WO2011016119A1 - 面光源部材及び面光源部材の製造方法 - Google Patents

面光源部材及び面光源部材の製造方法 Download PDF

Info

Publication number
WO2011016119A1
WO2011016119A1 PCT/JP2009/063876 JP2009063876W WO2011016119A1 WO 2011016119 A1 WO2011016119 A1 WO 2011016119A1 JP 2009063876 W JP2009063876 W JP 2009063876W WO 2011016119 A1 WO2011016119 A1 WO 2011016119A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
surface light
source member
optical film
polarizing plate
Prior art date
Application number
PCT/JP2009/063876
Other languages
English (en)
French (fr)
Inventor
重義 大槻
江口敏正
Original Assignee
株式会社クラレ
Jsr株式会社
住友化学株式会社
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ, Jsr株式会社, 住友化学株式会社, 凸版印刷株式会社 filed Critical 株式会社クラレ
Publication of WO2011016119A1 publication Critical patent/WO2011016119A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces

Definitions

  • the present invention relates to a surface light source member having a polarization function used for a mobile phone, a personal digital assistant (PDA), a video camera, a car navigation system, a personal computer, a computer monitor, a television receiver, an advertising billboard, etc.
  • PDA personal digital assistant
  • the present invention relates to a surface light source member that can be wound into a thin and long roll having a polarizing function, and a method for manufacturing the surface light source member.
  • Liquid crystal displays that have come to be widely used as small and medium display devices such as mobile phones, PDAs and video cameras, and medium and large display devices such as car navigation systems, personal computers, computer monitors, television receivers, and advertising billboards.
  • the apparatus is composed of a surface light source element (backlight) that emits light in a planar shape and a liquid crystal display panel that provides image information, and the light transmittance is controlled by the image information provided by the liquid crystal display panel. Or video is displayed.
  • backlight surface light source element
  • a liquid crystal display device generally uses a polarizing plate, a phase difference plate, or an elliptically polarizing plate for polarization control and optical compensation.
  • each pixel electrode transmits light.
  • the transmissive liquid crystal display device When such a liquid crystal display device is used indoors, the transmissive liquid crystal display device is clear and excellent, whereas the reflective liquid crystal display device reflects external light and displays an image. Although it is excellent in visibility outdoors, there is a drawback that it is difficult to see an image in a dark place.
  • transflective liquid crystal display device As a liquid crystal display device having transmissive and reflective advantages, there is a transflective liquid crystal display device.
  • This transflective liquid crystal display device has a backlight by making a pixel electrode semi-transmissive or providing an opening. Visibility can be ensured by both light and outside light. For this reason, it is an optimal display device for a mobile display device such as a portable information terminal.
  • a polarizing plate linear polarizing plate
  • a retardation plate (1/4 wavelength plate) are provided on both outer sides of a liquid crystal panel formed by sealing and fixing a liquid crystal in a gap between two substrates. ) And the function of making incident light into circularly polarized light. Further, a backlight is disposed outside the back side as viewed from the display surface.
  • a color liquid crystal display device is a color filter substrate comprising a sheet-like glass substrate, a black matrix, a colored layer composed of three primary colors of red (R) / green (G) / blue (B), and a common transparent electrode layer.
  • An alignment layer is formed on the TFT substrate provided with a thin film transistor (TFT) and a pixel electrode, and the two substrates are opposed to the alignment layer to hold a predetermined gap, and a liquid crystal material is provided in the gap.
  • TFT thin film transistor
  • a liquid crystal panel manufactured by forming a liquid crystal layer satisfying the above and bonding and fixing a color filter substrate and a TFT substrate with a sealing material around the liquid crystal layer is used.
  • polarizing plates are attached to the outer surfaces of the color filter substrate and the TFT substrate of the liquid crystal panel.
  • a surface light source element that emits light in a planar shape is provided on the back surface of the polarizing plate, and an image is displayed by controlling the light transmittance with a liquid crystal panel.
  • a reflection sheet 807, a light guide plate 805, a diffusion sheet 804, a lower prism sheet 803, and an upper prism sheet 803 are laminated in this order.
  • Patent Document 1 A number of concave or convex light reflecting portions 806 are formed on the lower surface of the light guide plate 805 facing the reflection sheet 807, and light incident from a light source 801 such as a light emitting diode (LED) or a cold cathode tube (CCFL) is received. The light is emitted in a planar shape.
  • a light source 801 such as a light emitting diode (LED) or a cold cathode tube (CCFL)
  • the lower prism sheet and the upper prism sheet have front and back sides, there is a problem that the predetermined performance does not appear when the sheets are assembled upside down, and the predetermined performance does not appear when the order of stacking the sheet-like members is wrong. It was.
  • a surface light source element in which a reflection function, a light guide function, a diffusion function, and a light collection function of a surface light source element are integrated has been proposed (Patent Documents 2 and 3).
  • the surface light source elements according to these proposals are composed of an outgoing light control plate 904 and a light guide 905, and the outgoing light control plate 904 includes an outgoing light plate 902 and a convex portion 903.
  • the light incident from the light source is controlled to be emitted in a planar shape.
  • the transflective liquid crystal display device is configured by laminating a backlight, a polarizing plate, and a retardation plate, but an air layer is formed at the interface between the backlight, the retardation plate, and the polarizing plate. Therefore, there is a problem that the light emitted from the backlight is reflected at the interface due to the influence of surface reflection, and as a result, the light utilization efficiency is lowered.
  • An object of the present invention is to provide a surface light source member and a surface light source member manufacturing method capable of obtaining a thin and long surface light source member that enables a liquid crystal display device.
  • the present invention is configured as follows.
  • the invention according to claim 1 is a surface light source member composed of an optical film layer and a surface light source element having at least one light emitting means and a thin light guide.
  • the light guide has at least a long plastic film,
  • the surface light source member is characterized in that the optical film layer is formed on the surface from which the surface light source element emits light through an adhesive layer.
  • the invention according to claim 2 is the surface light source member according to claim 1, wherein the optical film layer is at least one selected from a polarizing plate, a retardation plate and an elliptically polarizing plate. is there.
  • the invention according to claim 3 is characterized in that the optical film layer is formed by laminating a long polarizing plate and a retardation plate continuously formed on a long supporting film.
  • the optical film layer is formed such that at least two sheet-like elliptical polarizing plates are arranged in parallel to a long longitudinal direction on the surface light source element. It is a surface light source member of Claim 1 characterized by the above-mentioned.
  • the invention according to claim 5 is the surface light source member according to claim 1, wherein the surface light source member has a total thickness of 0.4 mm or less and can be wound into a roll. .
  • Invention of Claim 6 is a manufacturing method of the surface light source member comprised from the surface light source element and optical film layer which have at least 1 or more light emission means and a thin-plate-shaped light guide,
  • the light guide has at least a long plastic film,
  • It is a manufacturing method of the surface light source member characterized by including the layer formation process which forms the said optical film layer through the adhesive layer in the surface which the said surface light source element injects light.
  • the invention according to claim 7 is the surface light source member according to claim 6, wherein the optical film layer is at least one selected from a polarizing plate, a retardation plate and an elliptically polarizing plate. It is a manufacturing method.
  • the invention according to claim 8 is characterized in that the optical film layer is formed by laminating a long polarizing plate and a retardation plate continuously formed on a long supporting film. It is a manufacturing method of the surface light source member of Claim 6.
  • the invention according to claim 9 is that the optical film layer is formed by arranging at least two sheet-like elliptically polarizing plates in parallel with a long longitudinal direction on the surface light source element. It is a manufacturing method of the surface light source member of Claim 6 characterized by the above-mentioned.
  • the total thickness of the surface light source member is 0.4 mm or less.
  • the present invention has the following effects.
  • the surface light source element and the optical film layer are the surface light source members integrated with the adhesive layer in advance, a sheet-like shape is produced after manufacturing the liquid crystal panel as in the prior art.
  • the step of attaching the optical film layer can be omitted, and the occurrence of defects due to sandwiching of dust, foreign matter, etc. in the attaching step can be prevented.
  • the surface light source element and the optical film layer are integrated via the adhesive layer, the light emitted from the surface light source element is not reflected by the interface reflection of the surface light source element, and the light utilization efficiency is improved.
  • a surface light source member that does not decrease can be obtained. In this way, there is no reduction in the yield in the assembly process of the backlight, no assembly errors occur, there is no decrease in the light utilization efficiency of the backlight, and it is thin enough to enable a transflective liquid crystal display device with excellent display characteristics. A long surface light source member can be obtained.
  • the optical film layer integrated with the surface light source element is a polarizing plate, so that it can be applied to the manufacture of a transmissive color liquid crystal display device by a roll-to-roll method. it can. Further, by using an optical film layer as a retardation plate or an elliptically polarizing plate, it can be applied to the production of a reflection type or semi-transmission type liquid crystal display device by a roll-to-roll method.
  • the optical film layer integrated with the surface light source element includes a long polarizing plate and a retardation plate continuously formed on the long support film. Since it is formed by laminating, the optical film layer has no break and can be integrated regardless of the arrangement of the surface light source elements, that is, with any arrangement of the surface light source elements.
  • the optical film layer is formed by arranging at least two sheet-like elliptically polarizing plates in parallel to the long longitudinal direction on the surface light source element. Therefore, it is possible to obtain a thin and long surface light source member that enables a liquid crystal display device with little variation in the direction of the optical axis and excellent display characteristics.
  • FIG. 1 is a schematic external view showing a first embodiment of a surface light source member
  • FIG. 2 is a cross-sectional view of the first embodiment of the surface light source member.
  • the surface light source member 1 includes a surface light source element 3 and an optical film layer 2.
  • the surface light source element 3 includes at least one light emitting means 3a and a thin plate-shaped light guide 3b.
  • the light emitting means 3a is formed of, for example, a large number of light reflecting portions convex on the light guide 3b side, and a light source such as a light emitting diode (LED) or a cold cathode tube (CCFL) is provided on the end surface of the light guide 3b.
  • LED light emitting diode
  • CCFL cold cathode tube
  • the light guide 3b has at least a long plastic film.
  • the optical film layer 2 is formed on the surface from which the surface light source element 3 emits light with the adhesive layer 4 interposed therebetween.
  • the light emitting means 3a forms each point and is emitted from each point, and the light emitting surface of the surface light source element 3 is viewed from the front by the plastic film of the light guide 3b, the light quantity at each point is A substantially equal backlight device is constructed.
  • the light guide 3b can be a transparent resin film as a long plastic film substrate, and the type thereof is not particularly limited.
  • suitable plastic films include resins having excellent transparency, such as acrylic resins, polycarbonate resins, and polystyrene resins.
  • the thickness of the plastic film substrate is, for example, about 50 to 200 ⁇ m.
  • the optical film layer 2 may be any one as long as it is at least one selected from a polarizing plate, a retardation plate, and an elliptical polarizing plate.
  • the polarizing plate has a function of extracting linearly polarized light from incident light, and the type thereof is not particularly limited.
  • a suitable polarizing plate one having a configuration in which a transparent protective layer is provided on both surfaces of a polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol resin can be exemplified.
  • the dichroic dye iodine or a dichroic organic dye is used.
  • a transparent protective layer a triacetyl cellulose film etc. are used, for example. This protective layer may be provided only on one side, not on both sides of the polarizing film.
  • the thickness of the polarizing film is, for example, about 5 to 50 ⁇ m, and the thickness of the entire polarizing plate is, for example, about 50 to 200 ⁇ m.
  • the retardation film is usually composed of a stretched resin film.
  • the resin constituting the retardation plate include polycarbonate, polystyrene, polymethyl methacrylate, polysulfone resin, olefin resin, cyclic polyolefin resin, cellulose acetate resin, and the like.
  • the thickness of the retardation plate is, for example, about 10 to 100 ⁇ m.
  • a coating type retardation plate formed by applying a polymerizable liquid crystal composition on a transparent substrate and aligning it, and then fixing the alignment can be used.
  • the material of the substrate of the coating type retardation plate is not particularly limited as long as it is transparent. Examples of suitable substrates include ceramics and resins.
  • As the resin for the substrate triethylcellulose, polyethylene terephthalate, polyolefin, polycarbonate, polyethersulfone, or the like can be used.
  • a long and seamless retardation plate can be obtained by a continuous method such as a roll-to-roll method using a long film substrate.
  • the polymerizable liquid crystal composition a compound having a polymerizable group which exhibits liquid crystallinity alone or in a composition with another liquid crystal compound, for example, JP-A-7-294735, JP-A-8-3111, Examples thereof include a rod-like polymerizable liquid crystal compound having a polymerizable functional group as described in JP-A-2002-308831.
  • the thickness of the coating type retardation plate is, for example, about 0.5 to 10 ⁇ m. When the resin substrate is used, the thickness of the entire retardation plate is, for example, about 50 to 200 ⁇ m.
  • the circularly polarizing plate is composed of a laminate of a linearly polarizing plate and a quarter wavelength plate or a laminate of a linearly polarizing plate, a half wavelength plate and a quarter wavelength plate.
  • the optical film layer 2 is composed of a laminate of a polarizing plate 33, a half-wave plate 22, and a quarter-wave plate 11.
  • the optical film layer 2 is formed by laminating a long polarizing plate and a retardation plate continuously formed on a long support film, and the optical film layer 2 has no break, and the surface light source element 3 Regardless of the arrangement, it is possible to integrate the surface light source element 3 with any arrangement.
  • the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer 4 is, for example, a polymer such as (meth) acrylic polymer, silicone-based polymer, polyester, polyurethane, polyamide, polyether, fluorine-based polymer, and rubber-based polymer as a base polymer. It can select suitably and can be used.
  • a polymer such as (meth) acrylic polymer, silicone-based polymer, polyester, polyurethane, polyamide, polyether, fluorine-based polymer, and rubber-based polymer as a base polymer. It can select suitably and can be used.
  • the pressure-sensitive adhesive layer 4 has features such as prevention of foaming and peeling phenomenon due to moisture absorption, deterioration of optical characteristics due to thermal expansion difference and the like, prevention of warpage of the image display panel, and formation of an image display device having high quality and excellent durability. More preferred are those with low hygroscopicity and excellent heat resistance.
  • (meth) acrylic polymers that are excellent in optical transparency and exhibit appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties are preferable.
  • the (meth) acrylic polymer refers to a polymer containing alkyl (meth) acrylate as a main monomer unit.
  • acrylate or / and methacrylate is represented as (meth) acrylate.
  • the pressure-sensitive adhesive layer 4 is formed by laminating a pressure-sensitive adhesive layer on the optical film such as the polarizer, polarizing plate or retardation plate.
  • the forming method is not particularly limited, and examples thereof include a method of applying a pressure-sensitive adhesive solution to the optical film and drying, a method of transferring with a release sheet provided with a pressure-sensitive adhesive layer, and the like.
  • the surface of the release sheet may be subjected to a low-adhesive release treatment such as silicone treatment, long-chain alkyl treatment, and fluorine treatment as necessary.
  • the thickness of the pressure-sensitive adhesive layer 4 is generally 1 to 30 ⁇ m, preferably 5 to 25 ⁇ m, and more preferably 5 to 15 ⁇ m.
  • the sheet-like optical film layer is formed after the liquid crystal panel is manufactured as in the prior art.
  • the affixing step can be omitted, and the occurrence of defects due to sandwiching of dust, foreign matter, etc. in the affixing step can be prevented.
  • the surface light source element 3 and the optical film layer 2 are integrated via the adhesive layer 4, the light emitted from the surface light source element 3 is not reflected and returned by the interface reflection of the surface light source element 3.
  • the surface light source member 1 in which the light use efficiency does not decrease. In this way, there is no reduction in the yield in the assembly process of the backlight, no assembly errors occur, there is no decrease in the light utilization efficiency of the backlight, and it is thin enough to enable a transflective liquid crystal display device with excellent display characteristics. A long surface light source member 1 can be obtained.
  • the optical film layer 2 integrated with the surface light source element 3 as a polarizing plate, it can be applied to the manufacture of a transmissive color liquid crystal display device by a roll-to-roll method.
  • the optical film layer 2 as a retardation plate or an elliptically polarizing plate, it can be applied to the production of a reflection type or semi-transmission type liquid crystal display device by a roll-to-roll method.
  • the optical film layer 2 integrated with the surface light source element 3 is formed by laminating a long polarizing plate and a retardation plate continuously formed on a long supporting film.
  • the optical film layer 2 is continuous and can be integrated with the surface light source element 3 in any arrangement regardless of the arrangement of the surface light source elements 3.
  • the optical film layer 2 is formed by arranging at least two sheet-like elliptical polarizing plates in parallel with the long longitudinal direction of the surface light source member 1, there is a variation in the direction of the optical axis.
  • a thin and long optical member 1 that enables a liquid crystal display device that is small and has excellent display characteristics can be obtained.
  • the longer surface light source member 1 can be made into one roll as the total thickness of the surface light source member 1 is 0.4 mm or less.
  • manufacturing time and member loss due to replacement of roll-shaped optical members are reduced, and productivity can be improved and costs can be reduced.
  • the thickness exceeds 0.4 mm, the winding length for one roll is reduced.
  • the optical film layer 2 is formed by arranging at least two sheet-like elliptical polarizing plates 60 in parallel with the long longitudinal direction on the surface light source element 3.
  • the sheet-like elliptically polarizing plate 60 is formed by stacking the polarizing plate 33, the pressure-sensitive adhesive layer 46, the half-wave plate 22, the pressure-sensitive adhesive layer 45, and the quarter-wave plate 11.
  • the optical film layer 2 is formed by arranging at least two sheet-like elliptical polarizing plates 60 in parallel with the long longitudinal direction of the surface light source member 1, there is little variation in the direction of the optical axis.
  • a thin and long surface light source member 1 that enables a liquid crystal display device having excellent display characteristics can be obtained.
  • FIG. 5 is a schematic external view showing the first embodiment of the method of manufacturing the surface light source member.
  • the first embodiment is a method of manufacturing the surface light source member 1 shown in FIGS. 1 and 2, and unwinds the surface light source element 3 having at least a long plastic film from the surface light source element unwinding portion 301.
  • the long adhesive layer protective film 400 is unwound from the adhesive layer unwinding section 401, and the adhesive layer protective film 400 has both sides protected by one protective film 400a and the other protective film 400b.
  • the protective film 400a is peeled from the pressure-sensitive adhesive layer 4 at the first peeling portion 402a, and the protective film 400a is wound around the first pressure-sensitive adhesive layer protective film winding portion 402.
  • the pressure-sensitive adhesive layer 4 protected by the other protective film 400b is bonded to the surface light source element 3, and the other peeling layer 404a is bonded to the other of the pressure-sensitive adhesive layer 4 after the bonding.
  • the protective film 400 b is peeled off from the pressure-sensitive adhesive layer 4, and the other protective film 400 b is wound around the second pressure-sensitive adhesive layer protective film winding portion 404.
  • the long optical film layer 2 is unwound from the optical film layer unwinding part 201, the optical film layer 2 is bonded to the adhesive layer 4 by the optical film bonding part 202, and the surface light source member 1 is formed by this bonding. Then, the surface light source member winding portion 101 is wound into a roll shape.
  • the method of manufacturing the surface light source member 1 including the surface light source element 3 having at least one light emitting means and the thin plate-shaped light guide and the optical film layer 2 The light guide has at least a long plastic film, and includes a layer forming step of forming two optical films on the surface from which the surface light source element 3 emits light via the adhesive layer 4.
  • the total thickness of the light source member 1 is 0.4 mm or less, and is provided with a winding step of winding the surface light source member 1 in a roll shape after the layer forming step, and the surface light source element 3 and the optical film layer 2 are preliminarily provided.
  • the surface light source member 1 is integrated through the pressure-sensitive adhesive layer 4, it is possible to omit the step of attaching a sheet-like optical film layer after manufacturing a liquid crystal panel as in the prior art, and dust, foreign matter, etc. in this attaching step. Defects caused by pinching It is possible to prevent.
  • the longer surface light source member 1 can be made into one roll as the total thickness of the surface light source member 1 is 0.4 mm or less. As a result, when used in the manufacture of roll-to-roll liquid crystal display devices, manufacturing time and member loss due to replacement of roll-shaped surface light source members are reduced, resulting in improved productivity and lower costs. It becomes. When the thickness exceeds 0.4 mm, the winding length for one roll is reduced.
  • FIG. 6 is a schematic external view showing a second embodiment of the method for manufacturing the surface light source member.
  • the second embodiment is a method of manufacturing the surface light source member 1 shown in FIGS. 3 and 4, in which a sheet-like elliptical polarizing plate 60 is elliptically formed by the elliptical polarizing plate supply means 603 from the elliptical polarizing plate supply unit 601. It supplies to the polarizing plate supply stand 602.
  • the elliptical polarizing plate supply base 602 reciprocates between the A position and the B position, the A position is a position where the elliptical polarizing plate 60 is received, and the B position is a position where the elliptical polarizing plate 60 is bonded to the adhesive layer 4. is there.
  • the elliptical polarizing plate supply base 602 receives the elliptical polarizing plate 60 that is moved by driving the elliptical polarizing plate supply means 603 at the A position, moves to the B position, and the elliptical polarizing plate bonding means 604 transfers the elliptical polarizing plate 60 to the carrier. It is affixed on the adhesive layer 5a protected by the protective film 5b of the film 5.
  • the elliptical polarizing plate laminating means 604 is a laminating roll whose surface is made of rubber.
  • the elliptically polarizing plate supply unit 601 is a table on which a large number of sheet-like elliptically polarizing plates can be stacked.
  • the elliptically polarizing plate supply means 603 has a mechanism that allows a sheet-like elliptically polarizing plate to be taken out from the elliptically polarizing plate supply unit 601 with a vacuum suction plate and delivered to the elliptically polarizing plate supply base 602 at the A position.
  • the means for taking out and delivering the sheet-like elliptically polarizing plate may be a method other than the vacuum suction plate, such as lightly adhering with a slight adhesive.
  • a method for aligning both, for example, a CCD camera and an image recognition device may be a function for aligning both, for example, a CCD camera and an image recognition device.
  • the carrier film 5 has one of the pressure-sensitive adhesive layers 5a protected by the protective film 5c and the other protected by the protective film 5b.
  • the carrier film unwinding unit 501 unwinds the carrier film 5, and the one protective film 5c Is peeled off at the peeling portion 502 a and wound around the carrier film protective film winding portion 502.
  • the thickness of the carrier film 5 is, for example, about 50 to 150 ⁇ m.
  • the elliptical polarizing plate bonding means 604 is disposed at the B position, and the elliptical polarizing plate bonding means 604 is in the conveying direction of the carrier film 5 with the elliptical polarizing plate supply base 602 stopped at the B position. To the opposite direction, and the elliptically polarizing plate 60 is bonded to the adhesive layer 5a.
  • a protective film (not shown) may be attached in advance to the surface of the elliptical polarizing plate 60 to be bonded to the carrier film 5, in which case the elliptical polarizing plate supply base moves from the A position to the B position. In the meantime, the protective film is removed from the elliptically polarizing plate.
  • the long pressure-sensitive adhesive layer protective film 400 is unwound from the pressure-sensitive adhesive layer unwinding portion 401, and one protective film 400a is peeled off from the pressure-sensitive adhesive layer 4 at the first peeling portion 402a, whereby the first pressure-sensitive adhesive layer protective film.
  • One protective film 400 a is wound around the winding portion 402.
  • the pressure-sensitive adhesive layer bonding portion 403 bonds the pressure-sensitive adhesive layer 4 of the other protective film 400b to the carrier film 5, and the pressure-sensitive adhesive layer 4 is bonded to the sheet-like elliptically polarizing plate 60.
  • the other protective film 400b of the pressure-sensitive adhesive layer 4 is peeled from the pressure-sensitive adhesive layer 4 at the peeling portion 404a, the other protective film 400b is wound around the second pressure-sensitive adhesive layer protective film winding portion 404, and an optical film bonding portion It is conveyed to 202.
  • the surface light source element 3 having at least a long plastic film is unwound from the surface light source element unwinding section 301, and the surface light source element 3 is bonded to the adhesive layer 4 by the optical film bonding section 202.
  • the member 1 is formed and wound around the surface light source member winding portion 101 in a roll shape.
  • the optical film layer 2 is formed by arranging at least two sheet-like elliptical polarizing plates 60 in parallel with the long longitudinal direction on the surface light source element 3, and the alignment direction of the liquid crystal and the optical film.
  • a thin and long surface light source member 1 that enables a color liquid crystal display device with little variation in the direction of the optical axis of the layer 2 and excellent display characteristics can be obtained.
  • the liquid crystal display device has been described in this specification, but the present invention is applicable to various image display devices having a color filter function and a polarization function, such as a color organic EL display.
  • the present invention can be applied to a surface light source member that can be wound into a thin and long roll having a polarization function, and a method for manufacturing the surface light source member, and does not cause a decrease in yield in the assembly process of the backlight.
  • a thin and long surface light source member that enables a transflective liquid crystal display device excellent in display characteristics without causing a mistake and without reducing the light use efficiency of the backlight can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

【課題】バックライトの組み立て工程での歩留り低下がなく、組み立て間違いも起こらず、バックライトの光利用効率の低下もなく、表示特性に優れた半透過型液晶表示装置を可能とする、薄型で長尺な面光源部材が得ることができる。 【解決手段】少なくとも一つ以上の光射出手段3a及び薄板状の導光体3bを有する面光源素子3と光学フィルム層2から構成される面光源部材1であって,導光体3bは、少なくとも長尺なプラスチックフィルムを有しており、面光源素子3の光射出する面に粘着剤層4を介して光学フィルム層2が形成されている。

Description

面光源部材及び面光源部材の製造方法
 この発明は、携帯電話、携帯情報端末(PDA)、ビデオカメラ、カーナビゲーションシステム、パーソナルコンピュータ、コンピュータ用モニター、テレビ受像機、広告用看板などに利用される偏光機能を有する面光源部材に関し、特に、偏光機能を有する薄型で、かつ長尺なロール状に巻き取ることができる面光源部材及び面光源部材の製造方法に関する。
 携帯電話、PDA、ビデオカメラなどの中小型表示装置や、カーナビゲーションシステム、パーソナルコンピュータ、コンピュータ用モニター、テレビ受像機、広告用看板などの中大型表示装置として広く使用されるようになった液晶表示装置は、面状に光を発する面光源素子(バックライト)と映像情報を与える液晶表示パネルとで構成され、この液晶表示パネルが与えた映像情報により光の透過率がコントロールされることによって文字や映像が表示される。
  従来、液晶表示装置では、一般に、偏光制御や光学的な補償を行うために偏光板や位相差板あるいは楕円偏光板を用いており、この液晶表示装置は、個々の画素電極が光を透過する透過型、反射する反射型、一部を透過して一部を反射する半透過型の3種類に分類される。
 このような液晶表示装置は、室内などで使用される場合には、透過型液晶表示装置が鮮明で優れ、これに対して反射型液晶表示装置は、外光を反射して画像を表示するので、屋外での視認性に優れているが、暗い場所では画像が見え難いという欠点がある。
 透過型と反射型の長所を備えた液晶表示装置として半透過型液晶表示装置があり、この半透過型液晶表示装置は、画素電極を半透過にしたり、開口を設けたりすることにより、バックライトの光と外光との両方で視認性が確保できる。このため、携帯用情報端末などモバイル用表示装置には最適な表示装置である。
 半透過型液晶表示装置では、液晶を2枚の基板の間隙に封入して固定して形成された液晶パネルの両外側に、偏光板(直線偏光板)と位相差板(1/4波長板)とを積層して、入射光を円偏光にする機能を持たせている。更に、表示面から見て裏面側の外側にはバックライトを配置している。
 現在、カラー液晶表示装置は、シート状のガラス基板に、ブラックマトリックス、赤(R)/緑(G)/青(B)の3原色からなる着色層、共通透明電極層を備えたカラーフィルタ基板に配向層を形成し、薄膜トランジスタ(TFT)、画素電極を備えたTFT基板に配向層を形成し、これら二つの基板を、配向層を対向させて所定の間隙を保持し、この間隙に液晶材料を満たして液晶層を形成し、液晶層の周囲でカラーフィルタ基板とTFT基板とをシール材料にて接着固定して製造した液晶パネルを用いている。偏光を制御して画像表示を行うために、この液晶パネルのカラーフィルタ基板とTFT基板のそれぞれの外側の面に偏光板を貼り付けている。
 更に、偏光板の裏面に、面状に光を発する面光源素子を備え、液晶パネルにより光の透過率を制御することで画像が表示される。
 この面光源素子に関する従来の技術として、例えば、図7に示すように、反射シート807、導光板805、拡散シート804、下プリズムシート803、上プリズムシート803がこれらの順で積層されたものがある(特許文献1)。導光板805の反射シート807に対抗する下面に多数の凹状または凸状の光反射部806が形成されており、発光ダイオード(LED)や冷陰極管(CCFL)などの光源801から入射する光を面状に出射させている。
 このような面光源素子では、多数のシート状部材から構成されているため、材料コストが高くなることが避けられない。更に、多数のシート状部材を面状光源素子に組み立てる工程も必要であるため、加工コストも高くなり、この組み立て工程中で、多数のシート状部材の間にゴミや異物が混入して不良品となり、製品歩留りが低下する問題もあった。
 また、各シート状部材を組み立てる工程では、各シート部材の表面にキズが入り不良品となる問題があった。
 更にまた、下プリズムシートと上プリズムシートには裏表があるため、裏表逆に組み立てると所定の性能が出ないし、各シート状部材の積層の順序も間違えると所定の性能が出ないという問題があった。
 このような問題を解決する手段として、例えば、面光源素子の反射機能、導光機能、拡散機能、集光機能を一体化させた面光源素子が提案されている(特許文献2,3)。これらの提案による面光源素子は、図8に示すように、出射光制御板904と導光体905とから構成され、出射光制御板904は出射光板902と凸部903からなり、光源901から入射する光を制御して面状に出射させている。
特開2008-198481号公報 特開平8-221013号公報 特開2002-42528号公報
 このような機能が一体化された面光源素子では、予め面光源素子の各機能が一体化されているため、多数のシート状部材を積層して組み立てる必要がないので、組立工程におけるゴミや異物の混入の問題、キズが入る問題、裏表逆に組み立てる問題、積層の順序を間違えてしまう問題はすべてなくなるという優れたメリットがある。
 また、前述したように、半透過型液晶表示装置では、バックライトと偏光板、位相差板が積層されて構成されているが、バックライトと位相差板及び偏光板との界面には空気層が介在するので、表面反射の影響によりバックライトから射出された光が界面で反射され、その結果、光利用効率が低下するという課題がある。
 この発明は、かかる実情に鑑みてなされたもので、バックライトの組み立て工程での歩留り低下がなく、組み立て間違いも起こらず、バックライトの光利用効率の低下もなく、表示特性に優れた半透過型液晶表示装置を可能とする、薄型で長尺な面光源部材が得ることができる面光源部材及び面光源部材の製造方法を提供することを目的としている。
 前記課題を解決し、かつ目的を達成するために、この発明は、以下のように構成した。
 請求項1に記載の発明は、少なくとも一つ以上の光射出手段及び薄板状の導光体を有する面光源素子と光学フィルム層から構成される面光源部材であって、
 前記導光体は、少なくとも長尺なプラスチックフィルムを有しており、
 前記面光源素子の光射出する面に粘着剤層を介して前記光学フィルム層が形成されていることを特徴とする面光源部材である。
 請求項2に記載の発明は、前記光学フィルム層は、偏光板、位相差板及び楕円偏光板のうちから選ばれる1種以上であることを特徴とする請求項1に記載の面光源部材である。
 請求項3に記載の発明は、前記光学フィルム層は、長尺な偏光板と、長尺な支持フィルム上に連続して形成された位相差板とが積層して形成されていることを特徴とする請求項1に記載の面光源部材である。
 請求項4に記載の発明は、前記光学フィルム層は、シート状の楕円偏光板が、少なくとも2枚以上前記面光源素子上の長尺の長手方向に平行に配置して形成されていることを特徴とする請求項1に記載の面光源部材である。
 請求項5に記載の発明は、前記面光源部材の総厚が0.4mm以下であり、ロール状に巻き取ることが可能であることを特徴とする請求項1に記載の面光源部材である。
 請求項6に記載の発明は、少なくとも一つ以上の光射出手段及び薄板状の導光体を有する面光源素子と光学フィルム層から構成される面光源部材の製造方法であって、
 前記導光体は、少なくとも長尺なプラスチックフィルムを有しており、
 前記面光源素子の光射出する面に、粘着剤層を介して前記光学フィルム層を形成する層形成工程を備えていることを特徴とする面光源部材の製造方法である。
 請求項7に記載の発明は、前記光学フィルム層は、偏光板、位相差板及び楕円偏光板のうちから選ばれる1種以上であることを特徴とする請求項6に記載の面光源部材の製造方法である。
 請求項8に記載の発明は、前記光学フィルム層は、長尺な偏光板と、長尺な支持フィルム上に連続して形成された位相差板とが積層して形成されていることを特徴とする請求項6に記載の面光源部材の製造方法である。
 請求項9に記載の発明は、前記光学フィルム層は、シート状の楕円偏光板が、少なくとも2枚以上前記面光源素子上の長尺の長手方向に平行に配置して形成されていることを特徴とする請求項6に記載の面光源部材の製造方法である。
 請求項10に記載の発明は、前記面光源部材の総厚は0.4mm以下であり、
 前記層形成工程の後、前記面光源部材をロール状に巻き取る巻取工程を備えたことを特徴とする請求項6に記載の面光源部材の製造方法である。
 前記構成により、この発明は、以下のような効果を有する。
請求項1及び請求項6に記載の発明では、面光源素子と光学フィルム層とが予め粘着剤層を介して一体化された面光源部材であるため、従来の如く液晶パネルを製造後にシート状の光学フィルム層を貼り付ける工程が省けると共に、この貼り付ける工程におけるゴミ、異物等の挟み込みによる不良発生を防ぐことができる。
 また、面光源素子と光学フィルム層は、粘着剤層を介して一体化されているので、面光源素子の射出光が面光源素子の界面反射で反射して戻ることがなく、光利用効率が低下しない面光源部材を得ることができる。このように、バックライトの組み立て工程での歩留り低下がなく、組み立て間違いも起こらず、バックライトの光利用効率の低下もなく、表示特性に優れた半透過型液晶表示装置を可能とする薄型で長尺な面光源部材が得ることができる。
 請求項2及び請求項7に記載の発明では、面光源素子と一体化する光学フィルム層を、偏光板とすることで、ロール・ツー・ロール方式による透過型のカラー液晶表示装置の製造に適用できる。また、光学フィルム層を位相差板または楕円偏光板とすることで、ロール・ツー・ロール方式による反射型、半透過型の液晶表示装置の製造に適用できる。
 請求項3及び請求項8に記載の発明では、面光源素子と一体化する光学フィルム層は、長尺な偏光板と、長尺な支持フィルム上に連続して形成された位相差板とが積層して形成されているために、光学フィルム層に切れ目がなく、面光源素子の配置に無関係に、即ち、どのような配置の面光源素子とでも一体化が可能である。
 請求項4及び請求項9に記載の発明では、光学フィルム層は、シート状の楕円偏光板が、少なくとも2枚以上面光源素子上の長尺の長手方向に平行に配置して形成されているため、光軸の方向とのばらつきが少なく、表示特性に優れた液晶表示装置を可能とする薄型で長尺な面光源部材を得ることができる。
 請求項5及び請求項10に記載の発明では、面光源部材の総厚が0.4mm以下であると、より長尺の面光源部材をひとつのロールにすることができる。その結果、ロール・ツー・ロール方式での液晶表示装置の製造に用いた場合に、ロール状の面光源部材の交換による製造時間並びに部材のロスが低減され、生産性が向上し低コストが可能となる。0.4mmを越える厚さでは、1本のロールに対しての巻き長さが少なくなる。
面光源部材の第1の実施の形態を示す外形模式図である。 面光源部材の第1の実施の形態の断面図である。 面光源部材の第2の実施の形態を示す外形模式図である。 面光源部材の第2の実施の形態の断面図である。 面光源部材の製造方法の第1の実施の形態を示す外形模式図である。 面光源部材の製造方法の第2の実施の形態を示す外形模式図である。 従来のバックライト装置の断面図である。 従来の他のバックライト装置の断面図である。
 以下、この発明の面光源部材及び面光源部材の製造方法の実施の形態について説明する。この発明の実施の形態は、発明の最も好ましい形態を示すものであり、この発明はこれに限定されない。
[面光源部材の第1の実施の形態]
 この面光源部材の第1の実施の形態を、図1及び図2に基づいて説明する。図1は面光源部材の第1の実施の形態を示す外形模式図、図2は面光源部材の第1の実施の形態の断面図である。
 この面光源部材1は、面光源素子3と光学フィルム層2から構成され、面光源素子3は少なくとも一つ以上の光射出手段3a及び薄板状の導光体3bを有する。光射出手段3aは、例えば導光体3b側に凸状の多数の光反射部などで形成されており、導光体3bの端面に発光ダイオード(LED)や冷陰極管(CCFL)などの光源から入射する光を面状に出射させている。
 導光体3bは、少なくとも長尺なプラスチックフィルムを有している。面光源素子3の光射出する面に粘着剤層4を介して光学フィルム層2が形成されている。
 面光源素子3は、光射出手段3aが各点をなし、この各点から出射され、導光体3bのプラスチックフィルムによって面光源素子3の発光面を正面から見た場合、各点の光量はほぼ等しいバックライト装置が構成される。
 導光体3bは、長尺なプラスチックフィルムの基板としては、透明な樹脂フィルムを用いることができ、その種類は特に限定されない。好適なプラスチックフィルムの例として、アクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、などの透明性に優れた樹脂を挙げることができる。プラスチックフィルムの基板の厚さは、例えば50~200μm程度である。
 光学フィルム層2は、偏光板、位相差板及び楕円偏光板のうちから選ばれる1種以上であればいずれでも良い。
 偏光板は、入射光から直線偏光を取り出す機能を有するものであり、その種類は特に限定されない。好適な偏光板の例として、ポリビニルアルコール系樹脂に二色性色素が吸着配向している偏光フィルムの両面に透明な保護層を設けた構成のものを挙げることができる。二色性色素としては、ヨウ素または二色性の有機染料が用いられる。また、透明な保護層としては、例えば、トリアセチルセルロースフィルムなどが用いられる。この保護層は、偏光フィルムの両面ではなく片面だけに設けられていても良い。偏光フィルムの厚さは、例えば5~50μm程度であり、偏光板全体の厚さとしては、例えば50~200μm程度である。
 位相差板は、通常、樹脂の延伸フィルムで構成される。位相差板を構成する樹脂の例としては、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、ポリスルホン系樹脂、オレフィン系樹脂、環状ポリオレフィン系樹脂、セルロースアセテート系樹脂、などを挙げることができる。位相差板の厚さは、例えば10~100μm程度である。
 また、位相差板には、透明な基板上に重合性液晶組成物を塗布して配向させ、その後配向を固定させて形成する塗布型の位相差板を用いることもできる。塗布型の位相差板の基板には、透明であればその材質は特に限定されない。好適な基板の例として、セラミックス、樹脂等を挙げることができる。基板の樹脂としては、トリアエチルセルロース、ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリエーテルスルホンなどを用いることができる。
 この塗布型の位相差板の場合、長尺なフィルム基板を用いたロール・ツー・ロール方式等の連続法により、長尺でつなぎ目のない位相差板が得られる。重合性液晶組成物としては、単独又は他の液晶化合物との組成物において液晶性を示す、重合性基を有する化合物、例えば、特開平7-294735号公報、特開平8-3111号公報、特開2002-308831号公報に記載されているような、重合性官能基を有する棒状重合性液晶化合物が挙げることができる。塗布型の位相差板の厚さは、例えば0.5~10μm程度であり、樹脂基板を用いた場合の位相差板全体の厚さは、例えば50~200μm程度である。
 円偏光板は、直線偏光板と1/4波長板との積層または、直線偏光板と1/2波長板と1/4波長板との積層で構成される。
 この実施の形態では、光学フィルム層2が、偏光板33と1/2波長板22と1/4波長板11との積層で構成される。
 光学フィルム層2は、長尺な偏光板と、長尺な支持フィルム上に連続して形成された位相差板とが積層して形成され、光学フィルム層2に切れ目がなく、面光源素子3の配置に無関係に、即ち、どのような配置の面光源素子3とでも一体化が可能である。
 粘着剤層4を形成するための粘着剤は、ベースポリマーとして、例えば、(メタ)アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系ポリマー及びゴム系ポリマー等のポリマーを適宜に選択して用いることができる。
 粘着剤層4は、吸湿による発泡現象や剥がれ現象の防止、熱膨張差等による光学特性の低下や画像表示パネルの反り防止、ひいては高品質で耐久性に優れる画像表示装置の形成性等の点より、吸湿性が低くて耐熱性に優れるものが好ましい。
 これらのなかでも、光学的透明性に優れ、適宜な濡れ性と凝集性と接着性の粘着特性を示す(メタ)アクリル系ポリマーが好ましい。(メタ)アクリル系ポリマーとは、アルキル(メタ)アクリレートを、主成分のモノマー単位として含有する重合体をいう。尚、本明細書では、アクリレートまたは/及びメタクリレートを、(メタ)アクリレートと表す。
 粘着剤層4の形成は、前記偏光子、偏光板または位相差板等の光学フィルムに粘着剤層を積層することにより行う。形成方法としては、特に制限されず、前記光学フィルムに粘着剤溶液を塗布し乾燥する方法、粘着剤層等を設けた離型シートにより転写する方法等があげられる。
 離型シートの構成材料としては、紙、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等の合成樹脂フィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネート体等の適宜な薄葉体等があげられる。離型シートの表面には、粘着剤層からの剥離性を高めるため、必要に応じてシリコーン処理、長鎖アルキル処理、フッ素処理等の低接着性の剥離処理が施されていても良い。
 粘着剤層4の厚さは、一般的には、1~30μmであり、5~25μmが好ましく、特に5~15μmがより好ましい。
 このように、面光源素子3と光学フィルム層2とが予め粘着剤層4を介して一体化された面光源部材1であるため、従来の如く液晶パネルを製造後にシート状の光学フィルム層を貼り付ける工程が省けると共に、この貼り付ける工程におけるゴミ、異物等の挟み込みによる不良発生を防ぐことができる。
 また、面光源素子3と光学フィルム層2は、粘着剤層4を介して一体化されているので、面光源素子3の射出光が面光源素子3の界面反射で反射して戻ることがなく、光利用効率が低下しない面光源部材1を得ることができる。このように、バックライトの組み立て工程での歩留り低下がなく、組み立て間違いも起こらず、バックライトの光利用効率の低下もなく、表示特性に優れた半透過型液晶表示装置を可能とする薄型で長尺な面光源部材1が得ることができる。
 また、面光源素子3と一体化する光学フィルム層2を、偏光板とすることで、ロール・ツー・ロール方式による透過型のカラー液晶表示装置の製造に適用できる。また、光学フィルム層2を位相差板または楕円偏光板とすることで、ロール・ツー・ロール方式による反射型、半透過型の液晶表示装置の製造に適用できる。
 また、面光源素子3と一体化する光学フィルム層2は、長尺な偏光板と、長尺な支持フィルム上に連続して形成された位相差板とが積層して形成されているために、光学フィルム層2に切れ目がなく、面光源素子3の配置に無関係に、即ち、どのような配置の面光源素子3とでも一体化が可能である。
 また、光学フィルム層2は、シート状の楕円偏光板が、少なくとも2枚以上面光源部材1の長尺の長手方向に平行に配置して形成されているため、光軸の方向とのばらつきが少なく、表示特性に優れた液晶表示装置を可能とする薄型で長尺な光学部材1を得ることができる。
 また、面光源部材1の総厚が0.4mm以下であると、より長尺の面光源部材1をひとつのロールにすることができる。その結果、ロール・ツー・ロール方式での液晶表示装置の製造に用いた場合に、ロール状の光学部材の交換による製造時間並びに部材のロスが低減され、生産性が向上し低コストが可能となる。0.4mmを越える厚さでは、1本のロールに対しての巻き長さが少なくなる。
[面光源部材の第2の実施の形態]
 この面光源部材の第2の実施の形態を、図3及び図4に基づいて説明する。図3は面光源部材の第2の実施の形態を示す外形模式図、図4は面光源部材の第2の実施の形態の断面図である。この面光源部材の第2の実施の形態は、第1の実施の形態と同じ構成は、同じ符号を付して説明を省略する。
 この第2の実施の形態では、光学フィルム層2は、シート状の楕円偏光板60が、少なくとも2枚以上面光源素子3上の長尺の長手方向に平行に配置して形成されている。シート状の楕円偏光板60は、偏光板33、粘着剤層46、1/2波長板22、粘着剤層45、1/4波長板11との積層で構成される。
 光学フィルム層2は、シート状の楕円偏光板60が、少なくとも2枚以上面光源部材1の長尺の長手方向に平行に配置して形成されているため、光軸の方向とのばらつきが少なく、表示特性に優れた液晶表示装置を可能とする薄型で長尺な面光源部材1を得ることができる。
 [面光源部材の製造方法の第1の実施の形態]
 この面光源部材の製造方法の第1の実施の形態を、図5に基づいて説明する。図5は面光源部材の製造方法の第1の実施の形態を示す外形模式図である。
 この第1の実施の形態は、図1及び図2に示す面光源部材1を製造する方法であり、面光源素子巻き出し部301から少なくとも長尺なプラスチックフィルムを有する面光源素子3を巻き出す。粘着剤層巻き出し部401から長尺の粘着剤層保護フィルム400を巻き出し、この粘着剤層保護フィルム400は一方の保護フィルム400aと他方の保護フィルム400bで両面を保護された粘着剤層4を有し、第1の剥離部402aで一方の保護フィルム400aを粘着剤層4から剥離し、第1の粘着剤層保護フィルム巻き取り部402に一方の保護フィルム400aを巻き取る。
 粘着剤層貼合部403では、面光源素子3に他方の保護フィルム400bに保護されている粘着剤層4を貼り合わせ、この貼り合わせ後に第2の剥離部404aで粘着剤層4の他方の保護フィルム400bを粘着剤層4から剥離し、第2の粘着剤層保護フィルム巻き取り部404に他方の保護フィルム400bを巻き取る。
 光学フィルム層巻き出し部201から長尺の光学フィルム層2を巻き出し、光学フィルム貼合部202で光学フィルム層2を粘着剤層4に貼り合わせ、この貼り合わせによって面光源部材1を形成し、面光源部材巻き取り部101にロール状に巻き取る。
 このように、少なくとも一つ以上の光射出手段及び薄板状の導光体を有する面光源素子3と光学フィルム層2から構成される面光源部材1の製造方法であって、面光源素子3の導光体は、少なくとも長尺なプラスチックフィルムを有しており、面光源素子3の光射出する面に、粘着剤層4を介して光学フィルム2層を形成する層形成工程を備え、この面光源部材1の総厚は0.4mm以下であり、層形成工程の後、面光源部材1をロール状に巻き取る巻取工程を備えており、面光源素子3と光学フィルム層2とが予め粘着剤層4を介して一体化された面光源部材1であるため、従来の如く液晶パネルを製造後にシート状の光学フィルム層を貼り付ける工程が省けると共に、この貼り付ける工程におけるゴミ、異物等の挟み込みによる不良発生を防ぐことができる。また、面光源部材1の総厚が0.4mm以下であると、より長尺の面光源部材1をひとつのロールにすることができる。その結果、ロール・ツー・ロール方式での液晶表示装置の製造に用いた場合に、ロール状の面光源部材の交換による製造時間並びに部材のロスが低減され、生産性が向上し低コストが可能となる。0.4mmを越える厚さでは、1本のロールに対しての巻き長さが少なくなる。
 [面光源部材の製造方法の第2の実施の形態]
 この面光源部材の製造方法の第2の実施の形態を、図6に基づいて説明する。図6は面光源部材の製造方法の第2の実施の形態を示す外形模式図である。
 この第2の実施の形態は、図3及び図4に示す面光源部材1を製造する方法であり、楕円偏光板供給部601からシート状の楕円偏光板60を楕円偏光板供給手段603によって楕円偏光板供給台602に供給する。楕円偏光板供給台602は、A位置とB位置との間を往復し、A位置は楕円偏光板60を受け取る位置であり、B位置は楕円偏光板60を粘着剤層4に貼り合わせる位置である。楕円偏光板供給台602は、A位置で楕円偏光板供給手段603の駆動によって移動する楕円偏光板60を受け取り、B位置へ移動し、楕円偏光板貼合手段604により、楕円偏光板60をキャリアフィルム5の保護フィルム5bで保護された粘着剤層5aに貼り付ける。
 楕円偏光板貼合手段604は、表面がゴム製の貼合ロールである。楕円偏光板供給部601は、シート状の楕円偏光板が多数枚重ねておける台である。楕円偏光板供給手段603は、真空吸着板でシート状の楕円偏光板を楕円偏光板供給部601から取り出し、A位置で楕円偏光板供給台602に受け渡すことができる機構を有している。シート状の楕円偏光板の取り出しと受け渡しの手段は、微粘着剤で軽く粘着させるなど、真空吸着板以外の方法でも構わない。本実施例では図示していないが、シート状の楕円偏光板60をキャリアフィルム5に貼り付ける場合、両者の位置合わせを行うための機能、例えばCCDカメラと画像認識装置などがあってもよい。
 キャリアフィルム5は、粘着剤層5aの一方を保護フィルム5cで保護され、他方を保護フィルム5bで保護されており、キャリアフィルム巻き出し部501は、キャリアフィルム5を巻き出し、一方の保護フィルム5cを剥離部502aで剥離してキャリアフィルム保護フィルム巻き取り部502に巻き取る。キャリアフィルム5は、微粘着PETフィルムなどが用いられる。キャリアフィルム5の厚さは、例えば、50~150μm程度である。
 B位置には、楕円偏光板貼合手段604が配置されており、楕円偏光板供給台602をB位置に停止させた状態で、楕円偏光板貼合手段604がキャリアフィルム5の搬送方向に対して反対方向に移動し、粘着剤層5aに楕円偏光板60を貼り合わせる。楕円偏光板60のキャリアフィルム5に貼り合せる面側には、予め保護フィルム(図示せず)が貼られていても良く、その場合には、楕円偏光板供給台がA位置からB位置に移動する間に当該保護フィルムを楕円偏光板から除去する。
 粘着剤層巻き出し部401から長尺の粘着剤層保護フィルム400を巻き出し、第1の剥離部402aで一方の保護フィルム400aを粘着剤層4から剥離し、第1の粘着剤層保護フィルム巻き取り部402に一方の保護フィルム400aを巻き取る。粘着剤層貼合部403で他方の保護フィルム400bの粘着剤層4を、キャリアフィルム5に貼り合わせ、シート状の楕円偏光板60に粘着剤層4を貼り合わせ、この貼り合わせ後に第2の剥離部404aで粘着剤層4の他方の保護フィルム400bを粘着剤層4から剥離し、第2の粘着剤層保護フィルム巻き取り部404に他方の保護フィルム400bを巻き取り、光学フィルム貼合部202へ搬送する。
 面光源素子巻き出し部301から少なくとも長尺なプラスチックフィルムを有する面光源素子3を巻き出し、光学フィルム貼合部202で面光源素子3を粘着剤層4に貼り合わせ、この貼り合わせによって面光源部材1を形成し、面光源部材巻き取り部101にロール状に巻き取る。
  このように、光学フィルム層2は、シート状の楕円偏光板60が、少なくとも2枚以上面光源素子3上の長尺の長手方向に平行に配置して形成され、液晶の配列方向と光学フィルム層2の光軸の方向とのばらつきが少なく、表示特性に優れたカラー液晶表示装置を可能とする、薄型で長尺な面光源部材1を得ることができる。
 以上、この明細書では液晶表示装置について記載してきたが、この発明はカラー有機ELディスプレイなど、カラーフィルタ機能と偏光機能を有する各種画像表示装置に適用可能である。
 この発明は、偏光機能を有する薄型で、かつ長尺なロール状に巻き取ることができる面光源部材及び面光源部材の製造方法に適用でき、バックライトの組み立て工程での歩留り低下がなく、組み立て間違いも起こらず、バックライトの光利用効率の低下もなく、表示特性に優れた半透過型液晶表示装置を可能とする、薄型で長尺な面光源部材が得ることができる。
1 面光源部材
2 光学フィルム層
3 面光源素子
3a 光射出手段
3b 導光体
4 粘着剤層
5 キャリアフィルム
5a 粘着剤層
5b 保護フィルム
5c 保護フィルム
11 1/4波長板
22 1/2波長板
33 偏光板
45 粘着剤層
46 粘着剤層
60 シート状の楕円偏光板
101面光源部材巻き取り部
201 光学フィルム層巻き出し部
202 光学フィルム貼合部
301 面光源素子巻き出し部
401 粘着剤層巻き出し部
400 粘着剤層保護フィルム
400a 一方の保護フィルム400b 他方の保護フィルム
401 粘着剤層巻き出し部
402 第1の粘着剤層保護フィルム巻き取り部
402a 第1の剥離部
403 粘着剤層貼合部
404 第2の粘着剤層保護フィルム巻き取り部
404a 第2の剥離部
601 楕円偏光板供給部
602 楕円偏光板供給台
603 楕円偏光板供給手段
604 楕円偏光板貼合手段

Claims (10)

  1.  少なくとも一つ以上の光射出手段及び薄板状の導光体を有する面光源素子と光学フィルム層から構成される面光源部材であって、
     前記導光体は、少なくとも長尺なプラスチックフィルムを有しており、
     前記面光源素子の光射出する面に粘着剤層を介して前記光学フィルム層が形成されていることを特徴とする面光源部材。
  2.  前記光学フィルム層は、偏光板、位相差板及び楕円偏光板のうちから選ばれる1種以上であることを特徴とする請求項1に記載の面光源部材。
  3.  前記光学フィルム層は、長尺な偏光板と、長尺な支持フィルム上に連続して形成された位相差板とが積層して形成されていることを特徴とする請求項1に記載の面光源部材。
  4.  前記光学フィルム層は、シート状の楕円偏光板が、少なくとも2枚以上前記面光源素子上の長尺の長手方向に平行に配置して形成されていることを特徴とする請求項1に記載の面光源部材。
  5.  前記面光源部材の総厚が0.4mm以下であり、ロール状に巻き取ることが可能であることを特徴とする請求項1に記載の面光源部材。
  6.  少なくとも一つ以上の光射出手段及び薄板状の導光体を有する面光源素子と光学フィルム層から構成される面光源部材の製造方法であって、
     前記導光体は、少なくとも長尺なプラスチックフィルムを有しており、
     前記面光源素子の光射出する面に、粘着剤層を介して前記光学フィルム層を形成する層形成工程を備えていることを特徴とする面光源部材の製造方法。
  7.  前記光学フィルム層は、偏光板、位相差板及び楕円偏光板のうちから選ばれる1種以上であることを特徴とする請求項6に記載の面光源部材の製造方法。
  8.  前記光学フィルム層は、長尺な偏光板と、長尺な支持フィルム上に連続して形成された位相差板とが積層して形成されていることを特徴とする請求項6に記載の面光源部材の製造方法。
  9.  前記光学フィルム層は、シート状の楕円偏光板が、少なくとも2枚以上前記面光源素子上の長尺の長手方向に平行に配置して形成されていることを特徴とする請求項6に記載の面光源部材の製造方法。
  10.  前記面光源部材の総厚は0.4mm以下であり、
     前記層形成工程の後、前記面光源部材をロール状に巻き取る巻取工程を備えたことを特徴とする請求項6に記載の面光源部材の製造方法。
PCT/JP2009/063876 2009-08-04 2009-08-05 面光源部材及び面光源部材の製造方法 WO2011016119A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-181169 2009-08-04
JP2009181169A JP5610606B2 (ja) 2009-08-04 2009-08-04 面光源部材及び面光源部材の製造方法

Publications (1)

Publication Number Publication Date
WO2011016119A1 true WO2011016119A1 (ja) 2011-02-10

Family

ID=43544040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063876 WO2011016119A1 (ja) 2009-08-04 2009-08-05 面光源部材及び面光源部材の製造方法

Country Status (2)

Country Link
JP (1) JP5610606B2 (ja)
WO (1) WO2011016119A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052673A (ja) * 2011-08-02 2013-03-21 Sumitomo Bakelite Co Ltd 樹脂シート製造装置、樹脂シート製造方法、樹脂シートおよび表示素子用樹脂基板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6668911B2 (ja) * 2016-04-21 2020-03-18 大日本印刷株式会社 光学部材の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030621A (ja) * 2004-07-16 2006-02-02 Kuraray Co Ltd 集光フィルム、液晶パネルおよびバックライト並びに集光フィルムの製造方法
JP2008243803A (ja) * 2007-02-28 2008-10-09 Nitto Denko Corp バックライトシステムおよび粘着剤付光学シート

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006227408A (ja) * 2005-02-18 2006-08-31 Alps Electric Co Ltd 液晶表示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030621A (ja) * 2004-07-16 2006-02-02 Kuraray Co Ltd 集光フィルム、液晶パネルおよびバックライト並びに集光フィルムの製造方法
JP2008243803A (ja) * 2007-02-28 2008-10-09 Nitto Denko Corp バックライトシステムおよび粘着剤付光学シート

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052673A (ja) * 2011-08-02 2013-03-21 Sumitomo Bakelite Co Ltd 樹脂シート製造装置、樹脂シート製造方法、樹脂シートおよび表示素子用樹脂基板

Also Published As

Publication number Publication date
JP5610606B2 (ja) 2014-10-22
JP2011034860A (ja) 2011-02-17

Similar Documents

Publication Publication Date Title
JP4775948B2 (ja) 光学表示装置の製造システム及びその製造方法
KR101782827B1 (ko) 액정 표시 장치
TWI283309B (en) Liquid crystal display device
JP5311605B2 (ja) 液晶パネルおよび液晶表示装置
JP3681343B2 (ja) 積層光学フィルムとその製造方法及びこれを用いた液晶表示装置
TWI457637B (zh) Liquid crystal display device
US9164312B2 (en) Polarizing adhesive element, method of manufacturing the same and display apparatus having the same
JP4153945B2 (ja) 液晶パネルおよび液晶表示装置
US10175528B2 (en) Liquid crystal panel, liquid crystal display device, and reflective polarizing plate and manufacturing method thereof
JP2002221715A (ja) 液晶表示素子及びそれを用いた液晶表示装置
US6970213B2 (en) Optical film and liquid-crystal display device using the optical film
JP2012181278A (ja) ロール状偏光板のセット及びその製造方法並びに液晶パネルの製造方法
US10295729B2 (en) Liquid crystal display device
JP5610606B2 (ja) 面光源部材及び面光源部材の製造方法
WO2016065794A1 (zh) 棱镜膜、棱镜膜制作方法及液晶显示装置
JP2008164984A (ja) 積層位相差フィルム
JP2005338367A (ja) 偏光板およびそれを用いた画像表示装置
JP2002090535A (ja) 光学素子、面光源装置及び液晶表示装置
JP2007279323A (ja) 液晶表示装置
JP5797885B2 (ja) 光学表示装置の製造システム及びその製造方法
KR20220067537A (ko) 편광판의 세트 및 그 세트를 포함하는 화상 표시 장치
JP5606013B2 (ja) 光学部材及びその製造方法
JP2011242538A (ja) 液晶パネル
JP2002022957A (ja) 光学フィルム及びそれを用いた液晶表示装置
JP2010286619A (ja) 光学フィルム、偏光板、液晶パネル、液晶表示装置および光学フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848051

Country of ref document: EP

Kind code of ref document: A1