WO2010050218A1 - 膜電極接合体及び燃料電池 - Google Patents

膜電極接合体及び燃料電池 Download PDF

Info

Publication number
WO2010050218A1
WO2010050218A1 PCT/JP2009/005739 JP2009005739W WO2010050218A1 WO 2010050218 A1 WO2010050218 A1 WO 2010050218A1 JP 2009005739 W JP2009005739 W JP 2009005739W WO 2010050218 A1 WO2010050218 A1 WO 2010050218A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion layer
gas diffusion
electrode assembly
membrane electrode
porosity
Prior art date
Application number
PCT/JP2009/005739
Other languages
English (en)
French (fr)
Inventor
山内将樹
辻庸一郎
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US12/995,237 priority Critical patent/US20110076592A1/en
Priority to JP2010535678A priority patent/JP4773582B2/ja
Priority to EP09823331.5A priority patent/EP2343762B1/en
Priority to CN2009801202879A priority patent/CN102047478A/zh
Publication of WO2010050218A1 publication Critical patent/WO2010050218A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell used as a driving source for a mobile body such as an automobile, a distributed power generation system, a household cogeneration system, and the like, and a membrane electrode assembly provided in the fuel cell.
  • a fuel cell for example, a polymer electrolyte fuel cell
  • a fuel cell is an apparatus that generates electric power and heat simultaneously by electrochemically reacting a fuel gas containing hydrogen and an oxidant gas containing oxygen such as air. It is.
  • a fuel cell is generally configured by stacking a plurality of cells and pressurizing them with a fastening member such as a bolt.
  • One cell is configured by sandwiching a membrane electrode assembly (hereinafter referred to as MEA: Membrane-Electrode-Assembly) between a pair of plate-like conductive separators.
  • MEA Membrane-Electrode-Assembly
  • MEA is composed of a polymer electrolyte membrane and a pair of electrode layers arranged on both sides of the polymer electrolyte membrane.
  • One of the pair of electrode layers is an anode electrode (also referred to as a fuel electrode), and the other is a cathode electrode (also referred to as an air electrode).
  • the pair of electrode layers includes a catalyst layer mainly composed of carbon powder having a metal catalyst supported on carbon powder, and a porous and conductive gas diffusion layer disposed on the catalyst layer.
  • the gas diffusion layer is generally configured by providing a coating layer made of carbon and a water repellent material on the surface of a base material made of carbon fiber. (For example, see Patent Document 1: Japanese Patent Laid-Open No. 2003-197202).
  • Patent Document 2 Japanese Patent Laid-Open No. 2007-242444.
  • Patent Document 2 includes a fluororesin and carbon particles for the purpose of more reliably supplying gas and discharging generated water, and has a porosity (corresponding to the porosity of the present invention) of 60% or less.
  • a gas diffusion layer is disclosed. According to the gas diffusion layer of Patent Document 2, since the porosity is as low as 60% or less, the water retention in the gas diffusion layer can be kept high even when performing a high temperature and low humidification operation. The power generation performance of the fuel cell can be improved.
  • an object of the present invention is to provide a membrane electrode assembly and a fuel cell that are capable of further improving the power generation performance under high-temperature and low-humidifying operating conditions. .
  • the inventors of the present invention have found the following as a result of intensive studies in order to solve the problems of the prior art. That is, in the fuel cell, generated water generated with power generation is mainly generated at the cathode electrode. For this reason, the cathode electrode is more easily wetted than the anode electrode. On the other hand, a fuel gas containing hydrogen is supplied to the anode electrode, and an oxidant gas containing oxygen is supplied to the cathode electrode. However, oxygen has a property of lower gas diffusibility than hydrogen.
  • the inventors of the present invention use a gas diffusion layer having higher water retention for the anode gas diffusion layer provided in the anode electrode, while the gas diffusion layer having higher gas diffusibility is provided in the cathode gas diffusion layer provided in the cathode electrode.
  • the inventors have found that power generation performance is improved by using a diffusion layer, and have arrived at the present invention.
  • the present invention is configured as follows.
  • a polymer electrolyte membrane A pair of catalyst layers facing each other across the polymer electrolyte membrane; An anode gas diffusion layer and a cathode gas diffusion layer facing each other across the polymer electrolyte membrane and the pair of catalyst layers,
  • the anode gas diffusion layer is composed of a porous member mainly composed of conductive particles and a polymer resin, The porosity of the anode gas diffusion layer is 60% or less; The porosity of the cathode gas diffusion layer is greater than the porosity of the anode gas diffusion layer;
  • a membrane electrode assembly is provided.
  • the “porous member mainly composed of conductive particles and polymer resin” means a structure (so-called “supported by conductive particles and polymer resin” without using carbon fiber as a base material). It means a porous member having a self-supporting structure).
  • a surfactant and a dispersion solvent are used as described later. In this case, during the production process, the surfactant and the dispersion solvent are removed by firing, but they may not be sufficiently removed and may remain in the porous member.
  • the self-supporting structure does not use carbon fiber as a base material, it means that the surfactant and the dispersion solvent remaining in this manner may be contained in the porous member.
  • the self-supporting structure does not use carbon fibers as a base material, it means that other materials (for example, short-fiber carbon fibers) may be included in the porous member.
  • the membrane electrode assembly according to the first aspect wherein the porosity of the anode gas diffusion layer is 42% or more.
  • the membrane electrode assembly according to the first or second aspect wherein the porosity of the cathode gas diffusion layer is greater than 60%.
  • the membrane electrode assembly according to any one of the first to third aspects, wherein the thickness of the cathode gas diffusion layer is thinner than the thickness of the anode gas diffusion layer.
  • the membrane electrode assembly according to the fourth aspect wherein the anode gas diffusion layer and the cathode gas diffusion layer have a thickness of 150 ⁇ m or more and 600 ⁇ m or less.
  • the membrane electrode assembly according to the fifth aspect wherein the anode gas diffusion layer and the cathode gas diffusion layer have a thickness of 200 ⁇ m or more and 400 ⁇ m or less.
  • the cathode gas diffusion layer is composed of a porous member mainly composed of conductive particles and a polymer resin.
  • the described membrane electrode assembly is provided.
  • the membrane electrode assembly according to the seventh aspect wherein the cathode gas diffusion layer has a porosity of 76% or less.
  • the conductive particles contained in the anode gas diffusion layer and the cathode gas diffusion layer are composed of two types of carbon materials having different average particle diameters.
  • a membrane electrode assembly according to any one of the aspects is provided.
  • the two types of carbon materials having different average particle diameters contained in the anode gas diffusion layer are a mixture ratio of a carbon material having a small average particle diameter and a carbon material having a large average particle diameter.
  • a membrane electrode assembly according to the ninth aspect wherein the ratio is from 1: 0.7 to 1: 2.
  • the weight per unit volume of the polymer resin contained in the cathode gas diffusion layer is larger than the weight per unit volume of the polymer resin contained in the anode gas diffusion layer.
  • a membrane electrode assembly according to any one of 7 to 10 embodiments is provided.
  • the membrane electrode assembly according to the eleventh aspect wherein the anode gas diffusion layer and the cathode gas diffusion layer contain 10% by weight to 17% by weight of the polymer resin. To do.
  • the anode gas diffusion layer and the cathode gas diffusion layer contain carbon fibers having a weight less than that of the polymer resin.
  • the described membrane electrode assembly is provided.
  • the weight per unit volume of the carbon fibers contained in the cathode gas diffusion layer is greater than the weight per unit volume of the carbon fibers contained in the anode gas diffusion layer.
  • the membrane electrode assembly described in 1. is provided.
  • the anode gas diffusion layer and the cathode gas diffusion layer include the carbon fiber in an amount of 2.0 wt% or more and 7.5 wt% or less. Provide the body.
  • the carbon fiber is any one of vapor grown carbon fiber, milled fiber, and chop fiber, according to any one of the thirteenth to fifteenth aspects.
  • a membrane electrode assembly is provided.
  • the membrane electrode assembly according to any one of the first to sixteenth aspects, A pair of separators arranged so as to sandwich the membrane electrode assembly; A fuel cell is provided.
  • dew points of the fuel gas and the oxidant gas supplied to the fuel cell are lower than the operating temperature of the fuel cell.
  • a fuel cell is provided.
  • the anode gas diffusion layer is composed of a porous member mainly composed of conductive particles and a polymer resin, and the porosity is 60% or less. Therefore, the water retention of the anode gas diffusion layer can be increased.
  • the porosity of the cathode gas diffusion layer is larger than the porosity of the anode gas diffusion layer, the gas diffusibility can be increased. Thereby, compared with the conventional membrane electrode assembly and fuel cell which make the anode gas diffusion layer and the cathode gas diffusion layer the same structure, power generation performance can be further improved.
  • FIG. 1 is a cross-sectional view of a fuel cell according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the results of measuring the average particle diameter of acetylene black
  • FIG. 3 is a graph showing the results of measuring the average particle diameter of graphite
  • FIG. 4 is a flowchart showing a method for producing a gas diffusion layer composed of a porous member mainly composed of conductive particles and a polymer resin
  • FIG. 1 is a cross-sectional view of a fuel cell according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the results of measuring the average particle diameter of acetylene black
  • FIG. 3 is a graph showing the results of measuring the average particle diameter of graphite
  • FIG. 4 is a flowchart showing a method for producing a gas diffusion layer composed of a porous member mainly composed of conductive particles and a polymer resin
  • FIG. 5 is a flowchart showing a method for producing a gas diffusion layer composed of a porous member mainly composed of conductive particles and a polymer resin, to which carbon fibers are added
  • FIG. 6 is a cross-sectional view of a fuel cell according to a modification of the embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a basic configuration of a fuel cell according to an embodiment of the present invention.
  • the fuel cell according to the present embodiment is a polymer electrolyte type that generates electric power and heat simultaneously by electrochemically reacting a fuel gas containing hydrogen and an oxidant gas containing oxygen such as air. It is a fuel cell.
  • the present invention is not limited to the polymer electrolyte fuel cell, but can be applied to various fuel cells.
  • the fuel cell according to the present embodiment includes a membrane electrode assembly 10 (hereinafter referred to as MEA: Membrane-Electrode-Assembly) and a pair of plate-like conductive separators disposed on both sides of the MEA 10.
  • MEA Membrane-Electrode-Assembly
  • a cell (single cell) 1 having 20A and 20C is provided.
  • the fuel cell according to the present embodiment may be configured by stacking a plurality of the cells 1. In this case, the stacked cells 1 are fastened with a predetermined fastening pressure by a fastening member (not shown) such as a bolt so that the fuel gas and the oxidant gas do not leak and the contact resistance is reduced. It is preferable that
  • the MEA 10 includes a polymer electrolyte membrane 11 that selectively transports hydrogen ions, and a pair of electrode layers formed on both surfaces of the polymer electrolyte membrane 11.
  • One of the pair of electrode layers is an anode electrode (also referred to as a fuel electrode) 12A, and the other is a cathode electrode (also referred to as an air electrode) 12C.
  • the anode electrode 12A is formed on one surface of the polymer electrolyte membrane 11, and is formed on the anode catalyst layer 13A and a pair of anode catalyst layers 13A mainly composed of carbon powder carrying a white metal catalyst.
  • an anode gas diffusion layer 14A having both current collecting action, gas permeability and water repellency.
  • the cathode electrode 12C is formed on the other surface of the polymer electrolyte membrane 11, and is formed on the cathode catalyst layer 13C and a pair of cathode catalyst layers 13C mainly composed of carbon powder carrying a white metal catalyst. And a cathode gas diffusion layer 14C having both current collecting action, gas permeability and water repellency.
  • the anode separator 20A disposed on the anode electrode 12A side is provided with a fuel gas passage 21A for flowing fuel gas on the main surface in contact with the anode gas diffusion layer 14A.
  • the fuel gas passage groove 21A is composed of, for example, a plurality of grooves substantially parallel to each other.
  • the cathode separator 20C disposed on the cathode electrode 12C side is provided with an oxidant gas flow channel 21C for flowing an oxidant gas on the main surface in contact with the cathode gas diffusion layer 14C.
  • the oxidant gas flow path groove 21C is constituted by, for example, a plurality of grooves substantially parallel to each other.
  • the anode separator 20A and the cathode separator 20C may be provided with a cooling water passage (not shown) through which cooling water or the like passes.
  • the fuel gas is supplied to the anode electrode 12A through the fuel gas flow path 21A, and the oxidant gas is supplied to the cathode electrode 12C through the oxidant gas flow path 21C, whereby an electrochemical reaction occurs, and electric power and heat are generated. appear.
  • the fuel gas passage 21A is provided in the anode separator 20A.
  • the present invention is not limited to this.
  • the fuel gas channel 21A may be provided in the anode gas diffusion layer 14A.
  • the anode separator 20A may be flat.
  • the oxidant gas flow path 21C is provided in the cathode separator 20C, but the present invention is not limited to this.
  • the oxidant gas flow path 21C may be provided in the cathode gas diffusion layer 14C. In this case, the cathode separator 20C may be flat.
  • an anode gasket 15A is disposed as a sealing material so as to cover the side surfaces of the anode catalyst layer 13A and the anode gas diffusion layer 14A in order to prevent fuel gas from leaking to the outside.
  • a cathode gasket is used as a sealing material so as to cover the side surfaces of the cathode catalyst layer 13C and the cathode gas diffusion layer 14C in order to prevent the oxidant gas from leaking to the outside. 15C is arranged.
  • anode gasket 15A and the cathode gasket 15C a general thermoplastic resin, thermosetting resin, or the like can be used.
  • silicon resin, epoxy resin, melamine resin, polyurethane resin, polyimide resin, acrylic resin, ABS resin, polypropylene, liquid crystal polymer, polyphenylene sulfide resin, polysulfone, glass fiber reinforced resin Etc. can be used.
  • the anode gasket 20A and the cathode gasket 20C are preferably partially impregnated in the peripheral portion of the anode gas diffusion layer 14A or the cathode gas diffusion layer 14C. Thereby, power generation durability and strength can be improved.
  • the polymer electrolyte membrane 11, the anode catalyst layer 13A, the anode gas diffusion layer 14A, the cathode catalyst layer 13C, and the cathode gas diffusion are provided between the anode separator 20A and the cathode separator 20C.
  • a gasket may be disposed so as to cover the side surface of the layer 14C.
  • the anode gas diffusion layer 14A is a sheet-like and rubber-like porous member mainly composed of conductive particles and a polymer resin.
  • the porosity of the anode gas diffusion layer 14A is set to 60% or less. Thereby, even when performing a high temperature and low humidification operation, the water retention in the anode gas diffusion layer 14A can be kept high.
  • the porosity of the anode gas diffusion layer 14A is preferably 42% or more. By setting the porosity of the anode gas diffusion layer 14A to 42% or more, the anode gas diffusion layer 14A can be easily manufactured.
  • Examples of the material for the conductive particles include carbon materials such as graphite, carbon black, and activated carbon.
  • Examples of the carbon black include acetylene black (AB), furnace black, ketjen black, and vulcan. Of these, acetylene black is preferably used as the main component of carbon black from the viewpoint of low impurity content and high electrical conductivity.
  • Examples of the main component of graphite include natural graphite and artificial graphite. Of these, artificial graphite is preferably used as the main component of graphite from the viewpoint of low impurities.
  • the conductive particles are preferably configured by mixing two types of carbon materials having different average particle diameters. As a result, particles having a small average particle diameter can enter the gaps between particles having a large average particle diameter, so that the overall porosity of the anode gas diffusion layer 14A can be easily reduced to 60% or less. Examples of the conductive particles that can easily form a filling structure include graphite. Therefore, the conductive particles are preferably configured by mixing acetylene black and graphite.
  • the measured average particle diameter D 50 of the graphite in the same manner as acetylene black, had a D 50 16 [mu] m as shown in FIG. These average particle diameters were measured when acetylene black or graphite particles were dispersed in distilled water containing 10 wt% surfactant and the particle size distribution was stabilized.
  • the conductive particles are configured by mixing three or more types of carbon materials, it is difficult to optimize dispersion, kneading, rolling conditions, and the like. Further, when the conductive particles are composed of only one type of carbon powder, it is difficult to fill the voids between the particles using any carbon powder, and the porosity is set to 60% or less. Is difficult. For this reason, the conductive particles are preferably configured by mixing two types of carbon materials.
  • a raw material form of a carbon material powder form, fibrous form, granular form, etc. are mentioned, for example.
  • the powder form is adopted as the raw material form of the carbon material.
  • the mixing ratio of the carbon material having a small average particle diameter and the carbon material having a large average particle diameter is 1: 0.7.
  • Preferably it is ⁇ 1: 2. The reason for this will be described in detail later with reference to experimental data.
  • polymer resin examples include PTFE (polytetrafluoroethylene), FEP (tetrafluoroethylene / hexafluoropropylene copolymer), PVDF (polyvinylidene fluoride), ETFE (tetrafluoroethylene / ethylene copolymer), and PCTFE. (Polychlorotrifluoroethylene), PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), and the like. Among these, it is preferable from the viewpoint of heat resistance, water repellency, and chemical resistance that PTFE is used as the polymer resin.
  • the raw material form of PTFE include dispersion and powder. Among these, it is preferable from the viewpoint of workability that the dispersion is adopted as a raw material form of PTFE.
  • anode gas diffusion layer 14A As a manufacturing method of the anode gas diffusion layer 14A, for example, a method as shown in FIG.
  • step S1 two types of carbon powders (conductive particles) having different average particle sizes, a polymer resin, a surfactant, and water (dispersing solvent) are kneaded (kneading step). More specifically, the conductive particles, the polymer resin, the surfactant, and the dispersion solvent are charged into a stirrer / kneader and kneaded and pulverized and granulated. Thereafter, the polymer resin material is added to these kneaded materials and further dispersed. Note that all the materials including the polymer resin material may be simultaneously charged into the kneader without the polymer resin material being charged into the kneader separately from other materials.
  • step S2 the kneaded material obtained by kneading is extruded and rolled with a press to form a sheet (rolling step).
  • step S3 the kneaded material in sheet form is fired, and the surfactant and water are removed from the kneaded material (firing step).
  • step S4 the kneaded material is re-rolled by adjusting the rolling force and gap of the press, and the porosity and thickness of the kneaded material are adjusted (re-rolling step).
  • the anode gas diffusion layer 14A having a desired porosity and thickness can be manufactured.
  • the manufacturing method of the anode gas diffusion layer 14A is not limited to the above method, and may be another method. For example, other steps may be appropriately included between the manufacturing steps.
  • the cathode gas diffusion layer 14C is configured to have a higher porosity than the anode gas diffusion layer 14A. The reason for this configuration is as follows.
  • the fuel cell generates water by generating water by the reaction between hydrogen and oxygen.
  • This generated water is mainly generated on the cathode electrode 12C side.
  • an appropriate amount of generated water is present in the cathode gas diffusion layer 14C, it can be useful for water retention of the polymer electrolyte membrane 11 and contribute to performance improvement.
  • excess generated water exists in the cathode gas diffusion layer 14C, the air distributed through the oxidant gas flow channel 21C may be prevented from reaching the cathode catalyst layer 13C. For this reason, the cathode electrode 12C is required to have higher gas diffusibility than the anode electrode 12A.
  • the porosity of the cathode gas diffusion layer 14C is made higher than that of the anode gas diffusion layer 14A, so that the amount of pores in the cathode gas diffusion layer 14C is increased and high gas diffusibility is obtained. Yes.
  • the porosity of the cathode gas diffusion layer 14C is preferably larger than 60%. Thereby, the discharge
  • the cathode gas diffusion layer 14C is composed of a porous member mainly composed of conductive particles and a polymer resin, any material can be used as long as the porosity is greater than 76%. Can't get. For this reason, the porosity of the cathode gas diffusion layer 14C is preferably 76% or less.
  • the cathode gas diffusion layer 14C does not have to have a porosity of 60% or less as compared with the anode gas diffusion layer 14A. You may be comprised with the porous member made.
  • the cathode gas diffusion layer 14C may be formed of a porous member mainly composed of conductive particles and a polymer resin, similarly to the anode gas diffusion layer 14A. Thereby, the anode gas diffusion layer 14A and the cathode gas diffusion layer 14C can be efficiently manufactured.
  • the manufacturing method of the cathode gas diffusion layer 14C can be the same as the manufacturing method of the anode gas diffusion layer 14A described above.
  • the conductive particles included in the cathode gas diffusion layer 14 ⁇ / b> C are composed of one type of carbon material.
  • the cathode gas diffusion layer 14C is required to have high gas diffusibility. For this reason, by producing the cathode gas diffusion layer 14C with one kind of carbon material having a uniform particle diameter, it becomes easy to make pores, and it becomes easy to obtain a highly porous gas diffusion layer.
  • the weight per unit volume of the polymer resin contained in the cathode gas diffusion layer 14C is preferably larger than the weight per unit volume of the polymer resin contained in the anode gas diffusion layer 14A. Since the polymer resin generally has water repellency, the higher the proportion (composition ratio) of the polymer resin in the gas diffusion layer, the easier it is to discharge water. On the other hand, the lower the ratio, the higher the hydrophilicity of the polymer resin, and it becomes easier to confine moisture in the gas diffusion layer.
  • the anode gas diffusion layer 14A has high water retention, while the cathode gas diffusion layer 14C has High gas diffusivity can be provided. Thereby, the power generation performance of the fuel cell can be improved.
  • the polymer resin has a binder effect, when a thin gas diffusion layer is manufactured, the strength can be increased by increasing the composition ratio of the polymer resin.
  • the composition ratio of the polymer resin is preferably 10% to 17%. When the composition ratio of the polymer resin is 10% or less, the strength of the gas diffusion layer is remarkably lowered, and it is difficult to manufacture as a self-supporting body.
  • the polymer resin is an insulator, when the composition ratio of the polymer resin is 17% or more, the internal resistance of the gas diffusion layer may increase and the voltage may decrease. The reason why the composition ratio of the polymer resin is preferably 10% to 17% will be described later in detail with reference to experimental data.
  • the anode gas diffusion layer 14A is composed of the porous member mainly composed of the conductive particles and the polymer resin, and the porosity is 60% or less.
  • the water retention of the anode gas diffusion layer 14A can be increased even under high temperature and low humidification operating conditions.
  • the operating condition of high temperature and low humidity refers to an operating condition in which the dew point of the fuel gas and oxidant gas supplied to the fuel cell is lower than the operating temperature of the fuel cell. Under operating conditions of high temperature and low humidification, the decrease in power generation performance due to drying of the polymer electrolyte membrane 11 is particularly remarkable.
  • the porosity of the cathode gas diffusion layer 14C is larger than the porosity of the anode gas diffusion layer 14A, so that the gas diffusibility can be increased. That is, the anode gas diffusion layer 14A and the cathode gas diffusion layer 14C are not configured to be the same as in the prior art, but are adapted to each other, so that the power generation performance can be further improved as compared with the conventional case. .
  • this invention is not limited to the said embodiment, It can implement in another various aspect.
  • a surfactant, a dispersion solvent, and the like that are used when the anode gas diffusion layer 14A and the cathode gas diffusion layer 14C are manufactured.
  • a trace amount may be contained.
  • the dispersion solvent include water, alcohols such as methanol and ethanol, and glycols such as ethylene glycol.
  • the surfactant include nonionic compounds such as polyoxyethylene alkyl ethers and zwitterionic compounds such as alkylamine oxides.
  • the anode gas diffusion layer 14A and the cathode gas diffusion layer 14C may contain carbon fibers having a weight smaller than that of the polymer resin contained in the anode gas diffusion layer 14A and the cathode gas diffusion layer 14C. That is, the anode gas diffusion layer 14A and the cathode gas diffusion layer 14C are sheet-like and rubber-like porous materials containing conductive particles and a polymer resin as main components and added with a weight of carbon fibers that cannot be formed as a base material. You may comprise with a quality member. In this case, since carbon fiber is not used as a base material, the cost of the fuel cell can be reduced.
  • a high-strength gas diffusion layer can be produced by increasing the blending ratio of carbon fiber.
  • the compounding quantity of the high molecular resin which acts as a binder since the blending ratio of the polymer resin that is an insulator can be reduced, the power generation performance can be improved.
  • Inclusion of carbon fiber in the gas diffusion layer is particularly effective when manufacturing a thin gas diffusion layer.
  • step S11 the conductive particles, the polymer resin, the carbon fiber, the surfactant, and the dispersion solvent are kneaded.
  • step S12 the kneaded material obtained by kneading is rolled into a sheet by a roll press or a flat plate press.
  • step S13 the kneaded product formed into a sheet is baked to remove the surfactant and the dispersion solvent from the kneaded product.
  • step S14 the kneaded product from which the surfactant and the dispersion solvent have been removed is re-rolled to adjust the thickness. Thereby, the gas diffusion layer to which the carbon fiber as described above is added can be manufactured.
  • the carbon fiber composition ratio is preferably 2.0% or more and less than 7.5%.
  • the carbon fiber may pierce the polymer electrolyte membrane 11 and damage the polymer electrolyte membrane 11.
  • Carbon fiber also helps to reduce the internal resistance of the gas diffusion layer. For this reason, when the composition ratio of the carbon fiber is 2.0% or more, an effect of reducing the internal resistance can be sufficiently obtained.
  • the reason why the carbon fiber composition ratio is preferably 2.0% or more and less than 7.5% will be described in detail later with reference to experimental data.
  • the weight per unit volume of the carbon fibers contained in the cathode gas diffusion layer 14C is preferably larger than the weight per unit volume of the carbon fibers contained in the anode gas diffusion layer 14A. Since carbon fibers have a smaller bulk density and a larger amount of pores than carbon particles, it is effective to increase the composition ratio of carbon fibers in order to increase the porosity of the gas diffusion layer. Therefore, the porosity of the cathode gas diffusion layer 14C is increased by making the weight per unit volume of the carbon fibers contained in the cathode gas diffusion layer 14C larger than the weight per unit volume of the carbon fibers contained in the anode gas diffusion layer 14A. In contrast, the porosity of the anode gas diffusion layer 14A can be increased.
  • Examples of the carbon fiber material include vapor grown carbon fiber (hereinafter referred to as VGCF), milled fiber, cut fiber, and chop fiber.
  • VGCF vapor grown carbon fiber
  • milled fiber, cut fiber, and chop fiber examples of the carbon fiber material.
  • VGCF vapor grown carbon fiber
  • milled fiber, cut fiber, or chop fiber is used as the carbon fiber, for example, a fiber having a fiber diameter of 5 to 20 ⁇ m and a fiber length of 20 to 100 ⁇ m may be used.
  • the raw material of the milled fiber, cut fiber, or chop fiber may be PAN, pitch, or rayon.
  • the fiber is preferably used by dispersing a bundle of short fibers produced by cutting and cutting an original yarn (long fiber filament or short fiber stable).
  • the power generation temperature, fuel electrode side humidification dew point, air electrode side humidification dew point, fuel gas utilization rate, air utilization rate, separator channel shape, catalyst layer specifications, etc. Optimization is effective.
  • the thickness and porosity are highly sensitive to voltage fluctuations. For this reason, it is more effective to optimize the thickness or the porosity of the gas diffusion layer in order to improve the power generation performance under the operating conditions of high temperature and low humidification.
  • the thickness of the cathode gas diffusion layer 14C thinner than the anode gas diffusion layer 14A.
  • the diffusion law when the physical properties other than the thickness of the gas diffusion layer are the same, the shorter the distance from the separator to the catalyst layer (that is, the thinner the gas diffusion layer), the more the reaction gas reaches the catalyst layer. It becomes easy. Since the gas diffusion property of the cathode gas diffusion layer 14C is likely to be lowered by generated water, the gas diffusion property can be increased by making the thickness of the cathode gas diffusion layer 14C thinner than the thickness of the anode gas diffusion layer 14A. . Thereby, power generation performance can be improved.
  • the thickness of the anode gas diffusion layer 14A and the cathode gas diffusion layer 14C is preferably 150 ⁇ m or more and 600 ⁇ m or less. The reason for this will be described in detail later with reference to experimental data. Further, the thicknesses of the anode gas diffusion layer 14A and the cathode gas diffusion layer 14C are more preferably 200 ⁇ m or more and 400 ⁇ m or less. It has been experimentally confirmed that when the thickness of the anode gas diffusion layer 14A and the cathode gas diffusion layer 14C is smaller than 200 ⁇ m, the power generation performance is significantly reduced.
  • Table 1 shows that the thickness of the gas diffusion layer is fixed at 400 ⁇ m, and the blending ratio of graphite as an example of conductive particles having a large average particle diameter and acetylene black as an example of conductive particles having a small average particle diameter is changed. It is a table
  • fuel cell samples 1 to 7 having different mixing ratios of acetylene black and graphite are manufactured as described below, and the porosity, resistance value, and voltage value of the gas diffusion layer of each sample 1 to 7 are measured. did.
  • PTFE dispersion (AD911 manufactured by Asahi Glass Co., Ltd.) is mixed as a polymer resin with the kneaded product obtained by kneading and further stirred for 5 minutes.
  • 40 g of the kneaded material thus obtained is taken out of the mixer and rolled into a sheet by a drawing roll machine (set to a gap of 600 ⁇ m). Thereafter, the kneaded product in sheet form is baked at 300 ° C. for 30 minutes in a program-controlled baking furnace to remove the surfactant and water in the kneaded product.
  • the kneaded product from which the surfactant and water have been removed is taken out of the firing furnace, and is rolled again with a drawing roll machine (gap 400 ⁇ m) to adjust the thickness and reduce the thickness variation, and then cut into a 6 cm square. . In this way, a rubber-like gas diffusion layer having a thickness of 400 ⁇ m is manufactured.
  • ion exchange with platinum-supported carbon (TEC10E50E manufactured by Tanaka Kikinzoku Co., Ltd.) as a catalyst layer on both sides of the polymer electrolyte membrane (Nafion112: registered trademark manufactured by Dupont) Apply a mixture of resin (Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd.). Thereafter, the mixture is dried to obtain a membrane / catalyst layer assembly. At this time, the size of the polymer electrolyte membrane is 15 cm square, and the size of the catalyst layer is 5.8 cm square. The amount of platinum used is 0.35 mg / cm 2 on the anode electrode side and 0.6 mg / cm 2 on the cathode electrode side.
  • the manufactured gas diffusion layer is disposed on both surfaces of the membrane / catalyst layer assembly, and hot press bonding (80 ° C., 10 kgf / cm 2 ) is performed to manufacture an MEA.
  • the manufactured MEA is sandwiched between a pair of separators (manufactured by Tokai Carbon Co., Ltd.) and pressurized until the fastening pressure becomes 10 kgf / cm 2 so as not to be displaced in this state.
  • Samples 1 to 7 can be produced simply by changing the blending ratio of acetylene black and graphite.
  • the apparent true density of the manufactured gas diffusion layer is calculated from the true density and composition ratio of each material constituting the gas diffusion layer.
  • the weight, thickness, vertical and horizontal dimensions of the manufactured gas diffusion layer are measured, and the density of the manufactured gas diffusion layer is calculated.
  • the porosity of the produced gas diffusion layer can be measured.
  • an electronic load machine (PLZ-4W manufactured by Kikusui Electric) is connected to each sample.
  • pure hydrogen is supplied as a fuel gas to the anode electrode, and air is supplied as an oxidant gas to the cathode electrode.
  • the utilization rates are 70% and 40%, respectively.
  • the gas humidification dew point is set at an anode electrode of 65 ° C. and a cathode electrode of 35 ° C.
  • the cell temperature is set to 90 ° C.
  • a voltage value and a resistance value at a current density of 0.2 A / cm 2 are measured.
  • an AC four-terminal resistance meter (Model 3566 manufactured by Tsuruga Electric Co., Ltd.) is used for measuring the resistance value during power generation.
  • the measured resistance values include proton conduction resistance (membrane resistance) indicating the wet state of the polymer electrolyte membrane, internal resistance (electric conduction resistance) of each member including the gas diffusion layer, and contact resistance between the members. (Electrical conduction resistance).
  • the resistance ratio increases as the blending ratio of acetylene black and graphite is changed from 1: 2 to 1: 0, in other words, the porosity is increased. It can be seen that the value is lowered. Moreover, when the sample 5 whose said mixture ratio is 1: 0.7 and the sample 6 whose said mixture ratio is 1: 0.5 are compared, it turns out that resistance value and a voltage value are changing rapidly. . That is, when the porosity is greater than 60%, the resistance value increases rapidly and the voltage value decreases rapidly. On the other hand, comparing sample 2 with a mixing ratio of 1: 2 and sample 1 with a mixing ratio of 1: 2.3, sample 1 has a significantly higher resistance value and a significantly higher voltage value. You can see that it is lower. That is, when the porosity is greater than 60%, the resistance value increases rapidly and the voltage value decreases rapidly.
  • the gas diffusion layer has a sparse structure, so that the movement of gas and water in the fuel cell is facilitated and water or water vapor is easily discharged out of the system. This is thought to be due to a decrease in water retention. When the water retention is lowered, the resistance component (particularly the membrane resistance) is increased, and thereby the voltage is lowered.
  • a gas diffusion layer having a porosity of less than 42% is not manufactured here. However, if the porosity is low, the gas diffusion performance is lowered, so that a sufficient electrochemical reaction does not occur and the voltage value is considered to decrease. It is done.
  • the blending ratio of acetylene black and graphite is preferably 1: 0.7 to 1: 2. Further, considering the voltage value of each sample in Table 1, it is considered that the mixing ratio of acetylene black and graphite is more preferably 1: 1.5 to 1: 2. Further, it is considered that the porosity is preferably 42% or more and 60% or less. Further, considering the voltage value of each sample in Table 1, it is considered that the porosity is more preferably 42% or more and 50% or less.
  • the preferred thickness of the gas diffusion layer will be described using Table 2.
  • the anode gas diffusion layer and the cathode gas diffusion layer have the same configuration (thickness, porosity, etc.).
  • Table 2 is a table showing the resistance value and voltage value of the fuel cell when the mixing ratio of acetylene black and graphite is fixed at 1: 2 and the thickness of the gas diffusion layer is changed. The porosity is uniformly 45% because it is determined by the blending ratio.
  • fuel cell samples 8 to 16 having different gas diffusion layer thicknesses were manufactured as described below, and the resistance value and voltage value of each sample were measured. Note that the measurement method of the resistance value and the voltage value is the same as the measurement method of the resistance value and the voltage value of Samples 1 to 7 described in Table 1.
  • acetylene black 100 g of graphite, 7.5 g of a surfactant, and 170 g of water are put into a mixer. Then, each said material is kneaded for 60 minutes by setting the rotation speed of a mixer to 100 rpm. After 60 minutes, 35 g of PTFE dispersion as a polymer resin is mixed with the kneaded product obtained by the kneading and further stirred for 5 minutes.
  • the kneaded material thus obtained is taken out from the mixer, and is rolled by adjusting the gap of the drawing roll machine to form a sheet. Thereafter, the kneaded product in sheet form is baked at 300 ° C. for 30 minutes in a program-controlled baking furnace to remove the surfactant and water in the kneaded product.
  • the kneaded product from which the surfactant and water have been removed is taken out from the firing furnace, and is rolled again by adjusting the gap of the drawing roll machine to adjust the thickness and reduce the thickness variation. Thereafter, the re-rolled kneaded product is cut into a 6 cm square to produce a rubber-like gas diffusion layer.
  • a mixture of platinum-carrying carbon and ion exchange resin is applied as a catalyst layer on both sides of the polymer electrolyte membrane. Thereafter, the mixture is dried to obtain a membrane / catalyst layer assembly.
  • the manufactured gas diffusion layer is disposed on both surfaces of the membrane / catalyst layer assembly, and hot press bonding is performed to manufacture an MEA. Thereafter, the manufactured MEA is sandwiched between a pair of separators, and is pressurized until the fastening pressure becomes 10 kgf / cm 2 so as not to be displaced in this state.
  • Samples 8 to 16 can be produced by changing the gap of the drawing roll machine during rolling.
  • Sample 9 has a significantly higher resistance value and a voltage value of It can be seen that it is significantly lower. This is because the gas permeability of the gas diffusion layer is improved by reducing the thickness, so that the water retention (humidity retention) under low humidification operation decreases, the polymer electrolyte membrane dries, and the membrane resistance increases. It is thought that it was because.
  • the resistance value of the sample 15 is significantly higher. It can be seen that is significantly lower. This is presumably because the internal resistance (electric conduction resistance) of the gas diffusion layer increased as the thickness increased. Moreover, it is considered that the gas permeability of the gas diffusion layer is reduced due to the increase in thickness, and the fuel gas and the oxidant gas are difficult to reach the catalyst layer, so that a sufficient electrochemical reaction has not occurred.
  • the thickness of the gas diffusion layer is preferably 300 ⁇ m or more and 600 ⁇ m or less. Further, considering the voltage value of each sample in Table 2, it is considered that the thickness of the gas diffusion layer is more preferably 350 ⁇ m or more and 500 ⁇ m or less.
  • One manufacturing method is specifically as follows. First, the kneaded material obtained by kneading with the mixer was replaced with a stretching roll machine by using an extrusion molding machine (biaxial full flight screw length 50 cm, T die width 7 cm, gap 600 ⁇ m), thickness 600 ⁇ m, Molded into a 7 cm wide sheet. Thereafter, the kneaded material in sheet form is fired at 300 ° C. for 30 minutes in a program-controlled firing furnace to remove the surfactant and water in the kneaded material.
  • the kneaded product from which the surfactant and water have been removed is taken out from the firing furnace, re-rolled by adjusting the gap of the drawing roll machine to 400 ⁇ m, and the thickness adjustment and the thickness variation are reduced. Thereafter, the re-rolled kneaded material is cut into a 6 cm square. In this way, a rubber-like gas diffusion layer having a thickness of 400 ⁇ m and a porosity of 42% similar to Sample 2 was obtained.
  • the other manufacturing method is specifically the following method.
  • a material having the same composition as that of Sample 2 is kneaded, extruded, and sheeted using an extruder (biaxial full flight screw length 100 cm, T-die width 7 cm, gap 600 ⁇ m) instead of the mixer.
  • an extruder biaxial full flight screw length 100 cm, T-die width 7 cm, gap 600 ⁇ m
  • the kneaded product in sheet form is baked at 300 ° C. for 30 minutes in a program-controlled baking furnace to remove the surfactant and water in the kneaded product.
  • the kneaded product from which the surfactant and water have been removed is taken out from the firing furnace, re-rolled by adjusting the gap of the drawing roll machine to 400 ⁇ m, and the thickness adjustment and the thickness variation are reduced. Thereafter, the re-rolled kneaded material is cut into a 6 cm square. In this way, a rubber-like gas diffusion layer having a thickness of 400 ⁇ m and a porosity of 42% similar to Sample 2 was obtained.
  • Table 3 shows the internal resistance when the thickness of the gas diffusion layer is 400 ⁇ m, the blending ratio of PTFE as an example of a polymer resin is fixed to 10%, and the blending ratio of VGCF as an example of carbon fiber is changed. It is a table
  • samples 17 to 23 of gas diffusion layers having different blending ratios of VGCF are manufactured as described below, and the internal resistance value of each sample 17 to 23 and whether or not the polymer electrolyte membrane is damaged I investigated.
  • acetylene black (DENKA BLACK: registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd. as an example of conductive particles having a small average particle size and graphite (Wako Pure Chemical Industries, Ltd.) as an example of conductive particles having a large average particle size. Company
  • VGCF manufactured by Showa Denko, fiber diameter 0.15 ⁇ m, fiber length 15 ⁇ m
  • 4 g of a surfactant Triton X: registered trademark
  • 200 g of water as an example of a dispersion solvent
  • the material After each material is put into the mixer, the material is kneaded for 60 minutes with the mixer rotating at 100 rpm. After 60 minutes, 25 g of PTFE dispersion (AD911 manufactured by Asahi Glass Co., Ltd., solid content ratio: 60%) as a polymer resin is mixed with the kneaded product obtained by the kneading and further stirred for 5 minutes.
  • PTFE dispersion AD911 manufactured by Asahi Glass Co., Ltd., solid content ratio: 60%
  • the kneaded product from which the surfactant and water have been removed is taken out from the firing furnace, and is rolled again with a drawing roll machine (gap 400 ⁇ m) to adjust the thickness and reduce the thickness variation, and then cut into a 6 cm square. . In this way, a rubber-like gas diffusion layer having a thickness of 400 ⁇ m is manufactured.
  • Samples 17 to 23 can be produced simply by changing the blending ratio of VGCF.
  • acetylene black is 50 g
  • graphite is 80 g
  • VGCF is 3 g.
  • the blending ratio (weight conversion) of VGCF and the blending ratio (weight conversion) of PTFE can be obtained as follows.
  • each sample is punched to have a diameter of 4 cm.
  • a compression load is applied to each sample using a compression tester (manufactured by Shimadzu Corporation, EZ-graph) so that the pressure (surface pressure) is 1.5 kg / cm 2 .
  • the internal resistance value is measured using an AC four-terminal resistance meter (manufactured by Tsuruga Electric, MODEL 3566).
  • a pseudo fuel cell (without a catalyst layer) is manufactured for each sample in order to determine whether or not the polymer electrolyte membrane is damaged.
  • a set of samples having the same VGCF blending ratio is placed on both sides of a polymer electrolyte membrane (Dupont's Nafion 112: registered trademark) and hot press bonded (80 ° C., 10 kgf / cm 2 ).
  • Manufacturing MEA Thereafter, the manufactured MEA is sandwiched between a pair of separators (manufactured by Tokai Carbon Co., Ltd.) and is pressurized until the fastening pressure becomes 10 kgf / cm 2 so as not to be displaced in this state. In this way, the pseudo fuel cell is manufactured.
  • an electrochemical measurement system (HZ-3000, manufactured by Hokuto Denko Co., Ltd.) is connected to the pseudo fuel cell as described above.
  • a load of 0.4 V is applied to the pseudo fuel cell, and the current value at that time is measured.
  • the measured current value is 300 mA or more, it is determined that there is damage “present”, and when the measured current value is less than 300 mA, it is determined that there is no damage.
  • the blending ratio of VGCF is preferably 2.0% by weight or more and 7.5% by weight or less.
  • a gas diffusion layer was manufactured by the same manufacturing method as Sample 18 except that chop fiber (M-201F manufactured by Kureha Corporation, fiber diameter 12.5 ⁇ m, fiber length 150 ⁇ m) was used instead of VGCF.
  • chop fiber M-201F manufactured by Kureha Corporation, fiber diameter 12.5 ⁇ m, fiber length 150 ⁇ m
  • the same result as that of Sample 18 was obtained. That is, the internal resistance value was 50 m ⁇ ⁇ cm 2 , and the polymer electrolyte membrane was not damaged.
  • milled fiber M-2007S manufactured by Kureha Co., Ltd., fiber diameter 14.5 ⁇ m, fiber length 90 ⁇ m
  • cut fiber T008-3 manufactured by Toray Industries, Inc., fiber diameter 7 ⁇ m
  • milled fiber Toray Industries, Inc.
  • MLD-30 manufactured by Co., Ltd., fiber diameter 7 ⁇ m, fiber length 30 ⁇ m
  • Table 4 shows the case where the thickness of the gas diffusion layer is 400 ⁇ m, the blending ratio of VGCF as an example of carbon fiber is fixed to 2.0% by weight, and the blending ratio of PTFE as an example of polymer resin is changed.
  • 5 is a table showing the internal resistance value and the presence or absence of damage to the polymer electrolyte membrane.
  • the gas diffusion layers of Samples 24 to 29 are manufactured by the same manufacturing method as Sample 18 described in Table 3 except that the mixing amount of PTFE dispersion is different. Further, the measurement method of the internal resistance value and the determination method of whether or not the polymer electrolyte membrane is damaged are the measurement method of the internal resistance value of samples 17 to 23 described in Table 3 and the determination of whether or not the polymer electrolyte membrane is damaged. It is the same as the method.
  • the blending ratio of PTFE is preferably 10% by weight or more and 17% by weight or less.
  • the samples 24 to 29 were not damaged. Thereby, it can be seen that the presence or absence of damage to the polymer electrolyte membrane is not affected by the blending ratio of PTFE.
  • Table 5 shows that the blending ratio of VGCF as an example of carbon fiber is fixed at 2.0 wt%, the blending ratio of PTFE as an example of polymer resin is fixed at 10 wt%, and the thickness of the gas diffusion layer is changed. It is a table
  • samples 30 to 35 of gas diffusion layers having different thicknesses were manufactured as described below, and the internal resistance value of each sample and the presence or absence of damage to the polymer electrolyte membrane were examined.
  • the method for measuring the internal resistance value and the method for determining the presence or absence of damage to the polymer electrolyte membrane are the same as the method for measuring the internal resistance value of Samples 17 to 23 described in Table 3 and the presence or absence of damage to the polymer electrolyte membrane. It is the same as the method.
  • acetylene black, 80 g of graphite, 3 g of VGCF, 4 g of a surfactant, and 200 g of water are put into a mixer. After the respective materials are put into the mixer, the respective materials are kneaded for 60 minutes with the mixer rotating at 100 rpm. After 60 minutes, 25 g of PTFE dispersion is mixed with the kneaded product obtained by the kneading and further stirred for 5 minutes.
  • the kneaded material thus obtained is taken out from the mixer, and is rolled by adjusting the gap of the stretching roll machine to form a sheet. Thereafter, the kneaded material in sheet form is baked at 300 ° C. for 2 hours in a program-controlled baking furnace to remove the surfactant and water in the kneaded material.
  • the kneaded product from which the surfactant and water have been removed is taken out from the firing furnace, and is rolled again by adjusting the gap of the drawing roll machine to adjust the thickness and reduce the thickness variation. Thereafter, the re-rolled kneaded material is cut into a 6 cm square.
  • Samples 30 to 35 can be produced by changing the gap of the drawing roll machine during rolling.
  • the thickness of the gas diffusion layer is preferably 150 ⁇ m or more and 600 ⁇ m or less.
  • the samples 30 to 35 were not damaged. Thereby, it can be seen that the presence or absence of damage to the polymer electrolyte membrane is not affected by the thickness of the gas diffusion layer.
  • the VGCF blending ratio (2.0% by weight), the PTFE blending ratio (10% by weight), and the thickness are the same as those of the gas diffusion layer of the sample 18 by two manufacturing methods different from the sample 18 manufacturing method.
  • a gas diffusion layer having a thickness (400 ⁇ m) was manufactured, and the internal resistance value and the presence or absence of damage to the polymer electrolyte membrane were examined. That is, the internal resistance value was 50 m ⁇ ⁇ cm 2 , and the polymer electrolyte membrane was not damaged.
  • One manufacturing method is specifically as follows. First, the kneaded material obtained by kneading with the mixer was replaced with a stretching roll machine by using an extrusion molding machine (biaxial full flight screw length 50 cm, T die width 7 cm, gap 600 ⁇ m), thickness 600 ⁇ m, Molded into a 7 cm wide sheet. Thereafter, the kneaded material in sheet form is fired at 300 ° C. for 30 minutes in a program-controlled firing furnace to remove the surfactant and water in the kneaded material.
  • the kneaded product from which the surfactant and water have been removed is taken out from the firing furnace, re-rolled by adjusting the gap of the drawing roll machine to 400 ⁇ m, and the thickness adjustment and the thickness variation are reduced. Thereafter, the re-rolled kneaded material is cut into a 6 cm square. In this manner, a gas diffusion layer having the same VGCF blending ratio, PTFE blending ratio, and thickness as in Sample 18 was obtained.
  • the other manufacturing method is specifically the following method.
  • a material having the same composition as sample 18 is kneaded, extruded, and sheeted using an extruder (biaxial full flight screw length 100 cm, T-die width 7 cm, gap 600 ⁇ m) instead of the mixer.
  • an extruder biaxial full flight screw length 100 cm, T-die width 7 cm, gap 600 ⁇ m
  • the kneaded product in sheet form is baked at 300 ° C. for 30 minutes in a program-controlled baking furnace to remove the surfactant and water in the kneaded product.
  • the kneaded product from which the surfactant and water have been removed is taken out from the firing furnace, re-rolled by adjusting the gap of the drawing roll machine to 400 ⁇ m, and the thickness adjustment and the thickness variation are reduced. Thereafter, the re-rolled kneaded material is cut into a 6 cm square. In this manner, a gas diffusion layer having the same VGCF blending ratio, PTFE blending ratio, and thickness as in Sample 18 was obtained.
  • sample 36 is a fuel cell according to this embodiment, and samples 37 to 39 are fuel cells manufactured as comparative examples.
  • Samples 36 to 39 were prepared by preparing two types of gas diffusion layers, a gas diffusion layer having a porosity of 55% and a gas diffusion layer having a porosity of 70%, and combining them.
  • the sample 36 is a fuel cell using a gas diffusion layer having a porosity of 55% as the anode gas diffusion layer 14A and a gas diffusion layer having a porosity of 70% as the cathode gas diffusion layer 14C.
  • Sample 37 is a fuel cell using a gas diffusion layer with a porosity of 70% as the anode gas diffusion layer 14A and a gas diffusion layer with a porosity of 70% as the cathode gas diffusion layer 14C.
  • Sample 38 is a fuel cell using a gas diffusion layer having a porosity of 70% as the anode gas diffusion layer 14A and a gas diffusion layer having a porosity of 55% as the cathode gas diffusion layer 14C.
  • Sample 39 is a fuel cell using a gas diffusion layer having a porosity of 55% as the anode gas diffusion layer 14A and a gas diffusion layer having a porosity of 55% as the cathode gas diffusion layer 14C.
  • Each gas diffusion layer has a thickness of 400 ⁇ m.
  • the gas diffusion layer having a thickness of 400 ⁇ m and a porosity of 55% that is, the anode gas diffusion layer 14A of the samples 36 and 39 and the cathode gas diffusion layer 14C of the samples 38 and 39 are manufactured as follows.
  • VGCF Showa Denko: fiber diameter 0.15 ⁇ m, fiber length 15 ⁇ m
  • surfactant Triton X: registered trademark
  • 20 g of the kneaded product thus obtained is taken out from the planetary mixer and rolled into a sheet by a stretching roll machine (pressure set to 200 kg / cm 2 , gap set to 600 ⁇ m). Thereafter, the kneaded material in sheet form is baked at 300 ° C. for 20 minutes in a program-controlled baking furnace to remove the surfactant and water in the kneaded material.
  • the kneaded product from which the surfactant and water were removed was taken out from the firing furnace and rolled again with a drawing roll machine (pressure 500 kg / cm 2 , gap 380 ⁇ m) to adjust the thickness and reduce the thickness variation. Then cut into 6cm square. Thereby, a gas diffusion layer having a thickness of 400 ⁇ m and a porosity of 55% can be obtained.
  • the compounding ratio of the carbon fiber (VGCF) of the manufactured gas diffusion layer was calculated
  • the gas diffusion layer having a porosity of 70% that is, the anode gas diffusion layer 14A of the samples 37 and 38 and the cathode gas diffusion layer 14C of the samples 36 and 37 are manufactured as follows.
  • acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) as an example of conductive particles
  • 5 g of VGCF manufactured by Showa Denko: fiber diameter 0.15 ⁇ m, fiber length 15 ⁇ m
  • a surfactant Triton X: (Registered trademark) 12 g and 500 g of water as an example of a dispersion solvent are charged into a mixer. Note that only one type of carbon powder is used.
  • the materials are put into the mixer, the materials are kneaded for 60 minutes with the mixer rotating at 100 rpm. After 60 minutes, 35 g of PTFE dispersion (AD911 manufactured by Asahi Glass Co., Ltd., solid content ratio 60%) as a polymer resin was mixed with the kneaded product obtained by kneading, and the rotational speed of the mixer was further set to 100 rpm. For 5 minutes.
  • PTFE dispersion AD911 manufactured by Asahi Glass Co., Ltd., solid content ratio 60%
  • 10 g of the kneaded product thus obtained is taken out from the mixer and rolled with a stretching roll machine (pressure set to 10 kg / cm 2 , gap set to 500 ⁇ m) to form a sheet. Thereafter, the kneaded material in sheet form is baked at 300 ° C. for 20 minutes in a program-controlled baking furnace to remove the surfactant and water in the kneaded material.
  • a stretching roll machine pressure set to 10 kg / cm 2 , gap set to 500 ⁇ m
  • the kneaded product from which the surfactant and water were removed was taken out from the firing furnace and rolled again with a drawing roll machine (pressure 20 kg / cm 2 , gap 400 ⁇ m) to adjust the thickness and reduce the thickness variation. Then cut into 6cm square. Thereby, a gas diffusion layer having a thickness of 400 ⁇ m and a porosity of 70% can be obtained.
  • the compounding ratio of the carbon fiber (VGCF) of the manufactured gas diffusion layer was calculated
  • a mixture of platinum-supported carbon (TEC10E50E manufactured by Tanaka Kikinzoku Co., Ltd.) and ion exchange resin (Flemion: registered trademark) manufactured by Asahi Glass Co., Ltd. is applied to both surfaces of the polymer electrolyte membrane (Dupont Nafion112: registered trademark). To do. Thereafter, the mixture is dried to obtain a membrane / catalyst layer assembly. At this time, the size of the polymer electrolyte membrane is 15 cm square, and the size of the catalyst layer is 5.8 cm square.
  • the amount of platinum used is 0.35 mg / cm 2 on the anode electrode side and 0.6 mg / cm 2 on the cathode electrode side.
  • the produced gas diffusion layer having a porosity of 55% or 70% is disposed on both surfaces of the membrane / catalyst layer assembly to produce an MEA.
  • the manufactured MEA is sandwiched between a pair of carbon separators (manufactured by Tokai Carbon Co., Ltd.), and is pressed until the fastening pressure becomes 10 kgf / cm 2 so as not to be displaced in this state.
  • the fuel cells of Samples 36 to 39 are manufactured as described above.
  • an electronic load machine (PLZ-4W manufactured by Kikusui Electric) is connected to each sample. Pure hydrogen is supplied as a fuel gas to the anode electrode, and air is supplied as an oxidant gas to the cathode electrode. At this time, the utilization rates are 70% and 40%, respectively.
  • the gas humidification dew point is set at an anode electrode 65 ° C. and a cathode electrode 65 ° C.
  • the cell temperature is set to 90 ° C.
  • the voltage value at a current density of 0.2 A / cm 2 is measured.
  • the voltage values of the samples 36 to 39 shown in Table 6 were obtained.
  • the sample 36 having the configuration of the fuel cell according to the present embodiment was able to obtain the highest voltage value. That is, according to the fuel cell according to the present embodiment, it was confirmed that the power generation performance can be further improved as compared with the conventional case.
  • samples 36 to 39 were produced using VGCF as carbon fiber, but instead of VGCF, chop fiber (M-201F manufactured by Kureha Corporation: fiber diameter 12.5 ⁇ m, fiber length 150 ⁇ m), milled fiber (Kureha Co., Ltd. M-2007S: fiber diameter 14.5 ⁇ m, fiber length 90 ⁇ m) or cut fibers (Toray Industries, Inc. T008-3: fiber diameter 7 ⁇ m) were used to produce samples 36 to 39. A voltage value of was obtained.
  • the kneaded material kneaded by the planetary mixer was formed into a sheet shape using a rolling roll machine, but instead of the rolling roll machine, an extrusion molding machine (biaxial full flight screw, length 50 cm, rotation speed) Similar voltage values were obtained even when the sheet was formed into a sheet using 10 rpm, a T-die width of 7 cm, and a gap of 600 ⁇ m.
  • the kneaded material kneaded with the planetary mixer was formed into a sheet shape using a rolling roll machine, but the extruder (biaxial full flight screw kneaded blade shape, length 100 cm, T die width) The same voltage value was obtained even when the material was directly put into 7 cm and the gap was 600 ⁇ m, and kneading, extrusion, and sheet forming were performed.
  • samples 40 to 43 are samples in which the thickness of the anode gas diffusion layer 14A or the cathode gas diffusion layer 14C of the sample 36 is 200 ⁇ m or 600 ⁇ m. Therefore, in samples 40 to 43, the anode gas diffusion layer 14A has a porosity of 55%, and the cathode gas diffusion layer has a porosity of 70%.
  • a gas diffusion layer having a thickness of 200 ⁇ m and a porosity of 55% can be manufactured as follows. First, a kneaded mixture of acetylene black, artificial graphite powder, VGCF, surfactant, water, and polymer resin is formed in the same manner as the gas diffusion layer having a thickness of 400 ⁇ m and a porosity of 55%. Create with a planetary mixer. Next, 10 g of the kneaded product is taken out from the planetary mixer, and rolled into a sheet by a stretching roll machine (pressure set to 200 kg / cm 2 , gap set to 350 ⁇ m). Next, the kneaded product in sheet form is fired at 300 ° C.
  • a program-controlled firing furnace to remove the surfactant and water in the kneaded product.
  • the kneaded product from which the surfactant and water have been removed is taken out of the firing furnace and rolled again with a drawing roll machine (pressure 500 kg / cm 2 , gap 180 ⁇ m) to adjust the thickness and reduce the thickness variation. After going, cut into 6cm square. Thereby, a gas diffusion layer having a thickness of 200 ⁇ m and a porosity of 55% can be obtained.
  • a gas diffusion layer having a thickness of 600 ⁇ m and a porosity of 55% can be manufactured as follows. First, a kneaded mixture of acetylene black, artificial graphite powder, VGCF, surfactant, water, and polymer resin is formed in the same manner as the gas diffusion layer having a thickness of 400 ⁇ m and a porosity of 55%. Create with a planetary mixer. Next, 20 g of the kneaded product is taken out from the planetary mixer and rolled into a sheet by a stretching roll machine (pressure set to 200 kg / cm 2 , gap set to 850 ⁇ m). Thereafter, the kneaded material in sheet form is baked at 300 ° C.
  • a program-controlled baking furnace to remove the surfactant and water in the kneaded material.
  • the kneaded product from which the surfactant and water have been removed is taken out of the firing furnace and rolled again with a drawing roll machine (pressure 500 kg / cm 2 , gap 580 ⁇ m) to reduce thickness variation and thickness variation. After going, cut into 6cm square. Thereby, a gas diffusion layer having a thickness of 600 ⁇ m and a porosity of 55% can be obtained.
  • a gas diffusion layer having a thickness of 200 ⁇ m and a porosity of 70% can be manufactured as follows. First, a kneaded mixture of acetylene black, VGCF, surfactant, water, and polymer resin is prepared with a mixer in the same manner as the gas diffusion layer having a thickness of 400 ⁇ m and a porosity of 70%. . Next, 10 g of the kneaded product is taken out from the planetary mixer and rolled into a sheet by a drawing roll machine (pressure set to 10 kg / cm 2 and gap set to 300 ⁇ m). Next, the kneaded product in sheet form is fired at 300 ° C.
  • a program-controlled firing furnace to remove the surfactant and water in the kneaded product.
  • the kneaded product from which the surfactant and water have been removed is taken out of the firing furnace and rolled again with a drawing roll machine (pressure 20 kg / cm 2 , gap 200 ⁇ m) to adjust the thickness and reduce the thickness variation. After going, cut into 6cm square. Thereby, a gas diffusion layer having a thickness of 200 ⁇ m and a porosity of 70% can be obtained.
  • a gas diffusion layer having a thickness of 200 ⁇ m and a porosity of 70% can also be produced as follows. First, 100 g of acetylene black, 15 g of artificial graphite powder, 2 g of VGCF, 5 g of chopped fibers (M201F manufactured by Kureha: fiber diameter 12.5 ⁇ m, fiber length 150 ⁇ m), 20 g of surfactant (Triton X: registered trademark), and 400 g of water Into the mixer. Next, the above materials are kneaded for 60 minutes with the rotation speed of the mixer being 100 rpm.
  • the kneaded product from which the surfactant and water were removed was taken out from the firing furnace, and rolled again with a drawing roll machine (pressure 20 kg / cm 2 , gap 200 ⁇ m) to adjust the thickness and reduce the thickness variation. Then cut into 6cm square. Thereby, a gas diffusion layer having a thickness of 200 ⁇ m and a porosity of 70% can be obtained.
  • the voltage values of the samples 40 to 43 shown in Table 7 were obtained by measuring under the same measurement conditions as the voltage values of the samples 36 to 39 shown in Table 6, except that the air utilization rate was 90%. is there. As can be seen from Table 7, the sample 40 was able to obtain a slightly higher voltage value than the sample 36. That is, it was confirmed that the power generation performance can be further improved as compared with the conventional case by making the thickness of the cathode gas diffusion layer 14C thinner than the anode gas diffusion layer 14A having a thickness of 400 ⁇ m. This is considered to be because power generation performance is usually lowered by making the cathode gas diffusion layer 14C thinner, but it is considered that the gas diffusibility of the cathode gas diffusion layer 14C is further improved.
  • the sample 41 was able to obtain a voltage value almost equal to that of the sample 36. That is, it was confirmed that the power generation performance hardly deteriorates even when the thickness of both the anode gas diffusion layer 14A and the cathode gas diffusion layer 14C is reduced to 200 ⁇ m.
  • the voltage value of sample 42 was significantly lower than that of sample 36. That is, it was confirmed that when the anode gas diffusion layer 14A was made thinner than the cathode gas diffusion layer 14C having a thickness of 400 ⁇ m, the power generation performance was lowered. This is presumably because the water retention decreases when the anode gas diffusion layer 14A is thin, and the gas diffusivity decreases when the cathode gas diffusion layer 14C is thick.
  • the voltage value in sample 43 was significantly lower than that in sample 36. That is, it was confirmed that when the thickness of the anode gas diffusion layer 14A was increased to 600 ⁇ m, the power generation performance was lowered. This is because the water retention is increased because the anode gas diffusion layer 14A is thick, but the anode gas diffusion is more than the effect of improving the power generation performance due to the increased water retention because the thickness is too thick. This is probably because the decrease in power generation performance due to the decrease in gas diffusibility of the layer 14A exceeded.
  • the thickness of the anode gas diffusion layer 14A is preferably 200 ⁇ m or more and 400 ⁇ m or less, and the thickness of the cathode gas diffusion layer 14C is preferably thinner than the thickness of the anode gas diffusion layer 14A. I understand.
  • the membrane electrode assembly and the fuel cell according to the present invention can further improve the power generation performance
  • the membrane electrode assembly and the fuel cell are used, for example, as a driving source for a moving body such as an automobile, a distributed power generation system, and a home cogeneration system. Useful for fuel cells.

Abstract

 本発明の膜電極接合体は、高分子電解質膜と、高分子電解質膜を挟んで互いに対向する一対の触媒層と、高分子電解質膜及び一対の触媒層を挟んで互いに対向するアノードガス拡散層及びカソードガス拡散層とを有し、アノードガス拡散層の多孔度は60%以上であり、カソードガス拡散層の多孔度はアノードガス拡散層の多孔度より大きく、アノードガス拡散層は導電性粒子と高分子樹脂とを主成分とした多孔質部材で構成されている。これにより、発電性能を一層向上させることができる。

Description

膜電極接合体及び燃料電池
 本発明は、例えば、自動車などの移動体、分散発電システム、家庭用のコージェネレーションシステムなどの駆動源として使用される燃料電池、及び当該燃料電池が備える膜電極接合体に関する。
 燃料電池(例えば、高分子電解質形燃料電池)は、水素を含有する燃料ガスと空気など酸素を含有する酸化剤ガスとを電気化学的に反応させることにより、電力と熱とを同時に発生させる装置である。
 燃料電池は、一般的には複数のセルを積層し、それらをボルトなどの締結部材で加圧締結することにより構成されている。1つのセルは、膜電極接合体(以下、MEA:Membrane-Electrode-Assemblyという)を一対の板状の導電性のセパレータで挟んで構成されている。
 MEAは、高分子電解質膜と、当該高分子電解質膜の両面に配置された一対の電極層によって構成されている。一対の電極層の一方はアノード電極(燃料極ともいう)であり、他方はカソード電極(空気極ともいう)である。一対の電極層は、金属触媒をカーボン粉末に坦持したカーボン粉末を主成分とする触媒層と、当該触媒層の上に配置される多孔質で導電性を有するガス拡散層とで構成されている。ガス拡散層は、一般に、炭素繊維からなる基材の表面に、カーボンと撥水材からなるコーティング層を設けて構成されている。(例えば、特許文献1:特開2003-197202号公報参照)。前記アノード電極に燃料ガスが接触するとともに前記カソード電極に酸化剤ガスが接触することにより、電気化学反応が発生し、電力と熱とが発生する。
 近年、燃料電池の発電性能の向上のために、発電温度を従来よりも高温化して、熱回収温度を高くする検討が行われている。また、燃料電池システムの簡素化のために、MEAの電極層に供給する加湿量を従来よりも低減して運転(低加湿運転)することが検討されている。このような高温・低加湿運転を行う場合、前記構成を有する従来の燃料電池においては、ガス拡散層の炭素繊維基材の多孔度が通常80%以上と高くなるために、ガス拡散層内の保水性を十分に高く保つことができない。そのため、電極層の内部が乾燥し、高分子電解質膜のプロトン伝導抵抗が増加して、発電性能(電圧)が低下するという課題がある。
 このため、ガス拡散層の多孔度を低くすることが求められている。ガス拡散層の多孔度を低くするためには、炭素繊維を基材として用いずにガス拡散層を構成する必要がある。炭素繊維を基材として用いないガス拡散層としては、例えば、特許文献2(特開2007-242444号公報)に開示されたものがある。
 特許文献2には、ガス供給及び生成水の排出をより確実に行うことを目的として、フッ素樹脂とカーボン粒子とを含み、空孔率(本発明の多孔度に相当する)を60%以下としたガス拡散層が開示されている。この特許文献2のガス拡散層によれば、空孔率を60%以下と低くしているので、高温・低加湿運転を行う場合においてもガス拡散層内の保水性を高く保つことができ、燃料電池の発電性能の向上を図ることができる。
特開2003-197202号公報 特開2007-242444号公報
 しかしながら、燃料電池においては一層高いレベルの発電性能が求められており、前記特許文献2の構成では未だ不十分である。
 従って、本発明の目的は、前記課題を解決することにあって、高温・低加湿の運転条件下において、発電性能を一層向上させることができる膜電極接合体及び燃料電池を提供することにある。
 本発明の発明者らは、前記従来技術の課題を解決するために鋭意検討を重ねた結果、以下のことを見出した。
 すなわち、燃料電池において、発電に伴い生成される生成水は、カソード電極で主に発生する。このため、アノード電極よりもカソード電極の方が比較的湿潤しやすい。一方、アノード電極には水素を含む燃料ガスが供給され、カソード電極には酸素を含む酸化剤ガスが供給されるが、酸素は水素に比べてガス拡散性が低いという性質がある。
 そこで、本発明の発明者らは、アノード電極が備えるアノードガス拡散層にはより保水性の高いガス拡散層を用いる一方で、カソード電極が備えるカソードガス拡散層にはよりガス拡散性の高いガス拡散層を用いることで発電性能が向上することを見出し、本発明に想到した。
 前記目的を達成するために、本発明は以下のように構成する。
 本発明の第1態様によれば、高分子電解質膜と、
 前記高分子電解質膜を挟んで互いに対向する一対の触媒層と、
 前記高分子電解質膜及び前記一対の触媒層を挟んで互いに対向するアノードガス拡散層及びカソードガス拡散層と、を有し、
 前記アノードガス拡散層は、導電性粒子と高分子樹脂とを主成分とした多孔質部材で構成され、
 前記アノードガス拡散層の多孔度は、60%以下であり、
 前記カソードガス拡散層の多孔度は、前記アノードガス拡散層の多孔度より大きい、
膜電極接合体を提供する。
 ここで、「導電性粒子と高分子樹脂とを主成分とした多孔質部材」とは、炭素繊維を基材として使用することなく、導電性粒子と高分子樹脂とで支持される構造(いわゆる自己支持体構造)を持つ多孔質部材を意味する。導電性粒子と高分子樹脂とで多孔質部材を構成する場合、例えば、後述するように界面活性剤と分散溶媒とを用いる。この場合、製造工程中に、焼成により界面活性剤と分散溶媒とを除去するが、十分に除去できずにそれらが多孔質部材中に残留することが有り得る。従って、炭素繊維を基材として使用しない自己支持体構造である限り、そのようにして残留した界面活性剤と分散溶媒が多孔質部材に含まれてもよいことを意味する。また、炭素繊維を基材として使用しない自己支持体構造であれば、他の材料(例えば、短繊維の炭素繊維など)が多孔質部材に含まれても良いことも意味する。
 本発明の第2態様によれば、前記アノードガス拡散層の多孔度は、42%以上である、第1態様に記載の膜電極接合体を提供する。
 本発明の第3態様によれば、前記カソードガス拡散層の多孔度は、60%より大きい、第1又は2態様に記載の膜電極接合体を提供する。
 本発明の第4態様によれば、前記カソードガス拡散層の厚さは、前記アノードガス拡散層の厚さより薄い、第1~3態様のいずれか1つに記載の膜電極接合体を提供する。
 本発明の第5態様によれば、前記アノードガス拡散層及び前記カソードガス拡散層の厚さは、150μm以上600μm以下である、第4態様に記載の膜電極接合体を提供する。
 本発明の第6態様によれば、前記アノードガス拡散層及び前記カソードガス拡散層の厚さは、200μm以上400μm以下である、第5態様に記載の膜電極接合体を提供する。
 本発明の第7態様によれば、前記カソードガス拡散層は、導電性粒子と高分子樹脂とを主成分とした多孔質部材で構成されている、第1~6態様のいずれか1つに記載の膜電極接合体を提供する。
 本発明の第8態様によれば、前記カソードガス拡散層の多孔度は、76%以下である、第7態様に記載の膜電極接合体を提供する。
 本発明の第9態様によれば、前記アノードガス拡散層及び前記カソードガス拡散層に含まれる前記導電性粒子は、平均粒子径が異なる2種類のカーボン材料で構成されている、第7又は8態様のいずれか1つに記載の膜電極接合体を提供する。
 本発明の第10態様によれば、前記アノードガス拡散層に含まれる平均粒子径が異なる2種類のカーボン材料は、平均粒子径が小さいカーボン材料と、平均粒径が大きいカーボン材料との配合比率が、1:0.7~1:2である、第9態様に記載の膜電極接合体を提供する。
 本発明の第11態様によれば、前記カソードガス拡散層に含まれる高分子樹脂の単位体積当たりの重量は、前記アノードガス拡散層に含まれる高分子樹脂の単位体積当たりの重量より大きい、第7~10態様のいずれか1つに記載の膜電極接合体を提供する。
 本発明の第12態様によれば、前記アノードガス拡散層及び前記カソードガス拡散層は、前記高分子樹脂を10重量%以上17重量%以下含む、第11態様に記載の膜電極接合体を提供する。
 本発明の第13態様によれば、前記アノードガス拡散層及び前記カソードガス拡散層は、前記高分子樹脂よりも少ない重量の炭素繊維を含んでいる、第7~12態様のいずれか1つに記載の膜電極接合体を提供する。
 本発明の第14態様によれば、前記カソードガス拡散層に含まれる炭素繊維の単位体積当たりの重量は、前記アノードガス拡散層に含まれる炭素繊維の単位体積当たりの重量より大きい、第13態様に記載の膜電極接合体を提供する。
 本発明の第15態様によれば、前記アノードガス拡散層及び前記カソードガス拡散層は、前記炭素繊維を2.0重量%以上7.5重量%以下含む、第14態様に記載の膜電極接合体を提供する。
 本発明の第16態様によれば、前記炭素繊維は、気相成長法炭素繊維、ミルドファイバー、チョップファイバーのうちのいずれか1つである、第13~15態様にいずれか1つに記載の膜電極接合体を提供する。
 本発明の第17態様によれば、第1~16態様のいずれか1つに記載の膜電極接合体と、
 前記膜電極接合体を挟むように配置された一対のセパレータと、
 を備える、燃料電池を提供する。
 本発明の第18態様によれば、前記燃料電池を運転する際に、前記燃料電池に供給される燃料ガス及び酸化剤ガスの露点は、前記燃料電池の運転温度より低い、第17態様に記載の燃料電池を提供する。
 本発明にかかる膜電極接合体及び燃料電池よれば、前記アノードガス拡散層を導電性粒子と高分子樹脂とを主成分とした多孔質部材で構成して、その多孔度を60%以下としているので、前記アノードガス拡散層の保水性を高くすることができる。一方、前記カソードガス拡散層の多孔度は、前記アノードガス拡散層の多孔度より大きくしているので、ガス拡散性を高くすることができる。これにより、アノードガス拡散層とカソードガス拡散層とを同一構成としている従来の膜電極接合体及び燃料電池に比べて、発電性能を一層向上させることができる。
 本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施の形態に関連した次の記述から明らかになる。この図面においては、
図1は、本発明の実施形態にかかる燃料電池の断面図であり、 図2は、アセチレンブラックの平均粒子径を測定した結果を示すグラフであり、 図3は、グラファイトの平均粒子径を測定した結果を示すグラフであり、 図4は、導電性粒子と高分子樹脂とを主成分とした多孔質部材で構成されるガス拡散層の製造方法を示すフローチャートであり、 図5は、導電性粒子と高分子樹脂とを主成分とし、炭素繊維が添加された多孔質部材で構成されるガス拡散層の製造方法を示すフローチャートであり、 図6は、本発明の実施形態の変形例にかかる燃料電池の断面図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の全ての図において、同一又は相当部分には同一符号を付し、重複する説明は省略する。
 《実施形態》
 図1は、本発明の実施形態にかかる燃料電池の基本構成を示す断面図である。本実施形態にかかる燃料電池は、水素を含有する燃料ガスと、空気などの酸素を含有する酸化剤ガスとを電気化学的に反応させることにより、電力と熱とを同時に発生させる高分子電解質型燃料電池である。なお、本発明は、高分子電解質形燃料電池に限定されるものではなく、種々の燃料電池に適用可能である。
 本実施形態にかかる燃料電池は、図1に示すように、膜電極接合体10(以下、MEA:Membrane-Electrode-Assemblyという)と、MEA10の両面に配置された一対の板状の導電性セパレータ20A、20Cとを有するセル(単電池)1を備えている。なお、本実施形態にかかる燃料電池は、このセル1を複数個積層して構成されていてもよい。この場合、互いに積層されたセル1は、燃料ガス及び酸化剤ガスがリークしないように且つ接触抵抗を減らすために、ボルトなどの締結部材(図示せず)により所定の締結圧にて加圧締結されていることが好ましい。
 MEA10は、水素イオンを選択的に輸送する高分子電解質膜11と、この高分子電解質膜11の両面に形成された一対の電極層とを有している。一対の電極層の一方は、アノード電極(燃料極ともいう)12Aであり、他方はカソード電極(空気極ともいう)12Cである。アノード電極12Aは、高分子電解質膜11の一方の面上に形成され、白金属触媒を坦持したカーボン粉末を主成分とする一対のアノード触媒層13Aと、このアノード触媒層13A上に形成され、集電作用とガス透過性と撥水性とを併せ持つアノードガス拡散層14Aとを有している。カソード電極12Cは、高分子電解質膜11の他方の面上に形成され、白金属触媒を坦持したカーボン粉末を主成分とする一対のカソード触媒層13Cと、このカソード触媒層13C上に形成され、集電作用とガス透過性と撥水性とを併せ持つカソードガス拡散層14Cとを有している。
 アノード電極12A側に配置されたアノードセパレータ20Aには、アノードガス拡散層14Aと当接する主面に、燃料ガスを流すための燃料ガス流路21Aが設けられている。燃料ガス流路溝21Aは、例えば、互いに略平行な複数の溝で構成されている。カソード電極12C側に配置されたカソードセパレータ20Cには、カソードガス拡散層14Cと当接する主面に、酸化剤ガスを流すための酸化剤ガス流路21Cが設けられている。酸化剤ガス流路溝21Cは、例えば、互いに略平行な複数の溝で構成されている。なお、アノードセパレータ20A及びカソードセパレータ20Cには、冷却水などが通る冷却水流路(図示せず)が設けられていてもよい。燃料ガス流路21Aを通じてアノード電極12Aに燃料ガスが供給されるとともに、酸化剤ガス流路21Cを通じてカソード電極12Cに酸化剤ガスが供給されることで、電気化学反応が起こり、電力と熱とが発生する。
 なお、前記では、燃料ガス流路21Aをアノードセパレータ20Aに設けたが、本発明はこれに限定されない。例えば、燃料ガス流路21Aは、アノードガス拡散層14Aに設けてもよい。この場合、アノードセパレータ20Aは平板状であってもよい。同様に、前記では、酸化剤ガス流路21Cをカソードセパレータ20Cに設けたが、本発明はこれに限定されない。例えば、酸化剤ガス流路21Cは、カソードガス拡散層14Cに設けてもよい。この場合、カソードセパレータ20Cは平板状であってもよい。
 アノードセパレータ20Aと高分子電解質膜11との間には、燃料ガスが外部に漏れることを防ぐために、アノード触媒層13A及びアノードガス拡散層14Aの側面を覆うようにシール材としてアノードガスケット15Aが配置されている。また、カソードセパレータ20Cと高分子電解質膜11との間には、酸化剤ガスが外部に漏れることを防ぐために、カソード触媒層13C及びカソードガス拡散層14Cの側面を覆うようにシール材としてカソードガスケット15Cが配置されている。
 アノードガスケット15A及びカソードガスケット15Cとしては、一般的な熱可塑性樹脂、熱硬化性樹脂などを用いることができる。例えば、アノードガスケット15A及びカソードガスケット15Cとして、シリコン樹脂、エポキシ樹脂、メラミン樹脂、ポリウレタン系樹脂、ポリイミド系樹脂、アクリル樹脂、ABS樹脂、ポリプロピレン、液晶性ポリマー、ポリフェニレンサルファイド樹脂、ポリスルホン、ガラス繊維強化樹脂などを用いることができる。
 なお、アノードガスケット20A及びカソードガスケット20Cは、それらの一部がアノードガス拡散層14A又はカソードガス拡散層14Cの周縁部に含浸しているほうが好ましい。これにより、発電耐久性及び強度を向上させることができる。
 また、アノードガスケット20A及びカソードガスケット20Cに代えて、アノードセパレータ20Aとカソードセパレータ20Cとの間に、高分子電解質膜11、アノード触媒層13A、アノードガス拡散層14A、カソード触媒層13C及びカソードガス拡散層14Cの側面を覆うように、ガスケットを配置してもよい。これにより、高分子電解質膜11の劣化を抑制し、MEA10のハンドリング性、量産時の作業性を向上させることができる。
 次に、本発明の実施形態にかかるアノードガス拡散層14Aの構成についてさらに詳細に説明する。
 アノードガス拡散層14Aは、導電性粒子と高分子樹脂とを主成分としたシート状で且つゴム状の多孔質部材で構成されている。アノードガス拡散層14Aの多孔度は、60%以下に設定されている。これにより、高温・低加湿運転を行う場合においてもアノードガス拡散層14A内の保水性を高く保つことができる。なお、アノードガス拡散層14Aの多孔度は、42%以上であることが好ましい。アノードガス拡散層14Aの多孔度を42%以上とすることで、アノードガス拡散層14Aを容易に製造することができる。
 前記導電性粒子の材料としては、例えば、グラファイト、カーボンブラック、活性炭などのカーボン材料が挙げられる。このカーボンブラックとしては、アセチレンブラック(AB)、ファーネスブラック、ケッチェンブラック、バルカンなどが挙げられる。なお、それらの中でもカーボンブラックの主成分としてアセチレンブラックが用いられることが、不純物含有量が少なく、電気伝導性が高いという観点から好ましい。また、グラファイトの主成分としては、天然黒鉛、人造黒鉛が挙げられる。なお、これらの中でもグラファイトの主成分として人造黒鉛が用いられることが、不純物が少ないという観点から好ましい。
 また、前記導電性粒子は、平均粒子径が異なる2種類のカーボン材料を混合して構成されることが好ましい。これにより、平均粒子径が大きな粒子同士の隙間に平均粒子径が小さな粒子が入り込むことができるので、アノードガス拡散層14Aの全体の多孔度を60%以下にすることが容易になる。充填構造を作成しやすい導電性粒子としては、グラファイトが挙げられる。従って、導電性粒子は、アセチレンブラックとグラファイトとを混合して構成されることが好ましい。
 なお、アセチレンブラックの平均粒子径D50(相対粒子量が50%の時の粒子径:メディアン径ともいう)を、レーザ回折式粒度測定装置マイクロトラックHRAを使用して測定したところ、図2に示すようにD50=5μmであった。また、アセチレンブラックと同様にしてグラファイトの平均粒子径D50を測定したところ、図3に示すようにD50=16μmであった。これらの平均粒子径の測定は、10wt%の界面活性剤を含有した蒸留水にアセチレンブラック又はグラファイトの粒子を分散させ、粒度分布が安定した時点で行った。
 なお、前記導電性粒子を3種類以上のカーボン材料を混合して構成した場合には、分散、混練、圧延条件などの最適化が困難である。また、前記導電性粒子を1種類のカーボン粉末のみで構成した場合には、どのようなカーボン粉末を用いても粒子間の空孔を埋めることが困難であり、多孔度を60%以下にすることが困難である。このため、前記導電性粒子は、2種類のカーボン材料を混合して構成することが好ましい。
 また、カーボン材料の原料形態としては、例えば、粉末状、繊維状、粒状などが挙げられる。それらの中でも粉末状がカーボン材料の原料形態として採用されることが、分散性、取り扱い性の観点から好ましい。
 なお、前記導電性粒子を平均粒子径が異なる2種類のカーボン材料を混合して構成する場合、平均粒子径が小さいカーボン材料と平均粒子径が大きいカーボン材料との配合比率は1:0.7~1:2であることが好ましい。この理由については、実験データを参照しながら後で詳しく説明する。
 前記高分子樹脂としては、PTFE(ポリテトラフルオロエチレン)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、PVDF(ポリビニリデンフルオライド)、ETFE(テトラフルオロエチレン・エチレン共重合体)、PCTFE(ポリクロロトリフルオロエチレン)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)などが挙げられる。これらの中でも前記高分子樹脂としてPTFEが使用されることが、耐熱性、撥水性、耐薬品性の観点から好ましい。PTFEの原料形態としては、ディスパージョン、粉末状などがあげられる。それらの中でもディスパージョンがPTFEの原料形態として採用されることが、作業性の観点から好ましい。
 アノードガス拡散層14Aの製造方法としては、例えば、図4に示すような方法が挙げられる。
 まず、ステップS1では、平均粒子径が異なる2種類の炭素粉末(導電性粒子)と高分子樹脂と界面活性剤と水(分散溶媒)を混練する(混練工程)。より具体的には、導電性粒子と高分子樹脂と界面活性剤と分散溶媒とを攪拌・混錬機に投入し、それらを混錬して粉砕及び造粒する。この後、それらの混錬物の中に高分子樹脂材料を添加してさらに分散させる。なお、高分子樹脂材料を他の材料と別に混錬機に投入せずに、高分子樹脂材料を含む全ての材料を同時に混練機に投入しても良い。
 次いで、ステップS2では、混錬して得た混練物を押し出し成形し、プレス機にて圧延してシート状にする(圧延工程)。
 次いで、ステップS3では、シート状にした混錬物を焼成し、当該混錬物から界面活性剤と水とを除去する(焼成工程)。
 次いで、ステップS4では、プレス機の圧延力とギャップを調整して前記混錬物を再圧延し、当該混錬物の多孔度と厚さを調整する(再圧延工程)。
 これにより、所望の多孔度及び厚さを有するアノードガス拡散層14Aを製造することができる。なお、アノードガス拡散層14Aの製造方法は、前記方法に限定されるものではなく、他の方法であってもよい。例えば、前記各製造工程の間に適宜、他の工程が含まれていても良い。
 次に、本発明の実施形態にかかるカソードガス拡散層14Cの構成についてさらに詳細に説明する。
 カソードガス拡散層14Cは、アノードガス拡散層14Aよりも、多孔度が高くなるように構成されている。このように構成した理由は以下の通りである。
 すなわち、燃料電池は、水素と酸素との反応によって水を生成して発電する。この生成水は、主にカソード電極12C側で生成される。カソードガス拡散層14C内に生成水が適量存在する場合には、高分子電解質膜11の保水に役立って性能向上に寄与し得る。しかしながら、カソードガス拡散層14C内に過剰な生成水が存在する場合には、酸化剤ガス流路21Cを通じて分配される空気がカソード触媒層13Cに到達することが阻害されるおそれがある。このため、カソード電極12Cは、アノード電極12Aに比べて、高いガス拡散性を有することが求められる。本実施形態においては、アノードガス拡散層14Aよりもカソードガス拡散層14Cの多孔度を高くすることによって、カソードガス拡散層14Cの空孔量を多くし、高いガス拡散性が得られるようにしている。
 また、カソードガス拡散層14Cの多孔度は、60%より大きいことが好ましい。これにより、生成水の排出性を高めてガス拡散性を高くすることができ、発電性能を一層高めることができる。なお、導電性粒子と高分子樹脂とを主成分とした多孔質部材でカソードガス拡散層14Cを構成する場合、多孔度が76%より大きくなると、どのような材料を用いたとしても十分な強度を得ることができない。このため、カソードガス拡散層14Cの多孔度は、76%以下であることが好ましい。
 なお、本実施形態においては、アノードガス拡散層14Aに比べて、カソードガス拡散層14Cは、多孔度を60%以下にする必要性がないので、カソードガス拡散層14Cは、炭素繊維を基材とした多孔質部材で構成されてもよい。また、カソードガス拡散層14Cは、アノードガス拡散層14Aと同様に、導電性粒子と高分子樹脂とを主成分とした多孔質部材で構成されてもよい。これにより、アノードガス拡散層14Aとカソードガス拡散層14Cの製造を効率的に行うことができる。なお、この場合、カソードガス拡散層14Cの製造方法は、前述したアノードガス拡散層14Aの製造方法と同様とすることができる。
 なお、前記構成の場合、カソードガス拡散層14Cに含まれる前記導電性粒子は、1種類のカーボン材料で構成されることが好ましい。前述したように、カソードガス拡散層14Cには、高いガス拡散性が求められる。このため、粒子径が揃った1種類のカーボン材料でカソードガス拡散層14Cを製造することにより、細孔を作りやすくなり、高い多孔度のガス拡散層を得ることが容易になる。
 また、前記構成の場合、カソードガス拡散層14Cに含まれる高分子樹脂の単位体積当たりの重量は、アノードガス拡散層14Aに含まれる高分子樹脂の単位体積当たりの重量より大きいことが好ましい。高分子樹脂は、一般的に撥水性を有するので、高分子樹脂がガス拡散層中に占める割合(組成比率)が高くなるほど水分を排出しやすくなる。一方、高分子樹脂は、前記割合が低いほど親水性が高くなり、水分をガス拡散層内に閉じ込めやすくなる。従って、アノードガス拡散層14Aよりもカソードガス拡散層14Cに含まれる高分子樹脂の量を増やすことによって、アノードガス拡散層14Aには高い保水性を持たせる一方で、カソードガス拡散層14Cには高いガス拡散性を持たせることができる。これにより、燃料電池の発電性能を向上させることができる。
 また、高分子樹脂は、バインダー効果を有しているので、薄いガス拡散層を製造する場合には、高分子樹脂の組成比率を高くすることによって、強度を高くすることができる。なお、高分子樹脂の組成比率は10%~17%であることが好ましい。高分子樹脂の組成比率が10%以下である場合には、ガス拡散層の強度が著しく低下し、自己支持体として製造することが困難である。また、高分子樹脂は絶縁体であるので、高分子樹脂の組成比率が17%以上である場合には、ガス拡散層の内部抵抗が増加して、電圧が低下するおそれがある。なお、高分子樹脂の組成比率が10%~17%であることが好ましい理由については、実験データを参照しながら後で詳しく説明する。
 以上、本実施形態にかかる燃料電池によれば、アノードガス拡散層14Aを導電性粒子と高分子樹脂とを主成分とした多孔質部材で構成して、その多孔度を60%以下としているので、高温・低加湿の運転条件下においても、アノードガス拡散層14Aの保水性を高くすることができる。ここで、高温・低加湿の運転条件とは、例えば、燃料電池に供給される燃料ガス及び酸化剤ガスの露点が燃料電池の運転温度よりも低い運転条件をいう。高温・低加湿の運転条件下においては、高分子電解質膜11の乾燥による発電性能の低下が特に顕著となる。従って、高温・低加湿の運転条件下においては、特に、ガス拡散層(特に、アノードガス拡散層14A)に保水性の高いものを用いることが望まれる。一方、本実施形態にかかる燃料電池において、カソードガス拡散層14Cの多孔度は、アノードガス拡散層14Aの多孔度より大きくしているので、ガス拡散性を高くすることができる。すなわち、アノードガス拡散層14Aとカソードガス拡散層14Cとを、従来のように同じ構成とするのではなく、それぞれに適した構成としているので、従来に比べて発電性能を一層向上させることができる。
 なお、本発明は前記実施形態に限定されるものではなく、その他種々の態様で実施できる。例えば、アノードガス拡散層14A及びカソードガス拡散層14Cには、導電性粒子及び高分子樹脂以外に、アノードガス拡散層14A及びカソードガス拡散層14Cの製造時に使用する界面活性剤及び分散溶媒などが微量含まれていてもよい。分散溶媒としては、例えば、水、メタノール、エタノールなどのアルコール類、エチレングリコールなどにグリコール類が挙げられる。界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテルなどのノニオン系、アルキルアミンオキシドなどの両性イオン系が挙げられる。製造時に使用する分散溶媒の量及び界面活性剤の量は、導電性粒子の種類、高分子樹脂の種類、それらの配合比率などに応じて適宜設定すればよい。なお、一般的には、分散溶媒の量及び界面活性剤の量が多いほど、導電性粒子と高分子樹脂とが均一に分散しやすい一方で、流動性が高くなり、ガス拡散層のシート化が難しくなる傾向がある。
 また、アノードガス拡散層14A及びカソードガス拡散層14Cには、それらに含まれる高分子樹脂よりも少ない重量(基材としては成立しない重量)の炭素繊維が含まれてもよい。すなわち、アノードガス拡散層14A及びカソードガス拡散層14Cは、導電性粒子と高分子樹脂とを主成分とし、基材としては成立しない重量の炭素繊維が添加されたシート状で且つゴム状の多孔質部材で構成されてもよい。この場合、炭素繊維を基材として使用しないので、燃料電池の低コスト化を図ることができる。また、炭素繊維は補強効果があるので、炭素繊維の配合比率を高くすることによって、強度の高いガス拡散層を製造することができる。これにより、バインダーとして作用する高分子樹脂の配合量を少なくすることが可能となる。また、絶縁体である高分子樹脂の配合比率を低くすることができるので、発電性能の向上を図ることができる。ガス拡散層に炭素繊維を含有させることは、薄いガス拡散層を製造するときに、特に有効である。
 前記のような炭素繊維が添加されたガス拡散層の製造方法としては、例えば、図5に示すような方法が挙げられる。
 まず、ステップS11では、導電性粒子と高分子樹脂と炭素繊維と界面活性剤と分散溶媒とを混錬する。
 ステップS12では、混錬して得た混錬物をロールプレス機又は平板プレス機などで圧延してシート状に成形する。
 ステップS13では、シート状に成形した混錬物を焼成して、前記混錬物中から界面活性剤と分散溶媒とを除去する。
 ステップS14では、界面活性剤と分散溶媒とを除去した混錬物を再圧延して厚さを調整する。
 これにより、前記のような炭素繊維が添加されたガス拡散層を製造することができる。
 また、アノードガス拡散層14A及びカソードガス拡散層14Cにおいて、炭素繊維の組成比率は、2.0%以上7.5%未満であることが好ましい。炭素繊維の組成比率が7.5%以上である場合には、炭素繊維が高分子電解質膜11を突き刺して、高分子電解質膜11を損傷させるおそれがある。また、炭素繊維には、ガス拡散層の内部抵抗を低下させるのにも役立つ。このため、炭素繊維の組成比率を2.0%以上とすると、内部抵抗を低下させる効果を十分に得ることができる。なお、炭素繊維の組成比率が2.0%以上7.5%未満であることが好ましい理由については、実験データを参照しながら後で詳しく説明する。
 また、カソードガス拡散層14Cに含まれる炭素繊維の単位体積当たりの重量は、アノードガス拡散層14Aに含まれる炭素繊維の単位体積当たりの重量より大きいことが好ましい。炭素繊維は炭素粒子に比べて嵩密度が小さく細孔量が多いため、ガス拡散層の多孔度を高くするには、炭素繊維の組成比率を高くすることが有効である。従って、カソードガス拡散層14Cに含まれる炭素繊維の単位体積当たりの重量を、アノードガス拡散層14Aに含まれる炭素繊維の単位体積当たりの重量より大きくすることによって、カソードガス拡散層14Cの多孔度に対してアノードガス拡散層14Aの多孔度をより大きくすることができる。
 上述の炭素繊維の材料としては、例えば、気相成長法炭素繊維(以下、VGCFという)、ミルドファイバー、カットファイバー、チョップファイバーなどが挙げられる。前記炭素繊維としてVGCFを使用する場合、例えば、繊維径0.15μm、繊維長15μmのものを使用すればよい。また、前記炭素繊維としてミルドファイバー、カットファイバー、又はチョップファイバーを使用する場合、例えば、繊維径5~20μm、繊維長20μm~100μmであるものを使用すればよい。
 前記ミルドファイバー、カットファイバー、又はチョップファイバーの原料は、PAN系、ピッチ系、レイヨン系のいずれでもよい。また、前記ファイバーは、原糸(長繊維フィラメント又は短繊維ステーブル)を切断、裁断することにより作製された短繊維の束を分散させて使用することが好ましい。
 また、燃料電池において、発電性能を向上させるには、発電温度、燃料極側加湿露点、空気極側加湿露点、燃料ガス利用率、空気利用率、セパレータの流路形状、触媒層の仕様等の最適化を図ることが有効である。特に、ガス拡散層を構成する物性パラメータのうち、厚さと多孔度は、電圧変動に対する感度が高い。このため、高温・低加湿の運転条件下において、発電性能を向上させるには、ガス拡散層の厚さ又は多孔度の最適化を図ることが、より有効である。
 従って、図6に示すように、アノードガス拡散層14Aのよりもカソードガス拡散層14Cの厚さを薄くすることが好ましい。拡散法則に従うと、ガス拡散層の厚さ以外の物性が同一の場合、セパレータから触媒層までの距離が短いほど(すなわちガス拡散層の厚さが薄いほど)、反応ガスが触媒層に到達しやすくなる。カソードガス拡散層14Cは生成水によってガス拡散性が低下しやすいため、カソードガス拡散層14Cの厚さをアノードガス拡散層14Aの厚さよりも薄くすることによって、ガス拡散性を高くすることができる。これにより、発電性能を向上させることができる。
 また、アノードガス拡散層14A及びカソードガス拡散層14Cの厚さは、150μm以上600μm以下であることが好ましい。この理由については、実験データを参照しながら後で詳しく説明する。また、アノードガス拡散層14A及びカソードガス拡散層14Cの厚さは、200μm以上400μm以下であることがさらに好ましい。アノードガス拡散層14A及びカソードガス拡散層14Cの厚さが200μmより小さい場合には、発電性能が顕著に低下することを実験により確認している。これは、ガス拡散層の厚さが薄くなることでガス拡散性が高くなり、保水性が低下して高分子電解質膜が乾燥し、膜抵抗が増加するためと考えられる。一方、アノードガス拡散層14A及びカソードガス拡散層14Cの厚さが400μmより大きい場合にも、発電性能が顕著に低下することを実験により確認している。これは、ガス拡散層の厚さが厚くなることで、ガス拡散層の内部抵抗が増加するためと考えられる。この理由についても、実験データを参照しながら後で詳しく説明する。
(導電性粒子の配合比率について)
 次に、表1を用いて、平均粒子径が異なる2種類のカーボン材料(導電性粒子)を用いてガス拡散層を構成した場合における、平均粒子径の大きな導電性粒子と平均粒子径の小さな導電性粒子との好ましい配合比率について説明する。なお、ここでは、アノードガス拡散層とカソードガス拡散層とを同じ構成(厚さ、多孔度等)としている。
Figure JPOXMLDOC01-appb-T000001

 表1は、ガス拡散層の厚さを400μmで固定し、平均粒子径の大きな導電性粒子の一例としてのグラファイトと平均粒子径の小さな導電性粒子の一例としてのアセチレンブラックとの配合比率を変化させたときの、ガス拡散層の多孔度、燃料電池の抵抗値及び電圧値を示す表である。ここでは、アセチレンブラックとグラファイトの配合比率が異なる燃料電池のサンプル1~7を以下で説明するように製造して、各サンプル1~7のガス拡散層の多孔度、抵抗値及び電圧値を測定した。
 以下、各サンプル1~7に共通する燃料電池の製造方法について説明する。
 まず、アセチレンブラック(電気化学工業株式会社製デンカブラック:登録商標)とグラファイト(和光純薬工業株式会社製)を合計150g、界面活性剤(トライトンX:登録商標)7.5g、水170gをミキサーに投入する。その後、ミキサーの回転数を100rpmとして60分間、前記各材料を混錬する。60分経過後、前記混錬して得た混錬物に高分子樹脂としてPTFEディスパージョン70g(旭硝子株式会社製AD911)を混合して、さらに5分間攪拌する。
 このようにして得られた混練物をミキサーの中から40g取り出し、延伸ロール機(ギャップ600μmに設定)にて圧延してシート状にする。この後、シート状にした前記混錬物をプログラム制御式の焼成炉にて300℃で30分間焼成し、前記混錬物中の界面活性剤と水を除去する。
 界面活性剤と水を除去した前記混錬物を焼成炉から取り出し、再び延伸ロール機(ギャップ400μm)にて圧延して厚さ調整及び厚さバラツキの低減を行ったのち、6cm角に裁断する。このようにして、厚さ400μmのゴム状のガス拡散層を製造する。
 前記ガス拡散層の製造と同時的に又はそれに続いて、高分子電解質膜(Dupont社製Nafion112:登録商標)の両面に、触媒層として、白金坦持カーボン(田中貴金属社製TEC10E50E)とイオン交換樹脂(旭硝子株式会社製Flemion:登録商標)の混合物を塗布する。その後、当該混合物を乾燥して膜・触媒層接合体を得る。なお、このとき、高分子電解質膜の大きさは15cm角とし、触媒層の大きさは5.8cm角とする。また、白金の使用量は、アノード電極側0.35mg/cmとし、カソード電極側0.6mg/cmとする。
 次いで、前記膜・触媒層接合体の両面に前記製造したガス拡散層を配置して、ホットプレス接合(80℃、10kgf/cm)し、MEAを製造する。
 次いで、製造したMEAを一対のセパレータ(東海カーボン製)で挟み込み、この状態で位置ずれしないように締結圧力が10kgf/cmとなるまで加圧する。
 以上のようにして、燃料電池の単電池(セル)を製造する。
 サンプル1~7は、アセチレンブラックとグラファイトの配合比率を異ならせるだけで製造することができる。
 次に、ガス拡散層の多孔度の測定方法(算出方法)について説明する。
 まず、ガス拡散層を構成する各材料の真密度と組成比率から、製造したガス拡散層の見かけ真密度を算出する。
 次いで、製造したガス拡散層の重量、厚さ、縦横寸法を測定して、製造したガス拡散層の密度を算出する。
 次いで、多孔度=(ガス拡散層の密度)/(見かけ真密度)×100の式に、前記算出したガス拡散層の密度及び見かけ真密度を代入し、多孔度を算出する。
 以上のようにして、製造したガス拡散層の多孔度を測定することができる。
 なお、製造したガス拡散層の細孔径分布を、水銀ポロシメータを用いて測定したところ、累積細孔量から算出できる多孔度と、前記のようにして算出した多孔度とが一致していることを確認している。
 表1を参照してサンプル2~7を比較すると、アセチレンブラックとグラファイトの配合比率が1:2から1:0になる程(すなわち、グラファイトの占有率が低くなる程)、多孔度が高くなることが分かる。また、前記配合比率が1:0である(すなわち、アセチレンブラックのみである)サンプル7では、多孔度は70%であった。なお、延伸ロール機のギャップを調整するなどしたが、アセチレンブラック単体では多孔度を70%未満にすることができなかった。
 一方、前記配合比率が1:2から1:2.3になると(すなわち、グラファイトの量がアセチレンブラックの量の2倍よりも多くなると)、多孔度は65%と大幅に高くなった。なお、多孔度が42%未満のガス拡散層の製造を試みたが、前記配合比率、混錬条件、焼成条件、圧延条件などを変えても製造できなかった。これは、前記配合比率が1:2のとき最密充填構造が形成される一方、グラファイトの量がアセチレンブラックの量の2倍よりも多くなると最密充填構造が形成されないためと考えられる。
 次に、表1に示したサンプル1~7の抵抗値及び電圧値の測定方法について説明する。
 まず、各サンプルにそれぞれ電子負荷機(菊水電気製PLZ-4W)を接続する。
 次いで、アノード電極に燃料ガスとして純水素を流し、カソード電極に酸化剤ガスとして空気を流す。このとき、利用率は、それぞれ70%、40%とする。また、ガス加湿露点は、アノード電極65℃、カソード電極35℃に設定する。また、セル温度は、90℃に設定する。
 次いで、電流密度0.2A/cm時の電圧値と抵抗値とを測定する。なお、発電中の抵抗値の測定には、交流4端子法式抵抗計(鶴賀電機製MODEL3566)を使用する。
 なお、測定した抵抗値には、高分子電解質膜の湿潤状態を示すプロトン伝導抵抗(膜抵抗)と、ガス拡散層を含む各部材の内部抵抗(電気伝導抵抗)と、各部材間の接触抵抗(電気伝導抵抗)とが含まれている。
 表1を参照してサンプル1~7を比較すると、アセチレンブラックとグラファイトの配合比率が1:2から1:0になる程、言い換えれば、多孔度が大きくなる程、抵抗値は高くなり、電圧値は低くなることが分かる。また、前記配合比率が1:0.7であるサンプル5と、前記配合比率が1:0.5であるサンプル6とを比較すると、抵抗値及び電圧値が急激に変化していることが分かる。すなわち、多孔度が60%よりも大きくなると、抵抗値が急激に高くなり、電圧値が急激に低くなることが分かる。一方、前記配合比率が1:2であるサンプル2と前記配合比率が1:2.3であるサンプル1とを比較すると、サンプル1の方が、抵抗値が大幅に高く、電圧値が大幅に低くなっていることが分かる。すなわち、多孔度が60%よりも大きくなると、抵抗値が急激に高くなり、電圧値が急激に低くなることが分かる。
 これは、多孔度が60%よりも大きい場合には、ガス拡散層が疎な構造であるため、燃料電池内のガスと水の移動が容易となって系外に水又は水蒸気が排出されやすくなり、保水性が低下するためであると考えられる。保水性が低下した場合には、抵抗成分(特に膜抵抗)が増加し、これにより電圧は低下することとなる。
 なお、多孔度が42%未満であるガス拡散層はここでは製造していないが、多孔度が低いとガス拡散性能が低下するため、十分な電気化学反応が起こらず、電圧値は低下すると考えられる。
 従って、以上の試験結果及び考察から、アセチレンブラックとグラファイトの配合比率は、1:0.7~1:2であることが好ましいと考えられる。また、表1の各サンプルの電圧値を考慮すると、アセチレンブラックとグラファイトの配合比率は、1:1.5~1:2であることがさらに好ましいと考えられる。また、多孔度は42%以上60%以下であることが好ましいと考えられる。また、表1の各サンプルの電圧値を考慮すると、多孔度は42%以上50%以下であることがさらに好ましいと考えられる。
(厚さについて)
 次に、表2を用いて、ガス拡散層の好ましい厚さについて説明する。なお、ここでは、アノードガス拡散層とカソードガス拡散層とを同じ構成(厚さ、多孔度等)としている。
Figure JPOXMLDOC01-appb-T000002

 表2は、アセチレンブラックとグラファイトの配合比率を1:2で固定し、ガス拡散層の厚さを変化させたときの、燃料電池の抵抗値及び電圧値を示す表である。なお、多孔度は、前記配合比率により決まるため一律45%となる。ここでは、ガス拡散層の厚さが異なる燃料電池のサンプル8~16を以下で説明するように製造して、各サンプルの抵抗値及び電圧値を測定した。なお、抵抗値及び電圧値の測定方法は、表1にて説明したサンプル1~7の抵抗値及び電圧値の測定方法と同様である。
 以下、各サンプルに共通する燃料電池の製造方法について説明する。なお、表1にて説明したサンプル1~7の製造方法と同様の部分については、重複する説明を省略しながら説明する。
 まず、アセチレンブラック50gとグラファイト100g、界面活性剤7.5g、水170gをミキサーに投入する。その後、ミキサーの回転数を100rpmとして60分間、前記各材料を混錬する。60分経過後、前記混錬して得た混錬物に高分子樹脂としてPTFEディスパージョン35gを混合して、さらに5分間攪拌する。
 このようにして得られた混練物をミキサーの中から取り出し、延伸ロール機のギャップを調整して圧延し、シート状にする。この後、シート状にした前記混錬物をプログラム制御式の焼成炉にて300℃で30分間焼成し、前記混錬物中の界面活性剤と水を除去する。
 界面活性剤と水を除去した前記混錬物を焼成炉から取り出し、再び延伸ロール機のギャップを調整して圧延し、厚さ調整及び厚さバラツキの低減を行う。この後、再圧延した前記混錬物を6cm角に裁断して、ゴム状のガス拡散層を製造する。
 前記ガス拡散層の製造と同時的に又はそれに続いて、高分子電解質膜の両面に、触媒層として、白金坦持カーボンとイオン交換樹脂の混合物を塗布する。その後、当該混合物を乾燥して膜・触媒層接合体を得る。
 次いで、前記膜・触媒層接合体の両面に前記製造したガス拡散層を配置して、ホットプレス接合し、MEAを製造する。この後、製造したMEAを一対のセパレータで挟み込み、この状態で位置ずれしないように締結圧力が10kgf/cmとなるまで加圧する。
 以上のようにして、燃料電池の単電池(セル)を製造する。
 サンプル8~16は、圧延時に延伸ロール機のギャップを変更することで製造することができる。
 表2を参照して、厚さが300μmであるサンプル10と厚さが250μmであるサンプル9の抵抗値及び電圧値を比較すると、サンプル9の方が、抵抗値が大幅に高く、電圧値が大幅に低くなっていることが分かる。これは、厚さが薄くなることでガス拡散層のガス透過性が向上したために、低加湿運転下での保水性(保湿性)が低下して高分子電解質膜が乾燥し、膜抵抗が増加したためと考えられる。
 また、表2を参照して、厚さが600μmであるサンプル14と厚さが650μmであるサンプル15の抵抗値及び電圧値を比較すると、サンプル15のほうが、抵抗値が大幅に高く、電圧値が大幅に低くなっていることが分かる。これは、厚さが厚くなることでガス拡散層の内部抵抗(電気伝導抵抗)が増加したためと考えられる。また、厚さが厚くなることでガス拡散層のガス透過性が低下し、燃料ガス及び酸化剤ガスが触媒層に到達しにくくなったために十分な電気化学反応が起こらなかったためと考えられる。
 従って、以上の試験結果及び考察から、ガス拡散層の厚みは、300μm以上600μm以下であることが好ましいと考えられる。また、表2の各サンプルの電圧値を考慮すると、ガス拡散層の厚みは350μm以上500μm以下であることがさらに好ましいと考えられる。
 なお、前記サンプル2の製造方法とは異なる2つの製造方法により、サンプル2のガス拡散層と同じ配合比率、厚さ、多孔度を有するガス拡散層を製造し、当該ガス拡散層を備える燃料電池の抵抗値及び電圧値を測定したところ、サンプル2と同じ抵抗値及び電圧値であることを確認している。
 一方の製造方法は、具体的には次のような方法である。
 まず、前記ミキサーで混練して得た混練物を、延伸ロール機に代えて押出成形機(2軸フルフライトスクリューの長さ50cm、Tダイの幅7cm、ギャップ600μm)を用い、厚さ600μm、幅7cmのシート状に成形する。この後、シート状にした前記混錬物を、プログラム制御式の焼成炉にて300℃で30分間焼成し、前記混錬物中の界面活性剤と水を除去する。
 界面活性剤と水を除去した前記混錬物を焼成炉から取り出し、延伸ロール機のギャップを400μmに調整して再圧延し、厚さ調整及び厚さバラツキの低減を行う。この後、再圧延した前記混錬物を6cm角に裁断する。このようにして、サンプル2と同様の厚さ400μm、多孔度42%のゴム状のガス拡散層を得た。
 また、他方の製造方法は、具体的には次のような方法である。
 まず、サンプル2と同じ組成の材料を、ミキサーに代えて押出成形機(2軸フルフライトスクリューの長さ100cm、Tダイの幅7cm、ギャップ600μm)を用いて、混練し、押し出しし、且つシート状に成形する。この後、シート状にした混錬物を、プログラム制御式の焼成炉にて300℃で30分間焼成し、前記混錬物中の界面活性剤と水を除去する。
 界面活性剤と水を除去した前記混錬物を焼成炉から取り出し、延伸ロール機のギャップを400μmに調整して再圧延し、厚さ調整及び厚さバラツキの低減を行う。この後、再圧延した前記混錬物を6cm角に裁断する。このようにして、サンプル2と同様の厚さ400μm、多孔度42%のゴム状のガス拡散層を得た。
(炭素繊維の配合比率について)
 次に、表3を用いて、炭素繊維の好ましい配合比率について説明する。なお、ここでは、アノードガス拡散層とカソードガス拡散層とを同じ構成(厚さ、多孔度等)としている。
Figure JPOXMLDOC01-appb-T000003

 表3は、ガス拡散層の厚さを400μm、高分子樹脂の一例としてのPTFEの配合比率を10%に固定し、炭素繊維の一例としてのVGCFの配合比率を変化させたときの、内部抵抗値及び高分子電解質膜の損傷(マイクロショート)の有無を示す表である。ここでは、VGCFの配合比率が異なるガス拡散層のサンプル17~23を以下で説明するように製造して、各サンプル17~23のガス拡散層の内部抵抗値及び高分子電解質膜の損傷の有無を調べた。なお、炭素繊維は、高分子電解質膜よりも通常硬い材料で構成されるので、炭素繊維の配合比率によっては、高分子電解質膜を突き刺し、高分子電解質膜に損傷を与える恐れがある。高分子電解質膜の損傷は、燃料電池としての耐久性の低下に繋がる恐れがある。このため、表3では、高分子電解質膜の損傷の有無について記載している。
 以下、各サンプル17~23に共通するガス拡散層の製造方法について説明する。
 まず、平均粒子径が小さい導電性粒子の一例としてのアセチレンブラック(電気化学工業株式会社製デンカブラック:登録商標)と、平均粒子径が大きい導電性粒子の一例としてのグラファイト(和光純薬工業株式会社製)と、VGCF(昭和電工製、繊維径0.15μm、繊維長15μm)と、界面活性剤(トライトンX:登録商標)4gと、分散溶媒の一例としての水200gとをミキサーに投入する。このとき、アセチレンブラックとグラファイトとVGCFの合計量は133gとし、アセチレンブラックとグラファイトの配合比率は1:1.6となるようにする。
 前記各材料をミキサー内に投入後、ミキサーの回転数を100rpmとして60分間、前記各材料を混錬する。60分経過後、前記混錬して得た混錬物に高分子樹脂としてPTFEディスパージョン25g(旭硝子株式会社製AD911、固形分比60%)を混合して、さらに5分間攪拌する。
 このようにして得られた混練物をミキサーの中から20g取り出し、延伸ロール機(ギャップ600μmに設定)にて圧延してシート状にする。この後、シート状にした前記混錬物をプログラム制御式の焼成炉にて300℃で2時間焼成し、前記混錬物中の界面活性剤と水を除去する。
 界面活性剤と水を除去した前記混錬物を焼成炉から取り出し、再び延伸ロール機(ギャップ400μm)にて圧延して厚さ調整及び厚さバラツキの低減を行ったのち、6cm角に裁断する。このようにして、厚さ400μmのゴム状のガス拡散層を製造する。
 サンプル17~23は、VGCFの配合比率を異ならせるだけで製造することができる。
 なお、例えば、サンプル18では、アセチレンブラック50g、グラファイト80g、VGCF3gとしている。この場合、VGCFの配合比率(重量換算)とPTFEの配合比率(重量換算)は、次のようにして求めることができる。
 VGCFの配合比率:VGCF3g÷(アセチレンブラック50g+グラファイト80g+VGCF3g+PTFE25g×60%)×100=約2.0%
 PTFEの配合比率:PTFE25g×60%÷(アセチレンブラック50g+グラファイト80g+VGCF3g+PTFE25g×60%)×100=約10.0%
 次に、表3に示したサンプル17~23のガス拡散層の内部抵抗(電気伝導性)の測定方法について説明する。
 まず、各サンプルを直径4cmになるように型抜きする。
 次いで、各サンプルにそれぞれ、圧縮試験機(島津製作所製、EZ-graph)を用いて圧力(面圧)が1.5kg/cmになるように圧縮荷重をかける。
 この状態で、交流4端子法式抵抗計(鶴賀電機製、MODEL3566)を用いて内部抵抗値を測定する。
 次に、表3に示したサンプル17~23のガス拡散層が取り付けられた高分子電解質膜の損傷の有無の判定方法について説明する。
 まず、高分子電解質膜の損傷の有無の判定のため、各サンプル毎に、擬似燃料電池セル(触媒層無し)を製造する。具体的には、VGCFの配合比率が同じである1組のサンプルを高分子電解質膜(Dupont社製Nafion112:登録商標)の両面に配置してホットプレス接合(80℃、10kgf/cm)し、MEAを製造する。この後、製造したMEAを一対のセパレータ(東海カーボン製)で挟み込み、この状態で位置ずれしないように締結圧力が10kgf/cmとなるまで加圧する。このようにして擬似燃料電池セルを製造する。
 次いで、前記のようにした擬似燃料電池セルに電気化学測定システム(北斗電工社製、HZ-3000)を接続する。
 次いで、前記擬似燃料電池セルに0.4Vの負荷をかけ、その時の電流値を測定する。
 ここで、高分子電解質膜に損傷があった場合、マイクロショートにより300mA以上の高電流が測定されると考えられる。
 このため、測定された電流値が300mA以上であった場合、損傷「有り」と判定し、測定された電流値が300mA未満であった場合、損傷「無し」と判定する。
 次に、前記のようにして測定又は判定された試験結果についての考察を述べる。
 表3を参照してサンプル17~23の内部抵抗値を比較すると、VGCFの配合比率が低くなる程、内部抵抗値が増加することが分かる。また、VGCFの配合比率が2.0重量%であるサンプル18と、VGCFの配合比率が1.5重量%であるサンプル17とを比較すると、内部抵抗値が大幅に変化していることが分かる。すなわち、VGCFの配合比率が2.0重量%より低い場合には、内部抵抗値が急激に高くなることが分かる。このため、VGCFの配合比率は2.0重量%以上であることが好ましいと考えられる。
 表3を参照して高分子電解質膜の損傷の有無を検討すると、VGCFの配合比率が7.5重量%以下であるサンプル17~21を用いた擬似燃料電池セルでは高分子電解質膜に損傷が無かった。これに対して、VGCFの配合比率が7.5重量%より大きいサンプル22,23を用いた擬似燃料電池セルでは高分子電解質膜に損傷が有った。
 従って、以上の試験結果及び考察から、VGCFの配合比率は2.0重量%以上7.5重量%以下であることが好ましいと考えられる。
 なお、VGCFに代えてチョップファイバー(クレハ株式会社製M-201F、繊維径12.5μm、繊維長150μm)を用いた以外はサンプル18と同じの製造方法でガス拡散層を製造し、当該ガス拡散層の内部抵抗値及び高分子電解質膜の損傷の有無を調べたところ、サンプル18と同じ結果を得た。すなわち、内部抵抗値は50mΩ・cmであり、高分子電解質膜の損傷は無かった。また、VGCFに代えて、ミルドファイバー(クレハ株式会社製M-2007S、繊維径14.5μm、繊維長90μm)、カットファイバー(東レ株式会社製T008-3、繊維径7μm)、又はミルドファイバー(東レ株式会社製MLD-30、繊維径7μm、繊維長30μm)を用いた場合においても、同様に、サンプル18と同じ結果を得た。
 (高分子樹脂の配合比率について)
 次に、表4を用いて、高分子樹脂の好ましい配合比率について説明する。なお、ここでは、アノードガス拡散層とカソードガス拡散層とを同じ構成(厚さ、多孔度等)としている。
Figure JPOXMLDOC01-appb-T000004

 表4は、ガス拡散層の厚さを400μm、炭素繊維の一例としてのVGCFの配合比率を2.0重量%に固定し、高分子樹脂の一例としてのPTFEの配合比率を変化させたときの、内部抵抗値及び高分子電解質膜の損傷の有無を示す表である。PTFEディスパージョンの混合量を異ならせた点以外は、表3にて説明したサンプル18と同様の製造方法でサンプル24~29のガス拡散層を製造している。また、内部抵抗値の測定方法及び高分子電解質膜の損傷の有無の判定方法は、表3にて説明したサンプル17~23の内部抵抗値の測定方法及び高分子電解質膜の損傷の有無の判定方法と同様である。
 次に、前記のようにして測定又は判定された試験結果についての考察を述べる。
 表4を参照してサンプル24~29の内部抵抗値を比較すると、PTFEの配合比率が高くなる程、内部抵抗値が増加することが分かる。また、PTFEの配合比率が17重量%であるサンプル27と、PTFEの配合比率が20重量%であるサンプル28とを比較すると、内部抵抗値が大幅に変化していることが分かる。すなわち、PTFEの配合比率が17重量%より高い場合には、内部抵抗値が急激に高くなることが分かる。
 なお、PTFEの配合比率が10重量%未満であるシート状のガス拡散層の製造を試みたが、VGCFの配合比率、混練時間、混練速度、圧延条件などの様々な条件を変えても、製造することができなかった。これは、PTFEの配合比率が低くなることで、PTFEのバインダーとしての機能が弱くなり、導電性材料同士の結着性が低下したためと考えられる。
 従って、以上の試験結果及び考察から、PTFEの配合比率は10重量%以上17重量%以下であることが好ましいと考えられる。
 一方、高分子電解質膜の損傷の有無については、サンプル24~29とも高分子電解質膜の損傷は無かった。これにより、高分子電解質膜の損傷の有無はPTFEの配合比率に影響されないことが分かる。
(厚さについて)
 次に、表5を用いて、炭素繊維を添加したときのガス拡散層の好ましい厚さについて説明する。なお、ここでは、アノードガス拡散層とカソードガス拡散層とを同じ構成(厚さ、多孔度等)としている。
Figure JPOXMLDOC01-appb-T000005

 表5は、炭素繊維の一例としてのVGCFの配合比率を2.0重量%、高分子樹脂の一例としてのPTFEの配合比率を10重量%に固定し、ガス拡散層の厚さを変化させたときの、内部抵抗値及び高分子電解質膜の損傷の有無を示す表である。ここでは、厚さが異なるガス拡散層のサンプル30~35を以下で説明するように製造して、各サンプルの内部抵抗値及び高分子電解質膜の損傷の有無を調べた。なお、内部抵抗値の測定方法及び高分子電解質膜の損傷の有無の判定方法は、表3にて説明したサンプル17~23の内部抵抗値の測定方法及び高分子電解質膜の損傷の有無の判定方法と同様である。
 以下、各サンプルに共通するガス拡散層の製造方法について説明する。なお、表3にて説明したサンプル17~23の製造方法と同様の部分については、重複する説明を省略しながら説明する。
 まず、アセチレンブラック50gと、グラファイト80gと、VGCF3gと、界面活性剤4gと、水200gとをミキサーに投入する。前記各材料をミキサー内に投入後、ミキサーの回転数を100rpmとして60分間、前記各材料を混錬する。60分経過後、前記混錬して得た混錬物にPTFEディスパージョン25gを混合して、さらに5分間攪拌する。
 このようにして得られた混練物をミキサーの中から取り出し、延伸ロール機のギャップを調整して圧延し、シート状にする。この後、シート状にした前記混錬物をプログラム制御式の焼成炉にて300℃で2時間焼成し、前記混錬物中の界面活性剤と水を除去する。
 界面活性剤と水を除去した前記混錬物を焼成炉から取り出し、再び延伸ロール機のギャップを調整して圧延し、厚さ調整及び厚さバラツキの低減を行う。この後、再圧延した前記混錬物を6cm角に裁断する。
 以上のようにして、ゴム状のガス拡散層を製造する。
 サンプル30~35は、圧延時に延伸ロール機のギャップを変更することで製造することができる。
 次に、前記のようにして測定又は判定された試験結果についての考察を述べる。
 表5を参照してサンプル30~35の内部抵抗値を比較すると、ガス拡散層の厚みが厚くなる程、内部抵抗値が増加することが分かる。また、厚さが600μmであるサンプル33と厚さが650μmであるサンプル34の内部抵抗値を比較すると、サンプル34の方が、内部抵抗値が大幅に高くなっていることが分かる。なお、厚さが150μm未満であるシート状のガス拡散層の製造を試みたが、強度が不足し、安定的に内部抵抗を測定することができなかった。また、仮に製造できたとしても、厚さが薄くなることでガス拡散層のガス透過性が向上するために、低加湿運転下での保水性(保湿性)が低下して高分子電解質膜が乾燥し、内部抵抗は増加すると推測される。
 従って、以上の試験結果及び考察から、ガス拡散層の厚さは150μm以上600μm以下であることが好ましいと考えられる。
 一方、高分子電解質膜の損傷の有無については、サンプル30~35とも高分子電解質膜の損傷は無かった。これにより、高分子電解質膜の損傷の有無はガス拡散層の厚さに影響されないことが分かる。
 なお、前記サンプル18の製造方法とは異なる2つの製造方法により、サンプル18のガス拡散層と同様のVGCFの配合比率(2.0重量%)、PTFEの配合比率(10重量%)、及び厚さ(400μm)を有するガス拡散層を製造し、内部抵抗値及び高分子電解質膜の損傷の有無を調べたところ、サンプル18と同じ結果を得た。すなわち、内部抵抗値は50mΩ・cmであり、高分子電解質膜の損傷は無かった。
 一方の製造方法は、具体的には次のような方法である。
 まず、前記ミキサーで混練して得た混練物を、延伸ロール機に代えて押出成形機(2軸フルフライトスクリューの長さ50cm、Tダイの幅7cm、ギャップ600μm)を用い、厚さ600μm、幅7cmのシート状に成形する。この後、シート状にした前記混錬物を、プログラム制御式の焼成炉にて300℃で30分間焼成し、前記混錬物中の界面活性剤と水を除去する。
 界面活性剤と水を除去した前記混錬物を焼成炉から取り出し、延伸ロール機のギャップを400μmに調整して再圧延し、厚さ調整及び厚さバラツキの低減を行う。この後、再圧延した前記混錬物を6cm角に裁断する。このようにして、サンプル18と同様のVGCFの配合比率、PTFEの配合比率、厚さを有するガス拡散層を得た。
 また、他方の製造方法は具体的には次のような方法である。
 まず、サンプル18と同じ組成の材料を、ミキサーに代えて押出成形機(2軸フルフライトスクリューの長さ100cm、Tダイの幅7cm、ギャップ600μm)を用いて、混練し、押し出しし、且つシート状に成形する。この後、シート状にした混錬物を、プログラム制御式の焼成炉にて300℃で30分間焼成し、前記混錬物中の界面活性剤と水を除去する。
 界面活性剤と水を除去した前記混錬物を焼成炉から取り出し、延伸ロール機のギャップを400μmに調整して再圧延し、厚さ調整及び厚さバラツキの低減を行う。この後、再圧延した前記混錬物を6cm角に裁断する。このようにして、サンプル18と同様のVGCFの配合比率、PTFEの配合比率、厚さを有するガス拡散層を得た。
 なお、炭素繊維を全く使用することなくPTFEの配合量の低減を試みたところ、PTFEの配合比率が20重量%の場合、前記各サンプルと同様の製造方法によってシート状のガス拡散層を製造することができた。しかしながら、当該ガス拡散層の内部抵抗値は、PTFEの配合比率が20重量%であるサンプル28の内部抵抗値(78mΩ・cm)よりも高くなった。これにより、炭素繊維を使用することが内部抵抗値の増加の抑制に効果があることが分かる。
 また、炭素繊維を全く使用することなくPTFEの配合比率の低減を試みたが、シート状のガス拡散層としての強度を十分に確保することができなかった。すなわち、炭素繊維を使用した場合にはPTFEの配合比率を20重量%未満にすることが可能であるが、炭素繊維を使用しない場合にはPTFEの配合比率を20重量%未満にすることができなかった。このことから、炭素繊維を使用することが、シート状のガス拡散層としての強度の強化に効果があることが分かる。
 次に、本実施形態にかかる燃料電池の発電性能を検証した結果について説明する。
 まず、表6を用いて、アノードガス拡散層14A及びカソードガス拡散層14Cの多孔度の違いによる発電性能の検証結果について説明する。
Figure JPOXMLDOC01-appb-T000006

 表6において、サンプル36は、本実施形態にかかる燃料電池であり、サンプル37~39は、その比較例として製造した燃料電池である。サンプル36~39は、多孔度55%のガス拡散層と多孔度70%のガス拡散層の2種類のガス拡散層を用意し、それらを組み合わせて構成したものである。具体的には、サンプル36は、アノードガス拡散層14Aとして多孔度55%のガス拡散層を用い、カソードガス拡散層14Cとして多孔度70%のガス拡散層を用いた燃料電池である。サンプル37は、アノードガス拡散層14Aとして多孔度70%のガス拡散層を用い、カソードガス拡散層14Cとして多孔度70%のガス拡散層を用いた燃料電池である。サンプル38は、アノードガス拡散層14Aとして多孔度70%のガス拡散層を用い、カソードガス拡散層14Cとして多孔度55%のガス拡散層を用いた燃料電池である。サンプル39は、アノードガス拡散層14Aとして多孔度55%のガス拡散層を用い、カソードガス拡散層14Cとして多孔度55%のガス拡散層を用いた燃料電池である。各ガス拡散層の厚さは、全て400μmとしている。
 厚さ400μm、多孔度55%のガス拡散層、すなわち、サンプル36及び39のアノードガス拡散層14Aと、サンプル38及び39のカソードガス拡散層14Cは、以下のようにして製造している。
 まず、平均粒径が小さい導電性粒子の一例としてのアセチレンブラック(電気化学工業株式会社製デンカブラック:登録商標、粒子径D50=5μm)50gと、平均粒子径が大きい導電性粒子の一例としての人造黒鉛粉末(昭和電工製SCMG-AR、D50=20μm)100gと、VGCF(昭和電工製:繊維径0.15μm、繊維長15μm)2gと、界面活性剤(トライトンX:登録商標)12gと、分散溶媒の一例としての水500gとをプラネタリミキサーに投入する。
 前記各材料をプラネタリミキサーに投入後、プラネタリミキサーの回転数を100rpmとして60分間、前記各材料を混錬する。60分経過後、前記混錬して得た混錬物に高分子樹脂としてPTFEディスパージョン35g(旭硝子株式会社製AD911、固形分比60%)を混合して、さらに、プラネタリミキサーの回転数を100rpmとして5分間攪拌する。
 このようにして得られた混練物をプラネタリミキサーの中から20g取り出し、延伸ロール機(圧力200kg/cm、ギャップ600μmに設定)にて圧延してシート状にする。この後、シート状にした前記混錬物をプログラム制御式の焼成炉にて、300℃で20分間焼成し、前記混錬物中の界面活性剤と水を除去する。
 界面活性剤と水を除去した前記混錬物を焼成炉から取り出し、再び延伸ロール機(圧力500kg/cm、ギャップ380μm)にて圧延して、厚さ調整及び厚さバラツキの低減を行ったのち、6cm角に裁断する。
 これにより、厚さ400μm、多孔度55%のガス拡散層を得ることができる。
 なお、製造したガス拡散層の炭素繊維(VGCF)の配合比率を計算により求めたところ、シート全体の3.9%(重量換算)であった。また、製造したガス拡散層のPTFEの配合比率を計算により求めたところ、12%(重量換算)であった。
 また、多孔度70%のガス拡散層、すなわち、サンプル37及び38のアノードガス拡散層14Aとサンプル36及び37のカソードガス拡散層14Cは、以下のようにして製造している。
 まず、導電性粒子の一例としてのアセチレンブラック(電気化学工業株式会社製デンカブラック)100gと、VGCF(昭和電工製:繊維径0.15μm、繊維長15μm)5gと、界面活性剤(トライトンX:登録商標)12gと、分散溶媒の一例としての水500gとをミキサーに投入する。なお、使用するカーボン粉末は1種類だけである。
 前記各材料をミキサーに投入後、ミキサーの回転数を100rpmとして60分間、前記材料を混錬する。60分経過後、前記混錬して得た混錬物に高分子樹脂としてPTFEディスパージョン35g(旭硝子株式会社製AD911、固形分比60%)を混合して、さらに、ミキサーの回転数を100rpmとして5分間攪拌する。
 このようにして得られた混練物をミキサーの中から10g取り出し、延伸ロール機(圧力10kg/cm、ギャップ500μmに設定)にて圧延して、シート状にする。この後、シート状にした前記混錬物をプログラム制御式の焼成炉にて、300℃で20分間焼成し、前記混錬物中の界面活性剤と水を除去する。
 界面活性剤と水を除去した前記混錬物を焼成炉から取り出し、再び延伸ロール機(圧力20kg/cm、ギャップ400μm)にて圧延し、厚さ調整、及び厚さバラツキの低減を行ったのち、6cm角に裁断する。
 これにより、厚さ400μm、多孔度70%のガス拡散層を得ることができる。
 なお、製造したガス拡散層の炭素繊維(VGCF)の配合比率を計算により求めたところ、シート全体の4.0%(重量換算)であった。また、製造したガス拡散層のPTFEの配合比率を計算により求めたところ、17%(重量換算)であった。
 次に、前記製造した55%及び70%のガス拡散層を用いて、サンプル36~39の燃料電池の製造方法について説明する。
 高分子電解質膜(Dupont社製Nafion112:登録商標)の両面に、触媒層として、白金坦持カーボン(田中貴金属社製TEC10E50E)とイオン交換樹脂(旭硝子株式会社製Flemion:登録商標)の混合物を塗布する。その後、当該混合物を乾燥して膜・触媒層接合体を得る。なお、このとき、高分子電解質膜の大きさは15cm角とし、触媒層の大きさは5.8cm角とする。また、白金の使用量は、アノード電極側0.35mg/cmとカソード電極側0.6mg/cmとする。
 次いで、前記膜・触媒層接合体の両面に、前記製造した多孔度55%又は70%のガス拡散層を配置して、MEAを製造する。
 次いで、製造したMEAを一対のカーボンセパレータ(東海カーボン社製)で挟み込み、この状態で位置ずれしないように締結圧力が10kgf/cmとなるまで加圧する。
 以上のようにして、サンプル36~39の燃料電池を製造する。
 次に、表6に示したサンプル36~39の電圧値の測定方法について説明する。
 まず、各サンプルにそれぞれ電子負荷機(菊水電気製PLZ-4W)を接続する。アノード電極に燃料ガスとして純水素を流し、カソード電極に酸化剤ガスとして空気を流す。このとき、利用率は、それぞれ70%、40%とする。また、ガス加湿露点は、アノード電極65℃、カソード電極65℃に設定する。また、セル温度は、90℃に設定する。
 次いで、電流密度0.2A/cm時の電圧値を測定する。
 以上のようにして、表6に示す各サンプル36~39の電圧値を得た。
 表6から分かるように、本実施形態にかかる燃料電池の構成を有するサンプル36が最も高い電圧値を得ることができた。すなわち、本実施形態にかかる燃料電池によれば、従来に比べて発電性能を一層向上させることができることが確認された。
 なお、前記では、炭素繊維としてVGCFを用いてサンプル36~39を製造したが、VGCFに代えて、チョップファイバー(クレハ株式会社製M-201F:繊維径12.5μm、繊維長150μm)、ミルドファイバー(クレハ株式会社製M-2007S:繊維径14.5μm、繊維長90μm)、又はカットファイバー(東レ株式会社製T008-3:繊維径7μm)を用いてサンプル36~39を製造しても、同様の電圧値が得られた。
 また、前記では、プラネタリミキサーで混錬した混錬物を圧延ロール機を用いてシート状に成形したが、圧延ロール機に代えて押出成形機(2軸フルフライトスクリュー、長さ50cm、回転速度10rpm、Tダイの幅7cm、ギャップ600μm)を用いてシート状に成形するようにしても、同様の電圧値が得られた。
 また、前記では、プラネタリミキサーで混錬した混錬物を圧延ロール機を用いてシート状に成形したが、押出成形機(2軸フルフライトスクリュー混錬羽根形状、長さ100cm、Tダイの幅7cm、ギャップ600μm)に材料を直接投入して、混錬、押し出し、シート成形するようにしても、同様の電圧値が得られた。
 次に、表7を用いて、アノードガス拡散層14A及びカソードガス拡散層14Cの好ましい厚さについて説明する。
Figure JPOXMLDOC01-appb-T000007

 表7において、サンプル40~43は、サンプル36のアノードガス拡散層14A又はカソードガス拡散層14Cの厚さを、200μm又は600μmにしたものである。従って、サンプル40~43において、アノードガス拡散層14Aの多孔度は55%であり、カソードガス拡散層の多孔度は70%である。
 厚さ200μm、多孔度55%のガス拡散層は、以下のようにして製造することができる。
 まず、前述した厚さ400μm、多孔度55%のガス拡散層と同様にして、アセチレンブラックと、人造黒鉛粉末と、VGCFと、界面活性剤と、水と、高分子樹脂との混錬物をプラネタリミキサーにて作成する。
 次いで、前記混錬物をプラネタリミキサーの中から10g取り出し、延伸ロール機(圧力200kg/cm、ギャップ350μmに設定)にて圧延してシート状にする。
 次いで、シート状にした前記混錬物をプログラム制御式の焼成炉にて、300℃で20分間焼成し、前記混錬物中の界面活性剤と水を除去する。
 次いで、界面活性剤と水を除去した前記混錬物を焼成炉から取り出し、再び延伸ロール機(圧力500kg/cm、ギャップ180μm)にて圧延して、厚さ調整及び厚さバラツキの低減を行ったのち、6cm角に裁断する。
 これにより、厚さ200μm、多孔度55%のガス拡散層を得ることができる。
 厚さ600μm、多孔度55%のガス拡散層は、以下のようにして製造することができる。
 まず、前述した厚さ400μm、多孔度55%のガス拡散層と同様にして、アセチレンブラックと、人造黒鉛粉末と、VGCFと、界面活性剤と、水と、高分子樹脂との混錬物をプラネタリミキサーにて作成する。
 次いで、前記混錬物をプラネタリミキサーの中から20g取り出し、延伸ロール機(圧力200kg/cm、ギャップ850μmに設定)にて圧延してシート状にする。この後、シート状にした前記混錬物をプログラム制御式の焼成炉にて、300℃で20分間焼成し、前記混錬物中の界面活性剤と水を除去する。
 次いで、界面活性剤と水を除去した前記混錬物を焼成炉から取り出し、再び延伸ロール機(圧力500kg/cm、ギャップ580μm)にて圧延して、厚さ調整及び厚さバラツキの低減を行ったのち、6cm角に裁断する。
 これにより、厚さ600μm、多孔度55%のガス拡散層を得ることができる。
 厚さ200μm、多孔度70%のガス拡散層は、以下のようにして製造することができる。
 まず、前述した厚さ400μm、多孔度70%のガス拡散層と同様にして、アセチレンブラックと、VGCFと、界面活性剤と、水と、高分子樹脂との混錬物をミキサーにて作成する。
 次いで、前記混錬物をプラネタリミキサーの中から10g取り出し、延伸ロール機(圧力10kg/cm、ギャップ300μmに設定)にて圧延してシート状にする。
 次いで、シート状にした前記混錬物をプログラム制御式の焼成炉にて、300℃で20分間焼成し、前記混錬物中の界面活性剤と水を除去する。
 次いで、界面活性剤と水を除去した前記混錬物を焼成炉から取り出し、再び延伸ロール機(圧力20kg/cm、ギャップ200μm)にて圧延して、厚さ調整及び厚さバラツキの低減を行ったのち、6cm角に裁断する。
 これにより、厚さ200μm、多孔度70%のガス拡散層を得ることができる。
 また、厚さ200μm、多孔度70%のガス拡散層は、以下のようにして製造することもできる。
 まず、アセチレンブラック100g、人造黒鉛粉末15gと、VGCF2gと、チョップファイバー5g(クレハ製M201F:繊維径12.5μm、繊維長150μm)と、界面活性剤(トライトンX:登録商標)20gと、水400gとをミキサーに投入する。
 次いで、ミキサーの回転数を100rpmとして60分間、前記各材料を混錬する。60分経過後、前記混錬して得た混錬物に高分子樹脂としてPTFEディスパージョン36gを混合して、さらに、ミキサーの回転数を100rpmとして5分間攪拌する。なお、使用したカーボン粉末は2種類である。
 このようにして得られた混練物をミキサーの中から10g取り出し、延伸ロール機(圧力10kg/cm、ギャップ300μmに設定)にて圧延して、シート状にする。この後、シート状にした前記混錬物をプログラム制御式の焼成炉にて、300℃で20分間焼成し、前記混錬物中の界面活性剤と水を除去する。
 界面活性剤と水を除去した前記混錬物を焼成炉から取り出し、再び延伸ロール機(圧力20kg/cm、ギャップ200μm)にて圧延し、厚さ調整、及び厚さバラツキの低減を行ったのち、6cm角に裁断する。
 これにより、厚さ200μm、多孔度70%のガス拡散層を得ることができる。
 なお、製造したガス拡散層の炭素繊維(VGCFとチョップファイバーとの合計)の配合比率を計算により求めたところ、シート全体の4.9%(重量換算)であった。また、製造したガス拡散層のPTFEの配合比率を計算により求めたところ、15%(重量換算)であった。
 表7に示す各サンプル40~43の電圧値は、空気の利用率を90%とした以外は、表6に示す各サンプル36~39の電圧値と同じ測定条件で測定して得たものである。
 表7から分かるように、サンプル40においては、サンプル36よりやや高い電圧値を得ることができた。すなわち、400μmの厚さのアノードガス拡散層14Aよりもカソードガス拡散層14Cの厚さを薄くすることで、従来に比べて発電性能を一層向上させることができることが確認された。これは、カソードガス拡散層14Cを薄くすることによって、発電性能が低下すると通常考えられるが、それ以上にカソードガス拡散層14Cのガス拡散性が向上するためと考えられる。
 また、表7から分かるように、サンプル41においては、サンプル36とほぼ同等の電圧値を得ることができた。すなわち、アノードガス拡散層14A及びカソードガス拡散層14Cの厚さを共に200μmまで薄くしても、発電性能はほとんど低下しないことが確認された。
 また、表7から分かるように、サンプル42においては、サンプル36と比べて電圧値が大きく低下した。すなわち、400μmの厚さのカソードガス拡散層14Cよりもアノードガス拡散層14Aの厚さを薄くすると、発電性能が低下することが確認された。これは、アノードガス拡散層14Aの厚さが薄いことで保水性が低下し、且つ、カソードガス拡散層14Cの厚さが厚いことでガス拡散性が低下するためと考えられる。
 また、表7から分かるように、サンプル43においては、サンプル36と比べて電圧値が大きく低下した。すなわち、アノードガス拡散層14Aの厚さを600μmまで厚くすると、発電性能が低下することが確認された。これは、アノードガス拡散層14Aの厚さが厚いことで保水性は高くなるが、その厚さが厚過ぎるために、保水性が高くなったことによる発電性能の向上効果よりも、アノードガス拡散層14Aのガス拡散性の低下による発電性能の低下が上回ったためと考えられる。
 従って、表7より、アノードガス拡散層14Aの厚さは、200μm以上400μm以下であることが好ましく、カソードガス拡散層14Cの厚さは、アノードガス拡散層14Aの厚さより薄いことが好ましいことが分かる。
 なお、前記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明にかかる膜電極接合体及び燃料電池は、発電性能を一層向上させることができるので、例えば、自動車などの移動体、分散発電システム、家庭用のコージェネレーションシステムなどの駆動源として使用される燃料電池に有用である。
 本発明は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術に熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 2008年10月31日に出願された日本国特許出願No.2008-281458号、同日に出願された日本国特許出願No.2008-281553号、及び2009年6月8日に出願された日本国特許出願No.2009-137118号の明細書、図面、及び特許請求の範囲の開示内容は、全体として参照されて本明細書の中に取り入れられるものである。
  1  燃料電池
 10  膜電極接合体
 11  高分子電解質膜
 12A  アノード電極
 12C  カソード電極
 13A  アノード触媒層
 13C  カソード触媒層
 14A  アノードガス拡散層
 14C  カソードガス拡散層
 15A  アノードガスケット
 15C  カソードガスケット
 20A  アノードセパレータ
 20C  カソードセパレータ
 21A  燃料ガス流路溝
 21C  酸化剤ガス流路溝

Claims (18)

  1.  高分子電解質膜と、
     前記高分子電解質膜を挟んで互いに対向する一対の触媒層と、
     前記高分子電解質膜及び前記一対の触媒層を挟んで互いに対向するアノードガス拡散層及びカソードガス拡散層と、を有し、
     前記アノードガス拡散層は、導電性粒子と高分子樹脂とを主成分とした多孔質部材で構成され、
     前記アノードガス拡散層の多孔度は、60%以下であり、
     前記カソードガス拡散層の多孔度は、前記アノードガス拡散層の多孔度より大きい、
     膜電極接合体。
  2.  前記アノードガス拡散層の多孔度は、42%以上である、請求項1に記載の膜電極接合体。
  3.  前記カソードガス拡散層の多孔度は、60%より大きい、請求項1又は2に記載の膜電極接合体。
  4.  前記カソードガス拡散層の厚さは、前記アノードガス拡散層の厚さより薄い、請求項1~3のいずれか1つに記載の膜電極接合体。
  5.  前記アノードガス拡散層及び前記カソードガス拡散層の厚さは、150μm以上600μm以下である、請求項4に記載の膜電極接合体。
  6.  前記アノードガス拡散層及び前記カソードガス拡散層の厚さは、200μm以上400μm以下である、請求項5に記載の膜電極接合体。
  7.  前記カソードガス拡散層は、導電性粒子と高分子樹脂とを主成分とした多孔質部材で構成されている、請求項1~6のいずれか1つに記載の膜電極接合体。
  8.  前記カソードガス拡散層の多孔度は、76%以下である、請求項7に記載の膜電極接合体。
  9.  前記アノードガス拡散層及び前記カソードガス拡散層に含まれる前記導電性粒子は、平均粒子径が異なる2種類のカーボン材料で構成されている、請求項7又は8に記載の膜電極接合体。
  10.  前記アノードガス拡散層に含まれる平均粒子径が異なる2種類のカーボン材料は、平均粒子径が小さいカーボン材料と、平均粒径が大きいカーボン材料との配合比率が、1:0.7~1:2である、請求項9に記載の膜電極接合体。
  11.  前記カソードガス拡散層に含まれる高分子樹脂の単位体積当たりの重量は、前記アノードガス拡散層に含まれる高分子樹脂の単位体積当たりの重量より大きい、請求項7~10のいずれか1つに記載の膜電極接合体。
  12.  前記アノードガス拡散層及び前記カソードガス拡散層は、前記高分子樹脂を10重量%以上17重量%以下含む、請求項11に記載の膜電極接合体。
  13.  前記アノードガス拡散層及び前記カソードガス拡散層は、前記高分子樹脂よりも少ない重量の炭素繊維を含んでいる、請求項7~12のいずれか1つに記載の膜電極接合体。
  14.  前記カソードガス拡散層に含まれる炭素繊維の単位体積当たりの重量は、前記アノードガス拡散層に含まれる炭素繊維の単位体積当たりの重量より大きい、請求項13に記載の膜電極接合体。
  15.  前記アノードガス拡散層及び前記カソードガス拡散層は、前記炭素繊維を2.0重量%以上7.5重量%以下含む、請求項14に記載の膜電極接合体。
  16.  前記炭素繊維は、気相成長法炭素繊維、ミルドファイバー、チョップファイバーのうちのいずれか1つである、請求項13~15のいずれか1つに記載の膜電極接合体。
  17.  請求項1~16のいずれか1つに記載の膜電極接合体と、
     前記膜電極接合体を挟むように配置された一対のセパレータと、
     を備える、燃料電池。
  18.  前記燃料電池を運転する際に、前記燃料電池に供給される燃料ガス及び酸化剤ガスの露点は、前記燃料電池の運転温度より低い、請求項17に記載の燃料電池。
PCT/JP2009/005739 2008-10-31 2009-10-29 膜電極接合体及び燃料電池 WO2010050218A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/995,237 US20110076592A1 (en) 2008-10-31 2009-10-29 Membrane-electrode-assembly and fuel cell
JP2010535678A JP4773582B2 (ja) 2008-10-31 2009-10-29 膜電極接合体及び燃料電池
EP09823331.5A EP2343762B1 (en) 2008-10-31 2009-10-29 Membrane electrode assembly and fuel cell
CN2009801202879A CN102047478A (zh) 2008-10-31 2009-10-29 膜电极接合体以及燃料电池

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008281553 2008-10-31
JP2008281548 2008-10-31
JP2008-281548 2008-10-31
JP2008-281553 2008-10-31
JP2009-137118 2009-06-08
JP2009137118 2009-06-08

Publications (1)

Publication Number Publication Date
WO2010050218A1 true WO2010050218A1 (ja) 2010-05-06

Family

ID=42128589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005739 WO2010050218A1 (ja) 2008-10-31 2009-10-29 膜電極接合体及び燃料電池

Country Status (5)

Country Link
US (1) US20110076592A1 (ja)
EP (1) EP2343762B1 (ja)
JP (2) JP4773582B2 (ja)
CN (1) CN102047478A (ja)
WO (1) WO2010050218A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054111A (ja) * 2010-09-01 2012-03-15 Dainippon Printing Co Ltd 導電性多孔質層が形成された固体高分子形燃料電池用ガス拡散層及びそれを用いた固体高分子形燃料電池
JP2021026909A (ja) * 2019-08-06 2021-02-22 トヨタ自動車株式会社 燃料電池セル

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5259022B1 (ja) 2011-07-19 2013-08-07 パナソニック株式会社 膜電極接合体およびガス拡散層の製造方法
JP5772554B2 (ja) * 2011-12-06 2015-09-02 トヨタ自動車株式会社 燃料電池
US8518596B1 (en) * 2012-05-16 2013-08-27 GM Global Technology Operations LLC Low cost fuel cell diffusion layer configured for optimized anode water management
US10326148B2 (en) 2012-10-19 2019-06-18 Panasonic Intellectual Property Management Co., Ltd. Fuel cell gas diffusion layer and method of manufacturing same
DE102014213555A1 (de) 2014-07-11 2016-01-14 Sgl Carbon Se Membran-Elektroden-Einheit
US10868320B2 (en) * 2014-09-23 2020-12-15 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Stackless fuel cell
EP3379627B1 (en) 2015-11-19 2023-03-08 Panasonic Intellectual Property Management Co., Ltd. Gas diffusion layer for fuel cell, method for manufacturing said layer, membrane-electrode assembly, and fuel cell
WO2018038986A1 (en) 2016-08-25 2018-03-01 Proton Energy Systems, Inc. Membrane electrode assembly and method of making the same
US10978716B2 (en) * 2018-06-07 2021-04-13 Panasonic Intellectual Property Management Co., Ltd. Gas diffusion layer for fuel battery, membrane electrode assembly, and fuel battery
DE102018215904A1 (de) * 2018-09-19 2020-03-19 Robert Bosch Gmbh Verfahren zum Herstellen einer Membran-Elektrodeneinheit für eine Brennstoffzelle

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245801A (ja) * 1996-03-11 1997-09-19 Tanaka Kikinzoku Kogyo Kk 高分子固体電解質型燃料電池用電極及びその製造方法
EP0917226A2 (en) * 1997-11-07 1999-05-19 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP2003197202A (ja) 2001-12-26 2003-07-11 Hitachi Chem Co Ltd 高分子固体電解質燃料電池用ガス拡散層材料及びその接合体
EP1517392A1 (en) * 2002-06-26 2005-03-23 Honda Giken Kogyo Kabushiki Kaisha Solid high polymer type cell assembly
JP2005197150A (ja) * 2004-01-09 2005-07-21 Toyota Motor Corp 燃料電池
US20070202388A1 (en) * 2004-03-05 2007-08-30 Joachim Koehler Membrane Electrode Unit
JP2007242444A (ja) 2006-03-09 2007-09-20 Nitto Denko Corp 燃料電池用ガス拡散層とそれを用いた燃料電池
JP2008281458A (ja) 2007-05-11 2008-11-20 Matsushita Electric Ind Co Ltd マイクロアレイ測定装置
JP2008281553A (ja) 2007-04-09 2008-11-20 Seiko Epson Corp 現在位置測位方法、プログラム、記憶媒体、測位装置及び電子機器
JP2009076451A (ja) * 2007-08-24 2009-04-09 Toshiba Corp 燃料電池用電極膜接合体およびそれを用いた燃料電池
JP2009137118A (ja) 2007-12-05 2009-06-25 Canon Inc インクジェット記録装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2941774C2 (de) * 1979-10-16 1985-03-21 Varta Batterie Ag, 3000 Hannover Verfahren und Vorrichtung zur Herstellung einer kunststoffgebundenen Aktivkohleschicht für dünne Gasdiffusionselektroden
JP2001057215A (ja) * 1999-08-18 2001-02-27 Toshiba Corp 固体高分子膜型燃料電池およびそのガス拡散層形成方法
KR100427166B1 (ko) * 1999-08-27 2004-04-14 마쯔시다덴기산교 가부시키가이샤 고분자 전해질형 연료전지
JP3594533B2 (ja) * 2000-05-30 2004-12-02 三洋電機株式会社 燃料電池
CN1269245C (zh) * 2000-08-16 2006-08-09 松下电器产业株式会社 燃料电池
JP3954793B2 (ja) * 2000-12-04 2007-08-08 三洋電機株式会社 燃料電池用ガス拡散層およびその製法
JP4215979B2 (ja) * 2001-12-17 2009-01-28 日本バルカー工業株式会社 拡散膜、該拡散膜を有する電極および拡散膜の製造方法
JPWO2005043656A1 (ja) * 2003-10-30 2007-11-29 三菱商事株式会社 固体高分子電解質型燃料電池用ガス拡散層
EP1533859A3 (en) * 2003-11-06 2007-06-27 Matsushita Electric Industrial Co., Ltd. Diffusion layer for a fuel cell
JP2007109599A (ja) * 2005-10-17 2007-04-26 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体
KR101082810B1 (ko) * 2005-11-01 2011-11-11 가부시키가이샤 도모에가와 세이시쇼 가스 확산 전극, 막-전극 접합체, 고체 고분자형 연료 전지및 이들의 제조 방법
JP5068014B2 (ja) * 2005-11-22 2012-11-07 日東電工株式会社 燃料電池用ガス拡散層とその製造方法ならびにそれを用いた燃料電池
JP4612569B2 (ja) * 2006-03-20 2011-01-12 本田技研工業株式会社 固体高分子型燃料電池用膜電極構造体
US7871733B2 (en) * 2006-12-04 2011-01-18 Toyota Jidosha Kabushiki Kaisha Fuel cells having a water guide element
US20090104476A1 (en) * 2007-10-17 2009-04-23 Gm Global Technology Operations, Inc. Fuel cell stack with asymmetric diffusion media on anode and cathode

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245801A (ja) * 1996-03-11 1997-09-19 Tanaka Kikinzoku Kogyo Kk 高分子固体電解質型燃料電池用電極及びその製造方法
EP0917226A2 (en) * 1997-11-07 1999-05-19 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP2003197202A (ja) 2001-12-26 2003-07-11 Hitachi Chem Co Ltd 高分子固体電解質燃料電池用ガス拡散層材料及びその接合体
EP1517392A1 (en) * 2002-06-26 2005-03-23 Honda Giken Kogyo Kabushiki Kaisha Solid high polymer type cell assembly
JP2005197150A (ja) * 2004-01-09 2005-07-21 Toyota Motor Corp 燃料電池
US20070202388A1 (en) * 2004-03-05 2007-08-30 Joachim Koehler Membrane Electrode Unit
JP2007242444A (ja) 2006-03-09 2007-09-20 Nitto Denko Corp 燃料電池用ガス拡散層とそれを用いた燃料電池
JP2008281553A (ja) 2007-04-09 2008-11-20 Seiko Epson Corp 現在位置測位方法、プログラム、記憶媒体、測位装置及び電子機器
JP2008281458A (ja) 2007-05-11 2008-11-20 Matsushita Electric Ind Co Ltd マイクロアレイ測定装置
JP2009076451A (ja) * 2007-08-24 2009-04-09 Toshiba Corp 燃料電池用電極膜接合体およびそれを用いた燃料電池
JP2009137118A (ja) 2007-12-05 2009-06-25 Canon Inc インクジェット記録装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054111A (ja) * 2010-09-01 2012-03-15 Dainippon Printing Co Ltd 導電性多孔質層が形成された固体高分子形燃料電池用ガス拡散層及びそれを用いた固体高分子形燃料電池
JP2021026909A (ja) * 2019-08-06 2021-02-22 トヨタ自動車株式会社 燃料電池セル
JP7115438B2 (ja) 2019-08-06 2022-08-09 トヨタ自動車株式会社 燃料電池セル

Also Published As

Publication number Publication date
EP2343762B1 (en) 2014-05-07
CN102047478A (zh) 2011-05-04
EP2343762A1 (en) 2011-07-13
JP2011146407A (ja) 2011-07-28
EP2343762A4 (en) 2012-05-09
JP4773582B2 (ja) 2011-09-14
US20110076592A1 (en) 2011-03-31
JP5486549B2 (ja) 2014-05-07
JPWO2010050218A1 (ja) 2012-03-29

Similar Documents

Publication Publication Date Title
JP4773582B2 (ja) 膜電極接合体及び燃料電池
JP4938133B2 (ja) 燃料電池用ガス拡散層及びその製造方法、膜電極接合体、並びに燃料電池
RU2465692C1 (ru) Газодиффузионный слой для топливного элемента
JP5069927B2 (ja) 燃料電池用膜電極接合体およびその製造方法
JP4901748B2 (ja) 微孔質二重層を有するガス拡散媒体
US20090068525A1 (en) Fuel Cell Electrode, Method for Producing Fuel Cell Electrode, Membrane-Electrode Assembly, Method for Producing Membrane-Electrode Assembly, and Solid Polymer Fuel Cell
EP3579315B1 (en) Gas diffusion layer for fuel battery, membrane electrode assembly, and fuel battery
JP7314785B2 (ja) 電極触媒層、膜電極接合体及び固体高分子形燃料電池
JP2010073586A (ja) 電解質膜−電極接合体
JP7336761B2 (ja) 膜電極接合体および燃料電池
JP7249574B2 (ja) 燃料電池用ガス拡散層、膜電極接合体、及び燃料電池
JP2010192350A (ja) ガス拡散層、膜−電極接合体及び燃料電池
JP2007128665A (ja) 燃料電池用電極触媒層、および、それを用いた膜電極接合体の製造方法
KR101909709B1 (ko) 내구성이 향상된 연료전지용 막-전극 접합체, 그 제조 방법 및 상기 막-전극 접합체를 포함하는 연료전지
JP5399122B2 (ja) 膜電極−枠接合体及びその製造方法、並びに高分子電解質形燃料電池
US10297850B2 (en) Membrane electrode assembly
JP7474121B2 (ja) ガス拡散層、膜電極接合体、燃料電池、及びガス拡散層の製造方法
JP2014035797A (ja) 膜電極接合体及び燃料電池、及びその製造方法
US10290877B2 (en) Membrane electrode assembly
JP2010238513A (ja) 固体高分子形燃料電池用触媒粒子含有凝集体
JP2022011735A (ja) 燃料電池
JP2004146305A (ja) 固体高分子型燃料電池用電極構造体
JP2014002923A (ja) 燃料電池用ガス拡散層及びその製造方法
JP5426830B2 (ja) 固体高分子型燃料電池用ガス拡散電極、それを用いた膜−電極接合体およびその製造方法、ならびにそれを用いた固体高分子型燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980120287.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823331

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010535678

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12995237

Country of ref document: US

Ref document number: 2009823331

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE