WO2010082540A1 - 熱電変換モジュールの製造方法及び熱電変換モジュール - Google Patents

熱電変換モジュールの製造方法及び熱電変換モジュール Download PDF

Info

Publication number
WO2010082540A1
WO2010082540A1 PCT/JP2010/050161 JP2010050161W WO2010082540A1 WO 2010082540 A1 WO2010082540 A1 WO 2010082540A1 JP 2010050161 W JP2010050161 W JP 2010050161W WO 2010082540 A1 WO2010082540 A1 WO 2010082540A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion element
type thermoelectric
insulating film
electrode
Prior art date
Application number
PCT/JP2010/050161
Other languages
English (en)
French (fr)
Inventor
雄一 廣山
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN2010800045962A priority Critical patent/CN102282692A/zh
Priority to US13/144,643 priority patent/US20110298080A1/en
Publication of WO2010082540A1 publication Critical patent/WO2010082540A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Definitions

  • the present invention relates to a method for manufacturing a thermoelectric conversion module and a thermoelectric conversion module.
  • Patent Document 1 discloses a method for manufacturing a module in which an insulating resin is poured into a gap between a p-type thermoelectric conversion element and an n-type thermoelectric conversion element that have been previously positioned in order to increase insulation reliability. Yes.
  • thermoelectric conversion element positioning of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element is one of the operations that complicate the manufacture of the thermoelectric conversion module because the thermoelectric conversion element is small.
  • the present invention provides a method for manufacturing a thermoelectric conversion module that can obtain a thermoelectric conversion module having high insulation and high density without requiring positioning of the thermoelectric conversion element, and a thermoelectric conversion module manufactured thereby. For the purpose.
  • the method for manufacturing a thermoelectric conversion module according to the present invention includes at least a surface other than a surface to be opposed to an electrode among surfaces of a p-type thermoelectric conversion element, and / or at least an electrode among surfaces of an n-type thermoelectric conversion element.
  • a coating step of covering a surface other than the surface to be formed with an insulating film, a surface other than the surface to be opposed to the electrode among the surfaces of the p-type thermoelectric conversion element, and an electrode among the surfaces of the n-type thermoelectric conversion element And a step of superposing the surfaces other than the surfaces to be opposed with an insulating film interposed therebetween.
  • At least a surface of the surface of the p-type thermoelectric conversion element other than the surface that faces the electrode and / or a surface of the surface of the n-type thermoelectric conversion element that faces the electrode are coated with an insulating film. Since the surfaces are overlapped via an insulating film, the p-type thermoelectric conversion element and the n-type thermoelectric conversion element are insulated by the insulating film, and a highly insulating and high-density thermoelectric conversion module is manufactured without positioning. it can.
  • the covering step all the surfaces of the p-type thermoelectric conversion elements and / or all the surfaces of the n-type thermoelectric conversion elements are covered with an insulating film, and are further overlapped in the overlapping step.
  • the surface of the surface of the p-type thermoelectric conversion element to be opposed to the electrode and / or the surface of the surface of the n-type thermoelectric conversion element to be opposed to the electrode is polished. It is preferable to provide an insulating film removing step for removing the insulating film.
  • the step of covering the surface of the thermoelectric conversion element with the insulating film is provided.
  • the p-type thermoelectric conversion element and / or the n-type thermoelectric conversion element need only be immersed in the composition for forming the insulating film.
  • the surface of the p-type thermoelectric conversion element to be opposed to the electrode and / or the n-type thermoelectric conversion element is also relatively simple because the insulating film is removed by polishing the surface that will face the electrode of each thermoelectric conversion element at a time. . Therefore, the process is simplified as a whole as compared with the case where the insulating film is selectively formed only on a part of the surface of each thermoelectric conversion element so that the surface facing the electrode is not covered with the insulating film.
  • thermoelectric conversion block by fixing the p-type thermoelectric conversion element and the n-type thermoelectric conversion element integrally in the overlapping step before the insulating film removing step.
  • thermoelectric conversion block The p-type thermoelectric conversion element and the n-type thermoelectric conversion element overlapped by fixing the p-type thermoelectric conversion element and the n-type thermoelectric conversion element, which are overlapped via the insulating film, to form a thermoelectric conversion block are It will be fixed enough. Thereby, after this process, the surface of the surface of the p-type thermoelectric conversion element that faces the electrode and / or the surface of the surface of the n-type thermoelectric conversion element electrode that faces the electrode Polishing for removing the insulating film can be easily performed. Furthermore, it is possible to easily bond electrodes to the thermoelectric conversion block.
  • the thermoelectric conversion module of the present invention includes a p-type thermoelectric conversion element, an n-type thermoelectric conversion element, an electrode for electrically connecting the p-type thermoelectric conversion element and the n-type thermoelectric conversion element, and a p-type thermoelectric conversion element.
  • the conversion element and the n-type thermoelectric conversion element are superposed via two insulating films.
  • the surface of the p-type thermoelectric conversion element other than the surface facing the electrode and the surface of the n-type thermoelectric conversion element other than the surface facing the electrode are covered with the insulating film.
  • the p-type thermoelectric conversion element and the n-type thermoelectric conversion element are superposed via two insulating films, so that the insulation reliability between the p-type thermoelectric conversion element and the n-type thermoelectric conversion element is particularly excellent, and A high-density thermoelectric conversion module can be provided.
  • thermoelectric conversion module which can obtain a thermoelectric conversion module with high insulation and high density simply without requiring positioning of a thermoelectric conversion element, and the thermoelectric conversion module manufactured by this Can be provided.
  • thermoelectric conversion module 11 It is a schematic diagram in an example of the manufacturing method of the thermoelectric conversion module 11 which concerns on 1st embodiment of this invention. It is sectional drawing in an example of the thermoelectric conversion module 1 which concerns on embodiment of this invention. It is a schematic diagram in an example of the manufacturing method of the thermoelectric conversion module 11 which concerns on 2nd embodiment of this invention. It is sectional drawing in another example of the thermoelectric conversion module 1 which concerns on embodiment of this invention.
  • thermoelectric conversion module First, a method for manufacturing a thermoelectric conversion module according to this embodiment will be described.
  • FIG. 1 schematically shows a method for manufacturing a thermoelectric conversion module according to the first embodiment.
  • the manufacturing method of the thermoelectric conversion module according to the first embodiment includes (a) a thermoelectric conversion element preparation step, (b) an insulating film coating step on the thermoelectric conversion element, (c) a thermoelectric conversion element overlaying step, and (d). An electrode joining process is provided.
  • thermoelectric conversion element 3 and n-type thermoelectric conversion element 4 as shown in FIG.
  • the shape of the thermoelectric conversion element is not particularly limited, and may be a hexahedron such as a rectangular parallelepiped, a hexagonal column, a cylinder, or a disk.
  • the material which comprises each thermoelectric conversion element will not be specifically limited if it has the property of a p-type semiconductor or an n-type semiconductor, Various materials, such as a metal and a metal oxide, can be used.
  • the method for producing the p-type thermoelectric conversion element 3 and the n-type thermoelectric conversion element 4 differs depending on the material constituting the thermoelectric conversion element.
  • the constituent material is a metal
  • a bulk body of metal is cut into a desired shape, It can be set as a thermoelectric conversion element.
  • the constituent material is a metal oxide
  • a compound containing a metal element constituting the metal oxide is mixed, sintered in an oxygen-containing atmosphere, and the obtained sintered body is cut out and then obtained.
  • a thermoelectric conversion element can be obtained by setting it as a shape.
  • thermoelectric conversion element 3 examples include the following materials.
  • the material of the p-type thermoelectric conversion element 3 includes a metal composite oxide such as Na x CoO 2 (0 ⁇ x ⁇ 1), Ca 3 Co 4 O 9 , MnSi 1.73 , Fe 1-x Mn x Si. 2 , Si 0.8 Ge 0.2 : B (B-doped Si 0.8 Ge 0.2 ), silicide such as ⁇ -FeSi 2 , CoSb 3 , FeSb 3 , RFe 3 CoSb 12 (R is La, Ce or Yb represents a skutterudite, BiTeSb, PbTeSb, Bi 2 Te 3 , Sb 2 Te 3 , alloys containing Te such as PbTe, Zn 4 Sb 3 and the like.
  • a metal composite oxide such as Na x CoO 2 (0 ⁇ x ⁇ 1), Ca 3 Co 4 O 9 , MnSi 1.73 , Fe 1-x Mn x Si. 2 , Si 0.8 Ge 0.2 : B (B-do
  • thermoelectric conversion element 4 examples include metal composite oxides such as SrTiO 3 , Zn 1-x Al x O, CaMnO 3 , LaNiO 3 , BaTiO 3 , Ti 1-x Nb x O, Mg 2 Si, Fe 1-x Co x Si 2 , Si 0.8 Ge 0.2 : P (P-doped Si 0.8 Ge 0.2 ), silicide such as ⁇ -FeSi 2 , skutterudite such as CoSb 3 Clathrate compounds such as Ba 8 Al 12 Si 30 , Ba 8 Al x Si 46-x , Ba 8 Al 12 Ge 30 , Ba 8 Al x Ge 46-x , Ba 8 Ga x Ge 46-x , CaB 6 , SrB 6, BaB 6, CeB boron compounds such as 6, BiTeSb, PbTeSb, Bi 2 Te 3, Sb 2 Te 3, an alloy containing Te such as PbTe, Zn 4 S b 3 etc. are mentioned
  • the p-type thermoelectric conversion element 3 and the n-type thermoelectric conversion element 4 are metal oxides or silicides among the above materials. Is preferably included as a main component.
  • the material of the p-type thermoelectric conversion element 3 is preferably Ca 3 Co 4 O 9
  • the material of the n-type thermoelectric conversion element 4 is preferably CaMnO 3 .
  • Ca 3 Co 4 O 9 and CaMnO 3 have particularly excellent oxidation resistance in the air atmosphere at high temperature and have high thermoelectric conversion performance.
  • the p-type thermoelectric conversion element 3 and the n-type thermoelectric conversion element 4 may have metal layers on the surfaces 3a and 3b and the surfaces 4a and 4b, respectively. This metal layer may be provided in order to improve the adhesiveness with the joining material which joins the electrode and thermoelectric conversion element which are mentioned later.
  • thermoelectric conversion element 3 and the n-type thermoelectric conversion element 4 are covered with the insulating film 15.
  • Surfaces other than 4b are covered with an insulating film 15 as shown in FIG.
  • thermoelectric conversion element 3 and the n-type thermoelectric conversion element 4 As a method of covering the p-type thermoelectric conversion element 3 and the n-type thermoelectric conversion element 4 with the insulating film 15, a composition for forming the insulating film 15 is applied to the surfaces other than the surfaces 3a and 3b and the surfaces 4a and 4b.
  • the surfaces 3a, 3b of the p-type thermoelectric conversion element 3 and the surfaces 4a, 4b of the p-type thermoelectric conversion element 4 are covered with an easily removable cover, and then the thermoelectric conversion element 3, 4 is immersed in a bath of a composition for forming the insulating film 15, and the insulating film 15 is formed on the surfaces other than the surfaces 3a and 3b of the thermoelectric conversion element 3 and the surfaces 4a and 4b of the thermoelectric conversion element 4. Examples include a method of forming a composition and then removing the cover covering the surfaces 3a and 3b and the surfaces 4a and 4b.
  • the composition for forming the insulating film 15 includes a composition for forming a film of an inorganic insulator such as an alumina insulator, an alumina / silicon carbide (SiC) insulator, a silica insulator, and an epoxy insulator. And a composition for forming a film of an organic insulator such as a body. Considering the case where the thermoelectric conversion module is used at 300 ° C. or higher, from the viewpoint of heat resistance, a composition that forms a film of an inorganic insulator is preferable.
  • Betak (trade name, manufactured by Telnic Industry Co., Ltd.)
  • SiC silicon carbide
  • an SP coat As a composition for forming a film of a ceramic coat (trade name) and a silica-based insulator, silica coat (trade name, manufactured by Exsia Co., Ltd.) may be mentioned.
  • the thickness of the insulating film 15 is preferably about 20 ⁇ m to 1 mm, and more preferably about 100 ⁇ m to 0.5 mm. Forming the insulating film 15 exceeding 1 mm is not preferable from the viewpoint of reducing the element density.
  • the preferred film thickness of the insulating film 15 formed of the composition for forming each inorganic insulator film is about 0.1 to 1 mm for the betac and 0.05 to 0.1 mm for the SP coat. And about 0.01 to 0.05 mm for the silica coat.
  • thermoelectric conversion element 13 having the insulating film 15 formed on the surface other than the surfaces 3a and 3b, and the surfaces 4a and 4b.
  • the n-type thermoelectric conversion element 14 having the insulating film 15 formed on the other surface is overlaid so that the insulating films 15 face each other. Specifically, for each pair of adjacent elements 13 and 14, one of the side surfaces of the element 13 on which the insulating film is formed and one surface of the side surfaces of the element 14 on which the insulating film is formed.
  • the elements 13 and 14 are alternately arranged in a matrix as a whole so as to overlap each other through the insulating films 15 of the respective elements. That is, at least a part of the surface of the p-type thermoelectric conversion element other than the surface to be opposed to the electrode and at least one of the surfaces of the n-type thermoelectric conversion element other than the surface to be opposed to the electrode. The parts are overlaid through an insulating film.
  • thermoelectric conversion block 11 After the plurality of p-type thermoelectric conversion elements 13 and n-type thermoelectric conversion elements 14 are alternately arranged as described above, the outer periphery of the obtained thermoelectric conversion block 11 is fixed to the fixing means 16 as shown in FIG. It is preferable to fix with.
  • the fixing means 16 include a support frame and an inorganic adhesive.
  • the material of the support frame one or more ceramic materials such as zirconia, cordierite, alumina, mullite, magnesia, silica, calcia may be used.
  • silica-alumina silica, zirconia or an inorganic adhesive mainly composed of alumina (Sumiceram S (manufactured by Asahi Chemical Industry Co., Ltd., trade name)), zirconia-silica as the main component.
  • Inorganic adhesives Alon Ceramics (trade name) manufactured by Toa Gosei Co., Ltd.) and the like.
  • thermoelectric conversion module 1 (D) Electrode bonding step Among the plurality of superimposed p-type thermoelectric conversion elements 13 and n-type thermoelectric conversion elements 14, one end surfaces of the adjacent p-type thermoelectric conversion elements 13 and n-type thermoelectric conversion elements 14 are The electrode 17 is joined as shown in FIG. Thereby, the several p-type thermoelectric conversion element 13 and the n-type thermoelectric conversion element 14 are electrically connected. In FIG. 2, sectional drawing of the thermoelectric conversion module 1 obtained through this process is shown.
  • the electrode 17 examples include a metal plate.
  • the metal plates used preferably include the surfaces 13 a and 13 b of the p-type thermoelectric conversion element 13 and the surfaces 14 a and 14 b of the n-type thermoelectric conversion element 14 using a bonding material 9. What is necessary is just to join.
  • the bonding material 9 is formed on the surface of the electrode 17 or the surface facing the electrode 17 of the thermoelectric conversion element 40, but not only the surfaces 13a and 13b and the surfaces 14a and 14b, but also the surface 13a.
  • thermoelectric conversion module 1 in which a plurality of p-type thermoelectric conversion elements 13 and n-type thermoelectric conversion elements 14 are electrically connected in series can be obtained.
  • the material of the electrode 17 is not particularly limited as long as it has conductivity, but from the viewpoint of improving the heat resistance, corrosion resistance, and adhesion to the thermoelectric conversion element 40 of the electrode, titanium, vanadium, chromium, manganese, iron
  • a metal containing at least one element selected from the group consisting of cobalt, nickel, copper, molybdenum, silver, palladium, gold, tungsten and aluminum as a main component is preferable.
  • the main component refers to a component contained in the electrode material by 50% by volume or more.
  • bonding material 9 examples include AuSn solder, silver paste, brazing material, and the like.
  • the bonding material 9 can be formed into a thin film using a method such as sputtering, vapor deposition, coating, screen printing, plating, or thermal spraying.
  • thermoelectric conversion module does not require positioning of a p-type thermoelectric conversion element and an n-type thermoelectric conversion element, and is simpler than a conventional method for manufacturing a thermoelectric conversion module.
  • the thermoelectric conversion elements can be arranged at a high density, can be reduced in size, and have a high output. Obtainable.
  • the thermoelectric conversion module 1 which has the insulating film 15 in both the p-type thermoelectric conversion element 3 and the n-type thermoelectric conversion element 4 has very high insulation reliability between elements.
  • thermoelectric conversion module which concerns on 2nd embodiment
  • thermoelectric conversion module (Method for manufacturing thermoelectric conversion module according to the second embodiment)
  • the manufacturing method of the thermoelectric conversion module according to the second embodiment all the surfaces of the thermoelectric conversion element 3 and the thermoelectric conversion element 4 are covered with the insulating film 15 in the insulating film coating step on the thermoelectric conversion element (b).
  • the manufacturing method of the thermoelectric conversion module according to the present embodiment includes a step of removing the insulating film on the surface to be opposed to the electrode of the thermoelectric conversion element after the (c) thermoelectric conversion element overlaying step.
  • thermoelectric conversion elements 3 and 4 for example, a rectangular parallelepiped p-type thermoelectric conversion element 3 and n-type thermoelectric conversion element 4 as shown in FIG.
  • the thermoelectric conversion elements 3 and 4 according to the present embodiment, all surfaces of the thermoelectric conversion elements 3 and 4 are covered with the insulating film 15 in order to form the insulating film 15 on all the surfaces of the thermoelectric conversion elements 3 and 4.
  • the shape be such that the surface to be opposed to the electrodes of the thermoelectric conversion elements 3 and 4 can be grasped.
  • the thermoelectric conversion elements 3 and 4 are rectangular parallelepiped thermoelectric conversion elements as shown in FIG. 3A, the surfaces 3a, 3b and 4a, 4b having the smallest area are surfaces to be opposed to the electrodes.
  • the shape of the thermoelectric conversion elements 3 and 4 may be determined.
  • thermoelectric conversion elements 3 and 4 are immersed in a bath 5 of a composition for forming the insulating film 15 and insulated on all surfaces of the thermoelectric conversion elements 3 and 4 as shown in FIG. A film 15 is formed.
  • the p-type thermoelectric conversion element 13 and the n-type thermoelectric conversion 14 in which the insulating film 15 is formed on the entire surface are the same as the process (c) of the first embodiment described above.
  • the surfaces other than the surfaces 13a and 13b to be opposed to the electrodes of the p-type thermoelectric conversion element 13 and the surfaces other than the surfaces 14a and 14b to be opposed to the electrodes of the n-type thermoelectric conversion element 14 are insulated from each other. 15 to overlap. In this way, the p-type thermoelectric conversion elements 13 and the n-type thermoelectric conversion elements 14 are alternately arranged.
  • thermoelectric conversion block 20 is manufactured by fixing together using the fixing means 16 described above.
  • thermoelectric conversion block 11 As shown in FIG. 1C is obtained.
  • the insulating films 15 formed on the surfaces 13a and 13b and the surfaces 14a and 14b are efficiently removed at once from the plurality of p-type thermoelectric conversion elements 13 and n-type thermoelectric conversion elements 14 that are superimposed. be able to.
  • a plurality of superimposed p-type thermoelectric elements 13 and n-type thermoelectric elements 14 are fixed together using fixing means 16 to produce a thermoelectric conversion block 20, thereby overlapping a plurality of superimposed p-type thermoelectric elements.
  • the conversion element 13 and the n-type thermoelectric conversion element 14 are sufficiently fixed, and polishing can be performed easily.
  • thermoelectric conversion module 1 as shown in FIG. 2 can be obtained also by the manufacturing method of the thermoelectric conversion module according to the present embodiment.
  • thermoelectric conversion element in order to form the insulating film on the surface of the thermoelectric conversion element, the thermoelectric conversion element is simply immersed in the composition for forming the insulating film, which is convenient.
  • the process of superposing the p-type thermoelectric conversion element 13 and the n-type thermoelectric conversion element 14 and removing the insulating film that faces the electrodes is performed once on the surface that faces the electrodes of each thermoelectric conversion element. Since the insulating film 15 is removed by polishing, it is relatively simple. Therefore, since the process is simplified as a whole than the manufacturing method according to the first embodiment in which the insulating film is formed on the surface of each thermoelectric conversion element so that the surface to be opposed to the electrode is not covered with the insulating film. preferable.
  • thermoelectric conversion module obtained by the method of manufacturing the thermoelectric conversion module according to the present embodiment as described above, in addition to the skeleton type shown in FIG. 2, the one with a substrate shown in FIG.
  • FIG. 4 is a cross-sectional view of another example of the thermoelectric conversion module 1 manufactured by the method for manufacturing the thermoelectric conversion module according to the first and second embodiments.
  • This thermoelectric conversion module 1 is obtained by forming a substrate on the surface of the electrode 17 of the skeleton type thermoelectric conversion module described above.
  • the thermoelectric conversion module 1 includes a first substrate 2, a first electrode 8, a thermoelectric conversion element 40, a second electrode 6, and a second substrate 7.
  • the p-type thermoelectric conversion elements 3 and the n-type thermoelectric conversion elements 4 are alternately arranged between the first substrate 2 and the second substrate 7 with the respective insulating films 15 interposed therebetween.
  • the thermoelectric conversion module 1 does not necessarily need to have the 1st board
  • the first substrate 2 and the second substrate 7 have, for example, a rectangular shape, are electrically insulating and have thermal conductivity, and cover one end of the plurality of thermoelectric conversion elements 40.
  • the material for the substrate include alumina, aluminum nitride, magnesia, silicon carbide, zirconia, and mullite.
  • the first electrode 8 and the second electrode 6 may be provided in advance on the first substrate 2 and the second substrate 7, respectively. These electrodes can be formed at predetermined positions on the substrate using, for example, sputtering, vapor deposition, coating, screen printing, plating, thermal spraying, or the like. Moreover, a metal plate or the like may be bonded onto each substrate by, for example, soldering or brazing. In addition, as a material of an electrode, what was illustrated by the above-mentioned embodiment is mentioned.
  • thermoelectric conversion module 1 with such a substrate also has the same effect as the above-described thermoelectric conversion module.
  • thermoelectric conversion module which concerns on this invention, and the thermoelectric conversion module obtained by the said manufacturing method are not necessarily restricted to embodiment mentioned above, A various deformation
  • both the p-type thermoelectric conversion element 3 and the n-type thermoelectric conversion element 4 are covered with the insulating film 15, but at least the p-type thermoelectric conversion element 3 and the n-type thermoelectric conversion element 4.
  • This type of thermoelectric conversion element can be covered with the insulating film 15 to implement the present invention.
  • thermoelectric conversions are performed so that the p-type thermoelectric conversion elements 13 and the n-type thermoelectric conversion elements 14 are alternately arranged in the step of polishing and removing the insulating film.
  • the surfaces 13a and 13b and the insulating film 15 formed on the surfaces 14a and 14b are polished and removed.
  • a plurality of p-type thermoelectric conversion elements 13 is overlapped, and the insulating film 15 formed on the surfaces 13a and 13b is polished and removed.
  • a plurality of n-type thermoelectric conversion elements 14 are overlapped to form the insulating film 15 formed on the surfaces 14a and 14b.
  • thermoelectric conversion elements 13 in a state where the insulating film 15 formed on the surfaces 13a and 13b is removed and the insulating film 15 formed on the surfaces 14a and 14b are removed. Multiple ps in a given state Superimposing the thermoelectric conversion elements 14 are alternately, by further bonding the electrode, it is also possible to produce the thermoelectric conversion module.
  • SYMBOLS 1 DESCRIPTION OF SYMBOLS 1 ... Thermoelectric conversion module, 2 ... 1st board

Abstract

 熱電変換素子の位置決めを必要とすることなく、絶縁性が高くかつ高密度な熱電変換モジュールが得られる熱電変換モジュールの製造方法、及びこれにより製造される熱電変換モジュールを提供する。p型熱電変換素子3の表面のうち少なくとも電極と対向されるべき面3a,3b以外の面、及び/又は、n型熱電変換素子4の表面のうち少なくとも電極と対向されるべき面4a,4b以外の面を絶縁膜15で被覆する被覆工程と、p型熱電変換素子3の表面のうち電極と対向されるべき面3a,3b以外の面、及び、n型熱電変換素子の表面のうち電極と対向されるべき面4a,4b以外の面を、絶縁膜15を介して重ね合わせる工程と、を備える熱電変換モジュール1の製造方法。

Description

熱電変換モジュールの製造方法及び熱電変換モジュール
 本発明は、熱電変換モジュールの製造方法及び熱電変換モジュールに関する。
 熱電変換モジュールを高密度化するためのモジュールの製造方法の一つとして、p型熱電変換素子とn型熱電変換素子との間の幅を狭くすることが挙げられるが、この場合、p型熱電変換素子とn型熱電変換素子との間を絶縁する必要がある。特許文献1には、絶縁信頼性を高めるために、予め位置決めがなされたp型熱電変換素子とn型熱電変換素子との間の間隙に、絶縁性樹脂を流し込むモジュールの製造方法が開示されている。
特開2003-282972号公報
 しかしながら、p型熱電変換素子とn型熱電変換素子との位置決めは、熱電変換素子が小さいことなどから、熱電変換モジュールの製造を煩雑にする作業の一つであった。
 そこで本発明は、熱電変換素子の位置決めを必要とすることなく、絶縁性が高くかつ高密度な熱電変換モジュールが得られる熱電変換モジュールの製造方法、及びこれにより製造される熱電変換モジュールを提供することを目的とする。
 本発明に係る熱電変換モジュールの製造方法は、p型熱電変換素子の表面のうち少なくとも電極と対向されるべき面以外の面、及び/又は、n型熱電変換素子の表面のうち少なくとも電極と対向されるべき面以外の面を絶縁膜で被覆する被覆工程と、p型熱電変換素子の表面のうち電極と対向されるべき面以外の面、及び、n型熱電変換素子の表面のうち電極と対向されるべき面以外の面を、絶縁膜を介して重ね合わせる工程と、を備える。
 本発明によれば、p型熱電変換素子の表面のうち少なくとも電極と対向することになる面以外の面、及び/又は、n型熱電変換素子の表面のうち少なくとも電極と対向することになる面以外の面を絶縁膜で被覆し、p型熱電変換素子の表面のうち電極と対向されるべき面以外の面、及び、n型熱電変換素子の表面のうち電極と対向されるべき面以外の面を、絶縁膜を介して重ね合わせるので、絶縁膜によってp型熱電変換素子とn型熱電変換素子とが絶縁され、位置決めを行わずに、絶縁性が高くかつ高密度な熱電変換モジュールを製造できる。
 ここで、被覆工程において、p型熱電変換素子の全ての表面、及び/又は、n型熱電変換素子の全ての表面を絶縁膜で被覆し、さらに、重ね合わせ工程において重ね合わされたp型熱電変換素子及びn型熱電変換素子について、p型熱電変換素子の表面のうち電極と対向されるべき面、及び/又は、n型熱電変換素子の表面のうち電極と対向されるべき面の研磨を行い、絶縁膜を除去する絶縁膜除去工程を備えることが好ましい。
 本発明によれば、p型熱電変換素子の全ての表面、及び/又は、n型熱電変換素子の全ての表面を絶縁膜で被覆するので、熱電変換素子の表面に絶縁膜を被覆する工程が、例えば、p型熱電変換素子及び/又はn型熱電変換素子を、絶縁膜を形成するための組成物に浸漬するだけで済むなど、簡便になる。また、絶縁膜を介して重ね合わされたp型熱電変換素子及びn型熱電変換素子について、p型熱電変換素子の表面のうち電極と対向されるべき面、及び/又は、n型熱電変換素子の表面のうち電極と対向されるべき面の絶縁膜を除去する工程も、各熱電変換素子の電極と対向することになる面を一度に研磨して絶縁膜を除去するので、比較的簡便である。したがって、電極と対向する面が絶縁膜に被覆されないように各熱電変換素子の表面の一部のみに選択的に絶縁膜を形成する場合よりも、全体として工程が簡略化される。
 また、絶縁膜除去工程前に、さらに、重ね合わせ工程において重ね合わされp型熱電変換素子及びn型熱電変換素子を、一体に固定することにより熱電変換ブロックを得る工程を備えることが好ましい。
 絶縁膜を介して重ね合わされたp型熱電変換素子とn型熱電変換素子とを一体に固定して熱電変換ブロックを形成することにより、重ね合わされたp型熱電変換素子及びn型熱電変換素子は十分固定されることとなる。これにより、本工程後、p型熱電変換素子の表面のうち電極と対向されることになる面、及び/又は、n型熱電変換素子電極の表面のうち電極と対向されることになる面の、絶縁膜を除去するための研磨を容易に行うことができる。さらにこの熱電変換ブロックに対して電極の接合等を容易に行うことができる。
 また、本発明の熱電変換モジュールは、p型熱電変換素子と、n型熱電変換素子と、p型熱電変換素子とn型熱電変換素子とを電気的に接続する電極と、p型熱電変換素子の表面のうち電極と対向する面以外の面を被覆する絶縁膜と、n型熱電変換素子の表面のうち電極と対向する面以外の面を被覆する絶縁膜と、を有し、p型熱電変換素子及びn型熱電変換素子が、二つの絶縁膜を介して重ね合わされている。
 本発明によれば、p型熱電変換素子の表面のうち電極と対向する面以外の面、及び、n型熱電変換素子の表面のうち電極と対向する面以外の面が、絶縁膜で被覆され、かつ、p型熱電変換素子及びn型熱電変換素子が、二つの絶縁膜を介して重ね合わされることにより、p型熱電変換素子とn型熱電変換素子との絶縁信頼性に特に優れ、かつ、高密度な熱電変換モジュールを提供することができる。
 本発明によれば、熱電変換素子の位置決めを必要とすることなく、簡便に絶縁性が高くかつ高密度な熱電変換モジュールが得られる熱電変換モジュールの製造方法、及びこれにより製造される熱電変換モジュールを提供することができる。
本発明の第一実施形態に係る熱電変換モジュール11の製造方法の一例における模式図である。 本発明の実施形態に係る熱電変換モジュール1の一例における断面図である。 本発明の第二実施形態に係る熱電変換モジュール11の製造方法の一例における模式図である。 本発明の実施形態に係る熱電変換モジュール1の他の一例における断面図である。
 以下、添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、図面の説明において、同一又は相当要素には同一の符号を付し、重複する説明は省略する。また、各図面の寸法比率は、必ずしも実際の寸法比率とは一致していない。
 まず、本実施形態に係る熱電変換モジュールの製造方法について説明する。
(第一実施形態に係る熱電変換モジュールの製造方法)
 まず、第一実施形態に係る熱電変換モジュールの製造方法について説明する。図1は、第一実施形態に係る熱電変換モジュールの製造方法を模式的に示すものである。第一実施形態に係る熱電変換モジュールの製造方法は、(a)熱電変換素子準備工程、(b)熱電変換素子への絶縁膜被覆工程、(c)熱電変換素子の重ね合わせ工程、(d)電極接合工程を備える。
 (a)熱電変換素子準備工程
 まず、例えば、図1(a)に示すような、直方体のp型熱電変換素子3及びn型熱電変換素子4を準備する。熱電変換素子の形状は特に限定されず、直方体等の六面体、六角柱、円柱、円盤状であってもよい。各熱電変換素子を構成する材料は、p型半導体又はn型半導体の性質を有するものであれば特に限定されず、金属、金属酸化物等の種々の材料を用いることができる。
 p型熱電変換素子3及びn型熱電変換素子4の作製方法は、熱電変換素子を構成する材料によって異なるが、例えば、構成材料が金属であれば、金属のバルク体を所望の形状に切り出し、熱電変換素子とすることができる。また、例えば、構成材料が金属酸化物であれば、金属酸化物を構成する金属元素を含む化合物を混合し、酸素含有雰囲気下で焼結し、得られた焼結体を切り出した後所望の形状とすることにより、熱電変換素子を得ることができる。
 p型熱電変換素子3及びn型熱電変換素子4の材料として、下記の材料が挙げられる。
 例えば、p型熱電変換素子3の材料としては、NaCoO(0<x<1)、CaCo等の金属複合酸化物、MnSi1.73、Fe1-xMnSi、Si0.8Ge0.2:B(BドープSi0.8Ge0.2)、β-FeSi等のシリサイド、CoSb、FeSb、RFeCoSb12(RはLa、Ce又はYbを示す)等のスクッテルダイト、BiTeSb、PbTeSb、BiTe、SbTe、PbTe等のTeを含む合金、ZnSb等が挙げられる。
 また、n型熱電変換素子4の材料としては、例えば、SrTiO、Zn1-xAlO、CaMnO、LaNiO、BaTiO、Ti1-xNbO等の金属複合酸化物、MgSi、Fe1-xCoSi、Si0.8Ge0.2:P(PドープSi0.8Ge0.2)、β-FeSi等のシリサイド、CoSb等のスクッテルダイト、BaAl12Si30、BaAlSi46―x、BaAl12Ge30、BaAlGe46-x、BaGaGe46-x等のクラスレート化合物、CaB、SrB、BaB、CeB等のホウ素化合物、BiTeSb、PbTeSb、BiTe、SbTe、PbTe等のTeを含む合金、ZnSb等が挙げられる。
 熱電変換モジュールを300℃以上で使用する場合を考慮すると、耐熱性及び耐酸化性の観点から、p型熱電変換素子3及びn型熱電変換素子4は、上記材料の中でも金属酸化物、又はシリサイドを主成分として含むことが好ましい。また、金属酸化物の中でも、p型熱電変換素子3の材料としてはCaCoが好ましく、n型熱電変換素子4の材料としてはCaMnOが好ましい。CaCo及びCaMnOは、高温下大気雰囲気中において特に優れた耐酸化性を有し、熱電変換性能も高い。
 なお、p型熱電変換素子3及びn型熱電変換素子4は、面3a,3b及び面4a,4bに、それぞれ金属層を有していてもよい。この金属層は、後述する電極と熱電変換素子とを接合させる接合材との接着性を高めるために設けられることがある。
 (b)熱電変換素子への絶縁膜被覆工程
 続いて、p型熱電変換素子3及びn型熱電変換素子4の表面を絶縁膜15で被覆する。具体的には、図1(a)に示すようなp型熱電変換素子3及びn型熱電変換素子4に対して、各素子表面のうち少なくとも電極と対向されるべき面3a,3b及び4a,4b以外の面を、図1(b)に示すように絶縁膜15で被覆する。
 p型熱電変換素子3及びn型熱電変換素子4を絶縁膜15で被覆する方法としては、面3a,3b及び面4a,4b以外の面に、絶縁膜15を形成するための組成物を塗布する方法、或いは、まず、p型熱電変換素子3の面3a,3b及びp型熱電変換素子4の面4a,4bを、容易に脱着可能なカバーで覆い、次に、その熱電変換素子3、4を、絶縁膜15を形成するための組成物の浴に浸漬させ、熱電変換素子3の面3a,3b及び熱電変換素子4の面4a,4b以外の表面に絶縁膜15を形成するための組成物を形成し、その後、面3a,3b及び面4a,4bを被覆したカバーを除去する方法等が挙げられる。
 絶縁膜15を形成するための組成物としては、アルミナ系絶縁体、アルミナ・炭化珪素(SiC)系絶縁体、シリカ系絶縁体等の無機系絶縁体の膜を形成する組成物、エポキシ系絶縁体等の有機系絶縁体の膜を形成する組成物が挙げられる。熱電変換モジュールを300℃以上で使用する場合を考慮すると、耐熱性の観点から、無機系絶縁体の膜を形成する組成物であることが好ましい。例えば、アルミナ系絶縁体の膜を形成する組成物としては、ベタック(テルニック工業社製、商品名)、アルミナ・炭化珪素(SiC)系絶縁体の膜を形成する組成物としては、SPコート(セラミックコート(株)社製、商品名)、シリカ系絶縁体の膜を形成する組成物としては、シリカコート((有)エクスシア社製、商品名)が挙げられる。また、後述の固定手段16で例示する無機系接着剤を使用してもよい。
 絶縁膜15の厚さは、好ましくは20μm~1mm程度であり、より好ましくは100μm~0.5mm程度である。1mmを超えた絶縁膜15を形成することは、素子密度の低下の観点から好ましくない。上記各無機系絶縁体の膜を形成する組成物により形成される絶縁膜15の好適な膜厚は、ベタックについては0.1~1mm程度であり、SPコートについては0.05~0.1mm程度であり、シリカコートについては0.01~0.05mm程度である。
 (c)熱電変換素子の重ね合わせ工程
 続いて、図1(c)に示すように、面3a,3b以外の面に絶縁膜15が形成されたp型熱電変換素子13と、面4a,4b以外の面に絶縁膜15が形成されたn型熱電変換素子14とを、絶縁膜15同士がそれぞれ対向するように重ね合わせる。具体的には、隣り合う一組の素子13及び素子14それぞれについて、素子13における絶縁膜が形成された側面のうちの一面と、素子14における絶縁膜が形成された側面の内の一面とが、各素子それぞれの絶縁膜15同士を介して重ね合わされるように、素子13及び素子14を、全体として交互に行列状に配置して重ね合わせる。すなわち、p型熱電変換素子の表面のうち電極と対向されるべき面以外の面の少なくとも一部、及び、n型熱電変換素子の表面のうち電極と対向されるべき面以外の面の少なくとも一部を、絶縁膜を介して重ね合わせる。
 複数のp型熱電変換素子13及びn型熱電変換素子14を上述したようにして交互に配置した後、図1(c)に示すように、得られた熱電変換ブロック11の外周を固定手段16で固定することが好ましい。固定手段16としては、支持枠、無機系接着剤等が挙げられる。支持枠の材料には、ジルコニア、コージェライト、アルミナ、ムライト、マグネシア、シリカ、カルシア等セラミックス材料の1又は2以上を用いればよい。無機系接着剤としては、シリカ-アルミナ、シリカ、ジルコニア又はアルミナを主成分とする無機系接着剤(スミセラムS(朝日化学工業(株)社製、商品名))、ジルコニア-シリカを主成分とする無機系接着剤(アロンセラミック(東亜合成(株)社製、商品名))等が挙げられる。
 (d)電極接合工程
 重ね合わされた複数のp型熱電変換素子13及びn型熱電変換素子14のうち、互いに隣接するp型熱電変換素子13とn型熱電変換素子14との一端面同士に、図1(d)に示すように電極17を接合する。これにより、複数のp型熱電変換素子13及びn型熱電変換素子14が電気的に接続される。図2に、本工程を経て得られる熱電変換モジュール1の断面図を示す。
 電極17としては、金属板等が挙げられる。使用される金属板等は、例えば、図2に示すように、好ましくは接合材9を用いてp型熱電変換素子13の面13a,13b、及び、n型熱電変換素子14の面14a,14bに接合すればよい。なお、接合材9は、電極17の表面、又は、熱電変換素子40の電極17との対向面に対して形成されるが、面13a,13b、及び、面14a,14bだけでなく、面13a,14aの間に挟まれる絶縁膜15の面15a、及び、面13b,14bの間に挟まれる絶縁膜15の面15bに形成されても構わない。これにより、複数のp型熱電変換素子13及びn型熱電変換素子14が電気的に直列に接続されたスケルトンタイプの熱電変換モジュール1を得ることができる。
 電極17の材料としては、導電性を有するものであれば特に制限されないが、電極の耐熱性、耐食性、熱電変換素子40への接着性を向上させる観点から、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、モリブデン、銀、パラジウム、金、タングステン及びアルミニウムからなる群より選ばれる少なくとも1種の元素を主成分として含む金属が好ましい。ここで、主成分とは、電極材料中に50体積%以上含有されている成分を言う。
 接合材9としては、AuSn系のはんだ、銀ペースト、ロウ材等が挙げられる。接合材9は、スパッタ、蒸着、塗布、スクリーン印刷、めっき、溶射等の方法を用いて、薄膜状に形成することができる。
 このような熱電変換モジュールの製造方法は、p型熱電変換素子及びn型熱電変換素子の位置決めが不要であり、従来の熱電変換モジュールの製造方法に比して簡便である。また、このような製造方法によって得られる熱電変換モジュールは、絶縁膜15によって十分に素子間の絶縁が確保されるので、熱電変換素子を高密度に配置でき、小型化が可能でかつ高出力を得ることができる。また、p型熱電変換素子3及びn型熱電変換素子4の両方に絶縁膜15を有している熱電変換モジュール1は、素子同士の絶縁信頼性が非常に高いものとなる。
 続いて、第二実施形態に係る熱電変換モジュールの製造方法について説明する。
(第二実施形態に係る熱電変換モジュールの製造方法)
 第二実施形態に係る熱電変換モジュールの製造方法では、上記(b)熱電変換素子への絶縁膜被覆工程において、熱電変換素子3及び熱電変換素子4の全ての表面を絶縁膜15で被覆する。さらに、本実施形態に係る熱電変換モジュールの製造方法は、上記(c)熱電変換素子の重ね合わせ工程の後に、熱電変換素子の電極と対向されるべき面における絶縁膜の除去工程を備える。
 まず、例えば、図3(a)に示すような、直方体のp型熱電変換素子3及びn型熱電変換素子4を準備する。本実施形態に係る熱電変換素子3、4は、熱電変換素子3、4の全ての表面に絶縁膜15を形成するため、絶縁膜15によって熱電変換素子3、4の全ての表面が被覆された後でも、熱電変換素子3、4の電極と対向されるべき面を把握できるような形状とすることが好ましい。例えば、熱電変換素子3、4を、図3(a)に示すような直方体の熱電変換素子とした場合、最も面積の小さい面3a,3b及び4a,4bが電極と対向させるべき面となるように、熱電変換素子3、4の形状を定めればよい。
 次に、熱電変換素子3、4を、絶縁膜15を形成するための組成物の浴5に浸漬させ、図3(b)に示すように、熱電変換素子3、4の全ての表面に絶縁膜15を形成する。
 続いて、図3(c)に示すように全ての表面に絶縁膜15が形成されたp型熱電変換素子13及びn型熱電変換14について、上述した第一実施形態の(c)工程と同様にして、p型熱電変換素子13の電極と対向されるべき面13a,13b以外の面と、n型熱電変換素子14の電極と対向されるべき面14a,14b以外の面と、を絶縁膜15を介して重ね合わせる。このようにして、p型熱電変換素子13及びn型熱電変換素子14を、交互に配置する。好ましくは、面13a,13b及び面14a,14bに形成されている絶縁膜15を除去する前に、重ね合わされた複数のp型熱電変換素子13及びn型熱電変換素子14を、例えば、図3(c)に示すように、上述した固定手段16を用いて一体に固定し、熱電変換ブロック20を作製する。
 重ね合わされた複数のp型熱電変換素子13及びn型熱電変換素子14について、p型熱電変換素子13の電極と対向されるべき面13a,13bに形成されている絶縁膜15、及び、n型熱電変換素子14の電極と対向されるべき面14a,14bに形成されている絶縁膜15を研磨して除去する。例えば、図3(c)に示すように、熱電変換ブロック20の電極と対向されるべき面20a,20b(図示せず)を被覆している絶縁膜15を、研磨手段18を用いて除去する。研磨手段は特に制限されず、例えば、研磨紙を用いた手動研磨や、平面研削装置を用いた自動研磨等によればよい。このようにして、図1(c)に示されるような熱電変換ブロック11が得られる。
 本工程によれば、重ね合わされた複数のp型熱電変換素子13及びn型熱電変換素子14について、面13a,13b及び面14a,14bに形成されている絶縁膜15を一度に効率よく除去することができる。特に、重ね合わされた複数のp型熱電変換素子13及びn型熱電変換素子14を固定手段16を用いて一体に固定し、熱電変換ブロック20を作製することにより、重ね合わされた複数のp型熱電変換素子13及びn型熱電変換素子14が十分固定されることとなり、研磨を容易に行うことができる。
 続いて、上述した第一実施形態の(d)電極接合工程と同様にして、熱電変換ブロック11に対して、図1(d)に示すような電極17を接合する。このように、本実施形態に係る熱電変換モジュールの製造方法によっても、図2に示すような熱電変換モジュール1を得ることができる。
 本実施形態においては、熱電変換素子の表面に絶縁膜を形成させるには、熱電変換素子を絶縁膜を形成するための組成物に浸漬するだけであり、簡便である。また、p型熱電変換素子13とn型熱電変換素子14とを重ね合わせ、電極と対向することになる絶縁膜を除去する工程も、各熱電変換素子の電極と対向することになる面を一度に研磨して絶縁膜15を除去するので、比較的簡便である。したがって、電極と対向されるべき面が絶縁膜に被覆されないように、各熱電変換素子の表面に絶縁膜を形成する第一実施形態に係る製造方法よりも、全体として工程が簡略化されるため好ましい。
 上述したような本実施形態に係る熱電変換モジュールの製造方法により得られる熱電変換モジュールとしては、図2に示すスケルトンタイプの他に、図4に示す基板つきのものが挙げられる。
 図4は、第一及び第二実施形態に係る熱電変換モジュールの製造方法によって製造された熱電変換モジュール1の他の一例の断面図である。この熱電変換モジュール1は、上述したスケルトンタイプの熱電変換モジュールの電極17の表面に基板が形成されたものである。この熱電変換モジュール1は、第1の基板2、第1の電極8、熱電変換素子40、第2の電極6、及び第2の基板7を備える。p型熱電変換素子3及びn型熱電変換素子4は、第1の基板2及び第2の基板7間に、それぞれの絶縁膜15を介して交互に並んで配置される。なお、熱電変換モジュール1は、必ずしも第1の基板2及び第2の基板7の二枚を有する必要はなく、どちらか一枚を有すればよい。
 第1の基板2及び第2の基板7は、例えば矩形状をなし、電気的絶縁性で、かつ熱伝導性を有し、複数の熱電変換素子40の一端を覆うものである。基板の材料としては、例えば、アルミナ、窒化アルミニウム、マグネシア、炭化珪素、ジルコニア、ムライト等が挙げられる。
 第1の電極8及び第2の電極6は、第1の基板2及び第2の基板7上に予めそれぞれ設けられたものでもよい。これらの電極は、基板上の所定位置に、例えば、スパッタ、蒸着、塗布、スクリーン印刷、めっき、溶射等の方法を用いて形成することができる。また、金属板等を例えば、はんだ、ロウ付け等で各基板上に接合させてもよい。なお、電極の材料としては、上述の実施形態で例示したものが挙げられる。
 このような基板付の熱電変換モジュール1もまた、上述の熱電変換モジュールと同様の効果を奏する。
 なお、本発明に係る熱電変換モジュールの製造方法及び、当該製造方法により得られる熱電変換モジュールは、上述した実施形態に限られるわけではなく様々な変形態様が可能である。例えば、上述した本実施形態においては、p型熱電変換素子3及びn型熱電変換素子4の両方を絶縁膜15で被覆しているが、少なくともp型熱電変換素子3及びn型熱電変換素子4の一方の型の熱電変換素子を絶縁膜15で被覆すれば、本発明の実施は可能である。
 また、上述した第二実施形態においては、絶縁膜を研磨して除去する工程において、p型熱電変換素子13及びn型熱電変換素子14が交互に配置されるように、複数のp型熱電変換素子13及びn型熱電変換素子14を重ね合せた後、面13a,13b及び面14a,14bに形成された絶縁膜15を研磨して除去しているが、まず、複数のp型熱電変換素子13を重ね合わせ、面13a,13bに形成された絶縁膜15を研磨して除去し、一方で、複数のn型熱電変換素子14を重ね合わせ、面14a,14bに形成された絶縁膜15を研磨して除去し、続いて、面13a,13bに形成された絶縁膜15が除去された状態の複数のp型熱電変換素子13、及び、面14a,14bに形成された絶縁膜15が除去された状態の複数のp型熱電変換素子14を交互に重ね合せ、さらに電極を接合することにより、熱電変換モジュールを製造することもできる。
 1…熱電変換モジュール、2…第1の基板、3,13…p型熱電変換素子、4,14…n型熱電変換素子、6…第2の電極、7…第2の基板、8…第1の電極、9…接合材、11、20…熱電変換ブロック、15…絶縁膜、16…固定手段、17…電極、3a,3b…p型熱電変換素子表面の電極と対向されるべき面、4a,4b…n型熱電変換素子表面の電極と対向されるべき面、20a…熱電変換ブロックの電極と対向されるべき面、40…熱電変換素子。

Claims (4)

  1.  p型熱電変換素子の表面のうち少なくとも電極と対向されるべき面以外の面、及び/又は、n型熱電変換素子の表面のうち少なくとも電極と対向されるべき面以外の面を絶縁膜で被覆する被覆工程と、
     前記p型熱電変換素子の表面のうち電極と対向されるべき面以外の面、及び、前記n型熱電変換素子の表面のうち電極と対向されるべき面以外の面を、前記絶縁膜を介して重ね合わせる重ね合わせ工程と、を備える熱電変換モジュールの製造方法。
  2.  前記被覆工程において、前記p型熱電変換素子の全ての表面、及び/又は、前記n型熱電変換素子の全ての表面を前記絶縁膜で被覆し、
     さらに、前記重ね合わせ工程において重ね合わされた前記p型熱電変換素子及び前記n型熱電変換素子について、前記p型熱電変換素子の表面のうち電極と対向されるべき面、及び/又は、前記n型熱電変換素子の表面のうち電極と対向されるべき面の研磨を行い、前記絶縁膜を除去する絶縁膜除去工程を備える、請求項1記載の熱電変換モジュールの製造方法。
  3.  前記絶縁膜除去工程前に、
     さらに、前記重ね合わせ工程において重ね合わされた前記p型熱電変換素子及び前記n型熱電変換素子を、一体に固定することにより熱電変換ブロックを得る工程を備える、請求項2記載の熱電変換モジュールの製造方法。
  4.  p型熱電変換素子と、
     n型熱電変換素子と、
     前記p型熱電変換素子と前記n型熱電変換素子とを電気的に接続する電極と、
     前記p型熱電変換素子の表面のうち前記電極と対向する面以外の面を被覆する絶縁膜と、
     前記n型熱電変換素子の表面のうち前記電極と対向する面以外の面を被覆する絶縁膜と、
    を有し、
     前記p型熱電変換素子及び前記n型熱電変換素子が、前記二つの絶縁膜を介して重ね合わされた熱電変換モジュール。
PCT/JP2010/050161 2009-01-15 2010-01-08 熱電変換モジュールの製造方法及び熱電変換モジュール WO2010082540A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800045962A CN102282692A (zh) 2009-01-15 2010-01-08 热电转换模块的制造方法和热电转换模块
US13/144,643 US20110298080A1 (en) 2009-01-15 2010-01-08 Method for manufacturing thermoelectric conversion module, and thermoelectric conversion module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009006677A JP2010165843A (ja) 2009-01-15 2009-01-15 熱電変換モジュールの製造方法及び熱電変換モジュール
JP2009-006677 2009-01-15

Publications (1)

Publication Number Publication Date
WO2010082540A1 true WO2010082540A1 (ja) 2010-07-22

Family

ID=42339793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050161 WO2010082540A1 (ja) 2009-01-15 2010-01-08 熱電変換モジュールの製造方法及び熱電変換モジュール

Country Status (4)

Country Link
US (1) US20110298080A1 (ja)
JP (1) JP2010165843A (ja)
CN (1) CN102282692A (ja)
WO (1) WO2010082540A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239160A (ja) * 2013-06-07 2014-12-18 パナソニック株式会社 熱電変換素子及び熱電変換モジュール
WO2017208950A1 (ja) * 2016-05-31 2017-12-07 パナソニックIpマネジメント株式会社 熱電変換基板、熱電変換モジュール、熱電変換基板の製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5413868B2 (ja) * 2010-11-18 2014-02-12 パナソニック株式会社 熱電変換素子モジュール
US9082928B2 (en) 2010-12-09 2015-07-14 Brian Isaac Ashkenazi Next generation thermoelectric device designs and methods of using same
WO2013114592A1 (ja) * 2012-02-01 2013-08-08 富士通株式会社 熱電変換素子およびその製造方法
WO2014010588A1 (ja) 2012-07-10 2014-01-16 株式会社 東芝 熱電変換材料およびそれを用いた熱電変換モジュール並びに熱電変換材料の製造方法
RU2537096C2 (ru) * 2013-01-28 2014-12-27 Открытое Акционерное Общество "Автоштамп" Термоэлектрический модуль (варианты)
JP6467740B2 (ja) * 2016-11-22 2019-02-13 パナソニックIpマネジメント株式会社 熱電変換素子およびその製造方法
JP7196432B2 (ja) * 2017-06-29 2022-12-27 三菱マテリアル株式会社 熱電変換モジュール、及び、熱電変換モジュールの製造方法
CN107833966B (zh) * 2017-09-20 2020-02-21 南京航空航天大学 一种油墨印刷型热电器件及其制作方法
CN108447974B (zh) * 2018-01-17 2020-04-07 南京航空航天大学 一种倾斜型热电元件及其组成的倾斜型热电组件
CN113285009A (zh) * 2021-05-26 2021-08-20 杭州大和热磁电子有限公司 一种通过沉积金锡焊料组装的tec及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199859A (ja) * 1990-11-29 1992-07-21 Matsushita Electric Ind Co Ltd 熱電半導体素子
JPH10209510A (ja) * 1997-01-24 1998-08-07 Ngk Insulators Ltd 熱電変換装置の製造方法および熱電変換装置
JPH10242536A (ja) * 1997-02-25 1998-09-11 Matsushita Electric Works Ltd 熱電モジュールの製造方法
JPH11135842A (ja) * 1997-10-30 1999-05-21 Citizen Watch Co Ltd 熱電素子
JPH11251647A (ja) * 1998-02-27 1999-09-17 Ueki Corporation:Kk 熱電変換素子および熱電変換装置と、これらの製造方法
JP2000091649A (ja) * 1998-09-14 2000-03-31 Ngk Insulators Ltd 熱電素子、熱電変換モジュールコア、熱電変換モジュールおよびその製造方法
JP2005294568A (ja) * 2004-03-31 2005-10-20 Toshiba Corp 熱電変換モジュール

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7871847B2 (en) * 2007-10-05 2011-01-18 Marlow Industries, Inc. System and method for high temperature compact thermoelectric generator (TEG) device construction

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199859A (ja) * 1990-11-29 1992-07-21 Matsushita Electric Ind Co Ltd 熱電半導体素子
JPH10209510A (ja) * 1997-01-24 1998-08-07 Ngk Insulators Ltd 熱電変換装置の製造方法および熱電変換装置
JPH10242536A (ja) * 1997-02-25 1998-09-11 Matsushita Electric Works Ltd 熱電モジュールの製造方法
JPH11135842A (ja) * 1997-10-30 1999-05-21 Citizen Watch Co Ltd 熱電素子
JPH11251647A (ja) * 1998-02-27 1999-09-17 Ueki Corporation:Kk 熱電変換素子および熱電変換装置と、これらの製造方法
JP2000091649A (ja) * 1998-09-14 2000-03-31 Ngk Insulators Ltd 熱電素子、熱電変換モジュールコア、熱電変換モジュールおよびその製造方法
JP2005294568A (ja) * 2004-03-31 2005-10-20 Toshiba Corp 熱電変換モジュール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239160A (ja) * 2013-06-07 2014-12-18 パナソニック株式会社 熱電変換素子及び熱電変換モジュール
WO2017208950A1 (ja) * 2016-05-31 2017-12-07 パナソニックIpマネジメント株式会社 熱電変換基板、熱電変換モジュール、熱電変換基板の製造方法
JPWO2017208950A1 (ja) * 2016-05-31 2019-04-04 パナソニックIpマネジメント株式会社 熱電変換基板、熱電変換モジュール、熱電変換基板の製造方法

Also Published As

Publication number Publication date
CN102282692A (zh) 2011-12-14
JP2010165843A (ja) 2010-07-29
US20110298080A1 (en) 2011-12-08

Similar Documents

Publication Publication Date Title
WO2010082540A1 (ja) 熱電変換モジュールの製造方法及び熱電変換モジュール
JP6750404B2 (ja) 熱電変換モジュール及び熱電変換装置並びに熱電変換モジュールの製造方法
JP4912964B2 (ja) 熱電変換モジュール
WO2010082542A1 (ja) 熱電変換モジュール及び熱電変換モジュールブロック
JP5295824B2 (ja) 熱電変換モジュール
JP2009099686A (ja) 熱電変換モジュール
JP3927784B2 (ja) 熱電変換部材の製造方法
WO2010082539A1 (ja) 熱電変換モジュールの製造方法
JP2008305987A (ja) 熱電変換モジュール
CN111433923B (zh) 绝缘传热基板、热电转换模块及绝缘传热基板的制造方法
JP7196432B2 (ja) 熱電変換モジュール、及び、熱電変換モジュールの製造方法
WO2020105160A1 (ja) 接合基板の製造方法
WO2010007729A1 (ja) 熱発電デバイスの製造方法
JP4912991B2 (ja) 熱電変換素子の製造方法
JP5176610B2 (ja) 熱発電デバイス素子
JP2023509856A (ja) 金属層をセラミック層に接合するためのはんだ材料、そのようなはんだ材料の製造方法、およびそのようなはんだ材料の使用
JPWO2012056541A1 (ja) 熱電変換モジュール及びその製造方法
WO2010082541A1 (ja) 熱電変換モジュール
JP2017059698A (ja) 熱電変換素子の製造方法
JP7274749B2 (ja) 熱電変換モジュール、及び、熱電変換モジュール製造方法
JP5176602B2 (ja) 熱発電デバイス素子
JP5200884B2 (ja) 熱発電デバイス
WO2019111997A1 (ja) 絶縁伝熱基板、熱電変換モジュール、及び、絶縁伝熱基板の製造方法
JPH09232638A (ja) 熱電素子
JP2009218310A (ja) 熱発電デバイス素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004596.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10731209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13144643

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10731209

Country of ref document: EP

Kind code of ref document: A1