WO2010090085A1 - 偏光子付き積層体、支持体付き表示装置用パネル、表示装置用パネル、表示装置およびこれらの製造方法 - Google Patents

偏光子付き積層体、支持体付き表示装置用パネル、表示装置用パネル、表示装置およびこれらの製造方法 Download PDF

Info

Publication number
WO2010090085A1
WO2010090085A1 PCT/JP2010/050845 JP2010050845W WO2010090085A1 WO 2010090085 A1 WO2010090085 A1 WO 2010090085A1 JP 2010050845 W JP2010050845 W JP 2010050845W WO 2010090085 A1 WO2010090085 A1 WO 2010090085A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
substrate
device substrate
resin layer
display device
Prior art date
Application number
PCT/JP2010/050845
Other languages
English (en)
French (fr)
Inventor
聡 近藤
由里子 海田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2010549430A priority Critical patent/JP5533671B2/ja
Priority to CN201080006183.8A priority patent/CN102405436B/zh
Publication of WO2010090085A1 publication Critical patent/WO2010090085A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers

Definitions

  • the present invention relates to a laminate including a device substrate with a polarizer used for a display device, a display device-equipped panel including the same, a display device panel formed using the same, a display device including the same, and these It relates to a manufacturing method.
  • the thickness of the glass substrate is reduced by performing an etching process or the like before forming the display device member on the surface of the glass substrate, the strength of the glass substrate is lowered and the amount of deflection is increased. Therefore, there arises a problem that it becomes difficult to perform processing in the existing display device panel production line.
  • the thickness of the glass substrate is reduced by etching or the like, and in the process of forming the display device member on the surface of the glass substrate, There arises a problem that the formed fine flaws become apparent, that is, a problem of generation of etch pits.
  • a thin glass substrate (hereinafter also referred to as “thin glass substrate”) is bonded to another supporting glass substrate to form a glass laminate, and in that state, A method of performing a predetermined process for manufacturing a display device and then peeling the supporting glass substrate from the thin glass substrate has been proposed.
  • Patent Document 1 a product glass substrate and a reinforcing glass substrate are bonded and integrated using electrostatic adsorption force or vacuum adsorption force between glass substrates, and a display using the product glass substrate is used.
  • a method of manufacturing the device is described.
  • Patent Document 2 describes a method for manufacturing a liquid crystal display device in which the ends of a substrate and a support of a liquid crystal display device are bonded using a glass frit adhesive, and then an electrode pattern or the like is formed.
  • Patent Document 3 describes a method for manufacturing a substrate for a display device, which includes a step of irradiating laser light to at least the vicinity of the edge surface of two glass substrates to fuse the two glass substrates. Yes.
  • substrate transfer is performed by attaching a substrate to a substrate transfer jig in which an adhesive layer is provided on a support, and transferring the substrate transfer jig through a manufacturing process of a liquid crystal display element.
  • a manufacturing method of a liquid crystal display device is described in which liquid crystal display element formation processing is sequentially performed on a substrate attached to a jig for use, and the substrate is peeled off from the substrate carrying jig after completing a predetermined process.
  • Patent Document 5 discloses that an electrode substrate for a liquid crystal display element is subjected to a predetermined process on the electrode substrate for a liquid crystal display element using a jig in which an ultraviolet curable pressure-sensitive adhesive is provided on a support, and then cured with an ultraviolet ray.
  • a method for producing a liquid crystal display element comprising: irradiating a mold adhesive with ultraviolet rays to reduce the adhesive strength of the ultraviolet curable adhesive and peeling the liquid crystal display element electrode substrate from the jig.
  • Patent Document 6 describes a transport method in which a thin plate is temporarily fixed to a support plate with an adhesive material, a peripheral portion of the adhesive material is sealed with a seal material, and the support plate on which the thin plate is temporarily fixed is transported. .
  • Patent Document 7 discloses a thin glass laminate obtained by laminating a thin glass substrate and a supporting glass substrate, and the thin glass and the supporting glass substrate have easy peelability and non-adhesiveness.
  • stacking through the silicone resin layer which has is described. Then, in order to peel the supporting glass substrate from the thin glass substrate, it is only necessary to apply a force to separate the thin glass substrate from the supporting glass substrate in the vertical direction. It is described that it can be more easily separated by injecting air.
  • Patent Document 8 proposes a method of forming a polarizer on a glass substrate.
  • a substrate on which a polarizer is formed on a glass substrate described in Patent Document 8 is a thing mainly made as a polarization separation element of a liquid crystal projector device, and is a thing installed alone in the middle of an optical path. It is impossible to flow the color filter forming process and the TFT array forming process using this as a substrate. This is because when the substrate is transported in both of the above-described steps, the surface on which the polarizer is formed is transported so that the transport roller and the metal tray are in contact with each other. There is a problem that the child gets hurt. Further, when the polarizing element is directly formed on the glass substrate after assembling the liquid crystal cell, there is a possibility that the organic matter of the color filter and the liquid crystal itself may be deteriorated by the processing in the polarizer forming step.
  • the inventor has intensively studied in order to solve the above problems, and has completed the present invention.
  • the present invention relates to the following (1) to (14).
  • a device substrate having a first main surface and a second main surface, a support substrate having a first main surface and a second main surface, and a first main surface of the device substrate and a first main surface of the support substrate
  • the fine wire pitch (Pm) of the wire grid polarizer is 50 to 200 nm, and the width (Dm) to pitch (Pm) ratio (Dm / Pm) of the fine metal wire is 0.1 to 0.00. 6.
  • the resin forming the resin layer is at least one selected from a fluororesin, an acrylic resin, a polyolefin resin, a polyurethane resin, and a silicone resin. Laminated body.
  • the device substrate and the support substrate are made of the same material, and the difference in coefficient of linear expansion between the device substrate and the support substrate is 150 ⁇ 10 ⁇ 7 / ° C. or less, (1) to (5)
  • the device substrate and the support substrate are made of different materials, and the difference in linear expansion coefficient between the device substrate and the support substrate is 700 ⁇ 10 ⁇ 7 / ° C. or less, (1) to (5)
  • a support-equipped display device panel having a display device member on a second main surface of the device substrate in the laminate with a polarizer according to any one of (1) to (7).
  • (11) A method for producing a laminate with a polarizer according to any one of (1) to (7), wherein a polarizer is formed on a first main surface of the device substrate.
  • the device layer is formed by laminating a resin layer forming step of forming a resin layer having a peelable surface on the first main surface of the support substrate, the device substrate with a reflective polarizer, and the support substrate with a resin layer.
  • a method for producing a laminate with a polarizer comprising: an adhesion step of bringing a peelable surface of the resin layer into close contact with a surface of a substrate on which a reflective polarizer is present.
  • (12) The manufacturing method according to (11) and a display with a support, which includes a step of forming a member for a display device on the second main surface of the device substrate in the obtained laminate with a polarizer. Manufacturing method of panel for apparatus.
  • the manufacturing method according to (12) above, and the surface of the device substrate on which the reflective polarizer is present and the peelable surface of the resin layer in the obtained display panel with a support are peeled off.
  • a method for producing a panel for a display device comprising a peeling step.
  • a manufacturing method of a display device comprising the manufacturing method according to (13) and a step of obtaining a display device using the obtained display device panel.
  • the laminated body obtained by the present invention can provide a laminated body with a polarizer that can produce a display device thinner than a conventional display device.
  • it aims at providing the panel for display apparatuses with a support containing such a laminated body with a polarizer.
  • a display device panel with a support, a display device panel, and a method for manufacturing the display device can be provided.
  • FIG. 1 is a schematic sectional drawing which shows embodiment of the laminated body with a polarizer of this invention.
  • FIG. 2 is a schematic front view showing the embodiment of FIG.
  • FIG. 3 is a schematic perspective view showing an embodiment of a device substrate with a polarizer.
  • FIG. 4 is a schematic perspective view showing another embodiment of a device substrate with a polarizer.
  • FIG. 5 is a schematic cross-sectional view for explaining a process of forming ridges on a roll-shaped device substrate.
  • 6 is a schematic front view for explaining an embodiment of a device substrate with ridges of Example 2.
  • FIG. FIG. 7 is a schematic cross-sectional view for explaining the vapor deposition conditions of Example 2.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a laminate with a polarizer of the present invention (hereinafter also simply referred to as “laminate”).
  • FIG. 2 is a schematic front view seen from the second main surface side of the device substrate of the present embodiment. However, FIG. 2 shows only the first main surface of the device substrate, the first main surface of the support substrate, and the reflective polarizer for easy understanding.
  • the laminate 10 of the present embodiment includes a device substrate 12, a support substrate 13, and a resin layer 14, and the resin layer 14 is between the first main surface 12a of the device substrate 12 and the first main surface 13a of the support substrate 13. Exists. Further, the reflective polarizer 11 is present on the first main surface 12 a of the device substrate 12.
  • the resin layer 14 is fixed to the first main surface 13a of the support substrate 13 and is in close contact with the surface of the device substrate 12 on which the reflective polarizer 11 is present. Further, the resin layer 14 has releasability from the surface of the device substrate 12 on which the reflective polarizer 11 is present.
  • the main surface on the support substrate 13 side (resin layer 14 side) of the two main surfaces of the device substrate 12 is the first main surface 12a, and the opposite main surface is the second main surface 12b. It is.
  • the main surface of the device substrate 12 (the side where the resin layer 14 exists) is the first main surface 13 a, and the opposite main surface is the second main surface. 13b.
  • the device substrate in the present invention will be described.
  • the thickness, shape, size, physical properties (thermal shrinkage, surface shape, chemical resistance, etc.), composition, etc. of the device substrate are not particularly limited, and may be the same as, for example, a conventional glass substrate for a display device. Further, it may be a resin substrate.
  • the thickness of the device substrate is not particularly limited, but is preferably less than 0.7 mm, more preferably 0.5 mm or less, and further preferably 0.4 mm or less. Further, it is preferably 0.05 mm or more, more preferably 0.07 mm or more, and further preferably 0.1 mm or more.
  • the shape of the device substrate is not particularly limited, but is preferably rectangular.
  • the rectangle is substantially a rectangle and includes a shape in which the corners of the peripheral part are cut off (corner cut).
  • the size of the device substrate is not limited, for example, in the case of a rectangle, it may be 100 to 2000 mm ⁇ 100 to 2000 mm, and preferably 500 to 1000 mm ⁇ 500 to 1000 mm.
  • the laminate of the present invention can easily peel the device substrate with a polarizer and the support substrate.
  • the characteristics of the device substrate are not particularly limited, and vary depending on the type of display device to be manufactured.
  • the thermal contraction rate of the device substrate is preferably small.
  • a coefficient of linear expansion which is an index of thermal shrinkage, of 150 ⁇ 10 ⁇ 7 / ° C. or less, and 100 ⁇ 10 ⁇ 7 / ° C. or less. More preferably, it is more preferably 45 ⁇ 10 ⁇ 7 / ° C. or less.
  • the device substrate is a synthetic resin, it is preferable to use one having a temperature of 700 ⁇ 10 ⁇ 7 / ° C.
  • the linear expansion coefficient of the device substrate is preferably 5 ⁇ 10 ⁇ 7 / ° C. or more in both cases where the device substrate is glass and synthetic resin.
  • a linear expansion coefficient means a thing prescribed
  • the composition thereof may be similar to, for example, a conventionally known glass containing an alkali metal oxide or an alkali-free glass.
  • alkali-free glass is preferable because of its low thermal shrinkage rate.
  • the resin substrate is not particularly limited as long as it is a resin having transparency.
  • an application to which the laminate of the present invention is preferably applied is a liquid crystal display device. Therefore, it is a thermoplastic resin such as polyester, polycarbonate, polyarylate, polyethersulfone, poly (cyclo) olefin, or a thermosetting resin such as epoxy, transparent polyimide, or acrylic, and has optical isotropy. It is preferable to use a resin having
  • the support substrate supports the device substrate via the resin layer and reinforces the strength of the device substrate.
  • the thickness, shape, size, physical properties (heat shrinkage rate, surface shape, chemical resistance, etc.), composition, etc. of the support substrate are not particularly limited.
  • the thickness of the support substrate is not particularly limited, but it is necessary that the thickness of the laminate of the present invention be such that it can be processed on the current display panel production line.
  • the thickness is preferably 0.1 to 1.1 mm, more preferably 0.3 to 0.8 mm, and still more preferably 0.4 to 0.7 mm.
  • the thickness of the support substrate and the thickness of the resin layer Is 0.4 mm.
  • the current production line is most commonly designed to process a glass substrate having a thickness of 0.7 mm. For example, if the thickness of the device substrate is 0.4 mm, The sum of the thickness and the thickness of the resin layer is 0.3 mm.
  • the support substrate is preferably thicker than the device substrate.
  • the shape of the support substrate is not particularly limited, but is preferably rectangular.
  • the rectangle is substantially a rectangle and includes a shape in which the corners of the peripheral part are cut off (corner cut).
  • the size of the support substrate is not limited, but is preferably about the same as the size of the device substrate, preferably slightly larger than the device substrate (each about 0.05 to 10 mm larger in the vertical or horizontal direction). .
  • the reason is that it is easy to protect the end portion of the device substrate from the contact of the alignment device such as the positioning pin during the manufacture of the display device panel, and the device substrate and the support substrate can be more easily separated.
  • the vertical is the direction of the short side of the device substrate in FIG. 2 and the direction of the arrow Xa
  • the horizontal is the direction of the long side of the device substrate and the direction of the arrow Xb in FIG. Means.
  • the linear expansion coefficient of the support substrate may be substantially the same as or different from the linear expansion coefficient of the device substrate. Substantially the same is preferable in that the device substrate or the support substrate is less likely to be warped when the laminate of this embodiment is heat-treated.
  • the device substrate and the support substrate are made of the same material, and the difference in coefficient of linear expansion between the device substrate and the support substrate is preferably 150 ⁇ 10 ⁇ 7 / ° C. or less, and 100 ⁇ 10 ⁇ 7 / ° C. or less. More preferably, it is 50 ⁇ 10 ⁇ 7 / ° C. or less.
  • the device substrate and the support substrate are made of different materials, and the difference in coefficient of linear expansion between the device substrate and the support substrate is preferably 700 ⁇ 10 ⁇ 7 / ° C. or less, and is preferably 650 ⁇ 10 ⁇ 7 / ° C. or less. More preferably, it is 500 ⁇ 10 ⁇ 7 / ° C. or less.
  • the material of the support substrate is not particularly limited, and the material is not particularly limited as long as the material has rigidity capable of supporting the device substrate such as glass, synthetic resin, or metal.
  • the composition thereof may be the same as that of glass containing an alkali metal oxide or non-alkali glass, for example. Among these, alkali-free glass is preferable because of its low thermal shrinkage rate.
  • plastic synthetic resin
  • the type is not particularly limited.
  • polyethylene terephthalate resin poly (cyclo) olefin resin polycarbonate resin, polyimide resin, fluororesin, polyamide resin, polyaramid resin
  • examples include polyethersulfone resins, polyetherketone resins, polyetheretherketone resins, polyethylene naphthalate resins, polyepoxy resins, polyacrylic resins, various liquid crystal polymer resins, and silicone resins.
  • the type is not particularly limited, and examples thereof include stainless steel and copper.
  • the resin layer in the present invention will be described.
  • the resin layer is fixed to the first main surface of the support substrate.
  • the resin layer is closely_contact
  • the resin layer is bonded to the surface on which the reflective polarizer is present with a certain degree of bonding force, but at the time of peeling, the bonding force is such that it can be easily peeled without adversely affecting the reflective polarizer.
  • the structure can be peeled without damaging the structure of the reflective polarizer and without causing a resin residue on the surface of the reflective polarizer.
  • the property which can peel easily on the surface of a resin layer is called peelability.
  • the surface of the device substrate where the reflective polarizer is present and the resin layer are not attached by the adhesive force that the adhesive has, and the force caused by van der Waals force between solid molecules. That is, it is preferable that it is attached by adhesion.
  • the binding force of the resin layer to the first main surface of the support substrate is relatively higher than the binding force to the surface on which the reflective polarizer exists.
  • the coupling of the device substrate to the surface where the reflective polarizer exists is referred to as adhesion
  • the coupling to the first main surface of the support substrate is referred to as fixing.
  • the surface of the device substrate on which the reflective polarizer is present is also simply referred to as the device substrate surface or the first main surface of the device substrate.
  • the thickness of the resin layer is not particularly limited. It is preferably 5 to 50 ⁇ m, more preferably 5 to 30 ⁇ m, and even more preferably 7 to 20 ⁇ m. This is because when the thickness of the resin layer is in such a range, the surface of the device substrate and the resin layer are sufficiently adhered. Moreover, even if bubbles or foreign substances are present, it is possible to suppress the occurrence of distortion defects in the device substrate. On the other hand, if the resin layer is too thick, it takes time and materials to form the resin layer, which is not economical.
  • the resin layer may consist of two or more layers.
  • the thickness of the resin layer means the total thickness of all the layers.
  • the kind of resin which forms each layer may differ.
  • the surface tension of the peelable surface of the resin layer is preferably 30 mN / m or less, more preferably 25 mN / m or less, and further preferably 22 mN / m or less. Moreover, it is preferable that the surface tension of the peelable surface of the resin layer is 15 mN / m or more. This is because such surface tension can be more easily peeled off from the device substrate surface, and at the same time, adhesion to the device substrate surface is sufficient.
  • the resin layer is preferably made of a material having a glass transition point lower than room temperature (about 25 ° C.) or having no glass transition point.
  • the resin layer has heat resistance.
  • the laminate of the present invention can be subjected to heat treatment.
  • the elastic modulus of the resin layer is too high, the adhesion with the device substrate surface tends to be low, which is not preferable. If the elastic modulus is too low, the peelability is lowered.
  • the type of resin that forms the resin layer is not particularly limited.
  • a fluororesin, an acrylic resin, a polyolefin resin, a polyurethane resin, and a silicone resin can be used.
  • resins can be mixed and used.
  • silicone resins are preferred. This is because the silicone resin is excellent in heat resistance and excellent in peelability from the device substrate.
  • the curable silicone resin is cured on the surface of the support substrate to form the silicone resin layer, the resin layer is easily fixed to the support substrate by a condensation reaction with the silanol groups on the surface of the support substrate. It is also preferable that the silicone resin layer does not substantially deteriorate peelability even when it is treated at about 300 to 400 ° C. for about 1 hour, for example.
  • the resin layer is preferably a cured product of curable silicone for release paper among silicone resins.
  • the silicone for release paper is mainly composed of silicone containing linear dimethylpolysiloxane in the molecule. Since the resin layer formed by curing the composition containing the main agent and the crosslinking agent on the surface (first main surface) of the support substrate using a catalyst, a photopolymerization initiator, etc. has excellent peelability. preferable. In addition, since the flexibility is high, even when foreign matter such as bubbles or dust is mixed between the device substrate and the resin layer, the occurrence of the distortion defect of the device substrate can be suppressed.
  • Such release paper silicones are classified into condensation reaction type silicones, addition reaction type silicones, ultraviolet ray curable silicones, and electron beam curable silicones depending on the curing mechanism, and any of them can be used.
  • addition reaction type silicone is preferable. This is because the curing reaction is easy, the degree of peelability is good when the resin layer is formed, and the heat resistance is also high.
  • the silicone for release paper is classified into a solvent type, an emulsion type, and a solventless type, and any type can be used.
  • a solventless type is preferable. This is because productivity, safety, and environmental characteristics are excellent.
  • a solvent that causes foaming is not included at the time of curing when forming the resin layer, that is, at the time of heat curing, ultraviolet curing, or electron beam curing, bubbles are unlikely to remain in the resin layer.
  • KNS-320A, KS-847, and TPR6700 are silicones that contain a main agent and a crosslinking agent in advance.
  • the silicone resin forming the resin layer has a property that the components in the silicone resin layer are difficult to migrate to the device substrate, that is, low silicone migration.
  • a polarizer is an element that is used in an image display device such as a liquid crystal display device, a rear projection television, and a front projector, and that exhibits polarization separation in the visible light region.
  • Examples of polarizers include absorption polarizers and reflection polarizers.
  • An absorptive polarizer is, for example, a polarizer in which a dichroic dye such as iodine is oriented in a resin film, and has low heat resistance.
  • the reflective polarizer has a feature that the light utilization efficiency can be increased by allowing the light reflected without entering the polarizer to re-enter the polarizer. Therefore, the need for a reflective polarizer is increasing for the purpose of increasing the brightness of LCDs and the like.
  • Examples of the reflective polarizer include a linear polarizer made of a birefringent resin laminate, a circular polarizer made of cholesteric liquid crystal, and a wire grid polarizer.
  • a wire grid polarizer is particularly preferable for the purpose of the present invention, which is to reduce the thickness of the display device.
  • the wire grid polarizer has a structure in which a plurality of fine metal wires are arranged in parallel and at a constant pitch on a light-transmitting substrate.
  • the pitch of the fine metal wire is sufficiently shorter than the wavelength of the incident light, the component having an electric field vector orthogonal to the length direction of the fine metal wire (that is, p-polarized light) is transmitted in the incident light, and the length direction of the fine metal wire
  • the component having an electric field vector parallel to ie, s-polarized light
  • FIG. 3 and 4 are schematic perspective views of a device substrate with a polarizer, which is a part of the laminate of the present invention in which a wire grid polarizer is formed on the first main surface of the device substrate.
  • a wire grid type polarizer exhibiting polarization separation in the visible light region
  • a thin metal wire 35 having a predetermined width, pitch and length is formed on the first main surface 32a of the device substrate 32 as shown in FIG.
  • a wire grid type polarizer coated with a film 47 made of a material to form a fine metal wire, and a fine metal wire and a low reflectivity member (with a predetermined width, pitch and height) on the first main surface of the device substrate For example, a wire grid type polarizer formed with SiO 2 or the like.
  • the height Hm of the fine metal wire is preferably 30 nm to 200 nm, and more preferably 40 to 150 nm. With this height, s-polarized light transmission is suppressed particularly in the short wavelength region, and the wire grid polarizer can exhibit sufficiently high polarization separation ability. In addition, since the occurrence of the diffraction phenomenon due to the fine metal wire is suppressed, it is possible to suppress a decrease in light transmittance of the polarizer.
  • the basic function of the wire grid polarizer is determined by the width Dm and the pitch Pm of the fine metal wires.
  • the width Dm of the fine metal wire is a distance in a direction perpendicular to the length Lm direction of the fine metal wire
  • the pitch Pm of the fine metal wire is a repetition distance in the width direction of the fine metal wire.
  • the ratio (Dm / Pm) of the width Dm of the fine metal wires to the pitch Pm of the fine metal wires is preferably 0.1 to 0.6, more preferably 0.2 to 0.5.
  • the wire grid polarizer By setting Dm / Pm to 0.1 or more, the wire grid polarizer exhibits a higher degree of polarization with respect to light incident from the surface (surface on which the fine metal wires are formed). By setting Dm / Pm to 0.6 or less, the p-polarized light transmittance becomes higher.
  • the pitch Pm of the fine metal wires is preferably 300 nm or less, and more preferably 50 to 200 nm.
  • the wire grid polarizer exhibits a sufficiently high reflectance and a sufficiently high polarization separation ability even in a short wavelength region near 400 nm. Moreover, the coloring phenomenon by diffraction is suppressed.
  • the width Dm of the fine metal wire is more preferably 10 to 120 nm, and more preferably 30 to 100 nm in consideration of the ease of forming a metal layer by vapor deposition on the top of the ridge.
  • the material of the metal thin wire may be a metal material having sufficient conductivity, but is preferably a material that takes into consideration characteristics such as corrosion resistance in addition to conductivity.
  • the metal material include a simple metal, an alloy, a dopant, and a metal containing a predetermined amount or less of impurities.
  • the metal material include aluminum, silver, chromium, magnesium, an aluminum alloy, a silver alloy, and the like can be given.
  • the metal which contains nonmetallic elements, such as carbon, as a dopant etc. can also be used.
  • Aluminum, aluminum-based alloy, silver, chromium, and magnesium are preferable, and aluminum and aluminum-based alloy are particularly preferable because they have high visible light reflectivity, low visible light absorption, and high conductivity.
  • the fine metal wire may be formed directly on the first main surface of the device substrate, or may be through a base layer such as a metal oxide. Further, as described above, the protrusion may be formed on the surface of the protrusions of the protrusion forming layer made of a material such as resin formed on the first main surface of the device substrate.
  • a panel for a display device with a support can be obtained by forming a display device member on the second main surface of the device substrate with a polarizer in the laminate of the present invention.
  • the display device member is a protective layer, a TFT array (hereinafter simply referred to as “array”), a color filter, a liquid crystal, indium tin oxide (ITO), or the like, on a surface of a conventional device substrate for a liquid crystal display device. It means a transparent electrode made of zinc oxide or the like, various circuit patterns, and the like.
  • the display device panel with a support of the present invention includes, for example, an array forming surface of the display device panel with a support according to the present invention in which an array is formed on the second main surface of the device substrate, and a color filter of the device substrate.
  • the form which bonded together the color filter formation surface of the panel for display apparatuses with a support body of the other this invention formed in the 2nd main surface through the sealing material etc. is also contained.
  • a display device panel can be obtained from such a support-equipped display device panel.
  • the display device panel and the display device can be obtained by peeling the device substrate of the support-equipped display device panel from the resin layer fixed to the support substrate.
  • An example of the display device is a liquid crystal display device. Examples of the liquid crystal display device include TN type, STN type, FE type, TFT type, and MIM type.
  • the manufacturing method of the laminated body of this invention is demonstrated.
  • the manufacturing method of the laminated body of this invention is not restrict
  • a resin layer forming step for forming a resin layer, the device substrate with a reflective polarizer and the support substrate with a resin layer are laminated, and the resin layer is peeled off on the surface of the device substrate on which the reflective polarizer exists.
  • it is a manufacturing method of the laminated body which comprises the contact
  • such a production method is also referred to as a “production method of the present invention”.
  • the manufacturing method of the device substrate and the support substrate itself in the manufacturing method of the present invention is not particularly limited.
  • Each can be produced by a conventionally known method.
  • the substrate when the substrate is made of glass, it can be obtained by, for example, melting a conventionally known glass raw material into a molten glass, and then forming it into a plate shape by a float method, a fusion method, a down draw method, a slot down method, a redraw method, or the like. it can.
  • a method for forming the wire grid polarizer on the device substrate is not particularly limited.
  • the following two methods can be employed.
  • One is a method in which a metal thin film is formed on a device substrate, and then a fine metal wire is formed using a photolithography method.
  • the other is a method in which a resin layer having ridges is formed on a device substrate, a metal layer is formed on the ridges by a method such as vapor deposition or CVD, and a fine metal wire is formed.
  • Examples of a method for forming a resin layer having ridges on a device substrate include an imprint method (an optical imprint method and a thermal imprint method).
  • the optical imprint method is particularly preferable because the groove can be accurately transferred.
  • a mold in which a plurality of grooves are formed in parallel with each other at a predetermined pitch by a combination of electron beam drawing and etching, and the grooves of the mold are formed on the surface of an arbitrary substrate.
  • This is a method of forming a resin layer having ridges by transferring to a photocurable composition applied to the film and simultaneously photocuring the photocurable composition.
  • the production of the ridges by the optical imprint method is specifically performed through the following steps (A) to (D).
  • the production of the ridges by the thermal imprint method is specifically performed through the following steps (E) to (G).
  • E A step of forming a thermoplastic resin transfer film on the first main surface of the device substrate, or a process of producing a thermoplastic resin transfer film.
  • F A glass having a glass transition temperature (Tg) or a melting point (Tm) of a thermoplastic resin so that the groove is in contact with the film to be transferred or the film to be transferred, in a mold in which a plurality of grooves are formed in parallel with each other at a constant pitch.
  • a step of producing a resin layer having a plurality of ridges corresponding to the grooves of the mold by being pressed against the heated film or film to be heated.
  • G A step of cooling the resin layer having a plurality of ridges to a temperature lower than Tg or Tm and peeling the substrate from the mold.
  • a metal material is vapor-deposited from obliquely above the plurality of ridges, thereby forming fine metal wires.
  • the vapor deposition method include physical vapor deposition methods such as vacuum vapor deposition, sputtering, and ion plating.
  • the device substrate When the thickness of the device substrate is very thin, for example, 0.1 mm or less, the device substrate itself can be rolled up. Therefore, the device substrate once wound up in a roll shape is set on a delivery roll, the device substrate is continuously delivered, and a polarizer resin layer is formed on the first main surface of the device substrate using a polarizer resin coating means. To do. Then, the said resin layer for polarizers is stuck to the cylindrical roll which has a groove on a curved surface, a protrusion is transferred to the resin layer for a polarizer, and the resin layer for polarizer which has a protrusion is formed.
  • the opposite side of the device substrate (the resin for the polarizer of the ridges) is brought into close contact with the curved surface of the cylindrical roll.
  • the shape of the applied ridges can be more reliably fixed, which is preferable.
  • the said winding roll is set to the sending-out part of a continuous vapor deposition apparatus, the said device substrate is sent out continuously, and a metal material is vapor-deposited on the upper part of a protruding item
  • the wire grid polarizer is continuously formed on the first main surface of the device substrate.
  • a device substrate with a wire grid polarizer can be manufactured with very high productivity by appropriately cutting a device substrate on which a wire grid polarizer is continuously formed and forming a single substrate.
  • FIG. 5 is a conceptual diagram showing a method of forming a resin layer for a polarizer having ridges on a roll-shaped device substrate by an optical imprint method.
  • a device substrate supply means 51 a polarizer resin (referred to as the photocurable composition, hereinafter the same) application means 52, a nip roll 53, and a flat plate mold having concave stripes are attached to a roll curved surface.
  • a gravure roll 54, a polarizer resin curing means 55, a peeling roll 56, and a device substrate winding means 57 are configured.
  • the device substrate supply means 51 sends out a roll-shaped device substrate toward the polarizer resin coating means 52.
  • the polarizer resin application means 52 is an apparatus for forming a polarizer resin layer by applying a polarizer resin to the first main surface of the device substrate, and supplies the polarizer resin.
  • the gravure roll 54 is an apparatus for forming ridges on the polarizer resin layer applied to the first main surface of the device substrate.
  • the gravure roll 54 has a cylindrical shape, and the curved surface has a shape for the polarizer.
  • a regular fine concavo-convex pattern having a shape obtained by inverting the ridges formed on the resin layer is formed.
  • the fine concavo-convex pattern is required to have shape accuracy, mechanical strength, flatness, and the like.
  • As the shape of the fine uneven pattern a rectangular shape is desirable.
  • the gravure roll 54 is preferably made of metal or resin.
  • a method for forming a regular fine concavo-convex pattern on the curved surface of the gravure roll 54 a method of forming by cutting with a diamond tool, a method of forming by photo etching, electron beam drawing, laser processing, or the like can be employed. Further, a fine uneven pattern is formed on the surface of a thin metal plate by photo etching, electron beam drawing, laser processing, stereolithography, etc., and the plate is formed by a gravure roll 54 base material. It is also possible to adopt a method in which a gravure roll 54 is formed by being wound around a curved surface of a certain cylindrical roll.
  • the surface of a plate-shaped body that is easier to process than metal is formed by inverting a fine uneven pattern by photoetching, electron beam drawing, laser processing, stereolithography, etc., and the plate thickness is thin using electroforming. It is also possible to adopt a method in which a fine uneven pattern is formed on the surface of a metal plate, and the plate is wound around and fixed to the curved surface of the base material of the gravure roll 54 to form the gravure roll 54. It is preferable to perform a mold release process on the curved surface of the gravure roll 54. Thus, the shape of the fine concavo-convex pattern can be satisfactorily maintained by performing the mold release process on the curved surface of the gravure roll 54. As the mold release treatment, various known methods such as coating treatment with a fluororesin can be employed.
  • the gravure roll 54 is preferably provided with driving means.
  • the nip roll 53 is an apparatus that forms a roll while pressing the device substrate in a pair with the gravure roll 54, and is required to have predetermined mechanical strength, roundness, and the like.
  • the longitudinal elastic modulus (Young's modulus) of the surface of the nip roll 53 is set to an appropriate value because roll molding is insufficient if it is too small, and if it is too large, it reacts sensitively to entrainment of foreign matters such as dust and tends to cause defects. For example, 4 MPa to 100 MPa is preferable.
  • the nip roll 53 is preferably provided with driving means.
  • the nip roll 53 rotates in the opposite direction to the gravure roll 54.
  • the gravure roll 54 and the nip roll 53 are preferably synchronized in rotational speed.
  • a pressurizing means on either the gravure roll 54 or the nip roll 53. It is preferable to provide fine adjustment means on either the gravure roll 54 or the nip roll 53 so that the gap (clearance) between the gravure roll 54 and the nip roll 53 can be accurately controlled.
  • the resin curing means 55 for the polarizer is a light irradiation means provided to face the gravure roll 54 on the downstream side of the nip roll 53.
  • the polarizer resin curing means 54 cures the polarizer resin layer formed on the first main surface of the device substrate by light irradiation. It is preferable that light having a wavelength corresponding to the curing characteristics of the resin layer for the polarizer can be irradiated and light having a light amount corresponding to the transport speed of the device substrate can be irradiated.
  • As the polarizer resin curing means 55 a cylindrical lamp having a length substantially the same as the width of the device substrate can be adopted.
  • a plurality of the cylindrical lamps can be provided in parallel, and a reflector can be provided on the back surface of the cylindrical lamp.
  • a configuration in which a cooling means is provided on the gravure roll 54 can also be adopted.
  • the peeling roll 56 is a pair with the gravure roll 54 and peels off the device substrate to which the resin layer having the ridges is applied from the gravure roll 54, and may have predetermined mechanical strength, roundness, and the like. Desired.
  • the device substrate wound on the curved surface of the gravure roll 54 is sandwiched between the rotating gravure roll 54 and the peeling roll 56, and the device substrate is peeled off from the gravure roll 54 and wound around the peeling roll 56. Multiply.
  • the peeling roll 56 is preferably provided with a driving means. The peeling roll 56 rotates in the opposite direction to the gravure roll 54.
  • the device substrate winding means 57 winds up the peeled device substrate and stores it in a roll shape, and is composed of a device substrate winding roll or the like.
  • a configuration is also adopted in which the protective film is supplied to the first main surface side of the device substrate and is stored in the device substrate winding means 57 in a state where the device substrate and the protective film overlap each other. it can.
  • a guide roller or the like that forms a conveyance path for a device substrate between the resin application means 52 for the polarizer and the gravure roll 54, between the peeling roll 56 and the winding means 57 for the device substrate, etc.
  • a tension roller or the like can be provided as needed to absorb slack during the transfer of the device substrate.
  • the method of forming a fine uneven pattern is not only a method using a gravure roll in which a fine uneven pattern is formed on the curved surface of a cylindrical roll, but also a method in which a fine uneven pattern is formed on the surface of a belt-like body such as an endless belt. The method using is also included. Even in the formation method using such a belt-like body, the same operation and effect as the formation method using the cylindrical gravure roll can be obtained.
  • a metal layer is formed by vapor deposition on the top of the ridge to form a thin metal wire, and a reflective polarizer is manufactured.
  • the method for forming the resin layer on the surface (first main surface) of the support substrate is not particularly limited.
  • a method of adhering a film-like resin to the surface of the support substrate can be mentioned.
  • a method of performing surface modification treatment (priming treatment) on the surface of the support substrate and adhering to the first main surface of the support substrate can be mentioned.
  • chemical methods such as silane coupling agents to improve adhesion (primer treatment), physical methods to increase surface active groups such as flame (flame) treatment, and surfaces such as sandblast treatment
  • Examples of such a mechanical processing method increase the catch by increasing the roughness of the material.
  • a method of coating the first main surface of the support substrate with a resin composition that becomes a resin layer by a known method may be mentioned.
  • Known methods include spray coating, die coating, spin coating, dip coating, roll coating, bar coating, screen printing, and gravure coating. From such a method, it can select suitably according to a kind to a resin composition. For example, when a solventless release paper silicone is used as the resin composition, a die coating method, a spin coating method or a screen printing method is preferred.
  • the coating amount is preferably 1 to 100 g / m 2 , and more preferably 5 to 20 g / m 2 .
  • a resin composition containing a silicone (main agent) containing a linear dimethylpolysiloxane in the molecule, a crosslinking agent and a catalyst is used for the known spray coating method or the like.
  • the coating is applied to the first main surface of the support substrate by the method, and then heat-cured.
  • the heating and curing conditions vary depending on the blending amount of the catalyst. For example, when 2 parts by weight of a platinum-based catalyst is blended with respect to 100 parts by weight of the total amount of the main agent and the crosslinking agent, 50 to 250 ° C. in the atmosphere, The reaction is preferably carried out at 100 ° C to 200 ° C.
  • the reaction time is 5 to 60 minutes, preferably 10 to 30 minutes.
  • the reaction temperature and the reaction time are as described above because no unreacted silicone component remains in the silicone resin layer. If the reaction time is too long or the reaction temperature is too high, the oxidative decomposition of the silicone resin occurs at the same time, and a low molecular weight silicone component is produced, which may increase the silicone transferability. It is preferable to allow the curing reaction to proceed as much as possible so that an unreacted silicone component does not remain in the silicone resin layer in order to improve the peelability after the heat treatment.
  • the release paper silicone coated on the first main surface of the support substrate is heat-cured to form a silicone resin layer, and then supported in the adhesion step.
  • a device substrate is laminated on the silicone resin-formed surface of the substrate.
  • the adhesion step is a step of laminating the device substrate with a reflective polarizer and the support substrate with a resin layer, and bringing the peelable surface of the resin layer into close contact with the surface of the device substrate where the reflective polarizer is present. is there.
  • the surface of the device substrate where the reflective polarizer exists and the peelable surface of the resin layer can be bonded by the force caused by the van der Waals force between adjacent solid molecules, that is, the adhesion force. preferable.
  • the support substrate and the device substrate can be held in a state of being laminated via the resin layer.
  • the height of the ridge of the polarizer is less than 100 nm, and the thickness of the resin layer is 5 ⁇ m or more, it is possible to follow the ridge shape by deformation of the resin layer.
  • the method for laminating the device substrate with a reflective polarizer and the support substrate with a resin layer is not particularly limited. For example, it can implement using a well-known method. For example, after laminating the device substrate on the surface of the resin layer under a normal pressure environment, a method of pressure bonding the resin layer and the device substrate using a roll or a press can be mentioned. It is preferable because the resin layer and the device substrate are more closely adhered by pressure bonding with a roll or a press. In addition, bubbles mixed between the resin layer and the device substrate can be relatively easily removed by pressure bonding using a roll or a press.
  • the surface of the device substrate is sufficiently washed and laminated in a clean environment. Even if a foreign substance is mixed between the resin layer and the device substrate, the resin layer is deformed so that the flatness of the surface of the device substrate is not affected. However, the higher the cleanness, the better the flatness. Therefore, it is preferable.
  • the laminate of the present invention can be manufactured by such a manufacturing method of the present invention.
  • a panel for a display device with a support by the manufacturing method further comprising the step of forming a member for a display device on the second main surface of the device substrate in the obtained laminate of the present invention.
  • the display device member is not particularly limited.
  • an array or a color filter included in the liquid crystal display device can be given.
  • a method for forming such a display device member is not particularly limited, and may be the same as a conventionally known method.
  • a step of forming an array on a conventionally known glass substrate, a step of forming a color filter, a glass substrate on which the array is formed, and a glass substrate on which the color filter is formed It may be the same as various steps such as a step of bonding through a sealing material or the like (array / color filter bonding step). More specifically, examples of the processing performed in these steps include pure water cleaning, drying, film formation, resist coating, exposure, development, etching, and resist removal.
  • pouring process and the sealing process of the injection port performed after implementation of this process The process implemented by these processes is mentioned.
  • a display device panel can be obtained by a manufacturing method including a peeling step for peeling the surface.
  • the method for peeling is not particularly limited. Specifically, for example, a sharp blade-like object can be inserted into the boundary between the device substrate and the resin layer, or a mixed fluid of water and compressed air can be sprayed to peel off.
  • the display panel with a support is installed on a surface plate so that the support substrate side is on the upper side and the panel side is on the lower side, and the panel side substrate is vacuum-adsorbed on the surface plate (the support substrate is laminated on both sides).
  • the liquid is mixed with water and compressed air at the boundary between the device substrate and the resin layer of the display panel with support, and the end of the support substrate is pulled vertically upward. increase.
  • an air layer is sequentially formed at the boundary, the air layer spreads over the entire boundary, and the support substrate can be easily peeled off (the support substrate is formed on both main surfaces of the display device panel with a support).
  • the peeling step is repeated one side at a time).
  • a display device can be manufactured by a manufacturing method including a step of obtaining a display device using the obtained display device panel.
  • the manufacturing method of the display device is not particularly limited, and for example, the display device can be manufactured by a conventionally known manufacturing method.
  • Example 1 First, a glass device substrate (Asahi Glass Co., Ltd., AN100, non-alkali glass substrate) having a length of 170 mm, a width of 100 mm, a plate thickness of 0.3 mm, and a linear expansion coefficient of 38 ⁇ 10 ⁇ 7 / ° C. was prepared. The surface was cleaned by UV cleaning. Thereafter, aluminum (Al) was vapor-deposited on the first main surface of the device substrate at 0.9 ⁇ 10 ⁇ 5 torr and 10 ⁇ / sec to form an Al layer having a thickness of 200 nm. Next, a 100 nm-thick resist (manufactured by Zeon Corporation, ZEP520A) was applied on the Al layer by spin coating.
  • a 100 nm-thick resist manufactured by Zeon Corporation, ZEP520A
  • EB exposure and development were performed using an electron beam drawing apparatus (manufactured by Hitachi High-Technology Corporation, HL800D (50 keV)), and a plurality of grooves (width: 100 nm) were formed in parallel with each other at a predetermined pitch (200 nm).
  • a resist film was formed.
  • RIE-140iPC plasma etching apparatus
  • etching is performed with SF 6 to remove excess Al, and the size (pitch Pm: 200 nm, width Dm: 100 nm, height Hm: 200 nm).
  • a wire grid polarizer of Al metal fine wire (1) was formed on the first main surface of the device substrate to obtain a device substrate with a wire grid polarizer.
  • a glass support substrate (Asahi Glass Co., Ltd., AN100, non-alkali glass substrate) having a length of 180 mm, a width of 110 mm, a plate thickness of 0.4 mm, and a linear expansion coefficient of 38 ⁇ 10 ⁇ 7 / ° C. is prepared.
  • the surface was cleaned by UV cleaning.
  • a screen printing machine having a mixture of 100 parts by weight of silicone for solvent-free addition reaction type release paper and 2 parts by weight of platinum catalyst in a size of 178 mm in length and 108 mm in width. (Coating amount 30 g / m 2 ). And it heat-hardened in air
  • the polarizer-forming surface of the device substrate with the wire grid polarizer and the surface of the silicone resin layer fixed to the first main surface of the support substrate are centroided by vacuum press at room temperature. Were laminated so as to overlap each other to obtain a laminate A (laminate of the present invention).
  • the device substrate with the wire grid polarizer and the support substrate are in close contact with the silicone resin layer without generating bubbles, and there is no convex defect and the smoothness is good.
  • the flask was stirred and homogenized for 1 hour at room temperature and in a light-shielded state.
  • 100 g (solid content: 30 g) of colloidal silica was slowly added, and the mixture was stirred and homogenized for 1 hour while keeping the inside of the flask at room temperature and light shielding.
  • 340 g of cyclohexanone was added, and the mixture was stirred for 1 hour with the inside of the flask kept at room temperature and light-shielded to obtain a solution of a photocurable composition.
  • a glass device substrate (Asahi Glass Co., Ltd., AN100, non-alkali glass substrate) having a length of 500 mm, a width of 400 mm, a plate thickness of 0.3 mm, and a linear expansion coefficient of 38 ⁇ 10 ⁇ 7 / ° C.
  • the photocurable composition was applied by spin coating to form a polarizer resin layer made of a 1 ⁇ m thick photocurable composition.
  • a quartz mold in which a plurality of grooves that are fine concavo-convex patterns are formed in parallel with each other at a predetermined pitch (mold area: 150 mm long ⁇ 130 mm wide, fine concavo-convex pattern area: 140 mm long ⁇ 120 mm wide, groove pitch: 150 nm, Groove width: 50 nm, groove depth: 100 nm, groove length: 140 mm, groove cross-sectional shape: rectangular) at 25 ° C. and 0.5 MPa (gauge pressure) on the first main surface of the device substrate It pressed against the formed resin layer for polarizers.
  • the irradiation energy at the high-pressure mercury lamp (frequency: 1.5 kHz to 2.0 kHz, dominant wavelength light: 255 nm, 315 nm, and 365 nm) from the back side of the quartz mold (opposite side of the surface on which the fine concavo-convex pattern is formed): 1000 mJ / cm 2 ) for 15 seconds, the polarizer resin layer is cured, and a polarizer resin layer having a plurality of ridges corresponding to the grooves of the quartz mold (ridge pitch: 150 nm, The width of the ridges: 50 nm and the height of the ridges: 100 nm). Then, the quartz mold was slowly peeled off from the device substrate.
  • FIG. 6 is a schematic front view of a device substrate with ridges in which a plurality of ridges are formed on the first main surface of one device substrate. Convex ridges 61 were formed at a total of nine locations, three in the vertical direction and three in the horizontal direction, on the first main surface 62a of the device substrate. In addition, the clearance gap Wp in which the protruding item
  • FIG. 7 shows a schematic diagram of the vapor deposition method.
  • the vapor deposition from the direction V2 which is substantially perpendicular to the length direction of the projection and the angle of 30 degrees to the second side surface 76b side of the projection with respect to the height direction of the projection, and 25 nm for each deposition was formed on the top of the ridge, and an Al layer having a width of 50 nm and a thickness of 50 nm was formed on the top of the ridge.
  • vinyl groups are present on both ends on the first main surface of a support substrate (Asahi Glass Co., Ltd., AN100) having a length of 500 mm, a width of 400 mm, a plate thickness of 0.4 mm, and a linear expansion coefficient of 38 ⁇ 10 ⁇ 7 / ° C.
  • a linear polyorganosiloxane and a methylhydrogen polysiloxane having a hydrosilyl group in the molecule are mixed, and this is mixed with a platinum-based catalyst to prepare a mixture, with an area of 498 mm in length and 398 mm in width.
  • Coating was performed with a die coater (coating amount 20 g / m 2 ), and heat curing was performed in the air at 180 ° C. for 30 minutes to form a 20 ⁇ m thick silicone resin layer.
  • the mixing ratio of the linear polyorganosiloxane and the methylhydrogen polysiloxane was adjusted so that the molar ratio of hydrosilyl group to vinyl group was 1/1.
  • the platinum-based catalyst was added in an amount of 5 parts by mass with respect to a total of 100 parts by mass of the linear polyorganosiloxane and methyl hydrogen polysiloxane.
  • the polarizer-formed surface of the device substrate with the wire grid type polarizer and the surface of the silicone resin layer on the first main surface of the support substrate are bonded to each other by a vacuum press at room temperature.
  • a laminate of the present invention was obtained.
  • the device substrate with the polarizer and the support substrate were in close contact with the silicone resin layer without generating bubbles, and had no convex defects and good smoothness. .
  • Example 3 A glass device substrate (Asahi Glass Co., Ltd., AN100, non-alkali glass substrate) having a linear expansion coefficient of 38 ⁇ 10 ⁇ 7 / ° C., a thickness of 0.1 mm, and a width of 400 mm was continuously formed by the fusion method. A polyethylene film having a thickness of 30 ⁇ m was thermally fused to both main surfaces of the device substrate. Thereafter, the device substrate having a length of 50 m was wound around a bobbin having a core diameter of 200 mm to form a roll.
  • a glass device substrate Asahi Glass Co., Ltd., AN100, non-alkali glass substrate having a linear expansion coefficient of 38 ⁇ 10 ⁇ 7 / ° C., a thickness of 0.1 mm, and a width of 400 mm was continuously formed by the fusion method.
  • a polyethylene film having a thickness of 30 ⁇ m was thermally fused to both main surfaces of the device substrate. Thereafter, the device substrate having
  • the roll-shaped device substrate is set in the device substrate delivery portion of the continuous WEB coater manufactured by Toshiba Machine Co., Ltd., and the polyethylene film on the side that becomes the first main surface later is heated again with a heat roll.
  • the main surface and the polyethylene film surface are continuously peeled off, and then the polarizer resin comprising the photocurable composition is applied to the first main surface of the device substrate (the polyethylene film It was applied to the non-existing surface).
  • a nickel mold (mold area: 150 mm ⁇ 400 mm) having a thickness of 0.2 mm, in which a plurality of grooves are formed in parallel with each other at a predetermined pitch on a chrome-plated metal roll (width 450 mm, diameter 250 mm).
  • Pattern area 120 mm ⁇ 170 mm, number of patterns: 2, pattern area interval: 20 mm, groove pitch: 150 nm, groove width: 50 nm, groove depth: 100 nm, groove length: 120 mm, groove cross-sectional shape: Three (rectangles) were pasted on the curved surface of the metal roll at intervals of 61 mm to prepare a gravure roll.
  • the device substrate was pressed in the gravure roll direction using a nip roll so that the groove on the curved surface of the gravure roll was in contact with the polarizer resin layer formed on the first main surface of the device substrate.
  • the atmospheric temperature at the time of pressing was 25 ° C.
  • the high-pressure mercury lamp (frequency: 1.5 kHz to 2.0 kHz, main wavelength light: irradiation energy at 255 nm, 315 nm and 365 nm: 1000 mJ) / Cm 2 ) light is continuously irradiated to cure the polarizer resin layer, and the polarizer resin layer (projection strip pitch: 150 nm, projection strip) having projections corresponding to the grooves of the nickel mold. (Width: 50 nm, height of ridge: 100 nm).
  • the device substrate was wound up on a winding roll.
  • ridges are formed at intervals of 30 mm at two locations in the width direction of the device substrate, and ridges are continuously formed at intervals of 30 mm in the length direction. It was.
  • the wound roll-shaped device substrate is set on a delivery part of a continuous vapor deposition apparatus, Al is continuously vapor deposited at a vapor deposition angle of 25 to 35 degrees, and an Al layer having a width of 50 nm and a thickness of 50 nm is formed on the top of the ridge. Formed.
  • the wire grid polarizer was continuously formed on the first main surface of the thin glass substrate.
  • the device substrate on which the wire grid type polarizer is continuously formed is cut at intervals of 750 mm to obtain a device substrate with a wire grid type polarizer having a length of 750 mm, a width of 400 mm, and a thickness of 0.1 mm. It was.
  • a glass support substrate (Asahi Glass Co., Ltd., AN100, non-alkali glass substrate) having a length of 760 mm, a width of 405 mm, a plate thickness of 0.6 mm, and a linear expansion coefficient of 38 ⁇ 10 ⁇ 7 / ° C.
  • a linear polyorganosiloxane having vinyl groups at both ends and a methylhydrogen polysiloxane having a hydrosilyl group in the molecule are mixed, and this is mixed with a platinum-based catalyst to prepare a mixture.
  • the laminated body C (of the present invention) is bonded to the polarizer-forming surface of the device substrate with the polarizer and the surface of the silicone resin layer on the first main surface of the support substrate by a vacuum press at room temperature. A laminate was obtained.
  • the device substrate with a polarizer and the support substrate were in close contact with the silicone resin layer without generating bubbles, and had no convex defects and good smoothness. .
  • Example 4 Except for changing the photocurable composition to a heat-resistant silicone resin (FX-V550 manufactured by Adeka), in the same manner as in Example 2, with a gap of 10 mm where no protrusions are formed on the first main surface of the device substrate.
  • the ridges were formed in 9 places, 3 places in the vertical direction and 3 places in the horizontal direction.
  • the device substrate and the support substrate were bonded together to obtain a laminate D (laminate of the present invention).
  • the device substrate with the polarizer and the support substrate were in close contact with the silicone resin layer without generating bubbles, and had no convex defects and good smoothness. .
  • Example 5 a liquid crystal display device is manufactured using the laminates B and D obtained in Examples 2 and 4.
  • the laminated body D is prepared and used for an array forming process to form an array on the second main surface of the device substrate.
  • the laminate B is subjected to a color filter forming step to form a color filter on the second main surface of the device substrate.
  • the laminated body D in which the array is formed and the laminated body B in which the color filter is formed are bonded to each other through a sealing material to obtain a display device panel with a support.
  • the polarization axes of the polarizers of the stacked body D and the stacked body B are designed in advance so as to have an appropriate combination.
  • substrate) currently fixed to both the main surfaces of the display apparatus panel with a support body is peeled.
  • the supporting substrate was peeled off after spraying a mixed fluid of compressed air and water on the boundary between the resin layer and the thin plate laminate, one side of each of the main surfaces.
  • the surface of the device substrate after peeling does not show scratches that lead to a decrease in strength. Further, the scratches that lead to the deterioration in display performance are not observed in the polarizer.
  • the device substrate from which the support substrate has been peeled is divided into 54 cells measuring 51 mm in length and 38 mm in width, and then a liquid crystal injection step and an injection port sealing step are performed to form a liquid crystal cell.
  • a module forming step is performed to obtain a liquid crystal display device. There is no problem in characteristics of the liquid crystal display device thus obtained.
  • Example 6 an extremely thin liquid crystal display device is manufactured using the laminate C obtained in Example 3. Two stacked bodies C are prepared, and one is subjected to an array forming process to form an array on the second main surface of the device substrate. The remaining one sheet is subjected to a color filter forming step to form a color filter on the second main surface of the device substrate.
  • the laminated body in which the array is formed and the laminated body in which the color filter is formed are bonded together through a sealing material after aligning the directions of the polarization axes of the polarizers, thereby obtaining a display device panel with a support. Thereafter, the support (support substrate) attached to both main surfaces of the display panel with support is peeled off.
  • the support substrate is peeled off after spraying a mixed fluid of compressed air and water on the boundary between the resin layer and the thin plate laminate, one side of each of the main surfaces.
  • the surface of the device substrate after peeling does not show scratches that lead to a decrease in strength. Further, the scratches that lead to the deterioration in display performance are not observed in the polarizer.
  • the device substrate from which the support substrate has been peeled is cut and divided into 64 cells of 51 mm in length and 38 mm in width, and then a liquid crystal injection step and an injection port sealing step are performed to form a liquid crystal cell. Subsequently, a module forming step is performed to obtain an extremely thin liquid crystal display device.
  • the ultrathin liquid crystal display device thus obtained does not have a problem in characteristics.
  • Example 7 a liquid crystal display device is manufactured using the laminate A obtained in Example 1. Two stacked bodies A are prepared, and one is subjected to an array forming process to form an array on the second main surface of the device substrate. On the other hand, the other laminate A is subjected to a color filter forming step to form a color filter on the second main surface of the device substrate. The laminated body in which the array is formed and the laminated body in which the color filter is formed are bonded together through a sealing material after aligning the directions of the polarization axes of the polarizers, thereby obtaining a display device panel with a support. Thereafter, the support (support substrate) attached to both main surfaces of the display panel with support is peeled off.
  • the support substrate is peeled off after spraying a mixed fluid of compressed air and water on the boundary between the resin layer and the thin plate laminate, one side of each of the main surfaces.
  • the surface of the device substrate after peeling does not show scratches that lead to a decrease in strength. Further, the scratches that lead to the deterioration in display performance are not observed in the polarizer.
  • the device substrate from which the support substrate has been peeled is cut and divided into six cells of 51 mm in length ⁇ 38 mm in width, and then a liquid crystal injection step and an injection port sealing step are performed to form a liquid crystal cell. Subsequently, a module forming step is performed to obtain a liquid crystal display device. There is no problem in characteristics of the liquid crystal display device thus obtained.
  • Example 8 Using a film base material of a cycloolefin polymer (ZEONOR Film ZF14 manufactured by Nippon Zeon Co., Ltd.) having a linear expansion coefficient of 700 ⁇ 10 ⁇ 7 / ° C., a thickness of 0.1 mm, and a width of 400 mm as a device substrate, A roll is set on the device substrate feed portion of a continuous WEB coater manufactured by Toshiba Machine Co., Ltd., and the polarizer resin coating means is applied to the first main surface of the thin glass substrate with the photocurable composition. did.
  • a film base material of a cycloolefin polymer (ZEONOR Film ZF14 manufactured by Nippon Zeon Co., Ltd.) having a linear expansion coefficient of 700 ⁇ 10 ⁇ 7 / ° C., a thickness of 0.1 mm, and a width of 400 mm as a device substrate
  • a nickel mold (mold area: 150 mm ⁇ 400 mm) having a thickness of 0.2 mm, in which a plurality of grooves are formed in parallel with each other at a predetermined pitch on a chrome-plated metal roll (width 450 mm, diameter 250 mm).
  • Pattern area 120 mm ⁇ 170 mm, number of patterns: 2, pattern area interval: 20 mm, groove pitch: 150 nm, groove width: 50 nm, groove depth: 100 nm, groove length: 120 mm, groove cross-sectional shape: Three (rectangles) were pasted on the curved surface of the metal roll at intervals of 61 mm to prepare a gravure roll.
  • the film substrate was pressed in the gravure roll direction using a nip roll so that the groove on the curved surface of the gravure roll was in contact with the polarizer resin layer formed on the first main surface of the film substrate.
  • the atmospheric temperature at the time of pressing was 25 ° C.
  • a high pressure mercury lamp (frequency: 1.5 kHz to 2.0 kHz, main wavelength light: irradiation energy at 255 nm, 315 nm and 365 nm: 1000 mJ / cm 2 ) from the second main surface side of the film base while maintaining the pressed state.
  • the polarizer resin layer is cured, and a polarizer resin layer having a ridge corresponding to the groove of the nickel mold (ridge pitch: 150 nm, ridge width: 50 nm, The height of the ridges: 100 nm) was produced.
  • the film base material was wound up on a winding roll.
  • ridges are formed at intervals of 30 mm at two locations in the width direction of the film substrate, and continuously protruding at intervals of 30 mm in the length direction. was formed.
  • the wound roll-shaped film base material is set on a delivery portion of a continuous vapor deposition apparatus, Al is continuously vapor deposited at a vapor deposition angle of 25 to 35 degrees, and an Al layer having a width of 50 nm and a thickness of 50 nm is formed on the top of the ridge. Formed. Through the above steps, a wire grid polarizer was continuously formed on the first main surface of the film substrate.
  • the film base material on which the wire grid type polarizer is continuously formed is cut at intervals of 750 mm in length, and a device substrate with a wire grid type polarizer having a length of 750 mm, a width of 400 mm, and a thickness of 0.1 mm.
  • a support substrate (ZEONOR sheet 1020R manufactured by Nippon Zeon Co., Ltd.) having a length of 760 mm, a width of 405 mm, a thickness of 0.6 mm, and a linear expansion coefficient of 700 ⁇ 10 ⁇ 7 / ° C.
  • a linear polyorganosiloxane having a group and a methyl hydrogen polysiloxane having a hydrosilyl group in the molecule are mixed, and this is mixed with a platinum-based catalyst to prepare a mixture having a length of 757 mm and a width of 402 mm.
  • the polarizer-formed surface of the device substrate with the polarizer and the surface of the silicone resin layer on the first main surface of the support substrate are bonded to each other by a vacuum press at room temperature using a laminate E (of the present invention).
  • a laminate was obtained.
  • the device substrate with the polarizer and the support substrate were in close contact with the silicone resin layer without generating bubbles, and had no convex defects and good smoothness. .
  • Example 9 an extremely thin liquid crystal display device is manufactured by using the laminate E obtained in Example 8. Two stacked bodies E are prepared, and one is subjected to an array forming process to form an array on the second main surface of the device substrate. The remaining one sheet is subjected to a color filter forming step to form a color filter on the second main surface of the device substrate. The laminated body in which the array is formed and the laminated body in which the color filter is formed are bonded together through a sealing material after aligning the directions of the polarization axes of the polarizers, thereby obtaining a display device panel with a support. Thereafter, the support (support substrate) attached to both main surfaces of the display panel with support is peeled off.
  • the support substrate is peeled off after spraying a mixed fluid of compressed air and water on the boundary between the resin layer and the thin plate laminate, one side of each of the main surfaces.
  • the surface of the device substrate after peeling does not show scratches that lead to a decrease in strength. Further, the scratches that lead to the deterioration in display performance are not observed in the polarizer.
  • the device substrate from which the support substrate has been peeled is cut and divided into 64 cells of 51 mm in length and 38 mm in width, and then a liquid crystal injection step and an injection port sealing step are performed to form a liquid crystal cell. Subsequently, a module forming step is performed to obtain an extremely thin liquid crystal display device.
  • the ultrathin liquid crystal display device thus obtained does not have a problem in characteristics.
  • Example 2 Using a glass device substrate (Asahi Glass Co., Ltd., AN100, non-alkali glass substrate) having a length of 170 mm, a width of 100 mm, a plate thickness of 0.7 mm, and a linear expansion coefficient of 38 ⁇ 10 ⁇ 7 / ° C., the same as in Example 1 A device substrate on which a wire grid polarizer of Al metal fine wires having a size (pitch Pm: 200 nm, width Dm: 100 nm, height Hm: 200 nm) was formed by the method was obtained.
  • a glass device substrate Asahi Glass Co., Ltd., AN100, non-alkali glass substrate
  • the laminated body obtained by the present invention can provide a laminated body with a polarizer capable of producing a display device thinner than a conventional display device.
  • Laminated body with polarizer (laminated body of the present invention) 11 reflective polarizer 12, 32, 42, 72 device substrate 12a, 32a, 42a, 62a device substrate first main surface 12b device substrate second main surface 13 support substrate 13a support substrate first main surface 13b support substrate second main Surface 14 Resin layer 35 Thin metal wires 46, 61, 76 Projection 47 Film made of metal material 51 Device substrate supply means 51a Device substrate feed roll 51b Protective film peeling roll 51c Protective film take-up roll 52 Polarizer resin application means 52a Polarized light Resin supply source 52b Coating head 52c Coating roller 52d Pipe 52e Pump 53 Nip roll 54 Gravure roll 55 Polarizer resin curing means 56 Peeling roll 57 Winding means 76a First side surface 76b of the ridge Second side surface of the ridge Dm Metal wire width Pm Metal wire pitch Hm The length of the height Lm fine metal wire genera thin lines V1, V2 deposition direction Wp gap Xa longitudinal arrow Xb transverse arrow

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

 本発明は、第1主面(12a)および第2主面(12b)を有するデバイス基板(12)、第1主面(13a)および第2主面(13b)を有する支持基板(13)、ならびに前記デバイス基板の第1主面と前記支持基板の第1主面の間に存在する樹脂層(14)を有する偏光子付き積層体(10)であって、前記デバイス基板の第1主面に反射型偏光子(11)が存在し、前記デバイス基板の反射型偏光子が存在する面に接する前記樹脂層の表面が剥離性を有する偏光子付き積層体に関する。

Description

偏光子付き積層体、支持体付き表示装置用パネル、表示装置用パネル、表示装置およびこれらの製造方法
 本発明は、表示装置に用いられる偏光子付きデバイス基板を含む積層体、それを含む支持体付き表示装置用パネル、それを用いて形成される表示装置用パネルおよびそれを含む表示装置ならびにこれらの製造方法に関する。
 液晶表示装置(LCD)、リアプロジェクションテレビ、フロントプロジェクター等の画像表示装置、特にデジタルカメラや携帯電話等の携帯型表示装置の分野では、表示装置の軽量化、薄型化が重要な課題となっている。
  この課題に対応するために、表示装置に用いるデバイス基板自体の板厚をさらに薄くすることが望まれている。ガラス基板の場合は板厚を薄くする一般的な方法として、表示装置用部材をガラス基板の表面に形成する前または形成した後に、フッ酸等を用いてガラス基板をエッチング処理し、必要に応じてさらに物理研磨して薄くする方法が行われる。
 しかしながら、表示装置用部材をガラス基板の表面に形成する前に、エッチング処理等をしてガラス基板の板厚を薄くすると、ガラス基板の強度が低下し、たわみ量も大きくなる。そのため、既存の表示装置用パネルの製造ラインで処理することが、困難になるという問題が生じる。
  また、表示装置用部材をガラス基板の表面に形成した後にエッチング処理等をしてガラス基板の板厚を薄くすると、表示装置用部材をガラス基板の表面に形成する過程において、ガラス基板の表面に形成された微細な傷が顕在化する問題、すなわちエッチピット(etchpit)の発生という問題が生じる。
 そこで、このような問題を解決することを目的として、板厚の薄いガラス基板(以下では「薄板ガラス基板」ともいう。)を他の支持ガラス基板と貼り合わせてガラス積層体とし、その状態で表示装置を製造するための所定の処理を実施し、その後、薄板ガラス基板から支持ガラス基板を剥離する方法等が提案されている。
 例えば特許文献1には、製品用のガラス基板と補強用ガラス基板とを、ガラス基板同士の静電気吸着力または真空吸着力を利用して貼り合わせて一体化し、製品用のガラス基板を用いた表示装置を製造する方法が記載されている。
  例えば特許文献2には、液晶表示装置の基板と支持体との端部をガラスフリット系の接着剤を用いて接着して、その後、電極パターン等を形成する液晶表示装置の製造方法が記載されている。
  例えば特許文献3には、2枚のガラス基板の少なくとも周縁部の端面近傍にレーザー光を照射して、前記2枚のガラス基板を融合させる工程を有する表示装置用基板の製造方法が記載されている。
 例えば特許文献4には、粘着材層が支持体上に設けられている基板搬送用治具に基板を貼り付け、液晶表示素子の製造工程を通して基板搬送用治具を搬送することにより、基板搬送用治具に貼り付いている基板に対して液晶表示素子形成処理を順次行い、所定の工程を終了後、基板搬送用治具から基板を剥離する液晶表示装置の製造方法が記載されている。
  例えば特許文献5には、液晶表示素子用電極基板を紫外線硬化型粘着剤が支持体上に設けられた治具を用いて、液晶表示素子用電極基板に所定の加工を施した後、紫外線硬化型粘着剤に紫外線を照射することにより、前記紫外線硬化型粘着剤の粘着力を低下させ、前記液晶表示素子用電極基板を前記治具から剥離することを特徴とする液晶表示素子の製造方法が記載されている。
  例えば特許文献6には、粘着材によって薄板を支持板に仮固定し、前記粘着材の周縁部をシール材によって封止し、薄板を仮固定した支持板を搬送する搬送方法が記載されている。
 例えば特許文献7には、薄板ガラス基板と、支持ガラス基板と、を積層させてなる薄板ガラス積層体であって、前記薄板ガラスと、前記支持ガラス基板と、が易剥離性および非粘着性を有するシリコーン樹脂層を介して積層されていることを特徴とする薄板ガラス積層体が記載されている。そして、薄板ガラス基板から支持ガラス基板を剥離させるには、薄板ガラス基板を支持ガラス基板から垂直方向に引き離す力を与えればよく、剃刀の刃等で端部に剥離のきっかけをいれ、積層境界へのエアーの注入により、より容易に剥離することが可能であると記載されている。
 以上説明したような表示装置に用いるガラス基板自体の板厚をさらに薄くする試みの他に、液晶表示装置を構成するガラス基板以外の構成部材の厚さを薄くする方法も当然ある。そのひとつの方法として、液晶表示装置に欠かせない、可視光領域で偏光分離能を示す偏光子(偏光分離素子ともいう)を薄くする方法がある。通常、この偏光子は液晶セルが出来上がった後にフィルム状の基材に形成された形で貼合される。このため、基材フィルムの厚さが加わる事になる。一方、特許文献8ではガラス基板上に偏光子を形成する方法も提案されている。
日本国特開2000-241804号公報 日本国特開昭58-54316号公報 日本国特開2003-216068号公報 日本国特開平8-86993号公報 日本国特開平9-105896号公報 日本国特開2000-252342号公報 国際公開第2007/018028号パンフレット 日本国特開2005-242080号公報
 しかしながら、特許文献1に記載のガラス基板同士を静電吸着力や真空吸着力を利用して固定する方法、特許文献2に記載のガラス基板の両端を、ガラスフリットを用いて固定する方法、または特許文献3に記載の周縁部の端面近傍にレーザー光を照射して2枚のガラス基板を融合させる方法では、ガラス基板同士を何らかの中間層を介さず積層密着させるので、ガラス基板間へ混入した気泡や塵介等の異物によってガラス基板にゆがみ欠陥が生じる。そのため、表面が平滑なガラス基板積層体を得ることは困難である。
 また、特許文献4~6に記載のガラス基板間に粘着層等を配置する方法では、上記のようなガラス基板間への気泡等の混入によるゆがみ欠陥の発生を回避し得るものの、両ガラス基板を分離することが困難であり、分離する際に薄板ガラス基板が破損するおそれがある。また分離後の薄板ガラス基板への粘着剤の残存も問題となる。
 これに対して特許文献7に記載の薄板ガラス積層体によれば、上記のようなガラス基板間への気泡等の混入によるゆがみ欠陥は発生し難い。また、薄板ガラス基板と支持ガラス基板とを剥離することも可能である。さらに分離後の薄板ガラス基板への粘着剤の残存の問題は解決される。このため、本方法は表示装置に用いるガラス基板自体の板厚をさらに薄くする方法として有効である。
 次に、特許文献8に記載のガラス基板上に偏光子が形成された基板は、おもに液晶プロジェクタ装置の偏光分離素子として作られた物であり、光路の途中に単独で設置される物であり、これを基板として用いてカラーフィルタ形成工程およびTFTアレイ形成工程を流動させるのは不可能である。それは、前記の両工程における基板搬送の際に、偏光子が形成された面と搬送コロや金属トレイとが接触するように搬送されるため、偏光子が搬送コロや金属トレイと接触し、偏光子に傷がつく不具合がある。また、液晶セルを組んだ後にガラス基板上に偏光素子を直接形成した場合、偏光子形成工程における処理によって、カラーフィルタの有機物や液晶自体が劣化する恐れがある。
 本発明者は上記課題を解決するために鋭意検討を重ね、本発明を完成した。
  本発明は以下の(1)~(14)に関する。
 (1)第1主面および第2主面を有するデバイス基板、第1主面および第2主面を有する支持基板、ならびに前記デバイス基板の第1主面と前記支持基板の第1主面の間に存在する樹脂層を有する偏光子付き積層体であって、前記デバイス基板の第1主面に反射型偏光子が存在し、前記デバイス基板の反射型偏光子が存在する面に接する前記樹脂層の表面が剥離性を有する偏光子付き積層体。
  (2)前記反射型偏光子がワイヤグリッド型偏光子である、(1)に記載の偏光子付き積層体。
  (3)前記ワイヤグリッド型偏光子の金属細線のピッチ(Pm)が50~200nmであり、金属細線の幅(Dm)とピッチ(Pm)の比(Dm/Pm)が0.1~0.6である、(2)に記載の偏光子付き積層体。
  (4)前記樹脂層を形成する樹脂が、フッ素樹脂、アクリル樹脂、ポリオレフィン樹脂、ポリウレタン樹脂およびシリコーン樹脂から選ばれる少なくとも1つである、(1)~(3)のいずれかに記載の偏光子付き積層体。
  (5)前記樹脂層の厚さが5~50μmである、(1)~(4)のいずれかに記載の偏光子付き積層体。
  (6)前記デバイス基板と前記支持基板とが同じ材料からなり、該デバイス基板と該支持基板との線膨張係数の差が150×10-7/℃以下である、(1)~(5)のいずれかに記載の偏光子付き積層体。
  (7)前記デバイス基板と前記支持基板とが異なる材料からなり、該デバイス基板と該支持基板との線膨張係数の差が700×10-7/℃以下である、(1)~(5)のいずれかに記載の偏光子付き積層体。
  (8)前記(1)~(7)のいずれかに記載の偏光子付き積層体における前記デバイス基板の第2主面に表示装置用部材を有する、支持体付き表示装置用パネル。
  (9)前記(8)に記載の支持体付き表示装置用パネルを用いて形成される表示装置用パネル。
  (10)前記(9)に記載の表示装置用パネルを有する表示装置。
  (11)前記(1)~(7)のいずれかに記載の偏光子付き積層体の製造方法であって、前記デバイス基板の第1主面に反射型偏光子を形成する偏光子形成工程と、前記支持基板の第1主面上に剥離性表面を有する樹脂層を形成する樹脂層形成工程と、前記反射型偏光子付デバイス基板と前記樹脂層付支持基板とを積層して、前記デバイス基板の反射型偏光子が存在する面に前記樹脂層の剥離性表面を密着させる密着工程と、を具備する、偏光子付き積層体の製造方法。
  (12)前記(11)に記載の製造方法、および、得られた偏光子付き積層体における前記デバイス基板の第2主面に、表示装置用部材を形成する工程を具備する、支持体付き表示装置用パネルの製造方法。
  (13)前記(12)に記載の製造方法、および、得られた支持体付き表示装置用パネルにおける前記デバイス基板の反射型偏光子が存在する面と前記樹脂層の剥離性表面とを、剥離する剥離工程を具備する、表示装置用パネルの製造方法。
  (14)前記(13)に記載の製造方法、および、得られた表示装置用パネルを用いて表示装置を得る工程を具備する、表示装置の製造方法。
 本発明により得られた積層体は、従来の表示装置より薄型の表示装置が作製可能な偏光子付き積層体を提供することができる。
  加えて、前記のような偏光子付き積層体を、デバイス基板と支持基板間に気泡や塵芥等の異物を存在させず、簡易かつ経済的に製造することできる方法を提供することができる。
  また、このような偏光子付き積層体を含む支持体付き表示装置用パネルを提供することを目的とする。
  また、このような支持体付き表示装置用パネルを用いて形成される表示装置用パネルおよび表示装置を提供することができる。
  さらに、このような支持体付き表示装置用パネル、表示装置用パネルおよび表示装置を製造する方法を提供することができる。
図1は、本発明の偏光子付き積層体の実施形態を示す概略断面図である。 図2は、図1の実施形態を示す概略正面図である。 図3は、偏光子付きデバイス基板の実施形態を示す概略斜視図である。 図4は、偏光子付きデバイス基板の別の実施形態を示す概略斜視図である。 図5は、ロール状デバイス基板に凸条を形成する過程を説明するための概略断面図である。 図6は、実施例2の凸条付きデバイス基板の実施形態を説明するための概略正面図である。 図7は、実施例2の蒸着条件を説明するための概略断面図である。
 本発明の偏光子付き積層体の実施形態について図を用いて説明する。
 図1は、本発明の偏光子付き積層体(以下、単に「積層体」ともいう)の実施形態を示す概略断面図である。
  図2は、本実施形態のデバイス基板の第2主面側から俯瞰した概略正面図である。ただし、図2は理解を容易にするために、デバイス基板の第1主面、支持基板の第1主面および反射型偏光子のみを記している。
  本実施形態の積層体10は、デバイス基板12、支持基板13、樹脂層14を有し、樹脂層14はデバイス基板12の第1主面12aと支持基板13の第1主面13aの間に存在する。また、デバイス基板12の第1主面12aに反射型偏光子11が存在する。
  樹脂層14は支持基板13の第1主面13aに固定されており、デバイス基板12の反射型偏光子11が存在する面に密着している。また、樹脂層14はデバイス基板12の反射型偏光子11が存在する面に対して剥離性を具備している。ここで、デバイス基板12が有する2つの主面のうちの支持基板13の側(樹脂層14の側)の主面が第1主面12aであり、反対側の主面が第2主面12bである。また、支持基板13が有する2つの主面のうちのデバイス基板12の側(樹脂層14が存在する側)の主面が第1主面13aであり、反対側の主面が第2主面13bである。
  次に、本発明の積層体が有するデバイス基板、支持基板、樹脂層およびデバイス基板の第1主面に存在する反射型偏光子の各々について説明する。
 本発明におけるデバイス基板について説明する。
  デバイス基板の厚さ、形状、大きさ、物性(熱収縮率、表面形状、耐薬品性等)、組成等は特に制限されず、例えば従来の表示装置用のガラス基板と同様であってよい。また、樹脂製の基板であっても良い。
 デバイス基板の厚さは特に制限されないが、0.7mm未満であることが好ましく、0.5mm以下であることがより好ましく、0.4mm以下であることがさらに好ましい。また、0.05mm以上であることが好ましく、0.07mm以上であることがより好ましく、0.1mm以上であることがさらに好ましい。
 デバイス基板の形状は特に制限されないが、矩形であることが好ましい。ここで、矩形とは、実質的に略矩形であり、周辺部の隅を切り落とした(コーナーカットした)形状をも含む。
 デバイス基板の大きさは制限されないが、例えば矩形の場合は100~2000mm×100~2000mmであってよく、500~1000mm×500~1000mmであることが好ましい。
 このような好ましい厚さおよび好ましい大きさであっても、本発明の積層体は偏光子付きデバイス基板と支持基板とを容易に剥離することができる。
 デバイス基板の熱収縮率、表面形状、耐薬品性等の特性も特に制限されず、製造する表示装置の種類により異なる。
  ただし、デバイス基板の熱収縮率は小さいことが好ましい。具体的には熱収縮率の指標である線膨張係数が、デバイス基板がガラスであれば、150×10-7/℃以下であるものを用いることが好ましく、100×10-7/℃以下であることがより好ましく、45×10-7/℃以下であることがさらに好ましい。デバイス基板が合成樹脂であれば、700×10-7/℃以下であるものを用いることが好ましく、650×10-7/℃以下であることがより好ましく、500×10-7/℃以下であることがさらに好ましい。その理由は熱収縮率が大きいと高精細な表示装置を作り難くなるためである。また、デバイス基板の線膨張係数は、デバイス基板がガラスの場合および合成樹脂である場合ともに、5×10-7/℃以上であることが好ましい。
 なお、本発明において線膨張係数はJIS R3102(1995年)に規定のものを意味する。
 デバイス基板がガラス製の場合、その組成は、例えば従来知られているアルカリ金属酸化物を含有するガラス、または無アルカリガラスと同様であってよい。中でも、熱収縮率が小さいことから無アルカリガラスであることが好ましい。
 一方、樹脂製基板の場合、透明性を有する樹脂であれば特に制限は無い。しかし、本発明の積層体が好ましく適用される用途としては、液晶表示デバイスである。そこで、ポリエステル、ポリカーボネート、ポリアリレート、ポリエーテルスルホン、ポリ(シクロ)オレフィン等の熱可塑性樹脂、またはエポキシ、透明ポリイミド、アクリル等の熱硬化性樹脂からなる樹脂であって、光学的等方性を有する樹脂を用いることが好ましい。
 次に、本発明における支持基板について説明する。
  支持基板は樹脂層を介してデバイス基板を支持し、デバイス基板の強度を補強する。
 支持基板の厚さ、形状、大きさ、物性(熱収縮率、表面形状、耐薬品性等)、組成等は特に制限されない。
  支持基板の厚さは特に制限されないが、本発明の積層体を現行の表示装置用パネルの製造ラインで処理できる厚さであることが必要である。
  例えば0.1~1.1mmの厚さであることが好ましく、0.3~0.8mmであることがより好ましく、0.4~0.7mmであることがさらに好ましい。
  例えば、現行の製造ラインが厚さ0.5mmの基板を処理するように設計されたものであって、デバイス基板の厚さが0.1mmである場合、支持基板の厚さと樹脂層の厚さとの和を0.4mmとする。また、現行の製造ラインは厚さが0.7mmのガラス基板を処理するように設計されているものが最も一般的であるが、例えばデバイス基板の厚さが0.4mmならば、支持基板の厚さと樹脂層の厚さとの和を0.3mmとする。
 支持基板の厚さは、前記デバイス基板の厚さよりも厚いことが好ましい。
 支持基板の形状は特に制限されないが、矩形であることが好ましい。ここで、矩形とは、実質的に略矩形であり、周辺部の隅を切り落とした(コーナーカットした)形状をも含む。
 支持基板の大きさは制限されないが、デバイス基板の大きさと同程度であることが好ましく、前記デバイス基板よりもやや大きい(縦方向または横方向の各々が0.05~10mm程度大きい)ことが好ましい。理由は、表示装置用パネル製造時の位置決めピン等のアライメント装置の接触からデバイス基板の端部を保護しやすいこと、およびデバイス基板と支持基板との剥離をより容易に行うことができるからである。
  ここで縦とは、図2において、デバイス基板の短辺方向であって矢印Xaの方向であり、横とは、図2において、デバイス基板の長辺方向であって矢印Xbの方向であることを意味する。
 支持基板の線膨張係数は、デバイス基板の線膨張係数と実質的に同一であってよく、異なってもよい。実質的に同一であると、本実施形態の積層体を熱処理した際に、デバイス基板または支持基板に反りが発生し難い点で好ましい。
  デバイス基板と支持基板とが同じ材料からなり、該デバイス基板と該支持基板との線膨張係数の差は150×10-7/℃以下であることが好ましく、100×10-7/℃以下であることがより好ましく、50×10-7/℃以下であることがさらに好ましい。
  デバイス基板と支持基板とが異なる材料からなり、該デバイス基板と該支持基板との線膨張係数の差は700×10-7/℃以下であることが好ましく、650×10-7/℃以下であることがより好ましく、500×10-7/℃以下であることがさらに好ましい。
 支持基板の材料は特に制限されず、ガラス製、合成樹脂製、金属製等デバイス基板を支持できる剛性を有する物であれば特にその材料の制限は無い。
 支持基板の材料としてガラスを採用する場合、その組成は、例えばアルカリ金属酸化物を含有するガラス、無アルカリガラスと同様であってよい。中でも、熱収縮率が小さいことから無アルカリガラスであることが好ましい。
 支持基板の材料としてプラスチック(合成樹脂)を採用する場合、その種類は特に制限されず、例えば、ポリエチレンテレフタレート樹脂、ポリ(シクロ)オレフィン樹脂ポリカーボネート樹脂、ポリイミド樹脂、フッ素樹脂、ポリアミド樹脂、ポリアラミド樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリエチレンナフタレート樹脂、ポリエポキシ樹脂、ポリアクリル樹脂、各種液晶ポリマー樹脂、シリコーン樹脂などが例示される。
 支持基板の材料として金属を採用する場合、その種類は特に制限されず、例えば、ステンレス鋼、銅などが例示される。
 次に、本発明における樹脂層について説明する。
  本発明の積層体において樹脂層は、前記支持基板の第1主面に固定されている。そして、樹脂層は、前記デバイス基板の反射型偏光子が存在する面に密着しているが、容易に剥離することができる。すなわち樹脂層は反射型偏光子が存在する面に対してある程度の結合力で結合しているが、剥離に際しては反射型偏光子に好ましくない影響を与えることなく、容易に剥離できる程度の結合力で結合している。例えば、剥離に際して、反射型偏光子の構造を損傷することがなく、また、反射型偏光子表面に樹脂残りが生じることなく、剥離できる。本発明では、樹脂層表面の容易に剥離できる性質を剥離性という。
  本発明の積層体において、デバイス基板の反射型偏光子が存在する面と樹脂層とは粘着剤が有するような粘着力によっては付いておらず、固体分子間におけるファンデルワールス力に起因する力、すなわち、密着力によって付いていることが好ましい。
  一方、樹脂層の前記支持基板の第1主面に対する結合力は、反射型偏光子が存在する面に対する結合力よりも相対的に高い。本発明ではデバイス基板の反射型偏光子が存在する面に対する結合を密着といい、支持基板の第1主面に対する結合を固定という。なお、以下、デバイス基板の反射型偏光子が存在する面を、単に、デバイス基板表面、またはデバイス基板の第1主面ともいう。
 樹脂層の厚さは特に制限されない。5~50μmであることが好ましく、5~30μmであることがより好ましく、7~20μmであることがさらに好ましい。樹脂層の厚さがこのような範囲であると、デバイス基板表面と樹脂層との密着が十分になるからである。また、気泡や異物が介在しても、デバイス基板のゆがみ欠陥の発生を抑制することができるからである。また、樹脂層の厚さが厚すぎると、形成するのに時間および材料を要するため経済的ではない。
 なお、樹脂層は2層以上からなっていてもよい。この場合「樹脂層の厚さ」は全ての層の合計の厚さを意味するものとする。
  また、樹脂層が2層以上からなる場合は、各々の層を形成する樹脂の種類が異なってもよい。
 樹脂層は、その剥離性表面の表面張力が30mN/m以下であることが好ましく、25mN/m以下であることがより好ましく、22mN/m以下であることがさらに好ましい。また、樹脂層は、その剥離性表面の表面張力が15mN/m以上であることが好ましい。このような表面張力であると、より容易にデバイス基板表面と剥離することができ、同時にデバイス基板表面との密着も十分になるからである。
  また、樹脂層はガラス転移点が室温(25℃程度)よりも低い、またはガラス転移点を有しない材料からなることが好ましい。非粘着性の樹脂層となり、より高い剥離性を有し、より容易にデバイス基板表面と剥離することができ、同時にデバイス基板表面との密着も十分になるからである。
  また、樹脂層は耐熱性を有していることが好ましい。例えば前記デバイス基板の第2主面上に表示装置用部材を形成する場合に、本発明の積層体を熱処理に供し得るからである。
  また、樹脂層の弾性率が高すぎると、デバイス基板表面との密着性が低くなる傾向にあるので好ましくない。また弾性率が低すぎると剥離性が低くなる。
 樹脂層を形成する樹脂の種類は特に制限されない。例えば、フッ素樹脂、アクリル樹脂、ポリオレフィン樹脂、ポリウレタン樹脂およびシリコーン樹脂が挙げられる。いくつかの種類の樹脂を混合して用いることもできる。中でもシリコーン樹脂が好ましい。シリコーン樹脂は耐熱性に優れ、かつ、デバイス基板に対する剥離性に優れるためである。また、支持基板表面で硬化性シリコーン樹脂を硬化させてシリコーン樹脂層を形成する場合、支持基板表面のシラノール基との縮合反応によって、支持基板に樹脂層を固定し易いからである。シリコーン樹脂層は例えば300~400℃程度で1時間程度処理しても、剥離性がほぼ劣化しない点も好ましい。
 また、樹脂層はシリコーン樹脂の中でも剥離紙用の硬化性シリコーンの硬化物であることが好ましい。剥離紙用シリコーンは直鎖状のジメチルポリシロキサンを分子内に含むシリコーンを主剤とするものである。この主剤と架橋剤とを含む組成物を、触媒、光重合開始剤等を用いて前記支持基板の表面(第1主面)で硬化させて形成した樹脂層は、優れた剥離性を有するので好ましい。また、柔軟性が高いので、デバイス基板と樹脂層との間へ気泡や塵介等の異物が混入しても、デバイス基板のゆがみ欠陥の発生を抑制することができる。
 このような剥離紙用シリコーンは、その硬化機構により縮合反応型シリコーン、付加反応型シリコーン、紫外線硬化型シリコーンおよび電子線硬化型シリコーンに分類されるが、いずれも使用することができる。これらの中でも付加反応型シリコーンが好ましい。硬化反応のし易さ、樹脂層を形成した際に剥離性の程度が良好で、耐熱性も高いからである。
 また、剥離紙用シリコーンは形態的に溶剤型、エマルジョン型および無溶剤型があり、いずれの型も使用可能である。これらの中でも無溶剤型が好ましい。生産性、安全性、環境特性の面が優れるからである。また、樹脂層を形成する際の硬化時、すなわち、加熱硬化、紫外線硬化または電子線硬化の時に発泡を生じる溶剤を含まないため、樹脂層中に気泡が残留しにくいからである。
 また、剥離紙用シリコーンとして、具体的には市販されている商品名または型番としてKNS-320A,KS-847(いずれも信越シリコーン社製)、TPR6700(GE東芝シリコーン社製)、ビニルシリコーン「8500」(荒川化学工業株式会社製)とメチルハイドロジェンポリシロキサン「12031」(荒川化学工業株式会社製)との組み合わせ、ビニルシリコーン「11364」(荒川化学工業株式会社製)とメチルハイドロジェンポリシロキサン「12031」(荒川化学工業株式会社製)との組み合わせ、ビニルシリコーン「11365」(荒川化学工業株式会社製)とメチルハイドロジェンポリシロキサン「12031」(荒川化学工業株式会社製)との組み合わせ等が挙げられる。
  なお、KNS-320A、KS-847およびTPR6700は、あらかじめ主剤と架橋剤とを含有しているシリコーンである。
 また、樹脂層を形成するシリコーン樹脂は、シリコーン樹脂層中の成分がデバイス基板に移行しにくい性質、すなわち低シリコーン移行性を有することが好ましい。
 次に、本発明における反射型偏光子について説明する。
  偏光子は液晶表示装置、リアプロジェクションテレビ、フロントプロジェクター等の画像表示装置に必須で用いられる、可視光領域で偏光分離能を示す素子である。偏光子(偏光分離素子ともいう。)には、吸収型偏光子および反射型偏光子がある。
 吸収型偏光子は、例えば、ヨウ素等の二色性色素を樹脂フィルム中に配向させた偏光子であり、耐熱性が低い。
  一方、反射型偏光子は、偏光子に入射せずに反射した光を偏光子に再入射させることにより、光の利用効率を上げることができる特徴を有する。そのため、LCD等の高輝度化を目的として、反射型偏光子のニーズが高まっている。
 反射型偏光子としては、複屈折樹脂積層体からなる直線偏光子、コレステリック液晶からなる円偏光子、ワイヤグリッド型偏光子がある。この中でも表示装置の薄型化という本発明の目的からワイヤグリッド型偏光子が特に好ましい。
 ワイヤグリッド型偏光子は、光透過性基板上に複数の金属細線が互いに平行かつ一定のピッチで配列した構造を有する。金属細線のピッチが入射光の波長よりも十分に短い場合、入射光のうち、金属細線の長さ方向に直交する電場ベクトルを有する成分(すなわちp偏光)は透過し、金属細線の長さ方向と平行な電場ベクトルを有する成分(すなわちs偏光)は反射される。
 図3および図4は、デバイス基板の第1主面にワイヤグリッド型偏光子が形成された本発明の積層体の一部である偏光子付きデバイス基板の概略斜視図である。
  可視光領域で偏光分離能を示すワイヤグリッド型偏光子としては、図3に示すような、デバイス基板32の第1主面32aに、所定の幅、ピッチおよび長さで金属細線35が形成されたワイヤグリッド型偏光子、図4に示すような、デバイス基板42の第1主面42aに、所定の幅、ピッチ、高さ、長さで形成された複数の凸条46の上部が、金属材料からなる膜47で被覆されて、金属細線を成しているワイヤグリッド型偏光子、およびデバイス基板の第1主面に、所定の幅、ピッチおよび高さで金属細線および低反射率部材(SiO等)が形成されたワイヤグリッド型偏光子などが挙げられる。
 次にワイヤグリッド型偏光子の金属細線の形状について説明する。金属細線の高さHmは30nm~200nmであることが好ましく、40~150nmであることがより好ましい。この高さであれば、s偏光透過が、特に短波長領域において抑えられ、ワイヤグリッド型偏光子が十分に高い偏光分離能を発揮することができる。また、金属細線による回折現象の発生を抑えるため、偏光子の光透過率の低下を抑えることができる。
 ワイヤグリッド型偏光子の基本的機能は金属細線の幅DmとピッチPmで決まる。図3および図4に示すように、金属細線の幅Dmは金属細線の長さLm方向に直行する方向の距離であり、金属細線のピッチPmは金属細線の幅方向の繰り返し距離である。金属細線の幅Dmと金属細線のピッチPmの比(Dm/Pm)は0.1~0.6が好ましく、0.2~0.5がより好ましい。Dm/Pmを0.1以上とすることにより、ワイヤグリッド型偏光子が表面(金属細線が形成されている面)側から入射する光に対してさらに高い偏光度を示す。Dm/Pmを0.6以下とすることにより、p偏光透過率がより高くなる。
 金属細線のピッチPmは、300nm以下が好ましく、50~200nmがより好ましい。金属細線のピッチPmを300nm以下とすることにより、ワイヤグリッド型偏光子が十分に高い反射率、および400nm付近の短波長領域においても十分に高い偏光分離能を示す。また、回折による着色現象が抑えられる。
  金属細線の幅Dmは、10~120nmであることがさらに好ましく、さらに凸条の上部に、蒸着によって金属層の形成を行う場合の容易さを考慮すると30~100nmが特に好ましい。
 金属細線の材料は、十分な導電性を有する金属材料であればよいが、導電性以外に耐蝕性等の特性も考慮された材料であることが好ましい。金属材料としては、金属単体、合金、ドーパントや所定量以下の不純物を含有した金属等が挙げられる。例えば、アルミニウム、銀、クロム、マグネシウム、アルミニウム系合金、銀系合金等が挙げられる。また、炭素等の非金属元素をドーパント等として含む金属も使用できる。可視光に対する反射率が高く、可視光の吸収が少なく、かつ高い導電率を有する点から、アルミニウム、アルミニウム系合金、銀、クロム、マグネシウムが好ましく、アルミニウムやアルミニウム系合金が特に好ましい。
  なお、金属細線はデバイス基板の第1主面上に直接形成してもよいし、金属酸化物等の下地層を介してもよい。また、前記のように、デバイス基板の第1主面上に形成した樹脂等の材料からなる凸条形成層の凸条表面に形成してもよい。
 このような本発明の積層体における前記偏光子付きデバイス基板の第2主面に、表示装置用部材を形成することで支持体付き表示装置用パネルを得ることができる。
  表示装置用部材とは、従来の液晶表示装置用のデバイス基板が、その表面に有する保護層、TFTアレイ(以下、単に「アレイ」という。)、カラーフィルタ、液晶、酸化インジウムスズ(ITO)や酸化亜鉛などからなる透明電極、各種回路パターン等を意味する。
  本発明の支持体付き表示装置用パネルには、例えば、アレイがデバイス基板の第2主面に形成された本発明の支持体付き表示装置用パネルのアレイ形成面と、カラーフィルタがデバイス基板の第2主面に形成された他の本発明の支持体付き表示装置用パネルのカラーフィルタ形成面とを、シール材等を介して貼り合わされた形態も含まれる。
 また、このような支持体付き表示装置用パネルから、表示装置用パネルを得ることができる。支持体付き表示装置用パネルのデバイス基板を、支持基板に固定されている樹脂層から剥離して、表示装置用パネルおよび表示装置を得ることができる。表示装置としては液晶表示装置が挙げられる。液晶表示装置としてはTN型、STN型、FE型、TFT型、MIM型が挙げられる。
 次に、本発明の積層体の製造方法を説明する。
  本発明の積層体の製造方法は特に制限されないが、前記デバイス基板の第1主面に反射型偏光子を形成する偏光子形成工程と、前記支持基板の第1主面に剥離性表面を有する樹脂層を形成する樹脂層形成工程と、前記反射型偏光子付デバイス基板と前記樹脂層付支持基板とを積層して、前記デバイス基板の反射型偏光子が存在する面に前記樹脂層の剥離性表面を密着させる密着工程と、を具備する積層体の製造方法であることが好ましい。このような製造方法を、以下では「本発明の製造方法」ともいう。
 本発明の製造方法における前記デバイス基板および前記支持基板自体の製造方法は特に制限されない。それぞれ従来公知の方法で製造することができる。例えば基板がガラス製の場合は例えば従来公知のガラス原料を溶解し溶融ガラスとした後、フロート法、フュージョン法、ダウンドロー法、スロットダウン法、リドロー法等によって板状に成形して得ることができる。
 本発明の製造方法における偏光子形成工程について説明する。
  ワイヤグリッド型偏光子のデバイス基板上への形成方法としては、特に制限されない。例えば次に挙げる2種類の方法の採用が可能である。一つは金属薄膜をデバイス基板上に形成した後、フォトリソグラフィー法を用いて金属細線を形成する方法である。そして、もう一つはデバイス基板上に凸条を有する樹脂層を形成し、その凸条の上部に蒸着やCVD等の方法で金属層を形成し、金属細線を形成する方法である。
 デバイス基板上に凸条を有する樹脂層を形成する方法としては、インプリント法(光インプリント法、熱インプリント法)があげられ、凸条をより生産性よく形成できる点と、およびモールドの溝を精度良く転写できる点とから、光インプリント法が特に好ましい。
 光インプリント法は、例えば、電子線描画とエッチングとの組み合わせにより、複数の溝が互いに平行にかつ所定のピッチで形成されたモールドを作製し、該モールドの溝を、任意の基材の表面に塗布された光硬化性組成物に転写し、同時に該光硬化性組成物を光硬化させて凸条を有する樹脂層を形成する方法である。
 光インプリント法による凸条の作製は、具体的には下記の工程(A)~(D)を経て行われる。
  (A)光硬化性組成物をデバイス基板の第1主面に塗布する工程。
  (B)複数の溝が互いに平行にかつ所定のピッチで形成されたモールドを、溝が光硬化性組成物に接するように、光硬化性組成物に押しつける工程。
  (C)モールドを光硬化性組成物に押しつけた状態で放射線(紫外線、電子線等)を照射して光硬化性組成物を硬化させて、モールドの溝に対応する複数の凸条を有する樹脂層を作製する工程。
  (D)複数の凸条を有する樹脂層からモールドを剥離する工程。
 熱インプリント法による凸条の作製は、具体的には下記の工程(E)~(G)を経て行われる。
  (E)デバイス基板の第1主面に熱可塑性樹脂の被転写膜を形成する工程、または熱可塑性樹脂の被転写フィルムを作製する工程。
  (F)複数の溝が互いに平行にかつ一定のピッチで形成されたモールドを、溝が被転写膜または被転写フィルムに接するように、熱可塑性樹脂のガラス転移温度(Tg)または融点(Tm)以上に加熱した被転写膜または被転写フィルムに押しつけ、モールドの溝に対応する複数の凸条を有する樹脂層を作製する工程。
  (G)複数の凸条を有する樹脂層をTgまたはTmより低い温度に冷却してモールドから基材を剥離する工程。
 インプリント法により凸条を形成した後、複数の凸条の斜め上方から金属材料を蒸着させることにより、金属細線を形成させる。蒸着法としては、真空蒸着法、スパッタ法、イオンプレーティング法等の物理蒸着法が挙げられる。
 なお、デバイス基板の厚さが非常に薄い場合、例えば0.1mm以下の場合はデバイス基板自体をロール状に巻き取る事が可能となる。そこで、一旦ロール状に巻き取ったデバイス基板を送り出しロールにセットし、連続的にデバイス基板を送り出し、偏光子用樹脂塗布手段を用いてデバイス基板の第1主面に偏光子用樹脂層を形成する。その後、曲面に凹条を有する円柱状ロールに前記偏光子用樹脂層を密着させ、凸条を偏光子用樹脂層に転写させ、凸条を有する偏光子用樹脂層を形成する。この際、凸条を有する偏光子用樹脂層に活性エネルギー線硬化性樹脂等を用いれば、前記円柱状ロールの曲面に密着させた段階で、デバイス基板の反対側(凸条の偏光子用樹脂層形成面の反対側)より紫外線等を照射することで、付与された凸条の形状をより確実に固定化でき好ましい。前記凸条を付与した後、凸条を有する偏光子用樹脂層を付与されたデバイス基板を巻き取りロールに巻き取る。
 そして、次に連続蒸着装置の送り出し部に前記巻き取りロールをセットし、前記デバイス基板を連続的に送り出し、凸条の上部に金属材料を蒸着する。上記工程によって、デバイス基板の第1主面にワイヤグリッド型偏光子が連続的に形成される。最後に、ワイヤグリッド型偏光子が連続的に形成されたデバイス基板を適宜切断し、枚葉化することで、非常に高い生産性を持ってワイヤグリッド型偏光子付きデバイス基板を製造できる。
 ロール状のデバイス基板にワイヤグリッド型偏光子を形成する方法としては、生産性の高さから光インプリント法が、特に好ましい。図5は、光インプリント法でロール状のデバイス基板に凸条を有する偏光子用樹脂層を形成する方法を示す概念図である。この製造方法は、デバイス基板供給手段51と、偏光子用樹脂(前記光硬化性組成物をいう、以下同様)塗布手段52と、ニップロール53と、凹条を有する平板状モールドをロール曲面に貼りつけたグラビアロール54と、偏光子用樹脂硬化手段55と、剥離ロール56と、デバイス基板の巻き取り手段57と、より構成される。
 デバイス基板供給手段51は、ロール状のデバイス基板を偏光子用樹脂塗布手段52に向けて送り出すもので、デバイス基板送り出しロール51aと、デバイス基板の保護フィルムをはがす剥離ロール51bと、剥離した保護フィルムの巻き取りロール51cと、から構成される。
 偏光子用樹脂塗布手段52は、デバイス基板の第1主面に偏光子用樹脂を塗布することで、偏光子用樹脂層を形成する装置であり、偏光子用樹脂を供給する偏光子用樹脂供給源52aと、塗布ヘッド52bと、塗布の際にデバイス基板を巻き掛けて支持するコーティングローラ52cと、偏光子用樹脂供給源52aから塗布ヘッド52bに偏光子用樹脂を供給するための配管52dと、ポンプ52eと、から構成される。
 グラビアロール54は、デバイス基板の第1主面に塗布された偏光子用樹脂層に凸条を形成する装置で、グラビアロール54は円柱状の形状をしており、曲面には、偏光子用樹脂層に形成する凸条を反転した形状である、規則的な微細凹凸パターンが形成されている。微細凹凸パターンには、形状精度、機械的強度、平坦性等を有することが求められる。微細凹凸パターンの形状としては、矩形が望ましい。
  また、このようなグラビアロール54の材質としては、金属製または樹脂製が好ましい。
 グラビアロール54の曲面にある規則的な微細凹凸パターンの形成方法としては、ダイヤモンドバイトによる切削加工で形成する方法、フォトエッチング、電子線描画、レーザー加工等で形成する方法が採用できる。また、板厚の薄い金属製の板状体の表面にフォトエッチング、電子線描画、レーザー加工、光造形法等で微細凹凸パターンを形成し、前記板状体を、グラビアロール54の基材である円柱状ロールの曲面に巻き付け固定し、グラビアロール54とする方法も採用できる。その他、金属より加工しやすい素材の板状体の表面にフォトエッチング、電子線描画、レーザー加工、光造形法等で微細凹凸パターンの反転型を形成し、電鋳等を用いて板厚の薄い金属製の板状体の表面に微細凹凸パターンを形成し、前記板状体をグラビアロール54の基材の曲面に巻き付け固定し、グラビアロール54とする方法も採用できる。
  グラビアロール54の曲面には、離型処理を施すことが好ましい。このように、グラビアロール54の曲面に離型処理を施すことにより、微細凹凸パターンの形状を良好に維持できる。離型処理としては、公知の各種方法、例えば、フッ素樹脂によるコーティング処理が採用できる。なお、グラビアロール54には駆動手段が設けられていることが好ましい。
 ニップロール53は、グラビアロール54と対になってデバイス基板を押圧しながらロール成形加工する装置で、所定の機械的強度、真円度等を有することが求められる。ニップロール53の表面の縦弾性係数(ヤング率)は、小さ過ぎるとロール成形加工が不十分となり、大き過ぎるとゴミ等の異物の巻き込みに敏感に反応し欠点を生じやすいため、適宜の値とすることが好ましく、例えば、4MPa~100MPaであることが好ましい。なお、ニップロール53には駆動手段が設けられていることが好ましい。ニップロール53は、グラビアロール54と逆方向に回転する。グラビアロール54とニップロール53は回転速度が同期していることが好ましい。
 グラビアロール54とニップロール53との間に所定の押圧力を付与するべく、グラビアロール54とニップロール53のいずれかに加圧手段を設けることが好ましい。グラビアロール54とニップロール53との隙間(クリアランス)を正確に制御できるような微調整手段を、グラビアロール54とニップロール53のいずれかに設けることが好ましい。
 偏光子用樹脂硬化手段55は、ニップロール53の下流側においてグラビアロール54に対向して設けられる光照射手段である。この偏光子用樹脂硬化手段54は、光照射によって、デバイス基板の第1主面上に形成された偏光子用樹脂層を硬化させる。偏光子用樹脂層の硬化特性に応じた波長の光を照射し、デバイス基板の搬送速度に応じた光量の光を照射できることが好ましい。偏光子用樹脂硬化手段55として、デバイス基板の幅と略同一長さの円柱状ランプが採用できる。また、この円柱状ランプを複数本平行に設けることもでき、この円柱状ランプの背面に反射板を設けることもできる。
  なお、偏光子用樹脂硬化手段55により偏光子用樹脂層の温度が上昇するような場合には、グラビアロール54に冷却手段を設ける構成も採用できる。
 剥離ロール56は、グラビアロール54と対になって、グラビアロール54から凸条を有する樹脂層を付与されたデバイス基板を剥離させるもので、所定の機械的強度、真円度等を有することが求められる。剥離箇所において、グラビアロール54の曲面上に巻き掛けられた前記デバイス基板を、回転するグラビアロール54と剥離ロール56とで挟みながら、前記デバイス基板をグラビアロール54から剥離させて剥離ロール56に巻き掛ける。この動作を確実にすべく、剥離ロール56には駆動手段が設けられていることが好ましい。剥離ロール56は、グラビアロール54と反対方向に回転する。
 デバイス基板巻きの取り手段57は、剥離後のデバイス基板を巻き取り、ロール状に収納するもので、デバイス基板の巻き取りロール等より構成される。このデバイス基板の巻き取り手段57において、保護フィルムをデバイス基板の第1主面側に供給し、デバイス基板と保護フィルムとが重なった状態で、デバイス基板の巻き取り手段57に収納する構成も採用できる。
 上記偏光子製造方法において、偏光子用樹脂塗布手段52とグラビアロール54との間、剥離ロール56とデバイス基板の巻き取り手段57との間等に、デバイス基板の搬送路を形成するガイドローラ等を設けてもよく、その他、必要に応じてデバイス基板の搬送中の弛みを吸収すべく、テンションローラ等を設けることもできる。
  なお、微細凹凸パターンの形成方法は、円柱状ロールの曲面に微細凹凸パターンが形成されたグラビアロールを用いる方法のみならず、エンドレスベルト等のベルト状体の表面に微細凹凸パターンが形成されたものを用いる方法も含む。このようなベルト状体を用いる形成方法であっても、円柱状グラビアロールによる形成方法と同様の作用および効果が得られる。
 光インプリント法により、凸条を形成した後、凸条の上部に蒸着で金属層を形成して金属細線を形成し、反射型偏光子を製造する。
 次に、本発明の製造方法における樹脂層形成工程について説明する。
  支持基板の表面(第1主面)に樹脂層を形成する方法も特に制限されない。例えばフィルム状の樹脂を支持基板の表面に接着する方法が挙げられる。具体的にはフィルムの表面と高い接着力を付与するために、支持基板の表面に表面改質処理(プライミング処理)を行い、支持基板の第1主面に接着する方法が挙げられる。例えば、シランカップリング剤のような化学的に密着力を向上させる化学的方法(プライマー処理)や、フレーム(火炎)処理のように表面活性基を増加させる物理的方法、サンドブラスト処理のように表面の粗度を増加させることにより、引っかかりを増加させる機械的処理方法などが例示される。
 また、例えば公知の方法によって樹脂層となる樹脂組成物を支持基板の第1主面にコートする方法が挙げられる。公知の方法としてはスプレーコート法、ダイコート法、スピンコート法、ディップコート法、ロールコート法、バーコート法、スクリーン印刷法、グラビアコート法が挙げられる。このような方法の中から、樹脂組成物に種類に応じて適宜選択することができる。
  例えば、無溶剤型の剥離紙用シリコーンを樹脂組成物として用いた場合、ダイコート法、スピンコート法またはスクリーン印刷法が好ましい。
 また、樹脂組成物を支持基板の第1主面上にコートする場合、その塗工量は1~100g/mであることが好ましく、5~20g/mであることがより好ましい。
 例えば付加反応型シリコーンから樹脂層を形成する場合、直鎖状のジメチルポリシロキサンを分子内に含むシリコーン(主剤)、架橋剤および触媒を含む樹脂組成物を、上記のスプレーコート法等の公知の方法により支持基板の第1主面に塗工し、その後に加熱硬化させる。加熱硬化条件は、触媒の配合量によっても異なるが、例えば、主剤および架橋剤の合計量100質量部に対して、白金系触媒を2質量部配合した場合、大気中で50℃~250℃、好ましくは100℃~200℃で反応させる。また、この場合の反応時間は5~60分間、好ましくは10~30分間とする。低シリコーン移行性を有するシリコーン樹脂層とするためには、シリコーン樹脂層中に未反応のシリコーン成分が残らないように硬化反応をできるだけ進行させることが好ましい。
 上記のような反応温度および反応時間であると、シリコーン樹脂層中に未反応のシリコーン成分が残らないようにすることができるので好ましい。上記した反応時間よりも長すぎたり反応温度が高すぎる場合には、シリコーン樹脂の酸化分解が同時に起こり低分子量のシリコーン成分が生成して、シリコーン移行性が高くなる可能性がある。シリコーン樹脂層中に未反応のシリコーン成分が残らないように硬化反応をできるだけ進行させることは、加熱処理後の剥離性を良好にするためにも好ましい。
 また、例えば樹脂層を、剥離紙用シリコーンを用いて製造した場合、支持基板の第1主面に塗工した剥離紙用シリコーンを加熱硬化してシリコーン樹脂層を形成した後、密着工程で支持基板のシリコーン樹脂形成面にデバイス基板を積層させる。剥離紙用シリコーンを加熱硬化させることによって、シリコーン樹脂硬化物が支持基板と化学的に結合する。また、アンカー効果によってシリコーン樹脂層が支持基板と結合する。これらの作用によって、シリコーン樹脂層が支持基板に強固に固定される。
 本発明の製造方法における密着工程について説明する。
  密着工程は、前記反射型偏光子付デバイス基板と前記樹脂層付支持基板とを積層して、前記デバイス基板の反射型偏光子が存在する面に前記樹脂層の剥離性表面を密着させる工程である。デバイス基板の反射型偏光子が存在する面と樹脂層の剥離性表面とは、非常に近接した、相対する固体分子間におけるファンデルワールス力に起因する力、すなわち、密着力によって結合させることが好ましい。この場合、支持基板とデバイス基板とは、樹脂層を介して積層させた状態に保持することができる。なお、偏光子の凸条の高さは100nmに満たず、一方で樹脂層の厚さは5μm以上であるため、樹脂層の変形で凸条形状に追従する事が十分可能である。
 前記反射型偏光子付デバイス基板と前記樹脂層付支持基板とを積層させる方法は特に制限されない。例えば公知の方法を用いて実施することができる。例えば、常圧環境下で樹脂層の表面にデバイス基板を重ねた後、ロールやプレスを用いて樹脂層とデバイス基板とを圧着させる方法が挙げられる。ロールやプレスで圧着することにより樹脂層とデバイス基板とがより密着するので好ましい。また、ロールまたはプレスによる圧着により、樹脂層とデバイス基板との間に混入している気泡を比較的容易に除去することができる。真空ラミネート法や真空プレス法により圧着すると気泡の混入の抑制や良好な密着の確保がより好ましく行われるのでより好ましい。真空下で圧着することにより、微少な気泡が残存した場合でも加熱により気泡が成長することがなく、デバイス基板のゆがみ欠陥につながりにくいという利点もある。
 密着工程では、反射型偏光子付デバイス基板と樹脂層付支持基板とを積層させる際には、デバイス基板の表面を十分に洗浄し、クリーン度の高い環境で積層することが好ましい。樹脂層とデバイス基板との間に異物が混入しても、樹脂層が変形するのでデバイス基板の表面の平坦性に影響を与えることはないが、クリーン度が高いほどその平坦性は良好となるので好ましい。
 このような本発明の製造方法によって本発明の積層体を製造することができる。
 本発明の製造方法に、さらに、得られた本発明の積層体における前記デバイス基板の第2主面に、表示装置用部材を形成する工程を具備する製造方法によって、支持体付き表示装置用パネルを製造することができる。
  ここで表示装置用部材は特に制限されない。例えば液晶表示装置が有するアレイやカラーフィルタが挙げられる。
 このような表示装置部材を形成する方法も特に制限されず、従来公知の方法と同様であってよい。
  例えば表示装置としてTFT-LCDを製造する場合、従来公知のガラス基板上にアレイを形成する工程、カラーフィルタを形成する工程、アレイが形成されたガラス基板とカラーフィルタが形成されたガラス基板とをシール材等を介して貼り合わせる工程(アレイ・カラーフィルタ貼り合わせ工程)等の各種工程と同様であってよい。より具体的には、これらの工程で実施される処理として、例えば純水洗浄、乾燥、成膜、レジスト塗布、露光、現像、エッチングおよびレジスト除去が挙げられる。さらに、アレイ・カラーフィルタ貼り合わせ工程を実施した後に行われる工程として、液晶注入工程および該処理の実施後に行われる注入口の封止工程があり、これらの工程で実施される処理が挙げられる。
 このようにして支持体付き表示装置用パネルを製造することができる。
 また、このような支持体付き表示装置用パネルを得た後、さらに、得られた支持体付き表示装置用パネルにおける、前記デバイス基板の反射型偏光子が存在する面と前記樹脂層の剥離性表面とを剥離する剥離工程を具備する製造方法によって、表示装置用パネルを得ることができる。剥離する方法は特に制限されない。具体的には、例えばデバイス基板と樹脂層との境界に鋭利な刃物状のものを差込んだり、水と圧縮空気との混合流体を吹き付けたりして剥離することができる。好ましくは、前記支持体付き表示装置用パネルの支持基板側が上側、パネル側が下側となるように定盤上に設置し、パネル側基板を定盤上に真空吸着し(両面に支持基板が積層されている場合は順次行う)、この状態で支持体付き表示装置用パネルのデバイス基板と樹脂層との境界に水と圧縮空気の混合流体を噴きつけ、支持基板の端部を垂直上方へ引っ張り上げる。そうすると、前記境界に空気層が順次形成され、その空気層が前記境界の全面に広がり、支持基板を容易に剥離することができる(支持体付き表示装置用パネルの両主面に、支持基板が積層されている場合は、前記剥離工程を片面ずつ繰り返す)。
 さらに、得られた表示装置用パネルを用いて、表示装置を得る工程を具備する製造方法によって表示装置を製造することができる。ここで表示装置の製造方法は特に制限されず、例えば従来公知の製造方法で表示装置を製造することができる。
 (実施例1)
 初めに縦170mm、横100mm、板厚0.3mm、線膨張係数38×10-7/℃のガラス製デバイス基板(旭硝子株式会社製、AN100、無アルカリガラス基板)を用意し、純水洗浄、UV洗浄して表面を清浄化した。
  その後、前記デバイス基板の第1主面に、0.9×10-5 torr、 10Å/secでアルミニウム(Al)を蒸着し、厚さ200nmのAl層を作成した。次に、Al層の上に厚さ100nmのレジスト(日本ゼオン社製、ZEP520A)をスピンコート法により塗布した。電子線描画装置(日立ハイテクノロジー社製、HL800D(50keV))を用いて、EB露光、現像を行い、複数の溝(幅:100nm)が互いに平行にかつ所定のピッチ(200nm)で形成されたレジスト膜を形成した。
  次に、プラズマエッチング装置(サムコ株式会社製、RIE-140iPC)を用い、SFによりエッチングを行い、余分なAlを除去し、サイズ(ピッチPm:200nm、幅Dm:100nm、高さHm:200nm)のAl製金属細線のワイヤグリッド型偏光子がデバイス基板の第1主面に形成され、ワイヤグリッド型偏光子付きデバイス基板を得た。
 次に縦180mm、横110mm、板厚0.4mm、線膨張係数38×10-7/℃のガラス製支持基板(旭硝子株式会社製、AN100、無アルカリガラス基板)を用意し、純水洗浄、UV洗浄して表面を清浄化した。
  その後、前記支持基板の第1主面に、無溶剤付加反応型剥離紙用シリコーン100質量部と、白金系触媒2質量部との混合物を、縦178mm、横108mmの大きさで、スクリーン印刷機にて塗工した(塗工量30g/m)。そして、180℃にて30分間大気中で加熱硬化して厚さ20μmのシリコーン樹脂層を得た。
 次に、前記ワイヤグリッド型偏光子付きデバイス基板の偏光子形成面と、前記支持基板の第1主面に固定されたシリコーン樹脂層の表面とを、室温下、真空プレスにて両基板の重心が重なるように貼り合わせ、積層体A(本発明の積層体)を得た。
 このような実施例1に係る積層体Aにおいて、ワイヤグリッド型偏光子付きデバイス基板および支持基板は、シリコーン樹脂層と気泡を発生することなく密着しており、凸状欠点もなく平滑性も良好であった。
 (実施例2)
 撹拌機および冷却管を装着した1000mLの4つ口フラスコに、単量体1(新中村化学工業社製、NK エステル A-DPH、ジペンタエリスリトールヘキサアクリレート)の60g、単量体2(新中村化学工業社製、NK エステル A-NPG、ネオペンチルグリコールジアクリレート)の40g、光重合開始剤(チバスペシャリティーケミカルズ社製、IRGACURE907)の4.0g、含フッ素界面活性剤(旭硝子社製、フルオロアクリレート(CH=CHCOO(CH(CFF)とブチルアクリレートとのコオリゴマー、フッ素含有量:約30質量%、質量平均分子量:約3000)の0.1g、重合禁止剤(和光純薬社製、Q1301)の1.0g、および、シクロヘキサノンの65.0gを入れた。
  フラスコ内を常温および遮光にした状態で、1時間撹拌して均一化した。次に、フラスコ内を撹拌しながら、コロイド状シリカの100g(固形分:30g)をゆっくりと加え、さらにフラスコ内を常温および遮光にした状態で1時間撹拌して均一化した。次に、シクロヘキサノンの340gを加え、フラスコ内を常温および遮光にした状態で1時間撹拌して光硬化性組成物の溶液を得た。
  続いて、縦500mm、横400mm、板厚0.3mm、線膨張係数38×10-7/℃のガラス製デバイス基板(旭硝子株式会社製、AN100、無アルカリガラス基板)の第1主面上に、光硬化性組成物をスピンコート法により塗布し、厚さ1μmの光硬化性組成物から成る偏光子用樹脂層を形成した。
 微細凹凸パターンである複数の溝が互いに平行にかつ所定のピッチで形成された石英製モールド(モールド面積:縦150mm×横130mm、微細凹凸パターン面積:縦140mm×横120mm、溝のピッチ:150nm、溝の幅:50nm、溝の深さ:100nm、溝の長さ:140mm、溝の断面形状:矩形)を、25℃にて0.5MPa(ゲージ圧)で、デバイス基板の第1主面に形成された偏光子用樹脂層に押しつけた。
  この状態を保持したまま、石英製モールドの裏面側(微細凹凸パターン形成面の反対側)から高圧水銀灯(周波数:1.5kHz~2.0kHz、主波長光:255nm、315nmおよび365nmにおける照射エネルギー:1000mJ/cm)の光を15秒間照射し、偏光子用樹脂層を硬化させて、石英製モールドの溝に対応する複数の凸条を有する偏光子用樹脂層(凸条のピッチ:150nm、凸条の幅:50nm、凸条の高さ:100nm)を作製した。そして、デバイス基板から石英製モールドをゆっくり剥離した。
 石英製モールドの押し付けと、光照射と、石英製モールドの剥離とからなる一連の工程を、1枚のデバイス基板に繰り返し実施した。図6は、1枚のデバイス基板の第1主面に複数の凸条を形成した、凸条付きデバイス基板の概略正面図である。デバイス基板の第1主面62aの縦3ヵ所、横3ヵ所、計9か所に、凸条61を形成した。なお、凸条61が形成されていない隙間Wpは10mmである。
 この後、蒸着源に対向するデバイス基板の傾斜角度を変更できる真空蒸着装置(昭和真空社製、SEC-16CM)を用い、デバイス基板の第1主面に形成された凸条の上部にAlを蒸着させ、デバイス基板の第1主面に金属細線を形成し、ワイヤグリッド型偏光子付きデバイス基板を得た。図7に蒸着方法の概略図を示す。凸条76の長さ方向に対して略直交し、かつ凸条の高さ方向に対して、凸条の第1の側面76aの側に角度30度をなす方向V1からの蒸着と、凸条の長さ方向に対して略直交し、かつ凸条の高さ方向に対して、凸条の第2の側面76bの側に角度30度をなす方向V2からの蒸着と、それぞれの蒸着で25nmの厚さのAl層を凸条上部に形成し、凸条の上部に幅50nm、厚さ50nmのAl層を形成した。
 次に縦500mm、横400mm、板厚0.4mm、線膨張係数38×10-7/℃の支持基板(旭硝子株式会社製、AN100)の第1主面上に、両末端にビニル基を有する直鎖状ポリオルガノシロキサンと、分子内にハイドロシリル基を有するメチルハイドロジェンポリシロキサンとを混合し、そして、これを白金系触媒と混合して混合物を調製し、縦498mm、横398mmの面積でダイコーターにて塗工し(塗工量20g/m)、180℃にて30分間大気中で加熱硬化して厚さ20μmのシリコーン樹脂層を形成した。ここで、ハイドロシリル基とビニル基のモル比は1/1となるように、直鎖状ポリオルガノシロキサンとメチルハイドロジェンポリシロキサンとの混合比を調整した。白金系触媒は、直鎖状ポリオルガノシロキサンとメチルハイドロジェンポリシロキサンとの合計100質量部に対して5質量部添加した。
 次に、前記ワイヤグリッド型偏光子付きデバイス基板の偏光子形成面と、前記支持基板の第1主面上のシリコーン樹脂層の表面とを、室温下、真空プレスにて貼り合わせ積層体B(本発明の積層体)を得た。
 このような実施例2に係る積層体Bにおいて、偏光子付きデバイス基板および支持基板は、シリコーン樹脂層と気泡を発生することなく密着しており、凸状欠点もなく平滑性も良好であった。
 (実施例3)
 線膨張係数38×10-7/℃、厚さ0.1mm、幅400mmのガラス製デバイス基板(旭硝子社製、AN100、無アルカリガラス基板)をフュージョン法で連続して成形し、徐冷後、デバイス基板の両主面に厚さ30μmのポリエチレン製フィルムを熱融着した。その後、コア径200mmのボビンに長さ50mの前記デバイス基板を巻き取り、ロール状にした。次に、東芝機械社製の連続WEBコーターのデバイス基板送り出し部に、ロール状の前記デバイス基板をセットし、後に第1主面となる側のポリエチレン製フィルムをヒートロールで再加熱しながら第1主面とポリエチレン製フィルム表面とを連続的に剥離し、続いて偏光子用樹脂塗布手段にて前記光硬化性組成物から成る偏光子用樹脂をデバイス基板の第1主面(ポリエチレン製フィルムが存在しない面)に塗布した。
  クロムメッキを施した金属ロール(幅450mm、直径250mm)上に、複数の溝が互いに平行にかつ所定のピッチで形成された、厚さ0.2mmのニッケル製モールド(モールド面積:150mm×400mm、パターン面積:120mm×170mm、パターン個数:2個、パターンエリア間隔:20mm、溝のピッチ:150nm、溝の幅:50nm、溝の深さ:100nm、溝の長さ:120mm、溝の断面形状:矩形)を金属ロールの曲面上に61mm間隔で3枚貼りつけて、グラビアロールを作製した。前記グラビアロールの曲面上の溝が、デバイス基板の第1主面に形成された偏光子用樹脂層に接するように、ニップロールを用いてデバイス基板をグラビアロール方向に押し付けた。押し付け時の雰囲気温度は25℃であった。
 該押し付け状態を保持したまま、ポリエチレン製フィルム側(デバイス基板の第2主面側)から高圧水銀灯(周波数:1.5kHz~2.0kHz、主波長光:255nm、315nmおよび365nmにおける照射エネルギー:1000mJ/cm)の光を連続的に照射し、偏光子用樹脂層を硬化させて、ニッケル製モールドの溝に対応した凸条を有する偏光子用樹脂層(凸条のピッチ:150nm、凸条の幅:50nm、凸条の高さ:100nm)を作製した。剥離ロールを用いてデバイス基板からニッケル製モールドを剥離した後、デバイス基板を巻き取りロールに巻き取った。巻き取ったロール状デバイス基板の第1主面には、デバイス基板の幅方向の2か所に30mm間隔で凸条が形成され、長さ方向に30mm間隔で連続的に凸条が形成されていた。
 前記巻き取ったロール状デバイス基板を、連続蒸着装置の送り出し部にセットし、蒸着角度25度から35度で連続的にAlを蒸着し、凸条の上部に幅50nm、厚み50nmのAl層を形成した。以上の工程によって、薄板ガラス基板の第1主面にワイヤグリッド型偏光子が連続的に形成された。
 ワイヤグリッド型偏光子が連続的に形成されたデバイス基板を、長さ750mm間隔で切断し、長さ750mm、幅400mm、厚さ0.1mmの枚葉のワイヤグリッド型偏光子付きデバイス基板を得た。
 次に縦760mm、横405mm、板厚0.6mm、線膨張係数38×10-7/℃のガラス製支持基板(旭硝子株式会社製、AN100、無アルカリガラス基板)の第1主面上に、両末端にビニル基を有する直鎖状ポリオルガノシロキサンと、分子内にハイドロシリル基を有するメチルハイドロジェンポリシロキサンとを混合し、そして、これを白金系触媒と混合して混合物を調製し、縦757mm、横402mmの面積でダイコーターにて塗工し(塗工量20g/m)、180℃にて30分間大気中で加熱硬化して厚さ20μmシリコーン樹脂層を形成した。ここで、ハイドロシリル基とビニル基のモル比は1/1となるように、直鎖状ポリオルガノシロキサンとメチルハイドロジェンポリシロキサンとの混合比を調整した。白金系触媒は、直鎖状ポリオルガノシロキサンとメチルハイドロジェンポリシロキサンとの合計100質量部に対して5質量部添加した。
 次に、前記偏光子付きデバイス基板の偏光子形成面と、前記支持基板の第1主面上のシリコーン樹脂層の表面とを、室温下、真空プレスにて貼り合わせ積層体C(本発明の積層体)を得た。
 このような実施例3に係る積層体Cにおいて、偏光子付きデバイス基板および支持基板は、シリコーン樹脂層と気泡を発生することなく密着しており、凸状欠点もなく平滑性も良好であった。
 (実施例4)
 光硬化性組成物を耐熱性シリコーン樹脂(アデカ社製 FX-V550)に変えた以外は実施例2と同様にして、デバイス基板の第1主面に凸条が形成されていない隙間10mm間隔にて、縦3ヵ所、横3ヵ所、計9か所に凸条を形成した。
  さらに、実施例2と同様にして、デバイス基板と支持基板とを貼り合わせ、積層体D(本発明の積層体)を得た。
  このような実施例4に係る積層体Dにおいて、偏光子付きデバイス基板および支持基板は、シリコーン樹脂層と気泡を発生することなく密着しており、凸状欠点もなく平滑性も良好であった。
 (実施例5)
 本例では、実施例2、4で得た積層体B、Dを用いて液晶表示装置を製造する。
  積層体Dを準備して、アレイ形成工程に供してデバイス基板の第2主面にアレイを形成する。一方、積層体Bはカラーフィルタ形成工程に供してデバイス基板の第2主面にカラーフィルタを形成する。アレイが形成された積層体Dと、カラーフィルタが形成された積層体Bとをシール材を介して貼り合わせ、支持体付き表示装置用パネルを得る。なお、積層体D、積層体Bの偏光子の偏光軸は適切な組み合わせとなるよう、予め設計しておく。そして、支持体付き表示装置用パネルの両主面に固定されている支持体(支持基板)を剥離する。剥離方法は、前記両主面を片面ずつ、樹脂層と薄板積層体との境界に圧縮空気と水の混合流体を吹きつけた上で、支持基板を剥離した。剥離後のデバイス基板の表面には強度低下につながるような傷は見られない。また、偏光子にも、表示性能低下につながる傷は見られない。
  続いて、支持基板を剥離したデバイス基板を、縦51mm×横38mmの54個のセルに分断した後、液晶注入工程および注入口の封止工程を実施して液晶セルを形成する。続いてモジュール形成工程を実施して液晶表示装置を得る。こうして得られる液晶表示装置に特性上問題は生じない。
 (実施例6)
 本例では、実施例3で得た積層体Cを用いて、極薄の液晶表示装置を製造する。
  2枚の積層体Cを準備して、1枚はアレイ形成工程に供してデバイス基板の第2主面にアレイを形成する。残りの1枚はカラーフィルタ形成工程に供してデバイス基板の第2主面にカラーフィルタを形成する。アレイが形成された積層体と、カラーフィルタが形成された積層体とを偏光子の偏光軸の向きを合わせた上で、シール材を介して貼り合わせ、支持体付き表示装置用パネルを得る。その後、支持体付き表示パネルの両主面に付いている支持体(支持基板)を剥離する。剥離方法は、前記両主面を片面ずつ、樹脂層と薄板積層体との境界に圧縮空気と水の混合流体を吹きつけた上で、支持基板を剥離する。剥離後のデバイス基板の表面には強度低下につながるような傷は見られない。また、偏光子にも、表示性能低下につながる傷は見られない。
  その後、支持基板を剥離したデバイス基板を切断し、縦51mm×横38mmの64個のセルに分断した後、液晶注入工程および注入口の封止工程を実施して液晶セルを形成する。続いてモジュール形成工程を実施して極薄の液晶表示装置を得る。こうして得られる極薄の液晶表示装置に特性上問題は生じない。
 (実施例7)
 本例では、実施例1で得た積層体Aを用いて液晶表示装置を製造する。
  2枚の積層体Aを準備して、1枚はアレイ形成工程に供してデバイス基板の第2主面上にアレイを形成する。一方、もう1枚の積層体Aはカラーフィルタ形成工程に供してデバイス基板の第2主面上にカラーフィルタを形成する。アレイが形成された積層体と、カラーフィルタが形成された積層体とを偏光子の偏光軸の向きを合わせた上で、シール材を介して貼り合わせ、支持体付き表示装置用パネルを得る。その後、支持体付き表示パネルの両主面に付いている支持体(支持基板)を剥離する。剥離方法は、前記両主面を片面ずつ、樹脂層と薄板積層体との境界に圧縮空気と水の混合流体を吹きつけた上で、支持基板を剥離する。剥離後のデバイス基板の表面には強度低下につながるような傷は見られない。また、偏光子にも、表示性能低下につながる傷は見られない。
 その後、支持基板を剥離したデバイス基板を切断し、縦51mm×横38mmの6個のセルに分断した後、液晶注入工程および注入口の封止工程を実施して液晶セルを形成する。続いてモジュール形成工程を実施して液晶表示装置を得る。こうして得られる液晶表示装置に特性上問題は生じない。
 (実施例8)
 デバイス基板として線膨張係数700×10-7/℃、厚さ0.1mm、幅400mmのシクロオレフィンポリマー(日本ゼオン(株)製ZEONOR Film ZF14)のフィルム基材を用いて、このフィルム基材のロールを東芝機械社製の連続WEBコーターのデバイス基板送り出し部にセットし、偏光子用樹脂塗布手段にて前記光硬化性組成物から成る偏光子用樹脂を薄板ガラス基板の第1主面に塗布した。
  クロムメッキを施した金属ロール(幅450mm、直径250mm)上に、複数の溝が互いに平行にかつ所定のピッチで形成された、厚さ0.2mmのニッケル製モールド(モールド面積:150mm×400mm、パターン面積:120mm×170mm、パターン個数:2個、パターンエリア間隔:20mm、溝のピッチ:150nm、溝の幅:50nm、溝の深さ:100nm、溝の長さ:120mm、溝の断面形状:矩形)を金属ロールの曲面上に61mm間隔で3枚貼りつけて、グラビアロールを作製した。前記グラビアロールの曲面上の溝が、前記フィルム基材の第1主面に形成された偏光子用樹脂層に接するように、ニップロールを用いて前記フィルム基材をグラビアロール方向に押し付けた。押し付け時の雰囲気温度は25℃であった。
 該押し付け状態を保持したまま、フィルム基材の第2主面側から高圧水銀灯(周波数:1.5kHz~2.0kHz、主波長光:255nm、315nmおよび365nmにおける照射エネルギー:1000mJ/cm)の光を連続的に照射し、偏光子用樹脂層を硬化させて、ニッケル製モールドの溝に対応した凸条を有する偏光子用樹脂層(凸条のピッチ:150nm、凸条の幅:50nm、凸条の高さ:100nm)を作製した。剥離ロールを用いて前記フィルム基材からニッケル製モールドを剥離した後、前記フィルム基材を巻き取りロールに巻き取った。巻き取ったロール状前記フィルム基材の第1主面には、前記フィルム基材の幅方向の2か所に30mm間隔で凸条が形成され、長さ方向に30mm間隔で連続的に凸条が形成されていた。
 前記巻き取ったロール状フィルム基材を、連続蒸着装置の送り出し部にセットし、蒸着角度25度から35度で連続的にAlを蒸着し、凸条の上部に幅50nm、厚み50nmのAl層を形成した。以上の工程によって、前記フィルム基材の第1主面にワイヤグリッド型偏光子が連続的に形成された。
 ワイヤグリッド型偏光子が連続的に形成された前記フィルム基材を、長さ750mm間隔で切断し、長さ750mm、幅400mm、厚さ0.1mmの枚葉のワイヤグリッド型偏光子付きデバイス基板を得た。
 次に縦760mm、横405mm、板厚0.6mm、線膨張係数700×10-7/℃の支持基板(日本ゼオン(株)製ZEONOR シート 1020R)の第1主面上に、両末端にビニル基を有する直鎖状ポリオルガノシロキサンと、分子内にハイドロシリル基を有するメチルハイドロジェンポリシロキサンとを混合し、そして、これを白金系触媒と混合して混合物を調製し、縦757mm、横402mmの面積でダイコーターにて塗工し(塗工量20g/m)、120℃にて60分間大気中で加熱硬化して厚さ20μmシリコーン樹脂層を形成した。ここで、ハイドロシリル基とビニル基のモル比は1/1となるように、直鎖状ポリオルガノシロキサンとメチルハイドロジェンポリシロキサンとの混合比を調整した。白金系触媒は、直鎖状ポリオルガノシロキサンとメチルハイドロジェンポリシロキサンとの合計100質量部に対して5質量部添加した。
 次に、前記偏光子付きデバイス基板の偏光子形成面と、前記支持基板の第1主面上のシリコーン樹脂層の表面とを、室温下、真空プレスにて貼り合わせ積層体E(本発明の積層体)を得た。
 このような実施例8に係る積層体Eにおいて、偏光子付きデバイス基板および支持基板は、シリコーン樹脂層と気泡を発生することなく密着しており、凸状欠点もなく平滑性も良好であった。
(実施例9)
 本例では、実施例8で得た積層体Eを用いて、極薄の液晶表示装置を製造する。
  2枚の積層体Eを準備して、1枚はアレイ形成工程に供してデバイス基板の第2主面にアレイを形成する。残りの1枚はカラーフィルタ形成工程に供してデバイス基板の第2主面にカラーフィルタを形成する。アレイが形成された積層体と、カラーフィルタが形成された積層体とを偏光子の偏光軸の向きを合わせた上で、シール材を介して貼り合わせ、支持体付き表示装置用パネルを得る。その後、支持体付き表示パネルの両主面に付いている支持体(支持基板)を剥離する。剥離方法は、前記両主面を片面ずつ、樹脂層と薄板積層体との境界に圧縮空気と水の混合流体を吹きつけた上で、支持基板を剥離する。剥離後のデバイス基板の表面には強度低下につながるような傷は見られない。また、偏光子にも、表示性能低下につながる傷は見られない。
  その後、支持基板を剥離したデバイス基板を切断し、縦51mm×横38mmの64個のセルに分断した後、液晶注入工程および注入口の封止工程を実施して液晶セルを形成する。続いてモジュール形成工程を実施して極薄の液晶表示装置を得る。こうして得られる極薄の液晶表示装置に特性上問題は生じない。
 (比較例)
 縦170mm、横100mm、板厚0.7mm、線膨張係数38×10-7/℃のガラス製デバイス基板(旭硝子株式会社製、AN100、無アルカリガラス基板)を用いて、実施例1と同様の手法でサイズ(ピッチPm:200nm、幅Dm:100nm、高さHm:200nm)のAl製金属細線のワイヤグリッド型偏光子が形成されたデバイス基板を得た。
  このワイヤグリッド型偏光子が形成された板厚0.7mmのデバイス基板を2枚用いて、1枚はアレイ形成工程に供して、ワイヤグリッドが形成されていないデバイス基板の主面にアレイを形成した。残りの1枚もカラーフィルタ形成工程に供して、ワイヤグリッドが形成されていないデバイス基板の主面にカラーフィルタを形成した。アレイが形成されたデバイス基板と、カラーフィルタが形成されたデバイス基板とを偏光子の偏光軸の向きを合わせた上で、シール材を介して貼り合わせ、支持体付き表示装置用パネルを得た。前記パネルの表面には、アレイ形成工程およびカラーフィルタ形成工程において、搬送コロや金属トレイと接触したことによるヘイズ値(曇価)上昇箇所が散見された。これは、ワイヤグリッド型偏光子に傷が付いたために起こる現象であり、表示装置に用いた場合、明らかな表示不良につながる欠点である。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2009年2月5日出願の日本特許出願2009-025025に基づくものであり、その内容はここに参照として取り込まれる。
 本発明により得られた積層体は、従来の表示装置より薄型の表示装置が作製可能な偏光子付き積層体を提供することができる。
10 偏光子付き積層体(本発明の積層体)
11 反射型偏光子
12、32、42、72 デバイス基板
12a、32a、42a、62a デバイス基板第1主面
12b デバイス基板第2主面
13 支持基板
13a 支持基板第1主面
13b 支持基板第2主面
14 樹脂層
35 金属細線
46、61、76 凸条
47 金属材料からなる膜
51 デバイス基板供給手段
51a デバイス基板送り出しロール
51b 保護フィルム剥離ロール
51c 保護フィルム巻き取りロール
52  偏光子用樹脂塗布手段
52a 偏光子用樹脂供給源
52b 塗布ヘッド
52c コーティングローラ
52d 配管
52e ポンプ
53 ニップロール
54 グラビアロール
55 偏光子用樹脂硬化手段
56 剥離ロール
57 巻き取り手段
76a 凸条の第1の側面
76b 凸条の第2の側面
Dm 金属細線の幅
Pm 金属細線のピッチ
Hm 金属細線の高さ
Lm 金属細線の長さ
V1、V2 蒸着方向
Wp 隙間
Xa 縦方向矢印
Xb 横方向矢印

Claims (14)

  1.  第1主面および第2主面を有するデバイス基板、
     第1主面および第2主面を有する支持基板、ならびに
     前記デバイス基板の第1主面と前記支持基板の第1主面の間に存在する樹脂層、
     を有する偏光子付き積層体であって、
     前記デバイス基板の第1主面に反射型偏光子が存在し、前記デバイス基板の反射型偏光子が存在する面に接する前記樹脂層の表面が剥離性を有する偏光子付き積層体。
  2.  前記反射型偏光子がワイヤグリッド型偏光子である、請求項1に記載の偏光子付き積層体。
  3.  前記ワイヤグリッド型偏光子の金属細線のピッチ(Pm)が50~200nmであり、前記金属細線の幅(Dm)とピッチ(Pm)の比(Dm/Pm)が0.1~0.6である、請求項2に記載の偏光子付き積層体。
  4.  前記樹脂層を形成する樹脂が、フッ素樹脂、アクリル樹脂、ポリオレフィン樹脂、ポリウレタン樹脂およびシリコーン樹脂から選ばれる少なくとも1つである、請求項1~3のいずれか一項に記載の偏光子付き積層体。
  5.  前記樹脂層の厚さが5~50μmである、請求項1~4のいずれか一項に記載の偏光子付き積層体。
  6.  前記デバイス基板と前記支持基板とが同じ材料からなり、該デバイス基板と該支持基板との線膨張係数の差が150×10-7/℃以下である、請求項1~5のいずれか一項に記載の偏光子付き積層体。
  7.  前記デバイス基板と前記支持基板とが異なる材料からなり、該デバイス基板と該支持基板との線膨張係数の差が700×10-7/℃以下である、請求項1~5のいずれか一項に記載の偏光子付き積層体。
  8.  請求項1~7のいずれか一項に記載の偏光子付き積層体における前記デバイス基板の第2主面に表示装置用部材を有する、支持体付き表示装置用パネル。
  9.  請求項8に記載の支持体付き表示装置用パネルを用いて形成される表示装置用パネル。
  10.  請求項9に記載の表示装置用パネルを用いて形成される表示装置。
  11.  請求項1~7のいずれか一項に記載の偏光子付き積層体の製造方法であって、前記デバイス基板の第1主面に反射型偏光子を形成する偏光子形成工程と、前記支持基板の第1主面上に剥離性表面を有する樹脂層を形成する樹脂層形成工程と、前記反射型偏光子付デバイス基板と前記樹脂層付支持基板とを積層して、前記デバイス基板の反射型偏光子が存在する面に前記樹脂層の剥離性表面を密着させる密着工程と、を具備する、偏光子付き積層体の製造方法。
  12.  請求項11に記載の製造方法、および、得られた偏光子付き積層体における前記デバイス基板の第2主面に、表示装置用部材を形成する工程を具備する、支持体付き表示装置用パネルの製造方法。
  13.  請求項12に記載の製造方法、および、得られた支持体付き表示装置用パネルにおける前記デバイス基板の反射型偏光子が存在する面と前記樹脂層の剥離性表面とを、剥離する剥離工程を具備する、表示装置用パネルの製造方法。
  14.  請求項13に記載の製造方法、および、得られた表示装置用パネルを用いて表示装置を得る工程を具備する、表示装置の製造方法。
PCT/JP2010/050845 2009-02-05 2010-01-22 偏光子付き積層体、支持体付き表示装置用パネル、表示装置用パネル、表示装置およびこれらの製造方法 WO2010090085A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010549430A JP5533671B2 (ja) 2009-02-05 2010-01-22 偏光子付き積層体、支持体付き表示装置用パネル、表示装置用パネル、表示装置およびこれらの製造方法
CN201080006183.8A CN102405436B (zh) 2009-02-05 2010-01-22 带偏振片的层叠体、带支承体的显示装置用面板、显示装置用面板、显示装置及它们的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-025025 2009-02-05
JP2009025025 2009-02-05

Publications (1)

Publication Number Publication Date
WO2010090085A1 true WO2010090085A1 (ja) 2010-08-12

Family

ID=42541989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050845 WO2010090085A1 (ja) 2009-02-05 2010-01-22 偏光子付き積層体、支持体付き表示装置用パネル、表示装置用パネル、表示装置およびこれらの製造方法

Country Status (5)

Country Link
JP (1) JP5533671B2 (ja)
KR (1) KR101561326B1 (ja)
CN (1) CN102405436B (ja)
TW (1) TWI457617B (ja)
WO (1) WO2010090085A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118438A (ja) * 2010-12-03 2012-06-21 Asahi Kasei E-Materials Corp ワイヤグリッド偏光子及びワイヤグリッド偏光子の製造方法
WO2014010517A1 (ja) * 2012-07-10 2014-01-16 旭硝子株式会社 インプリント方法、及びインプリント装置
JP2014014996A (ja) * 2012-07-10 2014-01-30 Asahi Glass Co Ltd インプリント方法
KR20150014195A (ko) * 2013-07-29 2015-02-06 삼성디스플레이 주식회사 바텀샤시, 이를 제조하는 방법 및 이를 포함하는 표시장치
JP2016018059A (ja) * 2014-07-08 2016-02-01 大日本印刷株式会社 偏光子、偏光子の製造方法、および光配向装置
JP2016530182A (ja) * 2013-06-10 2016-09-29 コーニング インコーポレイテッド 構成要素層が統合された光学的構造体
WO2017091438A1 (en) * 2015-11-23 2017-06-01 Corning Incorporated Wire grid polarizers and methods of making the same
WO2020261856A1 (ja) * 2019-06-26 2020-12-30 国立研究開発法人産業技術総合研究所 ワイヤグリッド構造を有する偏光素子およびその製造方法
WO2023145307A1 (ja) * 2022-01-26 2023-08-03 デクセリアルズ株式会社 ワイヤグリッド偏光素子およびその製造方法ならびに光学機器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101976734B1 (ko) * 2012-11-30 2019-05-09 동우 화인켐 주식회사 반사형 화상 표시 장치 및 이를 구비한 전자 기기
CN104903095B (zh) * 2012-12-28 2017-10-13 旭硝子株式会社 玻璃层叠体及其制造方法、以及带有机硅树脂层的支撑基材
CN103399425A (zh) * 2013-08-12 2013-11-20 深圳市华星光电技术有限公司 玻璃基板支撑装置以及液晶面板加工工艺
CN105765457B (zh) * 2013-11-29 2020-01-21 Ev 集团 E·索尔纳有限责任公司 具有印模结构的印模及其制造方法
CN104459863A (zh) * 2014-12-04 2015-03-25 京东方科技集团股份有限公司 线栅偏光片及其制备方法、显示面板和显示装置
CN107179614A (zh) * 2017-07-28 2017-09-19 宁波视睿迪光电有限公司 立体显示装置及***
JP6916525B2 (ja) * 2018-02-06 2021-08-11 株式会社ブイ・テクノロジー Ledディスプレイの製造方法
CN108803124B (zh) * 2018-06-27 2021-05-28 武汉华星光电技术有限公司 曲面液晶显示屏及其制造方法
CN113910470B (zh) * 2021-09-27 2024-04-16 惠州市富丽电子有限公司 一种偏光片研磨加工刀具的清洗工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017408A (ja) * 2003-06-23 2005-01-20 Ricoh Opt Ind Co Ltd 偏光光学素子とその製造方法
JP2005242080A (ja) * 2004-02-27 2005-09-08 Victor Co Of Japan Ltd ワイヤグリッドポラライザ
WO2007018028A1 (ja) * 2005-08-09 2007-02-15 Asahi Glass Company, Limited 薄板ガラス積層体及び薄板ガラス積層体を用いた表示装置の製造方法
JP2008145573A (ja) * 2006-12-07 2008-06-26 Seiko Epson Corp 偏光素子とその製造方法、液晶装置、及び電子機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064600A (ja) * 1999-08-25 2001-03-13 Nitto Denko Corp 表面保護フィルム、光学部材及び液晶表示装置
US20040174596A1 (en) * 2003-03-05 2004-09-09 Ricoh Optical Industries Co., Ltd. Polarization optical device and manufacturing method therefor
KR20070037864A (ko) * 2005-10-04 2007-04-09 엘지.필립스 엘시디 주식회사 액정 표시패널과 그의 제조방법
JP2007101921A (ja) * 2005-10-05 2007-04-19 Seiko Epson Corp 液晶装置、及び投射型表示装置
JP4520445B2 (ja) * 2006-10-11 2010-08-04 旭化成イーマテリアルズ株式会社 ワイヤグリッド偏光板
JP2008275795A (ja) * 2007-04-26 2008-11-13 Nippon Zeon Co Ltd 光学フィルム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017408A (ja) * 2003-06-23 2005-01-20 Ricoh Opt Ind Co Ltd 偏光光学素子とその製造方法
JP2005242080A (ja) * 2004-02-27 2005-09-08 Victor Co Of Japan Ltd ワイヤグリッドポラライザ
WO2007018028A1 (ja) * 2005-08-09 2007-02-15 Asahi Glass Company, Limited 薄板ガラス積層体及び薄板ガラス積層体を用いた表示装置の製造方法
JP2008145573A (ja) * 2006-12-07 2008-06-26 Seiko Epson Corp 偏光素子とその製造方法、液晶装置、及び電子機器

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118438A (ja) * 2010-12-03 2012-06-21 Asahi Kasei E-Materials Corp ワイヤグリッド偏光子及びワイヤグリッド偏光子の製造方法
WO2014010517A1 (ja) * 2012-07-10 2014-01-16 旭硝子株式会社 インプリント方法、及びインプリント装置
JP2014014996A (ja) * 2012-07-10 2014-01-30 Asahi Glass Co Ltd インプリント方法
JP2016530182A (ja) * 2013-06-10 2016-09-29 コーニング インコーポレイテッド 構成要素層が統合された光学的構造体
KR20150014195A (ko) * 2013-07-29 2015-02-06 삼성디스플레이 주식회사 바텀샤시, 이를 제조하는 방법 및 이를 포함하는 표시장치
KR102087023B1 (ko) * 2013-07-29 2020-03-11 삼성디스플레이 주식회사 바텀샤시, 이를 제조하는 방법 및 이를 포함하는 표시장치
JP2016018059A (ja) * 2014-07-08 2016-02-01 大日本印刷株式会社 偏光子、偏光子の製造方法、および光配向装置
WO2017091438A1 (en) * 2015-11-23 2017-06-01 Corning Incorporated Wire grid polarizers and methods of making the same
WO2020261856A1 (ja) * 2019-06-26 2020-12-30 国立研究開発法人産業技術総合研究所 ワイヤグリッド構造を有する偏光素子およびその製造方法
WO2023145307A1 (ja) * 2022-01-26 2023-08-03 デクセリアルズ株式会社 ワイヤグリッド偏光素子およびその製造方法ならびに光学機器

Also Published As

Publication number Publication date
CN102405436B (zh) 2015-09-16
JPWO2010090085A1 (ja) 2012-08-09
CN102405436A (zh) 2012-04-04
TWI457617B (zh) 2014-10-21
KR101561326B1 (ko) 2015-10-16
TW201040593A (en) 2010-11-16
JP5533671B2 (ja) 2014-06-25
KR20110110268A (ko) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5533671B2 (ja) 偏光子付き積層体、支持体付き表示装置用パネル、表示装置用パネル、表示装置およびこれらの製造方法
JP5024087B2 (ja) ガラス積層体、支持体付き表示装置用パネル、およびそれらの製造方法
WO2010079688A1 (ja) ガラス積層体およびその製造方法
KR101538835B1 (ko) 적층체의 제조 방법 및 적층체
JP6112109B2 (ja) 光学部材の製造方法、及び光学パネルの製造方法
JPWO2009128359A1 (ja) ガラス積層体、支持体付き表示装置用パネルおよびこれらの製造方法
WO2014092015A1 (ja) 電子デバイスの製造方法およびガラス積層体の製造方法
JP2009265646A (ja) 偏光板の製造装置および製造方法、ならびに該製造方法によって得られる偏光板および光学積層体
TW201534681A (zh) 兩面黏著薄膜、附黏著層之透明面材
JP2013011699A (ja) ディスプレイ装置用保護板及びその製造方法
JP4255948B2 (ja) 表示デバイスの製造方法および表示デバイスの製造装置
JP2017083795A (ja) Led光源エッジライト方式表示装置および積層光学フィルムシートの作製方法
JP2015199801A (ja) 粘着層付き透明面材の製造方法、粘着層付き透明面材、両面粘着フィルム
WO2017138364A1 (ja) 液晶表示装置
KR101147116B1 (ko) 백라이트 유닛의 제조방법
JP2007193077A (ja) 液晶表示装置
JP2005338529A (ja) 液晶表示基板の配向処理方法および液晶表示基板のマザー基板
JP7060845B2 (ja) フレキシブルモールドの製造方法、フレキシブルモールド用の基材、及び光学部品の製造方法
JP2005338422A (ja) 液晶表示基板の配向処理方法および液晶表示基板のマザー基板
JP3638246B2 (ja) 高分子シートの製造方法及び光学用高分子シート
JP2010052994A (ja) ガラス積層体、表示装置用パネル及び表示装置、並びにそれらの製造方法
JP2001131299A (ja) 高分子シートの製造方法及び製造装置並びに光学用高分子シート
JP2001105539A (ja) 高分子シートの製造方法及び製造装置並びに光学用高分子シート
JP2002234097A (ja) 高分子シートの製造方法およびこれを用いた高分子シート
JP2007183458A (ja) 液晶表示パネル、液晶表示パネルの製造方法、電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006183.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738423

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010549430

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117017794

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738423

Country of ref document: EP

Kind code of ref document: A1