WO2010098402A1 - Method for producing fine metal particles, fine metal particle dispersion liquid, and sintered body - Google Patents

Method for producing fine metal particles, fine metal particle dispersion liquid, and sintered body Download PDF

Info

Publication number
WO2010098402A1
WO2010098402A1 PCT/JP2010/053001 JP2010053001W WO2010098402A1 WO 2010098402 A1 WO2010098402 A1 WO 2010098402A1 JP 2010053001 W JP2010053001 W JP 2010053001W WO 2010098402 A1 WO2010098402 A1 WO 2010098402A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
silver
compound
gold
copper
Prior art date
Application number
PCT/JP2010/053001
Other languages
French (fr)
Japanese (ja)
Inventor
徹 米澤
寛 西原
功治 河合
克之 杉山
克久 神尾
Original Assignee
国立大学法人東京大学
ミヨシ油脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, ミヨシ油脂株式会社 filed Critical 国立大学法人東京大学
Priority to JP2011501648A priority Critical patent/JP5439468B2/en
Publication of WO2010098402A1 publication Critical patent/WO2010098402A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature

Definitions

  • the present invention relates to a method for producing metal fine particles, a metal fine particle dispersion, and a sintered body.
  • a method for obtaining a metal fine particle dispersion a physical method, a chemical method such as a gas phase method or a liquid phase method, and the like are known.
  • a method of obtaining metal fine particles using a polymer such as thiol, amine, alcohol, carboxylic acid, PVA or the like as a protective agent a method of obtaining metal fine particles using a diazonium salt having a long chain alkyl group as a raw material
  • a method of obtaining metal fine particles having an adsorption or salt structure using 2,4,6-trichlorobenzenediazonium chloride or the like as a dispersant is known (see Patent Document 1).
  • the protective agent used in the conventional liquid phase method in other words, the ligand has a group having a lone pair, and this group coordinates with the metal to form a complex.
  • Coordinating groups include thiol groups, amino groups, hydroxyl groups, carboxyl groups, and phosphino groups.
  • Coordinating atoms are sulfur, nitrogen, oxygen, and phosphorus.
  • Ag 2 S and SO x are generated during the sintering of the fine particles, and NO x is generated during the sintering in the method using the amine.
  • Non-Patent Document 1 the reaction is performed using a water-soluble metal salt and a diazonium salt having a hydrophobic long-chain alkyl group as raw materials, but the resulting metal fine particles are also hydrophobic. For this reason, the reaction must be carried out in a two-layer system. For this reason, it is necessary to use toluene or the like as a solvent, and there are problems in terms of environmental load and work complexity.
  • the gas generated during sintering when the metal fine particle dispersion is used as a raw material of the sintered body.
  • 2,4,6-trichlorobenzenediazonium chloride when 2,4,6-trichlorobenzenediazonium chloride is used as a photosensitive dispersion agent, only chloroauric acid is reduced by glucose, and 2,4,6-trichlorobenzenediazonium chloride is deposited on the surface of the gold fine particles deposited by reduction. Although it is in a dispersed state because it is adsorbed or formed to form a salt and protected, the protective metal fine particles contain Cl atoms and N atoms, so that there is a possibility that chlorine gas and NO x are generated during sintering.
  • the present invention has been made in view of the circumstances as described above, and does not contain sulfur and nitrogen, and further, a method for producing metal fine particles capable of stably dispersing metal fine particles in a polar solvent, a metal fine particle dispersion, and a sintering method.
  • the challenge is to provide a body.
  • the present invention is characterized by the following in order to solve the above problems.
  • m represents an integer of 1 to 5
  • M represents gold, silver, or
  • m represents an integer of 1 to 5
  • M represents gold, silver, or
  • Eighth A sintered body obtained by applying the seventh metal fine particle dispersion to a base material and sintering it.
  • metal fine particles of the present invention it is possible to obtain metal fine particles which do not contain sulfur and nitrogen, and which can disperse the metal fine particles stably in a polar solvent and which are excellent in cost and environment.
  • the reaction can be performed in one layer of a polar solvent such as water or alcohol, so that environmental burdens and work complexity can be reduced.
  • the metal fine particle dispersion of the present invention sulfur and nitrogen are not contained, and the metal fine particles can be stably dispersed in a polar solvent.
  • the sintered body of the present invention since the above-described metal fine particle dispersion is used, it does not generate acid gas such as NO x and SO x and halogen-based gas during sintering, and can be applied to various applications Can be obtained.
  • the diazonium salt represented by the formula (I) used in the present invention is prepared, for example, by adding and stirring the corresponding aminophenylcarboxylic acid to a tetrafluoroboric acid aqueous solution, dropping the sodium nitrite aqueous solution dropwise, and aging, followed by filtration. It can be obtained by purification such as solvent washing and recrystallization.
  • the diazonium salt is characterized by using a carboxyl group-containing functional group X 1 of formula (I), which is economical, soluble in polar solvents, and easy to synthesize. And stability. Moreover, the diazonium salt represented by the formula (I) having a structure having such a functional group X 1 is very stable. For example, oxygen and water are shielded from light, 5 ° C. or less, in an inert gas atmosphere, or the like. When stored in an excluded environment, it can be stored for more than a month. Furthermore, it can be handled in an air atmosphere at the time of manufacturing.
  • the gold compound to be reacted with the diazonium salt represented by the formula (I) is not particularly limited as long as it can be a gold salt, a gold complex or the like and can be dissolved in a polar solvent.
  • tetrachlorogold (III) acid H (AuCl 4 )
  • sodium tetrachlorogold (III) acid Na (AuCl 4 )
  • diethylamine gold (III) trichloride ((C 2 H 5 ) 2 NH (AuCl 3 )
  • potassium dicyanogold (I) acid KAu (CN) 2
  • gold cyanide (I) (AuCN) gold cyanide
  • AuCN gold cyanide
  • tetrachloroauric (III) acid is preferred.
  • the silver compound to be reacted with the diazonium salt represented by the formula (I) is not particularly limited as long as it can be a silver salt, a silver complex or the like and can be dissolved in a polar solvent.
  • a polar solvent for example, use silver nitrate, silver perchlorate, silver sulfate, silver acetate, silver oxide, silver thiocyanate, silver cyanide, silver cyanide, silver carbonate, silver nitrite, silver phosphate, silver lactate, silver oxalate, etc. Can do.
  • silver nitrate is preferable.
  • the copper compound to be reacted with the diazonium salt represented by the formula (I) is not particularly limited as long as it can be a copper salt, a copper complex or the like and can be dissolved in a polar solvent.
  • copper nitrate (II), copper chloride (II), copper acetate (II), copper sulfate (II), copper hydroxide, copper formate, copper oxalate and the like can be used.
  • copper (II) nitrate is preferred.
  • the diazonium salt represented by the formula (I) is reacted with a gold compound, a silver compound, or a copper compound in a polar solvent in the presence of a reducing agent, and represented by the formula (II). Any interaction selected from a covalent bond and a coordination bond (an interaction between an (alkyl) carboxyphenyl group represented by a dotted line in formula (II) and gold, silver, or copper represented by M) The metal fine particles are synthesized.
  • the reaction can be carried out at a temperature below 100 ° C, preferably below 30 ° C.
  • a diazonium salt represented by the formula (I) a gold compound, a silver compound, or a copper compound is dissolved in a polar solvent and stirred. Subsequently, a reducing agent is dropped, thereby reducing the gold compound, the silver compound, or the copper compound and the diazonium salt represented by the formula (I) at the same time, aging, and represented by the formula (II). Metal fine particles in which the phenyl group and the metal directly interact are synthesized. Then, if necessary, purification is performed by washing with water, solvent washing, centrifugation, filtration, electrodialysis and the like to remove nitrogen compounds, halogen compounds, etc., and obtain metal fine particles represented by the formula (II).
  • X 2 represents (CH 2 ) n COOH or a salt thereof, or a corresponding carboxylate ion, and examples of the salt include alkali metal salts such as sodium salt and potassium salt, amine salts and the like.
  • the metal fine particles may be a mixture of both (CH 2 ) n COOH and a salt thereof as X 2 .
  • the case where the metal fine particles have a carboxylate ion as X 2 includes the case where the metal fine particles are in a dispersion state.
  • M represents gold, silver, or copper.
  • M when M is copper, there are both copper (zero-valent) and cuprous oxide as existing forms, but it is preferable to exclude oxygen as much as possible while paying attention to the deaeration operation and the synthesis atmosphere during synthesis.
  • Examples of the polar solvent used as the reaction solvent and the dispersion solvent include water, alcohol, THF (tetrahydrofuran) and the like, and two or more of these may be used in combination.
  • Examples of the alcohol include linear or branched monovalent alcohols having 1 to 4 carbon atoms such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, and tert-butanol, Straight chain having 1 to 4 carbon atoms such as methanediol, ethanediol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,3-butanediol, 2,3-butanediol Or branched dihydric alcohol, glycols such as diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, ethylene glycol monomethyl ether, ethylene
  • Sodium boron is preferably used.
  • a polar solvent can be used as a reaction solvent and a dispersion solvent when producing gold fine particles, silver fine particles, and copper fine particles.
  • water can be used as a reaction solvent and a dispersion solvent, it is excellent in terms of environment and cost.
  • gold fine particles, silver fine particles, and copper fine particles do not contain sulfur and nitrogen, can suppress the generation of SO x and NO x during sintering, and can suppress the formation of sulfides such as silver sulfide.
  • the dispersion state of gold fine particles, silver fine particles, and copper fine particles can be stably maintained for a long time.
  • the metal fine particle dispersion of the present invention can be suitably used for applications such as conductive thin films, conductive fine wires, electrodes, conductive materials for printed wiring, dyeing materials for electron microscopes, biosensing materials, and the like.
  • the metal fine particle dispersion can be applied to a base material such as a metal substrate and sintered, and used as a sintered body in various fields related to conductive materials.
  • 4-Aminobenzoic acid 50.02 g, 0.36 mol was added to a 42% tetrafluoroboric acid aqueous solution (152.45 g, 0.73 mol) and stirred.
  • a 40% aqueous sodium nitrite solution (62.89 g, 0.36 mol) was added dropwise at 10-15 ° C. over 30 minutes, and after aging for 10 minutes, purification by filtration, recrystallization, etc. gave a white powder. .
  • 4-Aminophenylacetic acid (4.97 g, 0.033 mol) was added to a 42% tetrafluoroboric acid aqueous solution (13.83 g, 0.065 mol) and stirred.
  • a 40% sodium nitrite aqueous solution (5.70 g, 0.03 mol) was added dropwise at 10-15 ° C. in 30 minutes, aged for 10 minutes, and then purified by filtration, solvent washing, recrystallization, etc. A powder was obtained.
  • Example 4 Silver nitrate (0.0425 g, 0.2502 mmol) was dissolved in ion-exchanged water (25 g), and N 2 was flowed for 15 minutes to deaerate. Compound 2 (0.0625 g, 0.2500 mmol) was added under N 2 atmosphere, and the mixture was stirred for 1 minute, and then sodium borohydride (0.0095 g, 0.2511 mmol) dissolved in 7.5 g of ion-exchanged water was added at room temperature for 1 hour.
  • UV-visible absorption spectrum 290nm Infrared absorption spectrum 1703,1587,1387cm -1: C O stretching vibration, 785 cm -1: C-H out-of-plane deformation vibration
  • the diazonium The absorption peak derived from the group disappeared.
  • Example 6 The dispersions obtained in Examples 1, 3, and 5 were applied to an alumina substrate and baked at 200 ° C. for 1 hour in an air atmosphere. As a result, metal films were obtained.
  • the dispersion obtained in Example 3 was concentrated to 7%, applied to an alumina substrate, and sintered at 150 ° C. or 200 ° C. for 1 hour in an air atmosphere.
  • the metal film was measured using a resistivity meter (Mitsubishi Chemical, Lorester GP MCP-T610 type) to confirm conductivity.

Abstract

Disclosed is a method for producing fine metal particles which do not contain sulfur and nitrogen and can be stably dispersed in a polar solvent. Also disclosed are a fine metal particle dispersion liquid and a sintered body. Specifically, fine metal particles represented by formula (II) (wherein X2 represents (CH2)nCOOH, a salt thereof or a corresponding carboxylate ion (n = 0-3), m represents an integer of 1-5, and M represents gold, silver or copper) and having an interaction selected from among a covalent bond and a coordinate bond are obtained by reacting a diazonium salt represented by formula (I) (wherein X1 represents (CH2)nCOOH (n = 0-3), and m represents an integer of 1-5) with a gold compound, a silver compound or a copper compound in a polar solvent in the presence of a reducing agent.

Description

金属微粒子の製造方法、金属微粒子分散液ならびに焼結体Method for producing metal fine particles, metal fine particle dispersion and sintered body
 本発明は、金属微粒子の製造方法、金属微粒子分散液ならびに焼結体に関するものである。 The present invention relates to a method for producing metal fine particles, a metal fine particle dispersion, and a sintered body.
 従来、金属微粒子分散液を得る方法として、物理的方法、気相法や液相法等の化学的方法等が知られている。液相法では、チオール、アミン、アルコール、カルボン酸、PVA等の高分子等を保護剤に用いて金属微粒子を得る方法、長鎖アルキル基を有するジアゾニウム塩を原料に用いて金属微粒子を得る方法(非特許文献1参照)、2,4,6-トリクロロベンゼンジアゾニウムクロライド等を分散剤に用いて吸着もしくは塩構造を有する金属微粒子を得る方法(特許文献1参照)が知られている。
特開2008-83605号公報 J.Am.Chem.Soc., 2006, 128, 7400-7401
Conventionally, as a method for obtaining a metal fine particle dispersion, a physical method, a chemical method such as a gas phase method or a liquid phase method, and the like are known. In the liquid phase method, a method of obtaining metal fine particles using a polymer such as thiol, amine, alcohol, carboxylic acid, PVA or the like as a protective agent, a method of obtaining metal fine particles using a diazonium salt having a long chain alkyl group as a raw material (See Non-Patent Document 1), a method of obtaining metal fine particles having an adsorption or salt structure using 2,4,6-trichlorobenzenediazonium chloride or the like as a dispersant is known (see Patent Document 1).
JP 2008-83605 A J.Am.Chem.Soc., 2006, 128, 7400-7401
 しかしながら、物理的方法では一般に均一な粒径の金属微粒子を大量に合成するのは難しく、気相法では一般にコストが高くなる。また、従来の液相法に用いられる保護剤、換言すれば配位子は孤立電子対を持つ基を有しており、この基が金属と配位結合し、錯体を形成する。配位する基としてはチオール基、アミノ基、ヒドロキシル基、カルボキシル基、フォスフィノ基等があり、その配位原子は硫黄、窒素、酸素、リンであるが、チオールを保護剤に用いた方法では銀微粒子の焼結時にAgSやSOxが発生し、アミンを用いた方法では焼結時にNOxが発生する。アルコールやカルボン酸を保護剤に用いた方法では、得られる金属微粒子分散液の安定性においてさらに改善の余地がある。PVA等の高分子を保護剤に用いた方法では、有機含有量が多く、また単分子膜とすることができない。 However, in general, it is difficult to synthesize a large amount of metal fine particles having a uniform particle diameter by a physical method, and the cost is generally high in a gas phase method. In addition, the protective agent used in the conventional liquid phase method, in other words, the ligand has a group having a lone pair, and this group coordinates with the metal to form a complex. Coordinating groups include thiol groups, amino groups, hydroxyl groups, carboxyl groups, and phosphino groups. Coordinating atoms are sulfur, nitrogen, oxygen, and phosphorus. Ag 2 S and SO x are generated during the sintering of the fine particles, and NO x is generated during the sintering in the method using the amine. In the method using alcohol or carboxylic acid as a protective agent, there is room for further improvement in the stability of the resulting metal fine particle dispersion. In a method using a polymer such as PVA as a protective agent, the organic content is large and a monomolecular film cannot be obtained.
 また、長鎖アルキル基を有するジアゾニウム塩を原料に用いた方法では、微粒子製造時に溶剤を用いることを必須とし、合成される金属微粒子は水に分散しない。具体的には、非特許文献1には水溶性の金属塩と疎水性の長鎖アルキル基を有するジアゾニウム塩とを原料として反応を行っているが、結果的に得られる金属微粒子も疎水性であるため反応は2層系で行う必要がある。そのため、溶剤としてトルエン等を使用する必要があり、環境負荷や作業の煩雑さ等の点で問題がある。 Also, in the method using a diazonium salt having a long-chain alkyl group as a raw material, it is essential to use a solvent during the production of fine particles, and the synthesized fine metal particles are not dispersed in water. Specifically, in Non-Patent Document 1, the reaction is performed using a water-soluble metal salt and a diazonium salt having a hydrophobic long-chain alkyl group as raw materials, but the resulting metal fine particles are also hydrophobic. For this reason, the reaction must be carried out in a two-layer system. For this reason, it is necessary to use toluene or the like as a solvent, and there are problems in terms of environmental load and work complexity.
 そして特許文献1に記載の金属微粒子を得る方法では、還元剤により金属塩のみを還元して、還元された金属と光感受性分散剤とが吸着もしくは塩として相互作用する構造の金属微粒子を含有するパターン形成用の金属微粒子分散液を得ているが、この金属微粒子分散液は光感受性分散剤が感光すると吸着能力を失い金属微粒子から光感受性分散剤が遊離し、分散状態が解除される。また、感光性が高いため自然光下でも分散剤が解離する虞があり、金属微粒子の安定性に問題がある。さらに、金属微粒子分散液を焼結体の原料として用いる場合の焼結時発生ガスに対する配慮がなされていない。例えば2,4,6-トリクロロベンゼンジアゾニウムクロライドを光感受性分散剤として用いた場合では、グルコースにより塩化金酸のみが還元され、還元析出した金微粒子表面は2,4,6-トリクロロベンゼンジアゾニウムクロライドが吸着もしくは塩を形成し保護されるため分散状態となるが、この保護金属微粒子にはCl原子およびN原子が含有しているため、焼結時に塩素系ガスおよびNOxが発生する虞がある。 In the method for obtaining metal fine particles described in Patent Document 1, only metal salts are reduced by a reducing agent, and the metal fine particles having a structure in which the reduced metal and the photosensitive dispersant adsorb or interact as a salt are contained. A metal fine particle dispersion for pattern formation has been obtained. When the photosensitive fine particle dispersion is exposed to light, the metal fine particle dispersion loses its adsorption ability, and the photosensitive fine particle is released from the metal fine particles, and the dispersed state is released. Further, since the photosensitivity is high, the dispersant may be dissociated even under natural light, and there is a problem in the stability of the metal fine particles. Furthermore, no consideration is given to the gas generated during sintering when the metal fine particle dispersion is used as a raw material of the sintered body. For example, when 2,4,6-trichlorobenzenediazonium chloride is used as a photosensitive dispersion agent, only chloroauric acid is reduced by glucose, and 2,4,6-trichlorobenzenediazonium chloride is deposited on the surface of the gold fine particles deposited by reduction. Although it is in a dispersed state because it is adsorbed or formed to form a salt and protected, the protective metal fine particles contain Cl atoms and N atoms, so that there is a possibility that chlorine gas and NO x are generated during sintering.
 本発明は、以上の通りの事情に鑑みてなされたものであり、硫黄、窒素を含有せず、さらに金属微粒子を極性溶媒に安定に分散可能な金属微粒子の製造方法、金属微粒子分散液ならびに焼結体を提供することを課題としている。 The present invention has been made in view of the circumstances as described above, and does not contain sulfur and nitrogen, and further, a method for producing metal fine particles capable of stably dispersing metal fine particles in a polar solvent, a metal fine particle dispersion, and a sintering method. The challenge is to provide a body.
 本発明は、上記の課題を解決するために、以下のことを特徴としている。 The present invention is characterized by the following in order to solve the above problems.
 第1:下記式(I): # 1: Formula (I) below:
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、X1は(CH2)nCOOHを示し(n=0~3)、mは1~5の整数を示す。)で表されるジアゾニウム塩と、金化合物、銀化合物、または銅化合物とを、還元剤の存在下に極性溶媒中で反応させて、下記式(II): (Wherein X 1 represents (CH 2 ) n COOH (n = 0 to 3), m represents an integer of 1 to 5), a gold compound, a silver compound, or copper The compound is reacted in a polar solvent in the presence of a reducing agent to give the following formula (II):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、X2は(CH2)nCOOHまたはその塩、あるいは対応するカルボキシレートイオンを示し(n=0~3)、mは1~5の整数を示す。Mは金、銀、または銅を示す。)で表される共有結合および配位結合から選ばれるいずれかの相互作用を有する金属微粒子を得ることを特徴とする金属微粒子の製造方法。 (Wherein X 2 represents (CH 2 ) n COOH or a salt thereof, or a corresponding carboxylate ion (n = 0 to 3), m represents an integer of 1 to 5, M represents gold, silver, or A metal fine particle having any one interaction selected from a covalent bond and a coordinate bond represented by the following formula:
 第2:式(I)で表されるジアゾニウム塩と、金化合物とを、還元剤の存在下に極性溶媒中で反応させて、式(II)においてMが金である金微粒子を得ることを特徴とする上記第1の金属微粒子の製造方法。 Second: reacting a diazonium salt represented by formula (I) with a gold compound in a polar solvent in the presence of a reducing agent to obtain gold fine particles in which M is gold in formula (II) The manufacturing method of the said 1st metal microparticle characterized by the above-mentioned.
 第3:式(I)で表されるジアゾニウム塩と、銀化合物とを、還元剤の存在下に極性溶媒中で反応させて、式(II)においてMが銀である銀微粒子を得ることを特徴とする上記第1の金属微粒子の製造方法。 Third: reacting a diazonium salt represented by the formula (I) with a silver compound in a polar solvent in the presence of a reducing agent to obtain silver fine particles in which M is silver in the formula (II) The manufacturing method of the said 1st metal microparticle characterized by the above-mentioned.
 第4:式(I)で表されるジアゾニウム塩と、銅化合物とを、還元剤の存在下に極性溶媒中で反応させて、式(II)においてMが銅である銅微粒子を得ることを特徴とする上記第1の金属微粒子の製造方法。 Fourth: reacting a diazonium salt represented by formula (I) with a copper compound in a polar solvent in the presence of a reducing agent to obtain copper fine particles in which M is copper in formula (II) The manufacturing method of the said 1st metal microparticle characterized by the above-mentioned.
 第5:還元剤が水素化ホウ素塩系還元剤であることを特徴とする上記第1から第4のいずれかの金属微粒子の製造方法。 5: The method for producing metal fine particles according to any one of the first to fourth aspects, wherein the reducing agent is a borohydride-based reducing agent.
 第6:極性溶媒が水またはアルコールであることを特徴とする上記第1から第5のいずれかの金属微粒子の製造方法。 Sixth: The method for producing fine metal particles according to any one of the first to fifth, wherein the polar solvent is water or alcohol.
 第7:下記式(II): 7th: Formula (II) below:
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、X2は(CH2)nCOOHまたはその塩、あるいは対応するカルボキシレートイオンを示し(n=0~3)、mは1~5の整数を示す。Mは金、銀、または銅を示す。)で表される共有結合および配位結合から選ばれるいずれかの相互作用を有する金属微粒子が極性溶媒に分散されていることを特徴とする金属微粒子分散液。 (Wherein X 2 represents (CH 2 ) n COOH or a salt thereof, or a corresponding carboxylate ion (n = 0 to 3), m represents an integer of 1 to 5, M represents gold, silver, or A metal fine particle dispersion liquid in which metal fine particles having any interaction selected from a covalent bond and a coordinate bond represented by the formula (1) are dispersed in a polar solvent.
 第8:上記第7の金属微粒子分散液を基材に塗布し焼結してなることを特徴とする焼結体。 Eighth: A sintered body obtained by applying the seventh metal fine particle dispersion to a base material and sintering it.
 本発明の金属微粒子の製造方法によれば、硫黄、窒素を含有せず、さらに金属微粒子を極性溶媒に安定に分散可能なコスト、環境面に優れた金属微粒子を得ることができる。また、原料が全て水溶性であるため水やアルコール等の極性溶媒の1層で反応を行うことができるので、環境負荷や作業の煩雑さを低減することができる。 According to the method for producing metal fine particles of the present invention, it is possible to obtain metal fine particles which do not contain sulfur and nitrogen, and which can disperse the metal fine particles stably in a polar solvent and which are excellent in cost and environment. In addition, since all the raw materials are water-soluble, the reaction can be performed in one layer of a polar solvent such as water or alcohol, so that environmental burdens and work complexity can be reduced.
 本発明の金属微粒子分散液によれば、硫黄、窒素を含有せず、さらに金属微粒子を極性溶媒に安定に分散可能である。 According to the metal fine particle dispersion of the present invention, sulfur and nitrogen are not contained, and the metal fine particles can be stably dispersed in a polar solvent.
 本発明の焼結体によれば、上記の金属微粒子分散液を用いているので、焼結時にNOx、SOx等の酸性ガス、ハロゲン系ガスを発生せず、各種の用途に応用できる良好な焼結体を得ることができる。 According to the sintered body of the present invention, since the above-described metal fine particle dispersion is used, it does not generate acid gas such as NO x and SO x and halogen-based gas during sintering, and can be applied to various applications Can be obtained.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明に用いられる式(I)で表されるジアゾニウム塩は、例えば、テトラフルオロほう酸水溶液に、対応するアミノフェニルカルボン酸を添加、攪拌し、亜硝酸ナトリウム水溶液を滴下し熟成した後、ろ別、溶剤洗浄、再結晶等の精製を行うことにより得ることができる。 The diazonium salt represented by the formula (I) used in the present invention is prepared, for example, by adding and stirring the corresponding aminophenylcarboxylic acid to a tetrafluoroboric acid aqueous solution, dropping the sodium nitrite aqueous solution dropwise, and aging, followed by filtration. It can be obtained by purification such as solvent washing and recrystallization.
 本発明では、ジアゾニウム塩として、カルボキシル基を有する式(I)の官能基X1を導入したものを用いたことを特徴としているが、これは経済性、極性溶剤への溶解性、合成の簡便性、および安定性を考慮したものである。しかも、このような官能基X1を有する構造の式(I)で表されるジアゾニウム塩は、非常に安定であり、例えば、遮光、5℃以下、不活性ガス雰囲気下等で酸素、水を除外した環境にて保存した場合、1ヶ月以上の保存が可能である。さらに製造時の仕込み時等においては、空気雰囲気下での取り扱いも可能である。 In the present invention, the diazonium salt is characterized by using a carboxyl group-containing functional group X 1 of formula (I), which is economical, soluble in polar solvents, and easy to synthesize. And stability. Moreover, the diazonium salt represented by the formula (I) having a structure having such a functional group X 1 is very stable. For example, oxygen and water are shielded from light, 5 ° C. or less, in an inert gas atmosphere, or the like. When stored in an excluded environment, it can be stored for more than a month. Furthermore, it can be handled in an air atmosphere at the time of manufacturing.
 本発明において、式(I)で表されるジアゾニウム塩と反応させる金化合物としては、金塩、金錯体等を用いることができ、極性溶媒に溶解できるものであれば特に限定されない。例えば、テトラクロロ金(III)酸(H(AuCl4))、テトラクロロ金(III)酸ナトリウム(Na(AuCl4))、ジエチルアミン金(III)三塩化物((C2H5)2NH(AuCl3))、ジシアノ金(I)酸カリウム(KAu(CN)2)、シアン化金(I)(AuCN)等を用いることができる。中でも、テトラクロロ金(III)酸が好ましい。 In the present invention, the gold compound to be reacted with the diazonium salt represented by the formula (I) is not particularly limited as long as it can be a gold salt, a gold complex or the like and can be dissolved in a polar solvent. For example, tetrachlorogold (III) acid (H (AuCl 4 )), sodium tetrachlorogold (III) acid (Na (AuCl 4 )), diethylamine gold (III) trichloride ((C 2 H 5 ) 2 NH (AuCl 3 )), potassium dicyanogold (I) acid (KAu (CN) 2 ), gold cyanide (I) (AuCN), and the like can be used. Of these, tetrachloroauric (III) acid is preferred.
 本発明において、式(I)で表されるジアゾニウム塩と反応させる銀化合物としては、銀塩、銀錯体等を用いることができ、極性溶媒に溶解できるものであれば特に限定されない。例えば、硝酸銀、過塩素酸銀、硫酸銀、酢酸銀、酸化銀、チオシアン酸化銀、シアン化銀、シアン酸化銀、炭酸銀、亜硝酸銀、リン酸銀、乳酸銀、シュウ酸銀等を用いることができる。中でも、硝酸銀が好ましい。 In the present invention, the silver compound to be reacted with the diazonium salt represented by the formula (I) is not particularly limited as long as it can be a silver salt, a silver complex or the like and can be dissolved in a polar solvent. For example, use silver nitrate, silver perchlorate, silver sulfate, silver acetate, silver oxide, silver thiocyanate, silver cyanide, silver cyanide, silver carbonate, silver nitrite, silver phosphate, silver lactate, silver oxalate, etc. Can do. Of these, silver nitrate is preferable.
 本発明において、式(I)で表されるジアゾニウム塩と反応させる銅化合物としては、銅塩、銅錯体等を用いることができ、極性溶媒に溶解できるものであれば特に限定されない。例えば、硝酸銅(II)、塩化銅(II)、酢酸銅(II)、硫酸銅(II)、水酸化銅、ギ酸銅、シュウ酸銅等を用いることができる。中でも、硝酸銅(II)が好ましい。 In the present invention, the copper compound to be reacted with the diazonium salt represented by the formula (I) is not particularly limited as long as it can be a copper salt, a copper complex or the like and can be dissolved in a polar solvent. For example, copper nitrate (II), copper chloride (II), copper acetate (II), copper sulfate (II), copper hydroxide, copper formate, copper oxalate and the like can be used. Of these, copper (II) nitrate is preferred.
 本発明では、式(I)で表されるジアゾニウム塩と、金化合物、銀化合物、または銅化合物とを、還元剤の存在下に極性溶媒中で反応させて、式(II)で表される共有結合および配位結合から選ばれるいずれかの相互作用(式(II)中の点線で示される、(アルキル)カルボキシフェニル基と、Mで示される金、銀、または銅との相互作用)を有する金属微粒子を合成する。反応は、100℃未満、好ましくは30℃以下の温度で行うことができる。 In the present invention, the diazonium salt represented by the formula (I) is reacted with a gold compound, a silver compound, or a copper compound in a polar solvent in the presence of a reducing agent, and represented by the formula (II). Any interaction selected from a covalent bond and a coordination bond (an interaction between an (alkyl) carboxyphenyl group represented by a dotted line in formula (II) and gold, silver, or copper represented by M) The metal fine particles are synthesized. The reaction can be carried out at a temperature below 100 ° C, preferably below 30 ° C.
 より具体的には、例えば、式(I)で表されるジアゾニウム塩、および金化合物、銀化合物、または銅化合物を極性溶媒に溶解、攪拌する。次いで還元剤を滴下し、これにより金化合物、銀化合物、または銅化合物と式(I)で表されるジアゾニウム塩とを同時に還元し、熟成を行うことにより、式(II)で表される、フェニル基と金属とが直接に相互作用する金属微粒子が合成される。その後、必要に応じて水洗、溶剤洗浄、遠心分離、ろ過、電気透析等で精製を行い、窒素化合物、ハロゲン化合物等を除去し、式(II)で表される金属微粒子を得る。 More specifically, for example, a diazonium salt represented by the formula (I), a gold compound, a silver compound, or a copper compound is dissolved in a polar solvent and stirred. Subsequently, a reducing agent is dropped, thereby reducing the gold compound, the silver compound, or the copper compound and the diazonium salt represented by the formula (I) at the same time, aging, and represented by the formula (II). Metal fine particles in which the phenyl group and the metal directly interact are synthesized. Then, if necessary, purification is performed by washing with water, solvent washing, centrifugation, filtration, electrodialysis and the like to remove nitrogen compounds, halogen compounds, etc., and obtain metal fine particles represented by the formula (II).
 なお、式(II)においてX2は(CH2)nCOOHまたはその塩、あるいは対応するカルボキシレートイオンを示し、塩としてはナトリウム塩、カリウム塩等のアルカリ金属塩、アミン塩等が挙げられる。なお、金属微粒子は、X2として(CH2)nCOOHとその塩との両方が混在するものであってもよい。また、金属微粒子がX2としてカルボキシレートイオンを有する場合としては、金属微粒子が分散液の状態である場合が挙げられる。 In the formula (II), X 2 represents (CH 2 ) n COOH or a salt thereof, or a corresponding carboxylate ion, and examples of the salt include alkali metal salts such as sodium salt and potassium salt, amine salts and the like. The metal fine particles may be a mixture of both (CH 2 ) n COOH and a salt thereof as X 2 . The case where the metal fine particles have a carboxylate ion as X 2 includes the case where the metal fine particles are in a dispersion state.
 また、Mは金、銀、または銅を示す。このうちMが銅である場合、存在形態として銅(0価)および亜酸化銅の両者があるが、合成時には、脱気操作と合成雰囲気に留意し、できる限り酸素を除外するのが好ましい。 M represents gold, silver, or copper. Among these, when M is copper, there are both copper (zero-valent) and cuprous oxide as existing forms, but it is preferable to exclude oxygen as much as possible while paying attention to the deaeration operation and the synthesis atmosphere during synthesis.
 反応溶媒、分散溶媒として用いる極性溶媒としては、水、アルコール、THF(テトラヒドロフラン)等が挙げられ、これらを2種以上混合して用いることもできる。アルコールとしては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブタノール、tert-ブタノール等の炭素数1~4の直鎖または分岐の1価のアルコール、メタンジオール、エタンジオール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール等の炭素数1~4の直鎖または分岐の2価のアルコール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等のグリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル等のグリコールモノアルキルエーテル、あるいはテルピネオール等のモノテルペノール等が挙げられる。中でも反応溶媒として用いる極性溶媒としては、水、メタノールが好ましい。 Examples of the polar solvent used as the reaction solvent and the dispersion solvent include water, alcohol, THF (tetrahydrofuran) and the like, and two or more of these may be used in combination. Examples of the alcohol include linear or branched monovalent alcohols having 1 to 4 carbon atoms such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, and tert-butanol, Straight chain having 1 to 4 carbon atoms such as methanediol, ethanediol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,3-butanediol, 2,3-butanediol Or branched dihydric alcohol, glycols such as diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, ethylene glycol monomethyl ether, ethylene glycol monobutyl ale, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether Dipropylene glycol monomethyl ether, glycol monoalkyl ethers and dipropylene glycol monobutyl ether or Monoterupenoru such as terpineol, and the like. Of these, water and methanol are preferred as the polar solvent used as the reaction solvent.
 還元剤は、ジアゾニウム塩と、金化合物(金塩、金錯体)、銀化合物(銀塩、銀錯体)、または銅化合物(銅塩、銅錯体)とを同時に効率よく還元できるものを選択する必要がある。例えば、水素化ホウ素ナトリウム(NaBH4)、シアノ水素化ホウ素ナトリウム(NaBH3CN)、水素化トリエチルホウ素リチウム(LiBH(C2H5)3)、水素化ホウ素リチウム(LiBH4)、水素化ホウ素カリウム(KBH4)、水素化ホウ素テトラブチルアンモニウム((CH3(CH2)3)4NBH4)、水素化ホウ素テトラメチルアンモニウム((CH3)4NBH4)等の水素化ホウ素塩系還元剤、ジボラン(B2H6)、アンモニアボラン(NH3-BH3)、トリメチルアンモニアボラン((CH3)3N-BH3)等のボラン系還元剤を用いることができるが、中でも水素化ホウ素ナトリウムが好ましく用いられる。 It is necessary to select a reducing agent that can efficiently reduce a diazonium salt and a gold compound (gold salt, gold complex), a silver compound (silver salt, silver complex), or a copper compound (copper salt, copper complex) simultaneously. There is. For example, sodium borohydride (NaBH 4 ), sodium cyanoborohydride (NaBH 3 CN), lithium triethylborohydride (LiBH (C 2 H 5 ) 3 ), lithium borohydride (LiBH 4 ), borohydride Boron hydride salt reduction such as potassium (KBH 4 ), borohydride tetrabutylammonium borohydride ((CH 3 (CH 2 ) 3 ) 4 NBH 4 ), borohydride tetramethyl ammonium ((CH 3 ) 4 NBH 4 ) Borane reducing agents such as diborane (B 2 H 6 ), ammonia borane (NH 3 -BH 3 ), trimethylammonia borane ((CH 3 ) 3 N-BH 3 ) can be used. Sodium boron is preferably used.
 本発明によれば、金微粒子、銀微粒子、銅微粒子の製造時の反応溶媒、また分散溶媒として極性溶媒を用いることができる。特に反応溶媒、分散溶媒として水を用いることができることから環境、コスト面において優れている。また、金微粒子、銀微粒子、銅微粒子は、硫黄、窒素を含有せず、焼結時のSOx、NOx発生の抑制ができ、かつ、硫化銀等の硫化物の生成が抑えられる。さらに、金微粒子、銀微粒子、銅微粒子の分散状態を長期間安定に維持することができる。 According to the present invention, a polar solvent can be used as a reaction solvent and a dispersion solvent when producing gold fine particles, silver fine particles, and copper fine particles. In particular, since water can be used as a reaction solvent and a dispersion solvent, it is excellent in terms of environment and cost. In addition, gold fine particles, silver fine particles, and copper fine particles do not contain sulfur and nitrogen, can suppress the generation of SO x and NO x during sintering, and can suppress the formation of sulfides such as silver sulfide. Furthermore, the dispersion state of gold fine particles, silver fine particles, and copper fine particles can be stably maintained for a long time.
 本発明の金属微粒子分散液は、例えば、導電性薄膜、導電性細線、電極、プリント配線等への導電性材料、電顕用染色材料、生体センシング材料等の用途に好適に用いることができる。特に、この金属微粒子分散液を金属基板等の基材に塗布して焼結し、焼結体として導電性材料に関わる各種の分野において用いることができる。 The metal fine particle dispersion of the present invention can be suitably used for applications such as conductive thin films, conductive fine wires, electrodes, conductive materials for printed wiring, dyeing materials for electron microscopes, biosensing materials, and the like. In particular, the metal fine particle dispersion can be applied to a base material such as a metal substrate and sintered, and used as a sintered body in various fields related to conductive materials.
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。
<参考例1>
 下記式で表される化合物1を合成した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all.
<Reference Example 1>
Compound 1 represented by the following formula was synthesized.
Figure JPOXMLDOC01-appb-C000007
  
Figure JPOXMLDOC01-appb-C000007
  
 42%テトラフルオロほう酸水溶液(152.45g、0.73mol)に、4-アミノ安息香酸(50.02g、0.36mol)を添加、攪拌した。40%亜硝酸ナトリウム水溶液(62.89g、0.36mol)を10~15℃下、30分で滴下し、10分間熟成した後、ろ別、再結晶等の精製を行うことにより、白色粉末を得た。
赤外線吸収スペクトル2291cm-1:N≡N+伸縮振動、1728cm-1:C=O伸縮振動、808 cm-1:C-H面外変角振動
<参考例2>
 下記式で表される化合物2を合成した。
4-Aminobenzoic acid (50.02 g, 0.36 mol) was added to a 42% tetrafluoroboric acid aqueous solution (152.45 g, 0.73 mol) and stirred. A 40% aqueous sodium nitrite solution (62.89 g, 0.36 mol) was added dropwise at 10-15 ° C. over 30 minutes, and after aging for 10 minutes, purification by filtration, recrystallization, etc. gave a white powder. .
Infrared absorption spectrum 2291cm -1: N≡N + stretching vibration, 1728cm -1: C = O stretching vibration, 808 cm -1: C-H out-of-plane deformation vibration <Reference Example 2>
Compound 2 represented by the following formula was synthesized.
Figure JPOXMLDOC01-appb-C000008
  
Figure JPOXMLDOC01-appb-C000008
  
 42%テトラフルオロほう酸水溶液(13.83g、0.065mol)に、4-アミノフェニル酢酸(4.97g、0.033mol)を添加、攪拌した。40%亜硝酸ナトリウム水溶液(5.70g、0.03mol)を10~15℃下、30分で滴下し、10分間熟成した後、ろ別、溶剤洗浄、再結晶等の精製を行うことにより、薄紫色粉末を得た。
赤外線吸収スペクトル 2278cm-1:N≡N+伸縮振動、1720cm-1:C=O伸縮振動、826cm-1:C-H面外変角振動
<実施例1>
 テトラクロロ金(III)酸(0.3395g、0.8243mmol)をイオン交換水(33.8g)に溶解させ、N2を20分間フローし、脱気した。N2雰囲気下、化合物1(0.1945g、0.8244mmol)を加え、5分間攪拌させた後、イオン交換水27.3gで溶解させた水素化ホウ素ナトリウム(0.0156g、0.4124mmol)を室温下、3時間で滴下した。滴下後、1時間熟成し、黒紫色分散液が得られた。得られた分散液を遠心分離、ろ過、水洗、溶剤洗浄等で精製し、金含有量505ppmの黒紫色水分散液が得られた。
紫外-可視吸収スペクトル 540nm
赤外線吸収スペクトル 1585,1383cm-1:C=O伸縮振動、762 cm-1:C-H面外変角振動
<実施例2>
 テトラクロロ金(III)酸(0.1030g、0.2501mmol)をイオン交換水(25g)に溶解させ、N2を15分間フローし、脱気した。N2雰囲気下、化合物2(0.0625g、0.2500mmol)を加え、5分間攪拌させた後、イオン交換水7.5gで溶解させた水素化ホウ素ナトリウム(0.0095g、0.2511mmol)を室温下、1時間で滴下した。滴下後、2時間熟成し、黒紫色分散液が得られた。得られた分散液を遠心分離、ろ過、水洗等で精製し、金含有量915ppmの黒紫色水分散液が得られた。
紫外-可視吸収スペクトル 573nm
赤外線吸収スペクトル 1695cm-1:C=O伸縮振動、839 cm-1:C-H面外変角振動
<実施例3>
 硝酸銀(0.2592g、1.526mmol)をイオン交換水(150g)に溶解させ、N2を20分間フローし、脱気した。N2雰囲気下、化合物1(0.360g、1.525mmol)を加え、5分間攪拌させた後、イオン交換水45gで溶解させた水素化ホウ素ナトリウム(0.0577g、1.525mmol)を室温下、3時間で滴下した。滴下後、2時間熟成し、黒黄色分散液が得られた。得られた分散液を遠心分離、ろ過、水洗、溶剤洗浄等で精製し、銀含有量707ppmの黒黄色水分散液が得られた。
紫外-可視吸収スペクトル 420nm
赤外線吸収スペクトル 1693cm-1:C=O伸縮振動、797 cm-1:C-H面外変角振動
<実施例4>
 硝酸銀(0.0425g、0.2502mmol)をイオン交換水(25g)に溶解させ、N2を15分間フローし、脱気した。N2雰囲気下、化合物2(0.0625g、0.2500mmol)を加え、1分間攪拌させた後、イオン交換水7.5gで溶解させた水素化ホウ素ナトリウム(0.0095g、0.2511mmol)を室温下、1時間で滴下した。滴下後、2時間熟成し、黒紫色分散液が得られた。得られた分散液を遠心分離、水洗等で精製し、銀含有量633ppmの黒黄色水分散液が得られた。
紫外-可視吸収スペクトル 429nm
赤外線吸収スペクトル 1688cm-1:C=O伸縮振動、833cm-1:C-H面外変角振動
<実施例5>
 硝酸銅(II)(0.2400g、0.9934mmol)をイオン交換水(80.0g)に溶解させ、N2を20分間フローし、脱気した。N2雰囲気下、化合物1(0.2344g、0.9935mmol)を加え、5分間攪拌させた後、イオン交換水20gで溶解させた水素化ホウ素ナトリウム(0.0376g、0.9939mmol)を室温下、2時間で滴下した。滴下後、2時間熟成し、黒黄色分散液が得られた。得られた分散液を遠心分離、ろ過、水洗、溶剤洗浄等で精製し、銅含有量1050ppmの茶色水分散液が得られた。
紫外-可視吸収スペクトル 290nm
赤外線吸収スペクトル 1703,1587,1387cm-1:C=O伸縮振動、785 cm-1:C-H面外変角振動
 なお、実施例1~5の金属微粒子について赤外線吸収スペクトルを測定した結果、ジアゾニウム基由来の吸収ピークは消失していた。
4-Aminophenylacetic acid (4.97 g, 0.033 mol) was added to a 42% tetrafluoroboric acid aqueous solution (13.83 g, 0.065 mol) and stirred. A 40% sodium nitrite aqueous solution (5.70 g, 0.03 mol) was added dropwise at 10-15 ° C. in 30 minutes, aged for 10 minutes, and then purified by filtration, solvent washing, recrystallization, etc. A powder was obtained.
Infrared absorption spectrum 2278 cm -1 : N≡N + stretching vibration, 1720 cm -1 : C = O stretching vibration, 826 cm -1 : C-H out-of-plane variable vibration <Example 1>
Tetrachloroauric (III) acid (0.3395 g, 0.8243 mmol) was dissolved in ion-exchanged water (33.8 g), and N 2 was allowed to flow for 20 minutes for degassing. Compound 1 (0.1945 g, 0.8244 mmol) was added under N 2 atmosphere, and the mixture was stirred for 5 minutes. Sodium borohydride (0.0156 g, 0.4124 mmol) dissolved in 27.3 g of ion-exchanged water was then added at room temperature for 3 hours. It was dripped at. After dropping, the mixture was aged for 1 hour to obtain a black purple dispersion. The obtained dispersion was purified by centrifugation, filtration, water washing, solvent washing, etc., and a black purple aqueous dispersion having a gold content of 505 ppm was obtained.
UV-visible absorption spectrum 540nm
Infrared absorption spectrum 1585,1383cm -1: C = O stretching vibration, 762 cm -1: C-H out-of-plane deformation vibration <Example 2>
Tetrachloroauric (III) acid (0.1030 g, 0.2501 mmol) was dissolved in ion-exchanged water (25 g), and N 2 was flowed for 15 minutes to deaerate. Under N 2 atmosphere, compound 2 (0.0625 g, 0.2500 mmol) was added and stirred for 5 minutes. Sodium borohydride (0.0095 g, 0.2511 mmol) dissolved in 7.5 g of ion-exchanged water was then added at room temperature for 1 hour. It was dripped at. After dropping, the mixture was aged for 2 hours to obtain a black purple dispersion. The obtained dispersion was purified by centrifugation, filtration, washing with water, etc. to obtain a black purple aqueous dispersion having a gold content of 915 ppm.
UV-Vis absorption spectrum 573nm
Infrared absorption spectrum 1695 cm −1 : C = O stretching vibration, 839 cm −1 : C−H out-of-plane variable vibration <Example 3>
Silver nitrate (0.2592 g, 1.526 mmol) was dissolved in ion-exchanged water (150 g), and N 2 was allowed to flow for 20 minutes for degassing. Compound 1 (0.360 g, 1.525 mmol) was added under N 2 atmosphere, and the mixture was stirred for 5 minutes. Sodium borohydride (0.0577 g, 1.525 mmol) dissolved in 45 g of ion-exchanged water was then added at room temperature for 3 hours. It was dripped. After the dropwise addition, the mixture was aged for 2 hours to obtain a black-yellow dispersion. The obtained dispersion was purified by centrifugation, filtration, water washing, solvent washing, etc., and a black-yellow water dispersion having a silver content of 707 ppm was obtained.
UV-visible absorption spectrum 420nm
Infrared absorption spectrum 1693cm -1: C = O stretching vibration, 797 cm -1: C-H out-of-plane deformation vibration <Example 4>
Silver nitrate (0.0425 g, 0.2502 mmol) was dissolved in ion-exchanged water (25 g), and N 2 was flowed for 15 minutes to deaerate. Compound 2 (0.0625 g, 0.2500 mmol) was added under N 2 atmosphere, and the mixture was stirred for 1 minute, and then sodium borohydride (0.0095 g, 0.2511 mmol) dissolved in 7.5 g of ion-exchanged water was added at room temperature for 1 hour. It was dripped at. After dropping, the mixture was aged for 2 hours to obtain a black purple dispersion. The obtained dispersion was purified by centrifugation, washing with water, etc. to obtain a black-yellow aqueous dispersion having a silver content of 633 ppm.
UV-visible absorption spectrum 429nm
Infrared absorption spectrum 1688 cm −1 : C═O stretching vibration, 833 cm −1 : C—H out-of-plane variable vibration <Example 5>
Copper (II) nitrate (0.2400 g, 0.9934 mmol) was dissolved in ion-exchanged water (80.0 g), and N 2 was allowed to flow for 20 minutes for deaeration. Compound 1 (0.2344 g, 0.9935 mmol) was added under an N 2 atmosphere, and the mixture was stirred for 5 minutes. Sodium borohydride (0.0376 g, 0.9939 mmol) dissolved in 20 g of ion-exchanged water was then added at room temperature for 2 hours. It was dripped. After the dropwise addition, the mixture was aged for 2 hours to obtain a black-yellow dispersion. The obtained dispersion was purified by centrifugation, filtration, water washing, solvent washing, etc. to obtain a brown water dispersion having a copper content of 1050 ppm.
UV-visible absorption spectrum 290nm
Infrared absorption spectrum 1703,1587,1387cm -1: C = O stretching vibration, 785 cm -1: C-H out-of-plane deformation vibration As a result of measuring the infrared absorption spectrum of the metal particles of Examples 1-5, the diazonium The absorption peak derived from the group disappeared.
 また、実施例1~5の金属微粒子は、1ヶ月以上、室温、自然光下にて安定に分散状態を維持した。
<実施例6>
 実施例1,3,5で得られた分散液をアルミナ基板に塗布し、空気雰囲気下、200℃で1時間焼成した結果、いずれも金属膜が得られた。例えば、実施例3で得られた分散液を7%に濃縮し、アルミナ基板に塗布し、空気雰囲気下、150℃または200℃で1時間焼結したところ、いずれも金属光沢のある膜が得られ、この金属膜を抵抗率計(三菱化学製、ロレスターGP MCP-T610型)を用いて測定し、導電性を確認した。
In addition, the metal fine particles of Examples 1 to 5 stably maintained a dispersed state at room temperature and natural light for 1 month or longer.
<Example 6>
The dispersions obtained in Examples 1, 3, and 5 were applied to an alumina substrate and baked at 200 ° C. for 1 hour in an air atmosphere. As a result, metal films were obtained. For example, the dispersion obtained in Example 3 was concentrated to 7%, applied to an alumina substrate, and sintered at 150 ° C. or 200 ° C. for 1 hour in an air atmosphere. The metal film was measured using a resistivity meter (Mitsubishi Chemical, Lorester GP MCP-T610 type) to confirm conductivity.

Claims (8)

  1.  下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、X1は(CH2)nCOOHを示し(n=0~3)、mは1~5の整数を示す。)で表されるジアゾニウム塩と、金化合物、銀化合物、または銅化合物とを、還元剤の存在下に極性溶媒中で反応させて、下記式(II):
    Figure JPOXMLDOC01-appb-C000002
    (式中、X2は(CH2)nCOOHまたはその塩、あるいは対応するカルボキシレートイオンを示し(n=0~3)、mは1~5の整数を示す。Mは金、銀、または銅を示す。)で表される共有結合および配位結合から選ばれるいずれかの相互作用を有する金属微粒子を得ることを特徴とする金属微粒子の製造方法。
    Formula (I) below
    Figure JPOXMLDOC01-appb-C000001
    (Wherein X 1 represents (CH 2 ) n COOH (n = 0 to 3), m represents an integer of 1 to 5), a gold compound, a silver compound, or copper The compound is reacted in a polar solvent in the presence of a reducing agent to give the following formula (II):
    Figure JPOXMLDOC01-appb-C000002
    (Wherein X 2 represents (CH 2 ) n COOH or a salt thereof, or a corresponding carboxylate ion (n = 0 to 3), m represents an integer of 1 to 5, M represents gold, silver, or A metal fine particle having any one interaction selected from a covalent bond and a coordinate bond represented by the following formula:
  2.  式(I)で表されるジアゾニウム塩と、金化合物とを、還元剤の存在下に極性溶媒中で反応させて、式(II)においてMが金である金微粒子を得ることを特徴とする請求項1に記載の金属微粒子の製造方法。 A diazonium salt represented by the formula (I) and a gold compound are reacted in a polar solvent in the presence of a reducing agent to obtain gold fine particles in which M is gold in the formula (II). The method for producing fine metal particles according to claim 1.
  3.  式(I)で表されるジアゾニウム塩と、銀化合物とを、還元剤の存在下に極性溶媒中で反応させて、式(II)においてMが銀である銀微粒子を得ることを特徴とする請求項1に記載の金属微粒子の製造方法。 A silver fine particle in which M is silver in formula (II) is obtained by reacting a diazonium salt represented by formula (I) with a silver compound in a polar solvent in the presence of a reducing agent. The method for producing fine metal particles according to claim 1.
  4.  式(I)で表されるジアゾニウム塩と、銅化合物とを、還元剤の存在下に極性溶媒中で反応させて、式(II)においてMが銅である銅微粒子を得ることを特徴とする請求項1に記載の金属微粒子の製造方法。 A diazonium salt represented by the formula (I) and a copper compound are reacted in a polar solvent in the presence of a reducing agent to obtain copper fine particles in which M is copper in the formula (II). The method for producing fine metal particles according to claim 1.
  5.  還元剤が水素化ホウ素塩系還元剤であることを特徴とする請求項1から4のいずれかに記載の金属微粒子の製造方法。 The method for producing metal fine particles according to any one of claims 1 to 4, wherein the reducing agent is a borohydride-based reducing agent.
  6.  極性溶媒が水またはアルコールであることを特徴とする請求項1から5のいずれかに記載の金属微粒子の製造方法。 The method for producing fine metal particles according to claim 1, wherein the polar solvent is water or alcohol.
  7.  下記式(II):
    Figure JPOXMLDOC01-appb-C000003
    (式中、X2は(CH2)nCOOHまたはその塩、あるいは対応するカルボキシレートイオンを示し(n=0~3)、mは1~5の整数を示す。Mは金、銀、または銅を示す。)で表される共有結合および配位結合から選ばれるいずれかの相互作用を有する金属微粒子が極性溶媒に分散されていることを特徴とする金属微粒子分散液。
    Formula (II) below:
    Figure JPOXMLDOC01-appb-C000003
    (Wherein X 2 represents (CH 2 ) n COOH or a salt thereof, or a corresponding carboxylate ion (n = 0 to 3), m represents an integer of 1 to 5, M represents gold, silver, or A metal fine particle dispersion liquid in which metal fine particles having any interaction selected from a covalent bond and a coordinate bond represented by the formula (1) are dispersed in a polar solvent.
  8.  請求項7に記載の金属微粒子分散液を基材に塗布し焼結してなることを特徴とする焼結体。 A sintered body obtained by applying the metal fine particle dispersion according to claim 7 to a substrate and sintering the dispersion.
PCT/JP2010/053001 2009-02-25 2010-02-25 Method for producing fine metal particles, fine metal particle dispersion liquid, and sintered body WO2010098402A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011501648A JP5439468B2 (en) 2009-02-25 2010-02-25 Method for producing metal fine particles, metal fine particle dispersion and method for producing sintered body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009042863 2009-02-25
JP2009-042863 2009-02-25

Publications (1)

Publication Number Publication Date
WO2010098402A1 true WO2010098402A1 (en) 2010-09-02

Family

ID=42665606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053001 WO2010098402A1 (en) 2009-02-25 2010-02-25 Method for producing fine metal particles, fine metal particle dispersion liquid, and sintered body

Country Status (2)

Country Link
JP (1) JP5439468B2 (en)
WO (1) WO2010098402A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012035198A (en) * 2010-08-06 2012-02-23 Miyoshi Oil & Fat Co Ltd Novel catalyst by silver particulate
JP2012117173A (en) * 2010-12-01 2012-06-21 Miyoshi Oil & Fat Co Ltd Metal particulate carrier material
JP2012140419A (en) * 2010-12-14 2012-07-26 Miyoshi Oil & Fat Co Ltd Metal particulate carrier, method for production thereof, and catalyst
JP2013087341A (en) * 2011-10-19 2013-05-13 Toyota Motor Corp Method for producing silver-copper composite nanoparticles
CN103276434A (en) * 2013-05-07 2013-09-04 华中师范大学 Method for quickly modifying gold nanoparticles on electrode surface in one step
CN103586456B (en) * 2013-11-07 2016-01-20 中科院广州化学有限公司 A kind of High-dispersity silver powder and preparation method thereof and application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263222A (en) * 2003-02-28 2004-09-24 Tanaka Kikinzoku Kogyo Kk Mono-component system or multicomponent system metal colloid, and method for manufacturing mono-component system or multicomponent system metal colloid
JP2005536634A (en) * 2001-06-29 2005-12-02 ナノスピン ソリューションズ Metal nanocrystals and their synthesis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3945460B2 (en) * 2003-08-01 2007-07-18 松下電器産業株式会社 Induction heating cooker
JP2007302915A (en) * 2006-05-08 2007-11-22 Katsuro Sato Metal complex particulate and method for producing the same
JP4769680B2 (en) * 2006-09-29 2011-09-07 Azエレクトロニックマテリアルズ株式会社 Pattern forming composition comprising metal fine particle dispersion and pattern forming method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536634A (en) * 2001-06-29 2005-12-02 ナノスピン ソリューションズ Metal nanocrystals and their synthesis
JP2004263222A (en) * 2003-02-28 2004-09-24 Tanaka Kikinzoku Kogyo Kk Mono-component system or multicomponent system metal colloid, and method for manufacturing mono-component system or multicomponent system metal colloid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012035198A (en) * 2010-08-06 2012-02-23 Miyoshi Oil & Fat Co Ltd Novel catalyst by silver particulate
JP2012117173A (en) * 2010-12-01 2012-06-21 Miyoshi Oil & Fat Co Ltd Metal particulate carrier material
JP2012140419A (en) * 2010-12-14 2012-07-26 Miyoshi Oil & Fat Co Ltd Metal particulate carrier, method for production thereof, and catalyst
JP2013087341A (en) * 2011-10-19 2013-05-13 Toyota Motor Corp Method for producing silver-copper composite nanoparticles
CN103276434A (en) * 2013-05-07 2013-09-04 华中师范大学 Method for quickly modifying gold nanoparticles on electrode surface in one step
CN103276434B (en) * 2013-05-07 2016-04-27 华中师范大学 The method of electrode surface one step Rapid Modification gold nano grain
CN103586456B (en) * 2013-11-07 2016-01-20 中科院广州化学有限公司 A kind of High-dispersity silver powder and preparation method thereof and application

Also Published As

Publication number Publication date
JP5439468B2 (en) 2014-03-12
JPWO2010098402A1 (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5439468B2 (en) Method for producing metal fine particles, metal fine particle dispersion and method for producing sintered body
JP6220920B2 (en) Silver fine particle dispersion, silver fine particle and method for producing the same
EP3159078B1 (en) Method of preparing a silver-coated copper nanowire
EP2671655B1 (en) Method for manufacturing coated metal fine particles
KR100727451B1 (en) Metal-based inks
JP2022116130A (en) Method for manufacturing silver-coated copper nanowire having core-shell structure by using chemical reduction method
US20130008690A1 (en) Compositions and methods for growing copper nanowires
JP4759271B2 (en) Composite particle dispersion and method for producing composite particle dispersion
US20130192423A1 (en) Method of producing silver nanowires
US8734686B2 (en) Metal pattern composition and method of forming metal pattern using the same
US9683123B2 (en) Silver ink
TWI501260B (en) Conductive paste and substrate with conductive film
CN101065518A (en) Gold plating liquid and gold plating method
US10923249B2 (en) Electroless plating of silver onto graphite
TWI575108B (en) Method for preparing nanowire having core-shell structure
JP5438994B2 (en) Method for producing metal fine particles, metal fine particle dispersion and method for producing sintered body
TWI680470B (en) Silver-coated copper powder, method for producing same, electrically conductive paste using the silver-coated copper powder, and method for producing electrode for solar cell using the electrically conductive paste
JP2017183247A (en) Conductive metal powder paste
JPH10195505A (en) Metallic superfine particle and production thereof
JP2016050360A (en) Silver-coated copper powder and production method for the same
JP2010077520A (en) Method for producing fine copper particle, and fine copper particle
JP5547428B2 (en) Reaction method of organic compounds using metal fine particles as catalyst
KR20160099513A (en) Method of Preapring Silver Coated Copper Nanowire
CN103302301A (en) Novel method for preparing C/Ag composite nanomaterial with controllable Ag coating layer thickness
KR100874904B1 (en) Nano silver suspension and manufacturing method of ink for electronic circuit printing using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746281

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011501648

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10746281

Country of ref document: EP

Kind code of ref document: A1