WO2010038415A1 - 真空排気システム、真空排気システムの運転方法、冷凍機、真空排気ポンプ、冷凍機の運転方法、二段式冷凍機の運転制御方法、クライオポンプの運転制御方法、二段式冷凍機、クライオポンプ、基板処理装置、電子デバイスの製造方法 - Google Patents

真空排気システム、真空排気システムの運転方法、冷凍機、真空排気ポンプ、冷凍機の運転方法、二段式冷凍機の運転制御方法、クライオポンプの運転制御方法、二段式冷凍機、クライオポンプ、基板処理装置、電子デバイスの製造方法 Download PDF

Info

Publication number
WO2010038415A1
WO2010038415A1 PCT/JP2009/004967 JP2009004967W WO2010038415A1 WO 2010038415 A1 WO2010038415 A1 WO 2010038415A1 JP 2009004967 W JP2009004967 W JP 2009004967W WO 2010038415 A1 WO2010038415 A1 WO 2010038415A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cooling stage
refrigerator
stage
vacuum
Prior art date
Application number
PCT/JP2009/004967
Other languages
English (en)
French (fr)
Inventor
岡田隆弘
青木一俊
駒井久純
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to JP2010513558A priority Critical patent/JP4642156B2/ja
Priority to KR1020117009218A priority patent/KR101279184B1/ko
Priority to CN200980137529.5A priority patent/CN102165192B/zh
Publication of WO2010038415A1 publication Critical patent/WO2010038415A1/ja
Priority to US13/037,819 priority patent/US20110147198A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • F04B37/16Means for nullifying unswept space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an evacuation system, an operation method of the evacuation system, a refrigerator, an evacuation pump, an operation method of the refrigerator, an operation control method of the two-stage refrigerator, an operation control method of the cryopump, a two-stage refrigerator , A cryopump, a substrate processing apparatus, and a method of manufacturing an electronic device.
  • cryopump having a two-stage cooling stage capable of realizing ultra-high vacuum
  • cryotrap having a one-stage cooling stage, and the like.
  • Patent Document 1 describes a vacuum evacuation system in which a plurality of cryopumps are operated by one compressor.
  • a helium gas from a compressor is branched between a compressor and a plurality of cryopumps, and a gas distribution device for adjusting the helium supply pressure is interposed for each branch, and the compressor has a plurality of cryogens. It is disclosed to supply helium at a supply pressure above the maximum required by the pump.
  • Patent Document 2 the number of times the high pressure state and the low pressure state are repeated per unit time is feedback-controlled based on the temperature of the first cooling stage, and the temperature of the first cooling stage can be maintained by maintaining the temperature within a certain range.
  • a pump is disclosed.
  • Patent Document 2 when operating a plurality of cryopumps with one compressor, the pressure difference between the gas in the high pressure piping and the pressure in the low pressure piping is made constant by controlling the cycle time of the compressors. The invention to be maintained is disclosed.
  • Patent Document 1 there is a problem from the viewpoint of energy consumption because it is necessary to previously generate high pressure helium more than necessary.
  • FIG. 10 shows the relationship between the pressure difference of helium in the high-pressure pipe and the low-pressure pipe connecting the compressor and each cryopump and the power consumption when four cryopumps are operated by one compressor. It is a graph. Here, the heat load is kept constant throughout the experiment.
  • the refrigeration capacity is proportional to the product of the operating frequency of the refrigerator and the pressure difference between the high pressure piping and the low pressure piping.
  • the operating frequency of the refrigerator refers to the number of times the high pressure state and the low pressure state are repeated per unit time in the refrigerator. Therefore, in the case of FIG. 10, in consideration of the refrigeration capacity, the operating frequency itself of the refrigerator decreases as the pressure difference of gas in the high pressure piping and the low pressure piping increases.
  • the energy consumption of the refrigerator itself may increase, but since the energy consumption of the refrigerator is at most 100 W, even 4 units is at most 4 100 W.
  • the pressure difference between the gas in the high pressure pipe and the pressure in the low pressure pipe is increased from 1.2 MPa to 1.6 MPa, the energy consumption is increased from about 3500 W to about 4900 W.
  • evacuation can be carried out at least by 1000 W or more and lower energy consumption than in the case of evacuation at a pressure difference of 1.6 MPa.
  • the refrigerator can have a heat generating function by changing the operation method.
  • the regeneration operation is an operation in which the temperature of the cooling unit such as a stage is raised by the heat generation operation of a refrigerator having a heat generating function, the condensed or adsorbed substance is vaporized, and removed from the cooling unit such as a stage. .
  • the present invention aims to provide an evacuation technique with low energy consumption in an evacuation system in which a plurality of vacuum evacuation pumps having a cooling stage unit are connected to a compressor for operation.
  • an object of the present invention is to provide an evacuation technology capable of quickly returning a refrigerator that is in start-up operation and regeneration operation to the state of operation at the time of vacuum evacuation operation.
  • the vacuum pumping system is The refrigerator includes: a first cooling stage unit; and a refrigerator that cools the first cooling stage unit; and a first temperature sensor that measures a temperature of the first cooling stage unit, the temperature measured by the first temperature sensor When the temperature is higher than the predetermined temperature range, the number of times the high pressure state and the low pressure state are repeated within the unit time is increased in the refrigerator, and the temperature measured by the first temperature sensor is lower than the predetermined temperature range.
  • a plurality of vacuum evacuation pumps for reducing the number of times and maintaining the number of times when the temperature measured by the first temperature sensor is within the predetermined temperature range;
  • a compressor connected to the plurality of vacuum exhaust pumps;
  • High-pressure piping which is a flow path through which high-pressure gas having a common pressure is supplied from the compressor to the refrigerators of the plurality of vacuum exhaust pumps;
  • Low pressure piping which is a flow path through which low pressure gas is returned to the compressor from a refrigerator of the plurality of vacuum exhaust pumps;
  • Control means capable of changing a pressure difference between the internal pressure of the high pressure pipe and the internal pressure of the low pressure distribution according to the number of times; And the like.
  • a method of operating a vacuum exhaust system includes a first cooling stage unit, a refrigerator for cooling the first cooling stage unit, and a first method for measuring the temperature of the first cooling stage unit.
  • a plurality of vacuum evacuation pumps having a temperature sensor;
  • a compressor connected to the plurality of vacuum exhaust pumps;
  • High-pressure piping which is a flow path through which high-pressure gas having a common pressure is supplied from the compressor to the refrigerators of the plurality of vacuum exhaust pumps;
  • a method of operating a vacuum exhaust system comprising: low pressure piping, which is a flow path through which low pressure gas is returned to the compressor from refrigerators of the plurality of vacuum exhaust pumps;
  • the plurality of vacuum evacuation pumps increase the number of times that the high pressure state and the low pressure state are repeated in unit time within the refrigerator, Decreasing the number of times when the temperature measured by the temperature sensor is lower than the predetermined temperature range, and maintaining the number of times when the temperature measured by the first temperature sensor is within the
  • a refrigerator comprises a cooling stage; A cylinder connected to one side of the cooling stage; A plate member connected to the other axial end surface of the cylinder opposite to one end surface of the cylinder connected to the cooling stage; A space formed by the cooling stage, the cylinder, and the plate member; A channel provided in the plate member; A valve that brings the inside of the cylinder into either a high pressure state or a low pressure state via the flow path; And a piston-like displacer defining the interior of the space into one space and another space communicating with the flow path,
  • the displacer is a refrigerator which is axially reciprocated inside the cylinder, is hollow inside the cylinder, and contains a substance which preserves a heat state inside the cylinder.
  • a refrigerator includes a cooling stage, wherein the cooling stage is cooled by adiabatically expanding high-pressure gas.
  • the cooling stage is cooled by adiabatically expanding high-pressure gas.
  • the refrigerator according to another aspect of the present invention includes a cooling stage, and raises the temperature of the cooling stage to evaporate the substance being condensed or adsorbed, thereby performing high pressure state in the refrigerator. And the number of times the low pressure state is repeated within a unit time is higher than that during the low temperature normal operation, and operates to increase the pressure difference between the high pressure state and the low pressure state of the gas supplied from the compressor. I assume.
  • a method of operating a refrigerator comprising: A cylinder connected to one side of the cooling stage; A plate member connected to the other axial end surface of the cylinder opposite to one end surface of the cylinder connected to the cooling stage; A space formed by the cooling stage, the cylinder, and the plate member; A channel provided in the plate member; A valve that brings the inside of the cylinder into either a high pressure state or a low pressure state via the flow path; And a piston-like displacer defining the interior of the space into one space and another space communicating with the flow path,
  • the method of operating a refrigerator wherein the displacer axially reciprocates inside the cylinder, and the inside of the cylinder is hollow, and the inside of the cylinder contains a substance that preserves the heat state, Operating the valve to shift the inside of the cylinder from the low pressure state to the high pressure state, thereby adiabatically compressing the low pressure gas; And b.
  • the step of the displacer passing through the adiabatically compressed gas is a value higher than that in the low temperature normal operation, and the pressure difference between the high pressure state and the low pressure state is increased. It is characterized by
  • a method of operating a refrigerator including a cooling stage, wherein the cooling stage is cooled by adiabatically expanding high-pressure gas.
  • the number of times the high and low pressure states of the gas are repeated in a unit time is higher than that in the low temperature normal operation, and the pressure difference between the high pressure state and the low pressure state is increased.
  • an operation control method of a two-stage refrigerator comprising: a first cooling stage, a second cooling stage, a first temperature sensor for measuring a temperature of the first cooling stage, and the second cooling
  • An operation control method of a two-stage refrigerator comprising: a second temperature sensor for measuring a temperature of a stage; and heating means for heating the first cooling stage,
  • a first control step of feedback controlling the operating frequency of the two-stage refrigerator so as to keep the temperature of the first cooling stage constant based on the output of the first temperature sensor;
  • the temperature of the second cooling stage is detected by the output of the second temperature sensor, and the output of the heating means is controlled based on the detected temperature of the second cooling stage.
  • the two-stage refrigerator comprises a first cooling stage, A second cooling stage, A first temperature sensor for detecting the temperature of the first cooling stage; A second temperature sensor for detecting the temperature of the second cooling stage; Heating means for heating the first cooling stage; And a heating controller for controlling an output of the heating means in accordance with the temperature of the second cooling stage detected by the second temperature sensor.
  • a two-stage refrigerator is A first cooling stage having a cooling temperature within a first operating temperature range; A second cooling stage having a cooling temperature within a second operating temperature range set to an operating temperature range lower than the first operating temperature range; Heating means for heating the first cooling stage; Control means for controlling the driving frequency of the two-stage refrigerator; A first temperature sensor that measures the temperature of the first cooling stage; A second temperature sensor that measures the temperature of the second cooling stage; When the output value of the second temperature sensor is an output value indicating a temperature higher than a predetermined value, the control means increases the amount of heat generated by the heating means to increase the drive frequency, thereby to increase the second temperature sensor The driving frequency is reduced by decreasing the amount of heat generated by the heating means when the output value of the output value indicates a temperature lower than a predetermined value.
  • the heating means when the heating means is operated to raise the amount of heating heat, the driving power frequency of the refrigerator can be raised, thereby enhancing the refrigeration capacity of the second cooling stage. Conversely, if the amount of heat generated by the heating means is reduced, the driving power frequency of the refrigerator can be reduced, thereby reducing the refrigeration capacity of the second cooling stage. Therefore, according to the present invention, the refrigeration capacity of the second cooling stage can be adjusted.
  • the heating means when the detected temperature of the second cooling stage is higher than the maximum value of the target temperature range, the heating means is operated to pull up the amount of heating heat. Then, feedback control is performed to maintain the temperature of the first cooling stage, the drive power frequency of the refrigerator is raised, and the refrigeration capacity of the second cooling stage is increased accordingly. Therefore, the temperature of the second cooling stage can be lowered to within the target temperature range without significantly changing the temperature of the first cooling stage.
  • the heat quantity of heating of the heating means is reduced when the detected temperature of the second cooling stage is lower than the minimum value of the target temperature range. Then, feedback control is performed to maintain the temperature of the first cooling stage, and the driving power supply frequency of the refrigerator is lowered, and accordingly, the refrigeration capacity of the second cooling stage is reduced. Therefore, the temperature of the second cooling stage can be raised to within the target temperature range without reducing the temperature of the first cooling stage, and the consumption of helium gas can be reduced.
  • FIG. 2 is a cross-sectional view showing the configuration of a cryopump.
  • a vacuum pumping system using a cryopump includes a cryopump equipped with a refrigerator that generates cryogenic temperatures, and a compressor that supplies compressed gas such as helium to the refrigerator.
  • a high pressure gas is supplied from a compressor to a refrigerator, and this high pressure gas is pre-cooled by a regenerator in the refrigerator and then filled into an expansion chamber and then expanded to generate a low temperature to cool the surroundings, and further a regenerator After cooling, repeat the cycle of returning the low pressure gas back to the compressor.
  • Vacuum evacuation is performed by condensing or adsorbing the gas at the cryogenic temperature obtained by this refrigeration cycle.
  • FIG. 11 is a view showing the structure of a refrigerator disclosed in FIG. 9 of the above-mentioned publication.
  • FIG. 11 shows the internal structure of the cylinder of the refrigerator disposed in the pump container, and the high pressure side valve and the low pressure side valve.
  • Displaced in the cylindrical cylinder 71 is a displacer 72 which reciprocates in a sliding manner.
  • Ring-shaped seal members 73 and 74 are provided between the displacer 72 and the cylinder 71.
  • the diameter of the lower portion in the figure is smaller, and it has a two-stage structure.
  • a cooling stage 701 is connected to one end face of the cylinder 71 having a larger diameter. Further, a cooling stage 702 is connected to an end face of the cylinder 71 having a smaller diameter. A plate member 86 is connected to the other axial end face of the cylinder 71 having a larger diameter.
  • the regenerators 75 and 76 basically have a structure for passing a gas, and the structures are known, so the detailed description will be omitted.
  • a gas flows, for example, as indicated by a broken line 77 in accordance with the movement of the displacer 72. In the gas flow indicated by dashed line 77, all directions in which flow can occur are indicated by arrows.
  • a connecting rod 78 is coupled to the upper surface of the displacer 72, and the connecting rod 78 extends outside the cylinder 71 and is coupled to a rotational drive shaft of a motor (not shown) via a crank mechanism (not shown).
  • a seal member 79 is provided between the connecting rod 78 and the cylinder 71.
  • a low pressure side valve 82 enabling connection with the low pressure gas chamber 81 and a high pressure side valve 84 enabling connection with the high pressure gas chamber 83 are provided.
  • the open / close operation of the low pressure side valve 82 is controlled by the command signal 85
  • the open / close operation of the high pressure side valve 84 is controlled by the command signal 87.
  • the flow direction of the gas is one direction determined by the conditions at that time as described above, and the conditions are the movement direction of the displacer 72, the low pressure valve 82 and the high pressure side. It is given by the state of the opening and closing operation of the valve 84.
  • Step (1) When the displacer 72 is located at the top dead center, only the low pressure side valve 82 is opened to expand the high pressure gas accumulated in the spaces L 1 and L 2 to generate cold. The expansion cools the surroundings (cooling stage) of the spaces L 1 and L 2 , and cools the regenerators 75 and 76 by gas movement.
  • Step (2) The displacer 72 moves from the top dead center to the bottom dead center, and the low temperature gas remaining in the spaces L 1 and L 2 also passes through the regenerators 75 76 and the cold is accumulated in the coolers 75 76 Accumulated in The low pressure side valve 82 is closed when the displacer 72 is at the bottom dead center.
  • Step (3) When the high pressure side valve 84 is opened, the high pressure gas enters the space U, so the gas originally existing there is adiabatically compressed, but at the same time the displacer 72 moves upward, so the high pressure gas Is cooled when passing through the regenerators 75 and 76 in the displacer 72, and moves to the spaces L 1 and L 2 .
  • Step (4) The displacer 72 reaches top dead center, and the high pressure side valve 84 is closed.
  • Step (5) Next, the low pressure side valve 82 is opened. This step is actually the aforementioned step (1), and thus returns to the first step (1).
  • the above cycle is a basic cooling cycle.
  • the high pressure side valve 84 is closed and the low pressure side valve 82 is opened when the displacer 72 is at the top dead center position, and the low pressure side valve 82 is opened when the displacer 72 is at the bottom dead center position.
  • the opening and closing operation of each valve is controlled to close and open the high pressure side valve 84. Therefore, when the displacer 72 reaches the top dead center or the bottom dead center, the opening / closing timing of each valve is controlled to reverse the direction of the gas flow.
  • FIG. 1 is a block diagram showing an example of a vacuum evacuation pump used in the vacuum evacuation system of the present embodiment.
  • the vacuum evacuation pump shown in FIG. 1 is a cryopump mounted with a refrigerator having a two-stage cooling stage.
  • 1 is a cryopump main body
  • 2 is a two-stage refrigerator
  • 3 is a compressor
  • 4 is a refrigerator drive power supply
  • 5 is an inverter built in the refrigerator drive power supply 4.
  • the two-stage refrigerator 2 provided in the cryopump 1 includes a first cooling stage 6 and a second cooling stage 7 maintained at a temperature lower than the first cooling stage 6.
  • the second cooling stage 7 is connected to a cryopanel 8 cooled to a cryogenic temperature by the second cooling stage 7.
  • a radiation shield 9 cooled to a cryogenic temperature by the first cooling stage 6 is connected to the first cooling stage 6.
  • the radiation shield 9 is configured to surround the second cooling stage 7 and the cryopanel 8.
  • a louver 10 cooled to a cryogenic temperature by the first cooling stage 6 via the radiation shield 9 is provided.
  • a casing 11 is provided surrounding the outside of the radiation shield 9.
  • the first cooling stage 6 of the two-stage refrigerator 2 includes an electric heater 12 as heating means for heating the first cooling stage 6 and a temperature sensor for measuring the temperature of the first cooling stage 6 (first temperature Sensor) 13 is provided. Further, the second cooling stage 7 is provided with a temperature sensor (second temperature sensor) 14 for measuring the temperature of the second cooling stage.
  • a high pressure pipe 15a which is a flow path through which a high pressure gas such as helium is supplied from the compressor 3 to the refrigerator 2, and a low pressure gas such as helium from the refrigerator 2 to the compressor 3 It is connected to the compressor 3 by the low pressure piping 15b which is a flow path which refluxes.
  • the high pressure gas compressed by the compressor 3 is supplied to the two-stage refrigerator 2 through the high pressure pipe 15a. Then, the high pressure gas is adiabatically expanded in the first expansion chamber and the second expansion chamber (neither of which is shown) to cool the first cooling stage 6 and the second cooling stage 7, and then pass through the low pressure piping 15b. It is returned to the compressor 3.
  • the two-stage refrigerator 2 is connected to a refrigerator drive power supply 4.
  • the high-pressure gas supplied from the compressor 3 is adiabatically expanded to obtain a low temperature state.
  • the refrigeration capacity is proportional to the number of times that adiabatic expansion is repeated within a unit time, that is, the number of times the high and low pressure states are repeated per unit time in the refrigerator.
  • this number of repetitions will be referred to as the "operating frequency" of the refrigerator.
  • the operating frequency of the two-stage refrigerator 2 is controlled by the inverter 5 incorporated in the refrigerator drive power supply 4.
  • the first temperature sensor 13 and the second temperature sensor 14 are connected to the first temperature setting / control device 16 and the second temperature setting / control device 17, respectively.
  • An allowable temperature range of the first cooling stage 6 is set in the first temperature setting / controller 16.
  • the allowable temperature range refers to the set temperature range in which the first cooling stage 6 is to be maintained.
  • the first cooling stage 6 is required to be maintained in a predetermined temperature range, for example, a temperature range of about 50K to 120K. If the temperature of the first cooling stage 6 is too low, it has a large vapor pressure such as argon, oxygen or nitrogen to be condensed and exhausted by the second cooling stage 7 which is originally maintained at a lower temperature than the first cooling stage 6 Gas is condensed and exhausted to the first cooling stage 6.
  • the first cooling stage 6 is required to be maintained within a predetermined temperature range, that is, within the allowable temperature range.
  • the first temperature setting / control device 16 performs refrigeration based on the temperature detected by the first temperature sensor 13 and the allowable temperature range of the first cooling stage 6 set.
  • the inverter 5 of the machine drive power supply 4 is controlled. That is, based on the output of the first temperature sensor 13, the operating frequency of the two-stage refrigerator 2 is feedback-controlled to maintain the temperature of the first cooling stage 6 at a constant value.
  • a target temperature range of the second cooling stage 7 is set in the second temperature setting / control unit 17.
  • the target temperature range refers to the temperature range in which the second cooling stage 7 is maintained. Normally, as the target temperature range, the temperature of the second cooling stage 7 needs to be somewhat low in consideration of the ability to condense or adsorb the gas, while from the viewpoint of reducing energy consumption, the second There is no need to cool the stage.
  • the target temperature range is set to, for example, a temperature range of 10 to 12K.
  • the second temperature setting / control device 17 transmits control data to the heating controller 18 based on the temperature detected by the second temperature sensor 14 and the set target temperature range of the second cooling stage 7.
  • a heating power source 19 is connected to the heating controller 18, and an electric heater 12 is further connected to the heating power source 19.
  • the heating controller 18 adjusts the supplied power supplied from the heating power supply 19 to the electric heater 12 according to the control from the second temperature setting / control device 17 and operates the electric heater 12 connected to the heating power supply 19. Control.
  • the first temperature setting / control device 16 controls the inverter 5 of the refrigerator drive power supply 4 so that the temperature of the first cooling stage 6 detected by the first temperature sensor 13 maintains the set allowable temperature range.
  • Control the operating frequency of the refrigerator 2 Specifically, when the detected temperature of the first cooling stage 6 is higher than the upper limit temperature of the allowable temperature range, the operating frequency of the refrigerator is raised. When the operating frequency of the refrigerator is increased, the cooling capacity is enhanced by advancing the cooling cycle, and as a result, the temperature of the first cooling stage 6 can be lowered. Also, if the detected temperature of the first cooling stage 6 is lower than the lower limit temperature of the allowable temperature range, the operating frequency of the refrigerator is lowered. When the operating frequency of the refrigerator is reduced, the cooling cycle is delayed and the cooling capacity is reduced, as a result, the temperature of the first cooling stage 6 is increased.
  • the second temperature setting / control device 17 heats the control data so that the temperature of the second cooling stage 7 detected by the second temperature sensor 14 maintains the set target temperature or target temperature range.
  • Tell 18 The heating controller 18 controls the power supplied from the heating power source 19 based on the control data, thereby controlling the operation of the electric heater 12. Specifically, when the detected temperature of the second cooling stage 7 becomes lower than the minimum value of the target temperature range, the output of the electric heater 12 is reduced, and when the temperature of the second cooling stage 7 becomes higher than the maximum value of the target temperature range Turn up the output.
  • t is the temperature of the second cooling stage 7 detected by the second temperature sensor 14, and Tmax is the target temperature range of the second cooling stage 7 set in the second temperature setting / controller 17. Is the maximum value of Further, Tmin is the minimum value of the target temperature range of the second cooling stage 7 set in the second temperature setting / control device 17.
  • step S11 the cryopump is activated, and temperature control of the first cooling stage 6 is started. Thereafter, in step S12, temperature adjustment of the second cooling stage 7 is also started. It is monitored whether the temperature t of the second cooling stage 7 detected by the second temperature sensor 14 is within the target temperature range.
  • step S13 when it is detected that the temperature t of the second cooling stage 7 detected by the second temperature sensor 14 becomes higher than the maximum value Tmax of the target temperature range (Yes in step S13), the second A control signal is output from the temperature setting and controller 17 to the heating controller 18.
  • the heating controller 18 receiving this control signal pulls up the power supplied from the heating power supply 19 to the electric heater 12.
  • the output of the electric heater 12 rises within the range of a predetermined operating frequency (step S14).
  • the refrigeration capacity of the second cooling stage 7 is enhanced, and the temperature t of the second cooling stage 7 decreases.
  • the temperature of the first cooling stage 6 is within the allowable temperature range because the operating frequency of the two-stage refrigerator 2 is feedback-controlled based on the temperature of the first temperature sensor 13 of the first cooling stage as described above. Maintained.
  • the output of the electric heater 12 can gradually increase the power supplied from the heating power supply 19 until the temperature t of the second cooling stage 7 detected by the second temperature sensor 14 falls below the maximum value Tmax of the target temperature range. If it is detected that the temperature t of the second cooling stage 7 has become equal to or lower than the maximum value Tmax of the target temperature range by the heating of the electric heater 12 (No in step S13), this is the minimum value of the target temperature range. It is determined whether it is Tmin or more (step S15). When the temperature t of the second cooling stage 7 is equal to or higher than the minimum value Tmin of the target temperature range, the temperature t of the second cooling stage 7 is within the target temperature range.
  • step S15 When it is confirmed that the temperature t of the second cooling stage 7 is within the target temperature range (No in step S15), the process is returned to step S13, and the output of the electric heater 12 at this time is maintained. Monitoring of whether the temperature t of the second cooling stage 7 is within the target temperature range is continued.
  • step S15 when the temperature of the second cooling stage 7 detected by the second temperature sensor 14 becomes lower than the minimum value Tmin of the target temperature range (Yes in step S15), control from the second temperature setting and controller 17 to the heating controller 18 is performed. A signal is output. The heating controller 18 receiving this control signal reduces the power supplied from the heating power supply 19 to the electric heater 12 (step S16). As a result, when the output of the electric heater 12 falls and the heat load on the first cooling stage 6 falls, the operating temperature of the two-stage refrigerator 2 is lowered by the first temperature setting and controller 16 as described above. And the refrigeration cycle is delayed. As a result, the refrigeration capacity of the second cooling stage 7 is reduced, and the temperature t of the second cooling stage 7 is increased.
  • the output of the electric heater 12 is a heating power supply until the temperature t of the second cooling stage 7 detected by the second temperature sensor 14 becomes equal to or higher than the minimum value Tmin of the target temperature range or the output of the electric heater 12 becomes zero. Power supply by 19 can be reduced gradually.
  • the maximum of the target temperature range It is identified whether it is equal to or less than the value Tmax (step S13).
  • the output of the electric heater 12 at this time is maintained, and the temperature t of the second cooling stage 7 is within the target temperature range. It will continue to monitor if there is any.
  • the operating frequency of the refrigerator when the operating frequency of the two-stage refrigerator 2 is within the normal operating frequency range, the temperature of the first cooling stage 6 is within the allowable temperature range, and It indicates that the temperature of the second cooling stage 7 is within the target temperature range.
  • the operating frequency of the refrigerator generally has an upper limit and a lower limit.
  • the upper limit of the number of rotations of the motor for driving the refrigerator is from the power of the motor for driving the refrigerator, and the lower limit of the number of rotations is required to generate the required torque.
  • the operating frequency of the refrigerator within the range of the upper limit and the lower limit is referred to as "normal operating frequency" throughout the specification.
  • normal operating frequency 20 to 60 times per minute can be mentioned. That is, the fact that the operating frequency of the two-stage refrigerator 2 is within the range of the normal operating frequency means that the operating frequency of the refrigerator is feedback-controlled accordingly if there is any change, for example, a change in heat load. Indicates that it can maintain normal operation.
  • the second temperature sensor 14 and the second temperature setting / control device 17 are included in the means required in the vacuum evacuation pump having the two cooling stages shown in FIG. Is unnecessary.
  • the first temperature setting / control unit 16 and the heating control unit 18 are connected in FIG.
  • the first cooling stage 6 and the second cooling stage 7 shown in FIG. 1 are one cooling stage, and thus will be described as “cooling stage 6”.
  • the first temperature setting / control device 16 is a first temperature sensor 13 attached to the cooling stage 6 so that the temperature of the cooling stage 6 detected by the first temperature sensor 13 is within the set allowable temperature range.
  • the operating frequency of the refrigerator 2 is feedback-controlled based on the output of. Then, if the temperature of the first stage cooling stage 6 does not become equal to or higher than the lower limit temperature of the allowable temperature range even if the operating frequency of the refrigerator of the first stage cooling stage 6 is lowered to the lower limit of the normal operation frequency, the first temperature setting and control Based on the temperature of the first temperature sensor 13 input to the heater 16, the heating controller 18 controls the heating power supply 19 until the temperature falls within the allowable temperature range.
  • the operating frequency of the refrigerator 2 is raised to increase the refrigeration capacity.
  • the detected temperature of the cooling stage 6 is lower than the lower limit temperature of the allowable temperature range, the operating frequency of the refrigerator is lowered to reduce the refrigeration capacity. As a result, the temperature of the cooling stage 6 rises.
  • the temperature of the cooling stage 6 does not become equal to or higher than the lower limit temperature of the allowable temperature range even if the operating frequency of the refrigerator of the one-stage cooling stage 6 is lowered to the lower limit of the normal operating frequency, input to the first temperature setting and controller 16
  • the heating controller 18 controls the heating power supply 19 until the temperature falls within the allowable temperature range based on the temperature of the first temperature sensor 13. Therefore, when the operating frequency of the refrigerator is within the normal operating frequency range, the temperature of the cooling stage 6 is within the allowable temperature range, and the operating frequency is feedback-controlled accordingly when any change occurs. Indicates that it can maintain normal operation.
  • the temperature of the first cooling stage is within the allowable temperature range
  • the temperature of the second cooling stage is within the target temperature range. It will be inside.
  • the inverter 5, the refrigerator drive power supply 4, the first temperature setting / control device 16, the second temperature setting / control device 17, the heating controller 18 and the heating power supply 19 have been described as individual devices. However, it is also possible to store them in one unit. In the following description, it is assumed that each evacuation pump is controlled by each controller having such a function. Alternatively, each refrigerator may not be controlled by an individual controller, but may be controlled entirely by a single controller.
  • FIG. 3 is an explanatory view illustrating the configuration of the vacuum evacuation system according to the first embodiment of the present invention.
  • the embodiment shown in FIG. 3 relates to the case where a vacuum pumping pump having a plurality of single-stage cooling stages is operated by a single compressor.
  • 3 is a compressor, and 15a and 15b are high pressure piping and low pressure piping, respectively.
  • Reference numerals 30a to 30d denote vacuum evacuation pumps having one cooling stage, and reference numerals 31a to 31d denote controllers for the vacuum evacuation pumps 30a to 30d.
  • Reference numerals 32 and 33 denote pressure gauges for high pressure piping and low pressure piping, respectively.
  • Reference numeral 34 denotes a frequency control unit including, for example, an inverter.
  • the frequency control unit 34 obtains the difference between the pressure from the pressure gauge 32 and the pressure from the pressure gauge 33, and controls the drive frequency of the compressor 3, and 35 controls the controllers 31a to 31d of the respective vacuum exhaust pumps. It is a controller to control.
  • Reference numerals 37a to 37d denote single-stage refrigerators.
  • the controller 35 and the frequency control unit 34 function as control means.
  • the controllers 31a to 31d have the functions of the first temperature setting / controller 16, the refrigerator drive power supply, the inverter, the heating controller 18, and the heating power supply 19 described with reference to FIG.
  • reference numerals 30a to 30d denote vacuum evacuation pumps having one cooling stage, which use a cryotrap here.
  • FIG. 4 is a block diagram showing the configuration of the vacuum pump shown in FIG. 3, and corresponds to the vacuum pump (cryotop) 30a surrounded by an alternate long and short dash line in FIG.
  • the vacuum evacuation pump 30a includes a cooling stage 406, a cooling panel 408, a temperature sensor 413, an electric heater 412, a single-stage refrigerator 37a, a high pressure pipe 15a, and a low pressure pipe 15b.
  • the temperature sensor 413 and the electric heater 412 are connected to the controller 31 a, and the high pressure pipe 15 a and the low pressure pipe 15 b are connected to the compressor 3.
  • the controllers 31a to 31d monitor the operating frequencies of the single-stage refrigerators 37a to 37d of the vacuum evacuation pumps (cryotraps) 30a to 30d. Each of the controllers 31a to 31d outputs the operating frequency of the refrigerator 37a to 37d of the cryotrap to the controller 35 (step S21).
  • the controller 35 acquires data of the operating frequencies of the refrigerators 37a to 37d of all the cryotraps (step S22). Then, the controller 35 determines whether the operating frequencies of the refrigerators 37a to 37d of all the cryotraps fall within the range of the normal operating frequency of the cooler (step S23). Then, when the operating frequency of all the refrigerators does not fall within the range of the normal operating frequency (No in step S23), the controller 35 issues, for example, an alarm or the like to notify that effect.
  • step S23 determines whether there is room to reduce the pressure difference between the high pressure piping and the low pressure piping. Is determined (step S24). If there is room to reduce the pressure difference (Yes in step S24), the controller 35 decreases the pressure difference (step S25), and returns to step S22. When there is no room to lower the pressure difference (No in step S24), the controller 35 acquires data of the operating frequency of the next refrigerator (step S26).
  • the refrigeration capacity of the refrigerators 37a to 37d is proportional to the product of the operating frequency of the refrigerator and the pressure difference between the high pressure piping and the low pressure piping.
  • a cryotrap is used as a vacuum evacuation pump having a single cooling stage. Then, as shown in FIG. 10, in order to ensure a constant cooling capacity and a low energy consumption as the whole vacuum pumping system, the operating frequency of the refrigerator is increased in a range that can be increased to increase the pressure in the high pressure piping and the low pressure piping. It is good to reduce the pressure difference of the gas as much as possible.
  • the pressure difference between the gas in the high pressure piping and the pressure in the low pressure piping has an upper limit and a lower limit.
  • the upper limit is 1.8 MPa (about 18 atm)
  • the lower limit is 1.1 MPa (about 11 atm).
  • the central pressure difference is 1.4 MPa.
  • the pressure difference between the gas in the high pressure piping and the low pressure piping is controlled based on this standard.
  • FIG. 6 is a characteristic diagram for explaining a method of reducing the pressure difference between gases in the high pressure piping and the low pressure piping.
  • the pressure difference of helium in the high pressure piping 15a and the low pressure piping is decreased by 0.05 MPa as long as the operating frequency of the refrigerator 37a to 37d is within the range of the normal operating frequency.
  • A1 to A3 indicate the maximum value of the operating frequency of the refrigerator when the pressure difference between helium in the high pressure piping and the low pressure piping is 1.2 MPa, 1.25 MPa and 1.30 MPa.
  • B1 to B3 show the maximum value of the operating frequency of the refrigerator when the pressure difference of helium in the high pressure piping and the low pressure piping is reduced by 0.05 MPa respectively from A1 to A3.
  • the pressure difference is reduced by 0.05 MPa because it is judged that the reduction of the 0.05 MPa differential pressure does not exceed 60 times per minute.
  • a straight line B that complements the maximum value of the operating frequency of the B1 to B3 refrigerator is determined. From this straight line B, it can be seen that if the differential pressure difference between helium in the high pressure piping and the low pressure piping is further reduced by 0.05 MPa, the allowable operating frequency exceeds 60 times per minute.
  • the controller 35 determines that there is no room for lowering the operating frequency (No in step S24).
  • the controller 35 is an operating condition in which the combination of the pressure difference of helium in the high pressure piping and the low pressure piping of B3 and the maximum value of the operating frequency of the refrigerator shown in FIG. In this state, the vacuum evacuation system is controlled to continue the operation until the next opportunity to acquire data of the operating frequency of the refrigerator (step S26).
  • complementation straight line was calculated from three points, it is not necessarily limited to three points.
  • interpolation method although the least squares method was used, the present invention is not limited thereto, and polynomial approximation, logarithmic approximation, power approximation, exponential approximation, etc. can be applied.
  • the upper limit or the lower limit of the control operating frequency is controlled as a numerical value within a range of the allowable operating frequency by a predetermined value. Specifically, it is assumed that the upper and lower limits of the operating frequency are 60 and 20 times per minute, respectively. Assuming that the frequency within the allowable operating frequency range is 3 times per minute, the upper and lower limits of the control operating frequency are controlled as 57 and 23 times per minute, respectively. Then, change the pressure difference between the high pressure piping and the low pressure piping, and change the pressure difference between gases such as helium in the high pressure piping and the low pressure piping when the control upper limit or lower limit is exceeded once. Stop.
  • the maximum operating frequency of the refrigerator is 50 times per minute at 1.25 MPa
  • the maximum operating frequency of the refrigerator is 54 times per minute at 1.20 MPa.
  • the pressure difference between helium in the high pressure piping and the low pressure piping is stopped to fall below 1.15 MPa. Then, the operation is continued at 1.15 MPa.
  • the start-up operation is a vacuum exhaust pump that cools the cooling stage using the low temperature generated by the adiabatic expansion of high-pressure gas, condenses or adsorbs the gas to the site cooled thereby, and exhausts the gas, After roughing the inside, cooling by a refrigerator is started, and an operation of cooling to a temperature state necessary to exhibit a function as a vacuum evacuation pump is called start-up operation. During this operation, since the vacuum exhaust pump does not have the exhausting ability, the shorter the time of start-up operation, the better.
  • the inventors of the present invention can operate the refrigerator at a high operating frequency at the start-up operation than at the normal evacuation operation and with a large pressure difference between the gas in the high pressure piping and the low pressure piping. We found that it was desirable.
  • the vacuum exhaust pump used in the present embodiment is a so-called reservoir type pump which condenses or adsorbs the gas in the vacuum chamber and exhausts it on the low temperature surface generated by the cooling refrigerator. Therefore, when the condensed or adsorbed gas in the low temperature part becomes equal to or more than a predetermined amount, the condensed or adsorbed gas is vaporized so that the gas is not condensed or adsorbed on the condensation surface or the adsorption surface. It is required to return.
  • the regeneration operation is the operation of an evacuation pump that cools the cooling stage using the low temperature generated by adiabatically expanding high-pressure gas and condenses or adsorbs the gas on the site cooled thereby, thereby evacuating the gas. Since the heat generation function can be provided by changing the method of, the operation that regenerates the pump using that function is said.
  • the temperature of the cooling stage is raised to vaporize the substance condensed or adsorbed and removed from the cooling unit such as the stage.
  • the refrigerator mounted on the pump is connected to the cooling stage, the cylinder connected to one side of the cooling stage, and the other axial end face of the cylinder opposite to the end face on the connection side of the cooling stage And a space formed by the cooling stage, the cylinder, and the plate member.
  • a flow path is provided in the plate member, and the inside of the cylinder is operated to a high pressure state or a low pressure state by valve operation through the flow path.
  • a piston-like displacer is disposed which is divided into one space and another space communicating with the flow passage, and axially reciprocates in the cylinder.
  • the inside of the displacer is hollow, and the inside is filled with a substance that preserves the thermal condition.
  • the valve operation is performed so that the high pressure state and the inside of the cylinder are connected.
  • This operation adiabatically compresses the low-pressure gas that has already been inside the cylinder and adiabatically compresses it in the space opposite to the plate member of the displacer in the cylinder, so that the temperature rises.
  • the heated gas is allowed to pass through the displacer, the heated state is stored in the material that preserves the heat state inside the displacer.
  • the valve operation is performed so that the low pressure state is established inside the cylinder.
  • the high pressure gas in the cylinder is adiabatically expanded and its temperature decreases.
  • Most of the space (gas) in the cylinder is between the displacer and the plate member where the flow path is provided, so most of the low temperature gas does not pass through the displacer (it does not preserve the low temperature state) ) It is discharged from the refrigerator as it is cold. That is, a low temperature gas flow does not occur across the material that stores the thermal condition that is filled inside the displacer.
  • the cooling stage is not cooled by the low temperature gas.
  • the above-mentioned action gradually raises the temperature of the substance that preserves the heat state inside the displacer, and finally raises the stage temperature.
  • the substance condensed or adsorbed in the cooling unit can be vaporized and removed from the cooling unit such as a stage.
  • the inventors of the present invention have found that the temperature raising capacity at the time of regeneration operation is such that the higher the operating frequency of the refrigerator, the higher the pressure difference between the gas in the high pressure pipe and the low pressure pipe supplied to the refrigerator. It was found that the larger, the larger.
  • Regeneration can be realized in a short time by performing heat generation operation reverse to the normal cooling operation of the cryopump (see, for example, Japanese Examined Patent Publication No. 4-195). That is, in the cylinder of the refrigerator, a piston-like member called a displacer reciprocates coaxially with the cylinder of the refrigerator. And, a central portion of the displacer is filled with a heat storage agent, which allows a gas to pass through in the reciprocating direction.
  • the heat generation operation shifts the phase of opening and closing of the valve which is responsible for introducing high pressure gas and low pressure gas into the container of the refrigerator with respect to the displacer by 180 degrees as compared with the case of performing the cooling operation. It is realized by driving.
  • the displacer performs single vibration movement by a drive source such as a motor, but in a normal cooling operation, the low pressure valve is opened when the space on the valve side is the smallest with respect to the displacer, and the valve Open the high pressure valve when the space on the side is the largest.
  • the high pressure valve is opened when the space on the valve side is the smallest with respect to the displacer, and the low pressure valve is opened when the space on the valve side is the largest with respect to the displacer.
  • the temperature of the first stage and the second stage rises, and the gas condensed or adsorbed there is vaporized in a short time, and the condensation surface or the adsorption surface is regenerated.
  • At least one of the plurality of vacuum exhaust pumps 30a to 30d performs the regeneration operation, and the valve operates to shift the inside of the cylinder from the low pressure state to the high pressure state, thereby adiabatic compression of low pressure gas.
  • the operation is repeated, which includes the steps of: allowing the displacer to pass through the adiabatically compressed gas.
  • at least one of the plurality of vacuum exhaust pumps 30a to 30d performs a normal operation, and the operation of the valve causes the inside of the cylinder to shift from the high pressure state to the low pressure state.
  • An operation is repeated by repeating the operation including the step of adiabatically expanding the gas and the step of the displacer passing through the adiabatically expanded gas.
  • the vacuum exhaust pump during start-up operation or regeneration operation has a constant operating frequency higher than that during normal operation. I will drive.
  • the operating frequency of the refrigerator is, for example, 20 to 60 times per minute, but is operated at a constant value, for example, 75 times per minute.
  • the vacuum pumping system of the present embodiment is configured as a vacuum pumping system
  • the normal process can be performed in the vacuum chamber to which the vacuum pumping pump is not connected for starting operation or regeneration operation.
  • the pressure difference between the high pressure piping and the low pressure piping can be increased while maintaining For other vacuum pumps other than those in start-up operation or regeneration operation, the pressure of the gas in the high-pressure piping and in the low-pressure piping while confirming that the operating frequency is within the normal operating frequency range. You should raise the difference to the limit.
  • the controller 35 By performing such an operation through the controller 35, the vacuum evacuation performed during the start-up operation and the regeneration operation while performing the normal process in the vacuum chamber to which the vacuum exhaust pump performing the start-up operation or the regeneration operation is not connected.
  • the pump can be quickly returned to the normal operation state.
  • the controllers 31a to 31d monitor the operating frequencies of the single-stage refrigerators 37a to 37d of the vacuum evacuation pumps (cryotraps) 30a to 30d (step S31).
  • the operating frequencies of the cryocoolers 37a to 37d are sent to the controller 35 (step S32).
  • the controller 35 determines whether the operating frequencies of all the cryotraps other than during start-up operation or regeneration operation fall within the range of the normal operating frequency of the cooler (step S33). Then, when the operating frequencies of all the refrigerators other than during the start-up operation or the regeneration operation are not within the range of the normal operation frequency (No in step S33), an alarm or the like is issued to notify that.
  • step S34 when the operating frequencies of all the refrigerators other than those in start-up operation or regeneration operation are within the range of the normal operation frequency (Yes in step S33), the pressure difference between the gas in the high pressure pipe 15a and the pressure in the low pressure pipe 15b is The controller 35 determines whether or not there is room to increase it (step S34).
  • the operating frequency of the cryotrap in start-up operation or regeneration operation is maintained at a value higher than the normal operation frequency, for example, 75 times per minute.
  • the normal operation frequency for example, 75 times per minute.
  • step S34 it is determined whether the operating frequency remains within the normal operating frequency range in a refrigerator other than those in start-up operation or regeneration operation even if the pressure difference of the gas in high-pressure pipe 15a and low-pressure pipe 15b is further increased by 0.05 MPa. .
  • the pressure difference between the gas in the high-pressure pipe 15a and the low-pressure pipe 15b is increased, the operating frequency of the refrigerator other than in the start-up operation or the regeneration operation is decreased, so the refrigerator other than in the start-up operation or the regeneration operation It is determined whether the minimum value of the operating frequency does not fall below the lower limit. If it does not fall below (Yes in step S34), the pressure difference between the high pressure piping 15a and the low pressure piping 15b is increased by, for example, 0.05 MPa (step S35). Then, control is returned to R.
  • the operating state of the vacuum pumping system finally reached maintains the operating frequency of all the cryotraps except during the starting operation or the regenerating operation within the normal operating frequency range, that is, the normal operating condition
  • the pressure difference between the high pressure piping 15a and the low pressure piping 15b is in the vicinity of the maximum of the pressure difference that can be reached while maintaining the As a result, while maintaining the other cryotraps in the normal operation state, the cryotraps in the start-up operation or the regeneration operation state can be brought into the normal operation state quickly.
  • a cryopump is used as a vacuum evacuation pump having a two-stage cooling stage.
  • 1a to 1e denote cryopumps
  • 2a to 2e denote refrigerators
  • 3 denotes a compressor
  • 15a and 15b denote high pressure piping and low pressure piping
  • 36a to 36e denote controllers of the cryopumps 1a to 1e.
  • 32 and 33 are pressure gauges for high pressure piping and low pressure piping respectively
  • 34 is a frequency control for obtaining the difference between the pressure from the pressure gauge 32 and the pressure from the pressure gauge 33 and controlling the drive frequency of the compressor 3 It is a department.
  • Reference numeral 35 denotes a controller that controls the controllers 36a to 36e of the respective cryopumps.
  • the control method of the second embodiment is similar to that described in FIG. 5 and FIG. The only difference is that the cryopump is within the normal operating frequency range, but the temperature of the first cooling stage is within the allowable temperature range and the temperature of the second cooling stage is within the target temperature range. Differs in that the
  • the normal process is performed in the vacuum chamber to which the cryopump which is not in the start operation or the regeneration operation is connected.
  • the cryopump in operation and regeneration operation can be quickly returned to the state of normal operation.
  • a cryopump is used as a vacuum evacuation unit having two cooling stages
  • a cryotrap is used as a vacuum evacuation unit having one cooling stage.
  • 1a to 1c denote cryopumps
  • 2a to 2c denote two-stage refrigerators of cryopumps
  • 3 denotes a compressor
  • 15a and 15b denote high pressure piping and low pressure piping, respectively
  • 30a and 30b denote cryotraps.
  • 31a and 31b are cryotrap controllers
  • 32 and 33 are pressure gauges for high pressure piping and low pressure piping, respectively.
  • Reference numeral 34 denotes a frequency control unit which obtains the difference between the pressure from the pressure gauge 32 and the pressure from the pressure gauge 33, and controls the drive frequency of the compressor 3
  • 36a to 36c are controllers of the cryopumps 1a to 1c.
  • Reference numeral 35 denotes a controller that integrally controls the controllers 36a to 36c of the cryopumps 1a to 1c and the controllers 36a and 36b of the cryotraps 37a and 37b.
  • the control method of the third embodiment is the same as that described in FIG. 5 and FIG. The only difference is that the operating frequency of the refrigerator is within the range of the normal operating frequency, the temperature of the first stage is within the allowable temperature range for a cryopump having a two-stage stage and the second stage Is within the target temperature range, and it indicates that the temperature of the first stage is within the allowable temperature range for a cryotrap having a single stage.
  • the start-up operation and the regeneration operation are performed in the vacuum chamber to which the vacuum evacuation pump which is not in the start-up operation or the regeneration operation is connected.
  • the evacuating pump can be quickly returned to the normal operation state.
  • FIG. 12 shows a substrate processing apparatus 1200 using the vacuum evacuation system of the present invention.
  • the present substrate processing apparatus is a cluster type sputtering apparatus for forming source and drain electrodes in a liquid crystal panel.
  • a substrate transfer chamber 1201 is located at the center of the apparatus to exchange substrates between the substrate processing chambers.
  • a substrate transfer robot (not shown) is disposed at the central portion to exchange the substrates between the substrate processing chambers.
  • 1202 and 1203 are load lock chambers
  • 1204 is a substrate heating chamber
  • 1205 is a first Ti film forming chamber
  • 1206 is an Al film forming chamber
  • 1207 is a second Ti film forming chamber.
  • a gate valve 1208 is disposed between the substrate transfer chamber 1201 and each substrate processing chamber.
  • respective targets 1209a, 1209b, and 1209c are disposed to face the substrate.
  • a source and a drain of a bottom gate thin film transistor employed in a liquid crystal display device.
  • TFT Thin Film Transistor
  • 1301 is a glass substrate
  • 1302 is an insulating layer, for example, a silicon nitride film
  • 1303 is a semiconductor layer made of amorphous Si
  • 1304 is a source electrode and a drain electrode
  • 1305 is a gate electrode
  • 1306 is a silicon nitride film, for example.
  • the protective layer and 1307 are, for example, indium tin oxide (Indium Tin Oxide, hereinafter abbreviated as ITO) which is a transparent conductive film.
  • ITO Indium Tin Oxide
  • the source and drain electrodes 1304 have a three-layer structure of Ti / Al / Ti, so that good adhesion with the semiconductor layer 1303 can be ensured, and an Al semiconductor layer Diffusion to amorphous Si, which is 1303 can be prevented.
  • Cryopumps 1210 a to 1210 e are attached to the substrate heating chamber 1204, the first Ti film forming chamber 1205, the Al film forming chamber 1206, the second Ti film forming chamber 1207, and the substrate transfer chamber 1201, respectively.
  • vertical cryopumps (shown by dotted lines) are attached to the lower side of each substrate processing chamber via gate valves (not shown).
  • Each cryopump is connected to a controller 1211 that controls each cryopump.
  • Each controller 1211 is connected to a general controller 1212 that controls the whole.
  • each cryopump 1210 corresponds to the controllers 36a to 36e in FIG. 8
  • the general controller 1212 corresponds to the controller 35 in FIG.
  • the state of each cryopump 1210 is input to a general controller 1212 that controls the entire system through controllers 1211a to 1211e that monitor each cryopump.
  • He gas is supplied from the compressor 1214 to the respective cryopumps 1210 through the high pressure piping and the low pressure piping 1216, and reflux is performed.
  • a differential pressure between the He high pressure pipe and the He low pressure pipe is measured by a differential pressure gauge 1215 and input to a frequency control unit 1213 which drives the compressor.
  • the supply and recovery of He are performed by different pipes, but are shown as one for simplification.
  • the differential pressure between the high pressure He and the low pressure He from the compressor is necessary and minimized during normal operation of the plurality of cryopumps disposed in the plurality of processing chambers. By doing this, the energy consumption during normal operation can be reduced.
  • the other substrate processing chambers continue the normal substrate processing and start the operation or the regenerating operation.
  • the start-up operation or the regeneration operation can be completed in a short time, and normal substrate processing can be quickly returned.
  • FIG. 13 semiconductor layers 1303 and below are fabricated on a glass substrate 1301 With the gate valve 1208 defining the load lock chamber 1202 or 1203 and the substrate transfer chamber 1201 closed, the cassette in which a plurality of substrates are stored is returned to the state of atmospheric pressure inside the load lock chamber 1202 or 1203, It is placed in the load lock chamber 1202 or 1203. Next, the inside of the load lock chamber 1202 or 1203 is evacuated by a low vacuum exhaust pump such as a dry pump.
  • a low vacuum exhaust pump such as a dry pump.
  • the gate valve 1208 between the substrate transfer chamber 1201 and the load lock chamber 1202 or 1203 is opened. Then, the arm of the substrate transfer robot disposed at the central portion of the substrate transfer chamber 1201 is rotated and extended to a position where the substrate is located, and picks up the substrate. The substrate transfer robot having picked up the substrate contracts the arm and rotates around the center of the substrate transfer chamber 1201 to direct the direction of the arm to the substrate heating chamber 1204. Thereafter, the gate valve between the substrate transfer chamber 1201 and the load lock chamber 1202 or 1203 is closed.
  • the gate valve 1208 between the substrate transfer chamber 1201 and the substrate heating chamber 1204 is opened, and the substrate is carried into the substrate heating chamber 1204 by the substrate transfer robot.
  • the arm of the substrate transfer robot is contracted, and then the gate valve 1208 between the substrate transfer chamber 1201 and the substrate heating chamber 1204 is closed.
  • the substrate heating chamber 1204 the substrate is kept heated at 120 to 150 ° C. by heating means such as a halogen lamp.
  • the heated substrate is transferred to the next first Ti film forming chamber 1205 by the substrate transfer robot in the same operation as described above, and the next substrate is transferred from the cassette in the load lock chamber 1202 or 1203 to the substrate transfer chamber 1201. And is transferred to the substrate heating chamber 1204.
  • the substrate in the cassette and the processed substrates in each chamber are loaded from the load lock chamber 1202 or 1203 to the substrate heating chamber 1204, the first Ti film forming chamber 1205, the Al film forming chamber 1206, and the second Ti film forming.
  • the substrate which has been sequentially fed to the chamber 1207 and on which the film formation of the third layer (Ti film) is finished is returned to the non-storage shelf of the cassette of the load lock chamber 1202 or 1203.
  • the cassette in which the processing substrate is stored is removed from the load lock chamber 1202 or 1203. Then, a cassette containing a new substrate is stored in the load lock chamber 1202 or 1203, and the process is repeated in the same procedure.
  • the Ti film formation in the first Ti film forming chamber 1205 and the second Ti film forming chamber 1207 is a low pressure of 0.2 to 0.4 Pa, and a film having a thickness of about 50 nm is formed.
  • a film having a film thickness of 200 to 300 nm is formed at a low pressure of 0.2 to 0.4 Pa.
  • a mask is formed on the substrate taken out of the substrate processing apparatus 1200 with resist in the form of a source electrode and a drain electrode, and then anisotropically etched by a dry etching apparatus.
  • a protective film 1306 is formed by a CVD method or a sputtering method to obtain the TFT of FIG.
  • the present invention is not limited to this. It is needless to say that the present invention is applicable to a cluster type substrate processing apparatus or an in-line type substrate processing apparatus that requires a plurality of refrigerators to be operated.
  • the device suitable for manufacturing using the vacuum evacuation system of the present invention is not limited to the liquid crystal display device described above, and it is necessary to process a multilayer consistently with vacuum consistent magnetic random access memory (MRAM) As described above, a head for a hard disk, a DRAM (Dynamic Random Access Memory, hereinafter abbreviated as above) and the like can be mentioned.
  • MRAM vacuum consistent magnetic random access memory
  • the term "electronic device” refers to an electronic device in general including a display device using electronic technology, an MRAM, a head of a hard disk, a DRAM, and the like.
  • the present invention is applied to a vacuum pumping system in which a plurality of vacuum pumping pumps having a cooling stage are connected to a compressor to operate, and a method of operating the same.
  • a cryopump, a cryotrap, or a vacuum pump having a cryopump and a cryotrap can be used for the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

 冷凍機を有する真空排気ポンプの複数台が共通の圧縮機に繋がれており、複数台の真空排気ポンプのうちの少なくとも一台は、冷凍機のバルブが動作することによってシリンダの内部が低圧状態から高圧状態に移行することにより、低圧状態のガスが断熱圧縮される工程と、断熱圧縮されたガス中をディスプレーサが通過する工程とを含む動作を繰り返す運転をしており、複数台の真空排気ポンプのうちの他の少なくとも一台は、冷凍機のバルブが動作することによってシリンダの内部が高圧状態から低圧状態に移行することにより、高圧状態のガスが断熱膨張する工程と、断熱膨張したガス中をディスプレーサが通過する工程とを含む動作を繰り返す運転をしている。

Description

真空排気システム、真空排気システムの運転方法、冷凍機、真空排気ポンプ、冷凍機の運転方法、二段式冷凍機の運転制御方法、クライオポンプの運転制御方法、二段式冷凍機、クライオポンプ、基板処理装置、電子デバイスの製造方法
 本発明は、真空排気システム、真空排気システムの運転方法、冷凍機、真空排気ポンプ、冷凍機の運転方法、二段式冷凍機の運転制御方法、クライオポンプの運転制御方法、二段式冷凍機、クライオポンプ、基板処理装置、電子デバイスの製造方法に関するものである。
 半導体や電子部品等の製造工程において使用される真空排気ポンプでは、オイルフリーで且つ超高真空状態が得られる為、低温を利用する真空排気ポンプが多く使用されている。
 このような低温を利用する真空排気ポンプとしては、超高真空が実現可能な二段の冷却ステージを有するクライオポンプ、一段の冷却ステージを有するクライオトラップ等がある。
 これら低温を利用する真空排気ポンプの多くは、圧縮機で作られる高圧ガスが断熱膨張する際得られる低温を利用してガスを凝縮又は吸着排気するものである。近年、上述の良好な特性の為に、低温を利用する真空排気システムが多用されるようになった。そして最近では、コストや消費エネルギーの削減において有利な共通の圧縮機で複数の真空排気ポンプの運転をするいわゆるマルチ運転による真空排気システムも用いられるようになった(特許文献1など)。
 特許文献1には、複数のクライオポンプを一台の圧縮機で運転する真空排気システムが記載されている。特許文献1では、圧縮機と複数のクライオポンプとの間に、圧縮機からのヘリウムガスを分岐し、分岐ごとにヘリウム供給圧を調整するガス分配装置を介在させて、圧縮機は複数のクライオポンプの必要とする最大値以上の供給圧でヘリウムを供給することが開示されている。
 特許文献2には、第一冷却ステージの温度に基づき、冷凍機内で高圧状態と低圧状態が単位時間当たりに繰り返される回数がフィードバック制御され、第一冷却ステージの温度を一定範囲に維持で出来るクライオポンプが開示されている。
 更に、特許文献2では、複数台のクライオポンプを一台の圧縮機で動作する場合において、圧縮機のサイクルタイムを制御することにより、高圧配管内と低圧配管内のガスの圧力差を一定に維持する発明が開示されている。
特開平4-209979号公報(図1等) 特開2004-3792号公報(図1、図2等)
 しかしながら、特許文献1に記載された複数のクライオポンプを一台の圧縮機で動作する場合、複数の真空排気ポンプいずれかが必要とする圧力の最大値以上の圧力のヘリウムを予め圧縮機で生成していた。高圧のヘリウムは、圧縮機によってつくられるが、低温ステージを有する真空排気ポンプについては、その消費エネルギーの大半は高圧のヘリウムを作るために使用されている。従って、真空排気システム全体として消費エネルギーを低減させる為には、生成する高圧のヘリウムの圧力及び生成量を低減する必要がある。
 しかし、特許文献1に記載された発明においては、必要以上の高圧ヘリウムを予め生成する必要がある為、エネルギー消費の観点から問題があった。
 エネルギー消費の問題について、図10を使用して具体的に説明する。図10は、4台のクライオポンプを一台の圧縮機で動作させた場合の、圧縮機と各クライオポンプを繋ぐ高圧配管内と低圧配管内のヘリウムの圧力差と消費電力との関係を示したグラフである。ここで、実験を通して熱負荷は一定に保ってある。
 熱負荷が一定の場合には、冷凍能力は、冷凍機の作動周波数と、高圧配管内と低圧配管内のガスの圧力差との積に比例する。ここで、冷凍機の作動周波数とは冷凍機内で高圧状態と低圧状態が単位時間当たりに繰り返される回数のことをいう。従って、図10の場合には、冷凍能力を考慮すると、高圧配管内と低圧配管内とのガスの圧力差が増大するに伴い、冷凍機の作動周波数自体は減少することとなる。
 ここで、冷凍機の作動周波数が増大すると、冷凍機自体の消費エネルギーは増大するかもしれないが、冷凍機の消費エネルギーはせいぜい百Wであるので、4台でもせいぜいで4百Wである。一方、図10において、高圧配管内と低圧配管内とのガスの圧力差を1.2MPaから1.6MPaに増大させると、消費エネルギーは約3500Wから約4900Wに増大している。
 従って、同一の熱負荷の対象を、高圧配管内と低圧配管内とのガスの圧力差を1.2MPaと1.6MPaとしてクライオポンプで排気したとする。すると、圧力差1.2MPaで排気した場合には、圧力差1.6MPaで排気した場合より少なくとも差し引き1000W以上低消費エネルギーで排気出来ることとなる。
 一方、再生運転時には、昇温の際の発熱量を大きくすることが求められる。これは、真空を利用してプロセスを行う装置のダウンタイムを短くするためである。冷凍機は運転の仕方を変えることにより、冷凍機に発熱機能を持たせることが出来る。再生運転とは、発熱機能を持たせた冷凍機の発熱運転によりステージ等の冷却部の温度を昇温し、凝縮又は吸着している物質を気化させ、ステージ等の冷却部より取り除く運転をいう。
 しかし、従来、再生運転をしている以外の真空排気ポンプの真空排気運転を維持しつつ、再生運転状態の真空排気ポンプを真空排気運転の状態に迅速に至らせる真空排気ポンプシステムの構成や運転方法はなかった。
 特許文献2に記載の発明においては、複数のクライオポンプの第一冷却ステージの温度を一定範囲に維持する発明が開示されているが、その際には高圧配管内と低圧配管内のガスの圧力差は一定に維持されていた。しかしながら、高圧配管内と低圧配管内のガスの圧力差は一定に維持するだけでは、再生運転をしている以外の真空排気ポンプの真空排気運転を維持しつつ、再生運転の時間を短縮する観点から問題があった。
 上記の課題を鑑み、本発明は、冷却ステージ部を有する複数の真空排気ポンプが圧縮機に繋がれて動作する真空排気システムにおいて、エネルギー消費の少ない真空排気技術の提供を目的とする。
 あるいは、本発明は、起動運転及び再生運転している冷凍機を真空排気運転時の運転の状態に迅速に復帰させることが可能な真空排気技術の提供を目的とする。
 本発明の一つの側面に係わる真空排気システムは、
 第一冷却ステージ部を含み、前記第一冷却ステージ部を冷却する冷凍機と、前記第一冷却ステージ部の温度を測定する第一温度センサとを有し、前記第一温度センサの測定した温度が所定の温度範囲より高いときは前記冷凍機内で高圧状態と低圧状態が単位時間内に繰り返される回数を増大させ、前記第一温度センサの測定した温度が前記所定の温度範囲より低いときは前記回数を減少させ、前記第一温度センサの測定した温度が前記所定の温度範囲内のときは前記回数を維持する複数の真空排気ポンプと、
 前記複数の真空排気ポンプに繋がれた圧縮機と、
 前記圧縮機から共通の圧力の高圧のガスが前記複数の真空排気ポンプの冷凍機に供給される流路である高圧配管と、
 前記複数の真空排気ポンプの冷凍機から低圧のガスが前記圧縮機に還流する流路である低圧配管と、
 前記回数に応じて、前記高圧配管の内圧と前記低圧配の内圧との圧力差を変化させることが出来る制御手段と、
 を備えることを特徴とする。
 本発明の他の側面に係わる真空排気システムの運転方法は、第一冷却ステージ部を含み、前記第一冷却ステージ部を冷却する冷凍機と、前記第一冷却ステージ部の温度を測定する第一温度センサとを有する複数の真空排気ポンプと、
 前記複数の真空排気ポンプに繋がれた圧縮機と、
 前記圧縮機から共通の圧力の高圧のガスが前記複数の真空排気ポンプの冷凍機に供給される流路である高圧配管と、
 前記複数の真空排気ポンプの冷凍機から低圧のガスが前記圧縮機に還流する流路である低圧配管とを有する真空排気システムの運転方法であって、
 前記複数の真空排気ポンプは、前記第一温度センサの測定した温度が所定の温度範囲より高いときは前記冷凍機内で高圧状態と低圧状態が単位時間内に繰り返される回数を増大させ、前記第一温度センサの測定した温度が前記所定の温度範囲より低いときは前記回数を減少させ、前記第一温度センサの測定した温度が前記所定の温度範囲内のときは前記回数を維持する工程と、
 前記冷凍機における前記回数が所定の範囲内に収まる範囲で、前記圧縮機で生成される前記高圧配管内と前記低圧配管内とのガスの圧力差を減少させる工程と、を有する。
 本発明の他の側面に係わる冷凍機は、冷却ステージと、
 前記冷却ステージの一の面に接続されたシリンダと、
 前記冷却ステージに接続された前記シリンダの一の端面とは反対側の、前記シリンダの軸方向の他の端面に接続された板部材と、
 前記冷却ステージ、前記シリンダ及び前記板部材より囲まれて形成される空間と、
 前記板部材に設けられている流路と、
 前記流路を介して前記シリンダの内部を高圧状態及び低圧状態のいずれかの状態にするバルブと、
 前記空間の内部を一の空間と前記流路と通じる他の空間とに画するピストン状のディスプレーサとを有し、
 前記ディスプレーサは前記シリンダの内部で軸方向に往復運動し、前記シリンダの内部が中空で、前記内部に熱状態を保存する物質が含まれている冷凍機であって、
 前記バルブが動作することにより前記シリンダの内部が前記低圧状態から前記高圧状態に移行することにより、前記低圧状態のガスが断熱圧縮される工程と、
 前記断熱圧縮したガス中を前記ディスプレーサが通過する工程と、を含む動作を繰り返す運転をする際に、
 前記冷凍機内で前記高圧状態と前記低圧状態とが単位時間内に繰り返される回数が、低温通常運転時より高い値であり、且つ前記高圧状態と前記低圧状態との圧力差を大きくするように動作することを特徴とする。
 本発明の他の側面に係わる冷凍機は、冷却ステージを含み、前記冷却ステージを高圧のガスが断熱膨張することにより冷却する冷凍機において、
 常温状態から真空排気運転の状態に至らせるときに、
 前記冷凍機内で前記ガスの高圧状態と低圧状態が単位時間内に繰り返される回数が前記の低温通常運転時より高い値であり、且つ前記高圧状態と前記低圧状態との圧力差を大きくするように動作することを特徴とする。
 本発明の他の側面に係わる冷凍機は、冷却ステージを含み、前記冷却ステージの温度を昇温することで、凝縮又は吸着している物質を気化させる再生運転時において、前記冷凍機内で高圧状態と低圧状態が単位時間内に繰り返される回数が低温通常運転時より高い値であり、且つ圧縮機から供給されるガスの前記高圧状態と低圧状態の圧力差を大きくするように動作することを特徴とする。
 本発明の他の側面に係わる冷凍機の運転方法は、冷却ステージと、
 前記冷却ステージの一の面に接続されたシリンダと、
 前記冷却ステージに接続された前記シリンダの一の端面とは反対側の、前記シリンダの軸方向の他の端面に接続された板部材と、
 前記冷却ステージ、前記シリンダ及び前記板部材より囲まれて形成される空間と、
 前記板部材に設けられている流路と、
 前記流路を介して前記シリンダの内部を高圧状態及び低圧状態のいずれかの状態にするバルブと、
 前記空間の内部を一の空間と前記流路と通じる他の空間とに画するピストン状のディスプレーサとを有し、
 前記ディスプレーサは前記シリンダの内部で軸方向に往復運動し、前記シリンダの内部が中空で、前記内部に熱状態を保存する物質が含まれている冷凍機の運転方法であって、
 前記バルブが動作することにより前記シリンダの内部が前記低圧状態から前記高圧状態に移行することにより、前記低圧状態のガスが断熱圧縮される工程と、
 前記断熱圧縮したガス中を前記ディスプレーサが通過する工程と、を含む動作を繰り返す運転をする際に、
 前記冷凍機内で前記高圧状態と前記低圧状態とが単位時間内に繰り返される回数が、低温通常運転時より高い値であり、且つ前記高圧状態と前記低圧状態との圧力差を大きくするように動作することを特徴とする。
 本発明の他の側面に係わる冷凍機の運転方法は、冷却ステージを含み、前記冷却ステージを高圧のガスが断熱膨張することにより冷却する冷凍機の運転方法において、
 常温状態から真空排気運転の状態に至らせるときに、
 前記冷凍機内で前記ガスの高圧状態と低圧状態が単位時間内に繰り返される回数が前記の低温通常運転の時より高い値であり、且つ前記高圧状態と前記低圧状態との圧力差を大きくするように動作することを特徴とする。
 本発明の他の側面に係わる二段式冷凍機の運転制御方法は、第一冷却ステージ及び第二冷却ステージと、前記第一冷却ステージの温度を測定する第一温度センサと、前記第二冷却ステージの温度を測定する第二温度センサと、前記第一冷却ステージを加熱するための加熱手段と、を有する二段式冷凍機の運転制御方法であって、
 前記第一温度センサの出力を元に、前記第一冷却ステージの温度を一定に保つように前記二段式冷凍機の作動周波数をフィードバック制御する第一制御工程と、
 前記第二温度センサの出力により前記第二冷却ステージの温度を検出し、この検出した該第二冷却ステージの温度に基づいて、前記加熱手段の出力を制御することにより前記二段式冷凍機の作動周波数を変更させて前記第二冷却ステージの冷凍能力を制御する第二制御工程と、を有することを特徴とする。
 本発明の他の側面に係わる二段式冷凍機は、第一冷却ステージと、
 第二冷却ステージと、
 前記第一冷却ステージの温度を検知する第一温度センサと、
 前記第二冷却ステージの温度を検知する第二温度センサと、
 前記第一冷却ステージを加熱する加熱手段と、
 前記第二温度センサにより検知された前記第二冷却ステージの温度に応じて前記加熱手段の出力を制御する加熱制御器と、を備えることを特徴とする。
 本発明の他の側面に係わる二段式冷凍機は、
 第一稼動温度幅以内の冷却温度となる第一冷却ステージと、
 前記第一稼動温度幅より低い稼動温度幅に設定した第二稼動温度幅以内の冷却温度となる第二冷却ステージと、
 前記第一冷却ステージを加熱するための加熱手段と、
 二段式冷凍機の駆動周波数を制御する制御手段と、
 前記第一冷却ステージの温度を測定する第一温度センサと、
 前記第二冷却ステージの温度を測定する第二温度センサと、を備え、
 前記制御手段は、前記第二温度センサの出力値が所定値より高い温度を示す出力値のとき、前記加熱手段の加熱熱量を増大することにより、前記駆動周波数を増大させ、前記第二温度センサの出力値が所定値より低い温度を示す出力値のとき、前記加熱手段の加熱熱量を減少させることにより、前記駆動周波数を減少させることを特徴とする。
 本発明によれば、冷却ステージ部を有する複数の真空排気ポンプが圧縮機に繋がれて動作する真空排気システムにおいて、エネルギー消費の少ない真空排気技術の提供が可能になる。
 あるいは、本発明によれば、起動運転及び再生運転している冷凍機を真空排気運転時の運転の状態に迅速に復帰させることが可能になる。
 あるいは、本発明によれば、加熱手段を作動させて加熱熱量を引き上げると、冷凍機の駆動電源周波数が引き上げられ、これによって第二冷却ステージの冷凍能力を高めることができる。逆に加熱手段の加熱熱量を引き下げると、冷凍機の駆動電源周波数が引き下げられ、これによって第二冷却ステージの冷凍能力を低下させることができる。従って、本発明によれば、第二冷却ステージの冷凍能力を調整することができる。
 あるいは、本発明によれば、検出した第二冷却ステージの温度が目標温度範囲の最大値より高いときに加熱手段を作動させて加熱熱量を引き上げる。すると、第一冷却ステージの温度を維持すべくフィードバック制御がかかり、冷凍機の駆動電源周波数が引き上げられ、これに伴って第二冷却ステージの冷凍能力が高まる。従って、第一冷却ステージの温度を大きく変動させることなく、第二冷却ステージの温度を目標温度範囲内まで引き下げることができる。
 あるいは、本発明によれば、検出した第二冷却ステージの温度が目標温度範囲の最小値より低い時に加熱手段の加熱熱量を引き下げる。すると、第一冷却ステージの温度を維持すべくフィードバック制御が掛かり、冷凍機の駆動電源周波数が引き下げられるので、これに伴って第二冷却ステージの冷凍能力が低下する。従って、第一冷却ステージの温度を大きく変動させることなく、第二冷却ステージの温度を目標温度範囲内まで引き上げ、かつヘリウムガス消費量減らすことができる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本実施形態の真空排気システムで使用する真空排気ポンプの一例を示す構成図。 第二冷却ステージの温度調整シーケンスを示すフローチャート。 複数台のクライオトラップを一台の圧縮機で運転する真空排気システムの模式図。 クライオトラップの構成を示す構成図。 第一の実施例の真空排気システムに係わる運転シーケンスを示すフローチャート。 高圧配管内と低圧配管内に係わる圧力差の変化のさせる方法を説明する図。 起動運転時又は再生運転時の運転シーケンスを示すフローチャート。 複数台のクライオポンプを一台の圧縮機で運転する真空排気システムの模式図。 クライオポンプ及びクライオトラップが混在した真空排気システムを一台の圧縮機で運転する真空排気システムの模式図。 4台のクライオポンプを同一熱負荷で動作させた場合の、圧力差と圧縮機の消費エネルギーとの関係を示す図。 クライオポンプの構成を示す断面図。 本発明に係わる真空排気システムを使用した基板処理装置の構成例を示す図。 本発明に係わる基板処理装置を使用して製造される電子デバイスを例示する図。
 以下、本発明の実施の形態について図面を用いて詳細に説明する。まず、本実施形態の真空排気システムで使用する、冷却ステージを有する真空排気ポンプについて説明する。真空排気ポンプの一例としてのクライオポンプの原理について説明する。
 クライオポンプを用いた真空排気システムは、極低温を発生させる冷凍機を搭載したクライオポンプと、その冷凍機に圧縮したヘリウム等のガスを供給する圧縮機とを備えている。圧縮機から高圧のガスを冷凍機に供給し、この高圧のガスを冷凍機内の蓄冷器で予め冷却してから膨張室に充填後、膨張させて低温を発生させ周囲を冷却し、さらに蓄冷器を冷却した後、低圧となったガスを圧縮機に戻すサイクルを繰り返す。この冷凍サイクルにより得られる極低温により気体を凝縮又は吸着させることで真空排気を行っている。
 冷凍機の構成は、例えば特開平7-35070公報の図9に示されている。図11は前記公報の図9に開示された、冷凍機の構成を示す図である。図11は、ポンプ容器内に配置される冷凍機のシリンダの内部構造と、高圧側バルブおよび低圧側バルブを示す。円筒型シリンダ71の中にスライド状態で往復運動するディスプレーサ72が配置される。ディスプレーサ72とシリンダ71の間にはリング形状のシール部材73,74が設けられる。シリンダ71とディスプレーサ72の形状について、図中下部の径が小さくなっており、2段構造となっている。シリンダ71の径の大きい方の一方の端面には冷却ステージ701が接続されている。また、シリンダ71の径の小さい方の端面には冷却ステージ702が接続されている。シリンダ71の径の大きい方の、軸方向の他の端面は板部材86が接続されている。ディスプレーサ72の内部には、例えば2つの蓄冷器75,76が設けられる。蓄冷器75,76は基本的にガスを通過させる構造を有し、その構造は既知であるので詳細な説明を省略する。ディスプレーサ72の移動状態に応じて、例えば破線77のごとくガスが流れる。破線77で示されたガスの流れでは、流れが生じる可能性のあるすべての方向が矢印で示されている。実際には、図中、上から下、または下から上へのいずれか一つの方向の流れが、作動条件に応じて発生する。ディスプレーサ72の往復運動において、図11中シリンダ71の上端に移動したときが上死点の位置であり、下端に移動したときが下死点の位置である。
 ディスプレーサ72の上面部には連結棒78が結合され、連結棒78はシリンダ71の外部に延び、クランク機構(図示せず)を介してモータ(図示せず)の回転駆動軸に結合される。連結棒78とシリンダ71との間にはシール部材79が設けられる。モータが或る方向に回転すると、連結棒78は、クランク機構の作用でモータの回転に応じた往復運動80を行う。従って、連結棒78に結合されたディスプレーサ72も連動してシリンダ71内で往復運動を行う。ディスプレーサ72の往復運動によって、シリンダ71内には、ディスプレーサ72で区画される3つの空間(区画室)U,L,Lが形成される。空間Uは、図11において、シリンダ71の上側に形成される空間であり、空間L,Lはシリンダ71の下側に形成される空間である。
 シリンダ71の上端部には低圧ガス室81との接続を可能にする低圧側バルブ82と、高圧ガス室83との接続を可能にする高圧側バルブ84が設けられる。低圧側バルブ82の開閉動作は指令信号85によって制御され、高圧側バルブ84の開閉動作は指令信号87によって制御される。
 図11中に示されるガスの流れ77において、ガスの流れる方向は、前述の通りその時の条件で決まる一つの方向であり、その条件は、ディスプレーサ72の移動方向と、低圧側バルブ82と高圧側バルブ84の開閉動作の状態とで与えられる。
 冷凍機の基本的な冷却サイクルを説明する。
 工程(1):ディスプレーサ72が上死点に位置する時に低圧側バルブ82のみを開いて空間L、Lに溜まった高圧ガスを膨脹させ、寒冷を発生させる。この膨脹によって空間L,Lの周囲(冷却ステージ)を冷却し、かつガスの移動によって蓄冷器75,76を冷却する。
 工程(2):上死点から下死点にディスプレーサ72が移動する、この間に空間L、Lに留まっていた低温のガスも蓄冷器75、76を通過し寒冷が蓄冷器75、76に蓄積される。ディスプレーサ72が下死点に存在する時に低圧側バルブ82を閉じる。
 工程(3):高圧側バルブ84を開くと、空間Uに高圧ガスが入って来る為、もともとそこに存在したガスは断熱圧縮されるが、併せてディスプレーサ72が上方に移動するので、高圧ガスはディスプレーサ72内の蓄冷器75、76を通過する時に冷却され、空間L、Lに移動する。
 工程(4):ディスプレーサ72が上死点に到達し、高圧側バルブ84が閉じられる。
 工程(5):次に低圧側バルブ82が開かれる。この工程は、実際は前述の工程(1)であり、こうして最初の工程(1)に戻る。
 上記のごとく、工程(1)~(4)を繰り返すことにより冷却が行われる。上記のサイクルが基本的な冷却サイクルである。上記の基本的な冷却サイクルでは、ディスプレーサ72が上死点の位置にある時に高圧側バルブ84を閉じて低圧側バルブ82を開き、ディスプレーサ72が下死点の位置にある時に低圧側バルブ82を閉じて高圧側バルブ84を開くように、各バルブの開閉動作が制御される。従って、ディスプレーサ72が上死点または下死点に達したときに、各バルブの開閉タイミングが制御され、ガスの流れの方向が逆転される。
 図1は、本実施形態の真空排気システムで使用する真空排気ポンプの一例を示す構成図である。具体的には、図1に示す真空排気ポンプは、二段の冷却ステージを有する冷凍機を搭載したクライオポンプである。図1において、1はクライオポンプ本体、2は二段式冷凍機、3は圧縮機、4は冷凍機駆動電源、5は冷凍機駆動電源4に内蔵されているインバータである。
 クライオポンプ1に設けられている二段式冷凍機2は、第一冷却ステージ6と、第一冷却ステージ6より低い温度に維持される第二冷却ステージ7とを備えている。第二冷却ステージ7には、第二冷却ステージ7によって極低温に冷却されるクライオパネル8が接続されている。また、第一冷却ステージ6には、第一冷却ステージ6によって極低温に冷却される輻射シールド9が接続されている。輻射シールド9は、第二冷却ステージ7及びクライオパネル8を囲むように構成されている。輻射シールド9の上部開口部には、輻射シールド9を介して第一冷却ステージ6によって極低温に冷却されるルーバ10が設けられている。更に、輻射シールド9の外側を囲んで、ケーシング11が設けられている。
 二段式冷凍機2の第一冷却ステージ6には、第一冷却ステージ6を加熱するための加熱手段である電気ヒータ12と、第一冷却ステージ6の温度を測定する温度センサ(第一温度センサ)13が設けられている。また、第二冷却ステージ7には、第二冷却ステージの温度を測定するための温度センサ(第二温度センサ)14が設けられている。
 二段式冷凍機2は、高圧のヘリウム等のガスが圧縮機3から冷凍機2に供給される流路である高圧配管15aと、低圧のヘリウム等のガスが冷凍機2から圧縮機3に還流する流路である低圧配管15bとで、圧縮機3に接続されている。圧縮機3で圧縮された高圧のガスは、高圧配管15aを通って二段式冷凍機2に供給される。そして、高圧のガスは、第一膨張室と第二膨張室(いずれも図示されていない)で断熱膨張し、第一冷却ステージ6及び第二冷却ステージ7を冷却した後、低圧配管15bを通って圧縮機3に還流される。
 二段式冷凍機2は、冷凍機駆動電源4に接続されている。二段式冷凍機2内では、圧縮機3から供給された高圧のガスが断熱膨張することにより低温状態が得られる。冷凍能力は単位時間内に断熱膨張を繰り返す回数、即ち冷凍機内で高圧状態と低圧状態が単位時間当たりに繰り返される回数に比例する。以降、この繰り返し回数を冷凍機の「作動周波数」と記すこととする。本実施形態では、冷凍機駆動電源4に内蔵されているインバータ5によって二段式冷凍機2の作動周波数が制御されている。
 第一温度センサ13及び第二温度センサ14は、それぞれ第一温度設定・制御器16及び第二温度設定・制御器17に接続されている。
 第一温度設定・制御器16には、第一冷却ステージ6の許容温度範囲が設定される。ここで、本明細書を通して、許容温度範囲とは第一冷却ステージ6が維持されるべき設定温度範囲のことをいう。具体的には、第一冷却ステージ6は、所定の温度範囲、例えば、50Kから120K程度の温度範囲中に維持されることが求められる。第一冷却ステージ6の温度が低すぎると、本来、第一冷却ステージ6より低い温度に維持されている第二冷却ステージ7により凝縮排気されるべきアルゴン、酸素又は窒素等の大きな蒸気圧力を持つガスが第一冷却ステージ6に凝縮排気されてしまう。一方、第一冷却ステージ6の温度が高すぎると第一冷却ステージ6で本来凝縮排気すべきガスも排気できない。従って、第一冷却ステージ6は所定の温度範囲内に、即ち許容温度範囲内に維持されることが求められる。
 図1に示す真空排気ポンプにおいては、第一温度設定・制御器16は、第一温度センサ13によって検出された温度と、設定された第一冷却ステージ6の許容温度範囲とに基づいて、冷凍機駆動電源4のインバータ5を制御する。つまり、第一温度センサ13の出力に基づいて、第一冷却ステージ6の温度を一定値に保つよう二段式冷凍機2の作動周波数がフィードバック制御される。
 また、第二温度設定・制御器17には、第二冷却ステージ7の目標温度範囲が設定される。ここで、本明細書を通して、目標温度範囲とは第二冷却ステージ7が維持される温度範囲をいう。通常この目標温度範囲としては、ガスを凝縮又は吸着する能力を考慮すると第二冷却ステージ7の温度はある程度低い温度が必要であるが、一方エネルギー消費を低減する観点からは、必要以上に第二ステージを低温にする必要はない。
 そこで、目標温度範囲は、例えば、10から12Kの温度範囲に設定する。第二温度設定・制御器17は、第二温度センサ14によって検出された温度と、設定された第二冷却ステージ7の目標温度範囲とに基づいて、加熱制御器18に制御データを伝える。加熱制御器18には、加熱電源19が接続されており、更に加熱電源19には電気ヒータ12が接続されている。加熱制御器18は、第二温度設定・制御器17からの制御に従い、加熱電源19から電気ヒータ12へ供給される供給電力の調整を行い、加熱電源19に接続された電気ヒータ12の作動を制御する。
 第一温度設定・制御器16は、第一温度センサ13で検出された第一冷却ステージ6の温度が、設定された許容温度範囲を維持するよう、冷凍機駆動電源4のインバータ5を制御して冷凍機2の作動周波数を制御する。具体的には、検出された第一冷却ステージ6の温度が許容温度範囲の上限温度より高い場合には、冷凍機の作動周波数を引き上げる。冷凍機の作動周波数を引き上げると、冷却サイクルが早まることによって冷却能力が高まり、その結果、第一冷却ステージ6の温度を下げることができる。また、検出された第一冷却ステージ6の温度が許容温度範囲の下限温度より低い場合には、冷凍機の作動周波数を引き下げる。冷凍機の作動周波数を引き下げると、冷却サイクルが遅くなって、冷却能力が低下して、その結果、第一冷却ステージ6の温度が上昇する。
 一方、第二温度設定・制御器17は、第二温度センサ14で検出された第二冷却ステージ7の温度が、設定された目標温度又は目標温度範囲を維持するよう、制御データを加熱制御器18へ伝える。加熱制御器18は、この制御データに基づき、加熱電源19からの供給電力を制御し、これにより電気ヒータ12の作動を制御する。具体的には、検出した第二冷却ステージ7の温度が、目標温度範囲の最小値より低くなった時に電気ヒータ12の出力を下げ、目標温度範囲の最大値より高くなった時に電気ヒータ12の出力を上げる。上記第二温度設定・制御器17による電気ヒータ12の作動制御の一例を図2のフローチャートで説明する。
 なお、図2のフローチャートにおいて、tは第二温度センサ14で検出された第二冷却ステージ7の温度、Tmaxは第二温度設定・制御器17に設定された第二冷却ステージ7の目標温度範囲の最大値である。また、Tminは第二温度設定・制御器17に設定された第二冷却ステージ7の目標温度範囲の最小値である。
 まず、ステップS11において、クライオポンプが起動し、第一冷却ステージ6の温度調節が開始される。その後、ステップS12において、第二冷却ステージ7の温度調節も開始される。第二温度センサ14で検出された第二冷却ステージ7の温度tが目標温度範囲内であるかどうかが監視される。
 そして、ステップS13において、第二温度センサ14で検出された第二冷却ステージ7の温度tが目標温度範囲の最大値Tmaxより高くなったことが検知されると(ステップS13のYes)、第二温度設定・制御器17から加熱制御器18へ制御信号が出される。この制御信号を受けた加熱制御器18は、加熱電源19から電気ヒータ12への供給電力を引き上げる。これにより電気ヒータ12の出力が所定の作動周波数の範囲内で上昇する(ステップS14)。第一冷却ステージ6への熱負荷が上昇すると、前述したように、第一温度設定・制御器16により、二段式冷凍機2の作動周波数が引き上げられ、冷凍サイクルが早まる。その結果、第二冷却ステージ7の冷凍能力が高められ、第二冷却ステージ7の温度tが降下する。この間、第一冷却ステージ6の温度は、上述したよう第一冷却ステージの第一温度センサ13の温度に基づいて二段式冷凍機2の作動周波数がフィードバック制御されているので、許容温度範囲内に維持される。
 電気ヒータ12の出力は、第二温度センサ14で検出された第二冷却ステージ7の温度tが目標温度範囲の最大値Tmax以下となるまで、加熱電源19による供給電力を段階的に引き上げられる。この電気ヒータ12の加熱により、第二冷却ステージ7の温度tが目標温度範囲の最大値Tmax以下となったことが検知されると(ステップS13のNo)、今度はこれが目標温度範囲の最小値Tmin以上であるかどうかが判定される(ステップS15)。第二冷却ステージ7の温度tが目標温度範囲の最小値Tmin以上である場合には第二冷却ステージ7の温度tが目標温度範囲内である。第二冷却ステージ7の温度tが目標温度範囲内であることが確認されると(ステップS15のNo)、処理はステップS13に戻され、この時の電気ヒータ12の出力が維持されると共に、第二冷却ステージ7の温度tが目標温度範囲内であるかどうかの監視が継続される。
 一方、第二温度センサ14で検出した第二冷却ステージ7の温度が目標温度範囲の最小値Tminより低くなると(ステップS15のYes)、第二温度設定・制御器17から加熱制御器18へ制御信号が出力される。この制御信号を受けた加熱制御器18は、加熱電源19から電気ヒータ12への供給電力を引き下げる(ステップS16)。これにより電気ヒータ12の出力が降下し、第一冷却ステージ6への熱負荷が降下すると、前述したように、第一温度設定・制御器16により、二段式冷凍機2の作動周波数が引き下げられ、冷凍サイクルが遅くなる。その結果、第二冷却ステージ7の冷凍能力が低下され、第二冷却ステージ7の温度tが上昇する。
 電気ヒータ12の出力は、第二温度センサ14で検出された第二冷却ステージ7の温度tが目標温度範囲の最小値Tmin以上となるまで、もしくは電気ヒータ12の出力がゼロになるまで加熱電源19による供給電力を段階的に引き下げられる。この電気ヒータ12の加熱を弱めることにより、第二冷却ステージ7の温度tが目標温度範囲の最小値Tmin以上となったことが検知されると(ステップS15のNo)、これが目標温度範囲の最大値Tmax以下であるかどうかが識別される(ステップS13)。第二冷却ステージ7の温度tが目標温度範囲の最大値Tmax以下である場合には第二冷却ステージ7の温度tが目標温度範囲内である。第二冷却ステージ7の温度tが目標温度範囲内であることが確認されると、この時の電気ヒータ12の出力が維持されると共に、第二冷却ステージ7の温度tが目標温度範囲内であるかどうかの監視が継続されることになる。
 上記のような構成を有しているので、その二段式冷凍機2の作動周波数が通常作動周波数の範囲内であるときには、第一冷却ステージ6の温度が許容温度範囲内にあり、且つ第二冷却ステージ7の温度が目標温度範囲内にあることを示している。ここで、一般に冷凍機の作動周波数は、通常上限と下限を持つ。冷凍機を駆動するモータの回転数には、上限は冷凍機を駆動するモータのパワーから、下限はモータが所要のトルクを発生する為には一定以上の回転数であることが必要であることなどから、モータが安定して駆動できる回転数には範囲がある。モータの回転数が上記のような上限及び下限をもつことより、冷凍機の作動周波数も上限及び下限を持つ。この上限と下限との範囲内の冷凍機の作動周波数を、本明細書を通して、「通常作動周波数」という。例えば、冷凍機の通常作動周波数としては、一分間当たり20~60回を挙げることが出来る。即ち、二段式冷凍機2の作動周波数が通常作動周波数の範囲内にあるということは、何らかの変化たとえば熱負荷量の変化が生じたときに、それに応じて冷凍機の作動周波数がフィードバック制御されて正常運転を維持出来ることを示している。
 上述の構成及び動作の説明は二段の冷却ステージを有する排気手段に運転についての説明であるが、一段の冷却ステージを有する真空排気ポンプの運転を以下に説明する。
 一段の冷却ステージを有する真空排気ポンプにおいては、図1に示した二段の冷却ステージを有する真空排気ポンプにおいて必要とされる手段のうち、第二温度センサ14、第二温度設定・制御器17は不要である。この場合には、図1において第一温度設定・制御器16と加熱制御器18とが結線されている。図1に示した第一冷却ステージ6および第二冷却ステージ7は、は一段の冷却ステージとなるので、「冷却ステージ6」として以下説明する。
 第一温度設定・制御器16は、第一温度センサ13で検出された冷却ステージ6の温度が、設定された許容温度範囲内にあるように、冷却ステージ6に取り付けられた第一温度センサ13の出力に基づいて、冷凍機2の作動周波数がフィードバック制御される。そして、一段の冷却ステージ6の冷凍機の作動周波数を通常作動周波数の下限まで下げても第一段の冷却ステージ6の温度が許容温度範囲の下限温度以上にならないときには、第一温度設定・制御器16に入力される第一温度センサ13の温度に基づき、許容温度範囲内に入るまで加熱制御器18が加熱電源19を制御する。
 具体的には、第一冷却ステージ6の温度が許容温度範囲の上限温度より高い場合には、冷凍機2の作動周波数を引き上げて、冷凍能力を増大させる。一方、検出された冷却ステージ6の温度が許容温度範囲の下限温度より低い場合には、冷凍機の作動周波数を引き下げて、冷凍能力を減少させる。その結果、冷却ステージ6の温度が上昇する。そして、一段の冷却ステージ6の冷凍機の作動周波数を通常作動周波数の下限まで下げても冷却ステージ6の温度が許容温度範囲の下限温度以上にならないときには、第一温度設定・制御器16に入力される第一温度センサ13の温度に基づき、許容温度範囲内に入るまで加熱制御器18が加熱電源19を制御する。従って、冷凍機の作動周波数が通常作動周波数の範囲内にあるときは、冷却ステージ6の温度は許容温度範囲内にあること、及び何らかの変化が生じたときにそれに応じて作動周波数がフィードバック制御されて正常運転を維持出来ることを示している。
 以上説明したように、本実施形態の一段の冷却ステージ又は二段の冷却ステージを有する真空排気ポンプを用いた場合には、その冷凍機の作動周波数を確認するだけで、又はそれを通常作動周波数の範囲内に維持するよう制御しさえすれば、第一冷却ステージの温度が許容温度範囲内であり、第二冷却ステージを有する真空排気ポンプの場合には第二冷却ステージの温度が目標温度範囲内にあることになる。
 従って、正常運転の維持は、冷凍機の作動周波数にのみに着目して行えば良い。
 尚、以上の説明では、インバータ5、冷凍機駆動電源4、第一温度設定・制御器16、第二温度設定・制御器17、加熱制御器18及び加熱電源19は個別機器として説明した。しかし、これらを1台のユニット中に納めることも可能である。以下の説明では、このような機能を有する各コントローラのよって各真空排気ポンプが制御されているものとして説明する。または、各冷凍機が個々のコントローラで制御されるのではなく、全体が一台のコントローラによって制御されるようにすることも可能である。
 図3は、本発明の第一の実施形態に関する真空排気システムの構成を例示する説明図である。図3に示す実施形態は、複数の一段の冷却ステージを有する真空排気ポンプが一台の圧縮機で運転される場合に係わるものである。
 図3において、3は圧縮機、15a及び15bはそれぞれ高圧配管及び低圧配管である。30a乃至30dは一段の冷却ステージを有する真空排気ポンプ、31a乃至31dは、真空排気ポンプ30a乃至30dに対するコントローラである。また、32及び33はそれぞれ高圧配管用及び低圧配管用の圧力計である。34は、例えばインバータよりなる周波数制御部である。周波数制御部34は、圧力計32からの圧力と圧力計33からの圧力との差を求め、圧縮機3の駆動周波数を制御する、また、35は各真空排気ポンプのコントローラ31a乃至31dを統括制御するコントローラである。37a乃至37dは一段式冷凍機である。コントローラ35及び周波数制御部34は制御手段として機能する。
 コントローラ31a乃至31dは、図1で説明した第一温度設定・制御器16、冷凍機駆動電源、インバータ、加熱制御器18及び加熱電源19の機能を有する。ここで、30a乃至30dは一段の冷却ステージを有する真空排気ポンプであり、ここではクライオトラップを使用している。
 図4は図3の真空排気ポンプの構成を示す構成図であり、図3の一点鎖線で囲まれた真空排気ポンプ(クライオトップ)30aに対応する図である。
 図4に示すように、真空排気ポンプ30aは、冷却ステージ406、冷却パネル408、温度センサ413、電気ヒータ412、一段式冷凍機37a、高圧配管15a、低圧配管15bを備えている。温度センサ413、電気ヒータ412はコントローラ31aへ接続され、高圧配管15a、低圧配管15bは圧縮機3へ接続される。
 図3の真空排気システムの制御の流れを図5のフローチャートの参照により説明する。
 各コントローラ31a乃至31dは、各真空排気ポンプ(クライオトラップ)30a乃至30dの一段式冷凍機37a乃至37dの作動周波数を監視している。各コントローラ31a乃至31dは、クライオトラップの冷凍機37a乃至37dの作動周波数をコントローラ35に出力する(ステップS21)。コントローラ35は、全てのクライオトラップの冷凍機37a乃至37dの作動周波数のデータを取得する(ステップS22)。そして、コントローラ35は、全てのクライオトラップの冷凍機37a乃至37dの作動周波数が冷却機の通常作動周波数の範囲内に納まっているかを判断する(ステップS23)。そして、コントローラ35は、全ての冷凍機の作動周波数が通常作動周波数の範囲内に納まっていないとき(ステップS23のNo)は、その旨を伝えるべく例えばアラーム等を発報する。
 一方、全ての冷凍機の作動周波数が通常作動周波数の範囲内にある場合(ステップS23のYes)、コントローラ35は、高圧配管内と低圧配管内のガスの圧力差を下げる余地があるか否かを判断する(ステップS24)。圧力差を下げる余地がある場合(ステップS24のYes)、コントローラ35は、圧力差を減少させ(ステップS25)、ステップS22へ戻る。圧力差を下げる余地がない場合(ステップS24のNo)、コントローラ35は、次回の冷凍機の作動周波数のデータを取得する(ステップS26)。
 冷凍機37a乃至37dの冷凍能力は、冷凍機の作動周波数と、高圧配管内と低圧配管内のガスの圧力差の積に比例する。本実施形態においては、一段の冷却ステージを有する真空排気ポンプとしてはクライオトラップを使用している。そして、図10にあるように一定の冷却能力を、真空排気システム全体としてエネルギー消費を少なく確保する為には、冷凍機の作動周波数を上昇可能な範囲で上げて、高圧配管内と低圧配管内のガスの圧力差を可能な限り小さくすると良い。
 また、圧縮機の性能より、高圧配管内と低圧配管内のガスの圧力差にも上限と下限がある。以下の説明では、上限を1.8MPa(約18気圧)、下限を1.1MPa(約11気圧)として説明する。その際、中心圧力差は1.4MPaとする。
 繰り返しになるが、真空排気システム全体としてエネルギー消費を少なくする為には、高圧配管と低圧配管内のガスの圧力差を可能な限り小さくすると良い。高圧配管と低圧配管の圧力差を小さくすると、冷凍機の作動周波数を上げることとなる。本実施形態においては、この規範に基づき高圧配管内と低圧配管内とのガスの圧力差を制御する。
 上記の制御法について、図5及び図6を用いて具体的に説明する。図6は、高圧配管内と低圧配管内のガスの圧力差を低くする方法を説明するための特性図である。
 本方法においては、0.05MPaずつ高圧配管15a内と低圧配管内のヘリウムの圧力差を冷凍機37a乃至37dの作動周波数が通常作動周波数の範囲内である限り低めてゆく。図6において、A1乃至A3は、高圧配管内と低圧配管内とのヘリウムの圧力差が1.2Mpa、1.25MPa及び1.30MPaのときの、冷凍機の作動周波数の最大値を示している。一方、B1乃至B3はA1乃至A3よりそれぞれ0.05MPa高圧配管内と低圧配管内とのヘリウムの圧力差を下げたときの、冷凍機の作動周波数の最大値を示している。
 A1乃至A3の3つのデータより、最小二乗法により3点を補完した直線 Aを求める。そして、外挿して更に0.05MPa圧力差を減少させても、冷凍機の作動周波数の最大値が許容作動周波数の上限、例えば1分間当たり60回を越えないか否かを確認する。
 図6においては、0.05MPa差圧を減少させても1分間当たり60回を超えないと判断されるので、圧力差を0.05MPa減少させる。
 その後、制御は図5のフローチャート上のR点に戻る。0.05MPa圧力差を減少させたときに得られるデータが図6のB1乃至B3である(図5のステップS22)。それらが、冷凍機の常用作動周波数内にあることを確認する(ステップS23)。
 その後、B1乃至B3の冷凍機の作動周波数の最大値を補完する直線Bを求める。この直線Bより、更に0.05MPa高圧配管内と低圧配管内とのヘリウムの差圧差を更に0.05MPa減少させると、許容作動周波数である1分間当たり60回を超えてしまうことが分る。コントローラ35は、作動周波数を低くする余地はないと判断する(ステップS24のNo)。コントローラ35は、図6に示すB3の高圧配管内と低圧配管内のヘリウムの圧力差及び冷凍機の作動周波数の最大値の組が、真空排気システム全体として、その消費エネルギーを最小にする運転条件であると判定し、この状態で次回の冷凍機の作動周波数のデータの取得の機会まで運転を継続するように真空排気システムを制御する(ステップS26)。
 上記の実施形態では、補完直線を3点より求めたが、必ずしも3点に限定されるわけではない。また、また補間法に関しても、最小二乗法を用いたが、これに限定されるわけではなく、多項式近似、対数近似、累乗近似又は指数近似等を適用できる。
 図6に関する作動周波数を通常作動周波数内に納める方法としては、上記の方法以外に以下に記載するような簡便な方法もある。例えば、制御上の作動周波数の上限又は下限を、許容作動周波数の範囲より所定値だけ内側の範囲の数値として制御する。具体的に説明すると、作動周波数の上限と下限とが、それぞれ一分間当たり60回及び20回である場合を想定する。許容作動周波数の範囲より内側の範囲の周波数として一分間あたり3回とすると、制御上の作動周波数の上限及び下限をそれぞれ一分間当たり57及び23回として制御する。そして、高圧配管内と低圧配管内の圧力差を変化させて行き、制御上の上限又は下限を一度超えたところでそれ以上高圧配管内と低圧配管内のヘリウム等のガスの圧力差を変化させることを停止する。
 具体的に説明すると、1.25MPaのときに冷凍機の作動周波数の最大値が一分間当たり50回、1.20MPaのときに冷凍機の作動周波数の最大値が一分間当たり54回、1.15MPaのときの冷凍機の作動周波数の最大値が一分間当たり58回だとすると、高圧配管内と低圧配管内のヘリウムの圧力差を、1.15MPaより低くすることを停止する。そして、1.15MPaで運転を続ける。
 一方、低温を利用する真空排気ポンプを正常運転が出来る温度まで温度降下させることを意味する起動運転時、及び内部の低温部に凝縮もしくは吸着したガスを昇温により気化放出し排気性能を回復させることを意味する再生運転時には高圧配管内と低圧配管内のヘリウムの圧力差を可能な限り大きくすることが真空室内でプロセスを行う装置のダウンタイムを少なくする上で有効である。何故ならば、起動運転時に必要な冷却能力、及び再生運転時に必要な昇温能力は高圧配管内と低圧配管内との圧力差及び冷凍機の作動周波数の積におよそ比例するからである。
 起動運転とは、高圧のガスが断熱膨張して発生する低温を利用して冷却ステージを冷却して、それにより冷却された部位にガスを凝縮又は吸着させてガスを排気する真空排気ポンプが、内部を粗引きされた後、冷凍機による冷却が開始され、真空排気ポンプとしての機能を発揮するのに必要な温度状態にまでに冷却する運転を起動運転という。この運転中は真空排気ポンプが排気能力を持たない為、起動運転の時間は短いほど良い。
 本発明者らは鋭意研究した結果、起動運転時は冷凍機は通常の真空排気運転時よりは高い作動周波数で、高圧配管内と低圧配管内のガスの圧力差が大きい状態で運転することが望ましいとの知見を得た。
 ここで、本実施形態で用いられる真空排気ポンプは冷却冷凍機が発生する低温の表面に、真空室内のガスを凝縮又は吸着して排気する所謂溜め込み式のポンプである。その為、低温部の凝縮又は吸着したガスが所定の量以上になったときに、凝縮又は吸着しているガスを気化して、凝縮面又は吸着面をガスが凝縮又は吸着していない状態に戻してやることが求められる。
 再生運転とは、高圧のガスが断熱膨張して発生する低温を利用して冷却ステージを冷却してそれにより冷却された部位にガスを凝縮又は吸着させてガスを排気する真空排気ポンプが、運転の仕方を変えることにより発熱機能を持たせることが出来るので、その機能を利用してポンプを再生させる運転をいう。
 即ち、冷却ステージの温度を上昇させることにより凝縮又は吸着している物質を気化させ、ステージ等の冷却部より取り除くことをいう。
 ポンプに搭載されている冷凍機は、冷却ステージと、冷却ステージの一の面に接続されたシリンダと、冷却ステージの接続側の端面とは反対側の、シリンダの軸方向の他の端面に接続された板部材と、冷却ステージ、シリンダ及び板部材より形成される空間を有している。板部材には流路が設けられており、流路を介してシリンダの内部を高圧状態及び低圧状態のいずれかの状態にバルブ操作により行う。空間の内部には、一の空間と流路と通じる他の空間に画するピストン状のディスプレーサが配置されており、シリンダの中を軸方向に往復運転している。ディスプレーサの内部は中空で、内部には熱状態を保存する物質が充填されている。
 この構成を持つポンプにおいて、シリンダ内部が低圧状態で、且つディスプレーサが流路が設けられている板部材に最も接近したときに、高圧状態とシリンダ内部とが繋がるようにバルブ操作を行う。この操作により、シリンダ内部に既にあった低圧状態のガスが断熱圧縮され、シリンダ中のディスプレーサの板部材と逆の空間で、断熱圧縮される結果昇温する。その昇温されたガスをディスプレーサ内を通過させると、ディスプレーサ内部の熱状態を保存する物質に、昇温状態が保存される。
 ディスプレーサが流路が設けられている板部材から最も離れたときに、シリンダ内部を低圧状態を繋がるようにバルブ操作する。この操作により、シリンダ内の高圧状態のガスは断熱膨張しその温度は低下する。シリンダ内の空間(ガス)のほとんどは、ディスプレーサと流路が設けられている板部材との間にあることから、低温のガスのほとんどはディスプレーサの中を通過せず(低温状態を保存せずに)冷たいままで冷凍機から放出される。即ち、ディスプレーサの内部に充填されている熱状態を保存する物質を横切るような低温のガスの流れは起きない。従って、ディスプレーサ内部の熱状態を保存する物質に保存されている昇温状態が保存される。また低温のガスにより冷却ステージが冷却されることもない。
 上記の作用により、徐々にディスプレーサ内部の熱状態を保存する物質の温度が高まり、最終的にステージ温度が上がるものと考えられる。その結果、冷却部に凝縮又は吸着している物質を気化し、ステージ等の冷却部より取り除くことが出来る。
 本発明者らは鋭意研究した結果、この再生運転時の昇温能力は、冷凍機の作動周波数が高いほど、また該冷凍機に供給される高圧配管内と低圧配管内のガスの圧力差が大きい程大きいとの知見を得た。再生は、クライオポンプの通常の冷却運転とは逆の発熱運転を行うことによって短時間に実現できる(例えば、特公平4-195号公報を参照)。即ち、冷凍機のシリンダ内ではディスプレーサと呼ばれるピストン状のものが、冷凍機のシリンダと同軸に往復運転している。そして、ディスプレーサの中心部分には蓄冷剤が充填され、往復方向でのガスの通り抜けが可能な構造となっている。発熱運転は、高圧ガス及び低圧ガスを冷凍機の容器内への導入を司っているバルブのディスプレーサに対する開及び閉のタイミングを、冷却運転を行っている場合と比較して180度位相をずらして運転することにより実現される。
 即ち、ディスプレーサはモータ等の駆動源により単振動運動をしているが、通常の冷却運転においてはディスプレーサに対してバルブ側の空間が一番小さいときに低圧バルブを開にし、ディスプレーサに対してバルブ側の空間が一番大きいときに高圧バルブを開にする。しかし、発熱運転においてはディスプレーサに対してバルブ側の空間が一番小さいときに高圧バルブを開にし、ディスプレーサに対してバルブ側の空間が一番大きいときに低圧バルブを開にする。このような運転をすると、第一ステージおよび第二ステージの温度が昇温し、短時間でそこに凝縮又は吸着していたガスが気化して凝縮面又は吸着面が再生される。
 ここで、図3を用いて複数の真空排気ポンプのうち、通常運転を行う真空排気ポンプと、再生運転を行う真空排気ポンプとがある場合について説明する。複数台の真空排気ポンプ30a~30dのうちの少なくとも一台が、再生運転を行い、バルブが動作することによってシリンダの内部が低圧状態から高圧状態に移行することにより、低圧状態のガスが断熱圧縮される工程と、断熱圧縮されたガス中を前記ディスプレーサが通過する工程とを含む動作を繰り返す運転をしている。そして、複数台の真空排気ポンプ30a~30dのうちの他の少なくとも一台が、通常運転を行い、バルブが動作することによってシリンダの内部が高圧状態から低圧状態に移行することにより、高圧状態のガスが断熱膨張する工程と、断熱膨張したガス中をディスプレーサが通過する工程とを含む動作を繰り返す運転をしている。
 上記の説明では、原理的な説明する為に起動運転と再生運転では高圧ガス及び低圧ガスのバルブの開閉のタイミングがディスプレーサに対して180度ずれていると説明した、効率的な運転をする為には180度よりずれていた方が良いときもある(例えば、特開平7-35070号公報を参照)。
 冷凍機の作動周波数が高いほど冷凍機の冷却能力又は昇温能力は高くなるので、起動運転中又は再生運転中の真空排気ポンプは通常の運転時よりも高めの一定の作動周波数で冷凍機の運転を行うこととする。通常運転時は冷凍機の作動周波数は、例えば1分間当たり20~60回であるが、例えば一分間当たり75回、一定値で運転する。
 この場合に於いても、本実施形態の真空排気ポンプにより真空排気システムが構成されていれば、起動運転又は再生運転されていない真空排気ポンプが繋がれている真空室では通常のプロセスを行える状態を維持しつつ、高圧配管内と低圧配管内のガスの圧力差を高くすることが出来る。というのは、起動運転又は再生運転している以外の他の真空排気ポンプに関しては、作動周波数が通常作動周波数に範囲内にあることを確認しつつ、高圧配管内と低圧配管内のガスの圧力差を限界まで高めれば良い。このような操作をコントローラ35を介して行うことにより、起動運転又は再生運転している真空排気ポンプが繋がれていない真空室では通常のプロセスを行いつつ、起動運転及び再生運転している真空排気ポンプを正常運転の状態に迅速に復帰させることが出来る。
 本実施形態に係わる起動運転又は再生運転時について、図3の真空排気システムに関して図7に示すフローチャートに基づいて説明する。
 各真空排気ポンプ(クライオトラップ)30a乃至30dの一段式冷凍機37a乃至37dの作動周波数を各コントローラ31a乃至31dは監視している(ステップS31)。クライオトラップの冷凍機37a乃至37dの作動周波数をコントローラ35に送る(ステップS32)。コントローラ35は、起動運転又は再生運転中以外の全てのクライオトラップの作動周波数が冷却機の通常作動周波数の範囲内に納まっているかを判断する(ステップS33)。そして、起動運転又は再生運転中以外の全ての冷凍機の作動周波数が通常作動周波数の範囲内に納まっていないときは(ステップS33のNo)、その旨を伝えるべく例えばアラーム等を発報する。
 一方、起動運転又は再生運転中以外の全ての冷凍機の作動周波数が通常作動周波数の範囲内にあるときは(ステップS33のYes)、高圧配管15a内と低圧配管15b内のガスの圧力差を高くする余地があるか否かをコントローラ35が判断する(ステップS34)。
 起動運転又は再生運転の場合は、起動運転又は再生運転をしているクライオトラップの作動周波数は通常作動周波数より高い値、例えば、一分間当たり75回に維持されている。このとき、起動運転又は再生運転をしているクライオトラップの冷却能力を高める為には、高圧配管15a内と低圧配管15b内のガスの圧力差を高くすることが望ましい。
 そこで、例えば高圧配管15a内と低圧配管15b内のガスの圧力差を更に0.05MPa上げても起動運転又は再生運転中以外の冷凍機に作動周波数が通常作動周波数範囲内に留まるかを判断する。具体的には高圧配管15a内と低圧配管15b内のガスの圧力差を高くすると起動運転又は再生運転中以外の冷凍機の作動周波数数が低下するので、起動運転又は再生運転中以外の冷凍機の作動周波数の最小値が下限を下回らないかを判断する。下回らないようであれば(ステップS34のYes)、高圧配管15aと低圧配管15bのガスの圧力差を例えば0.05MPa増大させる(ステップS35)。そして、制御をRに戻す。
 このようにして最終的に達する真空排気システムの運転状態(ステップS36)は、起動運転又は再生運転中以外の全てのクライオトラップの作動周波数を通常作動周波数範囲内に維持しつつ、即ち正常運転状態に維持しつつ、高圧配管15aと低圧配管15bのガスの圧力差が達し得る圧力差の最大近傍にある運転状態である。その結果、他のクライオトラップを正常運転の状態に維持しつつ且つ迅速に、起動運転又は再生運転状態のクライオトラップを正常運転の状態にすることが出来る。
 次に、本発明の第二の実施形態である複数の2段の冷却ステージを有する真空排気ポンプを一台の圧縮機で運転する場合について、図8に基づいて説明する。ここで、2段の冷却ステージを有する真空排気ポンプとしては、クライオポンプを使用している。
 図8において、1a乃至1eはクライオポンプ、2a乃至2eは冷凍機、3は圧縮機、15a及び15bはそれぞれ高圧配管及び低圧配管、36a乃至36eはクライオポンプ1a乃至1eのコントローラである。また、32及び33はそれぞれ高圧配管用及び低圧配管用の圧力計、34は圧力計32からの圧力と圧力計33からの圧力との差を求め、圧縮機3の駆動周波数を制御する周波数制御部である。また、35は各クライオポンプのコントローラ36a乃至36eを統括制御するコントローラである。
 第二の実施形態の制御法は、図5及び図6に記載したものと同様である。ただ異なるのは、クライオポンプが正常作動周波数の範囲内にあるということはが、第一冷却ステージの温度が許容温度範囲内にあり、且つ第二冷却ステージの温度が目標温度範囲内にあることを示している点が異なる。
 本実施形態においても、第一の実施形態と同様に図7に示す制御をすることで、起動運転又は再生運転していないクライオポンプが繋がれている真空室では通常のプロセスを行いつつ、起動運転及び再生運転しているクライオポンプを通常運転の状態に迅速に復帰させることが出来る。
 次に、本発明の第三の実施形態である2段の冷却ステージ有する真空排気ポンプ及び1段ステージを有する真空排気ポンプが混載された真空排気システムを一台の圧縮機で運転する場合について、図9に基づいて説明する。
 ここで、2段の冷却ステージを有する真空排気手段としてはクライオポンプ、1段の冷却ステージを有する真空排気手段としてはクライオトラップを使用している。
 図9において、1a乃至1cはクライオポンプ、2a乃至2cはクライオポンプの二段式冷凍機、3は圧縮機、15a及び15bはそれぞれ高圧配管及び低圧配管、30a及び30bはクライオトラップである。また、31a及び31bはクライオトラップのコントローラ、32及び33はそれぞれ高圧配管用及び低圧配管用の圧力計である。34は圧力計32からの圧力と圧力計33からの圧力との差を求め、圧縮機3の駆動周波数を制御する周波数制御部、36a乃至36cはクライオポンプ1a乃至1cのコントローラである。また、35はクライオポンプ1a乃至1cのコントローラ36a乃至36c及びクライオトラップ37a及び37bのコントローラ36a,36bを統括制御するコントローラである。
 第三の実施形態の制御法は、図5及び図6に記載したものと同様である。ただ異なるのは、冷凍機の作動周波数が、常用作動周波数の範囲内にあるということが、2段ステージを有するクライオポンプについては第一段ステージの温度が許容温度範囲内にあり且つ第二ステージの温度が目標温度範囲内にあることであり、1段ステージを有するクライオトラップに関しては第一段ステージの温度が許容温度範囲内にあることを示している点が異なる。
 本実施形態においても、第一及び第二の実施形態と同様に、起動運転又は再生運転していない真空排気ポンプが繋がれている真空室では通常のプロセスを行いつつ、起動運転及び再生運転している真空排気ポンプを正常運転の状態に迅速に復帰させることが出来る。
 図12は、本発明の真空排気システムを使用した基板処理装置1200を示す。本基板処理装置は、液晶パネルにソース及びドレイン電極を作成するクラスター型スパッタリング装置である。ここで、1201は本装置の中心に位置して、各基板処理室間で基板のやり取りを行う基板搬送室である。中心部に不図示の基板搬送ロボットが配置し、各基板処理室間で基板のやり取りを行う。1202は及び1203はロードロック室、1204は基板加熱室、1205は第一Ti成膜室、1206はAl成膜室及び1207は第二Ti成膜室である。基板搬送室1201と各基板処理室間の間にはゲートバルブ1208が配置されている。また、第一Ti成膜室1205、Al成膜室1206、第二Ti成膜室1207には、それぞれのターゲット1209a、1209b及び1209cが基板に対向するように配置されている。
 図13の参照により、基板処理装置1200を使用して製造される電子デバイスとして、例えば液晶表示装置に採用されているボトムゲート型の薄膜トランジスタ(Thin Film Transistor、以降TFTと略記する)のソース及びドレイン電極の製造について説明する。ここで、1301はガラス基板、1302は絶縁層で例えば窒化シリコン膜、1303は非晶質Siからなる半導体層、1304はソース電極及びドレイン電極、1305はゲート電極、1306は例えばシリコン窒化膜からなる保護層及び1307は例えば透明電導膜である酸化インジウムスズ(Indium Tin Oxide、以降ITOと略記する)である。尚、本実施例のTFTに於いては、ソース電極及びドレイン電極1304はTi/Al/Tiの三層構造となっており、良好な半導体層1303との密着性を確保出来ると共にAlの半導体層1303である非結晶Siへの拡散を防止できる。
 上記の3層からなるソース及びドレイン電極を作製する、本発明に係わる真空排気システムを使用する基板処理装置1200の排気システムを、図12を使用して説明する。基板加熱室1204、第一Ti成膜室1205、Al成膜室1206、第二Ti成膜室1207及び基板搬送室1201にはそれぞれにクライオポンプ1210a乃至1210eが取り付けられている。クライオポンプは、縦型のクライオポンプ(点線で示す)が各基板処理室の下側にゲートバルブ(不図示)を介して取り付けられている。そして、各クライオポンプはそれぞれを制御するコントローラ1211に繋がれている。そして、各コントローラ1211は全体を制御する統括コントローラ1212に繋がれている。ここで、コントローラ1211a~1211eは図8におけるコントローラ36a~36eに、統括コントローラ1212は図8のコントローラ35に相当する。各クライオポンプ1210の状態は各クライオポンプを監視しているコントローラ1211a~1211eを介して全体を制御する統括コントローラ1212に入力されている。圧縮機1214からは、高圧配管及び低圧配管1216で各クライオポンプ1210へHeガスが供給及び還流が行われている。そして、圧縮機を駆動する周波数制御部1213にはHe高圧配管とHe低圧配管の間の差圧が差圧計1215で測定されて入力されている。図12においては、Heの供給及び回収は異なる配管で行われるが簡略化のため一本で示している。
 上記のような構成を真空排気システムが有することにより、複数の処理室に配設された複数のクライオポンプを通常の運転時は、圧縮機からの高圧Heと低圧Heの差圧を必要最小にすることにより通常運転時の消費エネルギーを小さく出来る。
 一方、例えば第一のTi成膜室又は第二のTi成膜室のいずれかが起動運転又は再生運転中でも、他の基板処理室では通常の基板処理を継続しつつ、起動運転又は再生運転を行っている処理室では、起動運転又は再生運転を短時間で終了し、通常の基板処理に迅速に復帰出来る。
 図12に示す基板処理装置を使用して、Ti/Ai/Tiの三層構造のソース電極及びドレイン電極を作製するには、まず図13においてガラス基板1301上に半導体層1303以下が作製されている基板を複数枚収納したカセットを、ロードロック室1202又は1203と基板搬送室1201とを画するゲートバルブ1208が閉じた状態で、ロードロック室1202又は1203の内部を大気圧の状態に戻し、ロードロック室1202又は1203内に載置する。次いで、ロードロック室1202又は1203内をドライポンプ等の低真空用の排気ポンプで排気する。ロードロック室1202又は1203内が所定に真空度まで排気されたら、基板搬送室1201とロードロック室1202又は1203の間のゲートバルブ1208を開ける。そして、基板搬送室1201の中心部の配置されている基板搬送ロボットの腕が基板のある位置まで回転・伸展してきて基板をピックアップする。基板をピックアップした基板搬送ロボットは腕を収縮し、基板搬送室1201の中心で回転してその腕の方向を基板加熱室1204に向ける。その後に、基板搬送室1201とロードロック室1202又は1203の間の該ゲートバルブが閉じる。次いで、基板搬送室1201と基板加熱室1204との間のゲートバルブ1208が開き、基板搬送ロボットにより基板が基板加熱室1204内に運び込まれる。基板を基板加熱室1204内の基板支持機構に載置したら、基板搬送ロボットの腕は縮み、その後に基板搬送室1201と基板加熱室1204間のゲートバルブ1208が閉じる。基板加熱室1204内では例えばハロゲンランプ等の加熱手段により基板が120~150℃に加熱維持される。加熱処理された基板は、上述と同様の操作で基板搬送ロボットにより次の第一Ti成膜室1205に移送され、次の基板がロードロック室1202又は1203内のカセットから、基板搬送室1201を経由して基板加熱室1204に移送される。このようにして、カセット内の基板及び各室の処理済み基板は、ロードロック室1202又は1203から、基板加熱室1204、第一Ti成膜室1205,Al成膜室1206、第二Ti成膜室1207へと順送りされ、第三層(Ti膜)の成膜が終了した基板は、ロードロック室1202又は1203のカセットの未収納棚に戻される。カセット内の基板が全て処理されると、処理基板が収納されているカセットはロードロック室1202又は1203から取り出される。そして、新たな基板を収納したカセットがロードロック室1202又は1203に収納され、同様の手順で処理が繰り返される。
 ここで、第一Ti成膜室1205及び第二Ti成膜室1207のTi成膜は0.2~0,4Paの低圧で、50nm程度の厚さの膜が形成される。また、Al成膜室1206で行われるAl成膜も同様に0.2~0,4Paの低圧で、200~300nmの膜厚の膜が形成される。また、それぞれ上述の各基板処理室の到達圧力としては、基板搬送室1201、第一Ti成膜室1205、第二Ti成膜室1207及びAl成膜室1206では、10-3Pa台、5×10-5Paの高真空がそれぞれ基板処理室間相互間での汚染を防止するために必要である。尚、基板加熱室1204も上述の他の基板処理室と同様、処理室間相互間での汚染を防止する観点から加熱処理中は高真空に維持することが望ましく、従って高真空を実現できるクライオポンプを採用するこが望ましい。しかし、その場合はハロゲンパンプ等の加熱手段からの入熱によりクライオポンプの排気特性が維持できなくなるという問題がある。この問題は、基板加熱室1204とクライオポンプ1210a間に取り付けられるゲートバルブ(不図示)の上流側に反射板を配することにより、本問題の弊害を抑制することが出来る。
 その後に、基板処理装置1200から取り出された基板にレジストでソース電極及びドレイン電極の形にマスクを形成し、その後ドライエッチング装置で異方性エッチングする。その後に、保護膜1306をCVD法又はスパッタリング法により形成して、図13のTFTを得る。
 本実施例は、液晶表示装置のソース及びドレイン電極の作製に関して説明したが、何らこれに限定される訳ではない。複数の冷凍機を運転する必要がある、クラスター型の基板処理装置又はインライン型の基板処理装置に適用可能なのは言うまでもない。
 また、本発明の真空排気システムを使用して製造されるのが適したデバイスに関しても、上述の液晶表示装置に限らず、多層を真空一貫で処理する必要があるMRAM(Magnetic Random Access Memory、以降前記のように略記する)、ハードディスク用のヘッド及びDRAM(Dynamic Random Access Memory、以降前記のように略記する)等を挙げることが出来る。そして、本明細書及び特許請求の範囲で電子デバイスといった場合は、電子技術を利用した表示装置、MRAM、ハードディスクのヘッド及びDRAM等の含む電子装置一般をさすものとする。
 本発明は、冷却ステージを有する複数の真空排気ポンプが圧縮機に繋がれて動作する真空排気システム及びその運転方法に適用され、特にクライオポンプ、クライオトラップ、又はクライオポンプとクライオトラップを有する真空排気システムに利用することができる。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
 本願は、2008年9月30日提出の日本国特許出願特願2008-253916と、2008年9月30日提出の日本国特許出願特願2008-253919と、を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。

Claims (43)

  1.  第一冷却ステージ部を含み、前記第一冷却ステージ部を冷却する冷凍機と、前記第一冷却ステージ部の温度を測定する第一温度センサとを有し、前記第一温度センサの測定した温度が所定の温度範囲より高いときは前記冷凍機内で高圧状態と低圧状態が単位時間内に繰り返される回数を増大させ、前記第一温度センサの測定した温度が前記所定の温度範囲より低いときは前記回数を減少させ、前記第一温度センサの測定した温度が前記所定の温度範囲内のときは前記回数を維持する複数の真空排気ポンプと、
     前記複数の真空排気ポンプに繋がれた圧縮機と、
     前記圧縮機から共通の圧力の高圧のガスが前記複数の真空排気ポンプの冷凍機に供給される流路である高圧配管と、
     前記複数の真空排気ポンプの冷凍機から低圧のガスが前記圧縮機に還流する流路である低圧配管と、
     前記回数に応じて、前記高圧配管の内圧と前記低圧配の内圧との圧力差を変化させることが出来る制御手段と、
     を備えることを特徴とする真空排気システム。
  2.  前記複数の真空排気ポンプの少なくとも1台は、更に前記第一冷却ステージ部より低温に冷却される第二冷却ステージ部と、前記第二冷却ステージ部の温度を測定する第二温度センサと、前記第一冷却ステージ部の加熱手段とを有し、
     前記加熱手段は、前記第一冷却ステージ部の温度が前記所定の温度範囲内で、且つ前記第二冷却ステージ部の温度が所定の温度の範囲内に維持されるように、前記第二温度センサの出力に基づいて加熱が制御されることを特徴とする請求項1に記載の真空排気システム。
  3.  前記複数の真空排気ポンプは、クライオトラップを含んでいることを特徴とする請求項1に記載の真空排気システム。
  4.  前記複数の真空排気ポンプは、クライオポンプを含んでいることを特徴とする請求項1に記載の真空排気システム。
  5.  前記第二冷却ステージ部と、第二温度センサとを有する、前記少なくとも1台の真空排気ポンプはクライオポンプである請求項2に記載の真空排気システム。
  6.  第一冷却ステージ部を含み、前記第一冷却ステージ部を冷却する冷凍機と、前記第一冷却ステージ部の温度を測定する第一温度センサとを有する複数の真空排気ポンプと、
     前記複数の真空排気ポンプに繋がれた圧縮機と、
     前記圧縮機から共通の圧力の高圧のガスが前記複数の真空排気ポンプの冷凍機に供給される流路である高圧配管と、
     前記複数の真空排気ポンプの冷凍機から低圧のガスが前記圧縮機に還流する流路である低圧配管とを有する真空排気システムの運転方法であって、
     前記複数の真空排気ポンプは、前記第一温度センサの測定した温度が所定の温度範囲より高いときは前記冷凍機内で高圧状態と低圧状態が単位時間内に繰り返される回数を増大させ、前記第一温度センサの測定した温度が前記所定の温度範囲より低いときは前記回数を減少させ、前記第一温度センサの測定した温度が前記所定の温度範囲内のときは前記回数を維持する工程と、
     前記冷凍機における前記回数が所定の範囲内に収まる範囲で、前記圧縮機で生成される前記高圧配管内と前記低圧配管内とのガスの圧力差を減少させる工程と、
     を有する真空排気システムの運転方法。
  7.  前記複数の真空排気ポンプの少なくとも1台は、更に前記第一冷却ステージ部より低温に冷却される第二冷却ステージ部と、前記第二冷却ステージ部の温度を測定する第二温度センサと、前記第一冷却ステージ部の加熱手段とを有し、
     前記第一冷却ステージ部の温度が前記所定の温度範囲内で、且つ前記第二冷却ステージ部の温度が所定の温度の範囲内に維持されるように、前記第二温度センサの出力に基づいて前記加熱手段を作動させる工程を更に有することを特徴とする請求項6に記載の真空排気システムの運転方法。
  8.  冷却ステージと、
     前記冷却ステージの一の面に接続されたシリンダと、
     前記冷却ステージに接続された前記シリンダの一の端面とは反対側の、前記シリンダの軸方向の他の端面に接続された板部材と、
     前記冷却ステージ、前記シリンダ及び前記板部材より囲まれて形成される空間と、
     前記板部材に設けられている流路と、
     前記流路を介して前記シリンダの内部を高圧状態及び低圧状態のいずれかの状態にするバルブと、
     前記空間の内部を一の空間と前記流路と通じる他の空間とに画するピストン状のディスプレーサとを有し、
     前記ディスプレーサは前記シリンダの内部で軸方向に往復運動し、前記シリンダの内部が中空で、前記内部に熱状態を保存する物質が含まれている冷凍機であって、
     前記バルブが動作することにより前記シリンダの内部が前記低圧状態から前記高圧状態に移行することにより、前記低圧状態のガスが断熱圧縮される工程と、
     前記断熱圧縮したガス中を前記ディスプレーサが通過する工程と、を含む動作を繰り返す運転をする際に、
     前記冷凍機内で前記高圧状態と前記低圧状態とが単位時間内に繰り返される回数が、低温通常運転時より高い値であり、且つ前記高圧状態と前記低圧状態との圧力差を大きくするように動作することを特徴とする冷凍機。
  9.  前記低温通常運転時より高い値は、一定値であることを特徴とする請求項8に記載の冷凍機。
  10.  前記一定値は、前記冷凍機の作動周波数の最大値であることを特徴とする請求項9に記載の冷凍機。
  11.  請求項8乃至請求項10のいずれか1項に記載の冷凍機を有することを特徴とする真空排気ポンプ。
  12.  請求項11に記載の真空排気ポンプはクライオポンプを含んでいることを特徴とする真空排気ポンプ。
  13.  請求項11に記載の真空排気ポンプはクライオトラップを含んでいることを特徴とする真空排気ポンプ。
  14.  冷却ステージを含み、前記冷却ステージを高圧のガスが断熱膨張することにより冷却する冷凍機において、
     常温状態から真空排気運転の状態に至らせるときに、
     前記冷凍機内で前記ガスの高圧状態と低圧状態が単位時間内に繰り返される回数が前記の低温通常運転時より高い値であり、且つ前記高圧状態と前記低圧状態との圧力差を大きくするように動作することを特徴とする冷凍機。
  15.  前記低温通常運転時より高い値は、一定値であることを特徴とする請求項14に記載の冷凍機。
  16.  前記一定値は、前記冷凍機の作動周波数の最大値であることを特徴とする請求項15に記載の冷凍機。
  17.  請求項14乃至請求項16のいずれか1項に記載の冷凍機を有することを特徴とする真空排気ポンプ。
  18.  請求項17に記載の真空排気ポンプはクライオポンプを含んでいることを特徴とする真空排気ポンプ。
  19.  請求項17に記載の真空排気ポンプはクライオトラップを含んでいることを特徴とする真空排気ポンプ。
  20.  冷却ステージを含み、前記冷却ステージの温度を昇温することで、凝縮又は吸着している物質を気化させる再生運転時において、前記冷凍機内で高圧状態と低圧状態が単位時間内に繰り返される回数が低温通常運転時より高い値であり、且つ圧縮機から供給されるガスの前記高圧状態と低圧状態の圧力差を大きくするように動作することを特徴とする冷凍機。
  21.  前記低温通常運転時より高い値は、一定値であることを特徴とする請求項20に記載の冷凍機。
  22.  前記一定値は、前記冷凍機の作動周波数の最大値であることを特徴とする請求項21に記載の冷凍機。
  23.  請求項20乃至請求項22のいずれか1項に記載の冷凍機を有することを特徴とする真空排気ポンプ。
  24.  請求項23に記載の真空排気ポンプはクライオポンプを含んでいることを特徴とする真空排気ポンプ。
  25.  請求項23に記載の真空排気ポンプはクライオトラップを含んでいることを特徴とする真空排気ポンプ。
  26.  冷却ステージと、
     前記冷却ステージの一の面に接続されたシリンダと、
     前記冷却ステージに接続された前記シリンダの一の端面とは反対側の、前記シリンダの軸方向の他の端面に接続された板部材と、
     前記冷却ステージ、前記シリンダ及び前記板部材より囲まれて形成される空間と、
     前記板部材に設けられている流路と、
     前記流路を介して前記シリンダの内部を高圧状態及び低圧状態のいずれかの状態にするバルブと、
     前記空間の内部を一の空間と前記流路と通じる他の空間とに画するピストン状のディスプレーサとを有し、
     前記ディスプレーサは前記シリンダの内部で軸方向に往復運動し、前記シリンダの内部が中空で、前記内部に熱状態を保存する物質が含まれている冷凍機の運転方法であって、
     前記バルブが動作することにより前記シリンダの内部が前記低圧状態から前記高圧状態に移行することにより、前記低圧状態のガスが断熱圧縮される工程と、
     前記断熱圧縮したガス中を前記ディスプレーサが通過する工程と、を含む動作を繰り返す運転をする際に、
     前記冷凍機内で前記高圧状態と前記低圧状態とが単位時間内に繰り返される回数が、低温通常運転時より高い値であり、且つ前記高圧状態と前記低圧状態との圧力差を大きくするように動作することを特徴とする冷凍機の運転方法。
  27.  冷却ステージを含み、前記冷却ステージを高圧のガスが断熱膨張することにより冷却する冷凍機の運転方法において、
     常温状態から真空排気運転の状態に至らせるときに、
     前記冷凍機内で前記ガスの高圧状態と低圧状態が単位時間内に繰り返される回数が前記の低温通常運転の時より高い値であり、且つ前記高圧状態と前記低圧状態との圧力差を大きくするように動作することを特徴とする冷凍機の運転方法。
  28.  第一冷却ステージ及び第二冷却ステージと、前記第一冷却ステージの温度を測定する第一温度センサと、前記第二冷却ステージの温度を測定する第二温度センサと、前記第一冷却ステージを加熱するための加熱手段と、を有する二段式冷凍機の運転制御方法であって、
     前記第一温度センサの出力を元に、前記第一冷却ステージの温度を一定に保つように前記二段式冷凍機の作動周波数をフィードバック制御する第一制御工程と、
     前記第二温度センサの出力により前記第二冷却ステージの温度を検出し、この検出した該第二冷却ステージの温度に基づいて、前記加熱手段の出力を制御することにより前記二段式冷凍機の作動周波数を変更させて前記第二冷却ステージの冷凍能力を制御する第二制御工程と、
     を有することを特徴とする二段式冷凍機の運転制御方法。
  29.  前記第二制御工程は、検出した前記第二冷却ステージの温度が、目標温度範囲の最小値より低くなった時に前記加熱手段の出力を下げ、目標温度範囲の最大値より高くなった時に前記加熱手段の出力を上げることを特徴とする請求項28に記載の二段式冷凍機の運転制御方法。
  30.  前記加熱手段が、電気ヒータであることを特徴とする請求項28に記載の二段式冷凍機の運転制御方法。
  31.  二段式冷凍機を有するクライオポンプの運転制御方法において、
     請求項28乃至30のいずれか1項に記載の二段式冷凍機の運転制御方法により二段式冷凍機の運転を制御することを特徴とするクライオポンプの運転制御方法。
  32.  二段式冷凍機であって、
     第一冷却ステージと、
     第二冷却ステージと、
     前記第一冷却ステージの温度を検知する第一温度センサと、
     前記第二冷却ステージの温度を検知する第二温度センサと、
     前記第一冷却ステージを加熱する加熱手段と、
     前記第二温度センサにより検知された前記第二冷却ステージの温度に応じて前記加熱手段の出力を制御する加熱制御器と、
     を備えることを特徴とする二段式冷凍機。
  33.  二段式冷凍機であって、
     第一稼動温度幅以内の冷却温度となる第一冷却ステージと、
     前記第一稼動温度幅より低い稼動温度幅に設定した第二稼動温度幅以内の冷却温度となる第二冷却ステージと、
     前記第一冷却ステージを加熱するための加熱手段と、
     二段式冷凍機の駆動周波数を制御する制御手段と、
     前記第一冷却ステージの温度を測定する第一温度センサと、
     前記第二冷却ステージの温度を測定する第二温度センサと、を備え、
     前記制御手段は、前記第二温度センサの出力値が所定値より高い温度を示す出力値のとき、前記加熱手段の加熱熱量を増大することにより、前記駆動周波数を増大させ、前記第二温度センサの出力値が所定値より低い温度を示す出力値のとき、前記加熱手段の加熱熱量を減少させることにより、前記駆動周波数を減少させることを特徴とする二段式冷凍機。
  34.  前記加熱手段は、電気ヒータであることを特徴とする請求項32に記載の二段式冷凍機。
  35.  前記加熱手段は、電気ヒータ、高温部からの熱伝達状態を切り換える熱スイッチ、冷媒ガスの循環パイプからの循環入熱量の調整器又は誘導加熱装置であることを特徴とする請求項33に記載の二段式冷凍機。
  36.  請求項32に記載の二段式冷凍機を有することを特徴とするクライオポンプ。
  37.  請求項33に記載の二段式冷凍機を有することを特徴とするクライオポンプ。
  38.  請求項36に記載のクライオポンプを有することを特徴とする基板処理装置。
  39.  請求項37に記載のクライオポンプを有することを特徴とする基板処理装置。
  40.  前記基板処理装置は、スパッタリング装置であることを特徴とする請求項38に記載の基板処理装置。
  41.  前記基板処理装置は、スパッタリング装置であることを特徴とする請求項39に記載の基板処理装置。
  42.  請求項1乃至5のいずれか1項に記載の真空排気システムを有することを特徴とする基板処理装置。
  43.  請求項38乃至42のいずれか1項に記載の基板処理装置で処理される工程を有することを特徴とする電子デバイスの製造方法。
PCT/JP2009/004967 2008-09-30 2009-09-29 真空排気システム、真空排気システムの運転方法、冷凍機、真空排気ポンプ、冷凍機の運転方法、二段式冷凍機の運転制御方法、クライオポンプの運転制御方法、二段式冷凍機、クライオポンプ、基板処理装置、電子デバイスの製造方法 WO2010038415A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010513558A JP4642156B2 (ja) 2008-09-30 2009-09-29 真空排気システム、真空排気システムの運転方法、冷凍機、冷凍機の運転方法、基板処理装置、電子デバイスの製造方法
KR1020117009218A KR101279184B1 (ko) 2008-09-30 2009-09-29 진공 배기 시스템, 진공 배기 시스템의 운전 방법, 냉동기, 진공 배기 펌프, 냉동기의 운전 방법, 2단식 냉동기의 운전 제어 방법, 크라이오 펌프의 운전 제어 방법, 2단식 냉동기, 크라이오 펌프, 기판 처리 장치, 전자 디바이스의 제조 방법
CN200980137529.5A CN102165192B (zh) 2008-09-30 2009-09-29 真空排气***、冷冻机、低温泵及其运转方法、以及基板处理装置
US13/037,819 US20110147198A1 (en) 2008-09-30 2011-03-01 Vacuum pumping system, operating method of vacuum pumping system, refrigerator, vacuum pump, operating method of refrigerator, operation control method of two-stage type refrigerator, operation control method of cryopump, two-stage type refrigerator, cryopump, substrate processing apparatus, and manufacturing method of electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-253919 2008-09-30
JP2008253916 2008-09-30
JP2008-253916 2008-09-30
JP2008253919 2008-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/037,819 Continuation US20110147198A1 (en) 2008-09-30 2011-03-01 Vacuum pumping system, operating method of vacuum pumping system, refrigerator, vacuum pump, operating method of refrigerator, operation control method of two-stage type refrigerator, operation control method of cryopump, two-stage type refrigerator, cryopump, substrate processing apparatus, and manufacturing method of electronic device

Publications (1)

Publication Number Publication Date
WO2010038415A1 true WO2010038415A1 (ja) 2010-04-08

Family

ID=42073197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004967 WO2010038415A1 (ja) 2008-09-30 2009-09-29 真空排気システム、真空排気システムの運転方法、冷凍機、真空排気ポンプ、冷凍機の運転方法、二段式冷凍機の運転制御方法、クライオポンプの運転制御方法、二段式冷凍機、クライオポンプ、基板処理装置、電子デバイスの製造方法

Country Status (5)

Country Link
US (1) US20110147198A1 (ja)
JP (2) JP4642156B2 (ja)
KR (1) KR101279184B1 (ja)
CN (1) CN102165192B (ja)
WO (1) WO2010038415A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019173756A (ja) * 2019-06-14 2019-10-10 住友重機械工業株式会社 クライオポンプシステム、クライオポンプシステムの運転方法、冷凍機システム、および冷凍機システムの運転方法
US10815982B2 (en) 2013-11-20 2020-10-27 Sumitomo Heavy Industries, Ltd. Cryopump system and method of operating cryopump system
JP2021063508A (ja) * 2021-01-20 2021-04-22 住友重機械工業株式会社 クライオポンプシステム、クライオポンプシステムの運転方法、冷凍機システム、および冷凍機システムの運転方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038416A1 (ja) * 2008-09-30 2010-04-08 キヤノンアネルバ株式会社 真空排気システム、基板処理装置、電子デバイスの製造方法、真空排気システムの運転方法
JP5738174B2 (ja) * 2011-12-27 2015-06-17 住友重機械工業株式会社 クライオポンプシステム、極低温システム、圧縮機ユニットの制御装置及びその制御方法
JP5808691B2 (ja) * 2012-02-23 2015-11-10 住友重機械工業株式会社 クライオポンプ、及びクライオポンプの再生方法
JP5868224B2 (ja) * 2012-03-07 2016-02-24 住友重機械工業株式会社 クライオポンプシステム、クライオポンプシステムの運転方法、及び圧縮機ユニット
KR101919888B1 (ko) * 2012-06-11 2018-11-19 엘지전자 주식회사 약진공 알고리즘에 의한 냉장고 야채실 신선보관 구조 및 이를 이용한 신선보관방법
JP6067423B2 (ja) * 2013-03-04 2017-01-25 住友重機械工業株式会社 極低温冷凍装置、クライオポンプ、核磁気共鳴画像装置、及び極低温冷凍装置の制御方法
CN103389188B (zh) * 2013-07-16 2016-06-22 上海实路真空技术工程有限公司 一种用于绝热气瓶漏率检测的检漏装置和检漏方法
JP6351525B2 (ja) * 2015-03-04 2018-07-04 住友重機械工業株式会社 クライオポンプシステム、クライオポンプ制御装置、及びクライオポンプ再生方法
KR101949426B1 (ko) 2017-05-23 2019-02-18 한국알박크라이오(주) 크라이오 펌프를 위한 컴프레서 장치 및 그 제어 방법
KR101971827B1 (ko) * 2018-04-17 2019-04-23 캐논 톡키 가부시키가이샤 진공 장치, 진공 시스템, 디바이스 제조 장치, 디바이스 제조 시스템 및 디바이스 제조 방법
KR101943268B1 (ko) * 2018-04-26 2019-01-28 캐논 톡키 가부시키가이샤 진공 시스템, 기판 반송 시스템, 전자 디바이스의 제조 장치 및 전자 디바이스의 제조 방법
JP7369129B2 (ja) * 2018-09-03 2023-10-25 住友重機械工業株式会社 クライオポンプおよびクライオポンプの監視方法
EP3933306B1 (en) * 2020-03-10 2023-09-13 ATS Japan Co., Ltd. Refrigerant control system and refrigeration system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346848A (ja) * 1993-06-11 1994-12-20 Hitachi Ltd クライオポンプの再生方法及び真空排気系
JPH0735070A (ja) * 1993-07-17 1995-02-03 Anelva Corp クライオポンプ
JPH08135570A (ja) * 1994-11-11 1996-05-28 Ebara Corp クライオポンプ及びコールドトラップ
JPH08232839A (ja) * 1995-02-27 1996-09-10 Daikin Ind Ltd 極低温冷凍機
JP2004003792A (ja) * 2002-04-18 2004-01-08 Sumitomo Heavy Ind Ltd 極低温冷凍機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316178A (ja) * 1986-07-09 1988-01-23 Hitachi Ltd クライオポンプ
US5001903A (en) * 1987-01-27 1991-03-26 Helix Technology Corporation Optimally staged cryopump
JPH062658A (ja) * 1991-05-30 1994-01-11 Ulvac Kuraio Kk クライオポンプ装置
US5291740A (en) * 1992-07-02 1994-03-08 Schnurer Steven D Defrosting tool for cryostat cold head interface
US5386708A (en) * 1993-09-02 1995-02-07 Ebara Technologies Incorporated Cryogenic vacuum pump with expander speed control
EP0919722B1 (en) * 1994-04-28 2003-07-16 Ebara Corporation Regeneration of a cryopump
JPH10184541A (ja) * 1996-12-27 1998-07-14 Anelva Corp 真空排気装置
JP2000249056A (ja) * 1999-02-26 2000-09-12 Suzuki Shokan:Kk クライオポンプの運転制御方法および運転制御装置
JP2001317457A (ja) * 2000-04-28 2001-11-16 Ulvac Kuraio Kk クライオポンプの運転方法
KR20050058363A (ko) * 2002-08-20 2005-06-16 스미도모쥬기가이고교 가부시키가이샤 극저온 냉동기
JP4150745B2 (ja) * 2006-05-02 2008-09-17 住友重機械工業株式会社 クライオポンプ及びその再生方法
CN101790644A (zh) * 2007-08-28 2010-07-28 佳能安内华股份有限公司 低温泵***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346848A (ja) * 1993-06-11 1994-12-20 Hitachi Ltd クライオポンプの再生方法及び真空排気系
JPH0735070A (ja) * 1993-07-17 1995-02-03 Anelva Corp クライオポンプ
JPH08135570A (ja) * 1994-11-11 1996-05-28 Ebara Corp クライオポンプ及びコールドトラップ
JPH08232839A (ja) * 1995-02-27 1996-09-10 Daikin Ind Ltd 極低温冷凍機
JP2004003792A (ja) * 2002-04-18 2004-01-08 Sumitomo Heavy Ind Ltd 極低温冷凍機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10815982B2 (en) 2013-11-20 2020-10-27 Sumitomo Heavy Industries, Ltd. Cryopump system and method of operating cryopump system
JP2019173756A (ja) * 2019-06-14 2019-10-10 住友重機械工業株式会社 クライオポンプシステム、クライオポンプシステムの運転方法、冷凍機システム、および冷凍機システムの運転方法
JP2021063508A (ja) * 2021-01-20 2021-04-22 住友重機械工業株式会社 クライオポンプシステム、クライオポンプシステムの運転方法、冷凍機システム、および冷凍機システムの運転方法

Also Published As

Publication number Publication date
JP2011043164A (ja) 2011-03-03
JP4642156B2 (ja) 2011-03-02
KR20110073540A (ko) 2011-06-29
CN102165192A (zh) 2011-08-24
JP5307785B2 (ja) 2013-10-02
JPWO2010038415A1 (ja) 2012-03-01
CN102165192B (zh) 2014-03-12
KR101279184B1 (ko) 2013-06-26
US20110147198A1 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
WO2010038415A1 (ja) 真空排気システム、真空排気システムの運転方法、冷凍機、真空排気ポンプ、冷凍機の運転方法、二段式冷凍機の運転制御方法、クライオポンプの運転制御方法、二段式冷凍機、クライオポンプ、基板処理装置、電子デバイスの製造方法
WO2010038416A1 (ja) 真空排気システム、基板処理装置、電子デバイスの製造方法、真空排気システムの運転方法
US8302409B2 (en) Cryopump and regenerating method of the cryopump
KR101674088B1 (ko) 크라이오펌프, 및 크라이오펌프의 재생방법
JP6124626B2 (ja) クライオポンプ及びその再生方法
KR101582923B1 (ko) 극저온 냉동기 및 크라이오펌프 및 디스플레이서
TWI600832B (zh) Cryogenic pump, cryogenic pump control method and freezer
WO2004018947A1 (ja) 極低温冷凍機
US20100115971A1 (en) Cryopump
KR20060013344A (ko) 크라이오 펌프
JP2007309184A (ja) クライオポンプ及びその再生方法
TWI672439B (zh) 低溫泵及低溫泵的控制方法
KR20140111752A (ko) 가변용량형 크라이오 펌프시스템
JP2017172381A (ja) クライオポンプ、クライオポンプ制御装置及びクライオポンプ制御方法
JP2011137423A (ja) クライオポンプ、基板処理装置、電子デバイスの製造方法
WO2010097888A1 (ja) 二段式冷凍機の運転制御方法、二段式冷凍機を有するクライオポンプの運転制御方法、二段式冷凍機、クライオポンプ及び真空基板処理装置
JPH07116403A (ja) 極低温冷凍機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980137529.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010513558

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117009218

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09817457

Country of ref document: EP

Kind code of ref document: A1