WO2010082539A1 - 熱電変換モジュールの製造方法 - Google Patents

熱電変換モジュールの製造方法 Download PDF

Info

Publication number
WO2010082539A1
WO2010082539A1 PCT/JP2010/050160 JP2010050160W WO2010082539A1 WO 2010082539 A1 WO2010082539 A1 WO 2010082539A1 JP 2010050160 W JP2010050160 W JP 2010050160W WO 2010082539 A1 WO2010082539 A1 WO 2010082539A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion element
electrode
conversion module
manufacturing
Prior art date
Application number
PCT/JP2010/050160
Other languages
English (en)
French (fr)
Inventor
雄一 廣山
和男 貞岡
佳成 沢辺
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN2010800045958A priority Critical patent/CN102282691A/zh
Priority to US13/144,725 priority patent/US20110284523A1/en
Publication of WO2010082539A1 publication Critical patent/WO2010082539A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Definitions

  • the present invention relates to a method for manufacturing a thermoelectric conversion module.
  • Patent Document 1 uses a jig that is induction-heated from the side opposite to the surface on which an electrode of a substrate is formed. A method for heating and pressurizing an electrode on a substrate and a plurality of thermoelectric conversion elements is described.
  • Patent Document 2 discloses a circuit in which a bonding metal layer containing a ferromagnetic material is provided between a metal circuit formed on a circuit board and a semiconductor element, and electromagnetic bonding heating of the bonding metal layer is performed. A method for bonding a semiconductor element on a substrate is disclosed.
  • the present invention provides a method for manufacturing a thermoelectric conversion module that can improve the adhesion between the thermoelectric conversion element and the electrode.
  • the method for manufacturing a thermoelectric conversion module according to the present invention includes a step of joining a thermoelectric conversion element and an electrode by electromagnetic induction heating of the thermoelectric conversion element.
  • thermoelectric conversion element by directly electromagnetically heating the thermoelectric conversion element, the thermoelectric conversion element can be easily heated to a high temperature, and the adhesion between the thermoelectric conversion element and the electrode can be improved.
  • thermoelectric conversion element preferably contains a ferromagnetic material and / or a ferrimagnetic material.
  • thermoelectric conversion elements and / or ferrimagnetic materials have a high magnetic permeability, so that more heat is generated when electromagnetic induction heating is performed. Therefore, when the thermoelectric conversion element contains a ferromagnetic material, the thermoelectric conversion element itself is more likely to generate heat, and the adhesion between the thermoelectric conversion element and the electrode can be further increased.
  • thermoelectric conversion element may be heated by electromagnetic induction until the contact area with the thermoelectric conversion element on the surface of the electrode is melted in a state where the thermoelectric conversion element and the electrode are in contact with each other. preferable.
  • the adhesion between the thermoelectric conversion element and the electrode can be further increased by electromagnetic induction heating of the thermoelectric conversion element until the region bonded to the thermoelectric conversion element on the electrode surface is melted.
  • thermoelectric conversion element and the electrode via the bonding material by interposing a bonding material between the thermoelectric conversion element and the electrode and electromagnetically heating the thermoelectric conversion element.
  • thermoelectric conversion element melts the bonding material interposed between the thermoelectric conversion element and the electrode, and thereby the adhesion between the thermoelectric conversion element and the bonding material. Can be further enhanced.
  • thermoelectric conversion element has a metal layer on the surface of the thermoelectric conversion element facing the electrode, and this metal layer preferably contains a ferromagnetic material and / or a ferrimagnetic material.
  • the adhesion between the thermoelectric conversion element and the electrode can be further improved by joining the electrode and the metal layer on the surface of the thermoelectric conversion element facing the electrode.
  • the metal layer contains a ferromagnetic material and / or a ferrimagnetic material, in addition to the thermoelectric conversion element, this metal layer also generates heat by electromagnetic induction heating, thereby further improving the adhesion between the electrode and the thermoelectric conversion element. Can do.
  • thermoelectric conversion module it is possible to provide a method for manufacturing a thermoelectric conversion module that can further improve the adhesion between the thermoelectric conversion element and the electrode.
  • thermoelectric conversion module 1 manufactured in 1st Embodiment of this invention. It is sectional drawing in an example of the thermoelectric conversion module 1 manufactured in 2nd Embodiment of this invention. It is sectional drawing in an example of the thermoelectric conversion module 1 manufactured in 3rd Embodiment of this invention.
  • thermoelectric conversion module manufactured in this embodiment will be described.
  • FIG. 1 is a cross-sectional view of an example of a thermoelectric conversion module 1 manufactured in the first embodiment.
  • the thermoelectric conversion module 1 manufactured in this embodiment includes a first substrate 2, a first electrode 8, a p-type thermoelectric conversion element 3 and an n-type thermoelectric conversion element 4 as a thermoelectric conversion element 10, a second electrode 6, And a second substrate 7.
  • the p-type thermoelectric conversion element 3 and the n-type thermoelectric conversion element 4 are alternately arranged between the first substrate 2 and the second substrate 7, and the first electrode 8 and the second electrode corresponding to both of these surfaces are arranged.
  • the two electrodes 6 are electrically connected in series as a whole.
  • the first substrate 2 has, for example, a rectangular shape, is electrically insulative and has thermal conductivity, and covers one end of the plurality of thermoelectric conversion elements 10.
  • the material for the first substrate include alumina, aluminum nitride, magnesia, silicon carbide, zirconia, and mullite.
  • the first electrode 8 is provided on the first substrate 2 and electrically connects one end surfaces of the thermoelectric conversion elements 10 adjacent to each other.
  • the first electrode 8 can be formed at a predetermined position on the first substrate 2 by using, for example, a thin film technique such as sputtering or vapor deposition, a method such as screen printing, plating, or thermal spraying. Further, a metal plate or the like having a predetermined shape may be bonded onto the first substrate 2 by, for example, soldering or brazing.
  • the material of the first electrode 8 is not particularly limited as long as it has conductivity, but from the viewpoint of improving the heat resistance, corrosion resistance, and adhesiveness to the thermoelectric conversion element of the electrode, titanium, vanadium, chromium, manganese
  • a metal containing at least one element selected from the group consisting of iron, cobalt, nickel, copper, molybdenum, silver, palladium, gold, tungsten and aluminum as a main component is preferable.
  • the main component refers to a component contained in the electrode material by 50% by volume or more.
  • the second substrate 7 has, for example, a rectangular shape and covers the other end side of the thermoelectric conversion element 10. In addition, the second substrate 7 is disposed to face the first substrate 2 in parallel. Similarly to the first substrate 2, the second substrate 7 is not particularly limited as long as it is electrically insulative and has thermal conductivity. For example, alumina, aluminum nitride, magnesia, carbonization, etc. Materials such as silicon, zirconia, and mullite can be used.
  • the second electrode 6 is for electrically connecting the other end faces of the thermoelectric conversion elements 10 adjacent to each other, and on the lower surface of the second substrate 7, for example, thin film technology such as sputtering or vapor deposition, screen printing, It can be formed using a method such as plating or thermal spraying.
  • the thermoelectric conversion element 10 is electrically connected in series by the second electrode 6 and the first electrode 8 provided on the lower end surface side of the thermoelectric conversion element 10.
  • thermoelectric conversion elements 10 There are two types of thermoelectric conversion elements 10, a p-type thermoelectric conversion element 3 and an n-type thermoelectric conversion element 4.
  • the material which comprises each thermoelectric conversion element 10 will not be specifically limited if it has the property of a p-type semiconductor or an n-type semiconductor, Various materials, such as a metal and a metal oxide, can be used.
  • a thermoelectric conversion element having semiconductor properties generates heat when an alternating magnetic field is applied to generate heat. In the method of manufacturing the thermoelectric conversion module described later, the thermoelectric conversion element 10 and the first substrate 2 are heated directly by such an action, that is, by “electromagnetic induction heating” of the thermoelectric conversion element 10.
  • thermoelectric conversion element may be bonded to the upper portion.
  • the thermoelectric conversion element is preferably a material having a high resistivity or magnetic permeability.
  • thermoelectric conversion element examples include the following materials.
  • examples of the p-type material include metal complex oxides such as Na x CoO 2 (0 ⁇ x ⁇ 1), Ca 3 Co 4 O 9 , MnSi 1.73 , Fe 1-x Mn x Si 2 , and Si 0. .8 Ge 0.2 : B (B-doped Si 0.8 Ge 0.2 ), silicide such as ⁇ -FeSi 2 , CoSb 3 , FeSb 3 , RFe 3 CoSb 12 (R represents La, Ce or Yb) Examples thereof include skutterudites such as BiTeSb, PbTeSb, alloys containing Te such as Bi 2 Te 3 , PbTe, Sb 2 Te 3 , Zn 4 Sb 3, and the like.
  • metal complex oxides such as Na x CoO 2 (0 ⁇ x ⁇ 1), Ca 3 Co 4 O 9 , MnSi 1.73 , Fe 1-x Mn x Si 2 , and Si 0. .8 Ge 0.2 : B (B-doped
  • n-type material examples include metal composite oxides such as SrTiO 3 , Zn 1-x Al x O, CaMnO 3 , LaNiO 3 , BaTiO 3 , Ti 1-x Nb x O, Mg 2 Si, Fe 1-x Co x Si 2 , Si 0.8 Ge 0.2 : P (P-doped Si 0.8 Ge 0.2 ), silicide such as ⁇ -FeSi 2 , skutterudite such as CoSb 3 , Ba 8 Al 12 Si 30, Ba 8 Al x Si 46-x, Ba 8 Al 12 Ge 30, Ba clathrate compound such as 8 Al x Ge 46-x, CaB 6, SrB 6, BaB 6, CeB boron compounds such as 6, Examples include alloys containing Te such as BiTeSb, PbTeSb, Bi 2 Te 3 , Sb 2 Te 3 , and PbTe, Zn 4 Sb 3, and the like.
  • metal composite oxides such as SrTiO 3 , Zn
  • the p-type thermoelectric conversion element and the n-type thermoelectric conversion element contain a metal oxide as a main component among the above materials. It is preferable.
  • the metal oxides Ca 3 Co 4 O 9 is preferable as the p-type material, and CaMnO 3 is preferable as the n-type material.
  • Ca 3 Co 4 O 9 and CaMnO 3 have particularly excellent oxidation resistance in the air atmosphere at high temperature and have high thermoelectric conversion performance.
  • thermoelectric conversion element 10 is made of a magnetic material and / or It is preferable to contain a ferrimagnetic material.
  • the ferromagnetic material examples include iron, cobalt, nickel, and gadolinium. Further, as the ferrimagnetic material, FeO ⁇ Fe 2 O 3, MnO ⁇ Fe 2 O 3, NiO ⁇ Fe 2 O 3, CoO ⁇ Fe 2 O 3, Y 3 Fe 5 O 12 (YIG) , and the like. Considering the case where the thermoelectric conversion module is used at 300 ° C. or higher, the ferromagnetic body and / or the ferrimagnetic body is preferably an oxide from the viewpoint of heat resistance and oxidation resistance.
  • the existence form of the ferromagnetic material and / or the ferrimagnetic material in the thermoelectric conversion element 10 is not particularly limited, and may be dispersed and included in the thermoelectric conversion element. As a layer in the thermoelectric conversion element or on the side surface of the thermoelectric conversion element. May be present. Further, the concentration of the ferromagnetic material and the ferrimagnetic material in the thermoelectric conversion element is not particularly limited, but is preferably 10 to 50% by weight.
  • thermoelectric conversion module The method for manufacturing a thermoelectric conversion module according to this embodiment includes a) a thermoelectric conversion element preparation step, b) an electrode formation step, and c) a bonding step between the thermoelectric conversion element and the electrode.
  • thermoelectric conversion element preparation step A p-type thermoelectric conversion element and an n-type thermoelectric conversion element having the above-described materials as constituent components are prepared.
  • shape of a thermoelectric conversion element main body is not specifically limited, For example, hexahedrons, such as a rectangular parallelepiped as shown in FIG. 1, a disk, etc. are mentioned.
  • the manufacturing method of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element differs depending on the material constituting the thermoelectric conversion element. For example, if the constituent material is an alloy, the bulk body of the alloy is cut into a desired shape, and the thermoelectric conversion is performed. It can be set as an element.
  • thermoelectric conversion element if the constituent material is a metal oxide, a compound containing a metal element constituting the metal oxide is mixed, sintered in an oxygen-containing atmosphere, and the obtained sintered body is cut out, and then desired.
  • a thermoelectric conversion element By adopting the shape, a thermoelectric conversion element can be obtained.
  • At least one of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element contains a ferromagnetic material and / or a ferrimagnetic material.
  • a powder that is a raw material for a thermoelectric conversion element is mixed with a powdery ferromagnetic material and / or ferrimagnetic material, and sintered in an oxygen-containing atmosphere or an inert atmosphere.
  • a thermoelectric conversion element containing a ferromagnetic material and / or a ferrimagnetic material can be obtained by cutting the bonded body into a desired shape.
  • the ferromagnetic and / or ferrimagnetic material raw material containing the ferromagnetic and / or ferrimagnetic material constituent elements is mixed with the powder as the raw material of the thermoelectric conversion element, and then sintered in the same manner as described above. May be equal.
  • a ferromagnetic material is obtained by laminating a raw material layer of a thermoelectric conversion element, a ferromagnetic material and / or a ferrimagnetic material layer or a raw material layer thereof, and sintering in an oxygen-containing atmosphere or an inert atmosphere.
  • / or the thermoelectric conversion element containing the layer of a ferrimagnetic substance can also be obtained.
  • the first electrode 8 is formed on the first substrate 2, and the second electrode 6 is formed on the second substrate 7.
  • the first electrode 8 and the second electrode 6 are formed on the main surfaces of the first substrate 2 and the second substrate 7 by, for example, a thin film technique such as sputtering or vapor deposition, a method such as screen printing, plating, or thermal spraying. Each of which can be formed.
  • thermoelectric conversion element is arranged so that the obtained thermoelectric conversion element 10 is appropriately disposed on the first electrode 8 and the second electrode 6. 10 positioning is performed. And the thermoelectric conversion element 10 is arrange
  • thermoelectric conversion element 10 When an alternating current is passed through the induction coil 5, an alternating magnetic field generated from the induction coil 5 is applied to the thermoelectric conversion element 10, and the thermoelectric conversion element 10 generates heat, thereby causing the thermoelectrics of the first electrode 6 and the second electrode 8.
  • the surface (contact region) in contact with the conversion element 10 is heated, whereby the thermoelectric conversion element 10 is bonded to the first electrode 8 and the second electrode 6.
  • Bonding with the thermoelectric conversion element becomes strong.
  • the direct induction heating of the thermoelectric conversion element 10 itself reduces the residual stress, defects, etc. generated inside through the process of sintering, cutting, polishing, etc. during the manufacturing process of the thermoelectric conversion element 10. You can also.
  • the frequency of the alternating current flowing through the induction coil 5 is about 10 k to 1 MHz. More preferably.
  • thermoelectric conversion element 10 when joining the thermoelectric conversion element 10 with the 1st electrode 8 and the 2nd electrode 6, surface a1, b1 which contact
  • the surfaces (contact regions) a1 and b1 of the first electrode 8 and the second electrode 6 that are in contact with the thermoelectric conversion element 10 are heated to a temperature equal to or higher than the melting point of the material constituting the electrode, the adhesion between the electrode and the thermoelectric conversion element. Will be more sufficient.
  • the adjustment of the heating intensity is performed according to various conditions such as the thermal conductivity of the substrate material, the material and size of the thermoelectric conversion element, the melting point of the material constituting the electrode, the number of turns of the dielectric coil 5, and the like. Is possible by appropriately adjusting the output and frequency from the.
  • FIG. 2 is a cross-sectional view of an example of the thermoelectric conversion module 1 manufactured in the second embodiment.
  • a bonding material 9 is provided between the thermoelectric conversion element 10 and the first electrode 8 and the second electrode 6.
  • the bonding material 9 bonds the thermoelectric conversion element 10 to the first electrode 8 and the second electrode 6, and electrically connects the plurality of thermoelectric conversion elements 10 in series.
  • Examples of the bonding material 9 include AuSb, PbSb-based solder, silver paste, and the like. This bonding material is preferably solid when used as a thermoelectric conversion module.
  • thermoelectric conversion module Metal for manufacturing thermoelectric conversion module
  • the surface of the first electrode 8 and the second electrode 6, or The bonding material 9 may be formed in advance on the surface of the thermoelectric conversion element 10 facing the electrodes 6 and 8 using a thin film technique such as sputtering or vapor deposition, or a method such as screen printing, plating, or thermal spraying.
  • thermoelectric conversion element 10 is heated by electromagnetic induction until the bonding material 9 is melted, and the thermoelectric conversion element 10 and the bonding material 9 are bonded, and the bonding material 9 and the first electrode 8 and the second electrode 6 are bonded. What is necessary is just to join. By heating the thermoelectric conversion element until the bonding material 9 is melted, the electrode and the thermoelectric conversion element are bonded with high adhesion by the bonding material.
  • FIG. 3 is a cross-sectional view of an example of the thermoelectric conversion module 1 manufactured in the third embodiment.
  • a plurality of p-type thermoelectric conversion elements 13 and n-type thermoelectric conversion elements 14 are alternately arranged between the first substrate 2 and the second substrate 7 that are vertically opposed to each other.
  • the p-type thermoelectric conversion element 13 and the n-type thermoelectric conversion element 14 are made of metal (on the top and bottom surfaces of the p-type thermoelectric conversion element body 3 and the n-type thermoelectric conversion element body 4, respectively).
  • a metallized layer 21 is provided in order to improve the adhesion between the bonding material 9 and the thermoelectric conversion element 10.
  • the material of the metal layer 21 is not particularly limited as long as it is a metal or an alloy, and examples thereof include silver, copper, iron, nickel, manganese, and alloys thereof. Moreover, it is also preferable that the metal layer 21 contains the above-described ferromagnetic material and / or ferrimagnetic material.
  • thermoelectric conversion module Metal for manufacturing thermoelectric conversion module
  • the metal is applied to the opposing surface of the thermoelectric conversion element 10 to the electrodes 6 and 8.
  • the layer 21 may be formed in advance.
  • a metal compound mainly composed of a compound that decomposes by heating to generate a metal is dispersed on the surface of the thermoelectric conversion element 10 body heated to a temperature equal to or higher than the decomposition temperature of the compound.
  • the metal layer 21 formed by such a method has high adhesion to the thermoelectric conversion element body 10, the bonding strength between the thermoelectric conversion element body 10 and the metal layer 21 is increased, and the thermoelectric conversion element 10. The contact resistance between the main body and the metal layer 21 is lowered.
  • generates a metal is not specifically limited.
  • the compound that decomposes by heating to generate a metal is preferably a compound that decomposes below the melting point or sublimation point of the compound to generate a metal.
  • the compound that decomposes by heating to generate a metal is preferably a silver compound, and more preferably Ag 2 O or Ag 2 CO 3. .
  • the compound may be a metal oxide or a metal carbonate, and is preferably at least one selected from the group consisting of MnO 3 , FeCO 3 , Cu 2 CO 3 , NiCO 3 and MnCO 3. .
  • membrane of silver, copper, iron, nickel, manganese, or these alloys can be formed.
  • an iron or cobalt film is preferable because it is a ferromagnetic material and can be heated by electromagnetic induction.
  • generates a metal does not produce
  • the ferromagnetic material and / or ferrimagnetic material contained in the metal layer is preferably an oxide from the viewpoint of heat resistance and oxidation resistance.
  • the metal layer 21 includes a ferromagnetic material and / or ferrimagnetic material that is an oxide
  • the content of the ferromagnetic material and / or ferrimagnetic material that is an oxide is 10 to 50 weights based on the entire metal layer. % Is preferred.
  • the formation method of the metal layer 21 is not limited to the above formation method.
  • a layer can be formed.
  • thermoelectric conversion element 11 includes the metal layer 21 on the surface of the thermoelectric conversion element body 10
  • the thermoelectric conversion element body 10 can be directly heated by electromagnetic induction heating.
  • the metal layer 21 and the electrodes 6 and 8 are heated, and the thermoelectric conversion element 11 and the electrodes 6 and 8 can be joined.
  • the metal layer 21 includes a ferromagnetic material and / or a ferrimagnetic material
  • the bonding material 9 can be sufficiently melted by the same electromagnetic induction heating, and the thermoelectric The adhesion between the conversion element 11 and the first electrode 8 and the second electrode 6 can be made stronger.
  • thermoelectric conversion module which concerns on this invention, and the thermoelectric conversion module manufactured by the said manufacturing method are not necessarily restricted to embodiment mentioned above, A various deformation
  • a so-called skeleton-type thermoelectric conversion module may be provided that includes a support frame for holding each thermoelectric conversion element in an appropriate position by holding the center portion in the direction.

Abstract

【課題】 熱電変換素子と電極との間の密着性をより高めることができる熱電変換モジュールの製造方法を提供する。熱電変換素子10と電極6,8とを、熱電変換素子10を電磁誘導加熱することにより、接合する工程を備える熱電変換モジュール1の製造方法である。

Description

熱電変換モジュールの製造方法
 本発明は、熱電変換モジュールの製造方法に関する。
 熱電変換モジュールを作製する際に電極と熱電変換素子とを接合する方法として、例えば、特許文献1には、基板の電極が形成された面の反対側から、誘導加熱される治具を用いて基板上の電極と複数の熱電変換素子とを加熱及び加圧する方法が記載されている。
 また、特許文献2には、回路基板上に形成された金属回路と半導体素子との間に強磁性材が含有された接合金属層を設け、接合金属層の電磁誘導加熱を行うことにより、回路基板上に半導体素子を接合する方法が開示されている。
実開平5-13660号公報 特開2008-112955号公報
 しかしながら、特許文献1の方法では、熱電変換素子と電極との密着性は十分なものではなかった。また、特許文献2の方法を熱電変換モジュールに応用しても、熱電変換素子と電極との密着性は十分ではない。
 そこで本発明は、熱電変換素子と電極との間の密着性を高めることのできる熱電変換モジュールの製造方法を提供する。
 本発明に係る熱電変換モジュールの製造方法は、熱電変換素子と電極とを、熱電変換素子を電磁誘導加熱することにより接合する工程を備える。
 本発明によれば、熱電変換素子を直接電磁誘導加熱することにより、熱電変換素子を容易に高温にすることができ、熱電変換素子と電極との間の密着性を高めることができる。
 ここで、熱電変換素子は強磁性体及び/又はフェリ磁性体を含有することが好ましい。
 強磁性体及び/又はフェリ磁性体は透磁率が大きいため、電磁誘導加熱を行うと、より多くの熱を生じる。したがって、熱電変換素子が強磁性体を含有すると、熱電変換素子自体がより発熱し易くなり、熱電変換素子と電極との間の密着性をより高めることができる。
 また、本発明に係る製造方法においては、熱電変換素子と電極とを接触させた状態で、電極の表面における熱電変換素子との接触領域が溶融するまで、熱電変換素子を電磁誘導加熱することが好ましい。
 電極表面における熱電変換素子と接合される領域が溶融するまで、熱電変換素子を電磁誘導加熱することによって、熱電変換素子と電極との間の密着性をより高めることができる。
 また、熱電変換素子と前記電極との間に接合材を介在させて、熱電変換素子を電磁誘導加熱することにより、接合材を介して、熱電変換素子と電極とを接合することもでき、好ましい。
 熱電変換素子を電磁誘導加熱することによって熱電変換素子から発生した熱が、熱電変換素子と電極との間に介在する接合材を溶融することにより、熱電変換素子と接合材との間の密着性をより高めることができる。
 また、熱電変換素子は、熱電変換素子の表面のうち電極と対向する面に金属層を有し、この金属層は強磁性体及び/又はフェリ磁性体を含有することが好ましい。
 熱電変換素子の表面のうち電極と対向する面に有する金属層と電極とを接合することにより、熱電変換素子と電極との間の密着性をより高めることができる。また、金属層が強磁性体及び/又はフェリ磁性体を含むので、熱電変換素子に加えてこの金属層も電磁誘導加熱により発熱し、電極と熱電変換素子との間の密着性をより高めることができる。
 本発明によれば、熱電変換素子と電極との間の密着性をより高めることのできる熱電変換モジュールの製造方法を提供することができる。
本発明の第1実施形態で製造する熱電変換モジュール1の一例における断面図である。 本発明の第2実施形態で製造する熱電変換モジュール1の一例における断面図である。 本発明の第3実施形態で製造する熱電変換モジュール1の一例における断面図である。
 以下、添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、図面の説明において、同一又は相当要素には同一の符号を付し、重複する説明は省略する。また、各図面の寸法比率は、必ずしも実際の寸法比率とは一致していない。
 まず、本実施形態で製造する熱電変換モジュールについて説明する。
<第1実施形態>
(熱電変換モジュール)
 図1は、第1実施形態で製造する熱電変換モジュール1の一例の断面図である。本実施形態で製造する熱電変換モジュール1は、第1の基板2、第1の電極8、熱電変換素子10としてのp型熱電変換素子3及びn型熱電変換素子4、第2の電極6、及び第2の基板7を備える。p型熱電変換素子3及びn型熱電変換素子4は、第1の基板2及び第2の基板7間に交互に並んで配置されると共に、これらの両面が対応する第1の電極8及び第2の電極6の表面に対して、全体として電気的に直列に接続されている。
 第1の基板2は、例えば矩形状をなし、電気的絶縁性で、かつ熱伝導性を有し、複数の熱電変換素子10の一端を覆うものである。この第1の基板の材料としては、例えば、アルミナ、窒化アルミニウム、マグネシア、炭化珪素、ジルコニア、ムライト等が挙げられる。
 第1の電極8は、第1の基板2上に設けられ、互いに隣接する熱電変換素子10の一端面同士を電気的に接続するものである。この第1の電極8は、第1の基板2上の所定位置に、例えば、スパッタや蒸着等の薄膜技術、スクリーン印刷、めっき、溶射等の方法を用いて形成することができる。また、所定形状の金属板等を例えば、はんだ、ロウ付け等で第1の基板2上に接合させてもよい。第1の電極8の材料としては、導電性を有するものであれば特に制限されないが、電極の耐熱性、耐食性、熱電変換素子への接着性を向上させる観点から、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、モリブデン、銀、パラジウム、金、タングステン及びアルミニウムからなる群より選ばれる少なくとも1種の元素を主成分として含む金属が好ましい。ここで、主成分とは、電極材料中に50体積%以上含有されている成分を言う。
 第2の基板7は、例えば矩形状をなし、熱電変換素子10の他端側を覆うものである。また、第2の基板7は、第1の基板2と平行に対向配置されている。第2の基板7は、第1の基板2と同様に、電気的絶縁性で、かつ熱伝導性を有するものであれば特に制限されるものではなく、例えば、アルミナ、窒化アルミニウム、マグネシア、炭化珪素、ジルコニア、ムライト等の材料を用いることができる。
 第2の電極6は、互いに隣接する熱電変換素子10の他端面同士を電気的に接続するものであり、第2の基板7の下面に、例えば、スパッタや蒸着等の薄膜技術、スクリーン印刷、めっき、溶射等の方法を用いて形成することができる。そして、この第2の電極6と、熱電変換素子10の下端面側に設けられた第1の電極8とにより、熱電変換素子10は電気的に直列に接続されている。
 熱電変換素子10には、p型熱電変換素子3及びn型熱電変換素子4の2種類が存在する。各熱電変換素子10を構成する材料は、p型半導体又はn型半導体の性質を有するものであれば特に限定されず、金属、金属酸化物等の種々の材料を用いることができる。半導体の性質を有する熱電変換素子は、交流磁界を与えると電流が発生し発熱する。後述する熱電変換モジュールの製造方法では、このような作用、すなわち熱電変換素子10を「電磁誘導加熱」することにより、熱電変換素子を直接加熱し、これにより熱電変換素子10と第1の基板2上に第1の電極8(以下、単に電極6,8と示すことがある。)との接合を行う。熱電変換素子を効率よく電磁誘導加熱する観点から、熱電変換素子は抵抗率又は透磁率の高い材料であることが好ましい。
 ここで、p型熱電変換素子及びn型熱電変換素子の材料として、下記の材料が挙げられる。
 例えば、p型の材料としては、NaCoO(0<x<1)、CaCo等の金属複合酸化物、MnSi1.73、Fe1-xMnSi、Si0.8Ge0.2:B(BドープSi0.8Ge0.2)、β-FeSi等のシリサイド、CoSb、FeSb、RFeCoSb12(RはLa、Ce又はYbを示す)等のスクッテルダイト、BiTeSb、PbTeSb、BiTe、PbTe、SbTe等のTeを含む合金、ZnSb等が挙げられる。
 また、n型の材料としては、例えば、SrTiO、Zn1-xAlO、CaMnO、LaNiO、BaTiO、Ti1-xNbO等の金属複合酸化物、MgSi、Fe1-xCoSi、Si0.8Ge0.2:P(PドープSi0.8Ge0.2)、β-FeSi等のシリサイド、CoSb等のスクッテルダイト、BaAl12Si30、BaAlSi46―x、BaAl12Ge30、BaAlGe46-x等のクラスレート化合物、CaB、SrB、BaB、CeB等のホウ素化合物、BiTeSb、PbTeSb、BiTe、SbTe、PbTe等のTeを含む合金、ZnSb等が挙げられる。
 熱電変換モジュールを300℃以上で使用する場合を考慮すると、耐熱性及び耐酸化性の観点から、p型熱電変換素子及びn型熱電変換素子は、上記材料の中でも金属酸化物を主成分として含むことが好ましい。また、金属酸化物の中でも、p型の材料としてはCaCoが好ましく、n型の材料としてはCaMnOが好ましい。CaCo及びCaMnOは、高温下大気雰囲気中において特に優れた耐酸化性を有し、熱電変換性能も高い。
 後述する、熱電変換素子と電極とを接合する工程において、透磁率を高くすることによって熱電変換素子10を電磁誘導加熱により十分に高温にさせる観点から、熱電変換素子10は、磁性体及び/又はフェリ磁性体を含有することが好ましい。
 強磁性体としては、鉄、コバルト、ニッケル、ガドリニウムが挙げられる。また、フェリ磁性体としては、FeO・Fe、MnO・Fe、NiO・Fe、CoO・Fe、YFe12(YIG)等が挙げられる。熱電変換モジュールを300℃以上で使用する場合を考慮すると、耐熱性及び耐酸化性の観点から、強磁性体及び/又はフェリ磁性体は酸化物であることが好ましい。
 熱電変換素子10における強磁性体及び/又はフェリ磁性体の存在形態は特に限定されず、熱電変換素子中に分散して含まれてもよく、熱電変換素子中あるいは熱電変換素子の側面に層として存在していてもよい。また、熱電変換素子における強磁性体及びフェリ磁性体の濃度も特に限定されないが、10~50重量%が好ましい。
 続いて、本実施形態に係る熱電変換モジュールの製造方法について詳述する。
(熱電変換モジュールの製造方法)
 本実施形態に係る熱電変換モジュールの製造方法は、a)熱電変換素子準備工程、b)電極形成工程、c)熱電変換素子と電極との接合工程、を備える。
 a)熱電変換素子準備工程
 上述した材料を構成成分とするp型熱電変換素子及びn型熱電変換素子を準備する。熱電変換素子本体の形状は特に限定されないが、例えば、図1に示すような直方体等の6面体や、円板等が挙げられる。p型熱電変換素子及びn型熱電変換素子の作製方法は、熱電変換素子を構成する材料によって異なるが、例えば、構成材料が合金であれば、合金のバルク体を所望の形状に切り出し、熱電変換素子とすることができる。また、例えば、構成材料が金属酸化物であれば、金属酸化物を構成する金属元素を含む化合物を混合し、酸素含有雰囲気下で焼結し、得られた焼結体を切り出した後、所望の形状とすることにより、熱電変換素子を得ることができる。
 上述のように、p型熱電変換素子及びn型熱電変換素子の少なくとも一方に、強磁性体及び/又はフェリ磁性体を含有させることが好ましい。例えば、熱電変換素子の原料となる粉体と、粉体状の強磁性体及び/又はフェリ磁性体と、を混合し、酸素含有雰囲気下又は不活性雰囲気下で焼結し、得られた焼結体を切り出した後、所望の形状とすることにより、強磁性体及び/又はフェリ磁性体を含有する熱電変換素子を得ることができる。また、強磁性体及び/又はフェリ磁性体の構成元素を含む、強磁性体及び/又はフェリ磁性体の原料を、熱電変換素子の原料となる粉体と混合し、その後上述と同様に焼結等してもよい。また、例えば、熱電変換素子の原料層と、強磁性体及び/又はフェリ磁性体層又はその原料層とを積層させ、酸素含有雰囲気下又は不活性雰囲気下で焼結させることにより、強磁性体及び/又はフェリ磁性体の層を含有する熱電変換素子を得ることもできる。
 b)電極形成工程
 図1に示すように、第1の基板2上に第1の電極8を形成し、第2の基板7上に第2の電極6をそれぞれ形成する。第1の電極8及び第2の電極6は、第1の基板2及び第2の基板7の主面上に、例えば、スパッタや蒸着等の薄膜技術、スクリーン印刷、めっき、溶射等の方法を用いてそれぞれ形成することができる。
 c)熱電変換素子と電極との接合工程
 図1に示すように、第1の電極8及び第2の電極6上に、得られた熱電変換素子10が適切に配置されるよう、熱電変換素子10の位置決めを行う。そして、熱電変換素子10を第1の電極8及び第2の電極6上に配置し、熱電変換素子10と電極6,8との接合を行う。接合は、電磁誘導加熱により行う。具体的には、例えば、熱電変換素子10と電極6,8との接合を行う前の熱電変換モジュール1を、図1に示すように誘導コイル5の内側に配置する。誘導コイル5に交流電流を流すと、誘導コイル5から発生する交流磁界が熱電変換素子10に与えられ、熱電変換素子10が発熱することにより、第1の電極6及び第2の電極8の熱電変換素子10と接する表面(接触領域)が加熱され、これにより、熱電変換素子10と、第1の電極8及び第2の電極6とが接合される。このような電磁誘導加熱による接合方法によれば、基板の熱電変換素子が接合される面の反対側から熱電変換素子を加熱する方法や、接合材のみを誘導加熱する方法に比べて、電極と熱電変換素子との接合が強固なものとなる。また、熱電変換素子10自体が直接誘導加熱されることによって、熱電変換素子10の製造過程で、焼結、切り出し、研磨等の処理を経たことにより内部に発生した残留応力、欠陥等を減少させることもできる。
 図1に示すように、第1の電極8及び第2の電極6と熱電変換素子10とを接合するための好適な条件としては例えば、誘導コイル5に流す交流電流の周波数を10k~1MHz程度とすることがより好ましい。
 ここで、熱電変換素子10と第1の電極8及び第2の電極6とを接合する場合、第1の電極8及び第2の電極6の熱電変換素子10と接する面a1,b1が溶融するまで、熱電変換素子10を電磁誘導加熱することが好ましい。第1の電極8及び第2の電極6の熱電変換素子10と接する面(接触領域)a1,b1を、電極を構成する材料の融点以上にまで加熱すると、電極と熱電変換素子との密着性はより十分なものとなる。加熱強度の調節は、例えば、基板の材料の熱伝導性、熱電変換素子の材質及びサイズ、電極を構成する材料の融点、誘電コイル5の巻き数等の種々の条件に応じて、誘電コイル5からの出力及び周波数を適宜調整することにより可能である。
<第2実施形態>
(熱電変換モジュール)
 次に、第2実施形態で製造する熱電変換モジュールの一例について説明する。図2は、第2実施形態で製造する熱電変換モジュール1の一例の断面図である。本実施形態で製造する熱電変換モジュール1は、熱電変換素子10と第1の電極8及び第2の電極6との間には、接合材9が設けられている。接合材9は、熱電変換素子10と、第1の電極8及び第2の電極6とをそれぞれ接合し、複数の熱電変換素子10を電気的に直列に接続する。接合材9としては、例えば、AuSb、PbSb系のはんだや銀ペースト等が挙げられる。この接合材は、熱電変換モジュールとしての使用時に固体であるものが好ましい。
(熱電変換モジュールの製造方法)
 本実施形態に係る熱電変換モジュールの製造方法では、第1実施形態の製造方法における電極と熱電変換素子との接合工程の前に、第一の電極8及び第2の電極6の表面、又は、熱電変換素子10における電極6,8との対向面に対し、接合材9を、あらかじめスパッタや蒸着等の薄膜技術、スクリーン印刷、めっき、溶射等の方法を用いてそれぞれ形成しておけばよい。
 そして、接合材9が溶融するまで熱電変換素子10を電磁誘導加熱し、熱電変換素子10と接合材9とを接合すると共に、接合材9と第一の電極8及び第2の電極6とを接合すればよい。接合材9が溶融するまで熱電変換素子を加熱することにより、接合材によって電極と熱電変換素子とが高い密着性で接合される。
<第3実施形態>
(熱電変換モジュール)
 次に、第3実施形態で製造する熱電変換モジュールの一例について説明する。図3は、第3実施形態で製造する熱電変換モジュール1の一例の断面図である。上下に対向する第1の基板2及び第2の基板7の間に、p型熱電変換素子13及びn型熱電変換素子14が交互に複数配置されている。本実施形態で製造する熱電変換モジュールは、p型熱電変換素子13及びn型熱電変換素子14は、p型熱電変換素子本体3及びn型熱電変換素子本体4の上面及び底面に、それぞれ金属(メタライズ)層21を有する。この金属層21は、接合材9と熱電変換素子10との接着性を高めるために設けられる。
 金属層21の材質は、金属や合金であれば特に限定されず、例えば、銀、銅、鉄、ニッケル、マンガンやこれらの合金が挙げられる。また、金属層21には、上述した、強磁性体及び/又はフェリ磁性体を含んでいることも好ましい。
(熱電変換モジュールの製造方法)
 本実施形態に係る熱電変換モジュール製造方法では、第1実施形態の製造方法における電極と熱電変換素子との接合工程の前に、熱電変換素子10における電極6,8との対向面に対し、金属層21を、あらかじめ形成しておけばよい。
 金属層21の形成方法としては、例えば、加熱により分解して金属を生成する化合物を主成分とする金属化合物を、当該化合物の分解温度以上に加熱された熱電変換素子10本体の表面に散布することがあげられる。このような方法で形成された金属層21は、熱電変換素子本体10に対して高い密着性を有するため、熱電変換素子本体10と金属層21との接合強度が大きくなると共に、熱電変換素子10本体と金属層21との接触抵抗が低くなる。
 加熱により分解して金属を生じる化合物を主成分とする金属化合物は特に限定されない。加熱により分解して金属を生成する化合物としては、その化合物の融点若しくは昇華点以下で分解して金属を生成する化合物であることが望ましい。加熱により分解して金属を生成する化合物は、熱電変換素子10と金属層21との密着性の観点から、銀化合物であることが好ましく、AgO又はAgCOであることがより好ましい。また、上記化合物は、金属酸化物又は金属炭酸塩であってもよく、MnO、FeCO、CuCO、NiCO及びMnCOからなる群から選択される少なくとも1つであることも好ましい。これによれば、銀、銅、鉄、ニッケル、マンガンやこれらの合金の膜を形成できる。特に、鉄やコバルトの膜は強磁性体であり、電磁誘導加熱が可能であるので好ましい。
 また、上記加熱により分解して金属を生成する化合物が、強磁性体やフェリ磁性体を生成するものでない場合には、上記加熱により分解して金属を生成する化合物に第1実施形態で述べた強磁性体及び/又はフェリ磁性体を添加することも好ましい。このような混合物が分解して生成する金属は、強磁性又はフェリ磁性を有するため好ましい。
 熱電変換モジュールを300℃以上で使用する場合を考慮すると、耐熱性及び耐酸化性の観点から、金属層に含有される強磁性体及び/又はフェリ磁性体は酸化物であることが好ましい。
 金属層21が酸化物である強磁性体及び/又はフェリ磁性体を含む場合、酸化物である強磁性体及び/又はフェリ磁性体の含有量は、金属層全体を基準として、10~50重量%であることが好ましい。
 金属層21の形成方法は上記の形成方法に限定されない。例えば、熱電変換素子本体の表面における電極との接合面に、めっき法、溶射、蒸着、放電プラズマ焼結法等によって、所望の金属層、或いは、強磁性体及び/又はフェリ磁性体を含む金属層を形成することができる。
 図3に示すように、熱電変換素子11が熱電変換素子本体10の表面に上記金属層21を備える場合であっても、電磁誘導加熱により熱電変換素子本体10を直接加熱することができ、これにより、金属層21や電極6、8が加熱されて熱電変換素子11と電極6、8との接合が可能である。また、金属層21が、強磁性体及び/又はフェリ磁性体を含む場合には、さらに、金属層21を直接加熱することもできるので好都合である。ここで、金属層21や電極7、8の表面が溶融するまで電磁誘導加熱をすることが好ましい。これにより、熱電変換素子11と第1の電極8及び第2の電極6との密着性をより強固なものとすることができる。なお、熱電変換素子11と第1の電極8及び第2の電極6との間に接合材9が介在する場合にも、同様の電磁誘導加熱により接合材9を十分溶融させることができ、熱電変換素子11と第1の電極8及び第2の電極6との密着性をより強固なものとすることができる。
 なお、本発明に係る熱電変換モジュールの製造方法、及び当該製造方法により製造される熱電変換モジュールは、上述した実施形態に限られるわけではなく様々な変形態様が可能である。例えば、図1~3に示すような熱電変換モジュール1の互いに対向する1対の基板2、7がなく、代わりに、複数の熱電変換素子10の間に介在し各熱電変換素子10の高さ方向の中央部を取り囲むように保持して各々の熱電変換素子を適切な位置に固定するための支持枠を備える、いわゆるスケルトン型の熱電変換モジュールであっても構わない。
 1…熱電変換モジュール、2…第1の基板、3,13…p型熱電変換素子、4,14…n型熱電変換素子、6…第2の電極、7…第2の基板、8…第1の電極、9…接合材、10,11…熱電変換素子、a1,a3…第1の電極8の熱電変換素子との対向面、b1,b3…第2の電極6の熱電変換素子との対向面。

Claims (5)

  1.  熱電変換素子と電極とを、前記熱電変換素子を電磁誘導加熱することにより接合する工程を備える熱電変換モジュールの製造方法。
  2.  前記熱電変換素子は強磁性体及び/又はフェリ磁性体を含有する、請求項1記載の熱電変換モジュールの製造方法。
  3.  前記熱電変換素子と前記電極とを接触させた状態で、前記電極の表面における前記熱電変換素子との接触領域が溶融するまで、前記熱電変換素子を電磁誘導加熱する請求項1又は2記載の熱電変換モジュールの製造方法。
  4.  前記熱電変換素子と前記電極との間に接合材を介在させて、前記熱電変換素子を電磁誘導加熱することにより、前記接合材を介して前記熱電変換素子と前記電極とを接合する請求項1又は2記載の熱電変換モジュールの製造方法。
  5.  前記熱電変換素子は、前記熱電変換素子の表面のうち前記電極と対向する面に金属層を有し、前記金属層は強磁性体及び/又はフェリ磁性体を含有する、請求項1~4のいずれか一項記載の熱電変換モジュールの製造方法。
PCT/JP2010/050160 2009-01-15 2010-01-08 熱電変換モジュールの製造方法 WO2010082539A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800045958A CN102282691A (zh) 2009-01-15 2010-01-08 热电转换模块的制造方法
US13/144,725 US20110284523A1 (en) 2009-01-15 2010-01-08 Method for manufacturing thermoelectric conversion module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-006764 2009-01-15
JP2009006764A JP2010165847A (ja) 2009-01-15 2009-01-15 熱電変換モジュールの製造方法

Publications (1)

Publication Number Publication Date
WO2010082539A1 true WO2010082539A1 (ja) 2010-07-22

Family

ID=42339792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050160 WO2010082539A1 (ja) 2009-01-15 2010-01-08 熱電変換モジュールの製造方法

Country Status (4)

Country Link
US (1) US20110284523A1 (ja)
JP (1) JP2010165847A (ja)
CN (1) CN102282691A (ja)
WO (1) WO2010082539A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212579A (ja) * 2009-03-12 2010-09-24 Atsumi Tec:Kk 熱電変換素子の製造方法
US9082928B2 (en) 2010-12-09 2015-07-14 Brian Isaac Ashkenazi Next generation thermoelectric device designs and methods of using same
DE102012209619A1 (de) * 2012-06-08 2013-12-12 Robert Bosch Gmbh Thermoelektrisches Element zur Umwandlung von Energie zwischen thermischer Energie und elektrischer Energie und ein Verfahren zum Auseinanderbauen des thermoelektrischen Elements
JP6162423B2 (ja) * 2013-02-14 2017-07-12 古河電気工業株式会社 熱電変換素子
US9644769B1 (en) 2013-03-20 2017-05-09 Paul Po Cheng System and method for welding tubular workpieces
US10288193B2 (en) 2017-01-25 2019-05-14 Paul Po Cheng Method and system for forming a pipeline
KR20180114694A (ko) 2017-04-11 2018-10-19 한국에너지기술연구원 스커테루다이트 열전소재의 Fe-Ni/Ti 메탈라이징 방법, 스커테루다이트 열전소재용 Fe-Ni/Ti 다층 메탈라이징 구조, Fe-Ni/Ti 메탈라이징 처리된 스커테루다이트 열전소재 및 이의 제조방법
JP6839690B2 (ja) * 2018-09-27 2021-03-10 アイシン高丘株式会社 熱電モジュールの製造方法
US11413699B2 (en) 2019-08-21 2022-08-16 Paul Po Cheng Method and system for fusing pipe segments
US11597032B2 (en) 2020-03-17 2023-03-07 Paul Po Cheng Method and system for modifying metal objects

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513660U (ja) * 1991-08-12 1993-02-23 三菱重工業株式会社 熱電変換モジユール接合装置
JP2004186566A (ja) * 2002-12-05 2004-07-02 Tanaka Kikinzoku Kogyo Kk 熱電変換モジュールの組立方法
JP2006080432A (ja) * 2004-09-13 2006-03-23 Canon Inc 実装基板の接合方法
JP2008112955A (ja) * 2006-10-06 2008-05-15 Toyota Industries Corp 半導体装置、金属接合材料、半田付け方法及び電子機器の製造方法
JP2008141188A (ja) * 2006-11-06 2008-06-19 Toyota Industries Corp 電子部品の接合方法及び電子機器の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038323A (ja) * 2007-08-05 2009-02-19 Osamu Yamashita 熱電変換素子の製造方法
CN101267013B (zh) * 2008-04-30 2011-09-28 晶能光电(江西)有限公司 半导体外延片的压焊结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513660U (ja) * 1991-08-12 1993-02-23 三菱重工業株式会社 熱電変換モジユール接合装置
JP2004186566A (ja) * 2002-12-05 2004-07-02 Tanaka Kikinzoku Kogyo Kk 熱電変換モジュールの組立方法
JP2006080432A (ja) * 2004-09-13 2006-03-23 Canon Inc 実装基板の接合方法
JP2008112955A (ja) * 2006-10-06 2008-05-15 Toyota Industries Corp 半導体装置、金属接合材料、半田付け方法及び電子機器の製造方法
JP2008141188A (ja) * 2006-11-06 2008-06-19 Toyota Industries Corp 電子部品の接合方法及び電子機器の製造方法

Also Published As

Publication number Publication date
JP2010165847A (ja) 2010-07-29
CN102282691A (zh) 2011-12-14
US20110284523A1 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
WO2010082539A1 (ja) 熱電変換モジュールの製造方法
JP6750404B2 (ja) 熱電変換モジュール及び熱電変換装置並びに熱電変換モジュールの製造方法
EP2377175B1 (en) Method for fabricating thermoelectric device
US20100218796A1 (en) Thermoelectric conversion module
US20110298080A1 (en) Method for manufacturing thermoelectric conversion module, and thermoelectric conversion module
TWI505522B (zh) Method for manufacturing thermoelectric conversion module
EP2412039A2 (en) Thermoelectric device, electrode materials and method for fabricating thereof
US9837594B2 (en) Thermoelectric module, method for producing a thermoelectric module and use of a metallic glass or a sintered material
JP4969589B2 (ja) ペルチェ素子精製プロセスとペルチェ素子
WO2010050455A1 (ja) 熱電モジュール
JP2008305986A (ja) 熱電変換モジュール
JP2010165840A (ja) 熱電変換モジュール及び熱電変換モジュールブロック
TW201448294A (zh) 使用直接接合之熱電元件製造
KR101801367B1 (ko) 열전소자의 제조 방법
JP4912991B2 (ja) 熱電変換素子の製造方法
US10868230B2 (en) Thermoelectric conversion module and manufacturing method thereof
JP4584034B2 (ja) 熱電モジュール
WO2010007729A1 (ja) 熱発電デバイスの製造方法
EP3648186A1 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
CN108028306B (zh) 热电转换模块及热电转换装置
WO2009051208A1 (ja) 熱電変換素子、熱電変換素子を用いた熱電変換モジュール及び 熱電変換モジュールの製造方法
JP5218285B2 (ja) 熱電変換材料
JP2009218320A (ja) 熱発電デバイス素子
JP2008034721A (ja) 熱電発電素子およびその製造方法
KR102531839B1 (ko) 다층 확산방지층을 포함하는 열전 소재 및 이를 구비하는 열전 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004595.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10731208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13144725

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10731208

Country of ref document: EP

Kind code of ref document: A1