WO2011010548A1 - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
WO2011010548A1
WO2011010548A1 PCT/JP2010/061402 JP2010061402W WO2011010548A1 WO 2011010548 A1 WO2011010548 A1 WO 2011010548A1 JP 2010061402 W JP2010061402 W JP 2010061402W WO 2011010548 A1 WO2011010548 A1 WO 2011010548A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle speed
speed
vehicle
correction coefficient
target output
Prior art date
Application number
PCT/JP2010/061402
Other languages
English (en)
French (fr)
Inventor
武嗣 藏田
高弘 江口
綾絵 幾老
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2011523599A priority Critical patent/JP5341998B2/ja
Priority to US13/381,635 priority patent/US8818665B2/en
Priority to EP10802168.4A priority patent/EP2458184B1/en
Priority to CN201080032501.8A priority patent/CN102472180B/zh
Publication of WO2011010548A1 publication Critical patent/WO2011010548A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • F16H61/66259Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling using electrical or electronical sensing or control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle

Definitions

  • the present invention relates to a vehicle control device, and more specifically, to a vehicle control device including a continuously variable transmission that shifts the output of a drive source mounted thereon.
  • the target rotational speed of the internal combustion engine (drive source) input based on the vehicle speed and the accelerator opening is set.
  • the target output of the drive source is calculated based on the vehicle speed, the accelerator opening, and the rotation speed of the drive source, and the operation of the DBW mechanism is controlled so as to be the value.
  • the technique described in Patent Document 1 can be cited.
  • the upper limit speed of the vehicle traveling speed is limited to 180 km / h by automakers' self-regulation (hereinafter, this upper limit speed is referred to as “regulated vehicle speed”). Since the output of the internal combustion engine (drive source) is also limited accordingly, the engine output will saturate if the throttle opening is above a certain level, so the accelerator opening is fully open (the accelerator pedal is fully depressed) When it reaches about half of the opening, the vehicle speed reaches the regulated vehicle speed.
  • the object of the present invention is to solve the above-described problems and to change the accelerator opening characteristic in the vicinity of the regulated vehicle speed in accordance with the vehicle speed in a vehicle equipped with a continuously variable transmission that changes the output of the mounted drive source.
  • An object of the present invention is to provide a vehicle control apparatus.
  • a vehicle control device including a belt-type continuously variable transmission that shifts an output of a mounted drive source.
  • Target rotational speed setting means for setting the target rotational speed of the drive source input to the continuously variable transmission based on the opening
  • target output calculation means for calculating the target output of the drive source based on the accelerator opening
  • Correction coefficient calculating means for calculating a correction coefficient based on the travel speed of the vehicle, and the travel speed of the vehicle when the accelerator opening reaches a fully open position by correcting the target output with the correction coefficient.
  • the correction coefficient calculation means calculates the correction coefficient so that the travel speed gradually decreases after the traveling speed reaches a predetermined speed before the regulated vehicle speed. It was configured as follows.
  • the correction coefficient calculating means is configured to calculate the correction coefficient so that the travel speed rapidly decreases after the traveling speed exceeds the regulation vehicle speed.
  • the target rotational speed of the drive source input to the continuously variable transmission is set based on the traveling speed of the vehicle and the accelerator opening, and the driving is performed based on the accelerator opening.
  • the target output of the power source is calculated, a correction coefficient is calculated based on the travel speed of the vehicle, and the target travel speed is corrected by the correction coefficient.
  • the corrected target output is calculated so as to reach, that is, the characteristic of the accelerator opening is changed according to the vehicle speed in the vicinity of the regulated vehicle speed, so that the vehicle speed finally reaches the regulated vehicle speed when the accelerator pedal is fully depressed.
  • the driver can have a good acceleration feeling.
  • the vehicle when the accelerator pedal is fully depressed and the vehicle speed finally reaches the regulated vehicle speed, the vehicle is driven with a relatively large accelerator opening, and the ratio of the continuously variable transmission is OD.
  • the belt is controlled from the side to the LOW side, and the durability of the belt of the continuously variable transmission can be increased.
  • the regulated vehicle speed is not exceeded, fuel cut is executed and the input torque is not rapidly reduced, so that drivability is not deteriorated.
  • the correction coefficient calculating means is configured to calculate the correction coefficient so that the traveling speed gradually decreases after reaching the predetermined speed before the regulated vehicle speed.
  • the corrected target output calculated by correcting with the correction coefficient can be reliably calculated so that the traveling speed of the vehicle reaches the regulated vehicle speed when the accelerator opening reaches the full opening.
  • the correction coefficient calculating means is configured to calculate the correction coefficient so that the travel speed rapidly decreases after the travel speed exceeds the regulated vehicle speed. In the unlikely event that the regulated vehicle speed is exceeded, the corrected target output is calculated so that the target output is suddenly reduced. Therefore, the traveling speed does not exceed the regulated vehicle speed, and the output of the drive source is suddenly reduced. Such a situation does not occur.
  • 1 is an overall view schematically showing a vehicle control apparatus according to the present invention.
  • 3 is a flowchart showing the operation of the vehicle control device shown in FIG. 1.
  • 2 is an explanatory diagram showing the characteristics of the target output used in the processing of the flow chart.
  • 2 is an explanatory diagram showing the characteristics of the correction coefficient used in the processing of the flow chart.
  • 2 is an explanatory diagram showing a correction target output calculated by the processing of the flow chart. 2 is an explanatory diagram explaining the processing of the flow chart.
  • FIG. 1 is an overall view schematically showing a vehicle control apparatus according to this embodiment.
  • reference numeral 10 denotes a belt type continuously variable transmission (CVT, hereinafter referred to as “CVT”).
  • CVT continuously variable transmission
  • the CVT 10 is mounted on a vehicle (not shown), shifts the output of the drive source PM, and transmits it to the left and right drive wheels (front wheels) WL and WR via the differential mechanism D.
  • the drive source PM includes an internal combustion engine (hereinafter referred to as “engine”) E and an electric motor MOT.
  • the electric motor MOT is coaxially connected to the output shaft (crank shaft) of the engine E, and functions as an electric motor MOT that rotates the engine E and a generator that is rotated by the engine E and generates regenerative power.
  • the CVT 10 has an input shaft 12, an output shaft 14, and an intermediate shaft 16 provided in parallel with each other, and is housed in the case 10 a of the CVT 10 together with the differential mechanism D.
  • the input shaft 12 is coupled to the output shaft OS of the drive source PM via a coupling mechanism CP.
  • a drive pulley 20 is provided on the input shaft 12.
  • the drive pulley 20 is provided so as to be rotatable relative to the input shaft 12 and not axially movable, and to be movable relative to the fixed drive pulley half 20a but not axially movable.
  • the movable drive pulley half 20b is formed.
  • a drive-side pulley width setting mechanism 22 that sets the pulley width of the drive pulley 20 according to the pressure of the supplied hydraulic oil is provided on the side of the movable drive pulley half 20b.
  • the drive-side pulley width setting mechanism 22 includes a cylinder wall 22a provided on the side of the movable drive pulley half 20b, and a cylinder chamber 22b formed between the cylinder wall 22a and the movable drive pulley half 20b. And a return spring 22c that is provided in the cylinder chamber 22b and urges the movable drive pulley half 20b toward the fixed drive pulley half 20a at all times.
  • the output shaft 14 is provided with a driven pulley 24.
  • the driven pulley 24 is fixed to the output shaft 14 so that it cannot rotate relative to the output shaft 14 and cannot move in the axial direction.
  • the driven pulley 24 cannot rotate relative to the fixed driven pulley half 24a. It consists of a movable driven pulley half 24b that is movably provided in the direction.
  • a driven pulley width setting mechanism 26 that sets the pulley width of the driven pulley 24 in accordance with the pressure of the supplied hydraulic oil is provided on the side of the movable driven pulley half 24b.
  • the driven pulley width setting mechanism 26 includes a cylinder wall 26a provided on the side of the movable driven pulley half 24b, and a cylinder chamber 26b formed between the cylinder wall 26a and the movable driven pulley half 24b. And a return spring 26c that is provided in the cylinder chamber 26b and constantly biases the movable driven pulley half 24b in a direction to approach the fixed driven pulley half 24a.
  • the movable driven pulley half 24b approaches the fixed driven pulley half 24a, and the pulley width of the driven pulley 24 is narrowed.
  • the side driven pulley half 24b is separated from the fixed side driven pulley half 24a, and the pulley width is widened.
  • a metal V-belt 30 is wound between the drive pulley 20 and the driven pulley 24.
  • V-belt 30 a large number of elements are connected by a ring-shaped member (not shown), and the V-shaped surface formed on each element is in contact with the pulley surface of the drive pulley 20 and the pulley surface of the driven pulley 24 and strongly pressed from both sides. Then, the power of the engine E is transmitted from the drive pulley 20 to the driven pulley 24.
  • a planetary gear mechanism 32 is provided on the input shaft 12.
  • the planetary gear mechanism 32 has a sun gear 34 that is spline-fitted to the input shaft 12 and rotates integrally with the input shaft 12, a ring gear 36 that is integrally formed with the fixed drive pulley half 20 a, and the input shaft 12. It has a planetary carrier 40 provided so as to be relatively rotatable, and a plurality of planetary gears 42 rotatably supported on the planetary carrier 40.
  • Each planetary gear 42 always meshes with both the sun gear 34 and the ring gear 36.
  • An FWD (forward) clutch 44 is provided between the sun gear 34 and the ring gear 36, and an RVS (reverse) brake clutch 46 is provided between the planetary carrier 40 and the case 10a.
  • the FWD clutch 44 moves the clutch piston 44a to the left in FIG. 1 against the spring force of the return spring 44c, so that the friction plate and the ring gear on the sun gear 34 side are moved.
  • the sun gear 34 and the ring gear 36 are engaged with each other by engaging the friction plate 36 on the 36 side (in-gear), thereby enabling the vehicle to travel forward.
  • the RVS brake clutch 46 is supplied with hydraulic oil to the cylinder chamber 46b, and moves the brake piston 46a to the left in FIG. 1 against the spring force of the return spring 46c, so that the friction plate and the planetary carrier on the case 10a side are moved.
  • the case 10a and the planetary carrier 40 are coupled to each other by engaging the friction plate on the 40 side, thereby enabling the vehicle to travel backward.
  • the output shaft 14 is provided with a start clutch 52 together with the intermediate shaft drive gear 50.
  • the starting clutch 52 is supplied with hydraulic oil to the cylinder chamber 52b, and moves the clutch piston 52a against the spring force of the return spring 52c, thereby causing the friction plate on the output shaft 14 side and the friction plate on the intermediate shaft drive gear 50 side. And the output shaft 14 and the intermediate shaft drive gear 50 are coupled.
  • the intermediate shaft drive gear 50 cannot be rotated relative to the output shaft 14. Therefore, when the start clutch 52 is engaged with the output shaft 14 rotated, the intermediate shaft drive gear 50 is engaged. 50 rotates integrally with the output shaft 14 together with the output shaft 14.
  • the intermediate shaft 16 is provided with an intermediate shaft driven gear 54 and a differential drive gear 56.
  • the intermediate shaft driven gear 54 and the differential drive gear 56 are both fixedly provided on the intermediate shaft 16, and the intermediate shaft driven gear 54 always meshes with the intermediate shaft drive gear 50.
  • the differential drive gear 56 always meshes with the differential driven gear 60 fixed to the differential case Dc of the differential mechanism D.
  • Left and right axle shafts ASL and ASR are fixed to the differential mechanism D, and left and right drive wheels WL and WR are attached to the ends thereof.
  • the differential driven gear 60 is always meshed with the differential drive gear 56, and the entire differential case Dc rotates around the left and right axle shafts ASL and ASR as the intermediate shaft 16 rotates.
  • the pressure of the hydraulic oil supplied to both the cylinder chambers 22b and 26b of the pulley is controlled, and the pulley side pressure that does not cause the slip of the V belt 30 is applied to the cylinder chamber 22b of the drive pulley 20 and the cylinder chamber of the driven pulley 24.
  • the rotation of the engine E is input to the input shaft 12 in the state given to 26b, the rotation is transmitted from the input shaft 12 ⁇ the drive pulley 20 ⁇ the V belt 30 ⁇ the driven pulley 24 ⁇ the output shaft 14.
  • the pulley width is changed by increasing / decreasing both pulley side pressures of the drive pulley 20 and the driven pulley 24, and the winding radius of the V belt 30 with respect to both the pulleys 20 and 24 is changed, whereby the ratio of the winding radius ( A desired gear ratio according to the pulley ratio) can be obtained steplessly.
  • the intermediate shaft drive gear 50 is connected to the output shaft 14 and rotated together. Then, the rotation transmitted to the output shaft 14 is further transmitted from the intermediate shaft drive gear 50 to the intermediate shaft driven gear 54, and the intermediate shaft 16 rotates. The rotation of the intermediate shaft 16 is transmitted to the left and right drive wheels WL, WR via the differential mechanism D and the axle shafts ASL, ASR, and drives them.
  • the pulley width of the drive pulley 20 described above and the engagement (in gear) / non-engagement (out gear) of the FWD clutch 44 or the RVS brake clutch 46 are determined in the cylinder chambers 22b, 26b, 44b, 46b, 52b in the hydraulic circuit. This is done by controlling the pressure (hydraulic pressure) of the hydraulic oil supplied to the engine.
  • the engine E is provided with a DBW mechanism 64. That is, the mechanical connection between the throttle valve (not shown) of the engine E and the accelerator pedal (not shown) arranged on the vehicle driver's seat floor is cut off, and the throttle valve is an actuator (electric motor) of the DBW mechanism 64. Etc. (not shown).
  • a crank angle sensor 66 is provided near the cam shaft (not shown) of the engine E and outputs a signal indicating the engine speed NE for each predetermined crank angle position of the piston.
  • an absolute pressure sensor 70 is provided downstream of the throttle valve to output a signal proportional to the intake pipe absolute pressure (engine load) PBA, and an intake temperature sensor 72 is provided at an appropriate position upstream of the throttle valve.
  • an output corresponding to the intake water temperature is generated, and a water temperature sensor 74 is provided in the vicinity of a cooling water passage (not shown) to generate an output corresponding to the engine cooling water temperature TW.
  • the output of the crank angle sensor 66 and the like described above is sent to the engine controller 76.
  • the engine controller 76 includes a microcomputer and executes control of the output of the engine E via the DBW mechanism 64 based on the sensor output.
  • An NDR sensor 80 is provided at an appropriate position in the vicinity of the drive pulley 20 in the CVT 10 to output a pulse signal corresponding to the rotational speed of the drive pulley 20, that is, the input rotational speed NDR of the CVT, and in the vicinity of the driven pulley 24.
  • An NDN sensor 82 is provided at an appropriate position and outputs a pulse signal indicating the rotational speed of the driven pulley 24, that is, the output speed NDN of the CVT (corresponding to the input speed of the starting clutch 52).
  • a vehicle speed sensor 84 is provided in the vicinity of the intermediate shaft driven gear 54 of the intermediate shaft 16 and outputs a pulse signal indicating the vehicle speed (vehicle traveling speed) V through the rotational speed of the intermediate shaft driven gear 54.
  • a select lever position sensor 90 is provided in the vicinity of the select lever 86, and outputs a signal corresponding to the position among P, R, N, D, and S selected by the driver, and in the hydraulic circuit, a reservoir. Is provided with an oil temperature sensor 92, which generates an output corresponding to the temperature of the hydraulic oil (oil temperature).
  • An accelerator opening sensor 94 is provided near the accelerator pedal in the driver's seat of the vehicle, and is a signal proportional to the accelerator opening AP corresponding to the accelerator pedal operation amount (shown later as 0/8 to 8/8) of the driver. Is output.
  • the sensor output described above is sent to the shift controller 96 (the output of the accelerator opening sensor 94 is also sent to the engine controller 76).
  • the shift controller 96 also includes a microcomputer, which excites and demagnetizes the electromagnetic solenoid valve of the hydraulic circuit based on the sensor output and adjusts the pressure (hydraulic pressure) of the hydraulic oil supplied to the cylinder chamber 22b and the like to adjust the pulley width and various clutches.
  • a microcomputer which excites and demagnetizes the electromagnetic solenoid valve of the hydraulic circuit based on the sensor output and adjusts the pressure (hydraulic pressure) of the hydraulic oil supplied to the cylinder chamber 22b and the like to adjust the pulley width and various clutches.
  • the shift controller 96 and the engine controller 76 are connected by a signal line and configured to be able to communicate with each other.
  • FIG. 2 is a flowchart showing the operation of the shift controller 96.
  • the illustrated program is executed every predetermined time, for example, every 10 msec.
  • the target engine speed NED of the engine E is set.
  • the drive source PM more specifically, the target output TQAP of the engine E is calculated based on the accelerator opening AP.
  • the target output is calculated by searching for a predetermined characteristic as shown in FIG.
  • the correction coefficient KTRQ is calculated based on the vehicle speed V. More specifically, the correction coefficient KTRQ is calculated by searching for the characteristics shown in FIG.
  • the target output TQAP is corrected by multiplying the calculated target output TQAP by the correction coefficient KTRQ.
  • the vehicle speed V becomes the regulated vehicle speed.
  • the corrected target output TQAPC is calculated so as to reach Vlmt (180 km / h).
  • the correction coefficient KTRQ is gradually reduced from 1.0 to 0 at a predetermined speed Vm before the regulated vehicle speed Vlmt.
  • a correction target output calculated by multiplying the correction coefficient is obtained.
  • TQAPC is calculated so that the vehicle speed V reaches the regulated vehicle speed Vlmt (180 km / h) when the accelerator opening AP reaches the fully open position as shown in FIG.
  • the correction coefficient KTRQ is rapidly decreased toward 0 as indicated by the broken line after exceeding the regulation vehicle speed Vlmt.
  • the corrected target output TQAPC is calculated so that the target output TQAP is suddenly reduced when the vehicle speed V tends to exceed the regulated vehicle speed Vlmt on a downhill or the like, so the vehicle speed V exceeds the regulated vehicle speed Vlmt. Therefore, a situation in which the fuel cut is executed and the output of the engine E rapidly decreases does not occur.
  • Correction coefficient calculation means (shift controller 96, S14) for calculating a correction coefficient KTRQ based on the traveling speed (vehicle speed) V of the vehicle, and the target output Correction target output calculation means for calculating a correction target output TQAPC so that the traveling speed (vehicle speed) V of the vehicle reaches the regulated vehicle speed Vlmt when the accelerator opening AP reaches the fully open position by correcting with the correction coefficient. (Shift controller 96, S16).
  • the correction coefficient calculation means calculates the correction coefficient KTRQ so that the travel speed V gradually decreases after reaching the predetermined speed Vm before the regulated vehicle speed Vlmt (in other words, low in speed). It was configured as follows.
  • correction coefficient calculating means is configured to calculate the correction coefficient KTRQ so that the travel speed V rapidly decreases after the travel speed V exceeds the regulated vehicle speed Vlmt.
  • FIG. 6 is an explanatory diagram showing the engine output and the shift characteristics of the CVT 10 in this embodiment.
  • the corrected target output is calculated so that the vehicle speed V finally reaches the regulated vehicle speed Vlmt, that is, near the regulated vehicle speed. Since the characteristic of the accelerator opening AP is changed according to the vehicle speed V, the characteristic that the vehicle speed reaches the regulated vehicle speed when the accelerator pedal is fully depressed is good for the driver. Can give a feeling of acceleration.
  • the characteristic that the accelerator pedal is fully depressed and the vehicle speed finally reaches the regulated vehicle speed Vlmt means that the vehicle is driven with the accelerator opening AP being relatively large.
  • the ratio is often controlled from the OD side to the LOW side, and the durability of the belt 30 of the CVT 10 can be increased.
  • the regulated vehicle speed Vlmt is not exceeded, and therefore, the fuel cut is executed and the input torque is not rapidly reduced, so that the drivability is not deteriorated.
  • the correction coefficient calculating means gradually decreases after the vehicle speed (traveling speed) V reaches the predetermined speed Vm before the regulated vehicle speed Vlmt (in other words, the speed is low), more specifically, at the predetermined speed Vm. Since the correction coefficient KTRQ is calculated so as to gradually decrease from 1.0 to 0, the corrected target output TQAPC corrected by the correction coefficient KTRQ is calculated, and the accelerator opening AP is the fully open position. Thus, the vehicle speed V can be reliably calculated so as to reach the regulated vehicle speed Vlmt.
  • the correction coefficient calculating means is configured to calculate the correction coefficient KTRQ so that the vehicle speed (traveling speed) V rapidly decreases (toward 0) after exceeding the regulated vehicle speed Vlmt, the vehicle speed V decreases downhill or the like.
  • the corrected target output TQAPC is calculated so that the target output TQAP is suddenly reduced. Therefore, the vehicle speed V does not exceed the regulated vehicle speed Vlmt, and therefore the drive source PM For example, a situation in which the output of the engine E rapidly decreases does not occur.
  • the drive source PM showed the structure which consists of the engine E and the electric motor MOT in the above, this invention is not restricted to it, The drive source PM may be only the engine E or only an electric motor.
  • the target rotational speed of the drive source input to the continuously variable transmission is set based on the traveling speed of the vehicle and the accelerator opening
  • the target output of the drive source is calculated based on the accelerator opening
  • a correction coefficient is calculated based on the travel speed of the vehicle
  • the target output is corrected with the correction coefficient
  • the corrected target output is calculated so that the travel speed of the vehicle reaches the regulated vehicle speed when the accelerator opening reaches the fully open position.
  • CVT continuously variable transmission
  • 12 input shaft 14 output shaft
  • 16 intermediate shaft 20 drive pulley, 22 drive pulley width setting mechanism, 22b cylinder chamber, 24 driven pulley, 26 driven pulley width setting mechanism, 26b Cylinder chamber, 30 V belt, 44 FWD clutch, 44b cylinder chamber, 46 RVS brake clutch, 52 start clutch, 52b cylinder chamber, 64 DBW mechanism, 66 crank angle sensor, 70 absolute pressure sensor, 72 intake air temperature sensor, 76 engine controller 80 NDR sensor, 82 NDN sensor, 84 vehicle speed sensor, 92 oil temperature sensor, 94 accelerator opening sensor, 96 shift controller, PM drive source, E internal combustion engine (engine), MOT electric motor, WL, WR drive wheel

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 車速Vとアクセル開度APに基づいてCVTに入力されるエンジンの目標回転数NEDを設定し(S10)、アクセル開度APに基づいて前記エンジンEの目標出力TQAPを算出し(S12)、車速Vに基づいて補正係数KTRQを算出し(S14)、目標出力を補正係数で補正してアクセル開度APが全開開度に達したときに車両の車速Vが規制車速Vlmtに達するように補正目標出力TQAPCを算出する(S16)、即ち、規制車速の付近においてアクセル開度の特性を車速に応じて変更する如く構成したので、アクセルペダルが完全に踏み込まれたときに車速がようやく規制車速に達するような特性とすることができて運転者に良好な加速感を与えることができる。また無段変速機のベルトの耐久性を上げることができると共に、ドライバビリティも悪化することがない。

Description

車両の制御装置
 この発明は車両の制御装置に関し、より具体的には搭載される駆動源の出力を変速する無段変速機を備えた車両の制御装置にする。
 無段変速機においては、車速とアクセル開度に基づいて入力される内燃機関(駆動源)の目標回転数が設定される。他方、駆動源側では車速とアクセル開度と駆動源の回転数に基づいて駆動源の目標出力が算出され、その値となるようにDBW機構の動作が制御される。その例としては特許文献1記載の技術を挙げることができる。
特開2000-289496号公報
 ところで、車両の走行速度は自動車メーカの自主規制によって上限速度が180km/hに制限されている(以下、この上限速度を「規制車速」という)。内燃機関(駆動源)の出力もそれに応じて制限されるため、スロットル開度が一定以上であれば機関出力が飽和することから、アクセル開度が全開開度(アクセルペダルが完全に踏み込まれた開度)の半分程度に達したとき、車速は規制車速に達してしまう。
 その結果、アクセルペダルがそれ以上の開度に踏み込まれても車速は変化せず、運転者に良好な加速感を与えないと共に、アクセル開度が小さい状態で車両が運転されることから、無段変速機においてレシオがOD側に制御され易くなる不都合があった。ベルト式の無段変速機にとってOD側に制御されることはベルトへの負荷が増加することから、耐久性の点で好ましくない。また、規制車速を超えた時点でフューエルカットが実行されて入力トルクが急減することから、ドライバビリティも悪化する。
 この発明の目的は上記した課題を解決し、搭載される駆動源の出力を変速する無段変速機を備えた車両において、規制車速の付近においてアクセル開度の特性を車速に応じて変更するようにした車両の制御装置を提供することにある。
 上記した課題を解決するために、請求項1にあっては、搭載される駆動源の出力を変速するベルト式の無段変速機を備えた車両の制御装置において、前記車両の走行速度とアクセル開度に基づいて前記無段変速機に入力される駆動源の目標回転数を設定する目標回転数設定手段と、前記アクセル開度に基づいて前記駆動源の目標出力を算出する目標出力算出手段と、前記車両の走行速度に基づいて補正係数を算出する補正係数算出手段と、前記目標出力を前記補正係数で補正して前記アクセル開度が全開開度に達したときに前記車両の走行速度が規制車速に達するように補正目標出力を算出する補正目標出力算出手段とを備える如く構成した。
 請求項2に係る車両の制御装置にあっては、前記補正係数算出手段は、前記走行速度が前記規制車速の前の既定速度に達した後は徐々に減少するように前記補正係数を算出する如く構成した。
 請求項3に係る車両の制御装置にあっては、前記補正係数算出手段は、前記走行速度が前記規制車速を超えた後は急減するように前記補正係数を算出する如く構成した。
 請求項1に係る車両の制御装置にあっては、車両の走行速度とアクセル開度に基づいて無段変速機に入力される駆動源の目標回転数を設定し、アクセル開度に基づいて駆動源の目標出力を算出し、車両の走行速度に基づいて補正係数を算出し、目標出力を補正係数で補正してアクセル開度が全開開度に達したときに車両の走行速度が規制車速に達するように補正目標出力を算出、即ち、規制車速の付近においてアクセル開度の特性を車速に応じて変更する如く構成したので、アクセルペダルが完全に踏み込まれたときに車速がようやく規制車速に達するような特性とすることができ、運転者に良好な加速感を与えることができる。
 また、アクセルペダルが完全に踏み込まれて車速がようやく規制車速に達するような特性とすることは、アクセル開度が比較的大きい状態で車両が運転されることとなり、無段変速機においてレシオがOD側からLOW側に制御されることが多くなり、無段変速機のベルトの耐久性を上げることができる。また、規制車速を超えず、従ってフューエルカットが実行されて入力トルクが急減することがないから、ドライバビリティも悪化することがない。
 請求項2に係る車両の制御装置にあっては、補正係数算出手段は、走行速度が規制車速の前の既定速度に達した後は徐々に減少するように補正係数を算出する如く構成したので、その補正係数で補正されて算出される補正目標出力を、アクセル開度が全開開度に達したときに車両の走行速度が規制車速に達するように、確実に算出することができる。
 請求項3に係る車両の制御装置にあっては、補正係数算出手段は、走行速度が規制車速を超えた後は急減するように補正係数を算出する如く構成したので、走行速度が降坂などにおいて万一規制車速を超えようとするときも、目標出力が急減されるように補正目標出力が算出されることから、走行速度が規制車速を超えることがなく、従って駆動源の出力が急減するような事態が生じることがない。
この発明に係る車両の制御装置を概略的に示す全体図である。 図1に示す車両の制御装置の動作を示すフロー・チャートである。 図2フロー・チャートの処理で使用される目標出力の特性を示す説明図である。 図2フロー・チャートの処理で使用される補正係数の特性を示す説明図である。 図2フロー・チャートの処理で算出される補正目標出力を示す説明図である。 図2フロー・チャートの処理を説明する説明図である。
 以下、添付図面を参照してこの発明に係る車両の制御装置を実施するための形態について説明する。
 図1は、この実施例に係る車両の制御装置を概略的に示す全体図である。
 図1において符号10はベルト式の無段変速機(CVT。以下「CVT」という)を示す。CVT10は車両(図示せず)に搭載され、駆動源PMの出力を変速し、ディファレンシャル機構Dを介して左右の駆動輪(前輪)WL,WRに伝達する。
 駆動源PMは、内燃機関(以下「エンジン」という)Eと電動機MOTからなる。電動機MOTはエンジンEの出力軸(クランク軸)に同軸に連結され、エンジンEを回転させる電動機MOTとエンジンEによって回転されて回生電力を生じる発電機として機能する。
 CVT10は、互いに平行に設けられた入力軸12と出力軸14と中間軸16を有し、ディファレンシャル機構Dと共にCVT10のケース10a内に収容される。入力軸12は、駆動源PMの出力軸OSにカプリング機構CPを介して連結される。
 入力軸12上には、ドライブプーリ20が設けられる。ドライブプーリ20は、入力軸12に相対回転自在で軸方向移動不能に設けられた固定側ドライブプーリ半体20aと、固定側ドライブプーリ半体20aに対して相対回転不能で軸方向移動自在に設けられた可動側ドライブプーリ半体20bからなる。
 可動側ドライブプーリ半体20bの側方には、供給された作動油の圧力に応じてドライブプーリ20のプーリ幅を設定するドライブ側プーリ幅設定機構22が設けられる。
 ドライブ側プーリ幅設定機構22は、可動側ドライブプーリ半体20bの側方に設けられたシリンダ壁22aと、シリンダ壁22aと可動側ドライブプーリ半体20bとの間に形成されたシリンダ室22bと、シリンダ室22b内に設けられて可動側ドライブプーリ半体20bを常時固定側ドライブプーリ半体20aに近づける方向に付勢するリターンスプリング22cとを有する。
 シリンダ室22b内の作動油の圧力(油圧)が上昇されると、可動側ドライブプーリ半体20bが固定側ドライブプーリ半体20aに近づき、ドライブプーリ20のプーリ幅が狭められる一方、作動油の圧力が低下されると、可動側ドライブプーリ半体20bが固定側ドライブプーリ半体20aから離れてプーリ幅は広げられる。
 出力軸14には、ドリブンプーリ24が設けられる。
 ドリブンプーリ24は、出力軸14に相対回転不能でその軸方向移動不能に設けられた固定側ドリブンプーリ半体24aと、固定側ドリブンプーリ半体24aに対して相対回転不能で出力軸14の軸方向移動自在に設けられた可動側ドリブンプーリ半体24bからなる。
 可動側ドリブンプーリ半体24bの側方には、供給された作動油の圧力に応じてドリブンプーリ24のプーリ幅を設定するドリブン側プーリ幅設定機構26が設けられる。
 ドリブン側プーリ幅設定機構26は、可動側ドリブンプーリ半体24bの側方に設けられたシリンダ壁26aと、シリンダ壁26aと可動側ドリブンプーリ半体24bとの間に形成されたシリンダ室26bと、シリンダ室26b内に設けられて可動側ドリブンプーリ半体24bを常時固定側ドリブンプーリ半体24aに近づける方向に付勢するリターンスプリング26cとを有する。
 シリンダ室26b内の作動油の圧力が上昇されると、可動側ドリブンプーリ半体24bが固定側ドリブンプーリ半体24aに近づき、ドリブンプーリ24のプーリ幅が狭められる一方、低下されると、可動側ドリブンプーリ半体24bが固定側ドリブンプーリ半体24aから離れてプーリ幅は広げられる。
 ドライブプーリ20とドリブンプーリ24との間には金属製のVベルト30が巻き掛けられる。Vベルト30は多数のエレメントが図示しないリング状部材により連結され、各エレメントに形成されたV字面がドライブプーリ20のプーリ面とドリブンプーリ24のプーリ面と接触し、両側から強く押圧された状態でエンジンEの動力をドライブプーリ20からドリブンプーリ24に伝達する。
 入力軸12上には遊星歯車機構32が設けられる。遊星歯車機構32は、入力軸12にスプライン嵌合されて入力軸12と一体に回転するサンギヤ34と、固定側ドライブプーリ半体20aと一体に形成されたリングギヤ36と、入力軸12に対して相対回転自在に設けられたプラネタリキャリヤ40と、プラネタリキャリヤ40に回転自在に支承された複数のプラネタリギヤ42とを有する。
 各プラネタリギヤ42は、サンギヤ34とリングギヤ36の双方と常時噛合する。サンギヤ34とリングギヤ36との間にはFWD(フォワード)クラッチ44が設けられ、プラネタリキャリヤ40とケース10aとの間にはRVS(リバース)ブレーキクラッチ46が設けられる。
 FWDクラッチ44は、シリンダ室44bに作動油が供給されるとき、クラッチピストン44aをリターンスプリング44cのばね力に抗して図1で左方に移動させることにより、サンギヤ34側の摩擦板とリングギヤ36側の摩擦板とを係合させてサンギヤ34とリングギヤ36とを結合することで係合(インギヤ)され、車両を前進走行可能にする。
 RVSブレーキクラッチ46は、シリンダ室46bに作動油が供給され、ブレーキピストン46aをリターンスプリング46cのばね力に抗して図1で左方に移動させることにより、ケース10a側の摩擦板とプラネタリキャリヤ40側の摩擦板とを係合させてケース10aとプラネタリキャリヤ40とを結合することで係合(インギヤ)され、車両を後進走行可能にする。
 FWDクラッチ44が係合されると、リングギヤ36はサンギヤ34に対して相対回転不能となり、RVSブレーキクラッチ46が係合されると、プラネタリキャリヤ40はケース10aに対して相対回転不能となるため、入力軸12が回転した状態でFWDクラッチ44を係合させると、リングギヤ36はサンギヤ34と一体となってサンギヤ34と共に回転し、ドライブプーリ20は入力軸12と同一の方向に回転する。このとき、各プラネタリギヤ42は自転することなく、サンギヤ34とリングギヤ36と一体となって入力軸12のまわりを回転する。
 一方、入力軸12が回転した状態でRVSブレーキクラッチ46を係合させると、サンギヤ34が入力軸12と一体となって回転する一方、各プラネタリギヤ42は自転してリングギヤ36をサンギヤ34とは反対の方向に回転させる。それによりドライブプーリ20は入力軸12とは反対の方向に回転する。
 尚、FWDクラッチ44とRVSブレーキクラッチ46が共に非係合となっているときには、入力軸12とサンギヤ34が回転するのみで、エンジンEの回転はドライブプーリ20には伝達されない。
 出力軸14には、中間軸ドライブギヤ50と共に、発進クラッチ52が設けられる。 発進クラッチ52はシリンダ室52bに作動油が供給され、クラッチピストン52aをリターンスプリング52cのばね力に抗して移動させることにより、出力軸14側の摩擦板と中間軸ドライブギヤ50側の摩擦板とを係合させて出力軸14と中間軸ドライブギヤ50とを結合する。
 発進クラッチ52が係合されると、中間軸ドライブギヤ50は出力軸14に対して相対回転不能となるため、出力軸14が回転した状態で発進クラッチ52を係合させると、中間軸ドライブギヤ50は出力軸14と一体となって出力軸14と共に回転する。
 中間軸16には、中間軸ドリブンギヤ54とディファレンシャルドライブギヤ56とが設けられる。中間軸ドリブンギヤ54とディファレンシャルドライブギヤ56は共に中間軸16上に固定して設けられ、中間軸ドリブンギヤ54は中間軸ドライブギヤ50と常時噛合する。
 ディファレンシャルドライブギヤ56は、ディファレンシャル機構DのディファレンシャルケースDcに固定されたディファレンシャルドリブンギヤ60と常時噛合する。
 ディファレンシャル機構Dには左右のアクスルシャフトASL,ASRが固定されると共に、その端部には左右の駆動輪WL,WRが取り付けられる。ディファレンシャルドリブンギヤ60はディファレンシャルドライブギヤ56と常時噛合し、中間軸16の回転に伴ってディファレンシャルケースDc全体が左右のアクスルシャフトASL,ASRまわりに回転する。
 上記したプーリの両シリンダ室22b,26bに供給される作動油の圧力を制御し、Vベルト30の滑りが発生することのないプーリ側圧をドライブプーリ20のシリンダ室22bとドリブンプーリ24のシリンダ室26bとに与えた状態で入力軸12にエンジンEの回転を入力すると、その回転は、入力軸12→ドライブプーリ20→Vベルト30→ドリブンプーリ24→出力軸14と伝達される。
 このとき、ドライブプーリ20とドリブンプーリ24の両プーリ側圧を増減させることによってプーリ幅を変化させ、Vベルト30の両プーリ20,24に対する巻き掛け半径を変化させることにより、巻き掛け半径の比(プーリ比)に応じた所望の変速比を無段階で得ることができる。
 上記のようにエンジンEの回転が入力軸12から出力軸14に伝達されている状態で発進クラッチ52を係合させると、中間軸ドライブギヤ50が出力軸14と連結されて一体となって回転し、出力軸14に伝達された回転がさらに中間軸ドライブギヤ50から中間軸ドリブンギヤ54に伝達され、中間軸16が回転する。中間軸16の回転はディファレンシャル機構DとアクスルシャフトASL,ASRを介して左右の駆動輪WL,WRに伝達され、それを駆動する。
 一方、発進クラッチ52が非係合の状態では中間軸ドライブギヤ50と出力軸14とは連結されず、出力軸14の回転動力は中間軸ドライブギヤ50に伝達されないので、左右の駆動輪WL,WRは駆動されない。
 上記したドライブプーリ20などのプーリ幅やFWDクラッチ44あるいはRVSブレーキクラッチ46の係合(インギヤ)・非係合(アウトギヤ)などは、油圧回路においてそれらのシリンダ室22b,26b,44b,46b,52bに供給される作動油の圧力(油圧)を制御することで行われるが、その説明は省略する。
 図1の説明に戻ると、エンジンEにはDBW機構64が設けられる。即ち、エンジンEのスロットルバルブ(図示せず)と車両運転席床面に配置されたアクセルペダル(図示せず)との機械的な連結は断たれ、スロットルバルブはDBW機構64のアクチュエータ(電動モータなど。図示せず)によって開閉される。
 エンジンEのカム軸(図示せず)付近などにはクランク角センサ66が設けられ、ピストンの所定クランク角度位置ごとにエンジン回転数NEを示す信号を出力する。
 吸気系においてスロットルバルブの下流には絶対圧センサ70が設けられ、吸気管内絶対圧(エンジン負荷)PBAに比例した信号を出力すると共に、スロットルバルブの上流の適宜位置は吸気温センサ72が設けられて吸気温に応じた出力を生じると共に、冷却水通路(図示せず)の付近には水温センサ74が設けられてエンジン冷却水温TWに応じた出力を生じる。
 上記したクランク角センサ66などの出力は、エンジンコントローラ76に送られる。エンジンコントローラ76はマイクロコンピュータを備え、センサ出力に基づいてDBW機構64を介してのエンジンEの出力の制御などを実行する。
 CVT10においてドライブプーリ20の付近の適宜位置にはNDRセンサ80が設けられてドライブプーリ20の回転数、即ち、CVTの入力回転数NDRに応じたパルス信号を出力すると共に、ドリブンプーリ24の付近の適宜位置にはNDNセンサ82が設けられ、ドリブンプーリ24の回転数、即ち、CVTの出力回転数NDN(発進クラッチ52の入力回転数に相当)を示すパルス信号を出力する。
 中間軸16の中間軸ドリブンギヤ54の付近には車速センサ84が設けられ、中間軸ドリブンギヤ54の回転数を通じて車速(車両の走行速度)Vを示すパルス信号を出力する。
 また、セレクトレバー86の付近にはセレクトレバーポジションセンサ90が設けられ、運転者によって選択されたP,R,N,D,Sの中のポジションに応じた信号を出力すると共に、油圧回路においてリザーバの内部には油温センサ92が配置され、作動油の温度(油温)に応じた出力を生じる。
 車両の運転席のアクセルペダル付近にはアクセル開度センサ94が設けられ、運転者のアクセルペダル操作量(後で0/8から8/8で示す)に相当するアクセル開度APに比例する信号を出力する。
 上記したセンサ出力はシフトコントローラ96に送られる(アクセル開度センサ94の出力はエンジンコントローラ76にも送られる)。
 シフトコントローラ96もマイクロコンピュータを備え、センサ出力に基づいて油圧回路の電磁ソレノイドバルブを励磁・消磁し、シリンダ室22bなどに供給される作動油の圧力(油圧)を調整してプーリ幅や各種クラッチ44,46,52の係合・非係合を制御すると共に、目標回転数NEDの設定およびエンジンE(駆動源)の出力を制御する。シフトコントローラ96とエンジンコントローラ76は信号線で接続され、相互に通信自在に構成される。
 図2はシフトコントローラ96のその動作を示すフロー・チャートである。図示のプログラムは所定時間、例えば10msecごとに実行される。
 以下説明すると、S10において検出された車速Vとアクセル開度APに基づいてCVT10に入力される駆動源PM、より具体的にはエンジンEと電動機MOTが直結されていることから駆動源PMのうちのエンジンEの目標回転数NEDを設定する。
 次いでS12に進み、アクセル開度APに基づいて駆動源PM、より具体的にはエンジンEの目標出力TQAPを算出する。目標出力は予め設定された、図3に示すような特性をアクセル開度APで検索して算出する。
 次いでS14に進み、車速Vに基づいて補正係数KTRQを算出、より具体的には車速Vから予め設定された、図4に示すような特性を検索して補正係数KTRQを算出する。
 次いでS16に進み、算出された目標出力TQAPに補正係数KTRQを乗じて目標出力TQAPを補正し、図5に示すように、アクセル開度APが全開開度に達したときに車速Vが規制車速Vlmt(180km/h)に達するように補正目標出力TQAPCを算出する。
 即ち、図4に示す如く、補正係数KTRQは規制車速Vlmtの前の既定速度Vmで1.0から0に向けて徐々に減少させられる結果、その補正係数が乗じられて算出される補正目標出力TQAPCは、図5に示すようにアクセル開度APが全開開度に達したときに車速Vが規制車速Vlmt(180km/h)に達するように算出される。
 尚、補正係数KTRQは、規制車速Vlmtを超えた後は、破線で示す如く、0に向けて急減させられる。この結果、車速Vが降坂などにおいて万一規制車速Vlmtを超えようとするとき、目標出力TQAPが急減されるように補正目標出力TQAPCが算出されることから、車速Vが規制車速Vlmtを超えることがなく、従ってフューエルカットが実行されてエンジンEの出力が急減するような事態が生じることがない。
 上記の如く、この実施例にあっては、搭載される駆動源PM(エンジンEと電動機MOT)の出力を変速するベルト式のCVT(無段変速機)10を備えた車両の制御装置において、前記車両の走行速度(車速)Vとアクセル開度APに基づいて前記CVT(無段変速機)10に入力される駆動源PM、より具体的にはエンジンEの目標回転数NEDを設定する目標回転数設定手段(シフトコントローラ96,S10)と、前記アクセル開度APに基づいて前記駆動源PM、より具体的にはエンジンEの目標出力TQAPを算出する目標出力算出手段(シフトコントローラ96,S12)と、前記車両の走行速度(車速)Vに基づいて補正係数KTRQを算出する補正係数算出手段(シフトコントローラ96,S14)と、前記目標出力を前記補正係数で補正して前記アクセル開度APが全開開度に達したときに前記車両の走行速度(車速)Vが規制車速Vlmtに達するように補正目標出力TQAPCを算出する補正目標出力算出手段(シフトコントローラ96,S16)とを備える如く構成した。
 また、前記補正係数算出手段は前記走行速度Vが前記規制車速Vlmtの前の(換言すれば、速度において低い)既定速度Vmに達した後は徐々に減少するように前記補正係数KTRQを算出する如く構成した。
 また、前記補正係数算出手段は、前記走行速度Vが前記規制車速Vlmtを超えた後は急減するように前記補正係数KTRQを算出する如く構成した。
 図6はこの実施例におけるエンジン出力とCVT10の変速特性を示す説明図である。
 図6(および図5)に示す如く、従来、アクセル開度APが全開開度(8/8)の半分程度に達したとき、車速は規制車速Vlmtに達してしまう。そのため、アクセルペダルがそれ以上に踏み込まれても車速は変化しないことから、運転者に良好な加速感を与えないと共に、アクセル開度APが小さい状態で車両が運転されることとなって、CVT10においてレシオがOD側に制御され易くなる不都合があった。
 それに対し、この実施例においては、アクセル開度APが全開開度(8/8)に達したときに車速Vが規制車速Vlmtにようやく達するように補正目標出力を算出、即ち、規制車速の付近においてアクセル開度APの特性を車速Vに応じて変更する如く構成したので、アクセルペダルが完全に踏み込まれたときに車速がその規制車速に達するような特性とすることができ、運転者に良好な加速感を与えることができる。
 また、アクセルペダルが完全に踏み込まれて車速がようやく規制車速Vlmtに達するような特性とすることは、アクセル開度APが比較的大きい状態で車両が運転されることとなり、図6に示す如く、CVT10においてレシオがOD側からLOW側に制御されることが多くなり、CVT10のベルト30の耐久性を上げることができる。また、規制車速Vlmtを超えず、従ってフューエルカットが実行されて入力トルクが急減することがないから、ドライバビリティも悪化することがない。
 また、補正係数算出手段は車速(走行速度)Vが規制車速Vlmtの前の(換言すれば、速度において低い)既定速度Vmに達した後は徐々に減少、より具体的には既定速度Vmで1.0から0に向けて徐々に減少するように補正係数KTRQを算出する如く構成したので、その補正係数KTRQで補正されて算出される補正目標出力TQAPCを、アクセル開度APが全開開度に達したときに車速Vが規制車速Vlmtに達するように、確実に算出することができる。
 また、補正係数算出手段は、車速(走行速度)Vが規制車速Vlmtを超えた後は(0に向けて)急減するように補正係数KTRQを算出する如く構成したので、車速Vが降坂などにおいて万一規制車速Vlmtを超えようとするときも、目標出力TQAPが急減されるように補正目標出力TQAPCが算出されることから、車速Vが規制車速Vlmtを超えることがなく、従って駆動源PM、例えばエンジンEの出力が急減するような事態が生じることがない。
 尚、上記において駆動源PMがエンジンEと電動機MOTからなる構成を示したが、この発明はそれに限られるものではなく、駆動源PMはエンジンEのみあるいは電動機のみであっても良い。
 この発明によれば、車両の走行速度とアクセル開度に基づいて無段変速機に入力される駆動源の目標回転数を設定し、アクセル開度に基づいて駆動源の目標出力を算出し、車両の走行速度に基づいて補正係数を算出し、目標出力を補正係数で補正してアクセル開度が全開開度に達したときに車両の走行速度が規制車速に達するように補正目標出力を算出、即ち、規制車速の付近においてアクセル開度の特性を車速に応じて変更する如く構成したので、アクセルペダルが完全に踏み込まれたときに車速がようやく規制車速に達するような特性とすることができて運転者に良好な加速感を与えることができる。また無段変速機のベルトの耐久性を上げることができると共に、ドライバビリティも悪化することがない。
 10 CVT(無段変速機)、12 入力軸、14 出力軸、16 中間軸、20 ドライブプーリ、22 ドライブ側プーリ幅設定機構、22b シリンダ室、24 ドリブンプーリ、26 ドリブン側プーリ幅設定機構、26b シリンダ室、30 Vベルト、44 FWDクラッチ、44b シリンダ室、46 RVSブレーキクラッチ、52 発進クラッチ、52b シリンダ室、64 DBW機構、66 クランク角センサ、70 絶対圧センサ、72 吸気温センサ、76 エンジンコントローラ、80 NDRセンサ、82 NDNセンサ、84 車速センサ、92 油温センサ、94 アクセル開度センサ、96 シフトコントローラ、PM 駆動源、E 内燃機関(エンジン)、MOT 電動機、WL,WR 駆動輪

Claims (3)

  1.  搭載される駆動源の出力を変速するベルト式の無段変速機を備えた車両において、前記車両の走行速度とアクセル開度に基づいて前記無段変速機に入力される駆動源の目標回転数を設定する目標回転数設定手段と、前記アクセル開度に基づいて前記駆動源の目標出力を算出する目標出力算出手段と、前記車両の走行速度に基づいて補正係数を算出する補正係数算出手段と、前記目標出力を前記補正係数で補正して前記アクセル開度が全開開度に達したときに前記車両の走行速度が規制車速に達するように補正目標出力を算出する補正目標出力算出手段とを備えたことを特徴とする車両の制御装置。
  2.  前記補正係数算出手段は、前記走行速度が前記規制車速の前の既定速度に達した後は徐々に減少するように前記補正係数を算出することを特徴とする請求項1記載の車両の制御装置。
  3.  前記補正係数算出手段は、前記走行速度が前記規制車速を超えた後は急減するように前記補正係数を算出することを特徴とする請求項1または2記載の車両の制御装置。
PCT/JP2010/061402 2009-07-22 2010-07-05 車両の制御装置 WO2011010548A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011523599A JP5341998B2 (ja) 2009-07-22 2010-07-05 車両の制御装置
US13/381,635 US8818665B2 (en) 2009-07-22 2010-07-05 Vehicle control apparatus
EP10802168.4A EP2458184B1 (en) 2009-07-22 2010-07-05 Control device for vehicle
CN201080032501.8A CN102472180B (zh) 2009-07-22 2010-07-05 车辆控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009170840 2009-07-22
JP2009-170840 2009-07-22

Publications (1)

Publication Number Publication Date
WO2011010548A1 true WO2011010548A1 (ja) 2011-01-27

Family

ID=43499018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061402 WO2011010548A1 (ja) 2009-07-22 2010-07-05 車両の制御装置

Country Status (5)

Country Link
US (1) US8818665B2 (ja)
EP (1) EP2458184B1 (ja)
JP (1) JP5341998B2 (ja)
CN (1) CN102472180B (ja)
WO (1) WO2011010548A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5945527B2 (ja) 2013-10-23 2016-07-05 ジヤトコ株式会社 無段変速機及び無段変速機の制御方法
DE102015200799B3 (de) * 2015-01-20 2016-06-16 Schaeffler Technologies AG & Co. KG Getriebeanordnung für einen Elektromotor eines Fahrzeugs
CN104653760B (zh) * 2015-02-09 2017-02-22 长城汽车股份有限公司 Amt变速器换挡控制方法、控制装置及amt变速器
CN104890515B (zh) * 2015-06-12 2017-09-15 北汽福田汽车股份有限公司 车速控制方法、控制***及具有控制***的汽车

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266235U (ja) * 1985-10-16 1987-04-24
JPH10151965A (ja) * 1996-11-21 1998-06-09 Shimadzu Corp 最高車速制限装置
JP2000289496A (ja) 1998-04-28 2000-10-17 Toyota Motor Corp 無段変速機を備えた車両の制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266235A (ja) 1985-09-18 1987-03-25 Hitachi Maxell Ltd エレクトロクロミツク表示素子
US6076032A (en) * 1996-04-26 2000-06-13 Honda Giken Kogyo Kabushiki Kaisha Control system for vehicle for controlling the driving force depending on operating conditions of the vehicle
JP3463855B2 (ja) * 1997-12-18 2003-11-05 富士重工業株式会社 無段変速機の変速制御装置
JP3455424B2 (ja) * 1998-05-19 2003-10-14 富士重工業株式会社 無段変速機の変速制御装置
JP4332518B2 (ja) * 2005-10-06 2009-09-16 本田技研工業株式会社 動力伝達装置の制御装置
JP2008202435A (ja) * 2007-02-16 2008-09-04 Toyota Motor Corp 無段変速機を搭載した車両の制御装置
JP5060371B2 (ja) * 2008-04-07 2012-10-31 トヨタ自動車株式会社 動力出力装置および車両

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266235U (ja) * 1985-10-16 1987-04-24
JPH10151965A (ja) * 1996-11-21 1998-06-09 Shimadzu Corp 最高車速制限装置
JP2000289496A (ja) 1998-04-28 2000-10-17 Toyota Motor Corp 無段変速機を備えた車両の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2458184A4

Also Published As

Publication number Publication date
EP2458184A1 (en) 2012-05-30
CN102472180B (zh) 2014-05-28
JP5341998B2 (ja) 2013-11-13
US8818665B2 (en) 2014-08-26
US20120108389A1 (en) 2012-05-03
EP2458184A4 (en) 2013-01-02
CN102472180A (zh) 2012-05-23
EP2458184B1 (en) 2013-10-02
JPWO2011010548A1 (ja) 2012-12-27

Similar Documents

Publication Publication Date Title
US6502027B2 (en) Road gradient detecting device and starter clutch controlling device
JP2007211856A (ja) 車両の制御装置
JP2010286021A (ja) Vベルト式無段変速機搭載車のベルトスリップ時駆動力制御装置
JP5460920B2 (ja) 駆動源のトルク制御装置
JP5341998B2 (ja) 車両の制御装置
JP5463425B2 (ja) 車両用無段変速装置
WO2013141069A1 (ja) 車両の動力伝達機構の制御装置
JP2011001973A (ja) 発進クラッチの制御装置
JP6191202B2 (ja) ベルト式無段変速機の油圧制御装置
JP4604568B2 (ja) 車両の発進摩擦要素制御装置
JP3892403B2 (ja) 車両の制御装置
JP5238052B2 (ja) 無段変速機の制御装置
JP2008267467A (ja) 無段変速機の制御装置
JP4779414B2 (ja) 発進摩擦要素の締結力制御装置
JP3953962B2 (ja) 車両の制御装置
JP4918289B2 (ja) 車両用動力伝達装置
JP6065578B2 (ja) 無段変速機の制御装置および制御方法
JP2001329880A (ja) 車両駆動装置
JP3942571B2 (ja) 車両用ベルト式無段変速機
JP4591041B2 (ja) 発進摩擦要素の制御装置
JP5211299B2 (ja) 動力伝達部の制御装置
JP2003254419A (ja) 無段変速機の制御装置
JP4380170B2 (ja) 無段変速機の制御装置
WO2019146476A1 (ja) 自動変速機のロックアップ締結制御装置
JP2008202435A (ja) 無段変速機を搭載した車両の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080032501.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802168

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011523599

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13381635

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010802168

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE