JP2007302915A - Metal complex particulate and method for producing the same - Google Patents

Metal complex particulate and method for producing the same Download PDF

Info

Publication number
JP2007302915A
JP2007302915A JP2006129673A JP2006129673A JP2007302915A JP 2007302915 A JP2007302915 A JP 2007302915A JP 2006129673 A JP2006129673 A JP 2006129673A JP 2006129673 A JP2006129673 A JP 2006129673A JP 2007302915 A JP2007302915 A JP 2007302915A
Authority
JP
Japan
Prior art keywords
metal complex
fine particles
metal
complex fine
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006129673A
Other languages
Japanese (ja)
Inventor
Katsuro Sato
勝朗 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006129673A priority Critical patent/JP2007302915A/en
Publication of JP2007302915A publication Critical patent/JP2007302915A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a particulate having a medicinal function more excellent than that of a colloid made of a noble metal simple substance. <P>SOLUTION: Each metal complex particulate has a particle diameter of 0.7 to 10 nm, and is substantially made of a metal complex, and, as the whole metal complex particulate, the electric charge is substantially controlled to zero. As the metal complex, a noble metal complex is preferably used. The metal complex in this invention is suitably used for medical use. The metal complex particulate can be produced by preparing an aqueous solution using a metal salt, ligands coordinated at metal ions comprised in the metal salt, a pH regulator and water, and stirring the aqueous solution while being held to a temperature of >0 to 10°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属錯体微粒子及びその製造方法に関する。   The present invention relates to metal complex fine particles and a method for producing the same.

白金単体コロイドには優れた抗酸化作用があり、白金単体コロイドを用いた化粧品、飲料水、食品、医薬品、医薬部外品等が提案されてきている(例えば、特許文献1〜3及び非特許文献1)。また、白金単体コロイドの有する電気二重層効果に着目した化粧品も提案されている(例えば、特許文献4)。さらに、白金族金属及び金を含む二元金属クラスターからなり、分散性に優れたコロイドも提案されている(例えば、特許文献5)。   Platinum simple colloid has an excellent antioxidant effect, and cosmetics, drinking water, foods, pharmaceuticals, quasi drugs and the like using the platinum simple colloid have been proposed (for example, Patent Documents 1 to 3 and non-patents). Reference 1). In addition, cosmetics that focus on the electric double layer effect of a simple platinum colloid have been proposed (for example, Patent Document 4). Furthermore, a colloid made of a binary metal cluster containing a platinum group metal and gold and having excellent dispersibility has been proposed (for example, Patent Document 5).

また、白金コロイド等の貴金属コロイドの製造法としては、例えば金属塩還元法をあげることができる(例えば、特許文献4、6〜11)。具体的には、例えば、容器に精製水を入れ、所定の温度まで加熱した後、界面活性剤、還元剤を添加する。そして、攪拌しながら温度を上げ、所定の温度になった時点で貴金属イオン溶液とpH調整剤を添加し、還元反応を生じさせ、貴金属コロイド溶液を得るという方法である。   Moreover, as a manufacturing method of noble metal colloids, such as a platinum colloid, the metal salt reduction method can be mention | raise | lifted, for example (for example, patent documents 4, 6-11). Specifically, for example, after adding purified water to a container and heating to a predetermined temperature, a surfactant and a reducing agent are added. Then, the temperature is increased while stirring, and when the temperature reaches a predetermined temperature, a noble metal ion solution and a pH adjuster are added to cause a reduction reaction to obtain a noble metal colloid solution.

一方、白金単体コロイドよりも医薬学的な機能に優れたコロイドも求められてきているが、現在のところ具体的な提案はなされていない。   On the other hand, colloids having better pharmacological functions than single platinum colloids have been sought, but no specific proposal has been made at present.

特開2005−139102号公報JP 2005-139102 A 特開2005−139157号公報JP 2005-139157 A 特開2005−245258号公報JP 2005-245258 A 特開2001−122723号公報JP 2001-122723 A 特開2005−179500号公報JP 2005-179500 A 特公昭57−43125号公報Japanese Patent Publication No.57-43125 特開昭59−120249号公報JP 59-120249 A 特開平9−225317号公報JP 9-225317 A 特開平10−68008号公報JP-A-10-68008 特開平10−176207号公報JP-A-10-176207 特開2001−79382号公報JP 2001-79382 A 日経ビジネス2005年12月12日号、24頁Nikkei Business December 12, 2005, page 24

そこで、本発明は、貴金属単体からなるコロイドよりも医薬学的な機能に優れる微粒子を提供することを目的とする。   Then, an object of this invention is to provide the microparticles | fine-particles which are excellent in a pharmaceutical function rather than the colloid which consists of a noble metal single-piece | unit.

なお、コロイドの大きさ(直径)は、一般的に1〜100nmとされているが、本発明においては、その大きさの範囲にこだわらず、貴金属単体からなるコロイドよりも医薬学的な機能に優れるという機能を満たすものを提供するという観点から、コロイドではなく、微粒子という表現を用いる。   The size (diameter) of the colloid is generally set to 1 to 100 nm. However, in the present invention, the pharmaceutical function is more effective than the colloid made of a single noble metal, regardless of the size range. From the viewpoint of providing a product that satisfies the excellent function, the expression of fine particles is used instead of colloid.

本発明者は、上記課題を解決するため、鋭意研究開発を進めた。その結果、貴金属単体からなるコロイドではなく、貴金属イオンに配位子が配位結合して得られる貴金属錯体からなる微粒子とし、かつ、該微粒子の粒径を0.7〜10μmとすることで、医薬学的な機能に優れる貴金属錯体微粒子が得られることを見出した。   In order to solve the above-mentioned problems, the present inventor has advanced earnestly research and development. As a result, it is not a colloid consisting of a single noble metal, but a fine particle consisting of a noble metal complex obtained by coordination bonding of a ligand to a noble metal ion, and the particle diameter of the fine particle is 0.7 to 10 μm. It was found that noble metal complex fine particles having excellent pharmacological functions can be obtained.

また、該貴金属錯体微粒子は、攪拌機能、冷却機能を有する容器に、貴金属塩の水溶液、及び配位子となるイオンや分子を含む水溶液を投入した後、pH調整剤を加えて水溶液の液性を調整し、かつ、該水溶液を所定の低温に保持しつつ攪拌することで合成できることを見出した。   In addition, the noble metal complex fine particles are prepared by adding a noble metal salt aqueous solution and an aqueous solution containing ions and molecules as ligands to a container having a stirring function and a cooling function, and then adding a pH adjuster to the liquidity of the aqueous solution. It was found that the composition can be synthesized by stirring the aqueous solution while maintaining the aqueous solution at a predetermined low temperature.

本発明はかかる知見に基づき完成されたものである。即ち、上記課題は、以下の実施例により達成される。   The present invention has been completed based on such findings. That is, the said subject is achieved by the following examples.

(1)粒径が0.7〜10nmであり、かつ、実質的に金属錯体からなることを特徴とする金属錯体微粒子。   (1) Metal complex fine particles having a particle size of 0.7 to 10 nm and substantially consisting of a metal complex.

ここで、粒径とは、粒子の最大の径のことであり、透過型電子顕微鏡((株)日立製作所製、9000NAR型)で測定する。例えば、粒子の形状が楕円形の場合、長径が粒径となる。   Here, the particle diameter is the maximum diameter of the particles, and is measured with a transmission electron microscope (manufactured by Hitachi, Ltd., 9000NAR type). For example, when the particle shape is an ellipse, the major axis is the particle size.

また、金属錯体微粒子は、1次粒子の状態にあるものだけでなく、1次粒子が集合して2次粒子の状態になったものも含み、2次粒子の状態になっている場合は、該2次粒子を構成する個々の1次粒子のことを指すものとする。   In addition, the metal complex fine particles include not only those in the state of primary particles but also those in which the primary particles are aggregated to be in the state of secondary particles. The individual primary particles constituting the secondary particles are meant to be pointed out.

(2)全体として無電荷であることを特徴とする(1)に記載の金属錯体微粒子。   (2) The metal complex fine particles as described in (1), which are uncharged as a whole.

ここで、全体として無電荷であるとは、金属錯体微粒子全体としては、実質的に電荷が0であることをいう。   Here, “uncharged as a whole” means that the entire metal complex fine particles have substantially no electric charge.

(3)前記金属錯体が、貴金属錯体であることを特徴とする(1)又は(2)に記載の金属錯体微粒子。   (3) The metal complex fine particles according to (1) or (2), wherein the metal complex is a noble metal complex.

(4)医療用途に用いることを特徴とする(1)乃至(3)のいずれかに記載の金属錯体微粒子。   (4) The metal complex fine particles according to any one of (1) to (3), which are used for medical purposes.

(5)金属塩と、前記金属塩に含まれる金属イオンに配位する配位子と、pH調整剤と、水とを用いて、水溶液を調製し、この水溶液を0℃を超えて10℃以下の温度に保持しつつ攪拌することを特徴とする金属錯体微粒子の製造方法。   (5) An aqueous solution is prepared using a metal salt, a ligand coordinated to a metal ion contained in the metal salt, a pH adjuster, and water. A method for producing metal complex fine particles, which is stirred while being maintained at the following temperature.

(6)金属塩と、前記金属塩に含まれる金属イオンに配位する配位子と、pH調整剤と、水とを用いて、水溶液を調製し、この水溶液を0℃を超えて10℃以下の温度に保持しつつ攪拌して金属錯体微粒子を合成する工程と、合成した前記金属錯体微粒子を精製する工程とを有することを特徴とする金属錯体微粒子の製造方法。   (6) An aqueous solution is prepared using a metal salt, a ligand coordinated to a metal ion contained in the metal salt, a pH adjuster, and water. A method for producing metal complex fine particles, comprising: a step of synthesizing metal complex fine particles by stirring while maintaining the following temperature; and a step of purifying the synthesized metal complex fine particles.

(7)前記温度を、0.5〜2℃に保持することを特徴とする(5)又は(6)に記載の金属錯体微粒子の製造方法。   (7) The method for producing metal complex fine particles according to (5) or (6), wherein the temperature is maintained at 0.5 to 2 ° C.

(8)前記金属塩として、貴金属塩を用いることを特徴とする(5)乃至(7)のいずれかに記載の金属錯体微粒子の製造方法。   (8) The method for producing fine metal complex particles according to any one of (5) to (7), wherein a noble metal salt is used as the metal salt.

(9)(5)乃至(8)のいずれかに記載の製造方法を用いて得ることができ、かつ、粒径が0.7〜10nmである金属錯体微粒子。   (9) Metal complex fine particles which can be obtained using the production method according to any one of (5) to (8) and have a particle size of 0.7 to 10 nm.

本発明に係る金属錯体微粒子は、粒径が0.7〜10nmと小さい。また、金属イオンと配位子が配位結合してできた金属錯体から実質的になっているので、金属錯体微粒子全体として無電荷となり得る。金属錯体微粒子全体として無電荷とした場合、本発明に係る金属錯体微粒子は、細胞膜を通過することができ、貴金属単体からなるコロイドよりも医薬学的な機能に優れることとなる。   The metal complex fine particles according to the present invention have a small particle size of 0.7 to 10 nm. In addition, since the metal complex is substantially composed of a metal complex formed by coordination bond of a metal ion and a ligand, the entire metal complex fine particle can be uncharged. When the metal complex fine particles as a whole are uncharged, the metal complex fine particles according to the present invention can pass through the cell membrane, and have superior pharmacological functions than colloids composed of a single noble metal.

また、本発明に係る金属錯体微粒子は実質的に金属錯体からなり、極性基を有する配位子を配位結合させることができる。この場合、分散剤を用いなくても多くの水分子を表面に付着させておくことができ、電解質が添加されても溶液中で分散状態を維持しやすく、沈殿しにくい。   In addition, the metal complex fine particles according to the present invention are substantially composed of a metal complex and can coordinately bond a ligand having a polar group. In this case, many water molecules can be attached to the surface without using a dispersant, and even when an electrolyte is added, the dispersed state is easily maintained in the solution and precipitation is difficult.

本発明に係る金属錯体微粒子の製造方法においては、水溶液を0℃を超えて10℃以下の低温に保持しつつ攪拌して金属錯体微粒子を合成するので、得られる金属錯体微粒子の粒径は0.7〜10nmと小さくなる。   In the method for producing metal complex fine particles according to the present invention, the metal complex fine particles are synthesized by stirring the aqueous solution while maintaining the aqueous solution at a low temperature of more than 0 ° C. and 10 ° C. or less. .7-10nm and small.

以下、本発明について、詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明に係る金属錯体微粒子は、粒径が0.7〜10nmであり、かつ、実質的に金属錯体からなる。   The metal complex fine particles according to the present invention have a particle size of 0.7 to 10 nm and are substantially composed of a metal complex.

粒径が0.7〜10nmであるので、本発明に係る金属錯体微粒子は細胞膜を通過し得ることとなる。粒径が0.7nm未満の金属錯体微粒子は現段階では得られていない。粒径が10nmを上回ると細胞膜を通過することが困難となる。   Since the particle size is 0.7 to 10 nm, the metal complex fine particles according to the present invention can pass through the cell membrane. Metal complex fine particles having a particle size of less than 0.7 nm have not been obtained at this stage. When the particle diameter exceeds 10 nm, it becomes difficult to pass through the cell membrane.

また、本発明に係る金属錯体微粒子は、金属イオンと配位子が配位結合してできた金属錯体から実質的に構成され、金属錯体微粒子全体として無電荷とすることができる。金属錯体微粒子全体として無電荷とした場合、細胞膜からの電気的斥力を受けず、細胞膜を通過し得ることとなる。   Moreover, the metal complex fine particles according to the present invention are substantially composed of a metal complex formed by coordination bonding of a metal ion and a ligand, and the entire metal complex fine particles can be made uncharged. When the entire metal complex fine particle is uncharged, it can pass through the cell membrane without receiving an electrical repulsion from the cell membrane.

したがって、本発明に係る金属錯体微粒子を構成する金属イオンに抗酸化作用のある金属イオン、例えば白金イオンを用いれば、細胞外の活性酸素だけでなく、細胞内の活性酸素も除去することができる。活性酸素は、老化、ガン、動脈硬化、心臓病、糖尿病等の原因とされている(例えば、非特許文献1)。   Therefore, if a metal ion having an antioxidant action, for example, a platinum ion, is used as the metal ion constituting the metal complex fine particles according to the present invention, not only the extracellular active oxygen but also the intracellular active oxygen can be removed. . Active oxygen is considered to cause aging, cancer, arteriosclerosis, heart disease, diabetes, and the like (for example, Non-Patent Document 1).

なお、従来から得られていた白金単体コロイドは、粒径は2nm程度と小さいものの(例えば、非特許文献1)、白金単体コロイド全体として電荷を帯びており、細胞膜を通過することは困難である。   In addition, although the platinum simple substance colloid obtained conventionally has a particle size as small as about 2 nm (for example, nonpatent literature 1), it is tinged with the whole platinum simple substance colloid, and it is difficult to pass a cell membrane. .

また、本発明に係る金属錯体微粒子は金属錯体からなり、極性基を有する配位子を配位結合させることができる。この場合、分散剤を用いなくても多くの水分子を表面に付着させておくことができ、電解質が添加されても溶液中で分散状態を維持しやすく、沈殿しにくい。このため、濃度の高い金属錯体微粒子分散液を作製することができる。従来の金属単体コロイドは電解質が添加されると沈殿しやすく、濃度の高い金属単体コロイド分散液を作製することは困難である。   In addition, the metal complex fine particles according to the present invention are made of a metal complex and can coordinately bond a ligand having a polar group. In this case, many water molecules can be attached to the surface without using a dispersant, and even when an electrolyte is added, the dispersed state is easily maintained in the solution and precipitation is difficult. For this reason, a metal complex fine particle dispersion with a high concentration can be prepared. Conventional single metal colloids are likely to precipitate when an electrolyte is added, and it is difficult to produce a high concentration single metal colloid dispersion.

さらに、本発明に係る金属錯体微粒子の表面に、疎水基を金属錯体に向け、親水基を外側に向けて分散剤を付着させると、金属錯体微粒子の表面により多くの水分子を水和させることができ、該金属錯体微粒子は電解質を添加しても沈殿はより生じにくくなり、安定的に溶液中に存在することができる。   Furthermore, when a hydrophobic agent is directed to the metal complex and a dispersant is attached to the surface of the metal complex fine particle according to the present invention with the hydrophilic group facing outward, more water molecules are hydrated on the surface of the metal complex fine particle. The metal complex fine particles are less likely to precipitate even when an electrolyte is added, and can be stably present in the solution.

なお、貴金属錯体により金属錯体コロイドを構成すると、抗酸化作用等の医薬学的な観点等からのメリットが得られる。   In addition, when a metal complex colloid is comprised with a noble metal complex, the merit from pharmaceutical viewpoints, such as an antioxidant effect | action, will be acquired.

次に、本発明に係る製造方法について説明する。   Next, the manufacturing method according to the present invention will be described.

本発明に係る製造方法においては、攪拌機能、冷却機能を有する容器に、金属塩の水溶液、及び配位子となるイオンや分子を含む水溶液を投入した後、pH調整剤を加えて水溶液の液性を調整し、水溶液を0℃を超えて10℃以下の低温に保持しつつ24h程度攪拌し、金属錯体微粒子を合成する。水溶液を0℃を超えて10℃以下の低温に保持するのは、得られる金属錯体微粒子の大きさを小さくするためであり、好ましくは0.5〜2℃の低温に保持する。1℃で保持することが最適である。   In the production method according to the present invention, an aqueous solution of a metal salt and an aqueous solution containing ions and molecules as ligands are added to a container having a stirring function and a cooling function, and then a pH adjuster is added to the aqueous solution. The properties are adjusted, and the aqueous solution is stirred at a low temperature exceeding 0 ° C. and not higher than 10 ° C. for about 24 hours to synthesize metal complex fine particles. The reason why the aqueous solution is maintained at a low temperature of more than 0 ° C. and not higher than 10 ° C. is to reduce the size of the obtained metal complex fine particles, and is preferably maintained at a low temperature of 0.5 to 2 ° C. It is optimal to hold at 1 ° C.

金属塩としては、錯体の中心金属イオンとなり得る金属イオンを供給できるものであれば用いることができ、例えばテトラクロロ白金酸カリウム、テトラクロロパラジウム酸カリウム、テトラブロモパラジウム酸カリウム等を用いることができる。   As the metal salt, any metal salt that can supply a metal ion that can be a central metal ion of the complex can be used. For example, potassium tetrachloroplatinate, potassium tetrachloropalladate, potassium tetrabromopalladate, and the like can be used. .

配位子としては、アンモニア(NH3)、塩素イオン(Cl-)、水(H2O)、水酸化物イオン(OH-)等の分子やイオンを用いることができる。 As the ligand, molecules and ions such as ammonia (NH 3 ), chlorine ion (Cl ), water (H 2 O), and hydroxide ion (OH ) can be used.

水溶液の液性は、中性となるようにすればよく、液性をpH7にできるだけ近づけることが好ましい。例えば、金属塩としてテトラクロロ白金酸カリウムを用い、配位子としてアンモニア(NH3)を用いた場合、pH7が適当である。pH調整剤としては、アンモニア水等を用いることができる。 The liquidity of the aqueous solution may be neutral, and the liquidity is preferably as close to pH 7 as possible. For example, when potassium tetrachloroplatinate is used as the metal salt and ammonia (NH 3 ) is used as the ligand, pH 7 is appropriate. Ammonia water or the like can be used as the pH adjuster.

前記攪拌時の温度を0.5〜2℃にすれば、金属イオンを1つだけ含む金属錯体微粒子が主に生成し、粒径が0.7nmに近い金属錯体微粒子を主に作製することができる。前記攪拌時の温度が0.5〜2℃の範囲から離れるにつれて、金属イオンを多く含む金属錯体微粒子が生成し、粒径が大きい金属錯体微粒子を主に作製することができる。前記攪拌時の温度が0℃を超えて10℃以下の範囲から外れると、粒径が10nmを超える金属錯体微粒子が主に生成してしまう。   If the temperature during stirring is 0.5 to 2 ° C., metal complex fine particles containing only one metal ion are mainly produced, and metal complex fine particles having a particle size close to 0.7 nm can be mainly produced. it can. As the temperature during stirring departs from the range of 0.5 to 2 ° C., metal complex fine particles containing a large amount of metal ions are generated, and metal complex fine particles having a large particle size can be mainly produced. When the temperature at the time of stirring exceeds 0 ° C. and deviates from the range of 10 ° C. or less, metal complex fine particles having a particle size exceeding 10 nm are mainly generated.

上記のようにして金属錯体微粒子を合成した後、該金属錯体微粒子を含む水溶液を吸引濾過し、固形分を回収する。回収された固形分には主成分の金属錯体微粒子からなる2次粒子、副生成物及び可溶性塩が含まれている。回収された固形分を、含まれる可溶性塩を溶解できる温度の冷水で洗浄し、可溶性塩を除去する。例えば、金属塩としてテトラクロロ白金酸カリウムを用い、配位子としてアンモニア(NH3)を用いた場合、1〜5℃程度の冷水で洗浄し、可溶性塩を除去する。 After synthesizing the metal complex fine particles as described above, the aqueous solution containing the metal complex fine particles is suction filtered to recover the solid content. The recovered solid content includes secondary particles composed of metal complex fine particles as main components, by-products and soluble salts. The recovered solid content is washed with cold water at a temperature capable of dissolving the contained soluble salt to remove the soluble salt. For example, when potassium tetrachloroplatinate is used as the metal salt and ammonia (NH 3 ) is used as the ligand, the soluble salt is removed by washing with cold water of about 1 to 5 ° C.

また、主生成物の微粒子状の金属錯体に異性体や副生成物が存在する場合は、異性体や副生成物を分離することが好ましい。異性体や副生成物を分離しないと、不純物を多く含む製品となってしまう。主生成物の微粒子状の金属錯体は、異性体や副生成物とは異なる溶解度を有するので、溶解度の差を利用して分離することができる。   In the case where isomers and by-products are present in the fine-particle metal complex of the main product, it is preferable to separate the isomers and by-products. If the isomers and by-products are not separated, the product is rich in impurities. Since the fine metal complex of the main product has a solubility different from that of the isomer or the by-product, it can be separated by utilizing the difference in solubility.

例えば、金属塩としてテトラクロロ白金酸カリウム(K2[PtCl4])を用い、配位子としてアンモニア(NH3)を用いた場合、シス−ジアンミンジクロロ白金(cis−[Pt(NH32Cl2])が合成されると同時に、副生成物として、テトラクロロ白金酸([PtCl4])、テトラアンミン白金酸([Pt(NH34])、塩化カリウム(KCl)が生成する。 For example, when potassium tetrachloroplatinate (K 2 [PtCl 4 ]) is used as the metal salt and ammonia (NH 3 ) is used as the ligand, cis-diamminedichloroplatinum (cis- [Pt (NH 3 ) 2 At the same time as Cl 2 ]) is synthesized, tetrachloroplatinic acid ([PtCl 4 ]), tetraammineplatinic acid ([Pt (NH 3 ) 4 ]), and potassium chloride (KCl) are produced as by-products.

次に、本発明に係る金属錯体微粒子の適用例として、本発明に係る金属錯体微粒子を含む飲料水を製造する場合について説明する。該飲料水は、本発明に係る金属錯体微粒子を含む固形分と、分散剤と、精製水とを、攪拌機能、冷却機能を有する容器に投入し、加温攪拌することで作製することができる。   Next, as an application example of the metal complex fine particles according to the present invention, a case of producing drinking water containing the metal complex fine particles according to the present invention will be described. The drinking water can be prepared by charging the solid content containing the metal complex fine particles according to the present invention, a dispersant, and purified water into a container having a stirring function and a cooling function, followed by heating and stirring. .

分散剤としては、疎水基を金属錯体微粒子に向け、親水基を外部に向けて金属錯体微粒子に付着するという機能を有するものであれば用いることができ、例えば、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PAA)、ポリソルベート、アラビアガム、トラガントガム等を用いることができる。分散剤の投入量は、得られた金属錯体微粒子を含む固形分の質量と同程度の質量とする。   Any dispersant can be used as long as it has a function of attaching a hydrophobic group to the metal complex fine particles and a hydrophilic group to the outside to adhere to the metal complex fine particles. For example, polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PAA), polysorbate, gum arabic, gum tragacanth and the like can be used. The amount of the dispersing agent to be added is set to a mass comparable to the mass of the solid content including the obtained metal complex fine particles.

投入する精製水の量は、最終製品の所望する濃度により調整する。   The amount of purified water added is adjusted according to the desired concentration of the final product.

攪拌の際の温度としては、金属錯体が例えばシス−ジアンミンジクロロ白金の場合、70〜100℃であることが好ましく、より好ましくは80〜90℃である。攪拌時間は24h程度でよい。これにより、2次粒子を構成している金属錯体微粒子は、分散剤と均一に混合され、水中では2次粒子を構成せず、1次粒子として水中に分散する。分散剤は、金属錯体微粒子(1次粒子)に疎水基を向けて付着し、分散剤の親水基は外を向いた形となる。この親水基に水分子が水和するため、分散剤が付着した金属錯体微粒子は水中で安定的に分散した状態を保つ。   When the metal complex is, for example, cis-diamminedichloroplatinum, the temperature at the time of stirring is preferably 70 to 100 ° C, more preferably 80 to 90 ° C. The stirring time may be about 24 hours. As a result, the metal complex fine particles constituting the secondary particles are uniformly mixed with the dispersant, do not constitute the secondary particles in water, and are dispersed in the water as primary particles. The dispersant adheres to the metal complex fine particles (primary particles) with the hydrophobic group directed, and the hydrophilic group of the dispersant is directed outward. Since water molecules hydrate to this hydrophilic group, the metal complex fine particles to which the dispersant is attached maintain a state of being stably dispersed in water.

テトラクロロ白金酸カリウム(K2[PtCl4])とアンモニアから白金錯体微粒子(シス−ジアンミンジクロロ白金)を合成し、次に、得られた白金錯体微粒子を分散させた飲料水を作製した。 Platinum complex fine particles (cis-diamminedichloroplatinum) were synthesized from potassium tetrachloroplatinate (K 2 [PtCl 4 ]) and ammonia, and then drinking water in which the obtained platinum complex fine particles were dispersed was prepared.

(1)白金錯体微粒子(シス−ジアンミンジクロロ白金)の合成
攪拌機能を有し、かつ、温度調整機能を有するウォータージャケット付きの容器に、テトラクロロ白金酸カリウム20.75gと、精製水400mLとを投入し、溶解させ、さらに12Nの濃塩酸12.5mLを加えた。
(1) Synthesis of platinum complex fine particles (cis-diamminedichloroplatinum) 20.75 g of potassium tetrachloroplatinate and 400 mL of purified water were added to a vessel with a water jacket having a stirring function and a temperature adjusting function. The solution was charged and dissolved, and 12.5 mL of 12N concentrated hydrochloric acid was further added.

次に、塩化アンモニウム3gを前記容器内の溶液中に投入した後、溶液の温度を2℃に保持しつつ液性がpH7になるまでアンモニア水(3mol/L)を加え、24h攪拌した。さらにアンモニア水を33.75mL加えたところ、溶液の色が濃赤色から淡黄色に変化するとともに、溶液中に沈殿が生じた。   Next, 3 g of ammonium chloride was added to the solution in the container, and then ammonia water (3 mol / L) was added until the liquidity reached pH 7 while maintaining the temperature of the solution at 2 ° C., followed by stirring for 24 hours. When 33.75 mL of aqueous ammonia was further added, the color of the solution changed from dark red to light yellow, and precipitation occurred in the solution.

沈殿が生じた溶液を1μmのフィルターで減圧濾過し、沈殿生成物を分離し、さらに減圧濾過のための減圧ポンプを作動させた状態で、フィルター上の沈殿生成物に1〜2℃に冷却した精製水を注いで洗浄した。   The solution in which the precipitation occurred was filtered under reduced pressure through a 1 μm filter, the precipitated product was separated, and further the cooled product was cooled to 1 to 2 ° C. while the vacuum pump for vacuum filtration was activated. Purified water was poured and washed.

次に、沈殿生成物中のシス型の白金錯体(cis−[Pt(NH32Cl2])を精製する処理を、次のようにして行った。まず、洗浄した前記沈殿生成物と0.1N塩酸750mlとを、攪拌機能を有し、かつ、温度調整機能を有するウォータージャケット付きの容器に投入し、80℃に加熱して攪拌し、前記沈殿生成物を溶解させた。少量の固形分が残ったので、溶液を1μmのフィルターで減圧濾過し、固形分を取り除いた。 Next, the treatment for purifying the cis-type platinum complex (cis- [Pt (NH 3 ) 2 Cl 2 ]) in the precipitation product was performed as follows. First, the washed precipitation product and 750 ml of 0.1N hydrochloric acid are put into a water jacketed vessel having a stirring function and a temperature adjusting function, and heated to 80 ° C. and stirred, and the precipitation The product was dissolved. Since a small amount of solid content remained, the solution was filtered under reduced pressure with a 1 μm filter to remove the solid content.

得られた濾液を室温(20℃程度)まで冷却し、沈殿物を生成させた後、1μmのフィルターで減圧濾過した。さらに、減圧濾過のための減圧ポンプを作動させた状態でフィルター上の沈殿生成物に1〜2℃に冷却した精製水を注いで洗浄した。洗浄後の沈殿生成物を、X線回折装置(株式会社リガク、D/max−3B)で分析したところ、シス−ジアンミンジクロロ白金(cis−[Pt(NH32Cl2])であった。 The obtained filtrate was cooled to room temperature (about 20 ° C.) to form a precipitate, and then filtered under reduced pressure with a 1 μm filter. Furthermore, the purified water cooled to 1-2 degreeC was poured and wash | cleaned to the precipitation product on a filter in the state which actuated the vacuum pump for vacuum filtration. The precipitated product after washing was analyzed with an X-ray diffractometer (Rigaku Corporation, D / max-3B). As a result, it was cis-diamminedichloroplatinum (cis- [Pt (NH 3 ) 2 Cl 2 ]). .

また、洗浄後の沈殿生成物を、透過型電子顕微鏡((株)日立製作所製、9000NAR型)により観察したところ、微粒子(1次粒子)は集合して2次粒子を構成していたが、該2次粒子を構成している個々の微粒子(1次粒子)の形状は楕円形で、その長径は0.7nmであることを確認した。   Moreover, when the precipitated product after washing was observed with a transmission electron microscope (manufactured by Hitachi, Ltd., 9000NAR type), the fine particles (primary particles) aggregated to form secondary particles. It was confirmed that the individual fine particles (primary particles) constituting the secondary particles had an elliptical shape and a major axis of 0.7 nm.

(2)白金錯体微粒子を分散させた飲料水の作製
上記のようにして得られたシス型の白金錯体微粒子(cis−[Pt(NH32Cl2])1gと、分散剤(アラビアガム)1gと、精製水500mLとを、攪拌機能を有し、かつ、温度調整機能を有するウォータージャケット付きの容器に投入し、85℃に加温して、攪拌を24h行い、2次粒子を構成している白金錯体微粒子を個々の1次粒子として分散させた飲料水を作製した。
(2) Preparation of drinking water in which platinum complex fine particles are dispersed 1 g of cis-type platinum complex fine particles (cis- [Pt (NH 3 ) 2 Cl 2 ]) obtained as described above, and a dispersant (gum arabic) ) 1 g and 500 mL of purified water are put into a water jacketed container having a stirring function and a temperature adjusting function, heated to 85 ° C., stirred for 24 hours to form secondary particles Drinking water in which platinum complex fine particles were dispersed as individual primary particles was prepared.

得られた飲料水に、電解質として食塩(NaCl)を1g添加しても、沈殿は生じなかった。   Even when 1 g of sodium chloride (NaCl) as an electrolyte was added to the obtained drinking water, precipitation did not occur.

Claims (9)

粒径が0.7〜10nmであり、かつ、実質的に金属錯体からなることを特徴とする金属錯体微粒子。   A metal complex fine particle having a particle size of 0.7 to 10 nm and substantially consisting of a metal complex. 請求項1において、
全体として無電荷であることを特徴とする金属錯体微粒子。
In claim 1,
Metal complex fine particles characterized by being uncharged as a whole.
請求項1又は2において、
前記金属錯体が、貴金属錯体であることを特徴とする金属錯体微粒子。
In claim 1 or 2,
Metal complex fine particles, wherein the metal complex is a noble metal complex.
医療用途に用いることを特徴とする請求項1乃至3のいずれかに記載の金属錯体微粒子。   4. The metal complex fine particles according to claim 1, wherein the metal complex fine particles are used for medical purposes. 金属塩と、前記金属塩に含まれる金属イオンに配位する配位子と、pH調整剤と、水とを用いて、水溶液を調製し、この水溶液を0℃を超えて10℃以下の温度に保持しつつ攪拌することを特徴とする金属錯体微粒子の製造方法。   An aqueous solution is prepared using a metal salt, a ligand coordinated to a metal ion contained in the metal salt, a pH adjuster, and water, and the aqueous solution has a temperature exceeding 0 ° C. and not higher than 10 ° C. A method for producing fine metal complex particles, which is stirred while being held. 金属塩と、前記金属塩に含まれる金属イオンに配位する配位子と、pH調整剤と、水とを用いて、水溶液を調製し、この水溶液を0℃を超えて10℃以下の温度に保持しつつ攪拌して金属錯体微粒子を合成する工程と、合成した前記金属錯体微粒子を精製する工程とを有することを特徴とする金属錯体微粒子の製造方法。   An aqueous solution is prepared using a metal salt, a ligand coordinated to a metal ion contained in the metal salt, a pH adjuster, and water, and the aqueous solution has a temperature exceeding 0 ° C. and not higher than 10 ° C. A method for producing metal complex fine particles, comprising a step of synthesizing metal complex fine particles by stirring while being held in a step, and a step of purifying the synthesized metal complex fine particles. 請求項5又は6において、
前記温度を、0.5〜2℃に保持することを特徴とする金属錯体微粒子の製造方法。
In claim 5 or 6,
The said temperature is hold | maintained at 0.5-2 degreeC, The manufacturing method of the metal complex fine particle characterized by the above-mentioned.
請求項5乃至7のいずれかにおいて、
前記金属塩として、貴金属塩を用いることを特徴とする金属錯体微粒子の製造方法。
In any of claims 5 to 7,
A method for producing metal complex fine particles, wherein a noble metal salt is used as the metal salt.
請求項5乃至8のいずれかに記載の製造方法を用いて得ることができ、かつ、粒径が0.7〜10nmである金属錯体微粒子。   Metal complex fine particles which can be obtained using the production method according to any one of claims 5 to 8 and have a particle size of 0.7 to 10 nm.
JP2006129673A 2006-05-08 2006-05-08 Metal complex particulate and method for producing the same Pending JP2007302915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006129673A JP2007302915A (en) 2006-05-08 2006-05-08 Metal complex particulate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006129673A JP2007302915A (en) 2006-05-08 2006-05-08 Metal complex particulate and method for producing the same

Publications (1)

Publication Number Publication Date
JP2007302915A true JP2007302915A (en) 2007-11-22

Family

ID=38837093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006129673A Pending JP2007302915A (en) 2006-05-08 2006-05-08 Metal complex particulate and method for producing the same

Country Status (1)

Country Link
JP (1) JP2007302915A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196120A (en) * 2009-02-25 2010-09-09 Univ Of Tokyo Method for manufacturing metal fine particle, metal fine particle dispersion and sintered compact
JP2011001589A (en) * 2009-06-17 2011-01-06 Hokkaido Univ Method for producing metal fine particle, metal fine particle dispersion and its use as catalyst
JP5439468B2 (en) * 2009-02-25 2014-03-12 国立大学法人 東京大学 Method for producing metal fine particles, metal fine particle dispersion and method for producing sintered body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196120A (en) * 2009-02-25 2010-09-09 Univ Of Tokyo Method for manufacturing metal fine particle, metal fine particle dispersion and sintered compact
JP5439468B2 (en) * 2009-02-25 2014-03-12 国立大学法人 東京大学 Method for producing metal fine particles, metal fine particle dispersion and method for producing sintered body
JP2011001589A (en) * 2009-06-17 2011-01-06 Hokkaido Univ Method for producing metal fine particle, metal fine particle dispersion and its use as catalyst

Similar Documents

Publication Publication Date Title
Pal et al. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis
JP4654428B2 (en) Highly dispersed silica nano hollow particles and method for producing the same
TW201223877A (en) Method for producing silver nanowire
JP2001513147A (en) Materials based on porous metals and methods for their production
EP2132134A1 (en) Method for producing colloidal solution of metal nano-particle and metal nano-particle thereby
CN103586461A (en) Nano-silver sol and preparation and purification method thereof
JP4496026B2 (en) Method for producing metallic copper fine particles
CN108237223A (en) Hud typed gold-ruthenium-oxide nanocomposite and preparation method thereof
JP2007302915A (en) Metal complex particulate and method for producing the same
CN104788472B (en) One water Cefazolin sodium spheroidal particle and its crystallization preparation method
JPWO2020138404A1 (en) A method for producing nanoparticles containing metal particles containing iron oxide to which one or more hydrophilic ligands are coordinated.
KR20150143359A (en) Method for fabricating hollow metal nano particles and hollow metal nano particles fabricated by the method
JP2005146387A (en) Dendrite-shaped fine silver powder, and its production method
JP2009155316A (en) Method for producing metal pyrithion-metal oxide complex compound and/or metal pyrithion-metal hydroxide complex compound
JP2009127085A (en) Surface treatment method of fine metal particle, and dried body or dispersion liquid of the fine metal particle
JPH07278619A (en) Production of nickel powder
JP3820018B2 (en) Method for producing granular silver powder
JPWO2016043122A1 (en) Coordination polymer compound, porous material, anion removing agent, and anion removing method
KR100769731B1 (en) Preparation method for silver colloid
WO2014127370A1 (en) Method and composition for dispersions of gold nanoparticles
KR101575326B1 (en) Preparation of Spherical Alumina by Reductive Polyol solvent
JP4106460B2 (en) Method for producing copper powder
JP2018104724A (en) Production method of silver-coated copper powder
JP4518844B2 (en) Method for producing yttria sol
TWI309637B (en)