. 前記第1薬剤、前記第2薬剤、前記第3薬剤、前記第4薬剤から選ばれる少なくとも1つの薬剤が酸もしくはアルカリのいずれかである場合に、薬剤が酸もしくはアルカリである全ての薬剤の注入手段より上流側に、液のORP値を測定するための第1ORP計と、該液に第5薬剤として酸化剤あるいは還元剤を連続的あるいは間欠的に注入するための第5薬剤注入手段と、第5薬剤が注入された液のORP値を測定するための第2ORP計とを、上流側からその順で備え、第5薬剤注入手段で注入する酸化剤あるいは還元剤の注入開始を、前記第1ORP計での測定値により決定し、注入停止を、前記第2ORP計での測定値により決定することを特徴とする請求項14に記載の造水方法。
  16. 濃縮水AのORP値を測定し、該ORP値が規定値を超えたときに、濃縮水Aを装置外に排出し、かつ、前記半透膜処理装置Bの半透膜処理を停止することを特徴とする請求項1~15のいずれかに記載の造水方法。
  17. 前記半透膜処理装置Aが、耐塩素性半透膜を備えた半透膜処理装置であり、かつ、前記第1薬剤が塩素系薬剤であることを特徴とする請求項1~16のいずれかに記載の造水方法。
  18. 前記半透膜処理装置Bが、耐塩素性半透膜を備えた半透膜処理装置であり、かつ、前記第2薬剤、前記第3薬剤、前記第4薬剤から選ばれる少なくとも1つの薬剤が塩素系薬剤であることを特徴とする請求項1~17のいずれかに記載の造水方法。
  19. 前記第2薬剤が塩素系薬剤であり、かつ、前記被処理水Aとして窒素含有水を供給すること、および/または、被処理水Aあるいは前記濃縮水Aあるいは前記混合水に窒素含有薬剤を注入することを特徴とする請求項1~17のいずれかに記載の造水方法。
PCT/JP2010/058524 2009-08-21 2010-05-20 造水方法 WO2011021415A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SG2012008561A SG178304A1 (en) 2009-08-21 2010-05-20 Fresh water production method
JP2010523211A JP5691519B2 (ja) 2009-08-21 2010-05-20 造水方法
MX2012001959A MX2012001959A (es) 2009-08-21 2010-05-20 Metodo de produccion de agua fresca.
US13/391,347 US9309138B2 (en) 2009-08-21 2010-05-20 Fresh water production method
AU2010285913A AU2010285913C1 (en) 2009-08-21 2010-05-20 Fresh water production method
CN2010800342174A CN102471101A (zh) 2009-08-21 2010-05-20 造水方法
EP10809761.9A EP2468684A4 (en) 2009-08-21 2010-05-20 PROCESS FOR PRODUCING FRESH WATER

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-191819 2009-08-21
JP2009191819 2009-08-21
JP2009262488 2009-11-18
JP2009-262488 2009-11-18

Publications (1)

Publication Number Publication Date
WO2011021415A1 true WO2011021415A1 (ja) 2011-02-24

Family

ID=43606873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058524 WO2011021415A1 (ja) 2009-08-21 2010-05-20 造水方法

Country Status (8)

Country Link
US (1) US9309138B2 (ja)
EP (1) EP2468684A4 (ja)
JP (1) JP5691519B2 (ja)
CN (1) CN102471101A (ja)
AU (1) AU2010285913C1 (ja)
MX (1) MX2012001959A (ja)
SG (1) SG178304A1 (ja)
WO (1) WO2011021415A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4941613B1 (ja) * 2011-12-26 2012-05-30 株式会社日立プラントテクノロジー 海水淡水化システム
JP4973823B1 (ja) * 2012-02-22 2012-07-11 株式会社日立プラントテクノロジー 海水淡水化システム
JP4973822B1 (ja) * 2012-02-22 2012-07-11 株式会社日立プラントテクノロジー 海水淡水化システム
JP2013043156A (ja) * 2011-08-26 2013-03-04 Hitachi Plant Technologies Ltd 淡水化システムおよび淡水化方法
CN102951768A (zh) * 2011-08-26 2013-03-06 株式会社日立工业设备技术 海水淡化***以及海水淡化方法
WO2013035397A1 (ja) * 2011-09-09 2013-03-14 株式会社神鋼環境ソリューション 海水淡水化方法および海水淡水化装置
WO2013058063A1 (ja) * 2011-10-19 2013-04-25 株式会社日立プラントテクノロジー 造水システム
WO2014010628A1 (ja) * 2012-07-10 2014-01-16 東レ株式会社 造水方法および造水装置
EP2703066A1 (en) * 2011-04-25 2014-03-05 Toray Industries, Inc. Method for cleaning membrane module
WO2014192619A1 (ja) * 2013-05-27 2014-12-04 東レ株式会社 水処理装置の運転方法
WO2015046613A1 (ja) * 2013-09-30 2015-04-02 東レ株式会社 造水システムおよび造水方法
JP2015123430A (ja) * 2013-12-27 2015-07-06 東レ株式会社 造水方法
JP2015188787A (ja) * 2014-03-27 2015-11-02 東洋紡株式会社 正浸透処理方法および正浸透処理装置
US9259686B2 (en) 2009-12-25 2016-02-16 Toray Industries, Inc. Water producing system and operation method therefor
JP2016104685A (ja) * 2014-10-28 2016-06-09 アチェル エッセ.エッレ.エッレ.Acel S.R.L. モノクロラミンの製造のためのプラント及びそのプロセス
KR20190099391A (ko) * 2016-11-25 2019-08-27 노무라마이크로사이엔스가부시키가이샤 초순수 제조 방법 및 초순수 제조 시스템
WO2020085106A1 (ja) * 2018-10-22 2020-04-30 株式会社日立製作所 逆浸透処理装置及び逆浸透処理方法
WO2023074267A1 (ja) * 2021-10-28 2023-05-04 東洋紡株式会社 水処理方法および水処理システム

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5745512B2 (ja) * 2009-06-29 2015-07-08 ナノエイチツーオー・インコーポレーテッド 窒素添加剤を含む改良された混成tfcro膜
JP5840456B2 (ja) * 2011-10-28 2016-01-06 株式会社明電舎 薬品注入制御方法及び薬品注入制御装置
JP2014002967A (ja) * 2012-06-20 2014-01-09 Toshiba Lighting & Technology Corp 照明装置
JP2015013238A (ja) * 2013-07-03 2015-01-22 三菱重工業株式会社 水処理システム及び水処理方法
JP6107985B2 (ja) * 2015-06-01 2017-04-05 栗田工業株式会社 逆浸透膜装置の前処理方法及び水処理装置
US20170253505A1 (en) * 2015-11-18 2017-09-07 Michael T Derzack Monitored method for improved impaired-water remediation
IT201600092675A1 (it) * 2016-09-14 2018-03-14 Acel S R L Impianto di produzione di monoclorammina per trattamento di fluidi
US10125039B2 (en) 2016-10-24 2018-11-13 Kuwait University Method of recycling brine from a multi-stage flash desalination plant
EP3545291A4 (en) 2016-11-25 2020-08-26 Island Water Technologies Inc. BIO-ELECTROCHEMICAL SENSOR AND METHOD FOR OPTIMIZING THE PERFORMANCE OF A WASTE WATER TREATMENT SYSTEM
CN111065604A (zh) * 2017-08-28 2020-04-24 松下知识产权经营株式会社 药剂供给装置及使用该药剂供给装置的水净化***
JP7220112B2 (ja) * 2019-03-29 2023-02-09 栗田工業株式会社 膜分離方法
WO2022051600A1 (en) 2020-09-04 2022-03-10 Buckman Laboratories International, Inc. Predictive systems and methods for proactive intervention in chemical processes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004081903A (ja) * 2002-08-23 2004-03-18 Hitachi Zosen Corp 淡水化方法
US20060096920A1 (en) 2004-11-05 2006-05-11 General Electric Company System and method for conditioning water
JP2008161797A (ja) * 2006-12-28 2008-07-17 Toray Ind Inc 淡水製造装置の運転方法および淡水製造装置
WO2010061879A1 (ja) * 2008-11-28 2010-06-03 株式会社神鋼環境ソリューション 淡水生成方法、淡水生成装置、海水淡水化方法および海水淡水化装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988444A (en) * 1989-05-12 1991-01-29 E. I. Du Pont De Nemours And Company Prevention of biofouling of reverse osmosis membranes
WO1995029128A1 (en) * 1994-04-26 1995-11-02 Seh America, Inc. Water purification system and method
JP2001269543A (ja) 1994-12-02 2001-10-02 Toray Ind Inc 膜分離装置および高濃度溶液の分離方法
JPH0929252A (ja) 1995-07-24 1997-02-04 Nippon Steel Corp 逆浸透膜処理方法
US6267891B1 (en) 1997-03-03 2001-07-31 Zenon Environmental Inc. High purity water production using ion exchange
US6464877B1 (en) * 1997-05-08 2002-10-15 Asahi Kasei Kabushiki Kaisha Water treating method
US6673249B2 (en) * 2000-11-22 2004-01-06 Marine Desalination Systems, L.L.C. Efficiency water desalination/purification
US6299766B1 (en) * 2000-07-06 2001-10-09 Clark Permar Reverse osmosis filtering apparatus with concentrate dilution
EP1329425A1 (en) * 2002-01-18 2003-07-23 Toray Industries, Inc. Desalination method and desalination apparatus
JP4332774B2 (ja) 2002-09-06 2009-09-16 東洋紡績株式会社 逆浸透膜による高濃度溶液の処理方法および処理装置
CN101597097B (zh) * 2003-11-18 2012-10-17 栗田工业株式会社 含有机物排水的处理方法
JP2006075667A (ja) * 2004-09-07 2006-03-23 Toray Ind Inc 半透膜装置の運転方法および装置
WO2006043726A1 (ja) * 2004-10-22 2006-04-27 Toyo Engineering Corporation 炭化水素もしくは含酸素化合物の製造プラント廃水の処理方法
US20070138096A1 (en) * 2004-11-05 2007-06-21 Tarr Ronald S Systems and methods for controlling contaminate levels of processed water and maintaining membranes
JP2006167533A (ja) 2004-12-14 2006-06-29 Nippon Steel Corp 海水濃縮方法
AU2007246525B2 (en) * 2006-05-09 2011-09-29 Toray Industries, Inc. Process for producing freshwater
JP4518435B1 (ja) 2009-02-13 2010-08-04 株式会社神鋼環境ソリューション 海水淡水化方法および海水淡水化装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004081903A (ja) * 2002-08-23 2004-03-18 Hitachi Zosen Corp 淡水化方法
US20060096920A1 (en) 2004-11-05 2006-05-11 General Electric Company System and method for conditioning water
JP2008161797A (ja) * 2006-12-28 2008-07-17 Toray Ind Inc 淡水製造装置の運転方法および淡水製造装置
WO2010061879A1 (ja) * 2008-11-28 2010-06-03 株式会社神鋼環境ソリューション 淡水生成方法、淡水生成装置、海水淡水化方法および海水淡水化装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Adoption of 'Findings of Technical Series Toward Low-Carbon Society - Social System Demonstration Model Project", 2 March 2009, TORAY INDUSTRIES, INC. PRESS
"Model Project of Ministry of Economy, Trade and Industry: Demonstration Experiment in Shunan City", 5 March 2009, KOBELCO ECO-SOLUTIONS CO., LTD.

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9259686B2 (en) 2009-12-25 2016-02-16 Toray Industries, Inc. Water producing system and operation method therefor
EP2703066A4 (en) * 2011-04-25 2014-12-03 Toray Industries PROCESS FOR CLEANING A MEMBRANE MODULE
EP2703066A1 (en) * 2011-04-25 2014-03-05 Toray Industries, Inc. Method for cleaning membrane module
CN104326629B (zh) * 2011-08-26 2016-08-17 株式会社日立制作所 海水淡化***以及海水淡化方法
JP2013043156A (ja) * 2011-08-26 2013-03-04 Hitachi Plant Technologies Ltd 淡水化システムおよび淡水化方法
CN102951768A (zh) * 2011-08-26 2013-03-06 株式会社日立工业设备技术 海水淡化***以及海水淡化方法
CN104326629A (zh) * 2011-08-26 2015-02-04 株式会社日立制作所 海水淡化***以及海水淡化方法
US10071929B2 (en) * 2011-08-26 2018-09-11 Hitachi, Ltd. Desalination system and desalination method
WO2013035397A1 (ja) * 2011-09-09 2013-03-14 株式会社神鋼環境ソリューション 海水淡水化方法および海水淡水化装置
JP2013056320A (ja) * 2011-09-09 2013-03-28 Kobelco Eco-Solutions Co Ltd 海水淡水化方法および海水淡水化装置
CN103917496A (zh) * 2011-10-19 2014-07-09 株式会社日立制作所 造水***
WO2013058063A1 (ja) * 2011-10-19 2013-04-25 株式会社日立プラントテクノロジー 造水システム
US9758393B2 (en) 2011-10-19 2017-09-12 Hitachi, Ltd. Fresh water generation system
JPWO2013058063A1 (ja) * 2011-10-19 2015-04-02 株式会社日立製作所 造水システム
EP2769961A4 (en) * 2011-10-19 2015-07-29 Hitachi Ltd PROCESS FOR FRESHWATER PREPARATION
AU2012324220B2 (en) * 2011-10-19 2015-12-24 Hitachi, Ltd. Fresh water generation system
JP4941613B1 (ja) * 2011-12-26 2012-05-30 株式会社日立プラントテクノロジー 海水淡水化システム
JP4973822B1 (ja) * 2012-02-22 2012-07-11 株式会社日立プラントテクノロジー 海水淡水化システム
JP4973823B1 (ja) * 2012-02-22 2012-07-11 株式会社日立プラントテクノロジー 海水淡水化システム
JPWO2014010628A1 (ja) * 2012-07-10 2016-06-23 東レ株式会社 造水方法および造水装置
WO2014010628A1 (ja) * 2012-07-10 2014-01-16 東レ株式会社 造水方法および造水装置
JPWO2014192619A1 (ja) * 2013-05-27 2017-02-23 東レ株式会社 水処理装置の運転方法
WO2014192619A1 (ja) * 2013-05-27 2014-12-04 東レ株式会社 水処理装置の運転方法
JPWO2015046613A1 (ja) * 2013-09-30 2017-03-09 東レ株式会社 造水システムおよび造水方法
WO2015046613A1 (ja) * 2013-09-30 2015-04-02 東レ株式会社 造水システムおよび造水方法
JP2015123430A (ja) * 2013-12-27 2015-07-06 東レ株式会社 造水方法
JP2015188787A (ja) * 2014-03-27 2015-11-02 東洋紡株式会社 正浸透処理方法および正浸透処理装置
JP2016104685A (ja) * 2014-10-28 2016-06-09 アチェル エッセ.エッレ.エッレ.Acel S.R.L. モノクロラミンの製造のためのプラント及びそのプロセス
KR20190099391A (ko) * 2016-11-25 2019-08-27 노무라마이크로사이엔스가부시키가이샤 초순수 제조 방법 및 초순수 제조 시스템
KR102432353B1 (ko) 2016-11-25 2022-08-11 노무라마이크로사이엔스가부시키가이샤 초순수 제조 방법 및 초순수 제조 시스템
WO2020085106A1 (ja) * 2018-10-22 2020-04-30 株式会社日立製作所 逆浸透処理装置及び逆浸透処理方法
WO2023074267A1 (ja) * 2021-10-28 2023-05-04 東洋紡株式会社 水処理方法および水処理システム

Also Published As

Publication number Publication date
AU2010285913C1 (en) 2015-12-10
US9309138B2 (en) 2016-04-12
SG178304A1 (en) 2012-03-29
EP2468684A4 (en) 2014-05-21
JPWO2011021415A1 (ja) 2013-01-17
AU2010285913A1 (en) 2012-02-16
EP2468684A1 (en) 2012-06-27
MX2012001959A (es) 2012-04-10
JP5691519B2 (ja) 2015-04-01
US20120145630A1 (en) 2012-06-14
CN102471101A (zh) 2012-05-23
AU2010285913B2 (en) 2015-06-04

Similar Documents

Publication Publication Date Title
JP5691519B2 (ja) 造水方法
JP5549591B2 (ja) 淡水製造方法及び淡水製造装置
JP5691522B2 (ja) 造水システムおよびその運転方法
EP2609990B1 (en) Method for preventing microbial growth on filtration membrane
TW200925119A (en) Method and apparatus for treating water containing organic matter
JP2008183510A (ja) 浄化水の製造方法およびその製造装置
JP6447133B2 (ja) 造水システムおよび造水方法
JP5969749B2 (ja) 有機性廃水の処理装置及び処理方法
JP2006015236A (ja) 再生水の製造装置および方法
JP2011088151A (ja) 再生水の製造装置および方法
JP7367181B2 (ja) 水回収システムおよび水回収方法
WO2007069558A1 (ja) 分離膜の改質方法および装置並びにその方法により改質された分離膜
JP2008142596A (ja) 分離膜の改質方法および装置、その方法により改質された分離膜、並びに分離膜の運転方法および装置
JP2015123430A (ja) 造水方法
JP2020037059A (ja) 膜ろ過システムおよび膜ろ過方法
JP2014221450A (ja) 造水方法
JP2007260532A (ja) 再生水製造装置の洗浄方法
WO2020059477A1 (ja) 逆浸透処理装置及び逆浸透処理方法
JP2018176116A (ja) 水処理方法
JP2007260638A (ja) 逆浸透膜を用いる水処理方法
WO2020085106A1 (ja) 逆浸透処理装置及び逆浸透処理方法
JP2015182073A (ja) 造水方法および造水装置
WO2020012786A1 (ja) 水処理装置および水処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034217.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010523211

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010285913

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/001959

Country of ref document: MX

Ref document number: 2010809761

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010285913

Country of ref document: AU

Date of ref document: 20100520

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13391347

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2474/CHENP/2012

Country of ref document: IN