WO2010051676A1 - 一种乳酸的清洁生产工艺 - Google Patents

一种乳酸的清洁生产工艺 Download PDF

Info

Publication number
WO2010051676A1
WO2010051676A1 PCT/CN2009/000418 CN2009000418W WO2010051676A1 WO 2010051676 A1 WO2010051676 A1 WO 2010051676A1 CN 2009000418 W CN2009000418 W CN 2009000418W WO 2010051676 A1 WO2010051676 A1 WO 2010051676A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactic acid
membrane
fermentation
solution
nanofiltration
Prior art date
Application number
PCT/CN2009/000418
Other languages
English (en)
French (fr)
Inventor
徐南平
李卫星
邢卫红
范益群
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Priority to US13/127,307 priority Critical patent/US8545685B2/en
Publication of WO2010051676A1 publication Critical patent/WO2010051676A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/445Ion-selective electrodialysis with bipolar membranes; Water splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/22Processes using, or culture media containing, cellulose or hydrolysates thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/422Electrodialysis

Definitions

  • the invention relates to a new process for clean production of lactic acid, in particular to a lactic acid production process for extracting lactic acid by membrane integration process and realizing recycling of fermentation bacteria and fermentation water.
  • Lactic acid is widely used in the chemical, food, and pharmaceutical industries.
  • polylactic acid will become an important substitute for petrochemical resources.
  • packaging materials food boxes, food bags, agricultural plastics, etc.
  • polylactic acid is one of them.
  • polylactic acid products have been promoted and applied. Therefore, the development and utilization of lactic acid as a renewable resource is of great significance and has a broad market prospect.
  • the industrial production method of lactic acid is mainly a fermentation method, which uses starch raw materials and is obtained by fermentation of bacteria or Rhizopus, that is, fermentation, calcium salt neutralization, acid hydrolysis of lactic acid products, and a large amount of calcium sulfate waste residue, waste water and carbon dioxide are generated in the process.
  • the environmental problem is more serious.
  • the invention is a method for producing ammonium lactate by adding ammonia, and separating lactic acid by a method including ultrafiltration, ion exchange, conventional electrodialysis, and electrodialysis using a bipolar membrane.
  • the object of the present invention is to overcome some of the problems of waste slag discharge and material consumption in the existing lactic acid production method. It provides a new process for the clean production of lactic acid.
  • the technical scheme of the present invention is: a clean production process of lactic acid, which is characterized in that firstly, a sugar-containing substance is prepared into a saccharification liquid; nutrients and lactic acid bacteria are added thereto for fermentation, and pH is adjusted by adding a liquid alkali ; The broth is clarified, and the lactic acid bacteria in the retentate are returned to the fermentation unit for reuse; the porous membrane permeate is decolorized and purified by nanofiltration, and the nanofiltration concentrated solution and the washing water of the fermentor and its supporting facilities are extinguished by the ceramic membrane.
  • the bacteria system is returned to the fermentation unit after treatment; the nanofiltration permeate enters the bipolar membrane electrodialysis system to prepare lactic acid, and the liquid alkali produced is returned to use, and the lactic acid solution is concentrated by vacuum distillation to obtain the finished lactic acid.
  • the specific process includes:
  • the porous membrane permeate into the nanofiltration unit and the divalent or higher ions of the pigment, sugar, calcium, magnesium, zinc, etc. in the system will be intercepted by the nanofiltration membrane, and The nutrient and the necessary trace elements are returned to the fermentation unit for reuse, but must enter the ceramic membrane sterilization system to remove the bacteria as well as the wash water of the fermenter and its supporting facilities; the nanofiltration permeate is a relatively pure lactic acid unit price. Salt solution.
  • Bipolar membrane electrodialysis decomposes lactate to prepare lactic acid and liquid alkali: nanofiltration permeate enters bipolar membrane unit, under the action of DC electric field, lactate decomposes into lactic acid and liquid alkali, and lactic acid enters the later process.
  • the liquid base is returned to the fermentation unit as a pH adjuster.
  • the lactic acid solution from the bipolar membrane unit enters the vacuum distillation unit to remove an appropriate amount of water to obtain a corresponding lactic acid product.
  • the sugar-containing substance refers to a sugar-containing crop, preferably corn, wheat, sweet potato, potato, molasses or plant fiber; wherein, corn, wheat, sweet potato, potato and plant fiber need to be firstly pulverized, and then added with amylase
  • the hydrolysis is carried out, and the molasses is directly hydrolyzed; the prepared saccharified solution is an aqueous solution containing a concentration by mass of glucose of 10 to 30%.
  • the nutrient added is preferably soybean meal hydrolyzate, bran or corn chop; the lactic acid bacteria is preferably Lactobacillus delbrueckii; wherein the nutrient addition amount (dry weight) is 0.1 to 10% of the total mass of the saccharification solution, and the amount of the lactic acid bacteria is saccharified.
  • the total volume of the liquid is 5 to 20%; the fermentation temperature is 45 to 60 ° C, and the pH is 5 to 7.
  • the liquid base referred to herein means an aqueous solution of a hydroxide containing a monovalent cation, preferably sodium hydroxide, potassium hydroxide or ammonium hydroxide, and the liquid alkali concentration is 5% to 30%.
  • the porous membrane described therein is a ceramic membrane, a metal membrane or an organic membrane, and the pore diameter of the porous membrane is 5 ⁇ ! ⁇ 15 ⁇ m, preferably a ceramic film, preferably having a pore size ranging from 20 nm to 500 nm.
  • the porous membrane is used for preliminary clarification of the fermentation liquid, the pressure of the membrane is 0.01 ⁇ 0.5MPa, and the flow velocity of the membrane surface is 0.01 ⁇ 5m/s; the nanofiltration is used for decolorizing and purifying the permeate of the porous membrane, and the operating pressure is 0.5 ⁇ 2 , 5MPa.
  • the ceramic membrane sterilization system described above is an operation unit for removing impurities by using a ceramic membrane having a pore size ranging from 20 nm to 100 nm, wherein the flow rate of the ceramic membrane filtration membrane surface is 0.01 to 3 m/s, and the concentration multiple is 8 ⁇ 10.
  • the bipolar membrane electrodialysis operation current density is 30 ⁇ 300 n 2
  • the mass percentage concentration of the lactate in the nanofiltration permeate entering the bipolar membrane electrodialysis system is 10 to 40%.
  • the bipolar membrane electrodialyzer used in the bipolar membrane electrodialysis process is a two- or three-chamber combined membrane stack structure.
  • the conventional calcium salt fermentation method mainly adopts a method of adding calcium carbonate to a fermentation system to carry out neutralization of the system, and then uses concentrated sulfuric acid to dissolve calcium lactate to obtain lactic acid.
  • a large amount of calcium sulfate waste residue and carbon dioxide are produced during the process, and environmental problems are relatively serious.
  • the liquid base is used for neutralization, and finally the lactic acid and the corresponding liquid base are prepared by bipolar membrane electrodialysis, and the liquid base can be recycled. Therefore, the production of waste and carbon dioxide is eliminated, and the use of calcium carbonate and sulfuric acid is eliminated.
  • the invention realizes the bacterial recovery cycle fermentation, saves the inoculum amount, and reduces the fermentation cost.
  • the porous membrane is used for clarification and filtration of the fermentation broth, and the bacteria in the fermentation mature liquid are retained and recycled, thereby greatly reducing the inoculum of the fermentation broth and reducing the fermentation cost.
  • the porous membrane is used to trap the bacteria in the fermented mature liquid and
  • the present invention designs a unique ceramic membrane sterilization system, which greatly reduces the amount of fermentation water.
  • the ceramic membrane technology is used to purify and detoxify the fermenter washing water and nanofiltration concentrated liquid, and solve the problem of the original water consumption of the fermentation factory. It is a clean and low emission new lactic acid production. Process.
  • the invention adopts advanced porous membrane, nanofiltration and bipolar membrane electrodialysis integration technology to improve the quality of lactic acid products.
  • the traditional calcium salt method mainly uses solid-liquid separation by plate frame or belt filtration method, and its precision is much lower than that of the porous membrane and the nanofiltration membrane.
  • the removal of macromolecules such as pigments in the system is poor, which ultimately affects the product quality.
  • the technology of the invention firstly separates and purifies the lactic acid fermentation liquid by using a plurality of membrane integration technologies, and the milk prepared by bipolar membrane electrodialysis decomposition The acid purity is higher than the traditional method.
  • Figure 1 is a block diagram showing the process flow of lactic acid clean production.
  • the corn is pulverized, heated and dissolved in water, and the solid particles are removed by a rotary drum filter, and saccharification enzyme is added to the filtrate to obtain 10 liters of a saccharification solution having a mass percentage of glucose of 15%.
  • the obtained saccharification solution is added to the fermenter, and a mass percentage (dry weight) of 2% soybean meal hydrolyzate and a 7% saccharification solution of Lactobacillus delbrueckii are fermented at a temperature of 45 ° C, and self-control is adopted.
  • the method was to continuously add a 20% by mass sodium hydroxide solution to adjust the pH of the system so that the pH was maintained at 6.8.
  • the fermentation liquid is pumped into the ceramic membrane unit, the pore size of the ceramic membrane used is 50 nm, the unit operating pressure is 0.2 MPa, and the membrane surface flow rate is 3 m/s.
  • the permeate flux of the ceramic membrane is ⁇ 2 ⁇ !! ⁇ 1 , the permeate volume of the ceramic membrane unit accounts for 75% of the total volume, and the remaining 25% of the bacteria-containing fermentation retentate is returned to the fermentation unit as the fermentation strain. Supplement;
  • the permeate is a 10% by weight sodium lactate solution.
  • the ceramic membrane permeate (ie 10% sodium lactate solution) is pressurized to 1.0 MPa and pumped into the nanofiltration unit.
  • the nanofiltration membrane used is GE's DK-type nanofiltration membrane.
  • the filtered permeate accounts for 80% of the feed volume, and the remaining 20% of the concentrate enters the ceramic membrane sterilization system.
  • the ceramic membrane used has a pore size of 50 nm; at this time, the nanofiltration permeate is a relatively pure sodium lactate solution.
  • the ceramic membrane sterilization system can also process the washing water of the fermenter and its supporting facilities, and remove the bacteria through the system, so that the water can be returned to the fermentation unit for recycling.
  • the flow rate of the membrane membrane of the ceramic membrane in this unit is 0.05 m/s, and the concentration factor is 10.
  • the nanofiltration permeate is transported into the bipolar membrane electrodialysis unit, and the bipolar membrane electrodialyzer is a two-chamber structure composed of a repeating deposition of a positive membrane and a bipolar membrane;
  • the membrane current density is 100 A/m 2
  • sodium lactate is decomposed into lactic acid and sodium hydroxide.
  • the sodium hydroxide from the greenhouse is returned to the fermentation unit for pH adjustment, and the bipolar membrane chamber is a lactic acid solution having a mass percent concentration of 12%.
  • the lactic acid solution from the bipolar membrane unit enters the vacuum distillation unit and is dehydrated to obtain a lactic acid product having a mass concentration of 85%, and the quality reaches the GB2023-2003 standard.
  • the implementation steps of the present invention are as follows: (1) The corn was pulverized, heated and dissolved in water, and the solid particulate matter was removed by a rotary drum filter, and saccharification enzyme was added to the filtrate to obtain 10 L of a saccharification solution having a mass percentage of 20%.
  • the fermentation liquid is pumped into the stainless steel membrane filtration unit, the pore diameter of the stainless steel membrane is 200 nm, the unit operating pressure is 0.15 MPa, and the membrane surface flow rate is 4 m/ s, the permeability of the ceramic membrane permeate is lOOL.rn' 2 *!!' 1 , the permeate volume of the ceramic membrane unit accounts for 80% of the total volume, and the remaining 20% of the bacteria-containing fermentation retentate is returned to the fermentation unit as a fermentation bacterium.
  • the permeate is a 13% by mass sodium lactate solution.
  • the ceramic membrane permeate (ie, the sodium lactate solution with a mass percent concentration of 13%) is pressurized to 1.5 MPa and pumped into the nanofiltration unit.
  • the nanofiltration membrane used is GE's DK-type nanofiltration membrane.
  • the nanofiltration permeate accounts for 75% of the feed volume, and the remaining 25% of the concentrate enters the ceramic membrane sterilization system.
  • the ceramic membrane has a pore size of 20 nm.
  • the nanofiltration permeate is a relatively pure sodium lactate solution.
  • the ceramic membrane sterilization system can also process the washing water of the fermenter and its supporting facilities, and remove the bacteria through the system, so that the water can be returned to the fermentation unit for recycling.
  • the cell membrane filtration membrane flow rate in this unit is 0.5 m/s, and the concentration factor is 9.
  • the nanofiltration permeate is transported into the bipolar membrane electrodialysis unit, and the bipolar membrane electrodialyzer is a two-chamber structure composed of a repeating deposition of a positive membrane and a bipolar membrane;
  • the membrane current density is 120 ⁇ 2
  • sodium lactate is decomposed into lactic acid and potassium hydroxide.
  • the potassium hydroxide from the greenhouse is returned to the fermentation unit for pH adjustment, and the bipolar membrane chamber is a 13% by mass lactic acid solution.
  • the lactic acid solution from the bipolar membrane unit enters the vacuum distillation unit and is dehydrated to obtain a lactic acid product having a mass concentration of 85%, and the quality reaches the GB2023-2003 standard.
  • the corn is pulverized, heated and dissolved in water, and the solid particulate matter is removed by a rotary drum filter, and saccharification enzyme is added to the filtrate to obtain 10 g of a saccharification solution having a mass concentration of 10%.
  • the fermentation broth is pumped into the PVC microfiltration membrane.
  • the filter unit adopts a PVC microfiltration membrane with a pore diameter of 200 nm, a unit operating pressure of 0.1 MPa, a membrane surface flow rate of 2 m/s, and a ceramic membrane permeate flux of ⁇ L.nf 2 .!!- 1 , a ceramic membrane unit.
  • the permeate volume accounts for 80% of the total volume, and the remaining 20% of the bacteria-containing fermentation retentate is returned to the fermentation unit as a supplement to the fermentation strain; the permeate is a 8% by weight sodium lactate solution.
  • the ceramic membrane permeate (that is, the sodium lactate solution with a mass concentration of 8%) is pressurized to 0.8 MPa and pumped into the nanofiltration unit.
  • the nanofiltration membrane used for the membrane is the acid-resistant nanofiltration membrane of KOCH Company.
  • the filtered permeate accounts for 70% of the feed volume, and the remaining 30% of the concentrate enters the ceramic membrane sterilization system.
  • the ceramic membrane has a pore size of 20 nm; at this time, the nanofiltration permeate is a relatively pure sodium lactate solution.
  • the ceramic membrane sterilization system can also process the washing water of the fermenter and its supporting facilities, and remove the bacteria through the system, so that the water can be returned to the fermentation unit for recycling.
  • the flow rate of the membrane membrane of the ceramic membrane in the unit is 1.5 m/ s, the concentration factor is 8.
  • the bipolar membrane electrodialyser used is a two-chamber structure consisting of repeated deposition of a positive membrane and a bipolar membrane;
  • the membrane current density was 80 A/m 2
  • sodium lactate was decomposed into lactic acid and sodium hydroxide.
  • the sodium hydroxide from the greenhouse is returned to the fermentation unit for pH adjustment, and the bipolar membrane chamber is a 5% lactic acid solution.
  • the lactic acid solution from the bipolar membrane unit enters the vacuum distillation unit and is dehydrated to obtain a lactic acid product having a mass concentration of 85%, and the quality reaches the GB2023-2003 standard.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Nanotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

一种乳酸的清洁生产工艺 技术领域
本发明涉及一种乳酸的清洁生产新工艺, 尤其是涉及一种采用膜集成过程提取乳酸 和实现发酵菌体和发酵用水循环利用的乳酸生产工艺。
背景技术
乳酸在化工、 食品、 医药工业中应用广泛。 特别是, 聚乳酸将成为石油化工资源的 重要替代产品。 随着生活水平的提高, 人们对资源的需求量越大, 例如包装材料(食品 盒、 食品袋、 农用塑料等)。 据统计, 目前世界仅塑料和化纤产量已经达到 3200万吨 / 年以上, 但石油资源将逐渐枯竭, 一些新型的可再生资源将是主要替代产品, 聚乳酸就 是其中之一。 目前, 聚乳酸制品 (餐盒、 医用器具等) 已经开始推广应用。 因此, 乳酸 作为可再生资源的开发利用具有十分重要的意义, 市场前景广阔。
乳酸的工业化生产方法主要是发酵法,釆用淀粉类原料,经过细菌或根霉发酵制得, 即发酵 ^钙盐中和^酸解 乳酸产品,过程中产生了大量硫酸钙废渣、废水和二氧化碳, 环境问题比较严重。
为了降低制备成本, 提高乳酸生产质量, 国内外有报道采用电渗析对发酵液的提取 技术。 1971年, 美国专利 "process for the purification of lactic acid" (US 3619397)报 道了一种先进行溶剂萃取后采用普通阴膜和阳膜堆电渗析的乳酸提取技术。萃取乳酸的 溶剂一般为有毒的胺类物质, 易对产品乳酸造成二次污染。我国专利 "乳酸电渗析提取 工艺及设备"(ZL 87104858.2)报道了一种采用普通阴膜和阳膜堆组成电渗析对乳酸钙 进行提取, 其转化率为 85%。但是, 该方法仍然采用的是钙盐发酵法, 虽然钙离子最终 没有形成硫酸钙沉淀, 但将以其它形式排出, 对环境污染严重。 丹麦拉克塔斯坎有限公 司报道了 "Production of lactic acid from whey proteins where electrodialysis causes less biofouling of the electrodialysis membrane" (NZ336852), 并在中国申请了专利保护, "乳 酸的发酵生产和分离"(ZL 97181922.X), 该发明为一种釆用加入氨产生乳酸铵, 并且 通过包括超滤, 离子交换, 常规电透析和利用双极膜电透析的方法分离乳酸。 由于氨挥 发严重,对环境有一定的污染。以上几种方法对发酵用水和排放水均没有进行综合回用, 难以实现水资源高效利用。 因此, .乳酸的清洁生产工艺已经成为国内外研究的重点。 发明内容
本发明的目的是为了克服现有乳酸生产方法中废水废渣排放多和物耗髙等一些不 足而提供一种乳酸的清洁生产新工艺。
本发明的技术方案为: 一种乳酸的清洁生产工艺, 其特征在于首先将含糖物质制备 成糖化液; 再向其中加入营养物质和乳酸菌进行发酵, 同时通过添加液碱调节 pH; 采 用多孔膜对发酵液进行澄清, 截留液中乳酸菌体返回到发酵单元重复利用; 采用纳滤对 多孔膜透过液进行脱色净化,纳滤的浓缩液和发酵罐及其配套设施的洗涤水经过陶瓷膜 灭菌***处理后返回到发酵单元; 纳滤透过液进入双极膜电渗析***制备乳酸, 同时产 生的液碱返回利用, 采用真空蒸馏将对乳酸溶液进行浓缩, 制得成品乳酸。
其具体的工艺过程包括:
, (1 )糖化液的制备: 将含糖物质经过粉碎并溶解于水中,如有固体杂质,则过滤除去。
(2)糖化液的发酵: 将制得的糖化液加入发酵罐中, 同时加入营养物质和乳酸菌, 在一定的温度和 pH条件下发酵。为了调节体系 pH,采用自动控制的方式连续添加液碱。
(3)多孔膜对发酵液的澄清和菌体的重复利用:发酵到体系糖含量质量百分浓度低 于 0.5%时, 将发酵液泵入多孔膜单元, 经过多孔膜过滤后, 体系中的菌体、 大分子蛋 白、 多糖类物质被截留并返回到发酵单元; 透过液即为含乳酸的单价盐溶液。
(4)纳滤脱色和去除二价离子:多孔膜透过液进入纳滤单元,体系中的色素、糖类、 钙、镁、锌等二价以上的离子将被纳滤膜拦截, 并作为营养物质和必要的微量元素返回 的发酵单元再利用,但必须与发酵罐及其配套设施的洗漆水一样先进入陶瓷膜灭菌*** 去除杂菌; 纳滤透过液为较为纯净的乳酸单价盐溶液。
(5)双极膜电渗析分解乳酸盐制备乳酸和液碱:纳滤透过液进入双极膜单元,在直 流电场作用下, 乳酸盐分解成为乳酸和液碱, 乳酸进入后面工序, 液碱返回到发酵单元 作为 pH调节剂。
(6)双极膜单元出来的乳酸溶液进入真空蒸馏单元,脱除适量的水份,制得相应规 格的乳酸产品。
其中所述的含糖物质是指含有糖的农作物, 优选玉米、 小麦、 红薯、 土豆、 糖蜜或 植物纤维; 其中, 玉米、 小麦、 红薯、 土豆和植物纤维需要先进行粉碎, 再进行添加淀 粉酶进行水解,糖蜜直接水解;所述的制成的糖化液是含葡萄糖质量百分浓度为 10〜30 %的水溶液。
其中所述的加入营养物质优选豆粕水解液、 麸皮或玉米柴; 乳酸菌优选德氏乳酸杆 菌; 其中营养物质加入量(干重) 为糖化液总质量的 0.1〜10%, 乳酸菌加入量为糖化 液总体积的 5〜20%; 发酵的温度为 45〜60°C, pH为 5〜7。 其中所述的液碱是指含一价阳离子的氢氧化物的水溶液, 优选氢氧化钠、 氢氧化钾 或氢氧化铵, 液碱质量百分浓度为 5%〜30%。
其中所述的多孔膜为陶瓷膜、金属膜或有机膜, 多孔膜的孔径为 5ηπ!〜 15μπι, 优选 陶瓷膜, 优选的孔径范围是 20nm〜500nm。
其中所述的多孔膜对发酵液进行初步澄清,搡作压力 0.01〜0.5MPa,膜面流速 0.01〜 5m/s; 所述的纳滤对多孔膜透过液进行脱色净化, 操作压力 0.5〜2,5MPa。
其中所述的陶瓷膜灭菌***为釆用孔径范围 20nm〜100nm的陶瓷膜对进料进行除 杂菌的操作单元, 该单元中陶瓷膜过滤膜面流速为 0.01〜3m/s, 浓缩倍数为 8〜10。
其中所述的双极膜电渗析操作电流密度为 30〜300 n2, 进入双极膜电渗析***的 纳滤透过液中乳酸盐的质量百分浓度为 10〜40%。
- 其中所述的双极膜电渗析过程采用的双极膜电渗析器为二室或三室的组合式膜堆结 构。
本发明釆用液碱中和发酵和膜集成技术对发酵液进行提取的乳酸清洁生产工艺具有 很大优越性:
( 1 )与传统的钙盐发酵法相比,本发明具有污染小、物耗低的特点。传统的钙盐发 酵法主要采用向发酵体系中投加碳酸钙的方法进行中和体系酸性,随后再采用浓硫酸分 解乳酸钙制得乳酸。该方法过程中产生了大量硫酸钙废渣和二氧化碳,环境问题比较严 重。而本发明采用液碱进行中和,且最终通过双极膜电渗析制备得到乳酸和相应的液碱, 这部分液碱可以实现循环利用。 因此, 杜绝了废澄和二氧化碳的产生, 而且取消了碳酸 钙和硫酸的使用。
(2)本发明实现了细菌回收循环发酵,节省了接种量, 降低了发酵成本。采用多孔 膜对发酵液进行澄清过滤, 截留了发酵成熟液中的菌体并实现了循环利用, 大幅降低了 发酵液的菌体接种量, 减少了发酵成本。 采用多孔膜截留了发酵成熟液中的菌体并
(3 )本发明设计了独特的陶瓷膜灭菌***,极大地降低了发酵用水量。采用陶瓷膜 技术对发酵罐洗水和纳滤浓缩液进行净化除菌处理并实现回用,解决了发酵厂家原有的 耗水多的难题, 是一种清洁的、 排放极低的乳酸生产新工艺。
(4)本发明采用了先进的多孔膜、纳滤和双极膜电渗析集成技术,提高了乳酸产品 的质量。传统的钙盐法主要采用板框或带式过滤的方法进行固液分离, 其精度远低于多 孔膜和纳滤膜, 体系中的色素等大分子去除效果差, 最终影响了产品质量。 本发明技术 先采用多种膜的集成技术对乳酸发酵液进行分离和纯化, 由双极膜电渗析分解制备的乳 酸纯度要高于传统方法。
附图说明
图 1是乳酸清洁生产工艺流程方框图。
具体实施方式
下面结合实施例进一步描述本发明。
实施例 1
按附图 1所示, 本发明的实现步骤如下:
( 1 )将玉米粉碎后加热溶解于水中,采用转鼓过滤机除去固体颗粒物, 向滤出液中 添加糖化酶制得葡萄糖的质量百分浓度为 15%的糖化液 10L。
(2)将制得的糖化液加入发酵罐中, 加入质量百分比 (干重) 2%的豆粕水解液和 糖化液体积 7%的德氏乳酸杆菌 在温度 45°C下发酵,并采用自控控制的方式连续添加 质量百分浓度为 20%的氢氧化钠溶液调节体系酸碱度, 使得 pH保持为 6.8。
(3) 当发酵体系中糖含量质量百分浓度低于 0.5%时, 将发酵液泵入陶瓷膜单元, 所采用陶瓷膜的孔径为 50nm, 单元操作压力为 0.2MPa, 膜面流速 3m/s, 陶瓷膜渗透液 通量为 δΟΙ^η·2·!!·1,陶瓷膜单元透过液体积占总体积的 75%,剩余 25%的含菌发酵截留 液返回到发酵单元作为发酵菌种的补充; 透过液为质量百分浓度 10%的乳酸钠溶液。
(4)将陶瓷膜透过液(即质量百分浓度 10%的乳酸钠溶液)加压到 l.OMPa后泵入 纳滤单元, 采用的纳滤膜为 GE公司的 DK型纳滤膜, 纳滤透过液占进料体积的 80%, 剩余 20%的浓缩液进入陶瓷膜灭菌***,.所采用的陶瓷膜孔径为 50nm; 此时, 纳滤透 过液为较为纯净的乳酸钠溶液。 同时, 陶瓷膜灭菌***还可以处理发酵罐及其配套设施 的洗漆用水, 通过本***去除杂菌, 使得这些水可以返回到发酵单元循环利用。该单元 中陶瓷膜过滤膜面流速为 0.05m/s, 浓缩倍数为 10。
(5)将纳滤透过液输送入双极膜电渗析单元,所采用的双极膜电渗析器为由阳膜和 双极膜重复堆积构成的两室结构; 膜堆两侧通直流电, 膜堆电流密度为 100A/m2, 乳酸 钠被分解成乳酸和氢氧化钠。 其中, 阳室出来的氢氧化钠返回到发酵单元作为 pH调节 用, 双极膜室出来的是质量百分浓度为 12%的乳酸溶液。
(6)双极膜单元出来的乳酸溶液进入真空蒸馏单元, 脱水得到质量百分浓度 85% 的乳酸产品, 质量达到 GB2023-2003标准。
实施例 2
按附图 1所示, 本发明的实现步骤如下: (1 )将玉米粉碎后加热溶解于水中,采用转鼓过滤机除去固体颗粒物, 向滤出液中 添加糖化酶制得质量百分浓度为 20%的糖化液 10L。
(2)将制得的糖化液加入发酵罐中, 加入质量百分比 (干重) 3 %的玉米楽和糖化 液体积 8%的德氏乳酸杆菌,在温度 50°C下发酵,并采用自控控制的方式连续添加质量 百分浓度为 30%的氢氧化钾溶液调节体系酸碱度, 使得 pH保持为 '6.8。
(3)当发酵体系中糖含量质量百分浓度低于 1 %时, 将发酵液泵入不锈钢膜过滤单 元, 所采用不锈钢膜的孔径为 200nm, 单元操作压力为 0.15MPa, 膜面流速 4m/s, 陶瓷 膜渗透液通量为 lOOL.rn'2*!!'1, 陶瓷膜单元透过液体积占总体积的 80%, 剩余 20%的含 菌发酵截留液返回到发酵单元作为发酵菌种的补充;透过液为质量百分浓度 13%的乳酸 钠溶液。
' (4)将陶瓷膜透过液(即质量百分浓度为 13%的乳酸钠溶液)加压到 1.5MPa后泵 入纳滤单元,采用的纳滤膜为 GE公司的 DK型纳滤膜,纳滤透过液占进料体积的 75%, 剩余 25%的浓縮液进入陶瓷膜灭菌***, 所采用的陶瓷膜孔径为 20nm; 此时, 纳滤透 过液为较为纯净的乳酸钠溶液。 同时, 陶瓷膜灭菌***还可以处理发酵罐及其配套设施 的洗涤用水, 通过本***去除杂菌, 使得这些水可以返回到发酵单元循环利用。该单元 中陶瓷膜过滤膜面流速为 0.5m/s, 浓缩倍数为 9。
(5)将纳滤透过液输送入双极膜电渗析单元,所采用的双极膜电渗析器为由阳膜和 双极膜重复堆积构成的两室结构; 膜堆两侧通直流电, 膜堆电流密度为 120 η2, 乳酸 钠被分解成乳酸和氢氧化钾。 其中, 阳室出来的氢氧化钾返回到发酵单元作为 pH调节 用, 双极膜室出来的为质量百分浓度 13%的乳酸溶液。
(6)双极膜单元出来的乳酸溶液进入真空蒸馏单元, 脱水得到质量百分浓度 85% 的乳酸产品, 质量达到 GB2023-2003标准。
实施例 3
按附图 1所示, 本发明的实现步骤如下:
(1 )将玉米粉碎后加热溶解于水中,采用转鼓过滤机除去固体颗粒物, 向滤出液中 添加糖化酶制得质量百分浓度为 10%的糖化液 10L。
(2)将制得的糖化液加入发酵罐中, 加入质量百分比 (干重) 5%的玉米柴和麸皮 和糖化液体积 12%的德氏乳酸杆菌, 在温度 48 下发酵, 并采用自控控制的方式连续 添加质量百分浓度为 15%的氢氧化钠溶液调节体系酸碱度, 使得 pH保持为 6.8。
(3) 当发酵体系中糖含量质量百分浓度低于 1 %时, 将发酵液泵入 PVC微滤膜过 滤单元,所采用 PVC微滤膜的孔径为 200nm,单元操作压力为 O.lMPa,膜面流速 2m/s, 陶瓷膜渗透液通量为 ^L.nf2.!!-1,陶瓷膜单元透过液体积占总体积的 80%,剩余 20%的 含菌发酵截留液返回到发酵单元作为发酵菌种的补充; 透过液为质量百分浓度 8%的乳 酸钠溶液。
(4 将陶瓷膜透过液(即质量百分浓度为 8%的乳酸钠溶液)加压到 0.8MPa后泵 入纳滤单元, 釆用的纳滤膜为 KOCH公司的耐酸型纳滤膜, 纳滤透过液占进料体积的 70% , 剩余 30%的浓缩液进入陶瓷膜灭菌***, 所采用的陶瓷膜孔径为 20nm; 此时, 纳滤透过液为较为纯净的乳酸钠溶液。 同时, 陶瓷膜灭菌***还可以处理发酵罐及其配 套设施的洗涤用水, 通过本***去除杂菌, 使得这些水可以返回到发酵单元循环利用。 该单元中陶瓷膜过滤膜面流速为 1.5m/s, 浓缩倍数为 8。
(5)将纳滤透过液输送入双极膜电渗析单元;所采用的双极膜电渗析器为由阳膜和 双极膜重复堆积构成的两室结构; 膜堆两侧通直流电, 膜堆电流密度为 80A/m2, 乳酸 钠被分解成乳酸和氢氧化钠。 其中, 阳室出来的氢氧化钠返回到发酵单元作为 pH调节 用, 双极膜室出来的为质量百分浓度 6%的乳酸溶液。
(6)双极膜单元出来的乳酸溶液进入真空蒸馏单元, 脱水得到质量百分浓度 85% 的乳酸产品, 质量达到 GB2023-2003标准。

Claims

权 利 要 求
1、一种乳酸的清洁生产工艺,其特征在于首先将含糖物质制备成糖化液; 再向其中 加入营养物质和乳酸菌进行发酵, 同时通过添加液碱调节 pH; 采用多孔膜对发酵液进 行澄清, 截留液中乳酸菌体返回到发酵单元重复利用; 采用纳滤对多孔膜透过液进行脱 色净化,纳滤的浓缩液和发酵罐及其配套设施的洗涤水经过陶瓷膜灭菌***处理后返回 到发酵单元; 纳滤透过液进入双极膜电渗析***制备乳酸, 同时产生的液碱返回利用, 采用真空蒸馏将对乳酸溶液进行浓缩, 制得成品乳酸。
2、 根据权利要求 1所述的工艺, 其特征在于所述的含糖物质为玉米、 小麦、 红薯、 土豆、糖蜜或植物纤维;所述的制成的糖化液是含葡萄糖质量百分浓度为 10〜30%的水 溶液。
3、根据权利要求 2所述的工艺,其特征在于所述的营养物质是豆粕水解液、麸皮或 玉米漿, 营养物质加入量 (干重) 为糖化液总质量的 0.1〜10% ; 所述乳酸菌是德氏乳 酸杆菌, 乳酸菌加入量为糖化液总体积的 5〜20%,发酵温度为 45〜60QC, pH为 5〜7。
4、根据权利要求 3所述的工艺,其特征在于所述的液碱是指含一价阳离子的氢氧化 物的水溶液, 优选氢氧化钠、 氢氧化钾或氢氧化铵, 液碱质量百分浓度为 5 %〜30%。
5、根据权利要求 4所述的工艺,其特征在于所述的多孔膜为陶瓷膜、金属膜或有机 膜, 多孔膜的孔径为 5ηπι〜15μιη; 优选陶瓷膜, 优选的孔径范围是 20nm〜500nm。
6、根据权利要求 5所述的工艺,其特征在于多孔膜对发酵液进行初步澄清,操作压 力 0.01〜0.5MPa,膜面流速 0.01〜5m/s; 所述的纳滤对多孔膜透过液进行脱色净化, 操 作压力 0.5〜2.5MPa。
7、根据权利要求 5所述的工艺,其特征在于所述的陶瓷膜灭菌***为采用孔径范围 20nm〜100nm的陶瓷膜对进料进行除杂菌的操作单元, 该单元中陶瓷膜过滤膜面流速 为 0.01〜3m/s, 浓縮倍数为 8~10。
8、根据权利要求 1~7中任意一项所述的工艺,其特征在于所述的双极膜电渗析操作 电流密度为 30〜300A/m2, 进入双极膜电渗析***的纳滤透过液中乳酸盐的质量百分浓 度为 10〜40%。
9、根据权利要求 1所述的工艺,其特征在于所述的双极膜电渗析过程采用的双极膜 电渗析器为二室或三室的组合式膜堆结构。
PCT/CN2009/000418 2008-11-10 2009-04-20 一种乳酸的清洁生产工艺 WO2010051676A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/127,307 US8545685B2 (en) 2008-11-10 2009-04-20 Cleaning process of producing lactic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810195297.6 2008-11-10
CN200810195297.6A CN101392273B (zh) 2008-11-10 2008-11-10 一种乳酸的清洁生产工艺

Publications (1)

Publication Number Publication Date
WO2010051676A1 true WO2010051676A1 (zh) 2010-05-14

Family

ID=40492784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000418 WO2010051676A1 (zh) 2008-11-10 2009-04-20 一种乳酸的清洁生产工艺

Country Status (3)

Country Link
US (1) US8545685B2 (zh)
CN (1) CN101392273B (zh)
WO (1) WO2010051676A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8772440B2 (en) * 2010-02-08 2014-07-08 Purac Biochem B.V. Process for manufacturing lactic acid
CN101805757A (zh) * 2010-03-24 2010-08-18 天津工业生物技术研究所 开放式全细胞回收循环发酵生产光学纯l-乳酸的方法
CN102250973A (zh) * 2010-05-18 2011-11-23 中国科学院过程工程研究所 钙盐法与电渗析耦合清洁生产乳酸的方法
CN102311912B (zh) * 2010-07-06 2013-07-31 光明乳业股份有限公司 乳酸菌发酵剂的制备工艺及其专用设备
CN102154408B (zh) * 2011-01-13 2013-06-05 天津市工业微生物研究所 小核菌硬葡聚糖在线发酵提取方法及***
CN102701501A (zh) * 2012-06-26 2012-10-03 天津市津华盛生物科技有限公司 工业乳酸链球菌素废水综合利用的方法
JP6097553B2 (ja) * 2012-12-25 2017-03-15 川崎重工業株式会社 糖化液の雑菌除去方法及び発酵システム
CN103923823A (zh) * 2013-11-06 2014-07-16 领绿生物镇江有限公司 一种高密度发酵嗜酸乳杆菌的发酵装置
FR3027821B1 (fr) * 2014-10-31 2018-11-16 Centralesupelec Procede de purification d'oses.
WO2016097750A1 (en) * 2014-12-19 2016-06-23 Plaxica Limited Lactate production process
CN105154908B (zh) * 2015-08-25 2017-10-03 杭州蓝然环境技术股份有限公司 双极膜法从溶液中回收氢氧化锂工艺
CN106086093B (zh) * 2016-07-29 2020-09-29 河南金丹乳酸科技股份有限公司 乳酸发酵菌体渣预处理方法及循环发酵生产乳酸的方法
CN106755143B (zh) * 2017-01-11 2020-08-04 南京工业大学 一种从乳酸发酵液中连续提取高纯度乳酸的方法
CN106865804B (zh) * 2017-03-23 2020-08-18 福建凯立生物制品有限公司 一种中生菌素母药清洁生产方法
CN110857445A (zh) * 2018-08-23 2020-03-03 滨州市华康梦之缘生物科技有限公司 一种高纯度低能耗的乳酸生产工艺
CN110862313A (zh) * 2018-08-27 2020-03-06 中国石化扬子石油化工有限公司 一种从d-乳酸铵发酵液中提取d-乳酸的方法
CN109180458A (zh) * 2018-08-30 2019-01-11 河北乐开节能科技股份有限公司 一种乳酸钠酸解生产乳酸的方法
CN109295118B (zh) * 2018-10-26 2022-03-25 驻马店天中生物科技有限公司 一种丙酸杆菌的循环发酵方法
CN109294893B (zh) * 2018-10-30 2024-03-19 北京建筑大学 一种白酒酿造副产物黄水的资源化利用***及方法
US20200317550A1 (en) * 2019-04-05 2020-10-08 Board Of Trustees Of The University Of Arkansas Passive, Tunable Biocide Delivery System
NL2023113B1 (en) * 2019-05-10 2020-11-30 Univ Delft Tech High yield lactic acid production using mixed cultures
CN113278659A (zh) * 2021-05-28 2021-08-20 郑州运维生物技术有限公司 一种乳酸发酵含酸废水的回收利用方法
CN113773189A (zh) * 2021-08-02 2021-12-10 合肥信达膜科技有限公司 膜工艺在乳酸生产中的应用
CN113603731B (zh) * 2021-09-14 2024-02-06 陕西麦可罗生物科技有限公司 一种中生菌素分离方法
CN113896360B (zh) * 2021-09-26 2023-01-31 四川雅华生物有限公司 一种从废水原液中分离回收碱和半纤维素的方法及***
CN115627278A (zh) * 2022-11-18 2023-01-20 枣庄聚沅新材料科技有限公司 一种连续发酵制备乳酸的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040033573A1 (en) * 2000-05-30 2004-02-19 Birgir Norddahl Method for producing lactic acid
WO2004057008A1 (en) * 2002-12-23 2004-07-08 Tiago Botelho Polylactic acid production from sugar molasses
CN1730457A (zh) * 2005-08-03 2006-02-08 韩清秀 用膜的方法从发酵液中提取有机酸工艺
CN101225413A (zh) * 2007-01-18 2008-07-23 肇东爱尔乳酸有限公司 一种非钙盐法自动循环连续发酵生产乳酸的方法
CN101234962A (zh) * 2008-03-04 2008-08-06 江苏道森生物化学有限公司 一种分离纯化l-乳酸的新工艺
CN101265179A (zh) * 2008-04-18 2008-09-17 南京工业大学 一种乳酸盐的提纯工艺
CN101294174A (zh) * 2008-04-28 2008-10-29 河南金丹乳酸有限公司 一种乳酸生产中糖水过滤除菌的方法
CN101294169A (zh) * 2008-04-28 2008-10-29 河南金丹乳酸有限公司 钠盐发酵电渗析提取乳酸新工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1596670A (zh) * 1968-11-14 1970-06-22
CN1012897B (zh) 1987-07-11 1991-06-19 南京大学 乳酸电渗析提取工艺及设备
NL8801516A (nl) * 1988-06-14 1990-01-02 Suiker Unie Werkwijze voor de fermentatieve bereiding van organische zuren.
US5503750A (en) * 1993-10-04 1996-04-02 Russo, Jr.; Lawrence J. Membrane-based process for the recovery of lactic acid by fermentation of carbohydrate substrates containing sugars
CA2275758A1 (en) * 1996-12-23 1998-07-02 Lactascan Aps Fermentative production and isolation of lactic acid

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040033573A1 (en) * 2000-05-30 2004-02-19 Birgir Norddahl Method for producing lactic acid
WO2004057008A1 (en) * 2002-12-23 2004-07-08 Tiago Botelho Polylactic acid production from sugar molasses
CN1730457A (zh) * 2005-08-03 2006-02-08 韩清秀 用膜的方法从发酵液中提取有机酸工艺
CN101225413A (zh) * 2007-01-18 2008-07-23 肇东爱尔乳酸有限公司 一种非钙盐法自动循环连续发酵生产乳酸的方法
CN101234962A (zh) * 2008-03-04 2008-08-06 江苏道森生物化学有限公司 一种分离纯化l-乳酸的新工艺
CN101265179A (zh) * 2008-04-18 2008-09-17 南京工业大学 一种乳酸盐的提纯工艺
CN101294174A (zh) * 2008-04-28 2008-10-29 河南金丹乳酸有限公司 一种乳酸生产中糖水过滤除菌的方法
CN101294169A (zh) * 2008-04-28 2008-10-29 河南金丹乳酸有限公司 钠盐发酵电渗析提取乳酸新工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG R.Q.: "The application of the technic of membrane separation in producing L-lactic acid", HEBEI CHEMICAL INDUSTRY., vol. 31, no. 2, February 2008 (2008-02-01), pages 35 - 36 *

Also Published As

Publication number Publication date
US20110210001A1 (en) 2011-09-01
CN101392273A (zh) 2009-03-25
US8545685B2 (en) 2013-10-01
CN101392273B (zh) 2013-02-06

Similar Documents

Publication Publication Date Title
WO2010051676A1 (zh) 一种乳酸的清洁生产工艺
CN101215583B (zh) 一种发酵与膜分离单元耦合制备丁二酸的方法
JP4792509B2 (ja) 熱帯果物バイオマス副産物から製造されたキシロースとアラビノースとを含む加水分解糖化液を用いたキシリトールの製造方法
CN100445257C (zh) 一种从厌氧发酵液中分离提取丁二酸的方法
FI96122B (fi) Menetelmä etanolin valmistamiseksi ja glyserolin talteenottamiseksi sivutuotteena
AU726685B2 (en) Fermentative production and isolation of lactic acid
JP5246379B2 (ja) 糖液の製造方法
US9139856B2 (en) Process for production of galactooligosaccharides (GOS)
CN108285912B (zh) 一种发酵制备提取医药级缬氨酸的方法
CN101481680B (zh) 葡萄糖氧化酶生产方法
JP2013537541A (ja) 発酵液から高純度の乳酸を得る方法
CN109439695B (zh) 一种工业废料联产低聚木糖和木糖、木糖醇的方法
CN112778149A (zh) 一种从发酵液中提取分离β-丙氨酸的方法
CN102978250A (zh) 一种利用谷氨酸离心母液生产γ-氨基丁酸的的方法
US20230313236A1 (en) System and method for jointly producing erythritol and liquid sorbitol by using corn starch
US20070037266A1 (en) Process for producing erythritol
CN101580859A (zh) 一种谷氨酸发酵液中双极性膜电渗析法提取谷氨酸的方法
CN109504718B (zh) 一种l-异亮氨酸的生产方法
CN102703334B (zh) 一株产赤藓糖醇的菌株及用其生产赤藓糖醇的方法
CN109369731B (zh) 一种脱除木糖生产过程中葡萄糖的方法
CN115029391A (zh) 一种利用混合糖为碳源生产乳酸的发酵方法
CN114230380A (zh) 一种7-氨基头孢烷酸生产废弃物的利用方法
WO1997010350A1 (en) Process, apparatus and microorganism strain for the manufacture of citric acid
CN110857445A (zh) 一种高纯度低能耗的乳酸生产工艺
CN102382868A (zh) 一种利用葡糖杆菌产生二羟基丙酮的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824333

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13127307

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09824333

Country of ref document: EP

Kind code of ref document: A1