WO2010137445A1 - 接着剤組成物、回路部材接続用接着剤シート及び半導体装置の製造方法 - Google Patents

接着剤組成物、回路部材接続用接着剤シート及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2010137445A1
WO2010137445A1 PCT/JP2010/057671 JP2010057671W WO2010137445A1 WO 2010137445 A1 WO2010137445 A1 WO 2010137445A1 JP 2010057671 W JP2010057671 W JP 2010057671W WO 2010137445 A1 WO2010137445 A1 WO 2010137445A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
adhesive layer
circuit
film
semiconductor wafer
Prior art date
Application number
PCT/JP2010/057671
Other languages
English (en)
French (fr)
Inventor
永井 朗
大久保 恵介
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Publication of WO2010137445A1 publication Critical patent/WO2010137445A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/50Additional features of adhesives in the form of films or foils characterized by process specific features
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01056Barium [Ba]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the present invention relates to an adhesive composition, an adhesive sheet for connecting circuit members, and a method for manufacturing a semiconductor device.
  • connection reliability is lowered because thermal stress derived from the difference in thermal expansion coefficient between the chip and the substrate is concentrated on the connection portion.
  • an underfill that fills the gap between the chip and the substrate is generally formed of a resin. Since thermal stress is alleviated by dispersion in the underfill, connection reliability can be improved.
  • the film-like adhesive used for connecting circuit members has excellent embedding properties, in which voids are unlikely to occur during crimping, and adhesive strength after curing, in order to ensure connection reliability. Is required to be high enough.
  • solder surface and the metal surface of the connection terminal part are obtained in order to obtain good electrical bonding. It is required to remove the oxide film formed on the surface.
  • solder bonding is performed by heating in a short time, flux activity for removing the oxide film on the solder surface and the metal surface of the connection terminal portion cannot be obtained, and solder wetting becomes insufficient. Connection reliability may be reduced.
  • the present invention has been made in view of the above circumstances, and is sufficiently excellent in embedding property when formed into a film, and an adhesive composition that enables production of a semiconductor device excellent in connection reliability, It is an object of the present invention to provide a circuit member connecting adhesive sheet and a method for manufacturing a semiconductor device.
  • the present invention provides (A) a thermoplastic resin, (B) a thermosetting resin, (C) a latent curing agent, (D) an inorganic filler, and (E) an organic fine particle. (F) a powder compound that is solid at room temperature and has a maximum particle size of 25 ⁇ m or less, and the component (F) is at least one selected from a compound having a carboxyl group, a compound having a methylol group, and a hydrazide compound.
  • An adhesive composition that is a seed compound is provided.
  • the adhesive composition of the present invention by including the above components (A), (B), (C), (D) and (E), it is excellent in embedding at the time of connection and generation of voids.
  • a film adhesive with improved solder wettability which can be sufficiently reduced, and by adding the component (F), the oxide film formed on the solder surface and the metal surface of the connection terminal portion can be removed. Can be formed.
  • the component (B) contains an epoxy resin from the viewpoint of improving heat resistance and adhesiveness.
  • the adhesive composition of the present invention can be used for adhering circuit members by interposing them between circuit members having circuit electrodes that are opposed to each other and soldered.
  • the circuit members can be bonded together with a sufficient adhesive force while suppressing the generation of voids by thermocompression bonding, and the circuit electrodes can be soldered well. Thereby, the connection body excellent in connection reliability can be obtained.
  • the circuit sheet connecting adhesive sheet of the present invention comprises a supporting base material and an adhesive layer provided on the supporting base material and made of the adhesive composition of the present invention.
  • the support substrate preferably includes a plastic film and a pressure-sensitive adhesive layer provided on the plastic film, and the adhesive layer is preferably provided on the pressure-sensitive adhesive layer.
  • the adhesive sheet for circuit member connection of this invention can hold
  • the adhesive sheet for connecting circuit members of the present invention can be used for adhering circuit members by interposing them between circuit members having circuit electrodes which are opposed and solder-bonded.
  • the circuit members can be bonded together with a sufficient adhesive force while suppressing the generation of voids by thermocompression bonding, and the circuit electrodes can be soldered well. Thereby, the connection body excellent in connection reliability can be obtained.
  • the present invention also provides a semiconductor wafer having a plurality of circuit electrodes on one of its main surfaces, and an adhesive layer made of the adhesive composition of the present invention is provided on the side of the semiconductor wafer on which the circuit electrodes are provided.
  • a step of thinning the semiconductor wafer by grinding the side of the semiconductor wafer opposite to the side where the circuit electrodes are provided, and a semiconductor with a film adhesive by dicing the thinned semiconductor wafer and the adhesive layer Provided is a method for manufacturing a semiconductor device, comprising a step of dividing into elements and a step of solder-bonding circuit electrodes of a semiconductor element with a film adhesive to a circuit electrode of a support member for mounting a semiconductor element.
  • the adhesive composition which enables preparation of the semiconductor device which is excellent in connection reliability, and the adhesive sheet for circuit member connection using the samecan be provided. Moreover, according to the method for manufacturing a semiconductor device of the present invention, a semiconductor device having excellent connection reliability can be provided.
  • 1 is a schematic cross-sectional view showing a preferred embodiment of an adhesive sheet for connecting circuit members according to the present invention.
  • 1 is a schematic cross-sectional view showing a preferred embodiment of an adhesive sheet for connecting circuit members according to the present invention.
  • It is a schematic cross section for explaining one embodiment of a manufacturing method of a semiconductor device concerning the present invention.
  • It is a schematic cross section for explaining one embodiment of a manufacturing method of a semiconductor device concerning the present invention.
  • It is a schematic cross section for explaining one embodiment of a manufacturing method of a semiconductor device concerning the present invention.
  • It is a schematic cross section for explaining one embodiment of a manufacturing method of a semiconductor device concerning the present invention.
  • It is a schematic cross section for explaining one embodiment of a manufacturing method of a semiconductor device concerning the present invention.
  • It is a schematic cross section for explaining one embodiment of a manufacturing method of a semiconductor device concerning the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of an adhesive sheet for connecting circuit members according to the present invention.
  • An adhesive sheet 10 for connecting circuit members shown in FIG. 1 includes a support base 3, an adhesive layer 2 provided on the support base 3 and made of the adhesive composition of the present invention, and an adhesive layer 2. And a protective film 1 to be coated.
  • the adhesive composition of the present invention comprises (A) a thermoplastic resin, (B) a thermosetting resin, (C) a latent curing agent, (D) an inorganic filler, (E) organic fine particles, F) a powder compound that is solid at room temperature and has a maximum particle size of 25 ⁇ m or less.
  • thermoplastic resin polyester resin, polyether resin, polyamide resin, polyamideimide resin, polyimide resin, polyvinyl butyral resin, polyvinyl formal resin, phenoxy resin, polyhydroxy polyether resin, acrylic resin, polystyrene resin, butadiene Examples thereof include resins, acrylonitrile / butadiene copolymers, acrylonitrile / butadiene / styrene resins, styrene / butadiene copolymers, and acrylic acid copolymers. These can be used alone or in admixture of two or more.
  • (A) component can make the film forming property of an adhesive composition favorable.
  • Film forming property indicates mechanical properties that are not easily torn, broken, or sticky when the adhesive composition is formed into a film. If the film is easy to handle in a normal state (for example, room temperature), it can be said that the film formability is good.
  • thermoplastic resins described above it is preferable to use a polyimide resin or a phenoxy resin because of excellent heat resistance and mechanical strength.
  • Component (A) is preferably blended in an amount of 10 to 50 parts by weight, preferably 15 to 40 parts by weight, based on a total of 100 parts by weight of components (A), (B) and (C). More preferred is 20 to 35 parts by mass.
  • the blending amount of the component (A) is within this range, the film forming property of the adhesive composition is improved, the fluidity is exhibited during thermocompression bonding, and the resin exclusion property between the bump and the circuit electrode can be improved.
  • the blending amount of the component (A) is less than 10 parts by mass, the film formability tends to decrease or the support base and the protective film protrude from the sides.
  • the blending amount of the component (A) exceeds 50 parts by mass, the fluidity at the time of thermocompression bonding is lowered, and the exclusion from the bump and the electrode tends to be lowered.
  • the weight average molecular weight of the component (A) is preferably 20,000 to 800,000, more preferably 30,000 to 500,000, still more preferably 35,000 to 100,000, and 40,000 to 8 It is particularly preferable that the number is 10,000. When the weight average molecular weight is within this range, it becomes easy to satisfactorily balance the strength and flexibility of the adhesive layer 2 in the form of a sheet or film, and the flowability of the adhesive layer 2 becomes good.
  • the circuit filling property (embedding property) of the wiring can be sufficiently secured.
  • the weight average molecular weight is a value measured by gel permeation chromatography and converted using a standard polystyrene calibration curve.
  • the glass transition temperature of the component (A) is preferably 20 to 170 ° C. 120 ° C. is more preferable.
  • the glass transition temperature of the component (A) is less than 20 ° C., the film formability at room temperature is lowered, and the adhesive layer 2 tends to be deformed during the processing of the semiconductor wafer in the back grinding process. If it exceeds, the adhesive temperature when the adhesive layer 2 is applied to the semiconductor wafer needs to be higher than 170 ° C., so that the thermosetting reaction of the component (B) proceeds and the fluidity of the adhesive layer 2 decreases. As a result, poor connection tends to occur.
  • thermosetting resins examples include epoxy resins, unsaturated polyester resins, melamine resins, urea resins, diallyl phthalate resins, bismaleimide resins, triazine resins, polyurethane resins, phenol resins, cyanoacrylate resins, and polyisocyanate resins.
  • Furan resin, resorcinol resin, xylene resin, benzoguanamine resin, silicone resin, siloxane-modified epoxy resin, and siloxane-modified polyamideimide resin can be used alone or in admixture of two or more. From the viewpoint of improving heat resistance and adhesiveness, it is preferable to contain an epoxy resin as the component (B).
  • the epoxy resin is not particularly limited as long as it is cured and has an adhesive action.
  • a wide range of epoxy resins described in the epoxy resin handbook (edited by Masaki Shinbo, Nikkan Kogyo Shimbun) can be used. it can.
  • bifunctional epoxy resins such as bisphenol A type epoxy, novolac type epoxy resins such as phenol novolac type epoxy resin and cresol novolac type epoxy resin, and trisphenolmethane type epoxy resin can be used.
  • a polyfunctional epoxy resin a glycidyl amine type epoxy resin, a heterocyclic ring-containing epoxy resin, or an alicyclic epoxy resin, can be applied.
  • the blending amount of the component (B) is the sum of the components (A), (B) and (C) which are resin components in order to maintain the heat resistance and adhesiveness of the adhesive after curing and to exhibit high reliability.
  • the amount is preferably 5 to 88 parts by mass, more preferably 20 to 50 parts by mass, and still more preferably 20 to 40 parts by mass with respect to 100 parts by mass.
  • the blending amount of the component (B) is less than 5 parts by mass, the cohesive force of the cured product is lowered, and the connection reliability is easily lowered.
  • the compounding quantity of (B) component exceeds 88 mass parts, it will become difficult to hold
  • the latent curing agent for example, phenol, imidazole, hydrazide, thiol, benzoxazine, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide and organic peroxide Mention may be made of system curing agents.
  • the adhesive sheet 10 for connecting a circuit member is a semiconductor device such as affixing to a semiconductor wafer, protection of a circuit electrode during grinding of the semiconductor wafer, dicing of the semiconductor wafer, and bonding of the obtained semiconductor element to the circuit electrode.
  • the latent curing agent (C) is a microcapsule type latent curing agent.
  • the microcapsule-type latent curing agent comprises the above curing agent by coating with a polymer material such as polyurethane, polystyrene, gelatin and polyisocyanate, an inorganic material such as calcium silicate or zeolite, or a metal thin film such as nickel or copper.
  • a polymer material such as polyurethane, polystyrene, gelatin and polyisocyanate
  • an inorganic material such as calcium silicate or zeolite
  • a metal thin film such as nickel or copper.
  • the average particle size of the microcapsule type latent curing agent is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, from the viewpoint of uniform dispersion of reaction start points and ensuring flatness of the film. Moreover, it is preferable that the lower limit of an average particle diameter is 1 micrometer or more from a viewpoint of ensuring the solvent resistance with respect to the solvent used for the varnish at the time of film formation.
  • the amount of the component (C) is preferably 2 to 45 parts by mass with respect to 100 parts by mass in total of the components (A), (B) and (C), which are resin components, and 10 to 40 parts by mass. More preferably, the amount is 22 to 40 parts by mass.
  • the amount of component (C) is less than 2 parts by mass, the curing reaction tends to be difficult to proceed.
  • the blending amount of component (C) exceeds 45 parts by mass, the ratio of the curing agent in the adhesive composition is excessively increased, so the ratio of the thermosetting resin is relatively decreased, and the heat resistance and adhesiveness are increased. It tends to deteriorate the characteristics such as.
  • the adhesive composition contains (D) an inorganic filler, the moisture absorption rate and the linear expansion coefficient of the cured adhesive layer 2 can be reduced and the elastic modulus can be increased. Reliability can be improved.
  • an inorganic filler that does not reduce visible light transmittance can be selected in order to prevent visible light scattering in the adhesive layer 2 and improve visible light transmittance.
  • an inorganic filler having a particle diameter finer than the wavelength of visible light is selected, or resin components (A), (B) and (C) It is preferable to select an inorganic filler having a refractive index close to the refractive index of a resin composition comprising the component (hereinafter sometimes referred to as “resin composition”).
  • the inorganic filler having a particle diameter finer than the wavelength of visible light is not particularly limited as long as it is a transparent filler, and the average particle diameter is preferably less than 0.3 ⁇ m, preferably 0.1 ⁇ m or less. It is more preferable that The refractive index of the inorganic filler is preferably 1.46 to 1.7.
  • an inorganic filler having a refractive index approximate to the refractive index of the resin composition after preparing a resin composition composed of the components (A), (B) and (C) and measuring the refractive index, An inorganic filler having an approximate refractive index can be selected.
  • the inorganic filler it is preferable to use a fine filler from the viewpoint of filling the gap between the semiconductor chip of the adhesive layer 2 and the circuit board and suppressing the generation of voids in the connecting step.
  • the average particle diameter of such an inorganic filler is preferably 0.01 to 5 ⁇ m, more preferably 0.1 to 2 ⁇ m, and still more preferably 0.3 to 1 ⁇ m. When the average particle size is less than 0.01 ⁇ m, the surface area of the particles increases, the viscosity of the adhesive composition increases, and it tends to be difficult to fill the inorganic filler.
  • the refractive index of the inorganic filler having a refractive index approximate to the refractive index of the resin composition is preferably in the range of the refractive index ⁇ 0.06 of the resin composition.
  • an inorganic filler having a refractive index of 1.54 to 1.66 can be preferably used.
  • the refractive index can be measured using an Abbe refractometer with sodium D line (589 nm) as a light source.
  • examples of such inorganic fillers include composite oxide fillers, composite hydroxide fillers, barium sulfate and clay minerals. Specifically, cordierite, forsudite, mullite, barium sulfate, magnesium hydroxide, aluminum borate Barium or silica titania can be used.
  • the two types of inorganic fillers described above may be used in combination.
  • the amount of the inorganic filler having a particle diameter finer than the wavelength of visible light is preferably less than 10% by mass based on the component (D). .
  • the component (D) preferably has a linear expansion coefficient of 7 ⁇ 10 ⁇ 6 / ° C. or less in the temperature range of 0 to 700 ° C. from the viewpoint of improving the elastic modulus of the adhesive layer 2. -6 / ° C. or less and more preferably.
  • Component (D) is preferably blended in an amount of 25 to 200 parts by weight, preferably 50 to 150 parts by weight, based on a total of 100 parts by weight of components (A), (B) and (C). More preferably, it is 75 to 125 parts by mass.
  • the blending amount of the component (D) is less than 25 parts by mass, an increase in the linear expansion coefficient and a decrease in the elastic modulus of the adhesive layer 2 formed from the adhesive composition are likely to occur. For this reason, the connection reliability between the semiconductor chip and the substrate after pressure bonding is likely to be lowered, and further, it is difficult to obtain a void suppressing effect at the time of connection.
  • component (D) exceeds 200 parts by mass
  • the melt viscosity of the adhesive composition increases, and the interface between the semiconductor chip and the adhesive layer 2 or the interface between the circuit board and the adhesive layer 2 is increased.
  • voids are likely to remain due to peeling or insufficient embedding.
  • Organic fine particles include, for example, acrylic resin, silicone resin, butadiene rubber, polyester, polyurethane, polyvinyl butyral, polyarylate, polymethyl methacrylate, acrylic rubber, polystyrene, NBR, SBR, silicone-modified resin and the like as components. A copolymer is mentioned.
  • organic fine particles organic fine particles having a molecular weight of 1,000,000 or more or organic fine particles having a three-dimensional cross-linked structure are preferable from the viewpoints of dispersibility in the adhesive composition, stress relaxation properties, and adhesion improvement.
  • organic fine particles are selected from alkyl (meth) acrylate-butadiene-styrene copolymer, alkyl (meth) acrylate-silicone copolymer, silicone- (meth) acrylic copolymer or composite 1 More than types.
  • organic fine particles having a molecular weight of 1 million or more or organic fine particles having a three-dimensional cross-linked structure are those having a high molecular weight and poor solubility in a solvent, or having a three-dimensional network structure. Therefore, the solubility in a solvent is poor.
  • organic fine particles having a core-shell structure and having different compositions in the core layer and the shell layer can be used as the component (E).
  • the core-shell type organic fine particles include particles obtained by grafting an acrylic resin with a silicone-acrylic rubber core, and particles obtained by grafting an acrylic resin to an acrylic copolymer.
  • component (E) Since the component (E) has a cross-linked structure or is an ultrahigh molecular weight resin, it does not dissolve in an organic solvent, so it can be blended in the adhesive composition while maintaining the particle shape. For this reason, (E) component can be disperse
  • the component (E) has a function as an anti-shock agent having stress relaxation properties.
  • the component (E) preferably has an average particle size of 0.1 to 2 ⁇ m.
  • the average particle size of the component (E) is less than 0.1 ⁇ m, the melt viscosity of the adhesive composition increases, and there is a tendency to prevent solder wettability at the time of connection, and when it exceeds 2 ⁇ m, the effect of reducing the melt viscosity decreases. It tends to be difficult to obtain a void suppression effect at the time of connection.
  • the amount of component (E) is such that the void suppression at the time of connection and the stress relaxation effect after connection are imparted to the adhesive layer 2, so that the total amount of components (A), (B) and (C) is 100 parts by mass.
  • the amount is preferably 5 to 20 parts by mass. If the blending amount of the component (E) is less than 5 parts by mass, the effect of suppressing voids at the time of connection tends to be difficult and the stress relaxation effect tends to be difficult to be exhibited. Solder wettability decreases and causes residual voids, and the elastic modulus of the cured product tends to be too low, leading to a decrease in connection reliability.
  • the powder compound that is solid at room temperature and has a maximum particle size of 25 ⁇ m or less is a compound containing at least one selected from a compound having a carboxyl group, a compound having a methylol group, and a hydrazide compound.
  • the component (F) has a function as a solder wettability modifier (hereinafter, the component (F) is referred to as “solder wettability modifier”). That is, the component (F) has a melting point at a temperature lower than the melting point of the solder, and removes oxides on the metal surface such as the solder surface and the circuit electrode after melting, thereby improving the solder wettability of the adhesive layer 2. Can be improved.
  • component (F) examples include acetylsalicylic acid, benzoic acid, benzylic acid, adipic acid, azelaic acid, benzylbenzoic acid, malonic acid, 2,2-bis (hydroxymethyl) propionic acid, salicylic acid, m-hydroxybenzoic acid, Succinic acid, 2,6-dimethoxymethyl paracresol, benzoic hydrazide, carbohydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, salicylic acid hydrazide, iminodiacetic acid dihydrazide, itaconic acid dihydrazide, citric acid trihydrazide, thiocarboxylic acid trihydrazide Benzophenone hydrazone, 4,4′-oxybisbenzenesulfonyl hydrazide and adipic acid dihydrazide.
  • benzoic hydrazide carbohydrazi
  • the dispersibility in the adhesive layer 2 it is preferable to use these compounds after pulverizing them with a mortar and pulverizing them, and then removing those having a large particle size with a filter of at least 25 ⁇ m.
  • the maximum particle size of the component (F) is more preferably 20 ⁇ m or less.
  • the minimum particle diameter of (F) component is about 0.01 micrometer.
  • the melting point of the component (F) is preferably 100 ° C. or higher, more preferably 130 to 200 ° C., still more preferably 140 to 180 ° C.
  • the melting point of the component (F) is less than 100 ° C., the powder dissolves at the drying temperature during film formation, reacts with the thermosetting component, and the storage stability tends to be impaired.
  • the blending amount of the component (F) is preferably 1 to 20 parts by mass and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the adhesive composition. If the blending amount of the component (F) is less than 1 part by mass, the effect of improving the solder wettability is not sufficient, and even if blended in excess of 20 parts by mass, the effect of improving the solder wettability is saturated, so that it becomes an excess component.
  • Various coupling agents can be added to the adhesive composition in order to modify the surface of the inorganic filler to improve the interfacial bond between different materials and increase the adhesive strength.
  • the coupling agent include silane-based, titanium-based, and aluminum-based coupling agents. Among them, a silane-based coupling agent is preferable because it is highly effective.
  • silane coupling agents include ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, 3-aminopropylmethyldisilane.
  • Examples include ethoxysilane, 3-ureidopropyltriethoxysilane, and 3-ureidopropyltrimethoxysilane. These can be used alone or in combination of two or more.
  • An ion scavenger may be added to the adhesive composition in order to adsorb ionic impurities and improve insulation reliability during moisture absorption.
  • an ion trapping agent there is no restriction
  • compounds such as triazine thiol compounds, bisphenol-based reducing agents, etc., which are known as copper damage inhibitors to prevent ionization and dissolution, inorganic ions adsorbents such as zirconium-based and antimony bismuth-based magnesium aluminum compounds, etc. It is done.
  • the adhesive composition suppresses the temperature change after the semiconductor chip and the circuit board are connected, expansion due to heat absorption, etc., and achieves high connection reliability.
  • the linear expansion coefficient at ° C. is 60 ⁇ 10 -6 / °C or less, more preferably 55 ⁇ 10 -6 / °C or less, and more preferably 50 ⁇ 10 -6 / °C or less.
  • the linear expansion coefficient of the adhesive layer 2 after curing exceeds 60 ⁇ 10 ⁇ 6 / ° C., the electric current between the connection terminals of the semiconductor chip and the wiring of the circuit board is caused by the temperature change after mounting and the expansion due to heat absorption. Connection may not be maintained.
  • the adhesive sheet 10 for circuit member connection can make an anisotropic conductive adhesive film (ACF) by making an adhesive composition which comprises the adhesive bond layer 2 contain conductive particles, but contains conductive particles.
  • a non-conductive adhesive film (NCF) is preferably used.
  • the adhesive layer 2 formed from the adhesive composition preferably has a reaction rate measured by differential scanning calorimetry (hereinafter referred to as “DSC”) of 60% or more after heating at 250 ° C. for 10 seconds. More preferably, it is 70% or more. Moreover, it is preferable that the reaction rate of the adhesive layer 2 measured by DSC is less than 10% after storing the circuit composition connecting composition sheet for 14 days at room temperature.
  • DSC differential scanning calorimetry
  • the adhesive layer 2 preferably has an uncured visible light transmittance of 5% or more, more preferably a visible light transmittance of 8% or more, and a visible light transmittance of 10% or more. Is more preferable. If the visible light transmittance is less than 5%, the recognition mark cannot be identified by the flip chip bonder, and the alignment work tends to be impossible. On the other hand, there is no particular limitation on the upper limit of the visible light transmittance.
  • Visible light transmittance can be measured using a Hitachi U-3310 spectrophotometer.
  • the adhesive layer 2 After performing baseline correction measurement using a Teijin DuPont PET film having a film thickness of 50 ⁇ m (Purex, transmittance of 86.03% at 555 nm) as a reference material, the adhesive layer 2 having a thickness of 25 ⁇ m is applied to the PET film. After the formation, the transmittance in the visible light region of 400 to 800 nm is measured. Since the wavelength relative intensity of the halogen light source and light guide used in the flip chip bonder is the strongest at 550 to 600 nm, in this specification, the transmittance of the adhesive layer 2 is compared using the transmittance at 555 nm. Yes.
  • the adhesive layer 2 is obtained by dissolving or dispersing the above-described adhesive composition according to the present invention in a solvent to form a varnish, and applying the varnish on a protective film (hereinafter, sometimes referred to as “first film”) 1. It can be formed by removing the solvent by heating. Thereafter, the support base material 3 is laminated on the adhesive layer 2 at room temperature to 60 ° C. to obtain the adhesive sheet 10 for connecting circuit members of the present invention. Alternatively, the adhesive layer 2 can be formed by applying the varnish on the support substrate 3 and removing the solvent by heating.
  • the solvent to be used is not particularly limited, but it is preferable to determine the volatility when forming the adhesive layer in consideration of the boiling point.
  • a solvent having a relatively low boiling point such as methanol, ethanol, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, methyl ethyl ketone, acetone, methyl isobutyl ketone, toluene, and xylene forms an adhesive layer. It is preferable in that the curing of the adhesive layer is difficult to proceed.
  • These solvents can be used alone or in combination of two or more.
  • the protective film 1 for example, a plastic film such as polyethylene terephthalate, polytetrafluoroethylene film, polyethylene film, polypropylene film, polymethylpentene film, or the like can be used. From the viewpoint of peelability, it is also preferable to use a film having a low surface energy made of a fluororesin such as a polytetrafluoroethylene film as the protective film 1.
  • the surface of the protective film 1 on which the adhesive layer 2 is formed is treated with a release agent such as a silicone-based release agent, a fluorine-based release agent, or a long-chain alkyl acrylate-type release agent. It is preferable.
  • a release agent such as a silicone-based release agent, a fluorine-based release agent, or a long-chain alkyl acrylate-type release agent.
  • a release agent such as a silicone-based release agent, a fluorine-based release agent, or a long-chain alkyl acrylate-type release agent.
  • A-63 modified silicone type
  • A-31 manufactured by Teijin DuPont Films, Inc.
  • the protective film 1 preferably has a thickness of 10 to 100 ⁇ m, more preferably 10 to 75 ⁇ m, and particularly preferably 25 to 50 ⁇ m. If the thickness is less than 10 ⁇ m, the protective film tends to be broken during coating, and if it exceeds 100 ⁇ m, the cost tends to be inferior.
  • the thickness of the adhesive layer 2 is not particularly limited, but is preferably 5 to 200 ⁇ m, more preferably 7 to 150 ⁇ m, and still more preferably 10 to 100 ⁇ m. If the thickness is less than 5 ⁇ m, it will be difficult to ensure sufficient adhesion, and the convex electrodes of the circuit board will not be filled. If it is thicker than 200 ⁇ m, it will not be economical, and there will be a demand for miniaturization of the semiconductor device. It becomes difficult to respond to.
  • the supporting substrate 3 examples include plastic films such as a polyethylene terephthalate film, a polytetrafluoroethylene film, a polyethylene film, a polypropylene film, a polymethylpentene film, a polyvinyl acetate film, a polyvinyl chloride film, and a polyimide film. Further, the support base 3 may be a mixture of two or more selected from the above materials, or a multilayer of the above film.
  • the thickness of the support substrate 3 is not particularly limited, but is preferably 5 to 250 ⁇ m. If the thickness is less than 5 ⁇ m, the support substrate may be cut during grinding (back grinding) of the semiconductor wafer, and if it is more than 250 ⁇ m, it is not economical, which is not preferable.
  • the support substrate 3 preferably has high light transmittance, and specifically, the minimum light transmittance in the wavelength region of 500 to 800 nm is preferably 10% or more.
  • the support base 3 one obtained by laminating an adhesive layer on the plastic film (hereinafter sometimes referred to as “second film”) can be used.
  • FIG. 2 is a schematic cross-sectional view showing a preferred embodiment of the adhesive sheet for connecting circuit members according to the present invention.
  • the adhesive sheet 11 for connecting a circuit member shown in FIG. 2 is provided on a support substrate 3 having a plastic film 3b and an adhesive layer 3a provided on the plastic film 3b, and on the adhesive layer 3a.
  • An adhesive layer 2 made of the adhesive composition of the present invention and a protective film 1 covering the adhesive layer 2 are provided.
  • the surface of the second film is subjected to chemical treatment such as chromic acid treatment, ozone exposure, flame exposure, high piezoelectric impact exposure, ionizing radiation treatment, etc. Or you may give a physical process.
  • the pressure-sensitive adhesive layer 3a has an adhesive force at room temperature, preferably has a necessary adhesion to an adherend, and is cured by high energy rays such as radiation or heat (that is, reduces the adhesive force). The thing provided with is preferable.
  • the pressure-sensitive adhesive layer 3a can be formed using, for example, acrylic resin, various synthetic rubbers, natural rubber, or polyimide resin.
  • the thickness of the pressure-sensitive adhesive layer 3a is usually about 5 to 20 ⁇ m.
  • the above-mentioned adhesive sheets 10 and 11 for connecting a circuit member are interposed between a circuit member and a semiconductor element having circuit electrodes which are opposed to each other and soldered, or between semiconductor elements, and the circuit member and the semiconductor element or semiconductor. It can be used for bonding elements together. In this case, the circuit member and the semiconductor element or the semiconductor elements can be bonded together with sufficient adhesive force while suppressing generation of voids, and the circuit electrodes can be soldered well. Thereby, the connection body excellent in connection reliability can be obtained. Further, the circuit member connecting adhesive sheets 10 and 11 can also be used as an adhesive in a lamination technique using a silicon through electrode.
  • 3 to 7 are schematic cross-sectional views for explaining a preferred embodiment of a method for manufacturing a semiconductor device according to the present invention.
  • the manufacturing method of the semiconductor device of this embodiment is as follows: (A) preparing a semiconductor wafer having a plurality of circuit electrodes on one of the main surfaces, and providing an adhesive layer made of the adhesive composition of the present invention on the side of the semiconductor wafer on which the circuit electrodes are provided; (B) a step of thinning the semiconductor wafer by grinding the opposite side of the semiconductor wafer from the side where the circuit electrodes are provided; (C) a step of dicing the thinned semiconductor wafer and the adhesive layer into individual semiconductor elements with a film adhesive; (D) soldering the circuit electrode of the semiconductor element with a film adhesive to the circuit electrode of the semiconductor element mounting support member; Is provided.
  • the adhesive layer is provided by sticking the adhesive layer 2 of the circuit member connecting adhesive sheet 10 to the side of the semiconductor wafer where the circuit electrodes are provided.
  • the solder bonding is performed by heating, and the film adhesive interposed between the semiconductor element and the semiconductor element mounting support member is also cured.
  • the adhesive sheet 10 for circuit member connection is arrange
  • a semiconductor wafer A having a plurality of circuit electrodes 20 on one of the main surfaces is prepared, the adhesive layer 2 is pasted on the side of the semiconductor wafer A on which the circuit electrodes are provided, and the support substrate 3 / adhesive layer 2 / A laminated body in which the semiconductor wafers A are laminated is obtained (see FIG. 3).
  • the circuit electrode 20 is provided with bumps coated with solder for soldering. Note that solder may be provided on the circuit electrode of the semiconductor element mounting support member.
  • a commercially available film sticking apparatus or laminator can be used as a method for obtaining a laminate in which the support substrate 3 / adhesive layer 2 / semiconductor wafer A is laminated.
  • the attaching device is provided with a heating mechanism and a pressurizing mechanism, and more preferably a vacuum suction mechanism.
  • the shape of the adhesive sheet 10 for circuit member connection should just be a shape which can be worked with a sticking apparatus, may be a roll shape or a sheet shape, and may be processed according to the external shape of the semiconductor wafer A.
  • the lamination between the semiconductor wafer A and the adhesive layer 2 is preferably performed at a temperature at which the adhesive layer 2 softens.
  • the laminating temperature is preferably 40 to 80 ° C, more preferably 50 to 80 ° C, still more preferably 60 to 80 ° C.
  • the side opposite to the side where the circuit electrode 20 of the semiconductor wafer A is provided is ground by the grinder 4 to thin the semiconductor wafer.
  • the thickness of the semiconductor wafer can be, for example, 10 to 300 ⁇ m. From the viewpoint of miniaturization and thinning of the semiconductor device, the thickness of the semiconductor wafer is preferably 20 to 100 ⁇ m.
  • the semiconductor wafer A can be ground using a general back grind (B / G) apparatus.
  • B / G general back grind
  • the adhesive layer 2 is evenly attached in the step (a) without involving voids.
  • FIG. 5A shows, the dicing tape 5 is affixed on the semiconductor wafer A of a laminated body, this is arrange
  • the support substrate 3 includes the pressure-sensitive adhesive layer 3a and the pressure-sensitive adhesive layer 3a is radiation curable
  • the pressure-sensitive adhesive layer 3a is cured by irradiating radiation from the support substrate 3 side.
  • the adhesive force between the adhesive layer 2 and the support base 3 can be reduced.
  • examples of the radiation used include ultraviolet rays, electron beams, and infrared rays. Thereby, the support base material 3 can be easily peeled off.
  • the semiconductor wafer A and the adhesive layer 2 are diced by a dicing saw 6 as shown in FIG.
  • the semiconductor wafer A is divided into a plurality of semiconductor elements A ′
  • the adhesive layer 2 is divided into a plurality of film adhesives 2a.
  • the dicing tape 5 was expanded (expanded), and the semiconductor elements A ′ obtained by the dicing were separated from each other and pushed up by the needle from the dicing tape 5 side.
  • the semiconductor element 12 with a film adhesive comprising the semiconductor element A ′ and the film adhesive 2 a is sucked and picked up by the suction collet 7.
  • the semiconductor element 12 with a film adhesive may be collected by tray packing, or may be mounted on a circuit board as it is with a flip chip bonder.
  • step (c) the work of attaching the dicing tape 5 to the ground semiconductor wafer A can be performed in the same step as the fixing to the dicing frame using a general wafer mounter.
  • a commercially available dicing tape can be applied to the dicing tape 5, which may be a UV curable type or a pressure sensitive type.
  • the temperature during thermocompression bonding is preferably 200 ° C. or higher, more preferably 220 to 260 ° C. from the viewpoint of solder bonding.
  • the thermocompression bonding time can be 1 to 20 seconds.
  • the pressure for thermocompression bonding can be 0.1 to 5 MPa.
  • the alignment mark formed on the circuit surface of the semiconductor chip is confirmed through the film-like adhesive layer 2a formed on the circuit surface of the semiconductor chip, and then transferred to the circuit board. This can be carried out by checking the mounting position.
  • the semiconductor device 30 is obtained through the above steps.
  • the film-like adhesive comprising the adhesive composition according to the present invention is excellent in embedding property and adhesive strength after curing, and can remove an oxide film formed on the solder surface even in a short time solder joint. And solder wettability can be improved. Therefore, in the semiconductor device 30, generation of voids is sufficiently suppressed, the circuit electrodes are well soldered, and the semiconductor element A ′ and the semiconductor element mounting support member are bonded with a sufficient adhesive force, thereby being resistant to reflow cracking. And can be excellent in connection reliability.
  • an acrylic copolymer was synthesized by a solution polymerization method using 2-ethylhexyl acrylate and methyl methacrylate as main monomers and hydroxyethyl acrylate and acrylic acid as functional group monomers.
  • the resulting acrylic copolymer had a weight average molecular weight of 400,000 and a glass transition point of ⁇ 38 ° C.
  • a pressure-sensitive adhesive composition solution was prepared by blending 10 parts by mass of a polyfunctional isocyanate cross-linking agent (trade name “Coronate HL”, manufactured by Nippon Polyurethane Industry Co., Ltd.) with respect to 100 parts by mass of this acrylic copolymer.
  • the obtained pressure-sensitive adhesive composition solution was applied onto a polyolefin film (trade name “WNH-2110”, manufactured by Okamoto Co., Ltd., thickness: 100 ⁇ m) so that the thickness of the pressure-sensitive adhesive layer when dried was 10 ⁇ m and dried. did. Further, a biaxially stretched polyester film (trade name “A3170, thickness: 25 ⁇ m” manufactured by Teijin DuPont Films, Ltd.) surface-treated with a silicone-based mold release agent as the second film was laminated on the pressure-sensitive adhesive layer surface. The layered laminate was allowed to stand at room temperature for 1 week and sufficiently aged, and then the polyolefin film was used as a supporting substrate.
  • a polyolefin film trade name “WNH-2110”, manufactured by Okamoto Co., Ltd., thickness: 100 ⁇ m
  • Example 1 ⁇ Preparation of adhesive composition> “ZX1356-2” (trade name, manufactured by Toto Kasei Co., Ltd., phenoxy resin) 100 parts by mass, “1032H60” (trade name, epoxy resin manufactured by Japan Epoxy Resin Co., Ltd.) 100 parts by mass, “Epicoat 828” (Japan Epoxy Resin Co., Ltd.) Product name, liquid epoxy resin) 60 parts by mass and "HX3941HP" (Asahi Kasei Electronics Co., Ltd., product name, microcapsule type latent curing agent) 140 parts by mass were dissolved in a mixed solvent of toluene and ethyl acetate.
  • the obtained adhesive varnish was applied onto a polyethylene terephthalate (PET) film (trade name “AH-3”, manufactured by Teijin DuPont Films, Inc., thickness: 50 ⁇ m) as a first film using a roll coater. It was dried in an oven at 0 ° C. for 10 minutes to form an adhesive layer having a thickness of 25 ⁇ m. Next, the adhesive layer and the pressure-sensitive adhesive layer surface of the support substrate were bonded together at room temperature to obtain an adhesive sheet for connecting circuit members.
  • PET polyethylene terephthalate
  • Example 2 An adhesive sheet for connecting circuit members was obtained in the same manner as in Example 1 except that “EXL2655” (trade name, manufactured by Rohm and Haas) was used instead of “KW-4426” in the preparation of the adhesive varnish. .
  • EXL2655 trade name, manufactured by Rohm and Haas
  • Example 3 Example 2 except that it was blended with “2,2-bis (hydroxymethyl) propionic acid” (manufactured by Tokyo Chemical Industry Co., Ltd., hereinafter abbreviated as “BHPA”) instead of “ADH” in the preparation of the adhesive varnish.
  • BHPA 2,2-bis (hydroxymethyl) propionic acid
  • Example 4 An adhesive sheet for connecting circuit members was prepared in the same manner as in Example 1 except that “EXL2655” was substituted for “KW-4426” and “BHPA” was substituted for “ADH” in the preparation of the adhesive varnish. Obtained.
  • Example 5 A circuit member was prepared in the same manner as in Example 1 except that it was blended with “2,6-dimethoxymethylparacresol” (trade name, “26DMPC” manufactured by Asahi Organic Materials Co., Ltd.) instead of “ADH” in the preparation of the adhesive varnish. An adhesive sheet for connection was obtained.
  • “2,6-dimethoxymethylparacresol” trade name, “26DMPC” manufactured by Asahi Organic Materials Co., Ltd.
  • Example 6 Adhesive sheet for connecting circuit members in the same manner as in Example 1 except that “EXL2655” was blended in place of “KW-4426” and “26DMPC” was blended in place of “ADH” in the preparation of the adhesive varnish Got.
  • TMA / SS6100 (trade name) manufactured by Seiko Instruments Inc.
  • the above test piece is mounted in the apparatus so that the distance between chucks is 20 mm, measurement temperature range: 20 to 300 ° C., temperature increase rate: 5 ° C./min, load Conditions: Thermomechanical analysis was performed in the tensile test mode under the condition that the pressure was 0.5 MPa with respect to the cross-sectional area of the test piece, and the linear expansion coefficient was measured.
  • reaction rate measurement 2-10 mg of the adhesive layer in the adhesive sheet for connecting circuit members obtained in Examples and Comparative Examples was weighed into an aluminum measuring container, and DSC (Differential Scanning Calorimeter) “Pyris1” (trade name) manufactured by PerkinElmer Co., Ltd. was used. The heating value was raised to 30 to 300 ° C. at a heating rate of 20 ° C./min, and the calorific value was measured. Next, the temperature was confirmed with a thermocouple that sandwiched the heating head of the thermocompression bonding apparatus, and the temperature reached 250 ° C. after 10 seconds.
  • reaction rate (%) (initial calorific value ⁇ calorific value after heating or calorific value after storage) / (initial calorific value) ⁇ 100
  • a semiconductor wafer (6 inch diameter, thickness 725 ⁇ m) on which gold-plated bumps were formed was placed on the suction stay heated to 80 ° C. of a die attach film mounter manufactured by JCMM with the bump side facing up.
  • the adhesive sheet for connecting circuit members is cut to 200 mm ⁇ 200 mm and the adhesive layer excluding the first film as the protective film is directed to the bump side of the semiconductor wafer, and die attach from the end of the semiconductor wafer so as not to entrain air.
  • the laminate was pressed with the mounting roller of the mounter. After lamination, the protruding portion of the adhesive was cut along the outer shape of the wafer.
  • the back surface of the semiconductor wafer was back-ground with the back grinder manufactured by DISCO Corporation using a laminate of the above-mentioned adhesive sheet for connecting circuit members and a semiconductor wafer (thickness: 625 ⁇ m) until the thickness reached 150 ⁇ m. Thereafter, the back-ground semiconductor wafer was placed on the suction stage of a die attach film mounter manufactured by JCM, and Adeka dicing tape “AD80H” was attached at the same time as the dicing frame at room temperature. Next, a back grind tape peeling tape made by Nitto Denko was pasted on the supporting substrate, and only the supporting substrate was peeled off by peeling off 180 degrees.
  • connection resistance and connection resistance of the film adhesive in the semiconductor device manufactured as described above were evaluated.
  • the produced semiconductor device was left to stand in a constant temperature and humidity chamber of 85 ° C. and 60% RH for 168 hours to absorb moisture, and exposed to a reflow furnace set at 260 ° C. three times. After the exposure, the connection resistance and the interface state of the connection part were confirmed.
  • connection state after reflow of the adhesive layer was observed with an ultrasonic flaw detector (SAT) manufactured by Hitachi Construction Machinery, and evaluated based on the following criteria. A: No peeling is observed. B: Peeling is observed.
  • SAT ultrasonic flaw detector
  • connection resistance after pressure bonding and the connection resistance after reflow were measured using a digital multimeter (manufactured by Advantest Co., Ltd., product name) and evaluated based on the following criteria.
  • Connection resistance after crimping A: The resistance value when all terminals (176 terminals) of the mounting TEG applied to the test are connected is 7 to 10 ⁇
  • B Resistance at all terminal connection is not obtained, or resistance value at all terminal connection is larger than 10 ⁇ (connection resistance after reflow)
  • B Resistance increase exceeding 20% with respect to the connection resistance value after crimping
  • ⁇ Temperature cycle test> The semiconductor device after the reflow was put into a temperature cycle test in which one cycle was ⁇ 55 ° C. for 30 minutes and 125 ° C. for 30 minutes, and it was evaluated whether or not the connection resistance in the test machine was maintained. Table 1 shows the number of cycles that could be energized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Wire Bonding (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

 本発明は、(A)熱可塑性樹脂と、(B)熱硬化性樹脂と、(C)潜在性硬化剤と、(D)無機フィラーと、(E)有機微粒子と、(F)室温で固体であり、最大粒径が25μm以下である粉体化合物とを含み、(F)成分は、カルボキシル基を有する化合物、メチロール基を有する化合物及びヒドラジド化合物から選ばれる少なくとも1種の化合物である接着剤組成物に関する。

Description

接着剤組成物、回路部材接続用接着剤シート及び半導体装置の製造方法
 本発明は、接着剤組成物、回路部材接続用接着剤シート及び半導体装置の製造方法に関する。
 近年、電子機器の小型化、薄型化に伴い、回路部材に形成された回路の高密度化が進展し、隣接する電極との間隔や電極の幅が非常に狭くなる傾向がある。これに伴い、半導体パッケージの薄型化や小型化に対する要求も高まっている。そのため、半導体チップ実装方式として、金属ワイヤを用いて接続する従来のワイヤーボンディング方式に代えて、チップ電極上にバンプと呼ばれる突起電極を形成し、基板電極とチップ電極とをバンプを介して直接接続するフリップチップ接続方式が注目されている。
 フリップチップ接続方式としては、ハンダバンプを用いる方式、金バンプと導電性接着剤を用いる方式、熱圧着方式、超音波方式などが知られている。これらの方式では、チップと基板との熱膨張係数差に由来する熱ストレスが接続部分に集中して接続信頼性が低下するという問題がある。このような接続信頼性の低下を防止するために、一般に、チップと基板との間隙を充填するアンダーフィルが樹脂により形成される。アンダーフィルへの分散により熱ストレスが緩和されるため、接続信頼性を向上させることが可能である。
 アンダーフィルを形成する方法としては、一般に、チップと基板とを接続した後に液状樹脂をチップと基板との間隙に注入する方法が知られている(特許文献1参照)。また、異方導電性接着フィルム(以下ACFと称する)や、非導電性接着フィルム(以下NCFと称する)等のフィルム状樹脂を用いてチップと基板とを接続する工程において、アンダーフィル形成も完了させる方法も知られている(特許文献2参照)。
 一方、近年ではさらなる高機能化、高速動作を可能とするものとしてチップ間を最短距離で接続する3次元実装技術であるシリコン貫通電極(TSV:Through Silicon Via)が注目されている(非特許文献1参照)。この結果、半導体ウエハの厚さはできるだけ薄く、かつ機械的強度が低下しないことが要求されてきている。
 また、半導体装置の更なる薄型化の要求に伴い、半導体ウエハをより薄くするために、ウエハの裏面を研削する、いわゆるバックグラインドが行われており、半導体装置の製造工程は煩雑になっている。そこで、工程の簡略化に適した方法としてバックグラインド時に半導体ウエハを保持する機能とアンダーフィル機能を兼ね備える樹脂の提案がなされてきている(特許文献3、4参照)。
特開2000-100862号公報 特開2003-142529号公報 特開2001-332520号公報 特開2005-028734号公報
OKIテクニカルレビュー 2007年10月/第211号VOL .74 No.3
 しかしながら、半導体装置の薄膜化に伴って、接続部の空隙や端子間のピッチがより一層狭くなってきている。このため、接続時のフィルム状樹脂の流動不足による界面への濡れ不足やフィルム状樹脂の発泡によるボイドの発生等により、フィルム状樹脂のピッチ間への充填が不十分となり、接続信頼性を低下させることがある。そこで、回路部材の接続に用いられるフィルム状接着剤には、接続信頼性を確保する点から、圧着時にボイドが発生し難く優れた埋込性を有していることや、硬化後の接着力が十分に高いことが必要とされている。
 また、半導体チップの電極部分にハンダバンプを形成し、ハンダ接合により直接回路基板に半導体チップを接続するフェイスダウンボンディング方式では、良好な電気的接合を得るために、ハンダ表面及び接続端子部分の金属表面に形成される酸化皮膜を除去することが求められている。しかし、従来の接着剤では、短時間の加熱でハンダ接合を行う場合、ハンダ表面及び接続端子部分の金属表面の酸化膜を除去するためのフラックス活性が得られず、ハンダの濡れが不十分となり、接続信頼性を低下させることがある。
 本発明は、上記事情に鑑みてなされたものであり、フィルム状にしたときの埋込性に十分に優れるとともに、接続信頼性に優れる半導体装置の作製を可能とする接着剤組成物、それを用いた回路部材接続用接着剤シート、及び半導体装置の製造方法を提供することを目的とする。
 上記課題を解決するため、本発明は、(A)熱可塑性樹脂と、(B)熱硬化性樹脂と、(C)潜在性硬化剤と、(D)無機フィラーと、(E)有機微粒子と、(F)室温で固体であり、最大粒径が25μm以下である粉体化合物とを含み、(F)成分は、カルボキシル基を有する化合物、メチロール基を有する化合物及びヒドラジド化合物から選ばれる少なくとも1種の化合物である接着剤組成物を提供する。
 本発明の接着剤組成物によれば、上記(A)、(B)、(C)、(D)及び(E)成分を含むことにより、接続時の埋込性に優れ、ボイドの発生を十分に低減でき、更に(F)成分が配合されることにより、ハンダ表面及び接続端子部分の金属表面に形成される酸化皮膜を除去することができ、ハンダ濡れ性を向上したフィルム状接着剤を形成することができる。
 また、本発明の接着剤組成物において、耐熱性及び接着性を向上する観点から、(B)成分がエポキシ樹脂を含有することが好ましい。
 本発明の接着剤組成物は、相対向しハンダ接合される回路電極を有する回路部材間に介在させ、回路部材同士を接着するために用いることができる。この場合、回路部材同士を熱圧着することにより、ボイド発生を抑制しつつ十分な接着力で接着することができ、且つ、回路電極同士を良好にハンダ接合できる。これにより、接続信頼性に優れた接続体を得ることができる。
 本発明の回路部材接続用接着剤シートは、支持基材と、該支持基材上に設けられ、上記本発明の接着剤組成物からなる接着剤層とを備えることを特徴とする。
 上記支持基材は、プラスチックフィルムと該プラスチックフィルム上に設けられた粘着剤層とを備え、上記接着剤層が粘着剤層上に設けられていることが好ましい。これにより、本発明の回路部材接続用接着剤シートは、半導体ウエハのバックグラインド時に半導体ウエハを安定して保持することができる。
 また、本発明の回路部材接続用接着剤シートは、相対向しハンダ接合される回路電極を有する回路部材間に介在させ、回路部材同士を接着するために用いることができる。この場合、回路部材同士を熱圧着することにより、ボイド発生を抑制しつつ十分な接着力で接着することができ、且つ、回路電極同士を良好にハンダ接合できる。これにより、接続信頼性に優れた接続体を得ることができる。
 本発明はまた、主面の一方に複数の回路電極を有する半導体ウエハを準備し、該半導体ウエハの回路電極が設けられている側に、本発明の接着剤組成物からなる接着剤層を設ける工程と、半導体ウエハの回路電極が設けられている側とは反対側を研削して半導体ウエハを薄化する工程と、薄化した半導体ウエハ及び接着剤層をダイシングしてフィルム状接着剤付半導体素子に個片化する工程と、フィルム状接着剤付半導体素子の回路電極を半導体素子搭載用支持部材の回路電極にハンダ接合する工程とを備える半導体装置の製造方法を提供する。
 本発明によれば、フィルム状にしたときの埋込性に十分に優れるとともに、接続信頼性に優れる半導体装置の作製を可能とする接着剤組成物及びそれを用いた回路部材接続用接着剤シートを提供することができる。また、本発明の半導体装置の製造方法によれば、接続信頼性に優れた半導体装置を提供することができる。
本発明に係る回路部材接続用接着剤シートの好適な一実施形態を示す模式断面図である。 本発明に係る回路部材接続用接着剤シートの好適な一実施形態を示す模式断面図である。 本発明に係る半導体装置の製造方法の一実施形態を説明するための模式断面図である。 本発明に係る半導体装置の製造方法の一実施形態を説明するための模式断面図である。 本発明に係る半導体装置の製造方法の一実施形態を説明するための模式断面図である。 本発明に係る半導体装置の製造方法の一実施形態を説明するための模式断面図である。 本発明に係る半導体装置の製造方法の一実施形態を説明するための模式断面図である。
 図1は、本発明に係る回路部材接続用接着剤シートの好適な一実施形態を示す模式断面図である。図1に示す回路部材接続用接着剤シート10は、支持基材3と、該支持基材3上に設けられ、本発明の接着剤組成物からなる接着剤層2と、接着剤層2を被覆する保護フィルム1とを備えている。
 まず、接着剤層2を構成する本発明の接着剤組成物について説明する。
 本発明の接着剤組成物は、(A)熱可塑性樹脂と、(B)熱硬化性樹脂と、(C)潜在性硬化剤と、(D)無機フィラーと、(E)有機微粒子と、(F)室温で固体であり、最大粒径が25μm以下である粉体化合物とを含む。
 (A)熱可塑性樹脂としては、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、フェノキシ樹脂、ポリヒドロキシポリエーテル樹脂、アクリル樹脂、ポリスチレン樹脂、ブタジエン樹脂、アクリロニトリル・ブタジエン共重合体、アクリロニトリル・ブタジエン・スチレン樹脂、スチレン・ブタジエン共重合体、アクリル酸共重合体が挙げられる。これらは、単独で又は2種以上を混合して使用することができる。
 (A)成分は、接着剤組成物のフィルム形成性を良好にすることができる。フィルム形成性とは、接着剤組成物をフィルム状とした場合に、容易に裂けたり、割れたり、べたついたりしない機械特性を示すものである。通常の状態(例えば、常温)でフィルムとしての取扱いが容易であると、フィルム形成性が良好であるといえる。上述した熱可塑性樹脂の中でも、耐熱性及び機械強度に優れることから、ポリイミド樹脂やフェノキシ樹脂を使用することが好ましい。
 (A)成分の配合量は、樹脂成分である(A)、(B)及び(C)成分の合計100質量部に対して、10~50質量部であることが好ましく、15~40質量部であることがより好ましく、20~35質量部であることが更に好ましい。(A)成分の配合量がこの範囲にあると、接着剤組成物のフィルム形成性を良好にしつつ、熱圧着時に流動性を示し、バンプと回路電極間の樹脂排除性を良好にできる。(A)成分の配合量が10質量部未満では、フィルム形成性が低下したり、支持基材と保護フィルムの脇からはみ出したりする傾向がある。一方、(A)成分の配合量が50質量部を超えると、熱圧着時の流動性が低下し、バンプと電極間からの排除性が低下する傾向がある。
 (A)成分の重量平均分子量は2万~80万であることが好ましく、3万~50万であることがより好ましく、3.5万~10万であることが更に好ましく、4万~8万であることが特に好ましい。重量平均分子量がこの範囲にあると、シート状又はフィルム状とした接着剤層2の強度、可とう性を良好にバランスさせることが容易となるとともに接着剤層2のフロー性が良好となるため、配線の回路充填性(埋込性)を十分確保できる。なお、本明細書において、重量平均分子量とは、ゲルパーミュエーションクロマトグラフィーで測定し、標準ポリスチレン検量線を用いて換算した値を示す。
 また、フィルム形成性を維持しつつ、硬化前の接着剤層2に粘接着性を付与する観点から、(A)成分のガラス転移温度は、20~170℃であることが好ましく、25~120℃がより好ましい。(A)成分のガラス転移温度が20℃未満では室温でのフィルム形成性が低下し、バックグラインド工程での半導体ウエハの加工中に接着剤層2が変形し易くなる傾向があり、170℃を超えると接着剤層2を半導体ウエハに貼り付ける際の貼付温度が170℃よりも高温にする必要が生じるため、(B)成分の熱硬化反応が進行し、接着剤層2の流動性が低下して接続不良が発生し易くなる傾向がある。
 (B)熱硬化性樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、メラミン樹脂、尿素樹脂、ジアリルフタレート樹脂、ビスマレイミド樹脂、トリアジン樹脂、ポリウレタン樹脂、フェノール樹脂、シアノアクリレート樹脂、ポリイソシアネート樹脂、フラン樹脂、レゾルシノール樹脂、キシレン樹脂、ベンゾグアナミン樹脂、シリコーン樹脂、シロキサン変性エポキシ樹脂及びシロキサン変性ポリアミドイミド樹脂が挙げられる。これらは単独で又は2種以上を混合して使用することができる。耐熱性及び接着性を向上する観点から、(B)成分として、エポキシ樹脂を含有することが好ましい。
 上記エポキシ樹脂としては、硬化して接着作用を有するものであれば特に限定されず、例えば、エポキシ樹脂ハンドブック(新保正樹編、日刊工業新聞社)等に記載されるエポキシ樹脂を広く使用することができる。具体的には、例えば、ビスフェノールA型エポキシ等の二官能エポキシ樹脂、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂を使用することができる。また、多官能エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環含有エポキシ樹脂又は脂環式エポキシ樹脂など、一般に知られているものを適用することができる。
 (B)成分の配合量は、硬化後の接着剤の耐熱性、接着性を維持し、高信頼性を発現させるため、樹脂成分である(A)、(B)及び(C)成分の合計100質量部に対して5~88質量部であることが好ましく、20~50質量部であることがより好ましく、20~40質量部であることが更に好ましい。(B)成分の配合量が5質量部未満では、硬化物の凝集力が低下し、接続信頼性が低下し易くなる。一方、(B)成分の配合量が88質量部を超えると、硬化前のフィルム状態における低分子量成分が多くなりすぎてフィルム状形体を保持しにくくなる。
 (C)潜在性硬化剤としては、例えば、フェノール系、イミダゾール系、ヒドラジド系、チオール系、ベンゾオキサジン、三フッ化ホウ素-アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド及び有機過酸化物系の硬化剤を挙げることができる。ところで、回路部材接続用接着剤シート10は、半導体ウエハへの貼付、半導体ウエハの研削時の回路電極の保護、半導体ウエハのダイシング、及び得られた半導体素子の回路電極への接合等の半導体装置の製造の一連の工程に適用される際、長期間の常温環境下に暴露されると共に、製造工程での熱、湿度、光等に影響されずに回路電極への接合時に使用可能な特性を保持する必要がある。この点に加えて、使用可能な期間を延長できる観点からも、(C)の潜在性硬化剤は、マイクロカプセル型の潜在性硬化剤であることが好ましい。
 マイクロカプセル型の潜在性硬化剤としては、ポリウレタン、ポリスチレン、ゼラチン及びポリイソシアネート等の高分子物質、ケイ酸カルシウムやゼオライト等の無機物、又はニッケルや銅等の金属薄膜の被膜により上記硬化剤からなる核が実質的に覆われているものが挙げられる。
 マイクロカプセル型の潜在性硬化剤の平均粒径は、反応開始点の均一分散とフィルムの平坦性確保の観点から、10μm以下が好ましく、5μm以下がより好ましい。また、平均粒径の下限値は、フィルム形成時のワニスに使用される溶媒に対する耐溶剤性確保の観点から、1μm以上であることが好ましい。
 (C)成分の配合量は、樹脂成分である(A)、(B)及び(C)成分の合計100質量部に対して、2~45質量部であることが好ましく、10~40質量部であることがより好ましく、22~40質量部であることが更に好ましい。(C)成分の配合量が2質量部未満では、硬化反応が進み難くなる傾向にある。一方、(C)成分の配合量が45質量部を超えると、接着剤組成物の硬化剤の割合が多くなりすぎるため、相対的に熱硬化性樹脂の割合が少なくなり、耐熱性や接着性などの特性を低下させる傾向にある。
 接着剤組成物は(D)無機フィラーを含むことで、硬化後の接着剤層2の吸湿率及び線膨張係数を低減し、弾性率を高くすることができるため、作製される半導体装置の接続信頼性を向上することができる。また、(D)成分としては、接着剤層2における可視光の散乱を防止して可視光透過率を向上するために、可視光透過率を低減しない無機フィラーを選択することができる。可視光透過率の低下を抑制可能な(D)成分として、可視光の波長よりも細かい粒子径を有する無機フィラーを選択すること、あるいは、樹脂成分である(A)、(B)及び(C)成分からなる樹脂組成物(以下、場合により「樹脂組成物」という)の屈折率に近似の屈折率を有する無機フィラーを選択することが好ましい。
 可視光の波長よりも細かい粒子径を有する無機フィラーとしては、透明性を有するフィラーであれば特にフィラーの組成に制限はなく、平均粒径0.3μm未満であることが好ましく、0.1μm以下であることがより好ましい。また、係る無機フィラーの屈折率は、1.46~1.7であることが好ましい。
 樹脂組成物の屈折率に近似の屈折率を有する無機フィラーとしては、(A)、(B)及び(C)成分からなる樹脂剤組成物を作製し屈折率を測定した後、該屈折率に近似の屈折率を有する無機フィラーを選定することができる。該無機フィラーとして、接着剤層2の半導体チップと回路基板との空隙への充填性の観点及び接続工程でのボイドの発生を抑制する観点から、微細なフィラーを用いることが好ましい。このような無機フィラーの平均粒径は、0.01~5μmであることが好ましく、0.1~2μmであることがより好ましく、0.3~1μmであることが更に好ましい。平均粒径が0.01μm未満では、粒子の被表面積が大きくなり接着剤組成物の粘度が増加して、無機フィラーの充填し難くなる傾向にある。
 樹脂組成物の屈折率に近似の屈折率を有する無機フィラーの屈折率は、樹脂組成物の屈折率±0.06の範囲であることが好ましい。例えば、樹脂組成物の屈折率が1.60であった場合、屈折率が1.54~1.66である無機フィラーを好適に用いることができる。屈折率は、アッベ屈折計を用いナトリウムD線(589nm)を光源として測定することができる。このような無機フィラーとしては、複合酸化物フィラー、複合水酸化物フィラー、硫酸バリウム及び粘土鉱物が挙げられ、具体的には、コージェライト、フォルスイト、ムライト、硫酸バリウム、水酸化マグネシウム、ホウ酸アルミニウム、バリウム又はシリカチタニアを使用することができる。
 なお、上述した2タイプの無機フィラーは組み合わせて用いてもよい。ただし、接着剤組成物の粘度増加を妨げないためには、可視光の波長よりも細かい粒子径を有する無機フィラーの添加量を(D)成分を基準として、10質量%未満とすることが好ましい。
 また、(D)成分は、接着剤層2の弾性率を向上する観点から、線膨張係数が0~700℃の温度範囲で7×10-6/℃以下であることが好ましく、3×10-6/℃以下であることがより好ましい。
 (D)成分の配合量は、樹脂成分である(A)、(B)及び(C)成分の合計100質量部に対して、25~200質量部であることが好ましく、50~150質量部であることがより好ましく、75~125質量部であることが更に好ましい。(D)成分の配合量が25質量部未満では接着剤組成物から形成される接着剤層2の線膨張係数の増大と弾性率の低下を招き易くなる。このため、圧着後の半導体チップと基板との接続信頼性が低下し易く、さらに、接続時のボイド抑制効果も得られ難くなる。一方、(D)成分の含有量が200質量部を超えると、接着剤組成物の溶融粘度が増加し、半導体チップと接着剤層2との界面又は回路基板と接着剤層2との界面の濡れ性が低下することによって、剥離又は埋め込み不足によるボイドの残留が起き易くなる。
 (E)有機微粒子としては、例えば、アクリル樹脂、シリコーン樹脂、ブタジエンゴム、ポリエステル、ポリウレタン、ポリビニルブチラール、ポリアリレート、ポリメチルメタクリレート、アクリルゴム、ポリスチレン、NBR、SBR、シリコーン変性樹脂等を成分として含む共重合体が挙げられる。有機微粒子としては、接着剤組成物への分散性、応力緩和性、接着性向上の観点から、分子量が100万以上の有機微粒子又は三次元架橋構造を有する有機微粒子が好ましい。このような有機微粒子としては、(メタ)アクリル酸アルキル-ブタジエン-スチレン共重合体、(メタ)アクリル酸アルキル-シリコーン共重合体、シリコーン-(メタ)アクリル共重合体又は複合体から選ばれる1種類以上が挙げられる。ここで、「分子量が100万以上の有機微粒子又は三次元架橋構造を有する有機微粒子」とは、超高分子量であるが故に溶媒への溶解性が乏しいもの、あるいは三次元網目構造を有しているため溶媒への溶解性が乏しいものである。また、(E)成分として、コアシェル型の構造を有し、コア層とシェル層で組成が異なる有機微粒子を用いることもきる。コアシェル型の有機微粒子として、具体的には、シリコーン-アクリルゴムをコアとてアクリル樹脂をガラフトした粒子、アクリル共重合体にアクリル樹脂をグラフトとした粒子が挙げられる。
 (E)成分は、架橋構造を有するため、又は超高分子量樹脂であるため、有機溶剤に溶解しないことから、粒子形状を維持したままで接着剤組成物中に配合することができる。このため、硬化後の接着剤層2中に(E)成分を島状に分散することができ、接続体の強度を高く保つことができる。(E)成分は、応力緩和性を有する耐衝撃緩和剤としての機能を有するものである。
 (E)成分は、平均粒径が0.1~2μmであることが好ましい。(E)成分の平均粒径が0.1μm未満では接着剤組成物の溶融粘度が増加し、接続時のハンダ濡れ性を妨げる傾向があり、2μmを超えると溶融粘度の低減効果が少なくなり、接続時にボイド抑制効果が得られ難い傾向にある。
 (E)成分の配合量は、接続時のボイド抑制と接続後の応力緩和効果を接着剤層2に付与させるため、(A)、(B)及び(C)成分の合計100質量部に対して、5~20質量部であることが好ましい。(E)成分の配合量が5質量部未満では接続時のボイドを抑制する効果を奏し難くなると共に応力緩和効果も発現され難くなる傾向があり、20質量部を超えると流動性が低くなるためハンダ濡れ性が低下し残留ボイドの原因となると共に硬化物の弾性率が低くなりすぎて接続信頼性が低下する傾向にある。
 (F)室温で固体であり、最大粒径が25μm以下である粉体化合物は、カルボキシル基を有する化合物、メチロール基を有する化合物及びヒドラジド化合物から選ばれる少なくとも1種を含有する化合物である。(F)成分は、ハンダ濡れ性改質剤としての機能を有する(以下、(F)成分を「ハンダ濡れ性改質剤」という)。すなわち、(F)成分は、ハンダの融点よりも低い温度に融点を持ち、溶融した後にはんだ表面及び回路電極等の金属表面の酸化物を除去することで、接着剤層2のハンダ濡れ性を改善することができる。(F)成分として、例えば、アセチルサリチル酸、安息香酸、ベンジル酸、アジピン酸、アゼライン酸、ベンジル安息香酸、マロン酸、2,2-ビス(ヒドロキシメチル)プロピオン酸、サリチル酸、m-ヒドロキシ安息香酸、コハク酸、2,6-ジメトキシメチルパラクレゾール、安息香酸ヒドラジド、カルボヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、サリチル酸ヒドラジド、イミノジ酢酸ジヒドラジド、イタコン酸ジヒドラジド、クエン酸トリヒドラジド、チオカルボヒドラジド、ベンゾフェノンヒドラゾン、4,4’-オキシビスベンゼンスルホニルヒドラジド及びアジピン酸ジヒドラジドが挙げられる。しかし、室温で固体であり、カルボキシル基を有する化合物、メチロール基を有する化合物又はヒドラジド化合物であれば、これらに限定されるものではない。接着剤層2への分散性を向上する観点から、これらの化合物を乳鉢ですりつぶし、微粉化した後、少なくとも25μmのフィルターで粒径の大きいものを除去して使用することが好ましい。(F)成分の最大粒径は、20μm以下であることがより好ましい。なお、(F)成分の最小粒径は、0.01μm程度である。
 (F)成分の融点は、100℃以上であることが好ましく、130~200℃であることがより好ましく、140~180℃であることが更に好ましい。(F)成分の融点が100℃未満では、フィルム形成時の乾燥温度で粉体が溶解し、熱硬化性成分と反応し、保存性が損なわれる傾向がある。
 (F)成分の配合量は、接着剤組成物100質量部に対して、1~20質量部であることが好ましく、1~10質量部であることがより好ましい。(F)成分の配合量が1質量部未満ではハンダ濡れ性を改善する効果が十分ではなく、20質量部を超えて配合してもハンダ濡れ性改善効果は飽和するため過剰成分となる。
 接着剤組成物には、無機フィラーの表面を改質し異種材料間の界面結合を向上させ接着強度を増大するために、各種カップリング剤を添加することもできる。カップリング剤としては、例えば、シラン系、チタン系及びアルミニウム系のカップリング剤が挙げられ、中でも効果が高い点でシラン系カップリング剤が好ましい。
 シラン系カップリング剤としては、例えば、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-ウレイドプロピルトリメトキシシランが挙げられる。これらは単独で又は2種以上を組み合わせて使用することができる。
 接着剤組成物には、イオン性不純物を吸着して、吸湿時の絶縁信頼性を向上するために、イオン捕捉剤を添加することもできる。このようなイオン捕捉剤としては特に制限はない。例えば、トリアジンチオール化合物、ビスフェノール系還元剤等の銅がイオン化して溶け出すのを防止するため銅害防止剤として知られる化合物、ジルコニウム系、アンチモンビスマス系マグネシウムアルミニウム化合物等の無機イオン吸着剤が挙げられる。
 接着剤組成物は、半導体チップと回路基板とを接続した後の温度変化や、加熱吸湿による膨張等を抑制し、高接続信頼性を達成するため、硬化後の接着剤層2の40~100℃における線膨張係数が60×10-6/℃以下であることが好ましく、55×10-6/℃以下であることがより好ましく、50×10-6/℃以下であることが更に好ましい。硬化後の接着剤層2の線膨張係数が60×10-6/℃を超えると、実装後の温度変化や加熱吸湿による膨張によって半導体チップの接続端子と回路基板の配線との間での電気的接続が保持できなくなる場合がある。また、回路部材接続用接着剤シート10は、接着剤層2を構成する接着剤組成物に導電粒子を含有させて異方導電性接着フィルム(ACF)とすることができるが、導電粒子を含有させずに非導電性接着フィルム(NCF)とすることが好ましい。
 接着剤組成物から形成される接着剤層2は、250℃10秒加熱した後、示差走査熱量測定(以下、「DSC」という)で測定される反応率が60%以上であることが好ましく、70%以上であることがより好ましい。また、回路部材接続用組成物シートを室温で14日間保管した後、DSCで測定される接着剤層2の反応率が10%未満であることが好ましい。これにより、本発明の接着剤組成物を用いることで、接続時の反応性に十分に優れ、かつ、保存安定性にも優れるフィルム状接着剤を得ることができる。
 接着剤層2は、未硬化時の可視光透過率が5%以上であることが好ましく、可視光透過率が8%以上であることがより好ましく、可視光透過率が10%以上であることが更に好ましい。可視光透過率が5%未満ではフリップチップボンダーでの認識マーク識別が行えなくなり、位置合わせ作業ができなくなる傾向がある。一方、可視光透過率の上限に関しては特に制限はない。
 可視光透過率は、日立製U-3310形分光光度計を用いて測定することができる。例えば、膜厚50μmの帝人デュポン製PETフィルム(ピューレックス、555nmでの透過率86.03%)を基準物質としてベースライン補正測定を行った後、PETフィルムに25μmの厚みで接着剤層2を形成した後、400~800nmの可視光領域の透過率を測定する。フリップチップボンダーで使用されるハロゲン光源とライトガイドの波長相対強度において550~600nmが最も強いことから、本明細書においては555nmにおける透過率を用いて接着剤層2の透過率の比較を行っている。
 接着剤層2は、上述した本発明に係る接着剤組成物を溶剤に溶解若しくは分散してワニスとし、このワニスを保護フィルム(以下、場合により「第一のフィルム」という)1上に塗布し、加熱により溶剤を除去することによって形成することができる。その後、接着剤層2に支持基材3を常温~60℃で積層し、本発明の回路部材接続用接着剤シート10を得ることができる。また、接着剤層2は、上記ワニスを支持基材3上に塗布し、加熱により溶剤を除去することによって形成することもできる。
 用いる溶剤は、特に限定されないが、接着剤層形成時の揮発性などを沸点から考慮して決めることが好ましい。具体的には、例えば、メタノール、エタノール、2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、メチルエチルケトン、アセトン、メチルイソブチルケトン、トルエン、キシレン等の比較的低沸点の溶媒は接着剤層形成時に接着剤層の硬化が進みにくい点で好ましい。これらの溶媒は、1種を単独で又は2種以上を組み合わせて使用することができる。
 保護フィルム1としては、例えば、ポリエチレンテレフタレート、ポリテトラフルオロエチレンフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム等のプラスチックフィルムを用いることができる。剥離性の観点から、保護フィルム1として、ポリテトラフルオロエチレンフィルムのようなフッ素樹脂からなる表面エネルギーの低いフィルムを用いることも好ましい。
 保護フィルム1の剥離性を向上するために、保護フィルム1の接着剤層2を形成する面をシリコーン系剥離剤、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤等の離型剤で処理することが好ましい。市販のものとして、例えば、帝人デュポンフィルム社製の「A-63」(離型処理剤:変性シリコーン系)や、「A-31」(離型処理剤:Pt系シリコーン系)を入手することができる。
 保護フィルム1は、厚みが10~100μmであることが好ましく、10~75μmであることがより好ましく、25~50μmであることが特に好ましい。この厚みが10μm未満では塗工の際、保護フィルムが破れる傾向があり、100μmを超えると廉価性に劣る傾向がある。
 上記ワニスを保護フィルム1(又は支持基材3)上に塗布する方法としては、ナイフコート法、ロールコート法、スプレーコート法、グラビアコート法、バーコート法、カーテンコート法等、一般に周知の方法が挙げられる。
 接着剤層2の厚みは、特に制限はないが、5~200μmが好ましく、7~150μmであることがより好ましく、10~100μmであることが更に好ましい。厚みが5μmより小さいと、十分な接着力を確保するのが困難となり、回路基板の凸電極を埋められなくなる傾向があり、200μmより厚いと経済的でなくなる上に、半導体装置の小型化の要求に応えることが困難となる。
 支持基材3としては、例えば、ポリエチレンテレフタレートフィルム、ポリテトラフルオロエチレンフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリビニルアセテートフィルム、ポリ塩化ビニルフィルム、ポリイミドフィルム等のプラスチックフィルムが挙げられる。また、支持基材3は、上記の材料から選ばれる2種以上が混合されたもの、又は、上記のフィルムが複層化されたものでもよい。
 支持基材3の厚みは、特に制限はないが、5~250μmが好ましい。厚みが5μmより薄いと、半導体ウエハの研削(バックグラインド)時に支持基材が切れる可能性があり、250μmより厚いと経済的でなくなるため好ましくない。
 支持基材3は、光透過性が高いことが好ましく、具体的には、500~800nmの波長域における最小光透過率が10%以上であることが好ましい。
 また、支持基材3として、上記プラスチックフィルム(以下、場合により「第二のフィルム」という)上に粘着剤層が積層されたものを用いることができる。
 図2は、本発明に係る回路部材接続用接着剤シートの好適な一実施形態を示す模式断面図である。図2に示す回路部材接続用接着剤シート11は、プラスチックフィルム3bと該プラスチックフィルム3b上に設けられた粘着剤層3aとを有する支持基材3と、該粘着剤層3a上に設けられ、本発明の接着剤組成物からなる接着剤層2と、接着剤層2を被覆する保護フィルム1とを備えている。
 第二のフィルム3bと粘着剤層3aとの密着性を向上させるために、第二のフィルムの表面には、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理等の化学的又は物理的処理を施してもよい。
 粘着剤層3aは、室温で粘着力があり、被着体に対する必要な密着力を有することが好ましく、かつ、放射線等の高エネルギー線や熱によって硬化する(すなわち、粘着力を低下させる)特性を備えるものが好ましい。粘着剤層3aは、例えば、アクリル系樹脂、各種合成ゴム、天然ゴム、ポリイミド樹脂を用いて形成することができる。粘着剤層3aの厚みは、通常5~20μm程度である。
 上述した回路部材接続用接着剤シート10及び11は、相対向しハンダ接合される回路電極を有する回路部材と半導体素子との間又は半導体素子同士の間に介在させ、回路部材と半導体素子又は半導体素子同士を接着するために用いることができる。この場合、回路部材と半導体素子又は半導体素子同士を熱圧着することにより、ボイド発生を抑制しつつ十分な接着力で接着することができ、且つ、回路電極同士を良好にハンダ接合できる。これにより、接続信頼性に優れた接続体を得ることができる。また、回路部材接続用接着剤シート10及び11は、シリコン貫通電極を用いた積層技術における接着剤として用いることも可能である。
 次に、回路部材接続用接着剤シート10を用いて半導体装置を製造する方法について説明する。
 図3~図7は、本発明に係る半導体装置の製造方法の好適な一実施形態を説明するための模式断面図である。本実施形態の半導体装置の製造方法は、
(a)主面の一方に複数の回路電極を有する半導体ウエハを準備し、該半導体ウエハの回路電極が設けられている側に、本発明の接着剤組成物からなる接着剤層を設ける工程と、(b)半導体ウエハの回路電極が設けられている側とは反対側を研削して半導体ウエハを薄化する工程と、
(c)薄化した半導体ウエハ及び接着剤層をダイシングしてフィルム状接着剤付半導体素子に個片化する工程と、
(d)フィルム状接着剤付半導体素子の回路電極を半導体素子搭載用支持部材の回路電極にハンダ接合する工程と、
を備える。
 本実施形態における(a)工程では、上述の回路部材接続用接着剤シート10の接着剤層2を半導体ウエハの回路電極が設けられている側に貼付けることにより、接着剤層が設けられる。また、本実施形態における(d)工程では、加熱によりハンダ接合が行われるとともに、半導体素子と半導体素子搭載用支持部材との間に介在するフィルム状接着剤の硬化も行われる。以下、図面を参照しながら、各工程について説明する。
(a)工程
 先ず、回路部材接続用接着剤シート10を所定の装置に配置し、保護フィルム1を剥がす。続いて、主面の一方に複数の回路電極20を有する半導体ウエハAを準備し、半導体ウエハAの回路電極が設けられている側に接着剤層2を貼付け、支持基材3/接着剤層2/半導体ウエハAが積層された積層体を得る(図3を参照)。回路電極20には、ハンダ接合用のハンダが塗布されたバンプが設けられている。なお、半導体素子搭載用支持部材の回路電極にハンダを設けることもできる。
 上記(a)工程において、支持基材3/接着剤層2/半導体ウエハAが積層された積層体を得る方法としては、市販のフィルム貼付装置又はラミネータを使用することができる。半導体ウエハAにボイドの巻き込み無く、接着剤層2を貼り付けるため、貼付装置には加熱機構及び加圧機構が備わっていることが望ましく、真空吸引機構が備わっていることはより望ましい。また回路部材接続用接着剤シート10の形状は、貼付装置で作業できる形状であればよく、ロール状又はシート状でもよく、半導体ウエハAの外形に合わせて加工されたものであってもよい。
 半導体ウエハAと接着剤層2とのラミネートは接着剤層2が軟化する温度で行うことが好ましい。ラミネート温度は、40~80℃が好ましく、50~80℃がより好ましく、60~80℃が更に好ましい。接着剤層2が軟化する温度未満でラミネートする場合、半導体ウエハAの突出した回路電極20周辺への埋込不足が発生し、ボイドが巻き込まれた状態となる。この場合、ダイシング時の接着剤層の剥離、ピックアップ時の接着剤層の変形、位置合わせ時の認識マーク識別不良、さらにボイドによる接続信頼性の低下が生じ易くなる。
(b)工程
 次に、図4に示されるように、半導体ウエハAの回路電極20が設けられている側とは反対側をグラインダー4によって研削し、半導体ウエハを薄化する。半導体ウエハの厚みは、例えば、10~300μmとすることができる。半導体装置の小型化、薄型化の観点から、半導体ウエハの厚みを20~100μmとすることが好ましい。
 (b)工程において、半導体ウエハAの研削は一般的なバックグラインド(B/G)装置を用いて行うことができる。B/G工程で半導体ウエハAを厚みムラなく均一に研削するためには、(a)工程において接着剤層2をボイドの巻き込みなく均一に貼り付けることが好ましい。
(c)工程
 次に、図5(a)に示されるように、積層体の半導体ウエハAにダイシングテープ5を貼付け、これを所定の装置に配置して支持基材3を剥がす。このとき、支持基材3が粘着剤層3aを備えており、粘着剤層3aが放射線硬化性である場合には、支持基材3側から放射線を照射することにより、粘着剤層3aを硬化させ接着剤層2と支持基材3との間の接着力を低下させることができる。ここで、使用される放射線としては、例えば、紫外線、電子線、赤外線等が挙げられる。これにより支持基材3を容易に剥がすことができる。支持基材3の剥離後、図5(b)に示されるように、半導体ウエハA及び接着剤層2をダイシングソウ6によりダイシングする。こうして、半導体ウエハAは複数の半導体素子A’に分割され、接着剤層2は複数のフィルム状接着剤2aに分割される。
 次に、図6に示されるように、ダイシングテープ5をエキスパンド(拡張)することにより、上記ダイシングにより得られた各半導体素子A’を互いに離間させつつ、ダイシングテープ5側からニードルで突き上げられた半導体素子A’及びフィルム状接着剤2aからなるフィルム状接着剤付半導体素子12を吸引コレット7で吸引してピックアップする。フィルム状接着剤付半導体素子12は、トレー詰めして回収してもよく、そのままフリップチップボンダーで回路基板に実装してもよい。
 (c)工程において、研削された半導体ウエハAにダイシングテープ5を貼り合わせる作業は、一般的なウエハマウンタを使用して、ダイシングフレームへの固定と同一工程で実施できる。ダイシングテープ5は市販のダイシングテープを適用することができ、UV硬化型であってもよく、感圧型であってもよい。
(d)工程
 次に、図7に示されるように、フィルム状接着剤2aが付着した半導体素子A’の回路電極20と、半導体素子搭載用支持部材8の回路電極22とを位置合わせし、フィルム状接着剤付半導体素子12と半導体素子搭載用支持部材8とを熱圧着する。この熱圧着により、回路電極20と回路電極22とがハンダ接合により電気的且つ機械的に接続されるとともに、半導体素子A’と半導体素子搭載用支持部材8との間にフィルム状接着剤2aの硬化物が形成される。
 熱圧着時の温度は、ハンダ接合の観点から、200℃以上であることが好ましく、220~260℃であることがより好ましい。熱圧着時間は、1~20秒間とすることができる。熱圧着の圧力は、0.1~5MPaとすることができる。
 フリップチップボンダーを用いた回路基板への実装では、半導体チップの回路面に形成されたアライメントマークを半導体チップの回路面に形成されたフィルム状接着剤層2aを透過して確認し、回路基板への搭載位置を確認して実施することができる。
 以上の工程を経て、半導体装置30が得られる。本発明に係る接着剤組成物からなるフィルム状接着剤は、埋込性及び硬化後の接着力に優れるとともに、短時間でのハンダ接合においてもハンダ表面に形成される酸化皮膜を除去することができハンダ濡れ性を向上することができる。そのため、半導体装置30は、ボイドの発生が十分抑制され、回路電極同士が良好にハンダ接合され、半導体素子A’と半導体素子搭載用支持部材とが十分な接着力で接着され、耐リフロークラック性や接続信頼性に優れたものになり得る。
 以下、実施例及び比較例を挙げて本発明をより具体的に説明する。但し、本発明はこれら実施例に限定されるものではない。
(支持基材の準備)
 まず、主モノマーとして2-エチルヘキシルアクリレートとメチルメタクリレートを用い、官能基モノマーとしてヒドロキシエチルアクリレートとアクリル酸を用いた溶液重合法によりアクリル共重合体を合成した。得られたアクリル共重合体の重量平均分子量は40万、ガラス転移点は-38℃であった。このアクリル共重合体100質量部に対し、多官能イソシアネート架橋剤(日本ポリウレタン工業株式会社製、商品名「コローネートHL」)10質量部を配合して粘着剤組成物溶液を調製した。
 得られた粘着剤組成物溶液を、ポリオレフィンフィルム(オカモト株式会社製、商品名「WNH-2110」、厚さ:100μm)の上に乾燥時の粘着剤層の厚みが10μmになるよう塗布し乾燥した。更に、第二のフィルムであるシリコーン系離型剤で表面処理したニ軸延伸ポリエステルフィルム(帝人デュポンフィルム社製、商品名「A3170、厚さ:25μm)を粘着剤層面にラミネートした。この粘着剤層付き積層体を室温で1週間放置し十分にエージングを行った後、ポリオレフィンフィルムを剥離したものを支持基材として使用した。
(実施例1)
<接着剤組成物の調製>
 「ZX1356-2」(東都化成株式会社製商品名、フェノキシ樹脂)100質量部、「1032H60」(ジャパンエポキシレジン株式会社製商品名、エポキシ樹脂)100質量部、「エピコート828」(ジャパンエポキシレジン社製商品名、液状エポキシ樹脂)60質量部及び「HX3941HP」(旭化成エレクトロニクス株式会社製商品名、マイクロカプセル型潜在性硬化剤)140質量部を、トルエンと酢酸エチルとの混合溶媒中に溶解した。この溶液に、「KW-4426」(三菱レーヨン株式会社製商品名、コアシェルタイプの有機微粒子)40質量部、5μmの分級処理を行った平均粒径1μmコージェライト粒子(2MgO・2Al2O・5SiO、比重2.4、線膨張係数:1.5×10-6/℃、屈折率:1.57)400質量部、10μmの分級処理を行った「ADH」(大塚化学社製商品名、アジピン酸ジヒドラジド)40質量部を分散し、接着剤ワニスを得た。
<回路部材接続用接着剤シートの作製>
 得られた接着剤ワニスを、第一フィルムであるポリエチレンテレフタレート(PET)フィルム(帝人デュポンフィルム社製、商品名「AH-3」、厚さ:50μm)上にロールコータを用いて塗布し、70℃のオーブンで10分間乾燥させて、厚み25μmの接着剤層を形成した。次に、接着剤層と上記支持基材における粘着剤層面とを常温で貼り合わせて、回路部材接続用接着剤シートを得た。
(実施例2)
 接着剤ワニスの調製における「KW-4426」に代えて「EXL2655」((ロームアンドハース社製商品名)を配合した以外は実施例1と同様にして、回路部材接続用接着剤シートを得た。
(実施例3)
 接着剤ワニスの調製における「ADH」に代えて「2,2-ビス(ヒドロキシメチル)プロピオン酸」(東京化成工業社製、以下、「BHPA」と略す)に配合した以外は実施例1と同様にして、回路部材接続用接着剤シートを得た。
(実施例4)
 接着剤ワニスの調製における「KW-4426」に代えて「EXL2655」を、「ADH」に代えて「BHPA」をそれぞれ配合した以外は実施例1と同様にして、回路部材接続用接着剤シートを得た。
(実施例5)
 接着剤ワニスの調製における「ADH」に代えて「2,6-ジメトキシメチルパラクレゾール」(旭有機材社製商品名、「26DMPC」)に配合した以外は実施例1と同様にして、回路部材接続用接着剤シートを得た。
(実施例6)
 接着剤ワニスの調製における「KW-4426」に代えて「EXL2655」を配合し、「ADH」に代えて「26DMPC」を配合した以外は実施例1と同様にして、回路部材接続用接着剤シートを得た。
(比較例1)
 接着剤ワニスの調製における「ADH」を配合しなかった以外は実施例1と同様にして、回路部材接続用接着剤シートを得た。
(比較例2)
 接着剤ワニスの調製における「KW-4426」に代えて「EXL2655」を配合し、「ADH」を配合しなかった以外は実施例1と同様にして、回路部材接続用接着剤シートを得た。
[接着剤層の評価]
(線膨張係数測定)
 実施例及び比較例で得られた回路部材接続用接着剤シートを180℃に設定したオーブンに3時間放置し、加熱硬化処理を行った。加熱硬化後の接着剤層を支持基材から剥離し、30mm×2mmの大きさの試験片を作製した。セイコーインスツルメンツ社製「TMA/SS6100」(商品名)を用い、上記試験片をチャック間20mmとなるよう装置内に取り付け、測定温度範囲:20~300℃、昇温速度:5℃/分、荷重条件:試験片の断面積に対し0.5MPa圧力となる条件で、引張り試験モードにて熱機械分析を行い、線膨張係数を測定した。
(反応率測定)
 実施例及び比較例で得られた回路部材接続用接着剤シートにおける接着剤層をアルミ製測定容器に2~10mg計り取り、パーキンエルマー社製DSC(Differential Scaning Calorimeter)「Pylis1」(商品名)を用いて、昇温速度20℃/分で30~300℃まで昇温して発熱量を測定し、これを初期発熱量とした。次いで、熱圧着装置の加熱ヘッドをセパレータに挟んだ熱電対で温度確認を行って10秒後に250℃に達する温度に設定した。この加熱ヘッド設定で、回路部材接続用接着剤シートをセパレータに挟んで20秒間加熱し、熱圧着時と同等の加熱処理が施された状態の接着剤層を得た。加熱処理後の接着剤層についても同様に発熱量を測定し、これを加熱後の発熱量とした。また、回路部材接続用接着剤シートを室温(20~25℃)で14日間保管した後の接着剤層についても同様に発熱量を測定し、これを保管後の発熱量とした。得られた発熱量から次の式で反応率(%)を算出した。
 反応率(%)=(初期発熱量-加熱後の発熱量又は保管後の発熱量)/(初期発熱量)×100
<半導体装置の作製及び評価>
 上記で得られた回路部材接続用接着剤シートを用い、下記の手順にしたがって、半導体装置を作製し、評価した。結果を表1に示す。
(半導体ウエハへの貼付)
 ジェイシーエム製のダイアタッチフィルムマウンターの80℃に加熱された吸着ステー上に、金めっきバンプが形成された半導体ウエハ(6インチ径、厚さ725μm)をバンプ側を上に向けて載せた。回路部材接続用接着剤シートを200mm×200mmに切断し保護フィルムである第一のフィルムを除いた接着剤層を半導体ウエハのバンプ側に向け、エアを巻き込まないように半導体ウエハの端からダイアタッチマウンターの貼付ローラで押しつけてラミネートした。ラミネート後、ウエハの外形に沿って接着剤のはみ出し部分を切断した。
(半導体ウエハ裏面のバックグラインド及び支持基材の剥離)
 上記回路部材接続用接着剤シートと半導体ウエハ(厚み625μm)との積層体を、株式会社ディスコ製バックグラインド装置で、厚みが150μmとなるまで半導体ウエハの裏面をバックグラインドした。その後、バックグラインドした半導体ウエハを上に向けた状態でジェイシーエム製のダイアタッチフィルムマウンターの吸着ステージに設置し、室温にてダイシングフレームと同時にアデカ製ダイシングテープ「AD80H」を貼り付けた。次いで、支持基材上に日東電工製バックグラインドテープ剥離テープを貼付し、180度ピール引き剥がしで支持基材のみを引き剥がした。
(ダイシング)
 上述のダイシングフレームに固定された接着剤層付き半導体ウエハを株式会社ディスコ製フルオートマチックダイシングソー「DFD6361」にて10mm×10mmにダイシングした。ダイシング後、洗浄し、水分を飛ばした後、ダイシングテープ側からUV照射を行った後、個片化された接着剤付き半導体チップをピックアップした。
(圧着)
 接着剤付き半導体チップを、バンプに対向する位置にSnAgCuを構成成分とするハンダが形成された回路を有するガラエポ基板に、松下電器産業製フリップチップボンダー「FCB3」で位置あわせを行った後、250℃、0.5MPaで10秒間熱圧着し、半導体装置を得た。
 上述のようにして作製した半導体装置におけるフィルム状接着剤の埋込性及び接続抵抗を評価した。次いで、作製した半導体装置を85℃、60%RHの恒温恒湿器に168時間放置して吸湿させ、260℃に設定したリフロー炉に3回暴露した。暴露後、接続抵抗及び接続部分の界面状態を確認した。
<圧着後の埋込性>
 接着剤層の貼付状態を日立建機製超音波探傷装置(SAT)で視察し、下記の基準に基づいて評価した。
 A:剥離、ボイドが観察されない。
 B:剥離、ボイドが観察される。
<リフロー後の接続性>
 接着剤層のリフロー後の接続状態を日立建機製超音波探傷装置(SAT)で視察し、下記の基準に基づいて評価した。
 A:剥離が観察されない。
 B:剥離が観察される。
<接続抵抗>
 作製した半導体装置について、圧着後の接続抵抗及びリフロー後の接続抵抗を、デジタルマルチメータ(アドバンテスト社製、商品名)を用いて測定し、下記の基準に基づいて評価した。
(圧着後の接続抵抗)
 A:試験に適用した実装TEGの全端子(176端子)連結での抵抗値が7~10Ω
 B:全端子連結での抵抗が得られない、又は全端子連結での抵抗値が10Ωよりも大きい
(リフロー後の接続抵抗)
 A:圧着後の接続抵抗値に対し20%以内の抵抗上昇
 B:圧着後の接続抵抗値に対し20%を超える抵抗上昇
<温度サイクル試験>
 上記リフロー後の半導体装置を-55℃で30分間及び125℃で30分間を1サイクルとする温度サイクル試験に投入し、試験機内での接続抵抗が維持されるかどうかを評価した。通電可能であったサイクル数を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1~6で得られた回路部材接続用接着剤シートを用いた場合、ボイド発生が無く、リフロー後も良好な接続性を示し、さらに温度サイクル試験で1000サイクル以上導通可能であった。これに対し、比較例1,2で得られた回路部材接続用接着剤シートを用いた場合、ボイド発生が無く、リフロー後も良好な接続性を示すものの、温度サイクル試験300サイクルで接続不良が発生し、ハンダ濡れ性が不十分であるためハンダ接合が不十分となり接続信頼性に劣ることが確認された。
 1…保護フィルム、2…接着剤層、3…支持基材、3a…粘着剤層、3b…プラスチックフィルム、4…グラインダー、5…ダイシングテープ、6…ダイシングソウ、7…吸引コレット、8…半導体素子搭載用支持部材、10…回路部材接続用接着剤シート、11…回路部材接続用接着剤シート、12…フィルム状接着剤付半導体素子、20…回路電極、30…半導体装置、A…半導体ウエハ。

Claims (7)

  1.  (A)熱可塑性樹脂と、
     (B)熱硬化性樹脂と、
     (C)潜在性硬化剤と、
     (D)無機フィラーと、
     (E)有機微粒子と、
     (F)室温で固体であり、最大粒径が25μm以下である粉体化合物と、
    を含み、
     前記(F)成分は、カルボキシル基を有する化合物、メチロール基を有する化合物及びヒドラジド化合物から選ばれる少なくとも1種の化合物である、接着剤組成物。
  2.  前記(B)成分がエポキシ樹脂を含有する、請求項1記載の接着剤組成物。
  3.  相対向しハンダ接合される回路電極を有する回路部材間に介在させ、前記回路部材同士を接着するために用いられる、請求項1又は2記載の接着剤組成物。
  4.  支持基材と、該支持基材上に設けられ、請求項1~3のいずれか一項に記載の接着剤組成物からなる接着剤層と、を備える、回路部材接続用接着剤シート。
  5.  前記支持基材が、プラスチックフィルムと該プラスチックフィルム上に設けられた粘着剤層とを備え、前記接着剤層が前記粘着剤層上に設けられている、請求項4記載の回路部材接続用接着剤シート。
  6.  相対向しハンダ接合される回路電極を有する回路部材間に介在させ、前記回路部材同士を接着するために用いられる、請求項5記載の回路部材接続用接着剤シート。
  7.  主面の一方に複数の回路電極を有する半導体ウエハを準備し、該半導体ウエハの前記回路電極が設けられている側に、請求項1~3のいずれか一項に記載の接着剤組成物からなる接着剤層を設ける工程と、
     前記半導体ウエハの前記回路電極が設けられている側とは反対側を研削して前記半導体ウエハを薄化する工程と、
     前記薄化した半導体ウエハ及び前記接着剤層をダイシングしてフィルム状接着剤付半導体素子に個片化する工程と、
     前記フィルム状接着剤付半導体素子の前記回路電極を半導体素子搭載用支持部材の回路電極にハンダ接合する工程と、
    を備える、半導体装置の製造方法。
PCT/JP2010/057671 2009-05-29 2010-04-30 接着剤組成物、回路部材接続用接着剤シート及び半導体装置の製造方法 WO2010137445A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-130613 2009-05-29
JP2009130613 2009-05-29

Publications (1)

Publication Number Publication Date
WO2010137445A1 true WO2010137445A1 (ja) 2010-12-02

Family

ID=43222560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057671 WO2010137445A1 (ja) 2009-05-29 2010-04-30 接着剤組成物、回路部材接続用接着剤シート及び半導体装置の製造方法

Country Status (3)

Country Link
JP (1) JP5569121B2 (ja)
KR (1) KR20120030443A (ja)
WO (1) WO2010137445A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130009654A (ko) * 2011-07-13 2013-01-23 닛토덴코 가부시키가이샤 반도체 장치용 접착 필름, 플립 칩형 반도체 이면용 필름 및 다이싱 테이프 일체형 반도체 이면용 필름
JP2016035066A (ja) * 2015-10-02 2016-03-17 日東電工株式会社 半導体装置用の接着フィルム、フリップチップ型半導体裏面用フィルム、及び、ダイシングテープ一体型半導体裏面用フィルム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102404A (ja) * 2011-02-17 2011-05-26 Sony Chemical & Information Device Corp 異方性導電フィルム
TWI430376B (zh) * 2011-02-25 2014-03-11 The Method of Fabrication of Semiconductor Packaging Structure
WO2013168773A1 (ja) * 2012-05-10 2013-11-14 富士フイルム株式会社 導電膜積層体、タッチパネル、配線基板、電子機器、透明両面粘着シート、透明粘着シート
JP6244124B2 (ja) * 2013-06-27 2017-12-06 ナミックス株式会社 ダイアタッチ用樹脂組成物
JP6827851B2 (ja) * 2017-03-08 2021-02-10 リンテック株式会社 回路部材接続用シートおよび半導体装置の製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086988A (ja) * 1998-09-11 2000-03-28 Hitachi Chem Co Ltd 回路接続用接着剤の製造法
WO2001060938A1 (en) * 2000-02-15 2001-08-23 Hitachi Chemical Co., Ltd. Adhesive composition, process for producing the same, adhesive film made with the same, substrate for semiconductor mounting, and semiconductor device
JP2001303014A (ja) * 2000-04-25 2001-10-31 Hitachi Chem Co Ltd 接着フィルム及びそれを用いた接着方法
JP2001303015A (ja) * 2000-04-25 2001-10-31 Hitachi Chem Co Ltd 接着フィルム、その製造方法及び接着方法
JP2005089629A (ja) * 2003-09-18 2005-04-07 Ricoh Co Ltd 導電性接着剤
JP2006049482A (ja) * 2004-08-03 2006-02-16 Furukawa Electric Co Ltd:The 半導体装置製造方法およびウエハ加工用テープ
JP2006206843A (ja) * 2005-01-31 2006-08-10 Hitachi Chem Co Ltd 接着フィルム及びこれを備える積層体
JP2007169448A (ja) * 2005-12-21 2007-07-05 Sekisui Chem Co Ltd 熱硬化性樹脂組成物及び半導体装置
JP2008111106A (ja) * 2006-10-06 2008-05-15 Hitachi Chem Co Ltd 電子部品封止用液状樹脂組成物及びこれを用いた電子部品装置
JP2008150597A (ja) * 2006-11-22 2008-07-03 Hitachi Chem Co Ltd 導電性接着剤組成物、電子部品搭載基板及び半導体装置
JP2008260908A (ja) * 2007-03-16 2008-10-30 Hitachi Chem Co Ltd 光導波路用接着剤組成物およびこれを用いた光導波路用接着フィルム、ならびにこれらを用いた光学装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4178565B2 (ja) * 1997-08-25 2008-11-12 日立化成工業株式会社 回路部材接続用接着剤
JP2005194413A (ja) * 2004-01-08 2005-07-21 Hitachi Chem Co Ltd 回路接続用接着フィルム及び回路接続構造体
US20120048606A1 (en) * 2007-08-08 2012-03-01 Hitachi Chemical Company, Ltd. Adhesive composition, film-like adhesive, and connection structure for circuit member
CN101828434A (zh) * 2007-10-18 2010-09-08 日立化成工业株式会社 粘接剂组合物和使用其的电路连接材料、以及电路部件的连接方法和电路连接体

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086988A (ja) * 1998-09-11 2000-03-28 Hitachi Chem Co Ltd 回路接続用接着剤の製造法
WO2001060938A1 (en) * 2000-02-15 2001-08-23 Hitachi Chemical Co., Ltd. Adhesive composition, process for producing the same, adhesive film made with the same, substrate for semiconductor mounting, and semiconductor device
JP2001303014A (ja) * 2000-04-25 2001-10-31 Hitachi Chem Co Ltd 接着フィルム及びそれを用いた接着方法
JP2001303015A (ja) * 2000-04-25 2001-10-31 Hitachi Chem Co Ltd 接着フィルム、その製造方法及び接着方法
JP2005089629A (ja) * 2003-09-18 2005-04-07 Ricoh Co Ltd 導電性接着剤
JP2006049482A (ja) * 2004-08-03 2006-02-16 Furukawa Electric Co Ltd:The 半導体装置製造方法およびウエハ加工用テープ
JP2006206843A (ja) * 2005-01-31 2006-08-10 Hitachi Chem Co Ltd 接着フィルム及びこれを備える積層体
JP2007169448A (ja) * 2005-12-21 2007-07-05 Sekisui Chem Co Ltd 熱硬化性樹脂組成物及び半導体装置
JP2008111106A (ja) * 2006-10-06 2008-05-15 Hitachi Chem Co Ltd 電子部品封止用液状樹脂組成物及びこれを用いた電子部品装置
JP2008150597A (ja) * 2006-11-22 2008-07-03 Hitachi Chem Co Ltd 導電性接着剤組成物、電子部品搭載基板及び半導体装置
JP2008260908A (ja) * 2007-03-16 2008-10-30 Hitachi Chem Co Ltd 光導波路用接着剤組成物およびこれを用いた光導波路用接着フィルム、ならびにこれらを用いた光学装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130009654A (ko) * 2011-07-13 2013-01-23 닛토덴코 가부시키가이샤 반도체 장치용 접착 필름, 플립 칩형 반도체 이면용 필름 및 다이싱 테이프 일체형 반도체 이면용 필름
JP2013021221A (ja) * 2011-07-13 2013-01-31 Nitto Denko Corp 半導体装置用の接着フィルム、フリップチップ型半導体裏面用フィルム、及び、ダイシングテープ一体型半導体裏面用フィルム
TWI581323B (zh) * 2011-07-13 2017-05-01 Nitto Denko Corp A film for a semiconductor device, a film for a flip chip type, and a thin film for a monolithic semiconductor
KR101920083B1 (ko) * 2011-07-13 2018-11-19 닛토덴코 가부시키가이샤 반도체 장치용 접착 필름, 플립 칩형 반도체 이면용 필름 및 다이싱 테이프 일체형 반도체 이면용 필름
JP2016035066A (ja) * 2015-10-02 2016-03-17 日東電工株式会社 半導体装置用の接着フィルム、フリップチップ型半導体裏面用フィルム、及び、ダイシングテープ一体型半導体裏面用フィルム

Also Published As

Publication number Publication date
KR20120030443A (ko) 2012-03-28
JP2011006658A (ja) 2011-01-13
JP5569121B2 (ja) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5569126B2 (ja) 接着剤組成物、接着剤シート及び半導体装置の製造方法
JP5991335B2 (ja) 接着フィルム、ダイシングシート一体型接着フィルム、バックグラインドテープ一体型接着フィルム、バックグラインドテープ兼ダイシングシート一体型接着フィルム、積層体、積層体の硬化物、および半導体装置、並び半導体装置の製造方法
JP2011140617A (ja) アンダーフィル形成用接着剤組成物、アンダーフィル形成用接着剤シート及び半導体装置の製造方法
JP4766200B2 (ja) 接着剤組成物及び半導体装置の製造方法
JP5477144B2 (ja) 回路部材接続用接着剤シート及び半導体装置の製造方法
JP5544766B2 (ja) 半導体加工用接着フィルム積層体
JP5569121B2 (ja) 接着剤組成物、回路部材接続用接着剤シート及び半導体装置の製造方法
JP5499516B2 (ja) 接着剤組成物、回路部材接続用接着剤シート及び半導体装置の製造方法
WO2021065517A1 (ja) 半導体用接着剤、半導体用接着剤シート、及び半導体装置の製造方法
JP2016139757A (ja) 接着剤組成物、回路部材接続用接着剤シート及び半導体装置の製造方法
JP2014237811A (ja) 接着フィルム、接着シート、ダイシングシート一体型接着フィルム、バックグラインドテープ一体型接着フィルム、ダイシングシート兼バックグラインドテープ一体型接着フィルム及び半導体装置
JP5703621B2 (ja) 回路部材接続用接着剤、回路部材接続用接着剤シート、半導体装置及び半導体装置の製造方法
JP5811514B2 (ja) フィルム状接着剤
TWI425066B (zh) Preparation method of adhesive composition, circuit board for connecting circuit member, and manufacturing method of semiconductor device
JP5544927B2 (ja) 接着剤組成物、回路部材接続用接着剤シート及び半導体装置の製造方法
JP5321251B2 (ja) 回路板及び回路板の製造方法
JP2010265416A (ja) フィルム状接着剤
JP5375351B2 (ja) 半導体回路部材の製造方法
JP2012184288A (ja) 回路接続用接着剤、回路接続用接着シート及び半導体装置の製造方法
TWI509043B (zh) Adhesive composition, method for manufacturing connection of circuit member and semiconductor device
WO2022209875A1 (ja) 半導体用接着剤、半導体用接着剤シート、及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117030695

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10780402

Country of ref document: EP

Kind code of ref document: A1