WO2009125504A1 - Nanowire and method of forming the same - Google Patents

Nanowire and method of forming the same Download PDF

Info

Publication number
WO2009125504A1
WO2009125504A1 PCT/JP2008/057382 JP2008057382W WO2009125504A1 WO 2009125504 A1 WO2009125504 A1 WO 2009125504A1 JP 2008057382 W JP2008057382 W JP 2008057382W WO 2009125504 A1 WO2009125504 A1 WO 2009125504A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanowire
forming
substrate
vacuum
target material
Prior art date
Application number
PCT/JP2008/057382
Other languages
French (fr)
Japanese (ja)
Inventor
馬暁東
曽我部完
Original Assignee
Ma Xiaodong
Sogabe Masaru
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ma Xiaodong, Sogabe Masaru filed Critical Ma Xiaodong
Priority to PCT/JP2008/057382 priority Critical patent/WO2009125504A1/en
Priority to JP2010507113A priority patent/JP5222355B2/en
Priority to PCT/JP2008/063726 priority patent/WO2009125507A1/en
Publication of WO2009125504A1 publication Critical patent/WO2009125504A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/08Nitrates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the present invention relates to a nanowire and a method for forming the nanowire.
  • nanowires having a width of 100 nm or less.
  • Nanowires is in the range of width of nanometers (1 0- 9 m), a wire having a few hundred nanometers or more in length larger than the width. Such a nano-wai book
  • the physical properties of the chamber differ depending on the material, width, length, etc., and various applications are considered.
  • an anodic acid anoremina method (AAO) is known in which nanowires are formed using anodized porous alumina.
  • the anodized alumina method uses a porous alumina as a substrate, and uses pores of several nanometers to several hundreds of nanometers formed in an alumina substrate as a type of nanostructure.
  • an aluminum electrode is oxidized to form an oxide (alumina) on the surface, and nanopores are produced in this oxide by electrochemical etching.
  • the metal ions are deposited on the aluminum electrode through the pores, and the pores are filled with the metal ions. Thereafter, by removing the oxide (alumina), metal nanowires can be obtained (US Pat. No. 6, 5 2 5, 46 1 and Nano 1 etter 200 5, Vol. 5, No. 4). , 458.).
  • nanowires of 20 nm or less, particularly 10 nm or less, with conventional nanowire formation methods.
  • the width of the formed pores is set to 2 It is also difficult to form a large number in the range of 0 nm or less. Therefore, it is difficult to form nanowires having a width of 20 ⁇ m or less, and nanowires having a uniform width cannot be mass-produced.
  • the conventional nanowire formation methods also limit the materials used as nanowires, and it was not possible to form a wide variety of nanowires such as metals, alloys, semiconductors, compound semiconductors, and oxides. Disclosure of the invention
  • the present invention is a nanowire forming method for forming a wire of a target material having a width of 20 nm or less by supplying the target material onto a nitride semiconductor substrate in a vacuum. More preferred is a nanowire forming method for forming a nanowire having a line width of 10 nm or less, more preferably a nanowire having a width of 5 atoms, that is, a line width of 1 nm or less.
  • the present invention is a nanowire forming method for forming a wire of a target material having a width of 20 nm or less by supplying the target material onto a nitride semiconductor substrate in a vacuum.
  • FIG. 1 is a drawing-substituting photograph showing an observation result of a scanning tunneling microscope with respect to the (1 1 0) plane of a copper nitride (CuN) substrate in an embodiment of the present invention.
  • FIG. 2 is a drawing-substituting photograph and drawing showing the surface profile of the (1 1 0) plane of the copper nitride (CuN) substrate in the embodiment of the present invention.
  • FIG. 3 is a drawing-substituting photograph showing a low energy electron diffraction pattern (LEED pattern) with respect to the (1 10) plane of the copper nitride (CuN) substrate in the embodiment of the present invention.
  • FIG. 4 is a diagram showing a configuration of a nanowire manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 5 is a drawing-substituting photograph showing the observation results of the scissor tunneling microscope for the chromium (C r) nanowires in Example 1.
  • FIG. 6 is a drawing-substituting photograph showing the observation results of the scanning tunneling microscope for the manganese (Mn) nanowires in Example 2. '
  • FIG. 7 is a drawing-substituting photograph showing the observation result of the scanning tunneling microscope for the iron (F e) nanowire in Example 3.
  • FIG. 8 is a drawing-substituting photograph showing the observation result of the scanning tunneling microscope for the cobalt (Co) nanowire in Example 4.
  • FIG. 9 is a drawing-substituting photograph showing the observation results of the scanning tunneling microscope for the nickel (N i) nanowires in Example 5.
  • FIG. 10 is a drawing-substituting photograph showing the observation results of the scanning tunneling microscope for the rhodium (R h) nanowires in Example 6.
  • FIG. 11 is a photo, which substitutes for a drawing, showing the observation result of the scanning tunneling microscope for the palladium (Pd) nanowire in Example 7.
  • FIG. 12 is a photo, which substitutes for a drawing, showing the observation result of the scanning tunneling microscope for the gold (Au) nanowire in Example 8.
  • FIG. 13 is a drawing-substituting photograph showing the observation result of the scanning tunneling microscope for the zinc oxide (ZnO) nanowire in Example 9.
  • FIG. ' is a drawing-substituting photograph showing the observation result of the scanning tunneling microscope for the zinc oxide (ZnO) nanowire in Example 9.
  • FIG. 14 is a drawing-substituting photograph showing the observation results of the scanning tunneling microscope for the nanowire of cobalt-containing zinc oxide ( ⁇ ) in Example 10.
  • ' Figure 1.5 is a drawing-substituting photograph showing the observation results of a scanning tunneling microscope when iron (Fe) is supplied in a 0.05 atomic layer (monolayer).
  • Figure 16 is a drawing-substituting photograph showing the observation results of a scanning tunneling microscope when iron (Fe) is supplied in a 0.1 atomic layer (monolayer).
  • Figure 17 is a drawing-substituting photograph showing the observation results of a scanning tunneling microscope when iron (Fe) is supplied in a 0.35 atomic layer (monolayer).
  • Figure 18 shows the surface state when two layers of cobalt nanowires are formed.
  • a nanowire is formed using a nitride semiconductor substrate.
  • a nitride semiconductor substrate In the following description, a case of using a copper nitride (CuN) substrate will be described, but the substrate is not limited to this.
  • the copper nitride (CuN) substrate can be formed, for example, by ion implantation of nitrogen into the copper substrate.
  • the surface treatment procedure of the copper nitride (CuN) substrate for forming the nanowire will be described.
  • a single crystal copper (Cu) substrate having a surface with a plane orientation (110) is placed in a vacuum and subjected to sputtering treatment.
  • sputtering is performed with rare gas ions such as argon ions (A r +).
  • the ion energy at the time of sputtering is preferably set to I keV or more and 10 keV or less.
  • the sputtering time is preferably about 1 hour.
  • the substrate is annealed.
  • the annealing temperature should be 700 K or more and 100 O K or less.
  • the treatment time is 5 minutes or more and 60 minutes or less.
  • the substrate is cooled after annealing.
  • nitrogen ions (N +) are implanted at a high temperature into the (1 1 0) surface of a clean substrate.
  • Nitrogen ions (N +) can be generated by an ion gun, and the energy is preferably 200 eV or more and IkeV or less.
  • Nitrogen ions (N +) are about 1 hour so that the surface density of nitrogen on the (1 1 0) plane of the substrate is 5 X 1 0 15 ions Z cm 2 or more and 5 X 1 0 16 ions cm 2 or less. It is preferable to inject.
  • the ion implantation is preferably performed in a vacuum in which impurities do not contaminate the substrate, for example, in a vacuum of about 2 ⁇ 10 ” 7 mb ar.
  • FIGS. 1 to 3 show a scanning tunneling microscope (STM) photograph of a cleaned (1 1 0) plane copper nitride (CuN) substrate, its surface line profile and low energy electron diffraction pattern (L EED Pattern).
  • STM scanning tunneling microscope
  • nanowires of metal, alloy, semiconductor, compound semiconductor, and oxide can be formed.
  • oxides such as zinc oxide (ZnO), cobalt (Co) -containing zinc oxide (ZnO), and indium tin oxide (INO) can also be formed as nanowires.
  • ZnO zinc oxide
  • Co cobalt
  • INO indium tin oxide
  • these materials are examples, and the application target of the manufacturing method of the nanowire is not limited to these.
  • the nanowire is formed by adsorbing (depositing) the material material of the nanowire on the (110) surface of the copper nitride (CuN) substrate obtained by the above substrate processing method.
  • nanowires can be formed using molecular beam epitaxy.
  • the nanowire is formed by placing a copper nitride (CuN) substrate in a vacuum.
  • CuN copper nitride
  • True Sorado is the extent to which impurities nanowire copper nitride during production time (C uN) surface of the substrate is not significantly number adsorbed, for example it is preferable to use a 1 X 1 0_ 9 mb ar about. Hold the substrate at room temperature (RT) during the deposition process.
  • the material that becomes the nanomaterial is evaporated and adsorbed on the (1 1 0) plane of the copper nitride (CuN) substrate held in a vacuum.
  • the substance goes straight without hitting other gas molecules and is supplied to the substrate surface as a beam-like molecular beam.
  • the material is preferably supplied at a supply rate that can control the density of the nanowires formed on the substrate surface.
  • metals, their alloys, semiconductors and their compounds are heated to about 900 to 2000 K and evaporated in vacuum.
  • PLD pulsed laser deposition
  • the oxide material is heated with a laser such as krypton fluoride and evaporated in vacuum. It is preferable to supply it at a deposition rate of about 0.25 atomic layer (monolayer).
  • the material is made of copper nitride (CuN) using a vacuum chamber 100 having a plurality of evaporators 10 a and 10 b. It may be supplied to the surface of the substrate 20.
  • CuN copper nitride
  • a plurality of types of materials are set in the evaporators 10a and 10b, respectively, and simultaneously a plurality of types of materials are supplied from the evaporators 10a and 10b to the surface of the substrate 20. It can be a method.
  • a method of repeating the process of supplying the material B to the surface of the substrate 20 from the evaporator 10 b in a state where the supply and then the supply from the evaporator 10 a is stopped may be adopted.
  • alloys By increasing the number of evaporators, alloys, compound semiconductors, and oxides composed of two or more substances can be formed.
  • a single crystal copper (Cu) substrate having a surface with (1 1 0) orientation is placed in a vacuum, and sputtering is performed with 2 keV argon ions (A r +) 1
  • a copper nitride (CuN) substrate implanted with a surface density of 5 X 10 16 ions cm 2 on the surface was used.
  • Example 1 The above substrate processing alms copper nitride (C uN) substrate held at room temperature in a vacuum of 1 X 1 0_ 9 mb ar, the (1 1 0) surface, and evaporated in 2000 K chromium (C r) was deposited. ,
  • Example 2 The above substrate processing alms copper nitride (C uN) substrate held at room temperature in a vacuum of 1 X 1 0- 9 mb ar, the (1 1 0) surface was emitted at 900 K Manganese (Mn) was deposited.
  • Example 3 was kept at room temperature the substrate processing alms copper nitride (C u N) substrate in a vacuum of 1 X 1 0- 9 mb ar, the (1 1 0) surface, evaporation in 1 500 K Let iron (F e) was deposited.
  • Example 4 The above substrate processing alms copper nitride (CuN) substrate held at room temperature in a vacuum of 1 X 1 0- 9 mb ar, the (1 1 0) surface, and evaporated in 1 500 K Cobalt (C o) was deposited.
  • CuN copper nitride
  • Example 5 Copper nitride (CuN) substrate subjected to the above substrate treatment was held at room temperature in a vacuum of 1 X 1 0_ 9 mb ar, and (1 1 0) surface was nickel evaporated at 1 500 K (N i) was deposited.
  • CuN Copper nitride
  • Example 6 The above substrate processing alms copper nitride (C uN) substrate held at room temperature in a vacuum of 1 X 1 0- 9 mb ar, the (1 1 0) surface, and evaporated in 1 800 K Rhodium (Rh) was deposited.
  • Example 7 The above substrate processing alms copper nitride (CuN) substrate held at room temperature in a vacuum of 1 X 1 0- 9 mb ar, the (1 1 0) surface, and evaporated in 1 500 K Palladium (Pd) was deposited.
  • CuN copper nitride
  • Example 8 A copper nitride (CuN) substrate subjected to the above substrate treatment was kept at room temperature in a vacuum of 1 X 1 0_ 9 mb ar and evaporated on the (1 1 0) surface at 1 000 K Gold (Au) was deposited.
  • CuN copper nitride
  • Example 9 The substrate treated alms copper nitride (CuN) substrate held at room temperature in a vacuum of 8 X 1 0- 9 mbar, ( 1 1 0) on the surface, the laser of krypton fluoride (24 8 Zinc oxide (ZnO) was deposited by PLD using (nm).
  • Example 1 0 the substrate processing alms copper nitride (C uN) substrate held at room temperature in a vacuum of 8 X 1 0- 9 mb ar, the (1 1 0) surface, the fluoride Kaku Lipton Cobalt-containing zinc oxide (ZnO) was deposited by PLD using a laser (248 nm).
  • FIGS. 5 to 14 show the observation results of the nanowires of the substances formed in Examples 1 to 10 with a scanning tunneling microscope. As observed in each figure (photograph), it can be seen that nanowires of about 1 nm are formed along the sequence of atoms on the (1 1 0) plane of the underlying copper nitride (CuN) substrate. . From this observation, it is inferred that each nanowire has a line width of 5 atoms.
  • the stretching direction of the nanowire is always constant in the [1-10] direction, and the wires are not connected to each other in the [00 1] direction crossing the stretching direction. Yes. Furthermore, the minimum spacing between nanowires is always 2.2 nm in the [00 1] direction. In Examples 9 and 10, the stretching direction of the nanowire is approximately 45 ° in the [1 1 1 0] direction, and in this case as well, the wires are not connected in the direction crossing the stretching direction.
  • Figures 15 to 17 show the observation results of the scanning tunneling microscope showing the nanowire formation when the material deposited on the copper nitride (CuN) substrate is increased.
  • Figures 15 to 17 show the observation results when supplying 0.05 atomic layer, 0.1 atomic layer and 0.3 5 atomic layer of iron (F e) on a copper nitride (C uN) substrate, respectively.
  • F e iron
  • C uN copper nitride
  • the copper nitride (CuN) substrate is formed by an integer multiple of the number of atoms on the (1 1 0) surface of the substrate, and its minimum unit always holds twice the period.
  • Each nanowire has a uniform line width.
  • the nanowire is (1 1 0) and the second layer is formed only on the first layer at the surface, as shown in the brightest line in FIG. It grew in the direction perpendicular to the substrate (thickness direction of the substrate).
  • nanowires As described above, according to the method for forming nanowires in the present embodiment, it is possible to form nanowires having a more uniform width of 20 nm or less than various types of materials.
  • the present invention is a nanowire forming method for forming a wire of a target material having a width of 20 nm or less by supplying the target material onto a nitride semiconductor substrate in a vacuum. More preferred is a nanowire forming method for forming a nanowire having a line width of 10 nm or less, more preferably a nanowire having a width of 5 atoms, ie, a uniform line width of 1 nm or less.
  • the nitride semiconductor substrate is preferably a copper nitride substrate having a surface with a (1 1 0) plane.
  • the copper nitride substrate has a (1 1 0) plane It is preferable to form the substrate by a process including: a step of sputtering a copper substrate having a rough surface in vacuum; and a step of high-temperature implantation of nitrogen ions (N +) into the surface of the copper substrate.
  • the target material may be at least one of a metal, an alloy, a semiconductor, a compound semiconductor, and an oxide.
  • the target materials are chromium (C r), manganese (Mn), iron (F e), cobalt (C o), nickel (N i), rhodium (R h), palladium (P d), gold (Au), Silver (A g), Indium (In), Gallium (G a), Gadolinium (G d), Silicon (S i), Germanium (G e), Gallium nitride (G a N), It is preferable to include at least one nitride (In n).
  • the target material preferably includes at least one of zinc oxide (ZnO), cobalt (Co) -containing zinc oxide (ZnO), and indium tin oxide (INO). .
  • a wire on the surface of the nitride semiconductor substrate by placing the nitride semiconductor substrate in a vacuum and supplying the target material as a molecular beam.
  • the nitride semiconductor substrate is placed in a vacuum, and a plurality of materials are simultaneously supplied as the target material, whereby an alloy wire is formed on the surface of the nitride semiconductor substrate.
  • the nitride semiconductor substrate may be disposed in a vacuum, and a plurality of materials may be separately supplied as the target material in a time-sharing manner to form a mixed wire on the surface of the nitride semiconductor substrate.
  • nanowires having a width of 20 nm or less for various materials.
  • Z nO zinc oxide
  • Co cobalt

Abstract

A material to be deposited is fed to a surface of a nitride semiconductor substrate in a vacuum to thereby form a wire of the material having a width of 20 nm or smaller. Thus, a nanowire can be formed which is made of chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), rhodium (Rh), palladium (Pd), gold (Au), silver (Ag), indium (In), gallium (Ga), gadolinium (Gd), silicon (Si), germanium (Ge), gallium nitride (GaN), indium nitride (InN), etc. and has a wire width of 20 nm or smaller.

Description

ナノ.ワイャ及びその形成方法 技術分野 Nano wire and method for forming the same
本発明は、 ナノワイヤ及びその形成方法に関する。 背景技術 '  The present invention relates to a nanowire and a method for forming the nanowire. Background Technology ''
従来から、 1 00 nm以下の幅を有するナノワイヤを利用することが考えられ 明  Conventionally, it has been considered to use nanowires having a width of 100 nm or less.
ている。 ナノワイヤは、 幅がナノメートル (1 0— 9m) の範囲にあり、 幅に比べ て大きい数百ナノメートル以上の長さを有する線材である。 このようなナノワイ 書 ing. Nanowires is in the range of width of nanometers (1 0- 9 m), a wire having a few hundred nanometers or more in length larger than the width. Such a nano-wai book
ャの物性はその材質、 幅及び長さ等によって異なり、 様々な用途が考えられてい る。 The physical properties of the chamber differ depending on the material, width, length, etc., and various applications are considered.
例えば、 陽極酸化された多孔性アルミナを用いてナノワイヤを形成する陽極酸 ィ匕ァノレミナ法(AAO : An o d i c A l um i n um O x i d e )等力 S知ら れている。  For example, an anodic acid anoremina method (AAO) is known in which nanowires are formed using anodized porous alumina.
陽極酸化アルミナ法は、 多孔性アルミナを基板として用いる方法であり、 アル ミナ基板に形成された数ナノメートルから数百ナノメートル単位の気孔をナノヮ ィャの型として用いるものである。 例えば、 アルミニウム電極を酸化させて表面 に酸化物 (アルミナ) を形成し、 この酸化物に電気化学的エッチングでナノ気孔 を作製する。 金属イオンを含む溶液にこの基板を浸して電圧を印加することによ つて、 金属イオンが気孔を通じてアルミニウム電極上に堆積し、 気孔が金属ィォ ンで満たされる。 その後、 酸化物 (アルミナ) を除去すると、 金属ナノワイヤを 得ることができる (米国特許第 6, 5 2 5, 46 1号明細書及び N a n o 1 e t t e r 200 5, V o l . 5, N o. 4, 458. 参照) 。  The anodized alumina method uses a porous alumina as a substrate, and uses pores of several nanometers to several hundreds of nanometers formed in an alumina substrate as a type of nanostructure. For example, an aluminum electrode is oxidized to form an oxide (alumina) on the surface, and nanopores are produced in this oxide by electrochemical etching. By immersing this substrate in a solution containing metal ions and applying a voltage, the metal ions are deposited on the aluminum electrode through the pores, and the pores are filled with the metal ions. Thereafter, by removing the oxide (alumina), metal nanowires can be obtained (US Pat. No. 6, 5 2 5, 46 1 and Nano 1 etter 200 5, Vol. 5, No. 4). , 458.).
ところで、 従来のナノワイヤの形成方法では、 20 nm以下のナノワイヤ、 特 に 1 0 nm以下のナノワイヤを形成することが困難であった。  By the way, it has been difficult to form nanowires of 20 nm or less, particularly 10 nm or less, with conventional nanowire formation methods.
例えば、 上記陽極酸化アルミナ法では、 基板となるアルミナに 20 nm以下の 幅を有する気孔を形成することが困難である。 さらに、 形成された気孔の幅を 2 0 nm以下の範囲で揃えて多数形成することも困難である。 したがって、 20 η m以下の幅を有するナノワイヤを形成すること自体が困難である上に、 幅が均一 なナノワイヤを大量生産することもできなかった。 For example, in the anodic oxidation alumina method, it is difficult to form pores having a width of 20 nm or less in alumina as a substrate. Furthermore, the width of the formed pores is set to 2 It is also difficult to form a large number in the range of 0 nm or less. Therefore, it is difficult to form nanowires having a width of 20 ηm or less, and nanowires having a uniform width cannot be mass-produced.
また、 従来のナノワイヤの形成方法では、 ナノワイヤとする材料も限定されて おり、 多種に亘る金属、 合金、 半導体、 化合物半導体、 酸化物等のナノワイヤを 形成することもできなかった。 発明の開示  In addition, the conventional nanowire formation methods also limit the materials used as nanowires, and it was not possible to form a wide variety of nanowires such as metals, alloys, semiconductors, compound semiconductors, and oxides. Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
本発明は、 真空中において、 窒化半導体基板上に対象材料を供給することによ つて幅 20 nm以下の対象材料のワイヤを形成するナノワイヤの形成方法である。 より好適には 1 0 nm以下の線幅を有するナノワイヤ、 さらに好適には 5原子の 幅、 すなわち 1 nm以下の線幅を有するナノワイヤを形成するナノワイヤの形成 方法である。  The present invention is a nanowire forming method for forming a wire of a target material having a width of 20 nm or less by supplying the target material onto a nitride semiconductor substrate in a vacuum. More preferred is a nanowire forming method for forming a nanowire having a line width of 10 nm or less, more preferably a nanowire having a width of 5 atoms, that is, a line width of 1 nm or less.
課題を解決するための手段 Means for solving the problem
本発明は、 真空中において、 窒化半導体基板上に対象材料を供給すること によって幅 2 0 n m以下の対象材料のワイヤを形成するナノワイヤの形成 方法である。  The present invention is a nanowire forming method for forming a wire of a target material having a width of 20 nm or less by supplying the target material onto a nitride semiconductor substrate in a vacuum.
発明の効果 The invention's effect
本発明により、従来作成することができなかった極細のナノワイヤを形成 することができる。  According to the present invention, it is possible to form ultrafine nanowires that could not be produced conventionally.
図面の簡単な説明 Brief Description of Drawings
図 1は、 本発明の実施の形態における窒化銅 (C uN) 基板の (1 1 0) 面に 対する走査トンネル顕微鏡の観察結果を示す図面代用写真である。  FIG. 1 is a drawing-substituting photograph showing an observation result of a scanning tunneling microscope with respect to the (1 1 0) plane of a copper nitride (CuN) substrate in an embodiment of the present invention.
図 2は、 本発明の実施の形態における窒化銅 (C uN) 基板の (1 1 0) 面の 表面プロファイルを示す図面代用写真及び図である。  FIG. 2 is a drawing-substituting photograph and drawing showing the surface profile of the (1 1 0) plane of the copper nitride (CuN) substrate in the embodiment of the present invention.
図 3は、 本発明の実施の形態における窒化銅 (C uN) 基板の (1 1 0) 面に 対する低エネルギー電子回折パターン (LEEDパターン) を示す図面代用写真 である。 図 4は、 本発明の実施の形態におけるナノワイヤの製造装置の構成を示す図で ある。 FIG. 3 is a drawing-substituting photograph showing a low energy electron diffraction pattern (LEED pattern) with respect to the (1 10) plane of the copper nitride (CuN) substrate in the embodiment of the present invention. FIG. 4 is a diagram showing a configuration of a nanowire manufacturing apparatus according to an embodiment of the present invention.
図 5は、 実施例 1におけるクロム (C r ) のナノワイヤに対する走查トンネル 顕微鏡の観察結果を示す図面代用写真である。  FIG. 5 is a drawing-substituting photograph showing the observation results of the scissor tunneling microscope for the chromium (C r) nanowires in Example 1.
図 6は、 実施例 2におけるマンガン (Mn) のナノワイヤに対する走査トンネ ル顕微鏡の観察結果を示す図面代用写真である。 '  FIG. 6 is a drawing-substituting photograph showing the observation results of the scanning tunneling microscope for the manganese (Mn) nanowires in Example 2. '
図 7は、 実施例 3における鉄 (F e) のナノワイヤに対する走査トンネル顕微 鏡の観察結果を示す図面代用写真である。  FIG. 7 is a drawing-substituting photograph showing the observation result of the scanning tunneling microscope for the iron (F e) nanowire in Example 3.
図 8は、 実施例 4におけるコバルト (C o) のナノワイヤに対する走査トンネ ル顕微鏡の観察結果を示す図面代用写真である。  FIG. 8 is a drawing-substituting photograph showing the observation result of the scanning tunneling microscope for the cobalt (Co) nanowire in Example 4.
図 9は、 実施例 5におけるニッケル (N i ) のナノワイヤに対する走査トンネ ル顕微鏡の観察結果を示す図面代用写真である。  FIG. 9 is a drawing-substituting photograph showing the observation results of the scanning tunneling microscope for the nickel (N i) nanowires in Example 5.
図 1 0は、 実施例 6におけるロジウム (R h) のナノワイヤに対する走査トン ネル顕微鏡の観察結果を示す図面代用写真である。  FIG. 10 is a drawing-substituting photograph showing the observation results of the scanning tunneling microscope for the rhodium (R h) nanowires in Example 6.
図 1 1は、 実施例 7におけるパラジウム (P d) のナノワイヤに対する走査ト ンネル顕微鏡の観察結果を示す図面代用写真である。  FIG. 11 is a photo, which substitutes for a drawing, showing the observation result of the scanning tunneling microscope for the palladium (Pd) nanowire in Example 7.
図 1 2は、 実施例 8における金 (Au) のナノワイヤに対する走査トンネル顕 微鏡の観察結果を示す図面代用写真である。  FIG. 12 is a photo, which substitutes for a drawing, showing the observation result of the scanning tunneling microscope for the gold (Au) nanowire in Example 8.
図 1 3は.、 実施例 9における酸化亜鉛 (Z nO) のナノワイヤに対する走査ト ンネル顕微鏡の観察結果を示す図面代用写真である。 '  FIG. 13 is a drawing-substituting photograph showing the observation result of the scanning tunneling microscope for the zinc oxide (ZnO) nanowire in Example 9. FIG. '
図 1 4は、 実施例 1 0におけるコバルト含有の酸化亜鉛 (Ζ ηό) のナノワイ ャに対する走査トンネル顕微鏡の観察結果を示す図面代用写真である。  FIG. 14 is a drawing-substituting photograph showing the observation results of the scanning tunneling microscope for the nanowire of cobalt-containing zinc oxide (Ζηό) in Example 10.
'図 1.5は、 鉄 (F e) を 0. 0 5原子層 (モノ レイヤー) 供給した場合の走査 トンネル顕微鏡の観察結果を示す図面代用写真である。  'Figure 1.5 is a drawing-substituting photograph showing the observation results of a scanning tunneling microscope when iron (Fe) is supplied in a 0.05 atomic layer (monolayer).
図 1 6は、 鉄 (F e) を 0. 1原子層 (モノ レイヤー) 供給した場合の走査ト ンネル顕微鏡の観察結果を示す図面代用写真である。  Figure 16 is a drawing-substituting photograph showing the observation results of a scanning tunneling microscope when iron (Fe) is supplied in a 0.1 atomic layer (monolayer).
図 1 7は、 鉄 (F e) を 0. 3 5原子層 (モノ レイヤー) 供給した場合の走査 トンネル顕微鏡の観察結果を示す図面代用写真である。  Figure 17 is a drawing-substituting photograph showing the observation results of a scanning tunneling microscope when iron (Fe) is supplied in a 0.35 atomic layer (monolayer).
図 1 8は、 コバルトのナノワイヤを 2層形成した場合の表面状態を示す図であ る。 発明を実施するための最良の形態 Figure 18 shows the surface state when two layers of cobalt nanowires are formed. The BEST MODE FOR CARRYING OUT THE INVENTION
く基板処理〉 <Substrate treatment>
本発明の実施の形態におけるナノワイャの製造方法では窒化半導体基板を用い てナノワイヤを形成する。 以下の説明では、 窒化銅 (C uN) の基板を用いる場 合について説明するが基板はこれに限定されるものではない。  In the nanowire manufacturing method according to the embodiment of the present invention, a nanowire is formed using a nitride semiconductor substrate. In the following description, a case of using a copper nitride (CuN) substrate will be described, but the substrate is not limited to this.
窒化銅 (C uN) 基板は、 例えば、 銅基板に窒素をイオン注入することによつ て形成することができる。 以下、 ナノワイヤを形成するための窒化銅 (C uN) 基板の表面処理の手順について説明する。  The copper nitride (CuN) substrate can be formed, for example, by ion implantation of nitrogen into the copper substrate. Hereinafter, the surface treatment procedure of the copper nitride (CuN) substrate for forming the nanowire will be described.
( 1 ) 面方位 ( 1 1 0) の表面を有する単結晶銅 (C u) 基板を真空中に設置 しスパッタリング処理する。 例えば、 アルゴンイオン (A r +) 等の希ガスイオン によってスパッタリングする。 スパッタリングの際のイオンエネルギーは I k e V以上 1 0 k e V以下とすることが好適である。 また、 スパッタリング時間は 1 時間程度とすることが好適である。 その後、 基板をァニール処理する。 ァニール 温度は 700 K以上 1 00 O K以下とする。 処理時間は 5分以上 60分以下とす る。 ァニール処理後に基板を冷却する。  (1) A single crystal copper (Cu) substrate having a surface with a plane orientation (110) is placed in a vacuum and subjected to sputtering treatment. For example, sputtering is performed with rare gas ions such as argon ions (A r +). The ion energy at the time of sputtering is preferably set to I keV or more and 10 keV or less. The sputtering time is preferably about 1 hour. Thereafter, the substrate is annealed. The annealing temperature should be 700 K or more and 100 O K or less. The treatment time is 5 minutes or more and 60 minutes or less. The substrate is cooled after annealing.
(2)基板を 700 K以上 1 000 K以下の温度まで加熱し、温度を保持する。 (2) Heat the substrate to a temperature of 700 K or more and 1 000 K or less to maintain the temperature.
(3) 基板温度を保持したまま、 窒素イオン (N+) を清浄な基板の ( 1 1 0) 面に高温注入する。 窒素イオン (N+) はイオンガンにより生成することができ、 そのエネルギーは 200 e V以上 I k e V以下とすることが好適である。 また、 窒素イオン (N+) は、 基板の ( 1 1 0) 面での窒素の面密度が 5 X 1 015イオン Z c m2以上 5 X 1 016イオン c m 2以下となるように 1時間程度注入するこ とが好適である。 なお、 イオン注入は、 不純物が基板を汚染しないような真空中 で行い、 例えば 2 X 1 0"7mb a r程度の真空中で行うことが好適である。 (3) While maintaining the substrate temperature, nitrogen ions (N +) are implanted at a high temperature into the (1 1 0) surface of a clean substrate. Nitrogen ions (N +) can be generated by an ion gun, and the energy is preferably 200 eV or more and IkeV or less. Nitrogen ions (N +) are about 1 hour so that the surface density of nitrogen on the (1 1 0) plane of the substrate is 5 X 1 0 15 ions Z cm 2 or more and 5 X 1 0 16 ions cm 2 or less. It is preferable to inject. The ion implantation is preferably performed in a vacuum in which impurities do not contaminate the substrate, for example, in a vacuum of about 2 × 10 ” 7 mb ar.
このようにして、 清浄な ( 1 1 0) 面を有する窒化銅 (C uN) 基板を準備す る。 図 1〜図 3に、 清浄化された ( 1 1 0) 面を有する窒化銅 (C uN) 基板の 走査トンネル顕微鏡 (STM) 写真、 その表面のラインプロファイル及び低エネ ルギー電子回折パターン (L EEDパターン) を示す。 <ナノワイヤ形成方法〉 In this manner, a copper nitride (CuN) substrate having a clean (1 1 0) surface is prepared. Figures 1 to 3 show a scanning tunneling microscope (STM) photograph of a cleaned (1 1 0) plane copper nitride (CuN) substrate, its surface line profile and low energy electron diffraction pattern (L EED Pattern). <Nanowire formation method>
本実施の形態におけるナノワイヤの製造方法では金属、 合金、 半導体、 化合物 半導体及び酸化物のナノワイヤを形成することが きる。 具体的には、 クロム (C r ) 、 マンガン (Mn) 、 鉄 (F e) 、 コバルト (C o) 、 ニッケル (N i ) 、 ロジウム (Rh) 、 パラジウム (P d) 、 金 (Au) 、 銀 (Ag) 、 インジウム ( I n) 、 ガリウム (G a) 、 ガドリニウム (G d) 、 シリコン (S i ) 、 ゲル マニウム (G e) 、 窒化ガリ ウム (G a N) 、 窒化インジウム ( I n N) 等の金 属、 それらの合金、 半導体及びそれらの化合物をナノワイヤとして形成すること ができる。 また、 酸化亜鉛 (Z n O) 、 コバルト (C o) 含有の酸化亜鉛 (Z n O) 、 酸化インジウムスズ ( I NO) 等の酸化物もナノワイヤとして形成するこ とができる。 ただし、 これらの材質は例示であり、 本ナノワイヤの製造方法の適 用対象はこれらに限定されるものではない。  In the nanowire manufacturing method in this embodiment, nanowires of metal, alloy, semiconductor, compound semiconductor, and oxide can be formed. Specifically, chromium (C r), manganese (Mn), iron (F e), cobalt (C o), nickel (N i), rhodium (Rh), palladium (P d), gold (Au), Silver (Ag), Indium (In), Gallium (Ga), Gadolinium (Gd), Silicon (Si), Germanium (Ge), Gallium nitride (GaN), Indium nitride (In) Metals such as N), their alloys, semiconductors and their compounds can be formed as nanowires. In addition, oxides such as zinc oxide (ZnO), cobalt (Co) -containing zinc oxide (ZnO), and indium tin oxide (INO) can also be formed as nanowires. However, these materials are examples, and the application target of the manufacturing method of the nanowire is not limited to these.
上記の基板処理方法で得られた窒化銅 (C uN) 基板の ( 1 1 0) 表面にナノ ワイヤの材料物質を吸着 (デポジション) させることによってナノワ ヤを形成 する。 具体的には、 分子線エピタキシー法を用いてナノワイヤを形成することが できる。  The nanowire is formed by adsorbing (depositing) the material material of the nanowire on the (110) surface of the copper nitride (CuN) substrate obtained by the above substrate processing method. Specifically, nanowires can be formed using molecular beam epitaxy.
ナノワイヤの形成処理は、 窒化銅 (C uN) 基板を真空中に設置して行う。 真 空度は、 ナノワイヤの製造時間中に窒化銅 (C uN) 基板の表面に不純物が有意 数吸着しない程度とし、例えば 1 X 1 0_9mb a r程度とすることが好適である。 デポジション処理中、 基板は常温 (RT) に保持する。 The nanowire is formed by placing a copper nitride (CuN) substrate in a vacuum. True Sorado is the extent to which impurities nanowire copper nitride during production time (C uN) surface of the substrate is not significantly number adsorbed, for example it is preferable to use a 1 X 1 0_ 9 mb ar about. Hold the substrate at room temperature (RT) during the deposition process.
このように真空中に保持された窒化銅 (C uN) 基板の (1 1 0) 面にナノヮ ィャの材料となる物質を蒸発させて吸着させる。 物質は他の気体分子にぶっかる ことなく直進し、 ビーム状の分子線として基板表面に供給される。  In this way, the material that becomes the nanomaterial is evaporated and adsorbed on the (1 1 0) plane of the copper nitride (CuN) substrate held in a vacuum. The substance goes straight without hitting other gas molecules and is supplied to the substrate surface as a beam-like molecular beam.
材料は、 基板表面上に形成されるナノワイヤの密度を制御できる程度の供給速 度で供給することが好適である。 例えば、 金属、 それらの合金、 半導体及びそれ らの化合物の材料を 900 から 2000 K程度に加熱して真空中で蒸発させる。 例えば、 パルスレーザデポジション (P LD) でナノワイヤの形成を行う場合に は 50 nAZ秒程度の堆積速度となるように供給することが好適である。 また、 酸化物の場合、 フッ化クリプトン等のレーザで酸化物材料を加熱して真空中で蒸 発させ、 0. 2 5原子層 (モノ レイヤー) 分程度の堆積速度となるように供給 することが好適である。 The material is preferably supplied at a supply rate that can control the density of the nanowires formed on the substrate surface. For example, metals, their alloys, semiconductors and their compounds are heated to about 900 to 2000 K and evaporated in vacuum. For example, when nanowires are formed by pulsed laser deposition (PLD), it is preferable to supply the nanowire with a deposition rate of about 50 nAZ seconds. In the case of oxide, the oxide material is heated with a laser such as krypton fluoride and evaporated in vacuum. It is preferable to supply it at a deposition rate of about 0.25 atomic layer (monolayer).
また、 合金、 化合物半導体、 酸化物をナノワイヤとして形成する場合、 図 4に 示すように、 複数のエバポレータ 1 0 a , 1 0 bを備えた真空チャンバ 1 00に より材料を窒化銅 (C uN) 基板 20の表面に供給するものとしてもよい。  In addition, when an alloy, a compound semiconductor, or an oxide is formed as a nanowire, as shown in FIG. 4, the material is made of copper nitride (CuN) using a vacuum chamber 100 having a plurality of evaporators 10 a and 10 b. It may be supplied to the surface of the substrate 20.
具体的には、 ( 1 ) 複数種の材料をそれぞれエバポレータ 1 0 a , 1 0 bにセ ッ トし、 同時にエバポレータ 1 0 a, 1 0 bから複数種の材料を基板 20の表面 に供給する方法とすることができる。 また、 (2) 複数種の材料をそれぞれエバ ポレータ 1 0 a , 1 0 bにセッ トし、 エバポレータ 1 0 bからの供給を停止した 状態でエバポレータ 1 0 aから材料 Aを基板 20の表面に供給、 次にエバポレー タ 1 0 aからの供給を停止した状態でエバポレータ 1 0 bから材料 Bを基板 20 の表面に供給するという処理を繰り返す方法を採用してもよい。  Specifically, (1) A plurality of types of materials are set in the evaporators 10a and 10b, respectively, and simultaneously a plurality of types of materials are supplied from the evaporators 10a and 10b to the surface of the substrate 20. It can be a method. Also, (2) Set multiple types of materials on the evaporators 10 a and 10 b, respectively, and stop the supply from the evaporator 10 0 b. A method of repeating the process of supplying the material B to the surface of the substrate 20 from the evaporator 10 b in a state where the supply and then the supply from the evaporator 10 a is stopped may be adopted.
なお、 エバポレータの数を増やすことによって 2種以上の物質からなる合金、 化合物半導体、 酸化物を形成することもできる。  By increasing the number of evaporators, alloys, compound semiconductors, and oxides composed of two or more substances can be formed.
く実施例〉 <Example>
以下、 本発明の実施例を示す。 以下のナノワイヤの形成では、 (1) 面方位 ( 1 1 0) の表面を有する単結晶銅 (Cu) 基板を真空中に設置し、 2 k e Vのアル ゴンイオン (A r +) でスパッタリングを 1時間施し、 さらに 900 Kで 20分間 ァニールを行い、 (2) 基板を 700 Kの温度まで加熱し、 (3) 基板温度を保 持したまま、 500 k e Vの窒素イオン (N+) を ( 1 1 0) 表面に 5 X 1 016 イオン cm2の面密度で注入した窒化銅 (CuN) 基板を用いた。 Examples of the present invention will be described below. In the formation of the following nanowires, (1) a single crystal copper (Cu) substrate having a surface with (1 1 0) orientation is placed in a vacuum, and sputtering is performed with 2 keV argon ions (A r +) 1 (2) Heat the substrate to a temperature of 700 K. (3) While maintaining the substrate temperature, apply 500 keV nitrogen ions (N +) (1 1 0) A copper nitride (CuN) substrate implanted with a surface density of 5 X 10 16 ions cm 2 on the surface was used.
(実施例 1 ) 上記基板処理を施した窒化銅 (C uN) 基板を 1 X 1 0_9mb a r の真空中に室温で保持し、 ( 1 1 0) 表面に、 2000 Kで蒸発させたクロム (C r ) を堆積させた。 , (Example 1) The above substrate processing alms copper nitride (C uN) substrate held at room temperature in a vacuum of 1 X 1 0_ 9 mb ar, the (1 1 0) surface, and evaporated in 2000 K chromium (C r) was deposited. ,
(実施例 2) 上記基板処理を施した窒化銅 (C uN) 基板を 1 X 1 0— 9mb a r の真空中に室温で保持し、 ( 1 1 0) 表面に、 900 Kで 発させたマンガン (M n) を堆積させた。 (Example 2) The above substrate processing alms copper nitride (C uN) substrate held at room temperature in a vacuum of 1 X 1 0- 9 mb ar, the (1 1 0) surface was emitted at 900 K Manganese (Mn) was deposited.
(実施例 3) 上記基板処理を施した窒化銅 (C u N) 基板を 1 X 1 0— 9mb a r の真空中に室温で保持し、 (1 1 0) 表面に、 1 500 Kで蒸発させた鉄 (F e ) を堆積させた。 (Example 3) was kept at room temperature the substrate processing alms copper nitride (C u N) substrate in a vacuum of 1 X 1 0- 9 mb ar, the (1 1 0) surface, evaporation in 1 500 K Let iron (F e) Was deposited.
(実施例 4) 上記基板処理を施した窒化銅 (CuN) 基板を 1 X 1 0— 9mb a r の真空中に室温で保持し、 ( 1 1 0) 表面に、 1 500 Kで蒸発させたコバルト (C o) を堆積させた。 (Example 4) The above substrate processing alms copper nitride (CuN) substrate held at room temperature in a vacuum of 1 X 1 0- 9 mb ar, the (1 1 0) surface, and evaporated in 1 500 K Cobalt (C o) was deposited.
(実施例 5) 上記基板処理を施した窒化銅 (CuN) 基板を 1 X 1 0_9mb a r の真空中に室温で保持し、 ( 1 1 0) 表面に、 1 500 Kで蒸発させたニッケル (N i ) を堆積させた。 (Example 5) Copper nitride (CuN) substrate subjected to the above substrate treatment was held at room temperature in a vacuum of 1 X 1 0_ 9 mb ar, and (1 1 0) surface was nickel evaporated at 1 500 K (N i) was deposited.
(実施例 6) 上記基板処理を施した窒化銅 (C uN) 基板を 1 X 1 0— 9mb a r の真空中に室温で保持し、 ( 1 1 0) 表面に、 1 800 Kで蒸発させたロジウム (Rh) を堆積させた。 (Example 6) The above substrate processing alms copper nitride (C uN) substrate held at room temperature in a vacuum of 1 X 1 0- 9 mb ar, the (1 1 0) surface, and evaporated in 1 800 K Rhodium (Rh) was deposited.
(実施例 7) 上記基板処理を施した窒化銅 (CuN) 基板を 1 X 1 0— 9mb a r の真空中に室温で保持し、 ( 1 1 0) 表面に、 1 500 Kで蒸発させたパラジゥ ム (P d) を堆積させた。 (Example 7) The above substrate processing alms copper nitride (CuN) substrate held at room temperature in a vacuum of 1 X 1 0- 9 mb ar, the (1 1 0) surface, and evaporated in 1 500 K Palladium (Pd) was deposited.
(実施例 8) 上記基板処理を施した窒化銅 (C uN) 基板を 1 X 1 0_9mb a r の真空中に室温で保持し、 ( 1 1 0) 表面に、 1 000 Kで蒸発させた金 (Au) を堆積させた。 (Example 8) A copper nitride (CuN) substrate subjected to the above substrate treatment was kept at room temperature in a vacuum of 1 X 1 0_ 9 mb ar and evaporated on the (1 1 0) surface at 1 000 K Gold (Au) was deposited.
(実施例 9) 上記基板処理を施した窒化銅 (CuN) 基板を 8 X 1 0— 9m b a r の真空中に室温で保持し、 (1 1 0) 表面に、 フッ化クリプトンのレーザ (24 8 n m) を用いた P L Dで酸化亜鉛 (Z nO) を堆積させた。 (Example 9) The substrate treated alms copper nitride (CuN) substrate held at room temperature in a vacuum of 8 X 1 0- 9 mbar, ( 1 1 0) on the surface, the laser of krypton fluoride (24 8 Zinc oxide (ZnO) was deposited by PLD using (nm).
(実施例 1 0) 上記基板処理を施した窒化銅 (C uN) 基板を 8 X 1 0— 9mb a rの真空中に室温で保持し、 (1 1 0) 表面に、 フッ化ク リプトンのレーザ (2 48 nm) を用いた P L Dでコバルト含有の酸化亜鉛 (Z nO) を堆積させた。 図 5〜図 1 4に実施例 1〜 1 0で形成された各物質のナノワイヤの走査トンネ ル顕微鏡での観察結果を示す。 各図 (写真) において観察されているように、 下 地となる窒化銅 (C uN) 基板の (1 1 0) 面の原子の並びに沿って 1 nm程度 のナノワイヤが形成されていることがわかる。 この観察結果からみるとそれぞれ のナノワイヤは 5原子の線幅を有しているものと推察される。 (Example 1 0) the substrate processing alms copper nitride (C uN) substrate held at room temperature in a vacuum of 8 X 1 0- 9 mb ar, the (1 1 0) surface, the fluoride Kaku Lipton Cobalt-containing zinc oxide (ZnO) was deposited by PLD using a laser (248 nm). FIGS. 5 to 14 show the observation results of the nanowires of the substances formed in Examples 1 to 10 with a scanning tunneling microscope. As observed in each figure (photograph), it can be seen that nanowires of about 1 nm are formed along the sequence of atoms on the (1 1 0) plane of the underlying copper nitride (CuN) substrate. . From this observation, it is inferred that each nanowire has a line width of 5 atoms.
なお、 実施例 1〜8では、 ナノワイヤの延伸方向は [1— 1 0] 方向で常に一 定であり、 延伸方向を横切る [00 1 ] 方向にはワイヤ同士が繋がり合っていな い。 さらに、 [00 1] 方向にはナノワイヤ同士の最小間隔は常に 2. 2 nmを 保持している。 また、 実施例 9及び 1 0では、 ナノワイヤの延伸方向は [ 1一 1 0] 方向に略 4 5° の方向であり、 この場合も 伸方向を横切る方向にはワイヤ 同士が繋がり合っていない。 In Examples 1 to 8, the stretching direction of the nanowire is always constant in the [1-10] direction, and the wires are not connected to each other in the [00 1] direction crossing the stretching direction. Yes. Furthermore, the minimum spacing between nanowires is always 2.2 nm in the [00 1] direction. In Examples 9 and 10, the stretching direction of the nanowire is approximately 45 ° in the [1 1 1 0] direction, and in this case as well, the wires are not connected in the direction crossing the stretching direction.
図 1 5〜 1 7に、 窒化銅 (C uN) 基板に堆積させる材料を増加させた場合の ナノワイヤの形成状態を示す走査トンネル顕微鏡の観察結果を示す。 図 1 5〜 1 7は窒化銅 (C uN) 基板上に鉄 (F e) をそれぞれ 0. 05原子層、 0. 1原 子層及び 0. 3 5原子層供給した場合の観察結果であるが、 他の材料についても 同様の結果が得られる。  Figures 15 to 17 show the observation results of the scanning tunneling microscope showing the nanowire formation when the material deposited on the copper nitride (CuN) substrate is increased. Figures 15 to 17 show the observation results when supplying 0.05 atomic layer, 0.1 atomic layer and 0.3 5 atomic layer of iron (F e) on a copper nitride (C uN) substrate, respectively. However, similar results are obtained for other materials.
窒化銅 (C uN) 基板に堆積させる材料を増加させると、 ナノワイヤの長さ及 び密度が増加するが、 ナノワイヤはその延伸方向を横切る方向には繋がり合わな いことが確認された。 窒化銅 (C uN) 基板の ( 1 1 0) 表面を覆う程度の材料 を供給した場合、 隣り合うナノワイヤ同士は ( 1 1 0) 面内において横方向に接 触しない間隔で形成され、 下地となる窒化銅 (C uN) 基板の (1 1 0) 表面の 原子の並びの整数倍で形成され、その最小単位は常に 2倍の周期を保持している。 また、 各ナノワイヤは均一な線幅を有している。 さらに材料の供給量を増加させ ると、 図 1 8において最も明るく線状に示されるように、 ナノワイヤは (1 1 0), 表面において第 1層の上のみに第 2層が形成されるように垂直方向 (基板の厚さ 方向) に成長した。  Increasing the material deposited on the copper nitride (CuN) substrate increased the length and density of the nanowires, but it was confirmed that the nanowires do not link in the direction across the direction of stretching. When a material that covers the (1 1 0) surface of a copper nitride (CuN) substrate is supplied, adjacent nanowires are formed at intervals that do not contact in the lateral direction in the (1 1 0) plane. The copper nitride (CuN) substrate is formed by an integer multiple of the number of atoms on the (1 1 0) surface of the substrate, and its minimum unit always holds twice the period. Each nanowire has a uniform line width. When the material supply is further increased, the nanowire is (1 1 0) and the second layer is formed only on the first layer at the surface, as shown in the brightest line in FIG. It grew in the direction perpendicular to the substrate (thickness direction of the substrate).
以上のように、 本実施の形態におけるナノワイヤの形成方法によれば、 従来よ りも多種の材料について 20 nm以下のさらに均一幅を有するナノワイヤを形成 することが可能となる。  As described above, according to the method for forming nanowires in the present embodiment, it is possible to form nanowires having a more uniform width of 20 nm or less than various types of materials.
以上を纏めると、 本発明は、 真空中において、 窒化半導体基板上に対象材料を 供給することによって幅 20 nm以下の対象材料のワイヤを形成するナノワイヤ の形成方法である。 より好適には 1 0 nm以下の線幅を有するナノワイヤ、 さら に好適には 5原子の幅、 すなわち 1 nm以下の均一線幅を有するナノワイヤを形 成するナノワイヤの形成方法である。  In summary, the present invention is a nanowire forming method for forming a wire of a target material having a width of 20 nm or less by supplying the target material onto a nitride semiconductor substrate in a vacuum. More preferred is a nanowire forming method for forming a nanowire having a line width of 10 nm or less, more preferably a nanowire having a width of 5 atoms, ie, a uniform line width of 1 nm or less.
ここで、 前記窒化半導体基板は、 ( 1 1 0) 面の面方位の表面を有する窒化銅 基板とすることが好適である。 例えば、 前記窒化銅基板は、 (1 1 0) 面の面方 位の表面を有する銅基板を真空中でスパッタリングする工程と、 前記銅基板の表 面に窒素イオン (N+) を高温注入する工程と、 を含む処理によって形成すること が好適である。 Here, the nitride semiconductor substrate is preferably a copper nitride substrate having a surface with a (1 1 0) plane. For example, the copper nitride substrate has a (1 1 0) plane It is preferable to form the substrate by a process including: a step of sputtering a copper substrate having a rough surface in vacuum; and a step of high-temperature implantation of nitrogen ions (N +) into the surface of the copper substrate.
また、 前記対象材料は、 金属、 合金、 半導体、 化合物半導体及び酸化物のうち 少なく とも 1つとすることができる。 例えば、 前記対象材料は、 クロム (C r ) 、 マンガン (Mn) 、 鉄 (F e) 、 コバルト (C o) 、 ニッケル (N i ) 、 ロジゥ ム (R h) 、 パラジウム (P d) 、 金 (Au) 、 銀 (A g) 、 ィンジゥム ( I n) 、 ガリ ウム (G a) 、 ガドリニウム (G d) 、 シリ コン (S i ) 、 ゲルマニゥム ( G e ) 、 窒化ガリウム (G a N) 、 窒化ィンジゥム ( I n N) の少なく とも 1つを 含むものとすることが好適である。 また、 例えば、 前記対象材料は、 酸化亜鉛 (Z n O) 、 コバルト (C o) 含有の酸化亜鉛 (Z nO) 、 酸化インジウムスズ ( I NO) の少なくとも 1つを含むものとすることが好適である。  The target material may be at least one of a metal, an alloy, a semiconductor, a compound semiconductor, and an oxide. For example, the target materials are chromium (C r), manganese (Mn), iron (F e), cobalt (C o), nickel (N i), rhodium (R h), palladium (P d), gold (Au), Silver (A g), Indium (In), Gallium (G a), Gadolinium (G d), Silicon (S i), Germanium (G e), Gallium nitride (G a N), It is preferable to include at least one nitride (In n). In addition, for example, the target material preferably includes at least one of zinc oxide (ZnO), cobalt (Co) -containing zinc oxide (ZnO), and indium tin oxide (INO). .
前記窒化半導体基板を真空中に配置し、 前記対象材料を分子線として供給する ことによって前記窒化半導体基板の表面にワイヤを形成することが好適である。 また、 合金等の複数の材料を含むナノワイヤを形成する場合、 前記窒化半導体 基板を真空中に配置し、 前記対象材料として複数の材料を同時に供給することに よって前記窒化半導体基板の表面に合金ワイヤを形成することが好適である。 ま た、前記窒化半導体基板を真空中に配置し、前記対象材料として複数の材料を別々 に時分割で供給することによって前記窒化半導体基板の表面に混合ワイヤを形成 してもよい。  It is preferable to form a wire on the surface of the nitride semiconductor substrate by placing the nitride semiconductor substrate in a vacuum and supplying the target material as a molecular beam. When forming a nanowire including a plurality of materials such as an alloy, the nitride semiconductor substrate is placed in a vacuum, and a plurality of materials are simultaneously supplied as the target material, whereby an alloy wire is formed on the surface of the nitride semiconductor substrate. Is preferably formed. Alternatively, the nitride semiconductor substrate may be disposed in a vacuum, and a plurality of materials may be separately supplied as the target material in a time-sharing manner to form a mixed wire on the surface of the nitride semiconductor substrate.
特に、 多種の材料について 20 nm以下の幅を有するナノワイヤを形成するこ とができる。 特に、 クロム (C r ) 、 マンガン (Mn) 、 鉄 (F e) 、 ニッケル (N i ) 、 ロジウム (R h) 、 パラジウム (P d) 、 酸化亜鉛 (Z nO) 、 コバ ルト (C o) 含有の酸化亜鉛 (Z nO) については 1 nm以下の線幅を有するナ ノワイヤを初めて形成することができた。  In particular, it is possible to form nanowires having a width of 20 nm or less for various materials. In particular, chromium (C r), manganese (Mn), iron (F e), nickel (N i), rhodium (R h), palladium (P d), zinc oxide (Z nO), cobalt (Co) For the zinc oxide (ZnO) contained, nanowires with a line width of 1 nm or less could be formed for the first time.

Claims

請 求 の 範 囲 The scope of the claims
1. 真空中において、 窒化半導体基板上に対象材料を供給することによって幅 20 nm以下の対象材料のワイヤを形成するナノワイヤの形成方法。 1. A nanowire forming method for forming a wire of a target material having a width of 20 nm or less by supplying the target material onto a nitride semiconductor substrate in a vacuum.
2. 請求の範囲 1に記載のナノワイヤの形成方法であって、 2. A method of forming a nanowire according to claim 1, comprising:
前記窒化半導体基板は、 ( 1 1 0) 面の面方位の表面を有する窒化銅基板であ ることを特徴とするナノワイヤの形成方法。  The method of forming a nanowire, wherein the nitride semiconductor substrate is a copper nitride substrate having a surface with a (110) plane.
3. 請求の範囲 2に記載のナノワイヤの形成方法であって、 3. A method of forming a nanowire according to claim 2, comprising:
前記窒化銅基板は、  The copper nitride substrate is
(1 1 0) 面の面方位の表面を有する.銅基板を真空中でスパッタリ ングするェ 程と、  (1 1 0) having a surface orientation plane, the process of sputtering the copper substrate in vacuum,
前記銅基板の表面に窒素イオン (N+) を注入する工程と、  Implanting nitrogen ions (N +) into the surface of the copper substrate;
を含む処理によって形成されることを特徴とするナノワイヤの形成方法。 A method of forming a nanowire, characterized by being formed by a process including:
4. 請求の範囲 1〜 3のいずれか一項に記載のナノワイヤの形成方法であって、 前記対象材料は、 金属、 合金、 半導体、 化合物半導体及び酸化物のうち少なく とも 1つであることを特徴とするナノワイヤの形成方法。 4. The method of forming a nanowire according to any one of claims 1 to 3, wherein the target material is at least one of a metal, an alloy, a semiconductor, a compound semiconductor, and an oxide. A method of forming a nanowire, which is characterized.
5. 請求の範囲 4に記載のナノワイヤの形成方法であって、 5. A method of forming a nanowire according to claim 4,
前記対象材料は、 クロム (C r ) 、 マンガン (Mn) 、 鉄 (F e) 、 コバルト (C o) 、 二ッケル (N i ) 、 ロジウム (Rh) 、 パラジウム (P d) 、 金 (A u) 、 銀 (A g) 、 インジウム ( I n) 、 ガリウム (G a) 、 ガドリニウム (G d) 、 シリ コン (S i ) 、 ゲルマニウム (G e) 、 窒化ガリ ゥム (G a N) 、 窒 化インジウム ( I nN) の少なく とも 1つを含むことを特徴とするナノワイヤの 形成方法。 The target materials are chromium (C r), manganese (Mn), iron (F e), cobalt (C o), nickel (N i), rhodium (Rh), palladium (P d), gold (A u ), Silver (A g), Indium (I n), Gallium (G a), Gadolinium (G d), Silicon (S i), Germanium (G e), Gallium nitride (G a N), Nitrogen A method of forming a nanowire, comprising at least one of indium phosphide (InN).
6. 請求の範囲 4に記載のナノワイヤの形成方法であって、 6. A method of forming a nanowire according to claim 4,
前記対象材料は、 酸化亜鉛 (Z nO) 、 コバルト (C o) 含有の酸化亜鉛 (Z n O) 、 酸化インジウムスズ ( I NO) の少なく とも 1つを含むことを特徴とす るナノワイヤの形成方法。  The target material includes at least one of zinc oxide (ZnO), zinc oxide (ZnO) containing cobalt (Co), and indium tin oxide (INO). Method.
7. 請求の範囲 1〜6のいずれか一項に記載のナノワイヤの形成方法であって、 前記窒化半導体基板を真空中に配置し、 前記対象材料を分子線として供給する ことによつて前記窒化半導体基板の表面にヮィャを形成することを特徴とするナ ノワイヤの形成方法。 7. The method of forming a nanowire according to any one of claims 1 to 6, wherein the nitrided semiconductor substrate is placed in a vacuum and the target material is supplied as a molecular beam. A method of forming a nanowire, comprising forming a via on a surface of a semiconductor substrate.
8. 請求の範囲 1〜6のいずれか一項に記載のナノワイヤの形成方法であって、 前記窒化半導体基板を真空中に配置し、 前記対象材料として複数の材料を同時 に供給することによって前記窒化半導体基板の表面に合金ワイヤを形成すること を特徴とするナノワイヤの形成方法。 8. The method of forming a nanowire according to any one of claims 1 to 6, wherein the nitride semiconductor substrate is disposed in a vacuum, and a plurality of materials are simultaneously supplied as the target material. A method for forming a nanowire, comprising forming an alloy wire on a surface of a nitride semiconductor substrate.
9. 請求の範囲 1〜 6のいずれか一項に記載のナノワイヤの形成方法であって、 前記窒化半導体基板を真空中に配置し、 前記対象材料として複数の材料を別々 に時分割で供給することによって前記窒化半導体基板の表面に混合ワイヤを形成 することを特徴とするナノワイヤの形成方法。 9. The method of forming a nanowire according to any one of claims 1 to 6, wherein the nitride semiconductor substrate is disposed in a vacuum, and a plurality of materials are separately supplied in time division as the target material. Thus, a mixed wire is formed on the surface of the nitride semiconductor substrate.
1 0. 5 nm以下の線幅を有するクロム (C r) 、 マンガン (Mn) 、 鉄 (F e ) 、 ニッケル (N i ) 、 ロジウム (Rh) 、 パラジウム (P d) 、 コバルト (C o ) 含有の酸化亜鉛 '(Z n O) のいずれか 1つのナノワイヤ。 Chromium (C r), Manganese (Mn), Iron (F e), Nickel (N i), Rhodium (Rh), Palladium (P d), Cobalt (C o) with a line width of 10.5 nm or less Contains one nanowire of zinc oxide '(ZnO).
1 1. 請求の範囲 1 0に記載のナノワイヤであって、 1 1. The nanowire according to claim 10, wherein
真空中において、 窒化半導体基板上に対象材料を供給することによって幅 20 n m以下の対象材料のヮィャを形成するナノワイャの形成方法によつて形成され たことを特徴とするナノワイヤ。  A nanowire formed by a nanowire forming method in which a target material having a width of 20 nm or less is formed by supplying a target material onto a nitride semiconductor substrate in a vacuum.
PCT/JP2008/057382 2008-04-09 2008-04-09 Nanowire and method of forming the same WO2009125504A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2008/057382 WO2009125504A1 (en) 2008-04-09 2008-04-09 Nanowire and method of forming the same
JP2010507113A JP5222355B2 (en) 2008-04-09 2008-07-24 Method for forming nanowires
PCT/JP2008/063726 WO2009125507A1 (en) 2008-04-09 2008-07-24 Method of forming nanowire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/057382 WO2009125504A1 (en) 2008-04-09 2008-04-09 Nanowire and method of forming the same

Publications (1)

Publication Number Publication Date
WO2009125504A1 true WO2009125504A1 (en) 2009-10-15

Family

ID=41161646

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2008/057382 WO2009125504A1 (en) 2008-04-09 2008-04-09 Nanowire and method of forming the same
PCT/JP2008/063726 WO2009125507A1 (en) 2008-04-09 2008-07-24 Method of forming nanowire

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/063726 WO2009125507A1 (en) 2008-04-09 2008-07-24 Method of forming nanowire

Country Status (1)

Country Link
WO (2) WO2009125504A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183526A (en) * 2010-03-10 2011-09-22 Kyushu Univ Manganese oxide nanowire-coated structure and method for producing the same
CN108336346A (en) * 2018-02-07 2018-07-27 吉林师范大学 A kind of application of germanium gallium nano wire as lithium ion battery electrode material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949006B (en) * 2010-07-16 2013-05-08 常州大学 Method for preparing copper nitride film, copper nitride/copper and copper two-dimensional ordered array
KR101339962B1 (en) * 2012-02-06 2013-12-10 한국과학기술원 METHOD OF FABRICATING AN AuAg Single Crystal NANOWIRE
US9117652B2 (en) 2013-06-18 2015-08-25 International Business Machines Corporation Nanoporous structures by reactive ion etching

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004223693A (en) * 2003-01-27 2004-08-12 National Institute Of Advanced Industrial & Technology Metal nanowire manufacturing method and precursor for manufacturing metal nanowire
JP2005512931A (en) * 2001-07-20 2005-05-12 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Transition metal oxide nanowires and devices containing the same
JP2006519712A (en) * 2003-01-30 2006-08-31 タキロン株式会社 Molded body having protruding conductive layer
JP2007065689A (en) * 2006-11-15 2007-03-15 Lg Philips Lcd Co Ltd Substrate for electronic equipment and its manufacturing method, and electronic equipment
JP2007105822A (en) * 2005-10-12 2007-04-26 National Institute For Materials Science Atomic scale metal wire or metal nanocluster, and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512931A (en) * 2001-07-20 2005-05-12 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Transition metal oxide nanowires and devices containing the same
JP2004223693A (en) * 2003-01-27 2004-08-12 National Institute Of Advanced Industrial & Technology Metal nanowire manufacturing method and precursor for manufacturing metal nanowire
JP2006519712A (en) * 2003-01-30 2006-08-31 タキロン株式会社 Molded body having protruding conductive layer
JP2007105822A (en) * 2005-10-12 2007-04-26 National Institute For Materials Science Atomic scale metal wire or metal nanocluster, and method for manufacturing same
JP2007065689A (en) * 2006-11-15 2007-03-15 Lg Philips Lcd Co Ltd Substrate for electronic equipment and its manufacturing method, and electronic equipment

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Dai 88 Annual Meeting on Chemical Society of Japan in Spring (2008) Koen Yokoshu I", 12 March 2008, article AYAKO OTA ET AL.: "Chosa Amidoamine Yudotai no Toluene-so ni Okeru Pd Nanowire no Gosei", pages: 433 *
K.A. BERTNESS ET AL.: "Catalyst-Free Growth of GaN Nanowire", JOURNAL OF ELECTRONIC MATERIALS, vol. 35, no. 4, April 2006 (2006-04-01), pages 576 - 580 *
PAOLA DE PADOVA ET AL.: "Growth of Straight, Atomically Perfect, Highly Metallic Silicon Nanowires with Chiral Asymmetry", NANO LETTERS, vol. 8, no. 1, 9 January 2008 (2008-01-09), pages 271 - 275 *
SERGIY MINKO ET AL.: "Mineralization of Single Flexible Polyelectrolyte Molecules", J. AM. CHEM. SOC., vol. 124, no. 34, 2002, pages 10192 - 10197, XP002236332, DOI: doi:10.1021/ja026784t *
Y.D. WANG ET AL.: "Catalyst-free growth of uniform ZnO nanowire arrays on prepatterned substrate", APPLIED PHYSICS LETTERS, vol. 89, no. 26, 29 December 2006 (2006-12-29), pages 263116 - 1 - 2631, XP012087917, DOI: doi:10.1063/1.2425036 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183526A (en) * 2010-03-10 2011-09-22 Kyushu Univ Manganese oxide nanowire-coated structure and method for producing the same
CN108336346A (en) * 2018-02-07 2018-07-27 吉林师范大学 A kind of application of germanium gallium nano wire as lithium ion battery electrode material
CN108336346B (en) * 2018-02-07 2020-06-19 吉林师范大学 Application of germanium-gallium nanowires as electrode material of lithium ion battery

Also Published As

Publication number Publication date
WO2009125507A1 (en) 2009-10-15

Similar Documents

Publication Publication Date Title
Dhara Formation, dynamics, and characterization of nanostructures by ion beam irradiation
US8865577B2 (en) Method for making epitaxial structure
US8900977B2 (en) Method for making epitaxial structure
US9099307B2 (en) Method for making epitaxial structure
WO2001018866A1 (en) Strongly textured atomic ridges and dots
WO2009125504A1 (en) Nanowire and method of forming the same
KR101467118B1 (en) METHOD OF SYNTHESIZING β??Ga2O3 NANOWIRES USING SPUTTERING TECHNIQUE
US20130285212A1 (en) Epitaxial structure
US20130285016A1 (en) Epitaxial structure
JP2007105822A (en) Atomic scale metal wire or metal nanocluster, and method for manufacturing same
US9446949B2 (en) Vicinal surfaces of polycrystalline structures
Homma et al. Fabrication of FePt and CoPt magnetic nanodot arrays by electrodeposition process
KR101273702B1 (en) Method for growing GaN nanowire using Pt catalyst
JP5222355B2 (en) Method for forming nanowires
JP6658121B2 (en) Graphene nanoribbon, method for manufacturing the same, and device
KR100455663B1 (en) Metal/nanomaterial heterostructure and method for the preparation thereof
JP2018532039A (en) In-situ growth of metal oxide nanowires and catalyst nanoparticle decoration
JP2012011374A (en) Method for forming catalyst suitable for growth of carbon nanotube
WO2005035636A1 (en) Process for producing metal nanoparticle composite film
JP4631095B2 (en) Method for producing metal nanoparticles
JP2006263712A (en) Laminated structure of nanoparticles and method for producing it
JP2007254167A (en) Method for production of carbon nanotube
CN115138854B (en) Preparation of metal nano-particles and metal nano-particles loaded on boron-graphene
Cesaria Surface energy and nucleation modes
KR20170108683A (en) Method of manufacturing a high dielectric thin film using 2-dimensional material with surface functionalized

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08751847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08751847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP