WO2009119824A1 - スライディングノズル装置の制御方法及びそれに使用されるプレート - Google Patents

スライディングノズル装置の制御方法及びそれに使用されるプレート Download PDF

Info

Publication number
WO2009119824A1
WO2009119824A1 PCT/JP2009/056341 JP2009056341W WO2009119824A1 WO 2009119824 A1 WO2009119824 A1 WO 2009119824A1 JP 2009056341 W JP2009056341 W JP 2009056341W WO 2009119824 A1 WO2009119824 A1 WO 2009119824A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
sliding
rate
nozzle device
average
Prior art date
Application number
PCT/JP2009/056341
Other languages
English (en)
French (fr)
Inventor
俊治 定野
順也 矢野
博幸 東福
賢一 原田
晶 大塚
Original Assignee
黒崎播磨株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黒崎播磨株式会社 filed Critical 黒崎播磨株式会社
Priority to CA2718307A priority Critical patent/CA2718307A1/en
Priority to EP09724351A priority patent/EP2272604A1/en
Priority to US12/934,469 priority patent/US20110062193A1/en
Priority to JP2010505856A priority patent/JP5433566B2/ja
Priority to AU2009229793A priority patent/AU2009229793B2/en
Publication of WO2009119824A1 publication Critical patent/WO2009119824A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/22Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings
    • B22D41/38Means for operating the sliding gate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/22Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings
    • B22D41/28Plates therefor

Definitions

  • the present invention relates to a control method of a sliding nozzle device installed at the bottom of a ladle used in a continuous casting facility, and a plate used in the method.
  • the flow rate of molten steel injected from the ladle into the tundish is controlled by a sliding nozzle device.
  • a sliding nozzle device a plurality of refractory sliding nozzle plates (hereinafter, “sliding nozzle plates” may be simply referred to as “plates”) having nozzle holes are used. Then, the flow rate of the molten steel is controlled by adjusting the nozzle hole opening degree by sliding at least one plate while sandwiching the plurality of plates at high pressure.
  • control method of the sliding nozzle device there is a method of measuring the molten steel weight in the tundish and adjusting the opening / closing degree of the nozzle hole according to the deviation between the measured value and the reference set value or the change rate of the molten steel weight.
  • two kinds of plate sliding distances (control constants) such as large and small are set in advance, and these two kinds of output signals are set according to the magnitude of the deviation.
  • a pulse signal is transmitted from the control device. Further, the cycle of outputting the pulse signal is also controlled by a preset value (control constant) such as 5 seconds.
  • the plate When the opening / closing degree of the nozzle hole is controlled by the above control method, the plate may be slid frequently because the molten steel level is kept constant regardless of the operating conditions. As a result, there is a problem that the plate wears out and the number of times the plate is used is greatly limited.
  • Patent Document 1 and Patent Document 2 even when there is a deviation between the measured value of the molten steel weight in the tundish and the reference set value, the direction of change in the measured value is a direction approaching the reference set value.
  • Patent Document 3 discloses a control method for a sliding nozzle device that adjusts the opening of a nozzle hole based on the relationship between the molten steel head in the ladle (ladder), the opening of the nozzle hole, and the ladle pouring flow rate. Yes.
  • Patent Document 4 describes that the plate shape is economical as long as the molten steel does not leak by defining the distance from the edge of the nozzle hole of the plate to the end of the plate.
  • the nozzle hole When the steel type is changed in the casting operation, the molten steel components change, so the nozzle hole is likely to be clogged, or conversely, the nozzle hole progresses and the amount of molten steel discharged from the plate changes. There is. Also, when the nozzle hole diameter is changed, the amount of molten steel discharged from the plate changes. Specifically, when inclusions adhere to the nozzle hole and the cross-sectional area decreases, the flow rate of the molten steel is small at the initially set sliding distance, so the nozzle hole area is continuously increased. It may move twice or three degrees. As a result, the number of sliding times becomes excessive. On the other hand, when the nozzle hole diameter is increased, the nozzle hole is excessively opened by one sliding operation, so that it must be slid in the opposite direction in a short time, and the number of sliding operations is increased.
  • the wear of a plate includes an edge fusing Q (see FIG. 10A) in which the edge portion of the nozzle hole is melted at the time of injection, and a stroke damage R in which the sliding surface of the plate is damaged by the sliding operation of the plate.
  • edge fusing Q see FIG. 10A
  • stroke damage R the more the number of sliding times or sliding distance of the plate, the larger these two types of melting damage. If the wear of these plates increases, molten steel leakage may occur. Therefore, as disclosed in Patent Document 4, the plate stroke length must be at least twice the nozzle hole diameter. For this reason, there has been a limit in reducing the overall length of the plate.
  • the present invention has been made in view of the above-described problems, and a sliding nozzle capable of automatically optimizing the sliding state of the sliding nozzle device and extending the life of the plate even when the operation condition is changed. It is an object of the present invention to provide a method for controlling an apparatus and a plate used therefor. Another object of the present invention is to provide a sliding nozzle device control method capable of reducing the degree of wear of the plate and shortening the stroke length of the plate, and a plate used therefor.
  • the molten steel weight in the tundish is measured, and the deviation between the measured value and the reference set value is calculated.
  • the average integrated sliding rate of the plate (% / Min) is calculated, and if the average integrated sliding rate (% / min) of the plate is out of the preset control range, the sliding rate of the plate is changed within a preset setting range. It is characterized by that.
  • the sliding rate (%) is a value obtained by dividing the sliding distance of one plate for performing flow rate control by the nozzle hole diameter before use of the plate. This is because in the control of the molten steel flow rate by the sliding nozzle device, the molten steel flow rate per unit time varies depending on the nozzle hole diameter, and the sliding distance of the plate also varies depending on the nozzle hole diameter.
  • the average integrated sliding rate of the plate refers to an average value per predetermined time concerning the integrated sliding rate of the plate, which is the product of the sliding rate and the number of sliding times.
  • the inventors of the present invention have a large influence on the plate life, which is the product of the sliding rate and the number of sliding times, and this cumulative sliding rate is within the optimum range. It was found that the sliding state of the sliding nozzle device can be automatically optimized even if the operating conditions change.
  • the first invention is based on the above findings.
  • the management width relating to the average cumulative sliding rate of the plate is 0.5 (% / min) or more and 18 (% / min) or less. And When the average cumulative sliding rate is less than 0.5 (% / min), the management accuracy of the molten steel weight in the tundish is reduced, and when the average cumulative sliding rate exceeds 18 (% / min) The life of the plate is reduced.
  • the setting range relating to the sliding rate of the plate is 3% or more and 20% or less.
  • the sliding rate of the plate is less than 3%, the management accuracy of the molten steel weight in the tundish is lowered, and when the sliding rate of the plate exceeds 20%, the life of the plate is lowered.
  • the second invention is a method of controlling a sliding nozzle device used in a ladle, characterized in that the average sliding rate of the plates constituting the sliding nozzle device is 3% or more and 20% or less.
  • the sliding distance of the plate also differs depending on the nozzle hole diameter. For this reason, the average value of the sliding rate for 60 minutes is adopted as a control parameter to define the value.
  • the average sliding rate is 3% to 20%, more preferably 5% to 15%.
  • the average sliding rate exceeds 20%, stroke damage increases and the life of the plate is reduced. Furthermore, since the number of times of sliding increases, stroke damage increases and the life of the plate decreases.
  • the average sliding rate is less than 3%, the weight fluctuation range of the tundish becomes large, and the flow rate controllability becomes insufficient.
  • the degree of wear of the plate can be reduced by setting the average sliding rate to 3% or more and 20% or less to minimize the sliding distance of the plate. Further, by reducing the average sliding rate, the number of sliding times can be reduced, so that the degree of wear of the plate is further reduced.
  • the number of sliding times of the plate is 10 to 60 times per 60 minutes.
  • the number of sliding of the plate is 10 times or more and 60 times or less per 60 minutes, more preferably 10 times or more and 30 times or less. Is to be reduced.
  • the number of sliding times of the plate exceeds 60 times per 60 minutes, the degree of wear of the plate is increased and the life of the plate is shortened.
  • the number of sliding times of the plate is less than 10 per 60 minutes, the weight fluctuation range of the tundish becomes large and the flow rate controllability becomes insufficient.
  • the stroke length of the plate is 1.5 times or more and less than 2 times the diameter of the nozzle hole formed in the plate. If the stroke length of the plate is less than 1.5 times the nozzle hole diameter, the plate wear is insufficient and the life is shortened. On the other hand, if it is twice or more, the difference in lifetime is almost eliminated, but the total length of the plate becomes long.
  • the stroke length of the plate is a position where the distance between the nozzle hole center of the plate and the nozzle hole center of the mating plate in contact with the plate is maximum in the sliding nozzle device in which the plate is used.
  • FIG. 2 shows a position where the distance between the nozzle holes is maximum in the sliding nozzle device in which the plate is used, and the stroke length of the upper plate is the nozzle hole center A of the upper plate and the nozzle hole center of the lower plate. Is a distance S between the upper plate and the virtual point B corresponding to.
  • the plate used in the control method of the sliding nozzle device according to the first and second inventions has a stroke length of 1.5 times or more and less than 2 times the nozzle hole diameter.
  • the control method of the sliding nozzle device when the average integrated sliding rate of the plate is out of the management range, the operating condition is changed by changing the sliding rate of the plate within a preset setting range. Even in this case, it is possible to automatically optimize the sliding state of the sliding nozzle device. As a result, the degree of damage to the plate is reduced, and the durability of the plate can be improved. Furthermore, the plate can be reduced in size.
  • the plate size can be reduced by setting the stroke length of the plate to 1.5 times or more and less than 2 times the nozzle hole diameter.
  • the sliding nozzle plate consists of two plates, an upper plate (fixed plate) and a lower plate (sliding plate) will be described.
  • the upper plate upper fixed plate
  • the middle plate sliding plate
  • the lower plate The same applies to the case of three plates (lower fixed plates).
  • FIG. 1 shows the configuration of a sliding nozzle device 10 to which the control methods according to the first and second embodiments of the present invention are applied.
  • the sliding nozzle device 10 includes a plate 13 (sliding nozzle plate) and sliding means for sliding the plate 13.
  • the plate 13 includes an upper plate 13u and a lower plate 13d, and nozzle holes 14u and 14d are formed, respectively.
  • the upper plate 13u is fixed to the bottom surface of the ladle 11 via a fixed metal frame 18, and the upper nozzle 15 is connected to the nozzle hole 14u.
  • the lower plate 13d is fixed on the slide metal frame 17 disposed inside the open / close metal frame 19 provided to be openable / closable with respect to the fixed metal frame 18, and slides along the lower surface of the upper plate 13u.
  • the lower nozzle 16 is connected to the nozzle hole 14d of the lower plate 13d.
  • the fixed metal frame 18 extends in the sliding direction of the slide metal frame 17, and a hydraulic cylinder 20 is installed at one end in the extending direction.
  • the tip of the rod 20 a of the hydraulic cylinder 20 is connected to one end of the slide metal frame 17.
  • a load cell 23 for measuring the weight of molten steel in the tundish 12 is installed on the bottom surface of the tundish 12 disposed immediately below the ladle 11.
  • the output of the load cell 23 is input to the control device 22, and the control device 22 outputs a control signal corresponding to the output value of the load cell 23 to the hydraulic unit 21.
  • the hydraulic unit 21 operates the hydraulic cylinder 20 in accordance with the control signal to slide the slide metal frame 17.
  • the output signal of the load cell 23 installed on the bottom surface of the tundish 12 is taken into the control device 22 (S1).
  • the control device 22 is a device that automatically controls the conventional sliding nozzle device, and calculates the control force of the hydraulic cylinder 20 based on the deviation between the output signal of the load cell 23 and the reference set value. Then, a control signal is output to the hydraulic unit 21, and the hydraulic unit 21 drives the hydraulic cylinder 20 based on the control signal to slide the lower plate 13d to control the opening / closing degree of the nozzle hole (S2).
  • the control of the opening / closing degree is the same as the method disclosed in Patent Document 1 or the like, that is, as shown in Table 1, the reference set value of the molten steel and the range of the change rate of the molten steel weight are set in advance, This determines the type of control signal.
  • the output period of the control signal is set to 5 seconds.
  • K is the rate of change in molten steel weight (kg / 5 sec), and A is a constant.
  • “Closed” means a pulse signal for sliding the sliding plate small in the direction in which the opening area of the nozzle hole decreases, and “Closed” means sliding in the direction in which the opening area of the nozzle hole becomes small. This is a pulse signal for sliding the moving plate greatly.
  • “Open small” is a pulse signal for sliding the sliding plate small in the direction in which the opening area of the nozzle hole is large.
  • Open large is This is a pulse signal for sliding the sliding plate greatly in the direction in which the opening area of the nozzle hole increases.
  • the sliding rate of “closed small” and “open small” is 6%
  • the sliding rate of “closed large” and “open large” is 12%. In “holding”, the sliding plate is not slid.
  • control device 22 adjusts the control constant related to the sliding distance of the plate in the following procedure for the optimization of the control.
  • the average integrated sliding rate (% / min) of the plate is calculated (S3).
  • the average integrated sliding rate (% / min) of the plate is calculated from the integrated sliding rate (%) of the plate and the number of times of plate sliding (times) in a predetermined time.
  • the plate integrated sliding rate (%) is calculated from the type of control signal and the number of transmissions for sliding the initially set plate. For example, in Table 1, when the opening (12%) is twice, the closing (12%) is once, the closing (6%) is once, and the holding is twice in the past 10 minutes, The cumulative sliding rate for 10 minutes is 42%. Further, since the number of transmissions of the control signal for sliding the plate during this period is 4, the average integrated sliding rate of the plate for 10 minutes is 10.5% / min.
  • the control signal for sliding the plate is measured by measuring each control signal (pulse signal) and the sliding distance of the plate with surface pressure applied before the plate is used.
  • the sliding rate can be set.
  • a position sensor may be provided in a driving device such as a hydraulic cylinder, and the measurement result may be used as the sliding distance of the plate. Further, the actual sliding distance of the plate may be measured.
  • the time to calculate the average integrated sliding rate (% / min) of this plate is a time that goes back at least 5 minutes from the time of calculation (when the control signal is output). If it is less than 5 minutes, the accuracy of the average cumulative sliding rate (% / min) will be reduced.
  • the average integrated sliding rate for the integrated data from immediately after is calculated. Further, any specific time from 5 minutes to 60 minutes may be determined retroactively as the starting point when the control signal is output.
  • the sliding rate of the plate is more preferably set to be in the range of 3% to 20%.
  • the sliding rate of the plate is less than 3%, the management accuracy of the molten steel weight in the tundish is lowered, and when the sliding rate of the plate exceeds 20%, the life of the plate is lowered.
  • the average value can be obtained. For example, in Table 1, there are cases where the sliding rate of the plate is 6% and 12% as a control signal, and the average sliding rate in this case is 9%.
  • the plate sliding speed or control signal output cycle is similarly controlled by setting a predetermined management width and making the control constant variable.
  • the accuracy of the example control method can be improved.
  • step S5 If the average cumulative sliding rate of the plate is within the range of the control width, it is determined whether or not casting is finished (S5). (7) If casting has not been completed yet, the process returns to step S1 and the procedures after (1) are executed. On the other hand, when casting is completed, the sliding nozzle device 10 is stopped.
  • the cycle (min) of the molten steel weight in the tundish and / or the inflection of the molten steel weight in the tundish By managing the number of points (times / minute), the accuracy of flow rate control can be further increased.
  • FIG. 4 shows the change in the time history of the deviation between the molten steel weight in the tundish and the standard set value.
  • FIG. 4 shows the result of control performed by the control method shown in the flow of FIG. 3 in the sliding nozzle device of FIG.
  • the average integrated sliding rate of the plate was 20% / min, which was outside the range of this example.
  • the control constant related to the plate sliding distance was changed to change the plate sliding rate.
  • the average integrated sliding rate of the plate was 9% / min. That is, the sliding distance of the lower plate is reduced, the number of sliding times is reduced, and the life of the plate is extended. Further, in FIG. 4, the fluctuation period of the weight deviation is longer than when the control is turned on.
  • Fig. 5 shows the relationship between the plate life and the average integrated sliding rate of the plate. If the average cumulative sliding rate of this plate is 18 (% / min) or less, the life of the plate will be longer, and if the average cumulative sliding rate (% / min) is 12 (% / min) or less, the service life will be longer. It turns out that becomes longer. When the average integrated sliding rate exceeds 18 (% / min), the plate edge melts and the stroke damage increases, and the life is shortened.
  • Fig. 6 shows the relationship between the plate life and the average sliding rate of the plate.
  • the average integrated sliding rate was 18% or less. It can be seen that when the average sliding rate of the plate is 20% or less, the life of the plate becomes longer, and when the average sliding rate is 10% or less, the lifetime becomes longer. When the average sliding rate exceeds 20%, the edge melting of the plate and the stroke damage are increased and the life is shortened.
  • Fig. 7 shows the relationship between plate life and stroke length / nozzle hole diameter.
  • the test was performed by changing only the stroke length of the plate by changing the setting of the sliding nozzle device.
  • Each stroke length was tested using three plates and evaluated by the average value of the plate life. As a result of the test, it was found that when the stroke length was less than 1.5 times the nozzle hole diameter, the plate life decreased rapidly, but even if the stroke length was doubled or more, there was no significant change in the plate life. .
  • the plate used has a length of 600 mm, a width of 260 mm, a thickness of 50 mm, and a nozzle hole diameter of 85 mm.
  • a type in which tar was impregnated with an alumina carbon material having an Al 2 O 3 content of 80% or more was used.
  • the surface pressure during the test was 100 kN, the casting time was 45 to 55 minutes for one charge, and the ladle capacity was 300 tons.
  • the number of sliding times and the sliding distance (mm) were measured by an operator staying near the sliding nozzle device.
  • count of sliding measured the sliding distance and the frequency
  • the number of sliding times and the sliding distance include the plate sliding for stopping the plate nozzle hole at a predetermined opening at the start of sliding, the plate for stopping the discharge of molten steel at the end of casting and in an emergency. Sliding is excluded. 5 and 6 were performed by changing the sliding speed of the plate, the sliding distance of the plate, the width of the dead zone in which the position of the plate is held, the output cycle, and the like.
  • the sliding distance of the plate 13 when the average sliding rate of the plate 13 is 20% is 0.2D, and when the average sliding rate of the plate 13 is 3%.
  • the sliding distance of the plate 13 is 0.03D. Since the lower plate 13d is controlled by a pulse output from the control device 22, when the lower plate 13d is controlled by two kinds of pulses, a large pulse and a small pulse, the sliding distance by the large pulse is 0.2D or less. If the sliding distance by a small pulse is 0.03D or more, the average sliding rate of the plate 13 is theoretically 3% or more and 20% or less. The same applies when a plurality of pulses are used. That is, the sliding distance by the maximum pulse may be 0.2D or less, and the sliding distance by the minimum pulse may be 0.03D or more.
  • FIG. 8 is a graph showing the relationship between the plate life and the average sliding rate.
  • the plate life on the vertical axis of the graph indicates the number of charges that could be used, and the operator visually observed the edge melting and stroke damage on the surface of the plate used to determine whether or not it could be reused.
  • a plate having a length of 600 mm, a width of 260 mm, a thickness of 50 mm, and a nozzle hole diameter of 85 mm was used.
  • the plate used was a type in which tar was impregnated with an alumina carbon material having an Al 2 O 3 content of 80% or more.
  • the stroke of the plate sliding means of the sliding nozzle device 10 is 160 mm, and the stroke length S of the plate 13 is 160 mm (see FIG. 2).
  • the surface pressure during the test was 100 kN, the casting time was 45 to 55 minutes per charge, and the ladle capacity was 300 tons.
  • the sliding frequency of the plate 13 was also controlled by using the sliding nozzle device control method described in Japanese Patent Application Laid-Open No. 62-158556.
  • the control method of the sliding nozzle device described in Japanese Patent Application Laid-Open No. 62-158556 when the measured value by the load cell 23 is within the dead zone provided near the reference set value, or the measured value is outside the dead zone.
  • the deviation from the reference set value is within a predetermined value and the measured value is approaching the reference set value, the position of the plate is held.
  • the number of sliding of the plate was controlled by adjusting the setting of the sliding speed of the plate, the setting of the sliding distance of the plate, and the width of the dead zone in which the position of the plate was maintained.
  • the control range of the molten steel weight in the tundish was set within ⁇ 1% by mass.
  • the number of sliding times and the sliding distance (mm) were measured under the same conditions as the control method of the sliding nozzle device according to the first embodiment described above, and the average sliding rate was calculated by the above formula. .
  • the number of sliding times is divided into groups of 10 times, and the plate life at each average sliding rate is plotted.
  • FIG. 8 shows that the life of the plate increases as the average sliding rate decreases. Specifically, it can be seen that when the average sliding rate is 20% or less, the life of the plate is greatly increased, whereas when the average sliding rate exceeds 20%, the life of the plate is extremely reduced. Also, the smaller the number of sliding times, the longer the life of the plate. In particular, when the number of sliding times is 10 to 30, the plate has the longest life. When the number of sliding times exceeds 60, the plate life is 7 times or less even if the average sliding rate is lowered. When the average sliding rate is less than 3% or the number of sliding times is less than 10, the control range of the molten steel weight in the tundish exceeds ⁇ 3%, and the flow controllability is slightly reduced. .
  • the plate was used by changing only the stroke length by changing the setting of the sliding nozzle device in the plate used in FIG.
  • the test conditions other than the conditions in which the number of sliding times is 21 to 30 times and the average sliding rate is in the range of 10 to 15% are the results obtained by the same method as in FIG.
  • the test was performed using three plates at each stroke length, and the average value of the plate life was evaluated. As a result of the test, it was found that when the stroke length was less than 1.5 times the nozzle hole diameter, the plate life decreased rapidly, but even if the stroke length was doubled or more, there was no significant change in the plate life. .
  • the flow rate of molten steel from the tundish to the mold is controlled with high accuracy. For this reason, in the control of the flow rate of molten steel from the ladle to the tundish, even if the fluctuation in the amount of molten steel in the tundish is somewhat increased by reducing the number of sliding of the plate, the fluctuation will be from the tundish to the mold. Can be absorbed by controlling the flow rate of molten steel.
  • control range of the molten steel weight in the tundish is preferably in the range of ⁇ 3% by mass, more preferably in the range of ⁇ 1% by mass, so that the influence on the tundish level fluctuation is small, and the product It does not adversely affect the quality of the steel.
  • the present invention can be used in a sliding nozzle device that controls the flow rate of molten steel injected from a ladle into a tundish. At this time, according to the present invention, it is possible to automatically optimize the sliding state of the sliding nozzle device even if the operating conditions are changed. In addition, the degree of wear of the plate is reduced, and the service life is greatly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

 操業条件が変更になっても、スライディングノズル装置10の摺動状態を自動的に最適化し、プレート13の寿命を延ばすこと、また、プレート13の損耗度を低減し、プレート13のストローク長を短くすることが可能なスライディングノズル装置の制御方法及びそれに使用されるプレート13を提供する。  スライディングノズル装置10の制御において、プレート13の平均積算摺動率が管理幅を外れた場合には、プレート13の摺動率を予め設定した設定範囲で変更することにより、操業条件が変更になっても、スライディングノズル装置10の摺動状態を自動的に最適化することが可能である。また、平均摺動率を3%以上20%以下とすることにより、プレート13の損耗度が低減され、寿命が大幅に向上する。

Description

スライディングノズル装置の制御方法及びそれに使用されるプレート
 本発明は、連続鋳造設備において使用される取鍋の底部に設置されたスライディングノズル装置の制御方法及びそれに使用されるプレートに関する。
 取鍋からタンディッシュへ注入される溶鋼流量は、スライディングノズル装置により制御されている。スライディングノズル装置には、ノズル孔を有する複数の耐火物製のスライディングノズル用プレート(以下、「スライディングノズル用プレート」を単に「プレート」と呼ぶこともある。)が使用されている。そしてこの複数のプレートを高圧で挟んだ状態で少なくとも1つのプレートを摺動させてノズル孔開度を調整することで溶鋼流量が制御される。
 スライディングノズル装置の制御方法としては、タンディッシュ内の溶鋼重量を測定し、測定値と基準設定値との間の偏差や溶鋼重量の変化率に応じてノズル孔の開閉度を調節する方法等が知られている。ノズル孔の開閉度を調整するためには、例えば予めプレートの摺動距離(制御定数)を大と小など2種類設定しておき、偏差の大きさに応じて、これら2種類の出力信号を制御装置からパルス信号で発信するようになっている。また、パルス信号を出力する周期も、例えば5秒など予め設定された値(制御定数)で制御されている。
 上記制御方法によりノズル孔の開閉度を制御した場合、操業条件にかかわらず溶鋼レベルを一定に保とうとするため、プレートの摺動が頻繁に行われることがある。その結果、プレートの損耗が進み、プレートの使用回数が大幅に制限されるという問題があった。
 そこで、特許文献1や特許文献2では、タンディッシュ内溶鋼重量の測定値と基準設定値との間の偏差が存在する場合でも、測定値の変化の方向が基準設定値に近づく方向である場合には、プレートの位置を保持させるようにしたスライディングノズル装置の制御方法が開示されている。そして、この制御方法によれば、プレートの寿命が長くなり、しかもタンディッシュ内溶鋼重量の安定性が向上し、外乱による重量あるいは湯面高の変動をより小さく制御できるようになるとされている。
 また、特許文献3では、レードル(取鍋)内溶鋼ヘッドとノズル孔の開度とレードル注出流量との関係に基いてノズル孔の開度を調整するスライディングノズル装置の制御方法が開示されている。
一方、近年、作業者のハンドリング負荷の軽減やコストダウンの要請からプレートの小型化に対するニーズが高まっている。例えば特許文献4には、プレートのノズル孔の縁からプレートの端までの距離を規定することで溶鋼漏れを起こさない範囲で経済的なプレート形状とすることが記載されている。
日本国特開昭62-158556号公報 日本国特開昭62-158557号公報 日本国特開2003-164951号公報 日本国特開平11-138243号公報
 鋳込み作業において鋼種が変更になった場合、溶鋼成分が変わるため、ノズル孔が詰まり易くなったり、逆にノズル孔の溶損が進行したりして、プレートから吐出される溶鋼量が変化することがある。また、ノズル孔径が変更になった場合も、プレートから吐出される溶鋼量が変化する。具体的には、ノズル孔に介在物が付着し断面積が小さくなった場合には、最初に設定した摺動距離では溶鋼流量変化が小さいため、ノズル孔の面積を大きくする方向に連続して2度、3度と移動する場合がある。その結果、摺動回数が多くなりすぎることになる。一方、ノズル孔径が大きくなった場合には、一度の摺動でノズル孔が開きすぎるので短時間で反対方向に摺動しなければならず、やはり摺動回数が増えてしまう。
しかしながら、特許文献1や特許文献2に記載された制御方法では、制御定数を固定しているため、鋼種変更やノズル孔径の変更などによる溶鋼流量の変化に適応できず、タンディッシュ内溶鋼重量の制御がうまくできないことがある。そのため、プレートの摺動頻度が増え損耗が大きくなり、プレートの寿命が低下する問題が生じる。この場合、手間を掛けてスライディングノズル装置の制御システムを再チューニングすることになる。
また、スライディングノズル装置の駆動機構が、スライド金枠と油圧シリンダをアームを介して連結するリンク駆動方式から、スライド金枠と油圧シリンダを直結する直動方式に変更になった場合、連結部のガタ量が減少するため、プレートが以前に比べて動き過ぎとなり、プレートの摺動頻度が増え損耗が大きくなり寿命が短くなる。
一方、特許文献3に記載された制御方法では、プレートの摺動距離が大きい場合、プレートの損傷が大きくなり、ノズル孔の開閉頻度が増加することがある。その結果、プレートの使用回数が大幅に制限されるという問題があった。
 一般に、プレートの損耗は、絞り注入時にノズル孔のエッジ部が溶損するエッジ溶損Q(図10(a)参照)と、プレートの摺動動作によって該プレートの摺動面が損傷するストローク損傷R(図10(b)参照)に大別され、プレートの摺動回数あるいは摺動距離が増大するほど、これら二種類の溶損が大きくなる。
これらのプレートの損耗が大きくなると、溶鋼漏れが発生するおそれがあるため、特許文献4で開示されているように、プレートのストローク長はノズル孔径の2倍以上を確保しなければならなかった。このため、従来はプレートの全長を小さくすることには限界があった。
 本発明は、上述する問題点に鑑みてなされたもので、操業条件が変更になっても、スライディングノズル装置の摺動状態を自動的に最適化し、プレートの寿命を延ばすことが可能なスライディングノズル装置の制御方法及びそれに使用されるプレートを提供することを目的とする。
 また、プレートの損耗度を低減し、プレートのストローク長を短くすることが可能なスライディングノズル装置の制御方法及びそれに使用されるプレートを提供することを目的とする。
 第一の発明は、連続鋳造において取鍋からタンディッシュへ排出される溶鋼流量を制御するために、前記タンディッシュ内の溶鋼重量を測定し、該測定値と基準設定値との偏差を算出し、該偏差及び/又は前記タンディッシュ内の溶鋼重量の変化率からプレートの摺動距離を制御する制御信号を所定の周期で出力するスライディングノズル装置の制御方法において、前記プレートの平均積算摺動率(%/分)を算出し、該プレートの平均積算摺動率(%/分)が予め設定した管理幅を外れた場合には、前記プレートの摺動率を予め設定した設定範囲で変更することを特徴としている。
 ここで、摺動率(%)とは、流量制御を行うための1回のプレートの摺動距離をそのプレートの使用前のノズル孔径で除した値である。スライディングノズル装置による溶鋼流量の制御では、ノズル孔径によって単位時間当たりの溶鋼流量が異なるため、プレートの摺動距離もノズル孔径によって異なるためである。また、プレートの平均積算摺動率とは、摺動率と摺動回数との積であるプレートの積算摺動率に関する所定時間当たりの平均値をいう。
 本発明者等は、スライディングノズル装置の制御において、摺動率と摺動回数との積であるプレートの積算摺動率がプレートの寿命に大きな影響を与え、この積算摺動率を最適な範囲で管理することで、操業条件が変更になっても、スライディングノズル装置の摺動状態を自動的に最適化することが可能であることを見いだした。第一の発明は上記知見に基づくものである。
 また、第一の発明に係るスライディングノズル装置の制御方法では、前記プレートの平均積算摺動率に関する前記管理幅が0.5(%/分)以上18(%/分)以下であることを好適とする。
 平均積算摺動率が0.5(%/分)未満の場合には、タンディッシュ内の溶鋼重量の管理精度が低下し、平均積算摺動率が18(%/分)を超える場合にはプレートの寿命が低下する。
 また、第一の発明に係るスライディングノズル装置の制御方法では、前記プレートの摺動率に関する前記設定範囲が3%以上20%以下であることを好適とする。
プレートの摺動率が3%未満ではタンディッシュ内の溶鋼重量の管理精度が低下し、プレートの摺動率が20%を超える場合にはプレートの寿命が低下する。
 第二の発明は、取鍋で使用されるスライディングノズル装置の制御方法であって、前記スライディングノズル装置を構成するプレートの平均摺動率を3%以上20%以下とすることを特徴としている。
 ここで、平均摺動率(%)とは、摺動率の60分間の平均値である。具体的には以下の式で示される。平均摺動率(%)=[(プレートの60分間の合計摺動距離/60分間の摺動回数)/使用前のプレートのノズル孔径×100]。
 前述したように、スライディングノズル装置による溶鋼流量の制御では、ノズル孔径によって単位時間当たりの溶鋼流量が異なるため、プレートの摺動距離もノズル孔径によって異なる。このため、摺動率の60分間の平均値を制御パラメータとして採用し、その値を規定している。
 平均摺動率は、3%以上20%以下、より好ましくは5%以上15%以下とする。平均摺動率が20%を超えると、ストローク損傷が大きくなり、プレートの寿命が低下する。さらに、摺動回数も多くなるため、ストローク損傷が大きくなりプレートの寿命が低下する。平均摺動率が3%未満の場合には、タンディッシュの重量変動幅が大きくなり、流量制御性が不十分となる。
 第二の発明では、平均摺動率を3%以上20%以下として、プレートの摺動距離を必要最小限に抑えることで、プレートの損耗度を低減させることができる。また平均摺動率を小さくすることで、摺動回数も少なくすることができるので、よりプレートの損耗度が低減する。
 また、第二の発明に係るスライディングノズル装置の制御方法では、前記プレートの摺動回数を60分当たり10回以上60回以下とすることを好適とする。
 第二の発明では、プレートの摺動回数を60分当たり10回以上60回以下、より好ましくは10回以上30回以下とし、プレートの摺動量を必要最小限に抑えることで、プレートの損耗度の低減を図るものである。プレートの摺動回数が60分当たり60回を超えた場合には、プレートの損耗度が大きくなり、プレートの寿命が短くなる。一方、プレートの摺動回数が60分当たり10回未満の場合には、タンディッシュの重量変動幅が大きくなり、流量制御性が不十分となる。
 また、第一及び第二の発明に係るスライディングノズル装置の制御方法では、前記プレートのストローク長が該プレートに形成されたノズル孔径の1.5倍以上2倍未満であることを好適とする。
 プレートのストローク長がノズル孔径の1.5倍未満の場合には、プレートの損耗代が不十分となり、寿命が短くなる。一方、2倍以上になると、寿命の差はほとんど無くなるが、プレートの全長が長くなってしまう。
 ここで、プレートのストローク長とは、当該プレートが使用されるスライディングノズル装置において、当該プレートのノズル孔中心と当該プレートと接する相手プレートのノズル孔中心との間の距離が最大となる位置における、当該プレートのノズル孔中心と、相手プレートのノズル孔中心を当該プレート上に仮想した仮想点との間の距離をいう。図2は、プレートが使用されるスライディングノズル装置において、ノズル孔間の距離が最大の位置を示しており、上プレートのストローク長は、上プレートのノズル孔中心Aと、下プレートのノズル孔中心に対応する上プレートの仮想点Bとの間の距離Sとなる。
 また、第一及び第二の発明に係るスライディングノズル装置の制御方法において使用されるプレートは、ストローク長がノズル孔径の1.5倍以上2倍未満であることを好適とする。
 本発明に係るスライディングノズル装置の制御方法では、プレートの平均積算摺動率が管理幅を外れた場合には、プレートの摺動率を予め設定した設定範囲で変更することにより、操業条件が変更になっても、スライディングノズル装置の摺動状態を自動的に最適化することが可能である。その結果、プレートの損傷度が低減し、プレートの耐用性を向上させることができる。さらにプレートを小型化することができる。
 また、本発明に係るスライディングノズル装置の制御方法では、平均摺動率を3%以上20%以下とすることにより、プレートの損耗度が低減され、寿命が大幅に向上する。さらに、本発明に係るスライディングノズル装置の制御方法及びプレートにおいて、プレートのストローク長をノズル孔径の1.5倍以上2倍未満とすることで、プレートのサイズを小さくすることが可能となる。
本発明の第一及び第二の実施例に係る制御方法を適用するスライディングノズル装置の構成を示した模式図である。 同スライディングノズル装置のプレートの側断面図である。 本発明の第一の実施例に係るスライディングノズル装置の制御方法を説明するための制御フローチャートである。 タンディッシュ内溶鋼重量と基準設定値との偏差の時刻歴変化を示した説明図である。 プレートの寿命とプレートの平均積算摺動率との関係を示したグラフである。 プレートの寿命とプレートの平均摺動率との関係を示したグラフである。 プレートの寿命とストローク長/ノズル孔径との関係を示したグラフである。 プレートの寿命と平均摺動率との関係を示したグラフである。 プレートの寿命とストローク長/ノズル孔径との関係を示したグラフである。 (a)は、プレートのエッジ溶損を示した該プレートの側断面図であり、(b)は、プレートのストローク損傷を示した該プレートの側断面図である。
符号の説明
10:スライディングノズル装置、11:取鍋、12:タンディッシュ、13:プレート(スライディングノズル用プレート)、13u:上プレート、13d:下プレート、14u、14d:ノズル孔、15:上ノズル、16:下ノズル、17:スライド金枠、18:固定金枠、19:開閉金枠、20:油圧シリンダ、20a:ロッド、21:油圧ユニット、22:制御装置、23:ロードセル
 続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。以下では、スライディングノズル用プレートが上プレート(固定プレート)と下プレート(摺動プレート)の2枚からなる場合について説明するが、上プレート(上部固定プレート)、中プレート(摺動プレート)、下プレート(下部固定プレート)の3枚からなる場合も基本的に同様である。
[スライディングノズル装置の構成]
 図1に、本発明の第一及び第二の実施例に係る制御方法を適用するスライディングノズル装置10の構成を示す。
スライディングノズル装置10は、プレート13(スライディングノズル用プレート)と、プレート13を摺動させる摺動手段とから構成される。
プレート13は、上プレート13uと下プレート13dとからなり、それぞれノズル孔14u、14dが形成されている。上プレート13uは、固定金枠18を介して取鍋11の底面に固定され、ノズル孔14uには上ノズル15が接続されている。一方、下プレート13dは、固定金枠18に対して開閉可能に設けられた開閉金枠19の内側に配置されたスライド金枠17上に固定され、上プレート13uの下面に沿って摺動する。また、下プレート13dのノズル孔14dには下ノズル16が接続されている。
 固定金枠18は、スライド金枠17の摺動方向に延在し、延在方向の一端には油圧シリンダ20が設置されている。そして、スライド金枠17の一端に油圧シリンダ20のロッド20a先端部が接続されている。
 取鍋11の直下に配置されたタンディッシュ12の底面には、タンディッシュ12内の溶鋼重量を測定するためのロードセル23が設置されている。ロードセル23の出力は制御装置22に入力され、制御装置22では、ロードセル23の出力値に応じた制御信号を油圧ユニット21に出力する。油圧ユニット21は、制御信号に従って油圧シリンダ20を作動させ、スライド金枠17を摺動させる。
[本発明の第一の実施例に係るスライディングノズル装置の制御方法]
 続いて、本発明の第一の実施例に係るスライディングノズル装置の制御方法について、図3の制御フローチャートを利用して説明する。
(1)タンディッシュ12の底面に設置されたロードセル23の出力信号を制御装置22に取込む(S1)。
(2)制御装置22は、従来のスライディングノズル装置の自動制御を行う装置であって、ロードセル23の出力信号と基準設定値との間の偏差に基づいて油圧シリンダ20の制御力を算出する。そして、油圧ユニット21に制御信号を出力し、油圧ユニット21は、制御信号に基づいて油圧シリンダ20を駆動して下プレート13dを摺動させ、ノズル孔の開閉度の制御を行う(S2)。開閉度の制御は、特許文献1等で開示された方法と同様の方法、つまり表1に示すように予め溶鋼の基準設定値と溶鋼重量の変化率の幅を設定し、それぞれの基準設定内で制御信号の種類が決まる。また制御信号の出力周期は5秒と設定されている。
Figure JPOXMLDOC01-appb-T000001
 表1において、Kは溶鋼重量の変化率(kg/5sec)、Aは定数である。また、「閉小」は、ノズル孔の開口面積が小さくなる方向に、摺動プレートを小さく摺動させるためのパルス信号、「閉大」は、ノズル孔の開口面積が小さくなる方向に、摺動プレートを大きく摺動させるためのパルス信号であり、「開小」は、ノズル孔の開口面積が大きくなる方向に、摺動プレートを小さく摺動させるためのパルス信号、「開大」は、ノズル孔の開口面積が大きくなる方向に、摺動プレートを大きく摺動させるためのパルス信号である。因みに、プレートの摺動距離を5mmと10mm、ノズル孔径を85mmとすると、「閉小」及び「開小」の摺動率は6%、「閉大」及び「開大」の摺動率は12%となる。なお、「保持」では、摺動プレートを摺動させないようにする。
(3)表1に示された制御信号の出力後、制御の最適化のため、プレートの摺動距離に関する制御定数の調整が制御装置22によって以下の手順で実施される。
先ず最初に、プレートの平均積算摺動率(%/分)を算出する(S3)。
 プレートの平均積算摺動率(%/分)は、所定時間におけるプレートの積算摺動率(%)とプレート摺動回数(回)とから算出される。本実施例においては、プレート積算摺動率(%)は、最初に設定したプレートを摺動するための制御信号の種類と発信回数とから計算する。例えば表1において、過去10分間で、開大(12%)が2回で、閉大(12%)が1回、閉小(6%)が1回、保持が2回の場合には、10分間の積算摺動率は42%となる。またこの間におけるプレートを摺動させるための制御信号の発信回数は4回であるから、10分間のプレートの平均積算摺動率は10.5%/分となる。
 なお、プレートを摺動させるための制御信号は、プレートが使用される前に面圧を掛けた状態で各制御信号(パルス信号)とプレートの摺動距離を実測しておくことで、プレートの摺動率とすることができる。あるいは油圧シリンダ等の駆動装置に位置センサーを設けてその計測結果をプレートの摺動距離としても良い。さらに実際のプレートの摺動距離を計測しても良い。
 このプレートの平均積算摺動率(%/分)を算出する時間は、算出時(制御信号の出力時)を起点として最低5分間以上遡った時間とする。5分間より少ないと平均積算摺動率(%/分)の精度が低下する。平均積算摺動率(%/分)を算出する時間の上限は特に無く、例えば、取鍋での注入開始から終了までの間の積算時間とすることができる。この場合には、注入開始直後に制御をスタートしてから継続してプレートが制御信号によって摺動した距離と摺動回数をカウントし、制御信号の出力周期(例えば5秒)の度に注入開始直後からの積算データに対する平均積算摺動率を計算することになる。また、制御信号の出力時の起点として遡って5分間以上60分までの任意の特定の時間を決めてもよい。
(4)プレートの平均積算摺動率が管理幅である0.5(%/分)以上18(%/分)以下であるか判断される(S4)。
(5)平均積算摺動率が0.5(%/分)未満の場合には、プレートの摺動距離が大きくなるようにプレート摺動距離に関する制御定数を変更し、平均積算摺動率が18(%/分)を超える場合には、プレートの摺動距離が小さくなるようにプレート摺動距離に関する制御定数を変更する(S6)。平均積算摺動率が0.5(%/分)未満の場合には、タンディッシュ内の溶鋼重量の管理精度が低下し、平均積算摺動率が18(%/分)を超える場合にはプレートの寿命が低下する。
 ただし、プレートの摺動率は、3%以上20%以下の範囲となるように設定することがより好ましい。プレートの摺動率が3%未満ではタンディッシュ内の溶鋼重量の管理精度が低下し、プレートの摺動率が20%を超える場合にはプレートの寿命が低下する。なお、プレートの摺動率を設定する際、複数の制御信号がある場合には、その平均値とすることができる。例えば表1においては、制御信号としてプレートの摺動率が6%と12%の場合があり、この場合の平均摺動率は9%となる。
 また、プレートの摺動率の他に、プレートの摺動速度、あるいは制御信号の出力周期についても同様に所定の管理幅を設定して制御定数を可変とする制御を行うことで、より本実施例の制御方法の精度を向上することができる。
(6)プレートの平均積算摺動率が管理幅の範囲内にある場合は、鋳込み終了かどうかの判定を行う(S5)。
(7)鋳込みが未だ終了していない場合は、ステップS1に戻り、上記(1)以降の手続を実行する。一方、鋳込みが終了している場合は、スライディングノズル装置10を停止する。
 また、本実施例の制御方法において、プレートの平均積算摺動率(%/分)の管理に加えて、タンディッシュ内溶鋼重量の周期(分)、及び/又はタンディッシュ内溶鋼重量の変曲点数(回/分)の管理を行うことでより流量制御の精度を高めることができる。
 図4は、タンディッシュ内溶鋼重量と基準設定値との偏差の時刻歴変化を示したものである。図1のスライディングノズル装置において、図3のフローで示す制御方法で制御を行った結果を示している。本制御方法の適用前には、プレートの平均積算摺動率が20%/分と本実施例の範囲外であったが、プレート摺動距離に関する制御定数を変更し、プレートの摺動率を12%と6%に変更することで(表1参照)、プレートの平均積算摺動率が9%/分となった。即ち、下プレートの摺動距離が小さくなり、しかも摺動回数が低下し、プレートの寿命が延びた。また、図4において、制御ON時から重量偏差の変動周期が長くなっている。
 図5には、プレートの寿命とプレートの平均積算摺動率との関係を示す。このプレートの平均積算摺動率が18(%/分)以下の場合にはプレートの寿命が長くなり、さらに平均積算摺動率(%/分)が12(%/分)以下の場合、寿命がより長くなることがわかる。平均積算摺動率が18(%/分)を超える場合には、プレートのエッジ溶損、やストローク損傷が大きくなり寿命が短くなる。
 図6には、プレートの寿命とプレートの平均摺動率との関係を示す。この試験においては、平均積算摺動率が18%以下の条件で実施した。このプレートの平均摺動率が20%以下の場合にはプレートの寿命が長くなり、さらに平均摺動率が10%以下の場合、寿命がより長くなることがわかる。平均摺動率が20%を超える場合には、プレートのエッジ溶損、やストローク損傷が大きくなり寿命が短くなる。
 図7には、プレートの寿命とストローク長/ノズル孔径との関係を示す。図7では、図1及び図3で示した制御方法において、スライディングノズル装置の設定変更によりプレートのストローク長のみを変えて試験を行った。各ストローク長について3個のプレートを使用して試験を行い、プレート寿命の平均値で評価した。試験の結果、ストローク長がノズル孔径の1.5倍未満になると、プレートの寿命が急激に低下するが、ストローク長が2倍以上になってもプレートの寿命に大きな変化は無いことがわかった。
 なお、図5~図7に関する試験において、使用したプレートは、長さ600mm、幅260mm、厚さ50mm、ノズル孔径85mmである。プレートは、Al含有率80%以上のアルミナカーボン材質でタールを含浸したタイプを使用した。試験時の面圧は100kN、鋳造時間は1チャージが45~55分、取鍋容量は300tonであった。
 摺動回数と摺動距離(mm)は、作業員がスライディングノズル装置のそばに居て計測した。平均摺動率は、平均摺動率(%)=[(プレートの60分間の合計摺動距離/60分間の摺動回数)/使用前のプレートのノズル孔径×100]の計算式にて算出した。また、摺動距離と摺動回数は、同じ取鍋で60分間の摺動距離と摺動回数を計測した。例えば、ある取鍋で1チャージが45分で終了した場合には、同じ取鍋で次のチャージで15分間計測し合計60分間の摺動距離と摺動回数を計測した。なお、摺動回数及び摺動距離には、摺動開始時にプレートのノズル孔を所定の開度にするためのプレートの摺動、鋳造終了時及び緊急時に溶鋼の排出を停止するためのプレートの摺動は除外している。また、図5と図6の試験では、プレートの摺動速度、プレートの摺動距離、プレートの位置が保持される不感帯の幅、出力周期等を変化させて行った。
[本発明の第二の実施例に係るスライディングノズル装置の制御方法]
 続いて、本発明の第二の実施例に係るスライディングノズル装置の制御方法について説明する。
 ノズル孔14u、14dの内径をDとすると、プレート13の平均摺動率が20%のときのプレート13の摺動距離は0.2Dとなり、プレート13の平均摺動率が3%のときのプレート13の摺動距離は0.03Dとなる。下プレート13dは、制御装置22から出力されるパルスによって制御されるので、下プレート13dを大パルスと小パルスの2種類のパルスで制御する場合、大パルスによる摺動距離を0.2D以下とし、小パルスによる摺動距離を0.03D以上とすれば、プレート13の平均摺動率は、理論的に3%以上20%以下となる。複数のパルスを使用する場合も同様である。即ち、最大パルスによる摺動距離を0.2D以下とし、最小パルスによる摺動距離を0.03D以上とすればよい。
 次に、平均摺動率をパラメータとして、スライディングノズル装置10の制御試験を行ったので、その結果について説明する。
 図8は、プレートの寿命と平均摺動率の関係を示したグラフである。グラフの縦軸のプレート寿命は、使用可能であったチャージ回数を示し、使用したプレート表面のエッジ溶損及びストローク損傷を作業者が目視観察し、再使用の可否を判定した。
 本試験では、長さ600mm、幅260mm、厚さ50mm、ノズル孔径85mmのプレートを使用した。プレートはAl含有率80%以上のアルミナカーボン材質でタールを含浸したタイプを使用した。また、スライディングノズル装置10のプレート摺動手段のストロークは160mm、プレート13のストローク長Sは160mmである(図2参照)。なお、試験時の面圧は100kN、鋳造時間は1チャージが45~55分、取鍋容量は300tonであった。
 また、本試験では、特開昭62-158556号公報に記載されているスライディングノズル装置の制御方法を用いて、プレート13の摺動回数の制御も併せて行った。
 特開昭62-158556号公報に記載されているスライディングノズル装置の制御方法では、ロードセル23による測定値が基準設定値近傍に設けられた不感帯内にあるとき、又は測定値が不感帯外にあるが、基準設定値との偏差が所定値内であり且つ測定値が基準設定値に近づいているときは、プレートの位置を保持するものである。
 本試験では、プレートの摺動速度の設定、プレートの摺動距離の設定、及びプレートの位置が保持される不感帯の幅を調節することにより、プレートの摺動回数を制御した。ただし、タンディッシュ内の溶鋼重量の管理幅は±1質量%以内とした。
 また、プレートの摺動距離については、大と小の2つの移動距離を設定した。プレートが同じ方向に2度以上移動する場合には、2以上の摺動回数としてカウントした。摺動距離は油圧システムにおいて電磁弁を励磁する時間と油量で設定した。
 摺動回数と摺動距離(mm)は、前述した第一の実施例に係るスライディングノズル装置の制御方法と同様の条件下で計測し、平均摺動率は、前述の計算式にて算出した。
 図8では、摺動回数を10回ごとのグループに分けて、それぞれの平均摺動率におけるプレートの寿命をプロットした。図8より、平均摺動率が減少するにつれてプレートの寿命が増加することがわかる。具体的には、平均摺動率が20%以下になると、プレートの寿命が大幅に伸びる一方、平均摺動率が20%を超えると、プレートの寿命が極端に低下することがわかる。また、摺動回数が少ないほうがプレートの寿命が長く、特に、摺動回数が10~30回の場合が最もプレートの寿命が長い。摺動回数が60回を超えると、平均摺動率を低くしてもプレートの寿命は7回以下となっている。
 なお、平均摺動率が3%を下回った場合又は摺動回数が10回を下回った場合には、タンディッシュ内の溶鋼重量の管理幅が±3%を超え、流量制御性がやや低下した。
 次に、プレートの寿命とストローク長/ノズル孔径との関係について図9に示す。プレートは、図8で使用したプレートにおいてスライディングノズル装置の設定変更によりストローク長のみを変えて使用した。また、摺動回数が21~30回及び平均摺動率が10~15%の範囲内の条件以外の試験条件は、前記図8と同様の方法で行った結果である。各ストローク長において3個のプレートを使用して試験を行い、プレート寿命の平均値で評価した。
 試験の結果、ストローク長がノズル孔径の1.5倍未満になると、プレートの寿命が急激に低下するが、ストローク長が2倍以上になってもプレートの寿命に大きな変化は無いことがわかった。
 なお、モールドの湯面変動は鋼の品質に悪影響を与えるので、タンディッシュからモールドへの溶鋼流量の制御は高精度で行われている。このため、取鍋からタンディッシュへの溶鋼流量の制御において、プレートの摺動回数を減少させることにより、タンディッシュの溶鋼量の変動が多少大きくなっても、その変動は、タンディッシュからモールドへの溶鋼流量制御により吸収することができる。具体的には、タンディッシュ内の溶鋼重量の管理幅は±3質量%の範囲が好ましく、より好ましくは±1質量%の範囲であれば、タンディッシュの湯面変動に与える影響が小さく、製品となる鋼の品質に悪影響を与えることが無い。
 以上、本発明の実施例について説明してきたが、本発明は何ら上記した実施例に記載の構成に限定されるものではなく、請求の範囲に記載されている事項の範囲内で考えられるその他の実施例や変形例も含むものである。
 本発明は、取鍋からタンディッシュへ注入される溶鋼流量の制御を行うスライディングノズル装置に利用することができる。その際、本発明によれば、操業条件が変更になっても、スライディングノズル装置の摺動状態を自動的に最適化することが可能である。また、プレートの損耗度が低減され、寿命が大幅に向上する。

Claims (7)

  1.  連続鋳造において取鍋からタンディッシュへ排出される溶鋼流量を制御するために、前記タンディッシュ内の溶鋼重量を測定し、該測定値と基準設定値との偏差を算出し、該偏差及び/又は前記タンディッシュ内の溶鋼重量の変化率からプレートの摺動距離を制御する制御信号を所定の周期で出力するスライディングノズル装置の制御方法において、
     前記プレートの平均積算摺動率(%/分)を算出し、該プレートの平均積算摺動率(%/分)が予め設定した管理幅を外れた場合には、前記プレートの摺動率を予め設定した設定範囲で変更することを特徴とするスライディングノズル装置の制御方法。
  2.  請求項1記載のスライディングノズル装置の制御方法において、前記プレートの平均積算摺動率に関する前記管理幅が0.5(%/分)以上18(%/分)以下であるスライディングノズル装置の制御方法。
  3.  請求項1記載のスライディングノズル装置の制御方法において、前記プレートの摺動率に関する前記設定範囲が3%以上20%以下であるスライディングノズル装置の制御方法。
  4.  取鍋で使用されるスライディングノズル装置の制御方法であって、
    前記スライディングノズル装置を構成するプレートの平均摺動率を3%以上20%以下とすることを特徴とするスライディングノズル装置の制御方法。
  5.  請求項4記載のスライディングノズル装置の制御方法において、前記プレートの摺動回数が60分当たり10回以上60回以下であるスライディングノズル装置の制御方法。
  6.  請求項1及び4のいずれか1項に記載のスライディングノズル装置の制御方法において、前記プレートのストローク長が該プレートに形成されたノズル孔径の1.5倍以上2倍未満であるスライディングノズル装置の制御方法。
  7.  請求項1及び4のいずれか1項に記載のスライディングノズル装置の制御方法において使用されるプレートであって、
     ストローク長がノズル孔径の1.5倍以上2倍未満であるプレート。
PCT/JP2009/056341 2008-03-27 2009-03-27 スライディングノズル装置の制御方法及びそれに使用されるプレート WO2009119824A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2718307A CA2718307A1 (en) 2008-03-27 2009-03-27 Method of controlling sliding nozzle device and plate used therefor
EP09724351A EP2272604A1 (en) 2008-03-27 2009-03-27 Method of controlling sliding nozzle device and plate used therefor
US12/934,469 US20110062193A1 (en) 2008-03-27 2009-03-27 Method of controlling sliding nozzle device and plate used therefor
JP2010505856A JP5433566B2 (ja) 2008-03-27 2009-03-27 スライディングノズル装置の制御方法及びそれに使用されるプレート
AU2009229793A AU2009229793B2 (en) 2008-03-27 2009-03-27 Method of controlling sliding nozzle device and plate used therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008084183 2008-03-27
JP2008-084183 2008-03-27
JP2008092535 2008-03-31
JP2008-092535 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009119824A1 true WO2009119824A1 (ja) 2009-10-01

Family

ID=41114009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056341 WO2009119824A1 (ja) 2008-03-27 2009-03-27 スライディングノズル装置の制御方法及びそれに使用されるプレート

Country Status (6)

Country Link
US (1) US20110062193A1 (ja)
EP (1) EP2272604A1 (ja)
JP (1) JP5433566B2 (ja)
AU (1) AU2009229793B2 (ja)
CA (1) CA2718307A1 (ja)
WO (1) WO2009119824A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000585A (ja) * 2012-06-19 2014-01-09 Kobe Steel Ltd 取鍋ノズルの使用方法
KR101974335B1 (ko) * 2017-11-10 2019-09-05 주식회사 포스코 노즐 주입구 지금 제거 장치 및 이를 이용하는 노즐 주입구 지금 제거방법
JP2020157359A (ja) * 2019-03-27 2020-10-01 黒崎播磨株式会社 開閉用装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8414826B2 (en) 2007-12-28 2013-04-09 Krosaki Harima Corporation Tundish nozzle exchanging device, and tundish nozzle for use in the device
CA2722969C (en) * 2008-05-16 2014-02-18 Krosaki Harima Corporation Sliding nozzle device
CN103506592B (zh) * 2012-06-29 2015-08-26 宝山钢铁股份有限公司 一种连铸浇钢控制方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158556A (ja) 1985-12-28 1987-07-14 Kurosaki Refract Co Ltd 連続鋳造用容器のスライデイングノズル装置の制御方法
JPS62158557A (ja) 1985-12-28 1987-07-14 Kurosaki Refract Co Ltd 連続鋳造用容器のスライデイングノズル装置の制御方法
JPH11138243A (ja) 1997-10-31 1999-05-25 Nkk Corp スライディングノズル用プレート
JP2003164951A (ja) 2001-11-27 2003-06-10 Nippon Steel Corp 連続鋳造におけるタンディッシュ内溶鋼の重量制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182664A (ja) * 1974-12-27 1976-07-20 Kurosaki Refractories Co
JPS603952A (ja) * 1983-06-20 1985-01-10 Sumitomo Metal Ind Ltd 溶融金属の注入方法
JPH0957430A (ja) * 1995-08-24 1997-03-04 Kawasaki Steel Corp 面圧負荷体を有するスライディングノズル装置
JP4456363B2 (ja) * 2003-12-16 2010-04-28 東京窯業株式会社 スライディングノズル用プレート

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158556A (ja) 1985-12-28 1987-07-14 Kurosaki Refract Co Ltd 連続鋳造用容器のスライデイングノズル装置の制御方法
JPS62158557A (ja) 1985-12-28 1987-07-14 Kurosaki Refract Co Ltd 連続鋳造用容器のスライデイングノズル装置の制御方法
JPH11138243A (ja) 1997-10-31 1999-05-25 Nkk Corp スライディングノズル用プレート
JP2003164951A (ja) 2001-11-27 2003-06-10 Nippon Steel Corp 連続鋳造におけるタンディッシュ内溶鋼の重量制御方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000585A (ja) * 2012-06-19 2014-01-09 Kobe Steel Ltd 取鍋ノズルの使用方法
KR101974335B1 (ko) * 2017-11-10 2019-09-05 주식회사 포스코 노즐 주입구 지금 제거 장치 및 이를 이용하는 노즐 주입구 지금 제거방법
JP2020157359A (ja) * 2019-03-27 2020-10-01 黒崎播磨株式会社 開閉用装置
WO2020196270A1 (ja) * 2019-03-27 2020-10-01 黒崎播磨株式会社 開閉用装置
JP7208845B2 (ja) 2019-03-27 2023-01-19 黒崎播磨株式会社 開閉用装置
US11938534B2 (en) 2019-03-27 2024-03-26 Krosakiharima Corporation Device for opening/closing

Also Published As

Publication number Publication date
EP2272604A1 (en) 2011-01-12
JP5433566B2 (ja) 2014-03-05
JPWO2009119824A1 (ja) 2011-07-28
US20110062193A1 (en) 2011-03-17
AU2009229793A1 (en) 2009-10-01
AU2009229793B2 (en) 2012-07-05
CA2718307A1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5433566B2 (ja) スライディングノズル装置の制御方法及びそれに使用されるプレート
KR101314755B1 (ko) 자동 주탕기의 제어 방법 및 그 제어 시스템
US9460248B2 (en) Method for predicting degree of contamination of molten steel during ladle exchange
CN1200788C (zh) 高速连铸设备的运行方法及其实施***
JP3031541B2 (ja) 連続鋳造機のタンディッシュノズル交換装置
EP0214797B1 (en) Method for controlling early casting stage in continuous casting process
KR100797992B1 (ko) 연주 공정의 턴디쉬내 용강 중량 자동 제어 방법
JPH0985407A (ja) 連続鋳造機におけるモールド内溶鋼レベル制御方法
KR102133091B1 (ko) 래들의 슬라이딩 게이트 제어 장치 및 그 방법
KR100992333B1 (ko) 래들 롱 노즐의 침적깊이 검출방법
JPH11114658A (ja) 異鋼種の連続鋳造方法
JPH07110401B2 (ja) タンディッシュストッパーによる鋼の連続鋳造方法
KR100299272B1 (ko) 턴디쉬의 틸팅장치
KR101974335B1 (ko) 노즐 주입구 지금 제거 장치 및 이를 이용하는 노즐 주입구 지금 제거방법
KR101400047B1 (ko) 극저탄소강 주조 제어방법
JPS6224848A (ja) 連続鋳造機における鋳造末期の自動停止方法
JP5423434B2 (ja) 連続鋳造方法及び連続鋳造装置
KR101505158B1 (ko) 연속 주조 방법
JPH0333425B2 (ja)
KR101159613B1 (ko) 연속주조 주형의 테이퍼 판별 장치 및 방법
CN108746577B (zh) 一种用于防止开浇喷钢的装置及其方法
JP3610036B2 (ja) 取鍋注入口最小開度判定方法及び判定装置
JP2004276050A (ja) 連続鋳造のスタート方法
KR101052265B1 (ko) 턴디쉬노즐의 토출량 제어방법
WO2016166577A2 (en) Arrangement for simultaneously pouring first and second mould cavities and method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724351

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505856

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2718307

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009229793

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009229793

Country of ref document: AU

Date of ref document: 20090327

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 6837/CHENP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009724351

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12934469

Country of ref document: US