WO2009119205A1 - 圧電体膜を用いた振動ジャイロ - Google Patents

圧電体膜を用いた振動ジャイロ Download PDF

Info

Publication number
WO2009119205A1
WO2009119205A1 PCT/JP2009/052960 JP2009052960W WO2009119205A1 WO 2009119205 A1 WO2009119205 A1 WO 2009119205A1 JP 2009052960 W JP2009052960 W JP 2009052960W WO 2009119205 A1 WO2009119205 A1 WO 2009119205A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
electrode
ring
vibration
angle
Prior art date
Application number
PCT/JP2009/052960
Other languages
English (en)
French (fr)
Inventor
池田 隆志
宏 西田
治 寅屋敷
充彦 竹村
剛 藤村
荒木 隆太
孝文 森口
伸貴 手嶋
泰之 平田
Original Assignee
住友精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精密工業株式会社 filed Critical 住友精密工業株式会社
Priority to EP09724536.9A priority Critical patent/EP2267407A4/en
Priority to JP2010505458A priority patent/JP5524045B2/ja
Priority to US12/934,620 priority patent/US8601872B2/en
Publication of WO2009119205A1 publication Critical patent/WO2009119205A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/567Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
    • G01C19/5677Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators
    • G01C19/5684Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure

Definitions

  • the present invention relates to a vibration gyro using a piezoelectric film, and more specifically to a vibration gyro capable of measuring a change in angular velocity of three axes at the maximum.
  • Patent Document 3 One of the technical ideas is proposed (Patent Document 3).
  • the vibration gyro described in the above-mentioned Patent Document 4 can measure angular velocities with respect to a plurality of rotation axes, but employs a system that substantially measures a change in capacitance. As shown in FIG. 2 and FIG.
  • the vibration gyro has a complicated structure in which several electrodes are arranged at different locations from those on the vibrating body. That is, if the vibration gyro can measure the angular velocities with respect to a plurality of rotation axes with a simple structure that enables downsizing, the technical value of the vibration gyro is further increased.
  • the present invention greatly contributes to miniaturization and high performance of a vibrating gyroscope using a piezoelectric film capable of measuring angular velocity with respect to one or a plurality of rotating shafts by solving the above technical problem.
  • the inventors conducted intensive research on a structure that solves the above technical problems by causing the piezoelectric film to detect the secondary vibration formed by the excitation of the primary vibration and the Coriolis force. As a result, it has been found that the angular velocity with respect to not only a single rotation axis but also a plurality of rotation axes can be measured by devising the arrangement of various electrodes formed by the piezoelectric film and the structure for supporting the vibrating body.
  • the inventors have found that their arrangement can be achieved by a dry process that can satisfy high processing accuracy.
  • the present invention was created from such a viewpoint.
  • the “annular or polygonal vibration gyro” is simply referred to as “ring-shaped vibration gyro”.
  • One vibrating gyroscope of the present invention includes a ring-shaped vibrating body having a flat surface, a leg portion that flexibly supports the ring-shaped vibrating body and has a fixed end, a fixed potential electrode, and the above-described plane. And a plurality of electrodes sandwiching the piezoelectric film in the thickness direction by the upper metal film and the lower metal film.
  • the plurality of electrodes includes the following (1) and (2): (1) When N is a natural number of 2 or more, the vibrations of cosN ⁇ excite the primary vibration of the ring-shaped vibrating body described above, and they are arranged at an angle (360 / N) ° apart from each other in the circumferential direction.
  • each of the drive electrodes described above is in the above-described plane, and is a region from the outer peripheral edge of the ring-shaped vibrating body to the vicinity of the outer peripheral edge and / or the inner peripheral edge to the vicinity of the inner peripheral edge.
  • the detection electrodes are arranged on a second electrode arrangement region that is not in electrical contact with the first electrode arrangement region.
  • the piezoelectric element is formed as an electrode on the plane provided in the ring-shaped vibrating body and in the specific region, excitation of the primary vibration and secondary vibration are performed as a uniaxial angular velocity sensor. Can be detected.
  • the piezoelectric element is not formed on the side surface of the ring-shaped vibrating body, and the same plane as the plane (for example, the XY plane) on which the piezoelectric element on the ring-shaped vibrating body is disposed (hereinafter, referred to as the XY plane) Because the primary vibration is excited by the in-plane) and the movement of the ring-shaped vibrating body is controlled, the electrode and the ring-shaped vibrating body are processed with high precision using dry process technology. It becomes possible.
  • the vibration gyro detects angular velocity of one axis (for example, X axis) using a vibration mode (hereinafter also referred to as an out-of-plane vibration mode) out of the plane in which the piezoelectric element is disposed.
  • a vibration mode hereinafter also referred to as an out-of-plane vibration mode
  • a plurality of examples of cosN ⁇ vibration modes are described in, for example, the above-mentioned Patent Documents 4 to 6 or Japanese Patent Application No. 2007-209014, which is a patent application filed by the applicant of the present application.
  • “flexible” means “to the extent that the vibrating body can vibrate”.
  • Another vibrating gyroscope includes a ring-shaped vibrating body having a uniform plane, a leg portion that flexibly supports the ring-shaped vibrating body and has a fixed end, a fixed potential electrode, and the aforementioned And a plurality of electrodes sandwiching the piezoelectric film in the thickness direction by the upper metal film and the lower metal film.
  • the plurality of electrodes includes the following (1) and (2): (1) When N is a natural number of 2 or more, the vibrations of cosN ⁇ excite the primary vibration of the ring-shaped vibrating body described above, and they are arranged at an angle (360 / N) ° apart from each other in the circumferential direction.
  • a group of drive electrodes (2) When one of the drive electrodes described above is used as a reference drive electrode, the secondary vibration in the vibration mode of cos (N + 1) ⁇ that is generated when an angular velocity is applied to the ring-shaped vibrating body.
  • S 0, 1,..., N (hereinafter the same in this paragraph)
  • the detection electrode is provided.
  • each of the drive electrodes described above is in the above-described plane, and is a region from the outer peripheral edge of the ring-shaped vibrating body to the vicinity of the outer peripheral edge and / or the inner peripheral edge to the vicinity of the inner peripheral edge.
  • the detection electrodes are arranged on a second electrode arrangement region that is not in electrical contact with the first electrode arrangement region.
  • the piezoelectric element is formed as an electrode on the plane provided in the ring-shaped vibrating body and in the above specific region, the excitation of the primary vibration and the secondary vibration are performed as a uniaxial angular velocity sensor. Detection is possible. That is, in this vibrating gyroscope, the piezoelectric element is not formed on the side surface of the ring-shaped vibrating body, and the primary vibration is generated in the same plane as the plane (for example, the XY plane) on which the piezoelectric element on the ring-shaped vibrating body is arranged.
  • this vibration gyro has a great advantage in that the angular velocity of one axis (for example, the X axis) can be detected using an out-of-plane vibration mode.
  • Another vibrating gyroscope includes a ring-shaped vibrating body having a uniform plane, a leg portion that flexibly supports the ring-shaped vibrating body and has a fixed end, a fixed potential electrode, and the aforementioned And a plurality of electrodes sandwiching the piezoelectric film in the thickness direction by the upper metal film and the lower metal film.
  • the plurality of electrodes includes the following (1) and (2): (1) When N is a natural number of 3 or more, the vibrations of cosN ⁇ excite the primary vibration of the ring-shaped vibrating body described above, arranged at an angle separated from each other in the circumferential direction (360 / N) °.
  • a group of drive electrodes (2) Secondary of the vibration mode of cos (N ⁇ 1) ⁇ generated when one of the drive electrodes described above is used as a reference drive electrode and an angular velocity is applied to the ring-shaped vibrating body.
  • S 0, 1,..., N ⁇ 2 (hereinafter the same in this paragraph)
  • [ ⁇ 360 / (N ⁇ 1) ⁇ ⁇ S A group comprising electrodes arranged at an angle apart from the reference drive electrode and / or its reference drive electrode at an angle [ ⁇ 360 / (N ⁇ 1) ⁇ ⁇ ⁇ S + (1/2) ⁇ ] ° Detection electrodes.
  • each of the drive electrodes described above is in the above-described plane, and is a region from the outer peripheral edge of the ring-shaped vibrating body to the vicinity of the outer peripheral edge and / or the inner peripheral edge to the vicinity of the inner peripheral edge.
  • the detection electrodes are arranged on a second electrode arrangement region that is not in electrical contact with the first electrode arrangement region.
  • the piezoelectric element is formed as an electrode on the plane provided in the ring-shaped vibrating body and in the above specific region, the excitation of the primary vibration and the secondary vibration are performed as a uniaxial angular velocity sensor. Detection is possible. That is, in this vibrating gyroscope, the piezoelectric element is not formed on the side surface of the ring-shaped vibrating body, and the primary vibration is generated in the same plane as the plane (for example, the XY plane) on which the piezoelectric element on the ring-shaped vibrating body is arranged.
  • this vibration gyro has a great advantage in that the angular velocity of one axis (for example, the X axis) can be detected using an out-of-plane vibration mode.
  • Another vibrating gyroscope includes a ring-shaped vibrating body having a uniform plane, a leg portion that flexibly supports the ring-shaped vibrating body and has a fixed end, a fixed potential electrode, and the aforementioned And a plurality of electrodes sandwiching the piezoelectric film in the thickness direction by the upper metal film and the lower metal film.
  • the plurality of electrodes are the following (1) and (2): (1) When N is a natural number of 3 or more, the vibrations of cosN ⁇ excite the primary vibration of the ring-shaped vibrating body described above, which are arranged at an angle apart from each other in the circumferential direction (360 / N) °.
  • a group of drive electrodes (2) Secondary of the vibration mode of cos (N ⁇ 1) ⁇ generated when one of the drive electrodes described above is used as a reference drive electrode and an angular velocity is applied to the ring-shaped vibrating body.
  • S 0, 1,..., N ⁇ 2 (hereinafter the same in this paragraph)
  • each of the drive electrodes described above is in the above-described plane, and is a region from the outer peripheral edge of the ring-shaped vibrating body to the vicinity of the outer peripheral edge and / or the inner peripheral edge to the vicinity of the inner peripheral edge.
  • the detection electrodes are arranged on a second electrode arrangement region that is not in electrical contact with the first electrode arrangement region.
  • the piezoelectric element is formed as an electrode on the plane provided in the ring-shaped vibrating body and in the above specific region, the excitation of the primary vibration and the secondary vibration are performed as a uniaxial angular velocity sensor. Detection is possible. That is, in this vibrating gyroscope, the piezoelectric element is not formed on the side surface of the ring-shaped vibrating body, and the primary vibration is generated in the same plane as the plane (for example, the XY plane) on which the piezoelectric element on the ring-shaped vibrating body is arranged.
  • this vibration gyro has a great advantage in that the angular velocity of one axis (for example, the X axis) can be detected using an out-of-plane vibration mode.
  • Another vibrating gyroscope includes a ring-shaped vibrating body having a uniform plane, a leg portion that flexibly supports the ring-shaped vibrating body and has a fixed end, a fixed potential electrode, and the aforementioned And a plurality of electrodes sandwiching the piezoelectric film in the thickness direction by the upper metal film and the lower metal film.
  • the plurality of electrodes are the following (1) to (3), that is, (1) When N is a natural number of 2 or more, the vibrations of cosN ⁇ excite the primary vibration of the ring-shaped vibrating body described above, and they are arranged at an angle (360 / N) ° apart from each other in the circumferential direction.
  • a group of drive electrodes (2) When one of the drive electrodes described above is used as a reference drive electrode, the secondary vibration in the vibration mode of cos (N + 1) ⁇ that is generated when an angular velocity is applied to the ring-shaped vibrating body.
  • S 0, 1,..., N (hereinafter the same in this paragraph), the angle is [ ⁇ 360 / (N + 1) ⁇ ⁇ S] ° away from the reference drive electrode.
  • a group of first detection electrodes comprising electrodes arranged at an angle of [ ⁇ 360 / (N + 1) ⁇ ⁇ ⁇ S + (1/2) ⁇ ] ° from the arranged electrode and / or its reference drive electrode; (3) The secondary vibration of the vibration axis at an angle of ⁇ 90 / (N + 1) ⁇ ° with respect to the secondary vibration is detected, and [ ⁇ 360 / (N + 1) ⁇ ⁇ ⁇ S + ( ⁇ 1/4) ⁇ ]]] arranged at an angle [[360 / (N + 1) ⁇ * ⁇ S + (3/4) ⁇ ] [deg.] Away from the electrode arranged at an angle and / or its reference drive electrode And a group of second detection electrodes including electrodes.
  • each of the drive electrodes described above is in the above-described plane, and is a region from the outer peripheral edge of the ring-shaped vibrating body to the vicinity of the outer peripheral edge and / or the inner peripheral edge to the vicinity of the inner peripheral edge.
  • Each of the first detection electrodes and the second detection electrodes are not electrically in contact with the first electrode arrangement region. It arrange
  • the piezoelectric element is formed as an electrode on the plane provided in the ring-shaped vibrating body and in the specific region, excitation of the primary vibration and secondary vibration are performed as a biaxial angular velocity sensor. Can be detected. That is, in this vibrating gyroscope, the piezoelectric element is not formed on the side surface of the ring-shaped vibrating body, and the primary vibration is generated in the same plane as the plane (for example, the XY plane) on which the piezoelectric element on the ring-shaped vibrating body is arranged.
  • this vibration gyro has a great advantage in that it can detect angular velocities of two axes (for example, the X axis and the Y axis) using an out-of-plane vibration mode.
  • the detection electrode having the configuration (2) or (3) instead of the detection electrode having the configuration (2) or (3), the detection electrode having the following configuration (revision 2 or revision 3) Is employed as the first detection electrode or the second detection electrode, the same effect as the biaxial angular velocity sensor described above is exhibited.
  • the detection electrode having the configuration of (Revision 2 or Revision 3) is arranged on the first electrode arrangement region described above, and the two axes to be detected are X axis and Z axis, or Y axis and Z axis. It becomes an axis.
  • a detection electrode having the following configuration (4) is added as a third detection electrode to a plurality of electrodes in the above-described two-axis vibration gyro, a total of three axes, that is, two axes (for example, X).
  • the angular velocity can be detected using the in-plane vibration mode of one axis (for example, the Z axis). Is a big advantage.
  • the detection electrode having the configuration (4) is arranged on the first electrode arrangement region.
  • Another vibrating gyroscope includes a ring-shaped vibrating body having a uniform plane, a leg portion that flexibly supports the ring-shaped vibrating body and has a fixed end, a fixed potential electrode, and the aforementioned And a plurality of electrodes sandwiching the piezoelectric film in the thickness direction by the upper metal film and the lower metal film.
  • the plurality of electrodes are the following (1) to (3), that is, (1) When N is a natural number of 3 or more, the vibrations of cosN ⁇ excite the primary vibration of the ring-shaped vibrating body described above, arranged at an angle separated from each other in the circumferential direction (360 / N) °.
  • a group of drive electrodes (2) Secondary of the vibration mode of cos (N ⁇ 1) ⁇ generated when one of the drive electrodes described above is used as a reference drive electrode and an angular velocity is applied to the ring-shaped vibrating body.
  • S 0, 1,..., N ⁇ 2 (hereinafter the same in this paragraph)
  • [ ⁇ 360 / (N ⁇ 1) ⁇ ⁇ S A group comprising electrodes arranged at an angle apart from the reference drive electrode and / or its reference drive electrode at an angle [ ⁇ 360 / (N ⁇ 1) ⁇ ⁇ ⁇ S + (1/2) ⁇ ] °
  • a first detection electrode of (3) The secondary vibration of the vibration shaft at an angle ⁇ 90 / (N ⁇ 1) ⁇ ° away from the secondary vibration is detected, and [ ⁇ 360 / (N ⁇ 1) ⁇ ⁇ ⁇ S + (1/4) ⁇ ] ° apart from the electrode disposed at an angle and / or its reference drive electrode [ ⁇ 360 / (N ⁇ 1) ⁇ ⁇ ⁇ S + (3/4) ⁇ ] °
  • each of the drive electrodes described above is in the above-described plane, and is a region from the outer peripheral edge of the ring-shaped vibrating body to the vicinity of the outer peripheral edge and / or the inner peripheral edge to the vicinity of the inner peripheral edge.
  • region which is arrange
  • the piezoelectric element is formed as an electrode on the plane provided in the ring-shaped vibrating body and in the specific region, excitation of the primary vibration and secondary vibration are performed as a biaxial angular velocity sensor. Can be detected. That is, in this vibrating gyroscope, the piezoelectric element is not formed on the side surface of the ring-shaped vibrating body, and the primary vibration is generated in the same plane as the plane (for example, the XY plane) on which the piezoelectric element on the ring-shaped vibrating body is arranged.
  • this vibration gyro has a great advantage in that it can detect angular velocities of two axes (for example, the X axis and the Y axis) using an out-of-plane vibration mode.
  • the detection electrode having the configuration (2) or (3) instead of the detection electrode having the configuration (2) or (3), the detection electrode having the following configuration (revision 2 or revision 3) Is employed as the first detection electrode or the second detection electrode, the same effect as the biaxial angular velocity sensor described above is exhibited.
  • the detection electrode having the configuration of (Revision 2 or Revision 3) is arranged on the first electrode arrangement region described above, and the two axes to be detected are X axis and Z axis, or Y axis and Z axis. It becomes an axis.
  • a detection electrode having the following configuration (4) is added as a third detection electrode to a plurality of electrodes in the above-described two-axis vibration gyro, a total of three axes, that is, two axes (for example, X).
  • the angular velocity can be detected using the in-plane vibration mode of one axis (for example, the Z axis). Is a big advantage.
  • the detection electrode having the configuration (4) is arranged on the first electrode arrangement region.
  • monitor electrode having the configuration (5) is particularly reduced in size. This is a preferable aspect in that the arrangement of the other electrode group and / or the arrangement of the extraction electrode is facilitated in the limited planar area.
  • the linear gyroscope is primarily used as a uniaxial to triaxial angular velocity sensor. Vibration excitation and secondary vibration detection are possible. That is, in this vibrating gyroscope, the piezoelectric element is not formed on the side surface of the ring-shaped vibrating body, and the primary vibration is generated in the same plane as the plane (for example, the XY plane) on which the piezoelectric element on the ring-shaped vibrating body is arranged.
  • the vibration gyro can detect angular velocities of one to three axes using secondary vibration detection means including an out-of-plane vibration mode.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is sectional drawing which shows the process of the one part manufacturing process of the ring-shaped vibrating gyroscope in one embodiment of this invention. It is sectional drawing which shows the process of the one part manufacturing process of the ring-shaped vibrating gyroscope in one embodiment of this invention. It is sectional drawing which shows the process of the one part manufacturing process of the ring-shaped vibrating gyroscope in one embodiment of this invention. It is sectional drawing which shows the process of the one part manufacturing process of the ring-shaped vibrating gyroscope in one embodiment of this invention.
  • FIG. 2 of the structure which plays the central role of the ring-shaped vibrating gyroscope in other embodiment of this invention. It is a front view of the structure which plays the central role of the ring-shaped vibrating gyroscope in other embodiment of this invention.
  • FIG. 8 is a sectional view taken along line BB in FIG. It is a figure which illustrates notionally the primary vibration of the vibration mode of cos2 (theta) in one embodiment of this invention. It is a figure which illustrates notionally the secondary vibration of the vibration mode of in-plane cos2 (theta) in case angular velocity is added around the Z-axis in one Embodiment of this invention.
  • FIG. 1 is a front view of a structure that plays a central role in a ring-shaped vibrating gyroscope 100 that measures three-axis angular velocities in the present embodiment.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. For convenience of explanation, the X axis and the Y axis are shown in FIG.
  • the ring-shaped vibrating gyroscope 100 of this embodiment is roughly classified into three configurations.
  • the first configuration includes a silicon oxide film 20 on an upper plane (hereinafter referred to as an upper surface) of a ring-shaped vibrating body 11 formed from a silicon substrate 10, and a piezoelectric film 40 is further formed on the lower layer metal.
  • a plurality of electrodes 13 a to 13 h are formed by being sandwiched between the film 30 and the upper metal film 50.
  • the outer end portion or the inner end portion of the upper metal film 50 constituting the plurality of electrodes 13a to 13h is approximately from the outer peripheral edge or inner peripheral edge of the ring-shaped vibrating body 11 having a ring-shaped plane having a width of approximately 40 ⁇ m. It is formed inside 1 ⁇ m and its width is about 18 ⁇ m. Further, in the upper metal film 50, some of the electrodes are outside the line connecting the centers between both ends of the width of the ring-shaped plane that is the upper surface of the ring-shaped vibrating body 11 (hereinafter simply referred to as the center line). The other electrodes are formed inside the center line.
  • the primary vibration of the ring-shaped vibration gyro 100 is excited in the in-plane cos 2 ⁇ vibration mode shown in FIG. 9A.
  • the vibration mode of the secondary vibration of the present embodiment includes the X-axis cos 3 ⁇ out-of-plane vibration mode shown in FIG. 9D and the Y-axis cos 3 ⁇ out-of-plane vibration mode shown in FIG. 9E.
  • 9B is an in-plane vibration mode of cos 2 ⁇ of one axis (Z axis) shown in FIG. 9B. Therefore, the breakdown of the plurality of electrodes 13a to 13h is as follows. First, two drive electrodes 13a and 13a arranged at an angle of 180 ° in the circumferential direction are arranged.
  • the circumference from the drive electrode 13a is increased.
  • Two monitor electrodes 13h, 13h are arranged at angles that are 90 ° and 270 ° apart. Further, when an angular velocity around the X axis is given to the ring-shaped vibrating gyroscope 100 when the plane on which the piezoelectric element on the ring-shaped vibrating body is arranged, in other words, the paper surface in FIG.
  • the first detection electrodes 13b and 13c that detect secondary vibrations generated in the circumferential direction are circumferentially away from the reference electrode at angles of 0 °, 60 °, 120 °, 180 °, 240 °, and 300 °. Be placed.
  • the second detection electrodes 13d and 13e for detecting secondary vibration generated when an angular velocity around the Y axis is applied to the ring-shaped vibration gyro 100 are 30 ° and 90 ° in the circumferential direction from the reference electrode. They are arranged at angles separated by °, 150 °, 210 °, 270 ° and 330 °.
  • the ring-shaped vibrating gyroscope 100 has a Z-axis, that is, an axis perpendicular to the plane on which the ring-shaped vibrating gyroscope 100 shown in FIG. 1 is arranged (an axis in a direction perpendicular to the paper surface; Third detection electrodes 13f and 13g for detecting secondary vibration generated when an angular velocity around the axis) is given.
  • the lower metal film 30 and the upper metal film 50 have a thickness of 100 nm, and the piezoelectric film 40 has a thickness of 3 ⁇ m.
  • the thickness of the silicon substrate 10 is 100 ⁇ m.
  • the area where each electrode is arranged is classified into two.
  • One is each drive electrode arranged in the region from the outer peripheral edge of the upper surface of the ring-shaped vibrating body 11 to the vicinity of the outer peripheral edge and / or the region from the inner peripheral edge to the vicinity of the inner peripheral edge.
  • 13a and third detection electrodes 13f and 13g This is defined as a first electrode arrangement region.
  • the other is the first detection electrodes 13b and 13c and the second detection electrodes 13d and 13e arranged on the upper surface of the ring-shaped vibrating body 11 so as not to be in electrical contact with the first electrode arrangement region. is there. This is the second electrode arrangement region.
  • the second configuration is leg portions 15,..., 15 connected to a part of the ring-shaped vibrating body 11.
  • the leg portions 15,..., 15 are also formed from the silicon substrate 10. Further, on the leg portions 15,..., The above-described silicon oxide film 20, lower metal film 30, and piezoelectric film 40 that are continuous with those on the ring-shaped vibrating body 11 are formed on the leg portions 15. .. formed on the entire top surface of 15. Further, on the upper surface of the piezoelectric film 40, an upper metal film 50 which is the extraction electrodes 14,...
  • a plurality of extraction electrodes 14 are formed on the four leg portions 15,..., 15 out of the 16 leg portions 15,. These were created in order to secure a path for drawing from each electrode arranged in the region from the outer peripheral edge of the ring-shaped vibrating body 11 to the vicinity of the outer peripheral edge to the electrode pad 18 on the support column 19.
  • lead electrodes 14 and 14 are formed from both end portions of the second detection electrodes 13d and 13e in order to eliminate the bias of the electric signals from the second detection electrodes 13d and 13e. Even if the extraction electrodes 14 and 14 are formed only from one side of the respective second electrode detections 13d and 13e, the function as a vibrating gyroscope is not lost.
  • the third configuration is a support column 19 formed from the silicon substrate 10 connected to the above-described leg portions 15,.
  • the support column 19 is connected to a package portion of the ring-shaped vibrating gyroscope 100 (not shown) and serves as a fixed end.
  • the support column 19 includes electrode pads 18,. Further, as shown in FIG. 2, on the upper surface of the support column 19, except for the fixed potential electrode 16 that is a ground electrode, the above-described silicon oxide film 20 that is continuous with those on the leg portions 15,. A metal film 30 and a piezoelectric film 40 are formed.
  • the lower metal film 30 formed on the silicon oxide film 20 serves as the fixed potential electrode 16.
  • the above-described lead electrodes 14,..., 14 and the electrode pads 18 that are continuous with those on the leg portions 15,. ..., 18 are formed.
  • FIGS. 3A to 3F are cross-sectional views corresponding to a part of the range in FIG.
  • a silicon oxide film 20, a lower metal film 30, a piezoelectric film 40, and an upper metal film 50 are laminated on a silicon substrate 10.
  • Each of the aforementioned films is formed by a known film forming means.
  • the silicon oxide film 20 is a thermal oxide film by a known means.
  • the lower metal film 30, the piezoelectric film 40, and the upper metal film 50 are all formed by a known sputtering method.
  • membranes is not limited to the above-mentioned example, It can form also by another well-known means.
  • a part of the upper metal film 50 is etched.
  • dry etching is performed based on a pattern formed by a photolithography technique, thereby forming each electrode shown in FIG. 3B.
  • the dry etching of the upper metal film 50 is performed under known reactive ion etching (RIE) conditions using argon (Ar) or a mixed gas of argon (Ar) and oxygen (O 2 ).
  • RIE reactive ion etching
  • the piezoelectric film 40 is dry-etched based on the resist film patterned by the photolithography technique.
  • the dry etching of the piezoelectric film 40 of the present embodiment using argon (Ar) and a mixed gas of C 2 F 6 gas, or argon (Ar) and C 2 F 6 gas and CHF 3 gas mixed gas This is performed under known reactive ion etching (RIE) conditions.
  • RIE reactive ion etching
  • a part of the lower metal film 30 is etched.
  • dry etching is again performed using a resist film patterned by a photolithography technique so that the fixed potential electrode 16 using the lower metal film 30 is formed.
  • the fixed potential electrode 16 is used as a ground electrode.
  • the dry etching of the lower metal film 30 of the present embodiment is performed under known reactive ion etching (RIE) conditions using argon (Ar) or a mixed gas of argon (Ar) and oxygen (O 2 ).
  • RIE reactive ion etching
  • the thickness of the resist film is about 4 ⁇ m. Is formed.
  • the etching rate selectivity with respect to the etchant used for the silicon substrate 10 works favorably. 50, the performance of the piezoelectric film 40, and the lower metal film 30 are not substantially affected. That is, in this embodiment, since the ring-shaped vibrating body 11 is formed from a silicon substrate, a known silicon trench etching technique having a sufficiently high selectivity with respect to the resist film can be applied. Even if the resist film disappears, the upper metal film or piezoelectric film under the resist film has a sufficient selection ratio to serve as a mask for etching silicon.
  • the silicon oxide film 20 and the silicon substrate 10 are dry-etched using the resist film for etching the lower metal film 30 as described above.
  • the dry etching of the silicon oxide film 20 of the present embodiment was performed under known reactive ion etching (RIE) conditions using argon (Ar) or a mixed gas of argon (Ar) and oxygen (O 2 ).
  • RIE reactive ion etching
  • a known silicon trench etching technique is applied to the dry etching conditions of the silicon substrate 10 of the present embodiment.
  • the silicon substrate 10 is etched through.
  • a protective substrate for preventing the stage on which the silicon substrate 10 is placed from being exposed to plasma during penetration is attached to the lower layer of the silicon substrate 10 with grease having excellent heat conductivity. Done. Therefore, for example, in order to prevent the surface in the direction perpendicular to the thickness direction of the silicon substrate 10 after penetration, in other words, the etching side surface from being eroded, the dry etching technique described in JP-A-2002-158214 is employed. This is a preferred embodiment.
  • the vibrating gyroscope 100 As described above, after the central structure of the ring-shaped vibrating gyroscope 100 is formed by etching the silicon substrate 10 and each film laminated on the silicon substrate 10, the process of accommodating the package in a known means, and The ring-shaped vibrating gyroscope 100 is formed through the wiring process. Therefore, according to the vibrating gyroscope 100, the piezoelectric element is not formed on the side surface of the ring-shaped vibrating body 11, and only the piezoelectric element formed on the plane of the ring-shaped vibrating body 11 is used for in-plane primary vibration. Excitation and detection of up to three axes out-of-plane and in-plane secondary vibrations are possible. As a result, the vibrating gyroscope 100 can be manufactured using the dry process technology that can be mass-produced with high accuracy and low cost.
  • each electrode provided in the ring-shaped vibrating gyroscope 100 will be described.
  • the primary vibration of the in-plane cos 2 ⁇ vibration mode is excited. Since the fixed potential electrode 16 is grounded, the lower electrode film 30 formed continuously with the fixed potential electrode 16 is uniformly at 0V.
  • an AC voltage of 1V P-0 is applied to the two drive electrodes 13a and 13a.
  • the piezoelectric film 40 expands and contracts to excite primary vibration.
  • the piezoelectric film 40 since the upper metal film 50 is formed outside the center line on the upper surface of the ring-shaped vibrating body 11, the piezoelectric film 40 is not formed on the side surface of the ring-shaped vibrating body 11. The expansion and contraction motion can be converted into the primary vibration of the ring-shaped vibrating body 11.
  • the actual AC power supply 12 is applied to the drive electrode 13a via the electrode pad 18 connected to the conductive wire, but is omitted in this embodiment and other embodiments for convenience of explanation.
  • the monitor electrodes 13h and 13h shown in FIG. 1 detect the amplitude and resonance frequency of the primary vibration described above, and transmit a signal to a known feedback control circuit (not shown).
  • the feedback control circuit of the present embodiment controls the frequency of the alternating voltage applied to the drive electrodes 13a and 13a and the natural frequency of the ring-shaped vibrating body 11 to coincide with each other, and the ring-shaped vibrating body 11 has an amplitude. Control is performed using the signals of the monitor electrodes 13h and 13h so as to be a constant value. As a result, the ring-shaped vibrating body 11 maintains constant vibration.
  • the vibration of the primary vibration shown in FIG. 9A is caused by the Coriolis force.
  • the secondary vibration shown in FIG. 9B occurs with a new vibration axis inclined at 45 ° on both sides with respect to the axis.
  • This secondary vibration is detected by the two detection electrodes (third detection electrodes) 13f and 13f and the other two detection electrodes (third detection electrodes) 13g and 13g.
  • each of the detection electrodes 13f and 13g is disposed corresponding to the vibration axis of the in-plane secondary vibration.
  • the detection electrodes 13 f and 13 g described above are formed on the inner side of the center line on the upper surface of the ring-shaped vibrating body 11. Therefore, the positive / negative of the electrical signal of each detection electrode 13f, 13g produced by the in-plane secondary vibration excited by the angular velocity is reversed. As shown in FIG.
  • the detection signal has about twice the detection capability as compared with the case of either one of the detection electrodes.
  • This secondary vibration is detected by three detection electrodes (first detection electrodes) 13b, 13b, 13b and another three detection electrodes (first detection electrodes) 13c, 13c, 13c.
  • the detection electrodes 13b and 13c are arranged corresponding to the vibration axis of the secondary vibration in the cos 3 ⁇ mode of the out-of-plane.
  • the detection electrodes 13b and 13c described above are formed on the outer side or the inner side of the center line on the upper surface of the ring-shaped vibrating body 11, but the present invention is not limited to this.
  • each of the detection electrodes 13b and 13c described above is disposed so as to include a center line in which the distortion of the piezoelectric film is least likely to occur due to the in-plane primary vibration or the secondary vibration corresponding to the Z axis. It is one mode.
  • the arrangement of the detection electrodes 13b and 13c of the present embodiment reverses the sign of the electrical signals of the detection electrodes 13b and 13c generated by the out-of-plane secondary vibration excited by the angular velocity.
  • the difference between the electrical signals of the detection electrodes 13b and 13c is calculated in an arithmetic circuit which is a known difference circuit.
  • the detection signal has about twice the detection capability as compared with the case of either one of the detection electrodes.
  • the secondary vibration of the vibration mode of cos 3 ⁇ shown in FIG. 9E is generated.
  • the secondary vibration is a cos 3 ⁇ mode shown in FIG. 9D, which is another out-of-plane cos 3 ⁇ mode in which the angle of the vibration axis is 30 ° apart.
  • This secondary vibration is detected by the three detection electrodes (second detection electrodes) 13d, 13d, and 13d and the other three detection electrodes (second detection electrodes) 13e, 13e, and 13e.
  • the detection electrodes 13 d and 13 e are respectively arranged corresponding to the vibration axes of the out-of-plane secondary vibration.
  • each of the detection electrodes 13d and 13e described above is formed outside the center line on the upper surface of the ring-shaped vibrating body 11, but the present invention is not limited to this.
  • each of the detection electrodes 13d and 13e described above is disposed so as to include a center line in which the piezoelectric film is most unlikely to be distorted by the in-plane primary vibration or the secondary vibration corresponding to the Z axis. It is one mode.
  • the positive and negative of the electrical signals of the detection electrodes 13d and 13e generated by the out-of-plane secondary vibration excited by the angular velocity is reversed.
  • the difference between the electrical signals of the detection electrodes 13d and 13e is calculated in an arithmetic circuit which is a known difference circuit.
  • the detection signal has about twice the detection capability as compared with the case of either one of the detection electrodes.
  • the names of the first detection electrode to the third detection electrode are given to the detection electrodes that detect each of the three axes that are the targets for detecting the angular velocity.
  • the name of the detection electrode for the axis any one non-overlapping name among the first detection electrode to the third detection electrode may be given.
  • FIG. 4 is a front view of a structure that plays a central role in the ring-shaped vibrating gyroscope 200 obtained by modifying a part of the first embodiment.
  • the ring-shaped vibrating gyroscope 200 of the present embodiment has the same configuration as the ring-shaped vibrating gyroscope 100 of the first embodiment except for the upper metal film 50 in the first embodiment.
  • the manufacturing method is the same as that of the first embodiment except for a part.
  • the vibration mode of the primary vibration and the vibration mode of the secondary vibration in the present embodiment are the same vibration modes as those in the first embodiment. Therefore, the description which overlaps with 1st Embodiment is abbreviate
  • each detection electrode 13b, 13d, 13g is arranged one by one. Even with such an arrangement of the detection electrodes, the effect of the present invention is substantially achieved. That is, the presence of each of the detection electrodes 13b, 13d, and 13g allows detection of angular velocity using an out-of-plane vibration mode of three axes, that is, two axes (X axis and Y axis) and one axis (Z It is possible to detect the angular velocity using the in-plane vibration mode of the (axis). In the present embodiment, the difference circuit employed in the first embodiment is not necessary, so that the circuit can be simplified. On the other hand, since there is only one detection electrode 13b, 13d, 13g having the same electrode area as that of the first embodiment, the detection capability is inferior to that of the first embodiment.
  • each electrode is unevenly distributed, there is a leg portion 15 in which the extraction electrode 14 is not formed, but this embodiment is not limited to this.
  • the leg portion 15 where the extraction electrode 14 is not formed is eliminated, the same effect as that of the present embodiment is achieved.
  • the absence of the disordered leg portions 15 may hinder the uniform vibration of the ring-shaped vibrating body 11, a structure in which only the leg portions 15 located at positions allocated so as to be separated by a uniform angle are eliminated.
  • FIG. 5 is a front view of a structure that plays a central role in a ring-shaped vibrating gyroscope 300 obtained by modifying a part of the first embodiment.
  • the ring-shaped vibrating gyroscope 300 of the present embodiment has the same configuration as the ring-shaped vibrating gyroscope 100 of the first embodiment, except for the upper metal film 50 in the first embodiment.
  • the manufacturing method is the same as that of the first embodiment except for a part.
  • the vibration mode of the primary vibration and the vibration mode of the secondary vibration in the present embodiment are the same vibration modes as those in the first embodiment. Therefore, the description which overlaps with 1st Embodiment is abbreviate
  • each of the detection electrodes 13b, 13c, 13d, 13e, and 13g is arranged one by one. Further, as shown in FIG. 5, the first detection electrodes 13b and 13c extend to a range where the electrode area exceeds the center line. Even with such an arrangement of the detection electrodes, the effect of the present invention is substantially achieved.
  • each of the detection electrodes 13b, 13c, 13d, 13e, and 13g allows detection of angular velocity using a 3-axis, that is, 2-axis (X-axis and Y-axis) out-of-plane vibration mode, and Angular velocity can be detected using a single-axis (Z-axis) in-plane vibration mode.
  • the first detection electrodes 13b and 13c are arranged so as to include a center line that is most unlikely to cause distortion of the piezoelectric film due to primary vibration or secondary vibration that is an in-plane vibration mode. It is. Further, the first detection electrodes 13b and 13c are arranged in a symmetric shape with respect to the center line because in the in-plane vibration mode, the direction of distortion is reversed with respect to the center line. It is a more preferable embodiment.
  • the second electrode arrangement region in which the detection electrodes 13b, 13c, 13d, and 13e are arranged is defined as a region on the upper surface of the ring-shaped vibrating body 11 that is not in electrical contact with the first electrode arrangement region. Is done.
  • unit has increased compared with those of 1st Embodiment, the modification (2) of the above-mentioned 1st Embodiment and In comparison, the detection capability is improved.
  • they are arranged symmetrically with respect to the vibration axis.
  • the electrode area of only the 1st detection electrodes 13b and 13c is increased, it is not limited to this.
  • the drive capability or the detection capability is improved by increasing the area of the drive electrode, the area of the monitor electrode, or the area of another detection electrode.
  • each electrode is unevenly distributed, there is a leg portion 15 in which the extraction electrode 14 is not formed, but this embodiment is not limited to this.
  • the leg portion 15 where the extraction electrode 14 is not formed is eliminated, the same effect as that of the present embodiment is achieved.
  • the absence of the disordered leg portions 15 may hinder the uniform vibration of the ring-shaped vibrating body 11, a structure in which only the leg portions 15 located at positions allocated so as to be separated by a uniform angle are eliminated.
  • FIG. 6 is a cross-sectional view corresponding to FIG. 2 of a structure that plays a central role in a ring-shaped vibrating gyroscope 400 obtained by modifying a part of the first embodiment.
  • the piezoelectric film 40 is etched in accordance with a region where the upper metal film 50 is substantially formed. For this reason, the AC voltage applied to the upper metal film 50 is applied only vertically downward without being affected by the region where the lower metal film 30 is formed. Transmission is prevented.
  • the residual resist film on the upper metal film 50 or the metal film 50 itself is used as an etching mask, and then the dry etching is performed under the same conditions as in the first embodiment. By performing the etching, the above-described piezoelectric film 40 is formed. Further, as shown in FIG.
  • the piezoelectric film 40 is etched in an inclined shape (for example, an inclination angle is 75 °).
  • an inclination angle is 75 °.
  • the piezoelectric film 40 having a steep inclination as shown in FIG. 6 is not substantially visible in the plan view of the ring-shaped vibrating gyroscope 200 shown in FIG. Handled.
  • the aspect in which the piezoelectric film 40 disclosed in this embodiment is etched can be applied to at least all the embodiments of the present application.
  • the first detection electrodes 13b and 13c for measuring the X-axis angular velocity and the second detection electrode for measuring the angular velocity of the Y-axis are arranged only 13d and 13e on the ring-shaped vibrating body 11, a vibrating gyroscope that detects a biaxial angular velocity is manufactured. That is, by selecting the detection electrodes corresponding to the two axes among the first to third detection electrodes, it is possible to obtain a vibrating gyroscope that detects the angular velocity of the two axes. For example, it has already been described that the effect of the present invention can be substantially achieved by arranging only one first detection electrode (for example, 13b) among the first detection electrodes 13b and 13c. It is as follows.
  • the same idea as described above can be applied to the structure of a vibrating gyroscope that can detect the angular velocity of one axis.
  • a vibrating gyroscope that detects the angular velocity of one axis is manufactured.
  • the vibration gyro for detecting the uniaxial angular velocity also has a biaxial angular velocity by selecting a detection electrode corresponding to any one of the three axes (X axis, Y axis, Z axis).
  • a vibration gyro to be detected can be obtained.
  • the effect of the present invention can be substantially achieved by arranging only one first detection electrode (for example, 13b) among the first detection electrodes 13b and 13c. It is as follows.
  • FIG. 7 is a front view of a structure that plays a central role in a ring-shaped vibrating gyroscope 500 obtained by modifying a part of the first embodiment.
  • FIG. 8 is a cross-sectional view taken along the line BB of FIG.
  • a fixed end 60 is formed around the ring-shaped vibrating body 11 via a groove or a leg portion 17 as compared with the first embodiment.
  • the extraction electrode 14 and the electrode pad 18 starting from the drive electrodes 13a and 13a and the second detection electrodes 13d and 13e are formed. Further, since the lead electrode 14 on the leg portion 17 is formed, the lead electrode 14 and the electrode pad 18 on the leg portion 15 and the fixed end 19 are removed.
  • the ring-shaped vibrating gyroscope 500 according to the present embodiment has the same configuration as that of the first embodiment except for the points described above.
  • the manufacturing method is the same as that of the first embodiment except for a part.
  • the vibration mode of the primary vibration and the vibration mode of the secondary vibration in the present embodiment are the same vibration modes as those in the first embodiment. Therefore, the description which overlaps with 1st Embodiment is abbreviate
  • the AC power source connected to the drive electrodes 13a and 13a is not shown.
  • the fixed end 60 and the leg portion 17 that connects the fixed end 60 and the ring-shaped vibrating body 11 are formed, so that a plurality of lead electrodes are formed on the leg portion 15 inside the ring-shaped vibrating body 11. 14 need not be arranged. Therefore, the risk of a short circuit between the extraction electrodes due to defects in the manufacturing process is greatly reduced. As shown in FIG. 7, since the extraction electrode 14 is joined to the center of the width of each electrode, the bias of the electric signals from the drive electrodes 13a and 13a and the second detection electrodes 13d and 13e in the first embodiment is Does not occur. On the other hand, the formation of the fixed end 60 increases the size of the vibration gyro as compared with that of the first embodiment.
  • FIG. 10 is a front view of a structure that plays a central role in a ring-shaped vibrating gyroscope 600 that measures another three-axis angular velocity in the present embodiment.
  • the ring-shaped vibrating gyroscope 600 of this embodiment includes a drive electrode 13a, a monitor electrode 13h, the first detection electrodes 13b and 13c, the second detection electrodes 13d and 13e, and the third detection electrodes 13f and 13g in the first embodiment.
  • the arrangement is the same as that of the ring-shaped vibrating gyroscope 100 of the first embodiment except for the arrangement of some of the detection electrodes and the arrangement and number of the AC power supplies 12.
  • the manufacturing method is the same as that of the first embodiment. Therefore, the description which overlaps with 1st Embodiment is abbreviate
  • the vibration mode of the primary vibration of this embodiment is the in-plane cos 3 ⁇ vibration mode shown in FIG. 11A.
  • the vibration mode of the secondary vibration of the present embodiment includes the X-axis cos 2 ⁇ out-of-plane vibration mode illustrated in FIG. 11B and the Y-axis cos 2 ⁇ out-of-plane vibration illustrated in FIG. 11C.
  • FIG. 11D is a uniaxial (Z-axis) cos 3 ⁇ in-plane vibration mode shown in FIG. 11D.
  • the outer end portion of the upper metal film 50 constituting the plurality of electrodes 13a to 13h has a ring-shaped vibrating body 11 having a ring-shaped plane having a width of about 40 ⁇ m. It is formed about 1 ⁇ m inward from the outer peripheral edge, and its width is about 18 ⁇ m.
  • the upper metal film 50 is formed outside or inside the center line.
  • the primary vibration of the ring-shaped vibration gyro 600 is excited in the in-plane cos 3 ⁇ vibration mode.
  • the vibration mode of the secondary vibration of this embodiment is a vibration mode shown in FIGS. 11B to 11D. Therefore, the breakdown of the plurality of electrodes 13a to 13h is as follows. First, three drive electrodes 13a, 13a, 13a arranged at an angle of 120 ° in the circumferential direction are arranged. Further, when one of the three drive electrodes 13a, 13a, 13a described above (for example, the drive electrode 13a in the 12 o'clock direction of the timepiece in FIG.
  • the drive electrode 13a Three monitor electrodes 13h, 13h, and 13h are arranged at angles that are 60 °, 180 °, and 300 ° apart in the circumferential direction. Further, when an angular velocity around the X axis is given to the ring-shaped vibrating gyroscope 600 when the plane on which the piezoelectric element on the ring-shaped vibrating body is arranged, in other words, the paper surface in FIG. 10 is the XY plane.
  • the first detection electrodes 13b and 13c that detect secondary vibrations generated at the same position are arranged in the circumferential direction from the reference electrode at angles of 0 °, 90 °, 180 °, and 270 °.
  • the second detection electrodes 13d and 13e for detecting secondary vibration generated when an angular velocity around the Y axis is applied to the ring-shaped vibration gyro 600 are 45 ° and 135 ° in the circumferential direction from the reference electrode. It is arranged at an angle of 225 ° and 315 ° apart.
  • the ring-shaped vibrating gyroscope 600 has a Z-axis, that is, an axis perpendicular to the plane on which the ring-shaped vibrating gyroscope 600 shown in FIG.
  • each electrode provided in the ring-shaped vibrating gyroscope 600 will be described.
  • the primary vibration of the in-plane cos 3 ⁇ vibration mode is excited. Since the fixed potential electrode 16 is grounded, the lower electrode film 30 formed continuously with the fixed potential electrode 16 is uniformly at 0V.
  • an AC voltage of 1V P-0 is applied to the three drive electrodes 13a, 13a, 13a.
  • the piezoelectric film 40 expands and contracts to excite primary vibration.
  • the piezoelectric film 40 since the upper metal film 50 is formed outside the center line on the upper surface of the ring-shaped vibrating body 11, the piezoelectric film 40 is not formed on the side surface of the ring-shaped vibrating body 11. The expansion and contraction motion can be converted into the primary vibration of the ring-shaped vibrating body 11.
  • the monitor electrodes 13h, 13h, 13h shown in FIG. 10 detect the amplitude and resonance frequency of the primary vibration described above, and transmit a signal to a known feedback control circuit (not shown).
  • the feedback control circuit of the present embodiment controls the frequency of the AC voltage applied to the drive electrodes 13a, 13a, and 13a so that the natural frequency of the ring-shaped vibrating body 11 coincides with the amplitude of the ring-shaped vibrating body 11. Control is performed using the signals of the monitor electrodes 13h, 13h, and 13h so as to have a certain value. As a result, the ring-shaped vibrating body 11 maintains constant vibration.
  • This secondary vibration is detected by the three detection electrodes (third detection electrodes) 13f, 13f, and 13f and the other three detection electrodes (third detection electrodes) 13g, 13g, and 13g. Also in the present embodiment, as in the first embodiment, the difference between the electrical signals of the third detection electrodes 13f and 13g is calculated in an arithmetic circuit that is a known difference circuit. As a result, the detection signal has about twice the detection capability as compared with the case of either one of the detection electrodes.
  • each of the detection electrodes 13b and 13c is disposed corresponding to the vibration axis of the out-of-plane secondary vibration.
  • the detection electrodes 13b and 13c described above are formed on the inner side of the center line on the upper surface of the ring-shaped vibrating body 11, but the present invention is not limited to this.
  • each of the detection electrodes 13b and 13c described above is disposed so as to include a center line in which the distortion of the piezoelectric film is least likely to occur due to the primary vibration or the secondary vibration that is an in-plane vibration mode. It is an aspect. Further, the detection electrodes 13b and 13c described above are arranged so as to have a symmetrical shape with respect to the center line because the direction of distortion is reversed with respect to the center line in the in-plane vibration mode. Is a more preferable embodiment.
  • the sign of the electrical signal of the detection electrodes 13b and 13c generated by the out-of-plane secondary vibration excited by the angular velocity is reversed. Therefore, as in the first embodiment, the difference between the electrical signals of the detection electrodes 13b and 13c is calculated in an arithmetic circuit that is a known difference circuit. As a result, the detection signal has about twice the detection capability as compared with the case of either one of the detection electrodes.
  • the secondary vibration is detected by the two detection electrodes (second detection electrodes) 13d and 13d and the other two detection electrodes (second detection electrodes) 13e and 13e.
  • the detection electrodes 13 d and 13 e are respectively arranged corresponding to the vibration axes of the out-of-plane secondary vibration.
  • the detection electrodes 13d and 13e described above are formed on the inner side of the center line on the upper surface of the ring-shaped vibrating body 11, but the present invention is not limited to this.
  • each of the detection electrodes 13d and 13e described above is disposed so as to include a center line in which the distortion of the piezoelectric film is least likely to occur due to the primary vibration or the secondary vibration that is an in-plane vibration mode. It is an aspect. Further, in the in-plane vibration mode, the direction of distortion is reversed with respect to the center line, and therefore, it is more preferable that the in-plane vibration modes are arranged so as to be symmetrical with respect to the center line.
  • the arrangement of the detection electrodes 13d and 13e of the present embodiment reverses the sign of the electrical signals of the detection electrodes 13d and 13e generated by the secondary vibration of the out-of-plane excited by the angular velocity. Therefore, in the same manner as described above, the difference between the electrical signals of the detection electrodes 13d and 13e is calculated in an arithmetic circuit that is a known difference circuit. As a result, the detection signal has about twice the detection capability as compared with the case of either one of the detection electrodes.
  • the names of the first detection electrode to the third detection electrode are given to the detection electrodes that detect each of the three axes for which the angular velocity is to be detected.
  • the name of the detection electrode for the axis any one non-overlapping name among the first detection electrode to the third detection electrode may be given.
  • the monitor electrodes 13h and 13h were arrange
  • each monitor electrode 13h is connected to the reference drive electrode by Arrangement is made so as to avoid an arrangement at an angle other than (180 / N) ⁇ ⁇ L + (1/2) ⁇ ° apart in the circumferential direction, or an arrangement that is axisymmetric with respect to the position of the angle.
  • each monitor electrode 13h is arranged so as to avoid an arrangement that is symmetric with respect to the center line.
  • a specific example of the above is a ring-shaped vibrating gyroscope 700 shown in FIG. 12A.
  • FIG. 12B Another example is a ring-shaped vibrating gyroscope 720 shown in FIG. 12B.
  • the monitor electrodes 13h, 13h of the ring-shaped vibrating gyroscope 720 are arranged so that two of the monitor electrodes 13h,..., 13h of the ring-shaped vibrating gyroscope 700 of FIG.
  • the same effect as in the first embodiment can be obtained.
  • FIG. 12C Another example is a ring-shaped vibrating gyroscope 740 shown in FIG. 12C.
  • the monitor electrodes 13h and 13h of the ring-shaped vibrating gyroscope 740 are arranged so that the other two of the monitor electrodes 13h,..., 13h of the ring-shaped vibrating gyroscope 700 of FIG. .
  • the same effect as in the first embodiment can be obtained.
  • FIG. 12D another example is a ring-shaped vibrating gyroscope 760 shown in FIG. 12D.
  • the monitor electrodes 13h, 13h of the ring-shaped vibrating gyroscope 760 are arranged so that two of the monitor electrodes 13h,..., 13h of the ring-shaped vibrating gyroscope 700 of FIG. Has been.
  • the same effect as in the first embodiment can be obtained.
  • FIG. 12E another example is a ring-shaped vibrating gyroscope 780 shown in FIG. 12E.
  • Some of the monitor electrodes 13h,..., 13h of the ring-shaped vibrating gyroscope 780 are arranged on a region from the inner peripheral edge of the ring-shaped vibrating body 11 to the center line.
  • the electrode area of the second detection electrode 13d is reduced.
  • the monitor electrodes 13h,..., 13h shown in FIG. 12E at least some of the effects of the first embodiment can be achieved.
  • the ring-shaped vibrating gyroscope 100 of the first embodiment is preferable to the ring-shaped vibrating gyroscope 760 shown in FIG. 12E.
  • a region from the outer peripheral edge of the ring-shaped vibrating body 11 to the center line so as to avoid an arrangement in which some or all of the monitor electrodes 13h,..., 13h are symmetric with respect to the center line. Even if arranged above, the same effect as the first embodiment can be obtained.
  • the ring-shaped vibrating gyroscopes of the present invention are excited by the primary vibration of the in-plane vibration mode, so the arrangement of the monitor electrodes on the plane of the ring-shaped vibrating body 11 is as follows.
  • a high degree of freedom will be given.
  • each monitor electrode 13h is connected to the reference drive electrode.
  • each monitor electrode 13h is arranged so as to avoid an arrangement that is symmetric with respect to the center line. This is also because the distortion directions are opposite to each other, so that the distortions are offset.
  • the arrangement of the monitor electrode 13h as shown in the first embodiment is different from the arrangement of other electrode groups and / or the extraction electrode. Will be easier to arrange.
  • each of the above-described embodiments has been described with a vibrating gyroscope using an annular vibrating body, but a polygonal vibrating body may be used instead of the annular ring.
  • a regular polygonal vibrator such as a regular hexagon, a regular octagon, a regular dodecagon, and a regular icosahedron
  • a vibrating body such as the dodecagonal vibrating body 111 of the ring-shaped vibrating gyroscope 800 shown in FIG. 13 may be used.
  • a polygonal vibrating body that is a point target shape in a front view of the vibrating body
  • the “annular shape” includes an elliptical shape.
  • pillar are not shown in figure.
  • a ring-shaped vibrating gyroscope using silicon as a base material is employed, but the present invention is not limited to this.
  • the base material of the vibration gyro may be germanium or silicon germanium.
  • adoption of silicon or silicon germanium can greatly improve the processing accuracy of the entire gyro including the vibrating body because a known anisotropic dry etching technique can be applied.
  • modifications that exist within the scope of the present invention including other combinations of the embodiments are also included in the scope of the claims.
  • the present invention can be applied as a part of various devices as a vibrating gyroscope.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

 本発明の振動ジャイロは、平面を一様に備えたリング状振動体11と、リング状振動体を柔軟に支持するとともに固定端を有するレッグ部15と、固定電位電極16、及び平面上に形成されるとともに上層金属膜及び下層金属膜により圧電体膜を厚み方向に挟む複数の電極13a,13b,・・・,13hとを備えている。ここで、代表的には、図1に示すように、cosNθの振動モードでリング状振動体11の一次振動を励起する駆動電極13aの1つを基準駆動電極とした場合に、その他の複数の電極13b,・・・,13hが特定の箇所に配置される。この配置により、この振動ジャイロは、アウト・オブ・プレーンの振動モードを含めた2次振動検出手段を用いて1軸乃至3軸の角速度を検出することができる。

Description

圧電体膜を用いた振動ジャイロ
 本発明は、圧電体膜を用いた振動ジャイロ、より具体的には、最大で3軸の角速度変化を測定しうる振動ジャイロに関するものである。
 近年、圧電材料を用いた振動ジャイロは盛んに開発されている。従来から、特許文献1に記載されているような振動体自体が圧電材料で構成されるジャイロが開発される一方、振動体上に形成される圧電体膜を利用するジャイロも存在する。例えば、特許文献2では、圧電材料であるPZT膜を用いて、振動体の一次振動を励起し、かつその振動体に角速度が与えられた際に発生するコリオリ力によって生じるジャイロの一部の歪みを検出する技術が開示されている。
 他方、ジャイロが搭載される各種機器のサイズが日進月歩で小型化されている中で、ジャイロ自身の小型化も重要な課題である。ジャイロの小型化を達成するためには、ジャイロを構成する各部材の加工精度を格段に高めることが必要となる。また、単に小型化をするだけでなく、ジャイロとしての性能、換言すれば、角速度の検出精度を更に高めることが産業界の要望といえる。しかしながら、特許文献2に示されているジャイロの構造は、ここ数年来の小型化及び高性能化の要求を満足するものではない。
 上述の技術的な課題に対し、本願出願人は、基本的に全ての製造工程をドライプロセスで行うことにより、高い加工精度を達成しつつ、振動ジャイロとしての高性能化の要求を同時に満足する技術思想の一つを提案している(特許文献3)。
 また、上述の技術課題に加え、複数軸の回転に対する角速度をも測定する振動ジャイロに対する期待も高まっている(例えば、特許文献4)。しかし、小型化を可能にする簡便な構造を有する振動ジャイロの開発は未だ道半ばである。
特開平8-271258号公報 特開2000-9473号公報 特願2008-28835号公報 特願2005-529306号公報 特表2002-509615号公報 特表2002-510398号公報
 上述の通り、圧電体膜を用いた振動ジャイロの小型化と高い加工精度を達成しつつ、ジャイロとしての高性能化の要求を同時に満足することは非常に難しい。一般的には、ジャイロが小型化されると、振動体に角速度が与えられた場合に、ジャイロの検出電極によって検出される信号が微弱になるという問題がある。加えて、上述の特許文献4に記載されている振動ジャイロは、複数の回転軸に対する角速度の測定が可能であるが、実質的に静電容量の変化を測定する方式が採用されているため、当該文献の図2及び図3に示されるように、幾つかの電極が振動体上とは異なる場所に配置されるという複雑な構造を備えている。すなわち、振動ジャイロが、小型化を可能にする簡易な構造によって複数の回転軸に対する角速度をも測定することが出来るようになれば、その振動ジャイロの技術的価値は一段と高まることになる。
 本発明は、上述の技術課題を解決することにより、単数又は複数の回転軸に対する角速度を測定し得る圧電体膜を用いた振動ジャイロの小型化及び高性能化に大きく貢献するものである。発明者らは、一次振動の励起とコリオリ力により形成される二次振動の検出を、圧電体膜に担わせることによって上記各技術課題を解決する構造について鋭意研究を行った。その結果、圧電体膜が構成する各種電極の配置と振動体を支持する構造を工夫することによって、単数の回転軸のみならず複数の回転軸に対する角速度をも測定されることを知見した。さらに、発明者らは、それらの配置が高い加工精度を満足し得るドライプロセスによって達成できることを見出した。本発明はこのような視点で創出された。なお、本出願では、「円環状又は多角形状の振動ジャイロ」を、簡略化して「リング状振動ジャイロ」とも呼ぶ。
 本発明の1つの振動ジャイロは、平面を一様に備えたリング状振動体と、そのリング状振動体を柔軟に支持するとともに固定端を有するレッグ部と、固定電位電極、及び前述の平面上に形成されるとともに上層金属膜及び下層金属膜により圧電体膜を厚み方向に挟む複数の電極とを備えている。加えて、それらの複数の電極は、次の(1)及び(2)、すなわち、
 (1)Nを2以上の自然数とした場合に、cosNθの振動モードで前述のリング状振動体の一次振動を励起する、互いに円周方向に(360/N)°離れた角度に配置された一群の駆動電極と、
 (2)前述の駆動電極の1つを基準駆動電極とした場合であって、前述のリング状振動体に角速度が与えられたときに発生するcos(N+1)θの振動モードの二次振動を検出し、且つS=0,1,・・・,N(以下、本パラグラフ内において同じ)とした場合に、その基準駆動電極から〔{360/(N+1)}×S〕°離れた角度に配置された電極及び/又はその基準駆動電極から〔{360/(N+1)}×{S+(1/2)}〕°離れた角度に配置された電極を備える一群の検出電極とを有している。
 さらに、前述の各々の駆動電極は、前述の平面内であって、前述のリング状振動体の外周縁からその外周縁の近傍に至るまでの領域及び/又はその内周縁からその内周縁の近傍に至るまでの領域を含む第1電極配置領域上に配置され、前述の各々の検出電極は、その第1電極配置領域と電気的に接しない第2電極配置領域上に配置されている。
 この振動ジャイロによれば、リング状振動体が備える平面上であって上記の特有の領域に、圧電素子が電極として形成されているため、1軸の角速度センサとして一次振動の励起と二次振動の検出が可能となる。つまり、この振動ジャイロでは、リング状振動体の側面に圧電素子を形成せずに、リング状振動体上の圧電素子が配置される平面(例えば、X-Y平面)と同一平面内(以下、イン・プレーンともいう)で一次振動が励起され、かつリング状振動体の動きを制御する構造を有しているため、ドライプロセス技術を用いて高精度に電極及びリング状振動体の加工を行うことが可能となる。また、この振動ジャイロは、圧電素子が配置される平面を外れた振動モード(以下、アウト・オブ・プレーンの振動モードともいう)を用いて1軸(例えば、X軸)の角速度を検出することができる点が大きな利点といえる。なお、cosNθの振動モードの複数の例は、例えば、前述の特許文献4乃至6又は、本願出願人による特許出願である特願2007-209014に記載されている。また、全ての本出願に係る発明において、「柔軟な」とは「振動体が振動可能な程度に」という意味である。
 また、本発明のもう1つの振動ジャイロは、平面を一様に備えたリング状振動体と、そのリング状振動体を柔軟に支持するとともに固定端を有するレッグ部と、固定電位電極、及び前述の平面上に形成されるとともに上層金属膜及び下層金属膜により圧電体膜を厚み方向に挟む複数の電極とを備えている。加えて、それらの複数の電極は、次の(1)及び(2)、すなわち、
 (1)Nを2以上の自然数とした場合に、cosNθの振動モードで前述のリング状振動体の一次振動を励起する、互いに円周方向に(360/N)°離れた角度に配置された一群の駆動電極と、
 (2)前述の駆動電極の1つを基準駆動電極とした場合であって、前述のリング状振動体に角速度が与えられたときに発生するcos(N+1)θの振動モードの二次振動を検出し、且つS=0,1,・・・,N(以下、本パラグラフ内において同じ)とした場合に、その基準駆動電極から〔{360/(N+1)}×{S+(1/4)}〕°離れた角度に配置された電極及び/又はその基準駆動電極から〔{360/(N+1)}×{S+(3/4)}〕°離れた角度に配置された電極とを備える一群の検出電極を有している。
 さらに、前述の各々の駆動電極は、前述の平面内であって、前述のリング状振動体の外周縁からその外周縁の近傍に至るまでの領域及び/又はその内周縁からその内周縁の近傍に至るまでの領域を含む第1電極配置領域上に配置され、前述の各々の検出電極は、その第1電極配置領域と電気的に接しない第2電極配置領域上に配置される。
 この振動ジャイロによっても、リング状振動体が備える平面上であって上記の特有の領域に、圧電素子が電極として形成されているため、1軸の角速度センサとして一次振動の励起と二次振動の検出が可能となる。つまり、この振動ジャイロでは、リング状振動体の側面に圧電素子を形成せずに、リング状振動体上の圧電素子が配置される平面(例えば、X-Y平面)と同一平面内で一次振動が励起され、かつリング状振動体の動きを制御する構造を有しているため、ドライプロセス技術を用いて高精度に電極及びリング状振動体の加工を行うことが可能となる。また、この振動ジャイロは、アウト・オブ・プレーンの振動モードを用いて1軸(例えば、X軸)の角速度を検出することができる点が大きな利点といえる。
 また、本発明のもう1つの振動ジャイロは、平面を一様に備えたリング状振動体と、そのリング状振動体を柔軟に支持するとともに固定端を有するレッグ部と、固定電位電極、及び前述の平面上に形成されるとともに上層金属膜及び下層金属膜により圧電体膜を厚み方向に挟む複数の電極とを備えている。加えて、それらの複数の電極は、次の(1)及び(2)、すなわち、
 (1)Nを3以上の自然数とした場合に、cosNθの振動モードで前述のリング状振動体の一次振動を励起する、互いに円周方向に(360/N)°離れた角度に配置された一群の駆動電極と、
 (2)前述の駆動電極の1つを基準駆動電極とした場合であって、前述のリング状振動体に角速度が与えられたときに発生するcos(N-1)θの振動モードの二次振動を検出し、且つS=0,1,・・・,N-2(以下、本パラグラフ内において同じ)とした場合に、その基準駆動電極から〔{360/(N-1)}×S〕°離れた角度に配置された電極及び/又はその基準駆動電極から〔{360/(N-1)}×{S+(1/2)}〕°離れた角度に配置された電極を備える一群の検出電極とを有している。
 さらに、前述の各々の駆動電極は、前述の平面内であって、前述のリング状振動体の外周縁からその外周縁の近傍に至るまでの領域及び/又はその内周縁からその内周縁の近傍に至るまでの領域を含む第1電極配置領域上に配置され、前述の各々の検出電極は、その第1電極配置領域と電気的に接しない第2電極配置領域上に配置されている。
 この振動ジャイロによっても、リング状振動体が備える平面上であって上記の特有の領域に、圧電素子が電極として形成されているため、1軸の角速度センサとして一次振動の励起と二次振動の検出が可能となる。つまり、この振動ジャイロでは、リング状振動体の側面に圧電素子を形成せずに、リング状振動体上の圧電素子が配置される平面(例えば、X-Y平面)と同一平面内で一次振動が励起され、かつリング状振動体の動きを制御する構造を有しているため、ドライプロセス技術を用いて高精度に電極及びリング状振動体の加工を行うことが可能となる。また、この振動ジャイロは、アウト・オブ・プレーンの振動モードを用いて1軸(例えば、X軸)の角速度を検出することができる点が大きな利点といえる。
 また、本発明のもう1つの振動ジャイロは、平面を一様に備えたリング状振動体と、そのリング状振動体を柔軟に支持するとともに固定端を有するレッグ部と、固定電位電極、及び前述の平面上に形成されるとともに上層金属膜及び下層金属膜により圧電体膜を厚み方向に挟む複数の電極とを備えている。それらの複数の電極は、次の(1)及び(2)、すなわち、
 (1)Nを3以上の自然数とした場合に、cosNθの振動モードで前述のリング状振動体の一次振動を励起する、互いに円周方向に(360/N)°離れた角度に配置された一群の駆動電極と、
 (2)前述の駆動電極の1つを基準駆動電極とした場合であって、前述のリング状振動体に角速度が与えられたときに発生するcos(N-1)θの振動モードの二次振動を検出し、且つS=0,1,・・・,N-2(以下、本パラグラフ内において同じ)とした場合に、その基準駆動電極から〔{360/(N-1)}×{S+(1/4)}〕°離れた角度に配置された電極及び/又はその基準駆動電極から〔{360/(N-1)}×{S+(3/4)}〕°離れた角度に配置された電極を備える一群の検出電極とを有している。
 さらに、前述の各々の駆動電極は、前述の平面内であって、前述のリング状振動体の外周縁からその外周縁の近傍に至るまでの領域及び/又はその内周縁からその内周縁の近傍に至るまでの領域を含む第1電極配置領域上に配置され、前述の各々の検出電極は、その第1電極配置領域と電気的に接しない第2電極配置領域上に配置されている。
 この振動ジャイロによっても、リング状振動体が備える平面上であって上記の特有の領域に、圧電素子が電極として形成されているため、1軸の角速度センサとして一次振動の励起と二次振動の検出が可能となる。つまり、この振動ジャイロでは、リング状振動体の側面に圧電素子を形成せずに、リング状振動体上の圧電素子が配置される平面(例えば、X-Y平面)と同一平面内で一次振動が励起され、かつリング状振動体の動きを制御する構造を有しているため、ドライプロセス技術を用いて高精度に電極及びリング状振動体の加工を行うことが可能となる。また、この振動ジャイロは、アウト・オブ・プレーンの振動モードを用いて1軸(例えば、X軸)の角速度を検出することができる点が大きな利点といえる。
 また、本発明のもう1つの振動ジャイロは、平面を一様に備えたリング状振動体と、そのリング状振動体を柔軟に支持するとともに固定端を有するレッグ部と、固定電位電極、及び前述の平面上に形成されるとともに上層金属膜及び下層金属膜により圧電体膜を厚み方向に挟む複数の電極とを備えている。それらの複数の電極は、次の(1)乃至(3)、すなわち、
 (1)Nを2以上の自然数とした場合に、cosNθの振動モードで前述のリング状振動体の一次振動を励起する、互いに円周方向に(360/N)°離れた角度に配置された一群の駆動電極と、
 (2)前述の駆動電極の1つを基準駆動電極とした場合であって、前述のリング状振動体に角速度が与えられたときに発生するcos(N+1)θの振動モードの二次振動を検出し、且つS=0,1,・・・,N(以下、本パラグラフ内において同じ)とした場合に、その基準駆動電極から〔{360/(N+1)}×S〕°離れた角度に配置された電極及び/又はその基準駆動電極から〔{360/(N+1)}×{S+(1/2)}〕°離れた角度に配置された電極を備える一群の第1検出電極と、
 (3)その二次振動に対して{90/(N+1)}°離れた角度の振動軸の二次振動を検出し、且つ前述の基準駆動電極から〔{360/(N+1)}×{S+(1/4)}〕°離れた角度に配置された電極及び/又はその基準駆動電極から〔{360/(N+1)}×{S+(3/4)}〕°離れた角度に配置された電極を備える一群の第2検出電極とを有している。
 さらに、前述の各々の駆動電極は、前述の平面内であって、前述のリング状振動体の外周縁からその外周縁の近傍に至るまでの領域及び/又はその内周縁からその内周縁の近傍に至るまでの領域を含む第1電極配置領域上に配置され、前述の各々の第1検出電極及び前述の各々の第2検出電極は、前述の第1電極配置領域と電気的に接しない第2電極配置領域上に配置されている。
 この振動ジャイロによれば、リング状振動体が備える平面上であって上記の特有の領域に、圧電素子が電極として形成されているため、2軸の角速度センサとして一次振動の励起と二次振動の検出が可能となる。つまり、この振動ジャイロでは、リング状振動体の側面に圧電素子を形成せずに、リング状振動体上の圧電素子が配置される平面(例えば、X-Y平面)と同一平面内で一次振動が励起され、かつリング状振動体の動きを制御する構造を有しているため、ドライプロセス技術を用いて高精度に電極及びリング状振動体の加工を行うことが可能となる。また、この振動ジャイロは、アウト・オブ・プレーンの振動モードを用いて2軸(例えば、X軸及びY軸)の角速度を検出することができる点が大きな利点といえる。
 なお、前述の2軸の振動ジャイロにおける複数の電極のうち、(2)又は(3)の構成を備えた検出電極の代わりに、次の(改訂2又は改訂3)の構成を備えた検出電極が第1検出電極又は第2検出電極として採用されても、前述の2軸の角速度センサと同様の効果が奏される。但し、(改訂2又は改訂3)の構成を備えた検出電極は、前述の第1電極配置領域上に配置され、その検出対象となる2軸は、X軸とZ軸、又はY軸とZ軸となる。
 (改訂2又は改訂3)上述のリング状振動体に角速度が与えられたときに発生するcosNθの振動モードの二次振動を検出し、且つM=0,1,・・・,N-1(以下、本パラグラフ内において同じ)とした場合に、上述の基準駆動電極から〔(360/N)×{M+(1/4)}〕°離れた角度に配置された電極及び/又はその基準駆動電極から〔(360/N)}×{M+(3/4)}〕°離れた角度に配置された電極を備える一群の検出電極
 さらに、前述の2軸の振動ジャイロにおける複数の電極に、次の(4)の構成を備えた検出電極が第3検出電極として追加されれば、合計3軸、すなわち、2軸(例えば、X軸とY軸)のアウト・オブ・プレーンの振動モードを用いた角速度の検出に加えて、1軸(例えば、Z軸)のイン・プレーンの振動モードを用いた角速度の検出が可能となる点が大きな利点といえる。但し、(4)の構成を備えた検出電極は、前述の第1電極配置領域上に配置される。
 (4)上述のリング状振動体に角速度が与えられたときに発生するcosNθの振動モードの二次振動を検出し、且つM=0,1,・・・,N-1(以下、本パラグラフ内において同じ)とした場合に、上述の基準駆動電極から〔(360/N)×{M+(1/4)}〕°離れた角度に配置された電極及び/又はその基準駆動電極から〔(360/N)}×{M+(3/4)}〕°離れた角度に配置された電極を備える一群の第3検出電極
 また、本発明のもう1つの振動ジャイロは、平面を一様に備えたリング状振動体と、そのリング状振動体を柔軟に支持するとともに固定端を有するレッグ部と、固定電位電極、及び前述の平面上に形成されるとともに上層金属膜及び下層金属膜により圧電体膜を厚み方向に挟む複数の電極とを備えている。それらの複数の電極は、次の(1)乃至(3)、すなわち、
 (1)Nを3以上の自然数とした場合に、cosNθの振動モードで前述のリング状振動体の一次振動を励起する、互いに円周方向に(360/N)°離れた角度に配置された一群の駆動電極と、
 (2)前述の駆動電極の1つを基準駆動電極とした場合であって、前述のリング状振動体に角速度が与えられたときに発生するcos(N-1)θの振動モードの二次振動を検出し、且つS=0,1,・・・,N-2(以下、本パラグラフ内において同じ)とした場合に、その基準駆動電極から〔{360/(N-1)}×S〕°離れた角度に配置された電極及び/又はその基準駆動電極から〔{360/(N-1)}×{S+(1/2)}〕°離れた角度に配置された電極を備える一群の第1検出電極と、
 (3)その二次振動に対して{90/(N-1)}°離れた角度の振動軸の二次振動を検出し、且つ前述の基準駆動電極から〔{360/(N-1)}×{S+(1/4)}〕°離れた角度に配置された電極及び/又はその基準駆動電極から〔{360/(N-1)}×{S+(3/4)}〕°離れた角度に配置された電極を備える一群の第2検出電極とを有している。
 さらに、前述の各々の駆動電極は、前述の平面内であって、前述のリング状振動体の外周縁からその外周縁の近傍に至るまでの領域及び/又はその内周縁からその内周縁の近傍に至るまでの領域を含む第1電極配置領域上に配置され、前述の各々の第1検出電極及び第2検出電極は、前述の第1電極配置領域と電気的に接しない第2電極配置領域上に配置されている。
 この振動ジャイロによれば、リング状振動体が備える平面上であって上記の特有の領域に、圧電素子が電極として形成されているため、2軸の角速度センサとして一次振動の励起と二次振動の検出が可能となる。つまり、この振動ジャイロでは、リング状振動体の側面に圧電素子を形成せずに、リング状振動体上の圧電素子が配置される平面(例えば、X-Y平面)と同一平面内で一次振動が励起され、かつリング状振動体の動きを制御する構造を有しているため、ドライプロセス技術を用いて高精度に電極及びリング状振動体の加工を行うことが可能となる。また、この振動ジャイロは、アウト・オブ・プレーンの振動モードを用いて2軸(例えば、X軸及びY軸)の角速度を検出することができる点が大きな利点といえる。
 なお、前述の2軸の振動ジャイロにおける複数の電極のうち、(2)又は(3)の構成を備えた検出電極の代わりに、次の(改訂2又は改訂3)の構成を備えた検出電極が第1検出電極又は第2検出電極として採用されても、前述の2軸の角速度センサと同様の効果が奏される。但し、(改訂2又は改訂3)の構成を備えた検出電極は、前述の第1電極配置領域上に配置され、その検出対象となる2軸は、X軸とZ軸、又はY軸とZ軸となる。
 (改訂2又は改訂3)上述のリング状振動体に角速度が与えられたときに発生するcosNθの振動モードの二次振動を検出し、且つM=0,1,・・・,N-1(以下、本パラグラフ内において同じ)とした場合に、その駆動電極から〔(360/N)×{M+(1/4)}〕°離れた角度に配置された電極及び/又はその基準駆動電極から〔(360/N)}×{M+(3/4)}〕°離れた角度に配置された電極を備える一群の検出電極
 さらに、前述の2軸の振動ジャイロにおける複数の電極に、次の(4)の構成を備えた検出電極が第3検出電極として追加されれば、合計3軸、すなわち、2軸(例えば、X軸とY軸)のアウト・オブ・プレーンの振動モードを用いた角速度の検出に加えて、1軸(例えば、Z軸)のイン・プレーンの振動モードを用いた角速度の検出が可能となる点が大きな利点といえる。但し、(4)の構成を備えた検出電極は、前述の第1電極配置領域上に配置される。
 (4)上述のリング状振動体に角速度が与えられたときに発生するcosNθの振動モードの二次振動を検出し、且つM=0,1,・・・,N-1(以下、本パラグラフ内において同じ)とした場合に、上述の基準駆動電極から〔(360/N)×{M+(1/4)}〕°離れた角度に配置された電極及び/又はその基準駆動電極から〔(360/N)}×{M+(3/4)}〕°離れた角度に配置された電極を備える一群の第3検出電極
 なお、前述の1軸、2軸、又は3軸の振動ジャイロにおける複数の電極に、次の(5)の構成を備えたモニタ電極が追加されることは、特に小型化されたリング状振動体の限定された平面領域の中で他の電極群の配置及び/又は引き出し電極の配置を容易にすることになる点で好ましい一態様である。
  (5)M=0,1,・・・,N-1(以下、本パラグラフ内において同じ)とした場合に、上述の基準駆動電極から円周方向に〔(360/N)×{M+(1/2)}〕°離れた角度に配置された一群のモニタ電極
 本発明の1つの振動ジャイロによれば、リング状振動体が備える平面上であって上記の特有の領域に、圧電素子が電極として形成されているため、1軸乃至3軸の角速度センサとして一次振動の励起と二次振動の検出が可能となる。つまり、この振動ジャイロでは、リング状振動体の側面に圧電素子を形成せずに、リング状振動体上の圧電素子が配置される平面(例えば、X-Y平面)と同一平面内で一次振動が励起され、かつリング状振動体の動きを制御する構造を有しているため、ドライプロセス技術を用いて高精度に電極及びリング状振動体の加工を行うことが可能となる。また、この振動ジャイロは、アウト・オブ・プレーンの振動モードを含めた2次振動検出手段を用いて1軸乃至3軸の角速度を検出することができる。
本発明の1つの実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。 図1のA-A断面図である。 本発明の1つの実施形態におけるリング状振動ジャイロの一部の製造工程の過程を示す断面図である。 本発明の1つの実施形態におけるリング状振動ジャイロの一部の製造工程の過程を示す断面図である。 本発明の1つの実施形態におけるリング状振動ジャイロの一部の製造工程の過程を示す断面図である。 本発明の1つの実施形態におけるリング状振動ジャイロの一部の製造工程の過程を示す断面図である。 本発明の1つの実施形態におけるリング状振動ジャイロの一部の製造工程の過程を示す断面図である。 本発明の1つの実施形態におけるリング状振動ジャイロの一部の製造工程の過程を示す断面図である。 本発明の他の実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。 本発明の他の実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。 本発明の他の実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の図2に相当する断面図である。 本発明の他の実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。 図7のB-B断面図である。 本発明の1つの実施形態におけるcos2θの振動モードの一次振動を概念的に説明する図である。 本発明の1つの実施形態におけるZ軸の回りで角速度が加わる場合のイン・プレーンのcos2θの振動モードの二次振動を概念的に説明する図である。 第3検出電極の電気的信号の正負を概念的に説明する図である。 本発明の1つの実施形態におけるX軸の回りで角速度が加わる場合のアウト・オブ・プレーンのcos3θの振動モードの二次振動を概念的に説明する図である。 本発明の1つの実施形態におけるY軸の回りで角速度が加わる場合のアウト・オブ・プレーンのcos3θの振動モードの二次振動を概念的に説明する図である。 本発明の他の実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。 本発明の他の実施形態におけるcos3θの振動モードの一次振動を概念的に説明する図である。 本発明の他の実施形態におけるX軸の回りで角速度が加わる場合のアウト・オブ・プレーンのcos2θの振動モードの二次振動を概念的に説明する図である 本発明の他の実施形態におけるY軸の回りで角速度が加わる場合のアウト・オブ・プレーンのcos2θの振動モードの二次振動を概念的に説明する図である。 本発明の他の実施形態におけるZ軸の回りで角速度が加わる場合のcos3θの振動モードの二次振動を概念的に説明する図である。 本発明の他の実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。 本発明の他の実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。 本発明の他の実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。 本発明の他の実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。 本発明の他の実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。 本発明の他の実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。
発明を実施するための形態
 つぎに、本発明の実施形態を、添付する図面に基づいて詳細に述べる。尚、この説明に際し、全図にわたり、特に言及がない限り、共通する部分には共通する参照符号が付されている。また、図中、本実施形態の要素は必ずしもスケール通りに示されていない。
<第1の実施形態>
 図1は、本実施形態における3軸の角速度を測定するリング状振動ジャイロ100の中心的役割を果たす構造体の正面図である。図2は、図1のA-A断面図である。なお、説明の便宜上、図1には、X軸及びY軸が表記されている。
 図1及び図2に示すとおり、本実施形態のリング状振動ジャイロ100は、大きく3つの構成に分類される。第1の構成は、シリコン基板10から形成されるリング状振動体11の上部の平面(以下、上面という)上に、シリコン酸化膜20を備え、さらにその上に、圧電体膜40が下層金属膜30及び上層金属膜50に挟まれることにより形成される複数の電極13a~13hを備えた構成である。本実施形態では、複数の電極13a~13hを構成する上層金属膜50の外側端部又は内側端部は、約40μm幅のリング状平面を有するリング状振動体11の外周縁又は内周縁から約1μm内側に形成され、その幅は約18μmである。また、その上層金属膜50のうち、幾つかの電極は、リング状振動体11の上面であるリング状平面の幅の両端間の中央を結ぶ線(以下、単に中央線という)よりも外側に形成され、その他の電極は、中央線よりも内側に形成されている。
 ところで、本実施形態では、図9Aに示すイン・プレーンのcos2θの振動モードでリング状振動ジャイロ100の一次振動が励起される。また、本実施形態の二次振動の振動モードは、図9Dに示すX軸のcos3θのアウト・オブ・プレーンの振動モードと、図9Eに示すY軸のcos3θのアウト・オブ・プレーンの振動モードと、図9Bに示す1軸(Z軸)のcos2θのイン・プレーンの振動モードである。従って、前述の複数の電極13a~13hの内訳は、次のとおりである。まず、互いに円周方向に180°離れた角度に配置された2つの駆動電極13a,13aが配置される。また、前述の2つの駆動電極13a,13aの内の1つの駆動電極13a(例えば、図1において時計の12時方向の駆動電極13a)を基準電極とした場合に、その駆動電極13aから円周方向であって90°及び270°離れた角度に2つのモニタ電極13h,13hが配置される。また、リング状振動体上の圧電素子が配置される平面、換言すれば、図1における紙面をX‐Y平面とした場合に、リング状振動ジャイロ100にX軸まわりの角速度が与えられたときに発生する二次振動を検出する、第1検出電極13b,13cが、基準電極から円周方向であって0°、60°、120°、180°、240°、及び300°離れた角度に配置される。同様に、リング状振動ジャイロ100にY軸まわりの角速度が与えられたときに発生する二次振動を検出する第2検出電極13d,13eが、基準電極から円周方向であって30°、90°、150°、210°、270°及び330°離れた角度に配置される。さらに、リング状振動ジャイロ100にZ軸、すなわち、図1に示すリング状振動ジャイロ100の配置された平面に垂直な軸(紙面に垂直な方向の軸、以下、単に「垂直軸」又は「Z軸」という)のまわりの角速度が与えられたときに発生する二次振動を検出する、第3検出電極13f,13gが配置される。
 また、本実施形態では、下層金属膜30及び上層金属膜50の厚みは100nmであり、圧電体膜40の厚みは、3μmである。また、シリコン基板10の厚みは100μmである。
 なお、本実施形態及び後述する他の実施形態では、各電極が配置されている領域が2つに分類される。1つは、リング状振動体11の上面の外周縁からその外周縁の近傍に至るまでの領域及び/又はその内周縁からその内周縁の近傍に至るまでの領域に配置される各々の駆動電極13aの領域及び第3検出電極13f,13gの領域である。これを、第1電極配置領域とする。もう1つは、リング状振動体11の上面であって、その第1電極配置領域と電気的に接しないように配置される、第1検出電極13b,13c、第2検出電極13d,13eである。これを、第2電極配置領域とする。
 第2の構成は、リング状振動体11の一部と連結しているレッグ部15,・・・,15である。このレッグ部15,・・・,15もシリコン基板10から形成されている。また、レッグ部15,・・・,15上には、リング状振動体11上のそれらと連続する上述のシリコン酸化膜20、下層金属膜30、及び圧電体膜40がレッグ部15,・・・,15の上面全体に形成されている。さらに、圧電体膜40の上面には、幅約8μmの引き出し電極14,・・・,14である上層金属膜50が形成されている。
 なお、本実施形態では、16本のレッグ部15,・・・,15のうち、4本のレッグ部15,・・・,15上には複数の引き出し電極14が形成されている。これらは、リング状振動体11の外周縁からその外周縁の近傍に至るまでの領域に配置された各電極から支柱19上の電極パッド18に引き出すための経路を確保するために創出された。特に、本実施形態では、第2検出電極13d,13eからの電気信号の偏りを解消するために、第2検出電極13d,13eのそれぞれの両端部から引き出し電極14,14が形成されている。なお、それぞれの第2電極検出13d,13eの片側のみから引き出し電極14,14が形成されている場合であっても、振動ジャイロとしての機能を失うことはない。
 第3の構成は、上述のレッグ部15,・・・,15に連結しているシリコン基板10から形成される支柱19である。本実施形態では、支柱19が、図示しないリング状振動ジャイロ100のパッケージ部に連結し、固定端としての役割を果たしている。また、支柱19は、電極パッド18,・・・,18を備えている。また、図2に示すように、支柱19の上面には、グラウンド電極である固定電位電極16を除き、レッグ部15,・・・,15上のそれらと連続する上述のシリコン酸化膜20、下層金属膜30、及び圧電体膜40が形成されている。ここで、シリコン酸化膜20上に形成された下層金属膜30が固定電位電極16の役割を担っている。また、支柱19の上方に形成されている圧電体膜40の上面には、レッグ部15,・・・,15上のそれと連続する前述の引き出し電極14,・・・,14及び電極パッド18,・・・,18が形成されている。
 次に、本実施形態のリング状振動ジャイロ100の製造方法について、図3A乃至図3Fに基づいて説明する。なお、図3A乃至図3Fは、図2における一部の範囲に対応する断面図である。
 まず、図3Aに示すように、シリコン基板10上に、シリコン酸化膜20、下層金属膜30、圧電体膜40、及び上層金属膜50が積層されている。前述の各膜は公知の成膜手段によって形成されている。本実施形態では、シリコン酸化膜20は公知の手段による熱酸化膜である。また、下層金属膜30、圧電体膜40、及び上層金属膜50は、いずれも公知のスパッタリング法により形成されている。なお、これらの膜の形成は、前述の例に限定されず、他の公知の手段によっても形成され得る。
 次に、上層金属膜50の一部がエッチングされる。本実施形態では、上層金属膜50上に公知のレジスト膜を形成した後、フォトリソグラフィ技術により形成されたパターンに基づいてドライエッチングを行うことにより、図3Bに示される各電極が形成される。ここで、上層金属膜50のドライエッチングは、アルゴン(Ar)又はアルゴン(Ar)と酸素(O)の混合ガスを用いた公知のリアクティブイオンエッチング(RIE)条件によって行われる。
 その後、図3Cに示すように、圧電体膜40の一部がエッチングされる。まず、上述の同様、フォトリソグラフィ技術によりパターニングがされたレジスト膜に基づいて、圧電体膜40がドライエッチングされる。なお、本実施形態の圧電体膜40のドライエッチングは、アルゴン(Ar)とCガスの混合ガス、又はアルゴン(Ar)とCガスとCHFガスの混合ガスを用いた公知のリアクティブイオンエッチング(RIE)条件によって行われる。
 続いて、図3Dに示すように、下層金属膜30の一部がエッチングされる。本実施形態では、下層金属膜30を利用した固定電位電極16が形成されるように、再度、フォトリソグラフィ技術によってパターニングされたレジスト膜を用いてドライエッチングされる。本実施形態では、固定電位電極16は、グラウンド電極として利用される。なお、本実施形態の下層金属膜30のドライエッチングは、アルゴン(Ar)又はアルゴン(Ar)と酸素(O)の混合ガスを用いた公知のリアクティブイオンエッチング(RIE)条件によって行われる。
 ところで、本実施形態では、前述の再び形成されたレジスト膜をエッチングマスクとして、その後のシリコン酸化膜20及びシリコン基板10を連続的にエッチングするため、このレジスト膜の厚みは、約4μmになるように形成されている。但し、万一、このレジスト膜がシリコン基板10のエッチング中に消失した場合であっても、シリコン基板10に用いられるエッチャントに対するエッチングレートの選択比が有利に働くため、前述のエッチングによって上層金属膜50、圧電体膜40、及び下層金属膜30の性能は実質的に影響を受けない。すなわち、本実施形態では、リング状振動体11をシリコン基板から形成するため、レジスト膜との選択比も十分に高い公知のシリコントレンチエッチング技術が適用できる。なお、仮にそのレジスト膜が消失しても、その下層にある上層金属膜又は圧電体膜がシリコンのエッチングの際のマスクとしての役割を果たす十分な選択比を備えている。
 次に、図3E及び図3Fに示すように、上述の通り、下層金属膜30をエッチングするためのレジスト膜を利用して、シリコン酸化膜20及びシリコン基板10をドライエッチングする。本実施形態のシリコン酸化膜20のドライエッチングは、アルゴン(Ar)又はアルゴン(Ar)と酸素(O)の混合ガスを用いた公知のリアクティブイオンエッチング(RIE)条件によって行われた。また、本実施形態のシリコン基板10のドライエッチングの条件は、公知のシリコントレンチエッチング技術が適用される。ここで、シリコン基板10は貫通エッチングされる。従って、前述のドライエッチングは、貫通時にシリコン基板10を載置するステージをプラズマに曝さないようにするための保護基板をシリコン基板10の下層に伝熱性の優れたグリース等により貼り付けた状態で行われる。そのため、例えば、貫通後にシリコン基板10の厚さ方向に垂直な方向の面、換言すればエッチング側面が侵食されることを防ぐために、特開2002-158214に記載されているドライエッチング技術が採用されることは好ましい一態様である。
 上述の通り、シリコン基板10及びシリコン基板10上に積層された各膜のエッチングによって、リング状振動ジャイロ100の中心的な構造部が形成されたのち、公知の手段によるパッケージへの収容工程、及び配線工程を経ることにより、リング状振動ジャイロ100が形成される。従って、この振動ジャイロ100によれば、リング状振動体11の側面に圧電素子を形成せずに、リング状振動体11の平面上に形成された圧電素子のみにより、イン・プレーンの一次振動の励起と、最大で3軸のアウト・オブ・プレーン及びイン・プレーンの二次振動の検出が可能となる。その結果、上述の高精度で安価に量産が可能なドライプロセス技術を用いて振動ジャイロ100を製造することが可能となる。
 次に、リング状振動ジャイロ100が備える各電極の作用について説明する。上述の通り、本実施形態はイン・プレーンのcos2θの振動モードの一次振動が励起される。なお、固定電位電極16が接地されるため、固定電位電極16と連続して形成されている下層電極膜30は一律に0Vになっている。
 最初に、図1に示すように、2つの駆動電極13a,13aに1VP-0の交流電圧が印加される。その結果、圧電体膜40が伸縮して一次振動が励起される。ここで、本実施形態では上層金属膜50がリング状振動体11の上面における中央線よりも外側に形成されているため、リング状振動体11の側面に形成されることなく圧電体膜40の伸縮運動をリング状振動体11の一次振動に変換することが可能となる。なお、実際の交流電源12は、導電性ワイヤに接続される電極パッド18を介して駆動電極13aに印加するが、本実施形態及び他の実施形態では、説明の便宜上、省略される。
 次に、図1に示すモニタ電極13h,13hが、上述の一次振動の振幅及び共振周波数を検出して、図示しない公知のフィードバック制御回路に信号を送信する。本実施形態のフィードバック制御回路は、駆動電極13a,13aに印加される交流電圧の周波数とリング状振動体11が持つ固有周波数が一致するように制御するとともに、リング状振動体11の振幅がある一定の値となるようにモニタ電極13h,13hの信号を用いて制御している。その結果、リング状振動体11は、一定の振動が持続される。
 上述の一次振動が励起された後、垂直軸(Z軸)の回りで角速度が加わると、イン・プレーンのcos2θの振動モードである本実施形態では、コリオリ力により図9Aに示す一次振動の振動軸に対して両側に45°傾いた新たな振動軸を有する図9Bに示す二次振動が生じる。
 この二次振動が2つの検出電極(第3検出電極)13f,13fと、別の2つの検出電極(第3検出電極)13g,13gによって検出される。本実施形態では、図1に示すように、各検出電極13f,13gは、それぞれイン・プレーンの二次振動の振動軸に対応して配置されている。また、上述の各検出電極13f,13gは、リング状振動体11の上面における中央線よりも内側に形成されている。従って、角速度を受けて励起されるイン・プレーンの二次振動によって生じる各検出電極13f,13gの電気的信号の正負が逆になる。これは、図9Cに示すように、例えば、リング状振動体11が縦に楕円となる振動体11aの振動状態に変化した場合、中央線より内側に配置されている第3検出電極13fの角度の圧電体膜40は、Aに示す矢印の方向に縮む一方、中央線より内側に配置されている第3検出電極13gの角度の圧電体膜40は、Aに示す矢印の方向に伸びるため、それらの電気的信号は逆になる。同様に、リング状振動体11が横に楕円となる振動体11bの振動状態に変化した場合、第3検出電極13fの角度の圧電体膜40は、Bに示す矢印の方向に伸びる一方、第3検出電極13gの角度の圧電体膜40は、Bに示す矢印の方向に縮むため、この場合も、それらの電気的信号が逆になる。
 ここで、公知の差分回路である演算回路において、各第3検出電極13f,13gの電気信号の差が算出される。その結果、検出信号はいずれか一方の検出電極の場合と比較して約2倍の検出能力を備えることになる。
 次に、上述の一次振動が励起された後、X軸の回りで角速度が加わる場合について説明する。この場合、図9Dに示すcos3θの振動モードの二次振動が生じる。
 この二次振動が3つの検出電極(第1検出電極)13b,13b,13bと、別の3つの検出電極(第1検出電極)13c,13c,13cによって検出される。本実施形態では、図1に示すように、各検出電極13b,13cは、それぞれアウト・オブ・プレーンのcos3θモードの二次振動の振動軸に対応して配置されている。なお、本実施形態では、上述の各検出電極13b,13cは、リング状振動体11の上面における中央線よりも外側又は内側に形成されているが、これに限定されない。むしろ、上述の各検出電極13b,13cは、イン・プレーンの一次振動又はZ軸に対応する二次振動によって圧電体膜の歪みが最も生じにくい中央線を含むように配置されていることは好ましい一態様である。本実施形態の各検出電極13b,13cの配置により、角速度を受けて励起されるアウト・オブ・プレーンの二次振動によって生じる各検出電極13b,13cの電気的信号の正負が逆になる。
 従って、上述と同様、公知の差分回路である演算回路において、各検出電極13b,13cの電気信号の差が算出される。その結果、検出信号はいずれか一方の検出電極の場合と比較して約2倍の検出能力を備えることになる。
 次に、上述の一次振動が励起された後、Y軸の回りで角速度が加わる場合について説明する。この場合、図9Eに示すcos3θの振動モードの二次振動が生じる。なお、この二次振動は、図9Dに示されたcos3θの振動モードとは振動軸の角度が30°離れたもう一つのアウト・オブ・プレーンのcos3θモードである。
 この二次振動が3つの検出電極(第2検出電極)13d,13d,13dと、別の3つの検出電極(第2検出電極)13e,13e,13eによって検出される。本実施形態では、図1に示すように、各検出電極13d,13eは、それぞれアウト・オブ・プレーンの二次振動の振動軸に対応して配置されている。なお、本実施形態では、上述の各検出電極13d,13eは、リング状振動体11の上面における中央線よりも外側に形成されているが、これに限定されない。むしろ、上述の各検出電極13d,13eは、イン・プレーンの一次振動又はZ軸に対応する二次振動によって圧電体膜の歪みが最も生じにくい中央線を含むように配置されていることは好ましい一態様である。本実施形態の各検出電極13d,13eの配置では、角速度を受けて励起されるアウト・オブ・プレーンの二次振動によって生じる各検出電極13d,13eの電気的信号の正負が逆になる。
 従って、上述と同様、公知の差分回路である演算回路において、各検出電極13d,13eの電気信号の差が算出される。その結果、検出信号はいずれか一方の検出電極の場合と比較して約2倍の検出能力を備えることになる。
 ところで、上述の第1の実施形態では、便宜上、角速度を検出する対象となる3軸のそれぞれを検出する検出電極に対して第1検出電極乃至第3検出電極の名称を与えていたが、各軸用の検出電極の名称は、第1検出電極乃至第3検出電極のうち、任意の重複しない1つの名称が与えられてもよい。
<第1の実施形態の変形例(1)>
 図4は、第1の実施形態の一部を変形したリング状振動ジャイロ200の中心的役割を果たす構造体の正面図である。
 本実施形態のリング状振動ジャイロ200は、第1の実施形態における上層金属膜50を除き、第1の実施形態のリング状振動ジャイロ100と同一の構成を備える。また、その製造方法は一部を除いて第1の実施形態と同じである。さらに、本実施形態の一次振動の振動モード及び二次振動の振動モードは、第1の実施形態のそれらと同じ振動モードである。従って、第1の実施形態と重複する説明は省略される。
 図4に示すように、本実施形態のリング状振動ジャイロ200は、各検出電極13b,13d,13gが1つずつ配置されている。このような各検出電極の配置であっても、本発明の効果が実質的に奏される。すなわち、各検出電極13b,13d,13gが存在することにより、3軸、すなわち、2軸(X軸とY軸)のアウト・オブ・プレーンの振動モードを用いた角速度の検出及び1軸(Z軸)のイン・プレーンの振動モードを用いた角速度の検出が可能となる。なお、本実施形態では、第1の実施形態に採用された差分回路が不要となるため、回路の単純化が図られる。他方、第1の実施形態それと同じ電極面積の各検出電極13b,13d,13gが1つずつしか存在しないため、第1の実施形態と比較して検出能力が劣る。
 また、本実施形態では、各電極が偏在しているため、引き出し電極14が形成されていないレッグ部15が存在するが、本実施形態はこれに限定されない。例えば、引き出し電極14が形成されていないレッグ部15が無くなっても、本実施形態と同等の効果が奏される。但し、無秩序なレッグ部15の不在はリング状振動体11の均質な振動に支障が生じ得るため、均等な角度だけ離れるように割り振られる位置にあるレッグ部15のみを無くした構造が好ましい。
<第1の実施形態の変形例(2)>
 図5は、第1の実施形態の一部を変形したリング状振動ジャイロ300の中心的役割を果たす構造体の正面図である。
 本実施形態のリング状振動ジャイロ300は、第1の実施形態における上層金属膜50を除き、第1の実施形態のリング状振動ジャイロ100と同一の構成を備える。また、その製造方法は一部を除いて第1の実施形態と同じである。さらに、本実施形態の一次振動の振動モード及び二次振動の振動モードは、第1の実施形態のそれらと同じ振動モードである。従って、第1の実施形態と重複する説明は省略される。
 図5に示すように、本実施形態のリング状振動ジャイロ300は、各検出電極13b,13c,13d,13e,13gが1つずつ配置されている。また、図5に示すように、第1検出電極13b,13cは、その電極領域が中央線を越えた範囲にまで広がっている。このような各検出電極の配置であっても、本発明の効果が実質的に奏される。すなわち、各検出電極13b,13c,13d,13e,13gが存在することにより、3軸、すなわち、2軸(X軸とY軸)のアウト・オブ・プレーンの振動モードを用いた角速度の検出及び1軸(Z軸)のイン・プレーンの振動モードを用いた角速度の検出が可能となる。特に、第1検出電極13b,13cは、イン・プレーンの振動モードとなる一次振動や二次振動によって圧電体膜の歪みが最も生じにくい中央線を含むように配置されていることは好ましい一態様である。さらに、前述の第1検出電極13b,13cは、イン・プレーンの振動モードでは中央線を境にして歪みの方向が逆になるから、中央線に対して対称な形状となるように配置されていることが、さらに好ましい一様態である。
 また、たとえ複数の第1検出電極13b,13cが中央線に対して対象となるように配置されていなくても、採用する振動モードに応じてイン・プレーンの振動モードを検出しにくい各第1検出電極13b,13cの配置は多様に存在する。従って、既述のとおり、各検出電極13b,13c,13d,13eが配置される第2電極配置領域は、第1電極配置領域と電気的に接しないリング状振動体11の上面の領域として定義される。
 なお、本実施形態では、第1検出電極13b,13cの単体の電極面積が第1の実施形態のそれらと比較して増えているため、上述の第1の実施形態の変形例(2)と比較して検出能力が向上する。但し、振動軸に対して左右対称に配置されていることが好ましい。また、本実施形態では、第1検出電極13b,13cのみの電極面積が増加されているが、これに限定されない。例えば、駆動電極の面積、モニタ電極の面積、又は他の検出電極の面積が増加することにより、駆動能力、又は検出能力が向上することは好ましい一態様である。
 また、本実施形態では、各電極が偏在しているため、引き出し電極14が形成されていないレッグ部15が存在するが、本実施形態はこれに限定されない。例えば、引き出し電極14が形成されていないレッグ部15が無くなっても、本実施形態と同等の効果が奏される。但し、無秩序なレッグ部15の不在はリング状振動体11の均質な振動に支障が生じ得るため、均等な角度だけ離れるように割り振られる位置にあるレッグ部15のみを無くした構造が好ましい。
<第1の実施形態の変形例(3)>
 図6は、第1の実施形態の一部を変形したリング状振動ジャイロ400の中心的役割を果たす構造体の図2に相当する断面図である。
 本実施形態では、図6に示すように、実質的に上層金属膜50が形成されている領域に合わせて圧電体膜40がエッチングされている。このため、下層金属膜30が形成されている領域に影響されずに、上層金属膜50に印加された交流電圧が鉛直下向きのみに印加されるため、圧電体膜40の望ましくない伸縮や電気信号の発信が防がれる。なお、本実施形態では、上層金属膜50のドライエッチング工程の後、上層金属膜50上の残留レジスト膜又は上記金属膜50自身をエッチングマスクとして、引き続いて第1の実施形態と同条件によるドライエッチングを行うことにより、前述の圧電体膜40が形成される。また、図6に示すように、本実施形態では圧電体膜40が傾斜状(例えば、傾斜角が75°)にエッチングされている。しかしながら、図6のような急峻な傾斜を有する圧電体膜40は、図5に示すリング状振動ジャイロ200の平面視においては、他の領域と比較して実質的に視認されないものとして本出願では取り扱われる。加えて、この実施形態で開示された圧電体膜40がエッチングされた態様は、少なくとも本出願の全ての実施形態で適用され得る。
<第1の実施形態の変形例(4)>
 上述の第1の実施形態及びその変形例(1)乃至(3)では、3軸の角速度を検出し得る振動ジャイロの構造が説明されているが、2軸又は1軸の角速度検出のための各検出電極の配置も第1の実施形態から導き出される。
 例えば、第1乃至第3の検出電極13b,13c,13d,13e,13f,13gのうち、X軸の角速度測定用の第1検出電極13b,13cとY軸の角速度測定用の第2検出電極13d,13eのみがリング状振動体11上に配置されることにより、2軸の角速度を検出する振動ジャイロが製造される。すなわち、第1乃至第3の検出電極のうちの2つの軸に対応する検出電極が選択されることにより、2軸の角速度を検出する振動ジャイロを得ることができる。なお、例えば、各第1検出電極13b,13cのうち、1つの第1検出電極(例えば、13b)のみが配置されることにより、本発明の効果が実質的に奏されることは既に述べたとおりである。
 また、上述と同様の考え方は、1軸の角速度を検出し得る振動ジャイロの構造にも適用される。例えば、第1乃至第3の検出電極13b,13c,13d,13e,13f,13gのうち、X軸の角速度測定用の第1検出電極13b,13cのみがリング状振動体11上に配置されることにより、1軸の角速度を検出する振動ジャイロが製造される。この1軸の角速度検出用の振動ジャイロも、3つの軸(X軸,Y軸,Z軸)のうち、任意の1つの軸に対応する検出電極が選択されることにより、2軸の角速度を検出する振動ジャイロを得ることができる。なお、例えば、各第1検出電極13b,13cのうち、1つの第1検出電極(例えば、13b)のみが配置されることにより、本発明の効果が実質的に奏されることは既に述べたとおりである。
<第1の実施形態の変形例(5)>
 図7は、第1の実施形態の一部を変形したリング状振動ジャイロ500の中心的役割を果たす構造体の正面図である。また、図8は、図7のB-B断面図である。
 本実施形態のリング状振動ジャイロ500は、第1の実施形態と比較して、リング状振動体11の周囲に溝又はレッグ部17を介して固定端60が形成されている。また、レッグ部17及び固定端60上には、駆動電極13a,13a及び第2検出電極13d,13eを起点とする引き出し電極14及び電極パッド18が形成されている。さらに、前述のレッグ部17上の引き出し電極14が形成されたために、レッグ部15及び固定端19上の引き出し電極14及び電極パッド18は取り除かれている。本実施形態のリング状振動ジャイロ500は、上述の点以外は、第1の実施形態と同じ構成を備えている。また、その製造方法は一部を除いて第1の実施形態と同じである。さらに、本実施形態の一次振動の振動モード及び二次振動の振動モードは、第1の実施形態のそれらと同じ振動モードである。従って、第1の実施形態と重複する説明は省略される。また、本実施形態では、図面を見やすくするために、駆動電極13a,13aに接続する交流電源は図示されていない。
 本実施形態のリング状振動ジャイロ500における固定端60及び固定端60とリング状振動体11とを結ぶレッグ部17の形成により、リング状振動体11の内部のレッグ部15上に複数の引き出し電極14を配置する必要がなくなる。従って、製造工程の不具合等による引き出し電極間の短絡の危険性が大きく軽減する。図7に示すとおり、各電極の幅の中央部に引き出し電極14が接合しているため、第1の実施形態における駆動電極13a,13a及び第2検出電極13d,13eからの電気信号の偏りは生じない。他方、固定端60が形成されることにより、振動ジャイロのサイズが第1の実施形態のそれと比較して大きくなる。
<第2の実施形態>
 図10は、本実施形態におけるもう一つの3軸の角速度を測定するリング状振動ジャイロ600の中心的役割を果たす構造体の正面図である。
 本実施形態のリング状振動ジャイロ600は、駆動電極13a、モニタ電極13h、第1の実施形態における第1検出電極13b,13c、第2検出電極13d,13e、第3検出電極13f,13gの内の一部の検出電極の配置、及び交流電源12の配置と数を除き、第1の実施形態のリング状振動ジャイロ100と同一の構成を備える。また、その製造方法は、第1の実施形態と同じである。従って、第1の実施形態と重複する説明は省略される。但し、本実施形態の一次振動の振動モードは、図11A示すイン・プレーンのcos3θの振動モードである。また、本実施形態の二次振動の振動モードとは、図11Bに示すX軸のcos2θのアウト・オブ・プレーンの振動モードと、図11Cに示すY軸のcos2θのアウト・オブ・プレーンの振動モードと、図11Dに示す1軸(Z軸)のcos3θのイン・プレーンの振動モードである。
 図10に示すとおり、本実施形態のリング状振動ジャイロ60でも、複数の電極13a~13hを構成する上層金属膜50の外側端部は、約40μm幅のリング状平面を有するリング状振動体11の外周縁から約1μm内側に形成され、その幅は約18μmである。また、その上層金属膜50は、中央線よりも外側又は内側に形成されている。
 ところで、本実施形態では、イン・プレーンのcos3θの振動モードでリング状振動ジャイロ600の一次振動が励起される。また、本実施形態の二次振動の振動モードは、図11B乃至図11Dに示す振動モードである。従って、前述の複数の電極13a~13hの内訳は、次のとおりである。まず、互いに円周方向に120°離れた角度に配置された3つの駆動電極13a,13a,13aが配置される。また、前述の3つの駆動電極13a,13a,13aの内の1つの駆動電極13a(例えば、図10において時計の12時方向の駆動電極13a)を基準電極とした場合に、その駆動電極13aから円周方向であって60°、180°、及び300°離れた角度に3つのモニタ電極13h,13h,13hが配置される。また、リング状振動体上の圧電素子が配置される平面、換言すれば、図10における紙面をX‐Y平面とした場合に、リング状振動ジャイロ600にX軸まわりの角速度が与えられたときに発生する二次振動を検出する、第1検出電極13b,13cが、基準電極から円周方向であって0°、90°、180°、及び270°離れた角度に配置される。同様に、リング状振動ジャイロ600にY軸まわりの角速度が与えられたときに発生する二次振動を検出する第2検出電極13d,13eが、基準電極から円周方向であって45°、135°、225°、及び315°離れた角度に配置される。さらに、リング状振動ジャイロ600にZ軸、すなわち、図10に示すリング状振動ジャイロ600の配置された平面に垂直な軸(紙面に垂直な方向の軸、以下、単に「垂直軸」又は「Z軸」という)のまわりの角速度が与えられたときに発生する二次振動を検出する、第3検出電極13f,13gが配置される。
 次に、リング状振動ジャイロ600が備える各電極の作用について説明する。上述の通り、本実施形態はイン・プレーンのcos3θの振動モードの一次振動が励起される。なお、固定電位電極16が接地されるため、固定電位電極16と連続して形成されている下層電極膜30は一律に0Vになっている。
 最初に、図10に示すように、3つの駆動電極13a,13a,13aに1VP-0の交流電圧が印加される。その結果、圧電体膜40が伸縮して一次振動が励起される。ここで、本実施形態では上層金属膜50がリング状振動体11の上面における中央線よりも外側に形成されているため、リング状振動体11の側面に形成されることなく圧電体膜40の伸縮運動をリング状振動体11の一次振動に変換することが可能となる。
 次に、図10に示すモニタ電極13h,13h,13hが、上述の一次振動の振幅及び共振周波数を検出して、図示しない公知のフィードバック制御回路に信号を送信する。本実施形態のフィードバック制御回路は、駆動電極13a,13a,13aに印加される交流電圧の周波数とリング状振動体11が持つ固有周波数が一致するように制御するとともに、リング状振動体11の振幅がある一定の値となるようにモニタ電極13h,13h,13hの信号を用いて制御している。その結果、リング状振動体11は、一定の振動が持続される。
 上述の一次振動が励起された後、垂直軸(Z軸)の回りで角速度が加わると、イン・プレーンのcos3θの振動モードである本実施形態では、コリオリ力により図11Aに示す一次振動の振動軸に対して両側に30°傾いた新たな振動軸を有する図11Dに示す二次振動が生じる。
 この二次振動が3つの検出電極(第3検出電極)13f,13f,13fと、別の3つの検出電極(第3検出電極)13g,13g,13gによって検出される。本実施形態でも、第1の実施形態と同様、公知の差分回路である演算回路において、各第3検出電極13f,13gの電気信号の差が算出される。その結果、検出信号はいずれか一方の検出電極の場合と比較して約2倍の検出能力を備えることになる。
 次に、上述の一次振動が励起された後、X軸の回りで角速度が加わる場合について説明する。この場合、図11Bに示すアウト・オブ・プレーンのcos2θの振動モードの二次振動が生じる。
 この二次振動が2つの検出電極(第1検出電極)13b,13bと、別の2つの検出電極(第1検出電極)13c,13cによって検出される。本実施形態では、図10に示すように、各検出電極13b,13cは、それぞれアウト・オブ・プレーンの二次振動の振動軸に対応して配置されている。なお、本実施形態では、上述の各検出電極13b,13cは、リング状振動体11の上面における中央線よりも内側に形成されているが、これに限定されない。むしろ、上述の各検出電極13b,13cは、イン・プレーンの振動モードとなる一次振動や二次振動によって圧電体膜の歪みが最も生じにくい中央線を含むように配置されていることは好ましい一態様である。さらに、上述の各検出電極13b,13cは、イン・プレーンの振動モードでは中央線を境にして歪みの方向が逆になるから、中央線に対して対称な形状となるように配置されていることが、さらに好ましい一様態である。
 本実施形態の各検出電極13b,13cの配置により、角速度を受けて励起されるアウト・オブ・プレーンの二次振動によって生じる各検出電極13b,13cの電気的信号の正負が逆になる。従って、第1の実施形態と同様、公知の差分回路である演算回路において、各検出電極13b,13cの電気信号の差が算出される。その結果、検出信号はいずれか一方の検出電極の場合と比較して約2倍の検出能力を備えることになる。
 次に、上述の一次振動が励起された後、Y軸の回りで角速度が加わる場合について説明する。この場合、前述のcos2θの振動モードとは角度が45°離れた振動軸を持つ図11Cに示すcos2θの振動モードの二次振動が生じる。
 この二次振動が2つの検出電極(第2検出電極)13d,13dと、別の2つの検出電極(第2検出電極)13e,13eによって検出される。本実施形態では、図1に示すように、各検出電極13d,13eは、それぞれアウト・オブ・プレーンの二次振動の振動軸に対応して配置されている。なお、本実施形態では、上述の各検出電極13d,13eは、リング状振動体11の上面における中央線よりも内側に形成されているが、これに限定されない。むしろ、上述の各検出電極13d,13eは、イン・プレーンの振動モードとなる一次振動や二次振動によって圧電体膜の歪みが最も生じにくい中央線を含むように配置されていることは好ましい一態様である。また、イン・プレーンの振動モードでは中央線を境にして歪みの方向が逆になるから、中央線に対して対称な形状となるように配置されていることが、さらに好ましい一様態である。
 本実施形態の各検出電極13d,13eの配置により、角速度を受けて励起されるアウト・オブ・プレーンの二次振動によって生じる各検出電極13d,13eの電気的信号の正負が逆になる。従って、上述と同様、公知の差分回路である演算回路において、各検出電極13d,13eの電気信号の差が算出される。その結果、検出信号はいずれか一方の検出電極の場合と比較して約2倍の検出能力を備えることになる。
 なお、上述の第1の実施形態では、便宜上、角速度を検出する対象となる3軸のそれぞれを検出する検出電極に対して第1検出電極乃至第3検出電極の名称を与えていたが、各軸用の検出電極の名称は、第1検出電極乃至第3検出電極のうち、任意の重複しない1つの名称が与えられてもよい。
 ところで、上述の第1の実施形態及びその変形例(1)乃至(5)では、モニタ電極13h,13hが同じ位置乃至領域内に配置されていたが、これに限定されない。すなわち、モニタ電極13hは、Nを2以上又は3以上の自然数とした場合であって、駆動電極13aの1つを基準駆動電極とし、且つM=0,1,・・・,N-1(以下、本パラグラフ内において同じ)とした場合に、必ずしも、その基準駆動電極13aから円周方向に〔(360/N)×{M+(1/2)}〕°離れた角度に配置される必要はない。例えば、cosNθの振動モードの場合であって、L=0,1,・・・,2N-1(以下、本パラグラフ内において同じ)とした場合に、各モニタ電極13hが、基準駆動電極から、円周方向に(180/N)×{L+(1/2)}°離れた以外の角度の配置、又はその角度の位置に対して線対称となるような配置を避けるように配置される。加えて、各モニタ電極13hは、中央線に対して対称となるような配置を避けるようにも配置される。各モニタ電極13hがそのように配置されることにより、第1の実施形態又はその変形例による効果が実質的に奏される。
 上述の具体的な一例は、図12Aに示すリング状振動ジャイロ700である。リング状振動ジャイロ700のモニタ電極13h,・・・,13hは、Nを2以上又は3以上の自然数とした場合であって、駆動電極13aの1つを基準駆動電極とし、且つM=0,1,・・・,N-1(以下、本パラグラフ内において同じ)とした場合に、必ずしも、その基準駆動電極13aから円周方向に〔(360/N)×{M+(1/2)}〕°離れた角度に配置されていない。しかしながら、図12Aに示すモニタ電極13h,・・・,13hの配置であっても、第1の実施形態と同様の効果が奏される。
 また、他の一例は、図12Bに示すリング状振動ジャイロ720である。リング状振動ジャイロ720のモニタ電極13h,13hは、図12Aのリング状振動ジャイロ700のモニタ電極13h,・・・,13hのうちの2つが取り除かれた状態となるように配置されている。しかしながら、図12Bに示すモニタ電極13h,13hの配置であっても、第1の実施形態と同様の効果が奏される。
 また、他の一例は、図12Cに示すリング状振動ジャイロ740である。リング状振動ジャイロ740のモニタ電極13h,13hは、図12Aのリング状振動ジャイロ700のモニタ電極13h,・・・,13hのうちの他の2つが取り除かれた状態となるように配置されている。しかしながら、図12Cに示すモニタ電極13h,13hの配置であっても、第1の実施形態と同様の効果が奏される。
 加えて、他の一例は、図12Dに示すリング状振動ジャイロ760である。リング状振動ジャイロ760のモニタ電極13h,13hは、図12Aのリング状振動ジャイロ700のモニタ電極13h,・・・,13hのうちの上述とは別の2つが取り除かれた状態となるように配置されている。しかしながら、図12Dに示すモニタ電極13h,13hの配置であっても、第1の実施形態と同様の効果が奏される。
 さらに、他の一例は、図12Eに示すリング状振動ジャイロ780である。リング状振動ジャイロ780のモニタ電極13h,・・・,13hの幾つかは、リング状振動体11の内周縁から中央線に至るまでの領域上に配置されている。他方、第2検出電極13dの電極面積は縮小されている。しかしながら、図12Eに示すモニタ電極13h,・・・,13hの配置であっても第1の実施形態の少なくとも一部の効果が奏される。但し、モニタ電極13hの対象性を考慮すれば、図12Eに示すリング状振動ジャイロ760よりも、第1の実施形態のリング状振動ジャイロ100の方が好ましい。同様に、モニタ電極13h,・・・,13hの幾つか又は全てが、中央線に対して対称となるような配置を避けるようにリング状振動体11の外周縁から中央線に至るまでの領域上に配置されていても、第1の実施形態と同様の効果が奏される。
 上述の各例に示すように、本発明のリング状振動ジャイロは、いずれもイン・プレーンの振動モードの一次振動が励起されるため、リング状振動体11の平面上のモニタ電極の配置は、高い自由度が与えられることになる。但し、例えば、cosNθの振動モードの場合であって、L=0,1,・・・,2N-1(以下、本パラグラフ内において同じ)とした場合に、各モニタ電極13hは、基準駆動電極から、円周方向に(180/N)×{L+(1/2)}°離れた以外の角度の配置、又はその角度の位置に対して線対称となるような配置を避けるように配置される。前者の理由は、その位置に配置されるとリング状振動子11の歪みがゼロ(0)となるからである。また、後者の理由は、歪み方向が互いに逆方向のため、その歪みが相殺されるからである。加えて、各モニタ電極13hは、中央線に対して対称となるような配置を避けるようにも配置される。この理由も、歪み方向が互いに逆方向のため、その歪みが相殺されるからである。なお、特に小型化されたリング状振動体11の限定された平面領域の中では、第1の実施形態で示したようなモニタ電極13hの配置が、他の電極群の配置及び/又は引き出し電極の配置を容易にすることになる。具体的には、モニタ電極13hは、Nを2以上又は3以上の自然数とした場合であって、駆動電極13aの1つを基準駆動電極とし、且つM=0,1,・・・,N-1(以下、本パラグラフ内において同じ)とした場合に、その基準駆動電極13aから円周方向に〔(360/N)×{M+(1/2)}〕°離れた角度に配置されることは好ましい一態様といえる。
<その他の変形例>
 第2の実施形態は、上述の第1の実施形態の各変形例と同様の変形例が適用され得る。従って、それぞれの構成による有利な効果が奏される。
 ところで、上述の各実施形態は、円環状の振動体を用いた振動ジャイロで説明されているが、円環状の代わりに、多角形状の振動体であってもよい。例えば、正六角形、正八角形、正十二角形、正二十角形等の正多角形状の振動体であっても、本発明の効果と実質的に同様の効果が奏される。また、図13に示すリング状振動ジャイロ800の十二角形状の振動体111のような振動体であってもよい。振動体の正面視において点対象形状となる多角形状の振動体が採用されれば、振動体の振動時の安定性の観点で好ましい。なお、「円環状」には楕円形状が含まれる。また、図13では、図1等とは異なり、図を見やすくするために、レッグ部及び支柱は図示されていない。
 さらに、上述の各実施形態では、シリコンを母材とするリング状振動ジャイロが採用されているが、これにも限定されない。例えば、振動ジャイロの母材がゲルマニウム又はシリコンゲルマニウムであってもよい。上述のうち、特に、シリコン又はシリコンゲルマニウムの採用は、公知の異方性ドライエッチング技術を適用することができるため、振動体を含めたジャイロ全体の加工精度の向上に大きく寄与する。以上、述べたとおり、各実施形態の他の組合せを含む本発明の範囲内に存在する変形例もまた、特許請求の範囲に含まれるものである。
 本発明は、振動ジャイロとして種々のデバイスの一部として適用され得る。

Claims (21)

  1.  平面を一様に備えたリング状振動体と、
     前記リング状振動体を柔軟に支持するとともに固定端を有するレッグ部と、
     固定電位電極、及び前記平面上に形成されるとともに上層金属膜及び下層金属膜により圧電体膜を厚み方向に挟む複数の電極とを備え、
     前記複数の電極は、次の(1)及び(2)、すなわち、
      (1)Nを2以上の自然数とした場合に、cosNθの振動モードで前記リング状振動体の一次振動を励起する、互いに円周方向に(360/N)°離れた角度に配置された一群の駆動電極
      (2)前記駆動電極の1つを基準駆動電極とした場合であって、前記リング状振動体に角速度が与えられたときに発生するcos(N+1)θの振動モードの二次振動を検出し、且つS=0,1,・・・,N(以下、同じ)とした場合に、前記基準駆動電極から〔{360/(N+1)}×S〕°離れた角度に配置された電極及び/又は前記基準駆動電極から〔{360/(N+1)}×{S+(1/2)}〕°離れた角度に配置された電極を備える一群の検出電極
    を有し、
     前記各々の駆動電極は、前記平面内であって、前記リング状振動体の外周縁から前記外周縁の近傍に至るまでの領域及び/又はその内周縁から前記内周縁の近傍に至るまでの領域を含む第1電極配置領域上に配置され、前記各々の検出電極は、前記第1電極配置領域と電気的に接しない第2電極配置領域上に配置される
     振動ジャイロ。
  2.  平面を一様に備えたリング状振動体と、
     前記リング状振動体を柔軟に支持するとともに固定端を有するレッグ部と、
     固定電位電極、及び前記平面上に形成されるとともに上層金属膜及び下層金属膜により圧電体膜を厚み方向に挟む複数の電極とを備え、
     前記複数の電極は、次の(1)及び(2)、すなわち、
      (1)Nを2以上の自然数とした場合に、cosNθの振動モードで前記リング状振動体の一次振動を励起する、互いに円周方向に(360/N)°離れた角度に配置された一群の駆動電極
      (2)前記駆動電極の1つを基準駆動電極とした場合であって、前記リング状振動体に角速度が与えられたときに発生するcos(N+1)θの振動モードの二次振動を検出し、且つS=0,1,・・・,N(以下、同じ)とした場合に、前記基準駆動電極から〔{360/(N+1)}×{S+(1/4)}〕°離れた角度に配置された電極及び/又は前記基準駆動電極から〔{360/(N+1)}×{S+(3/4)}〕°離れた角度に配置された電極を備える一群の検出電極
    を有し、
     前記各々の駆動電極は、前記平面内であって、前記リング状振動体の外周縁から前記外周縁の近傍に至るまでの領域及び/又はその内周縁から前記内周縁の近傍に至るまでの領域を含む第1電極配置領域上に配置され、前記各々の検出電極は、前記第1電極配置領域と電気的に接しない第2電極配置領域上に配置される
     振動ジャイロ。
  3.  平面を一様に備えたリング状振動体と、
     前記リング状振動体を柔軟に支持するとともに固定端を有するレッグ部と、
     固定電位電極、及び前記平面上に形成されるとともに上層金属膜及び下層金属膜により圧電体膜を厚み方向に挟む複数の電極とを備え、
     前記複数の電極は、次の(1)乃至(3)、すなわち、
      (1)Nを2以上の自然数とした場合に、cosNθの振動モードで前記リング状振動体の一次振動を励起する、互いに円周方向に(360/N)°離れた角度に配置された一群の駆動電極
      (2)前記駆動電極の1つを基準駆動電極とした場合であって、前記リング状振動体に角速度が与えられたときに発生するcos(N+1)θの振動モードの二次振動を検出し、且つS=0,1,・・・,N(以下、同じ)とした場合に、前記基準駆動電極から〔{360/(N+1)}×S〕°離れた角度に配置された電極及び/又は前記基準駆動電極から〔{360/(N+1)}×{S+(1/2)}〕°離れた角度に配置された電極を備える一群の第1検出電極
      (3)前記二次振動に対して{90/(N+1)}°離れた角度の振動軸の二次振動を検出し、且つ前記基準駆動電極から〔{360/(N+1)}×{S+(1/4)}〕°離れた角度に配置された電極及び/又は前記基準駆動電極から〔{360/(N+1)}×{S+(3/4)}〕°離れた角度に配置された電極を備える一群の第2検出電極
    を有し、
     前記各々の駆動電極は、前記平面内であって、前記リング状振動体の外周縁から前記外周縁の近傍に至るまでの領域及び/又はその内周縁から前記内周縁の近傍に至るまでの領域を含む第1電極配置領域上に配置され、前記各々の第1検出電極及び前記各々の第2検出電極は、前記第1電極配置領域と電気的に接しない第2電極配置領域上に配置される
     振動ジャイロ。
  4.  前記検出電極を第1検出電極としたときに、前記複数の電極が、次の(3)、すなわち、
      (3)前記リング状振動体に角速度が与えられたときに発生するcosNθの振動モードの二次振動を検出し、且つM=0,1,・・・,N-1(以下、同じ)とした場合に、前記基準駆動電極から〔(360/N)×{M+(1/4)}〕°離れた角度に配置された電極及び/又は前記基準駆動電極から〔(360/N)}×{M+(3/4)}〕°離れた角度に配置された電極を備える一群の第2検出電極
    をさらに有し、
     前記各々の第2検出電極が、前記第1電極配置領域上に配置される
     請求項1又は請求項2に記載の振動ジャイロ。
  5.  前記検出電極を第1検出電極としたときに、前記複数の電極が、次の(3)及び(4)、すなわち、
      (3)前記二次振動に対して{90/(N+1)}°離れた角度の振動軸の二次振動を検出し、且つ前記基準駆動電極から〔{360/(N+1)}×{S+(1/4)}〕°離れた角度に配置された電極及び/又は前記基準駆動電極から〔{360/(N+1)}×{S+(3/4)}〕°離れた角度に配置された電極を備える一群の第2検出電極
      (4)前記リング状振動体に角速度が与えられたときに発生するcosNθの振動モードの二次振動を検出し、且つM=0,1,・・・,N-1(以下、同じ)とした場合に、前記基準駆動電極から〔(360/N)×{M+(1/4)}〕°離れた角度に配置された電極及び/又は前記基準駆動電極から〔(360/N)}×{M+(3/4)}〕°離れた角度に配置された電極を備える一群の第3検出電極
    をさらに有し、
     前記各々の第2検出電極が、前記第2電極配置領域上に配置されるとともに、前記各々の第3検出電極が、前記第1電極配置領域上に配置される
     請求項1に記載の振動ジャイロ。
  6.  平面を一様に備えたリング状振動体と、
     前記リング状振動体を柔軟に支持するとともに固定端を有するレッグ部と、
     固定電位電極、及び前記平面上に形成されるとともに上層金属膜及び下層金属膜により圧電体膜を厚み方向に挟む複数の電極とを備え、
     前記複数の電極は、次の(1)及び(2)、すなわち、
      (1)Nを3以上の自然数とした場合に、cosNθの振動モードで前記リング状振動体の一次振動を励起する、互いに円周方向に(360/N)°離れた角度に配置された一群の駆動電極
      (2)前記駆動電極の1つを基準駆動電極とした場合であって、前記リング状振動体に角速度が与えられたときに発生するcos(N-1)θの振動モードの二次振動を検出し、且つS=0,1,・・・,N-2(以下、同じ)とした場合に、前記基準駆動電極から〔{360/(N-1)}×S〕°離れた角度に配置された電極及び/又は前記基準駆動電極から〔{360/(N-1)}×{S+(1/2)}〕°離れた角度に配置された電極を備える一群の検出電極
    を有し、
     前記各々の駆動電極は、前記平面内であって、前記リング状振動体の外周縁から前記外周縁の近傍に至るまでの領域及び/又はその内周縁から前記内周縁の近傍に至るまでの領域を含む第1電極配置領域上に配置され、前記各々の検出電極は、前記第1電極配置領域と電気的に接しない第2電極配置領域上に配置される
     振動ジャイロ。
  7.  平面を一様に備えたリング状振動体と、
     前記リング状振動体を柔軟に支持するとともに固定端を有するレッグ部と、
     固定電位電極、及び前記平面上に形成されるとともに上層金属膜及び下層金属膜により圧電体膜を厚み方向に挟む複数の電極とを備え、
     前記複数の電極は、次の(1)及び(2)、すなわち、
      (1)Nを3以上の自然数とした場合に、cosNθの振動モードで前記リング状振動体の一次振動を励起する、互いに円周方向に(360/N)°離れた角度に配置された一群の駆動電極
      (2)前記駆動電極の1つを基準駆動電極とした場合であって、前記リング状振動体に角速度が与えられたときに発生するcos(N-1)θの振動モードの二次振動を検出し、且つS=0,1,・・・,N-2(以下、同じ)とした場合に、前記基準駆動電極から〔{360/(N-1)}×{S+(1/4)}〕°離れた角度に配置された電極及び/又は前記基準駆動電極から〔{360/(N-1)}×{S+(3/4)}〕°離れた角度に配置された電極を備える一群の検出電極
    を有し、
     前記各々の駆動電極は、前記平面内であって、前記リング状振動体の外周縁から前記外周縁の近傍に至るまでの領域及び/又はその内周縁から前記内周縁の近傍に至るまでの領域を含む第1電極配置領域上に配置され、前記各々の検出電極は、前記第1電極配置領域と電気的に接しない第2電極配置領域上に配置される
     振動ジャイロ。
  8.  平面を一様に備えたリング状振動体と、
     前記リング状振動体を柔軟に支持するとともに固定端を有するレッグ部と、
     固定電位電極、及び前記平面上に形成されるとともに上層金属膜及び下層金属膜により圧電体膜を厚み方向に挟む複数の電極とを備え、
     前記複数の電極は、次の(1)乃至(3)、すなわち、
      (1)Nを3以上の自然数とした場合に、cosNθの振動モードで前記リング状振動体の一次振動を励起する、互いに円周方向に(360/N)°離れた角度に配置された一群の駆動電極
      (2)前記駆動電極の1つを基準駆動電極とした場合であって、前記リング状振動体に角速度が与えられたときに発生するcos(N-1)θの振動モードの二次振動を検出し、且つS=0,1,・・・,N-2(以下、同じ)とした場合に、前記基準駆動電極から〔{360/(N-1)}×S〕°離れた角度に配置された電極及び/又は前記基準駆動電極から〔{360/(N-1)}×{S+(1/2)}〕°離れた角度に配置された電極を備える一群の第1検出電極
      (3)前記二次振動に対して{90/(N-1)}°離れた角度の振動軸の二次振動を検出し、且つ前記基準駆動電極から〔{360/(N-1)}×{S+(1/4)}〕°離れた角度に配置された電極及び/又は前記基準駆動電極から〔{360/(N-1)}×{S+(3/4)}〕°離れた角度に配置された電極を備える一群の第2検出電極
    を有し、
     前記各々の駆動電極は、前記平面内であって、前記リング状振動体の外周縁から前記外周縁の近傍に至るまでの領域及び/又はその内周縁から前記内周縁の近傍に至るまでの領域を含む第1電極配置領域上に配置され、前記各々の第1検出電極及び前記各々の第2検出電極は、前記第1電極配置領域と電気的に接しない第2電極配置領域上に配置される
     振動ジャイロ。
  9.  前記検出電極を第1検出電極としたときに、前記複数の電極が、次の(3)、すなわち、
      (3)前記リング状振動体に角速度が与えられたときに発生するcosNθの振動モードの二次振動を検出し、且つM=0,1,・・・,N-1(以下、同じ)とした場合に、前記基準駆動電極から〔(360/N)×{M+(1/4)}〕°離れた角度に配置された電極及び/又は前記基準駆動電極から〔(360/N)}×{M+(3/4)}〕°離れた角度に配置された電極を備える一群の第2検出電極
    をさらに有し、
     前記各々の第2検出電極が、前記第1電極配置領域上に配置される
     請求項6又は請求項7に記載の振動ジャイロ。
  10.  前記検出電極を第1検出電極としたときに、前記複数の電極が、次の(3)及び(4)、すなわち、
      (3)前記二次振動に対して{90/(N-1)}°離れた角度の振動軸の二次振動を検出し、且つ前記基準駆動電極から〔{360/(N-1)}×{S+(1/4)}〕°離れた角度に配置された電極及び/又は前記基準駆動電極から〔{360/(N-1)}×{S+(3/4)}〕°離れた角度に配置された電極を備える一群の第2検出電極
      (4)前記リング状振動体に角速度が与えられたときに発生するcosNθの振動モードの二次振動を検出し、且つM=0,1,・・・,N-1(以下、同じ)とした場合に、前記基準駆動電極から〔(360/N)×{M+(1/4)}〕°離れた角度に配置された電極及び/又は前記基準駆動電極から〔(360/N)}×{M+(3/4)}〕°離れた角度に配置された電極を備える一群の第3検出電極
    をさらに有し、
     前記各々の第2検出電極が、前記第2電極配置領域上に配置されるとともに、前記各々の第3検出電極が、前記第1電極配置領域上に配置される
     請求項6に記載の振動ジャイロ。
  11.  前記複数の電極が、さらに、
      (5)L=0,1,・・・,2N-1(以下、同じ)とした場合に、前記基準駆動電極から円周方向に(180/N)×{L+(1/2)}°離れた角度以外の角度に配置された一群のモニタ電極と
    を有する
     請求項1乃至請求項3、請求項5乃至請求項8、及び請求項10のいずれかに記載の振動ジャイロ。
  12.  前記複数の電極が、さらに、
      (5)L=0,1,・・・,2N-1(以下、同じ)とした場合に、前記基準駆動電極から円周方向に(180/N)×{L+(1/2)}°離れた角度以外の角度に配置された一群のモニタ電極と
    を有する
     請求項4に記載の振動ジャイロ。
  13.  前記複数の電極が、さらに、
      (5)L=0,1,・・・,2N-1(以下、同じ)とした場合に、前記基準駆動電極から円周方向に(180/N)×{L+(1/2)}°離れた角度以外の角度に配置された一群のモニタ電極と
    を有する
     請求項9に記載の振動ジャイロ。
  14.  前記複数の電極が、さらに、
      (5)M=0,1,・・・,N-1(以下、同じ)とした場合に、前記基準駆動電極から円周方向に〔(360/N)×{M+(1/2)}〕°離れた角度に配置された一群のモニタ電極と
    を有する
     請求項1乃至請求項3、請求項5乃至請求項8、及び請求項10のいずれかに記載の振動ジャイロ。
  15.  前記複数の電極が、さらに、
      (5)M=0,1,・・・,N-1(以下、同じ)とした場合に、前記基準駆動電極から円周方向に〔(360/N)×{M+(1/2)}〕°離れた角度に配置された一群のモニタ電極と
    を有する
     請求項4に記載の振動ジャイロ。
  16.  前記複数の電極が、さらに、
      (5)M=0,1,・・・,N-1(以下、同じ)とした場合に、前記基準駆動電極から円周方向に〔(360/N)×{M+(1/2)}〕°離れた角度に配置された一群のモニタ電極と
    を有する
     請求項9に記載の振動ジャイロ。
  17.  前記第2電極配置領域が、前記外周縁から前記内周縁までの幅の中央を結ぶ中央線を含む
     請求項1乃至請求項3、請求項5乃至請求項8、及び請求項10のいずれかに記載の振動ジャイロ。
  18.  前記第2電極配置領域が、前記外周縁から前記内周縁までの幅の中央を結ぶ中央線を含む
     請求項4に記載の振動ジャイロ。
  19.  前記第2電極配置領域が、前記外周縁から前記内周縁までの幅の中央を結ぶ中央線を含む
     請求項9に記載の振動ジャイロ。
  20.  前記リング状振動体がシリコン基板から形成され、
     平面視で実質的に前記上層金属膜、前記圧電体膜、及び前記下層金属膜のみが観察される
     請求項1乃至請求項3、請求項5乃至請求項8、及び請求項10のいずれかに記載の振動ジャイロ。
  21.  前記リング状振動体がシリコン基板から形成され、
     平面視で実質的に前記上層金属膜及び前記下層金属膜のみが観察される
     請求項1乃至請求項3、請求項5乃至請求項8、及び請求項10のいずれかに記載の振動ジャイロ。
PCT/JP2009/052960 2008-03-25 2009-02-20 圧電体膜を用いた振動ジャイロ WO2009119205A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09724536.9A EP2267407A4 (en) 2008-03-25 2009-02-20 VIBRATORY GYROSCOPE USING PIEZOELECTRIC FILM
JP2010505458A JP5524045B2 (ja) 2008-03-25 2009-02-20 圧電体膜を用いた振動ジャイロ
US12/934,620 US8601872B2 (en) 2008-03-25 2009-02-20 Vibratory gyroscope using piezoelectric film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-077754 2008-03-25
JP2008077754 2008-03-25

Publications (1)

Publication Number Publication Date
WO2009119205A1 true WO2009119205A1 (ja) 2009-10-01

Family

ID=41113413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052960 WO2009119205A1 (ja) 2008-03-25 2009-02-20 圧電体膜を用いた振動ジャイロ

Country Status (4)

Country Link
US (1) US8601872B2 (ja)
EP (1) EP2267407A4 (ja)
JP (1) JP5524045B2 (ja)
WO (1) WO2009119205A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210605A (ja) * 2009-02-11 2010-09-24 Sumitomo Precision Prod Co Ltd 圧電体膜を用いた振動ジャイロ及びその製造方法
WO2011086633A1 (ja) * 2010-01-12 2011-07-21 ソニー株式会社 角速度センサ、電子機器及び角速度の検出方法
JPWO2009119204A1 (ja) * 2008-03-25 2011-07-21 住友精密工業株式会社 圧電体膜を用いた振動ジャイロ
JP5209716B2 (ja) * 2008-06-23 2013-06-12 住友精密工業株式会社 圧電体膜を用いた振動ジャイロ及びその製造方法
JP5632842B2 (ja) * 2009-07-27 2014-11-26 住友精密工業株式会社 圧電体膜を用いた振動ジャイロ
CN114485600A (zh) * 2022-03-15 2022-05-13 重庆天箭惯性科技股份有限公司 一种多锚点高强度多波动环形结构集成陀螺
WO2023079849A1 (ja) * 2021-11-05 2023-05-11 住友精密工業株式会社 振動型ジャイロスコープ及びこれを備えた角速度センサ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010067793A1 (ja) * 2008-12-09 2010-06-17 株式会社村田製作所 振動ジャイロ素子及びその製造方法
CN102052920B (zh) * 2010-11-23 2012-05-23 孙博华 轮式单结构三轴微机械陀螺仪
JP5988494B2 (ja) * 2013-02-04 2016-09-07 富士フイルム株式会社 角速度センサ及びその製造方法
US10180323B2 (en) * 2014-06-09 2019-01-15 The Regents Of The University Of California Axi-symmetric small-footprint gyroscope with interchangeable whole-angle and rate operation
US10161826B2 (en) 2016-05-04 2018-12-25 International Business Machines Corporation Method and apparatus for inducing multiaxial excitation
CN109870154A (zh) * 2019-03-26 2019-06-11 中国民航大学 一种提高环型振动陀螺仪检测精度的方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868638A (ja) * 1994-08-30 1996-03-12 Taiyo Yuden Co Ltd 圧電振動ジャイロ,その支持構造,多次元ジャイロ
JPH08271258A (ja) 1995-03-28 1996-10-18 Taiyo Yuden Co Ltd リング状振動子の支持構造
JP2000009473A (ja) 1998-06-22 2000-01-14 Tokai Rika Co Ltd 2軸ヨーレートセンサ及びその製造方法
JP2001194148A (ja) * 2000-01-07 2001-07-19 Citizen Watch Co Ltd 振動ジャイロ
JP2002509615A (ja) 1998-03-14 2002-03-26 ビーエイイー システムズ パブリック リミテッド カンパニー ジャイロスコープ
JP2002510398A (ja) 1998-03-14 2002-04-02 ビーエイイー システムズ パブリック リミテッド カンパニー 2軸ジャイロスコープ
JP2002158214A (ja) 2000-11-21 2002-05-31 Sumitomo Precision Prod Co Ltd シリコンの異方性エッチング方法及び装置
JP2003060254A (ja) * 2001-08-14 2003-02-28 Sony Corp マイクロデバイスの製造方法
JP2003302222A (ja) * 2002-04-10 2003-10-24 Matsushita Electric Ind Co Ltd 薄膜微小機械式共振子ジャイロの製造方法
JP2005529306A (ja) 2001-09-14 2005-09-29 ビ−エイイ− システムズ パブリック リミテッド カンパニ− 振動ジャイロスコープレートセンサ
JP2007195316A (ja) * 2006-01-18 2007-08-02 Seiko Epson Corp アクチュエータ装置及びその製造方法並びに液体噴射ヘッド
JP2007209014A (ja) 2007-03-12 2007-08-16 Ns Solutions Corp データ通信システムおよび方法、記録媒体
JP2008028835A (ja) 2006-07-24 2008-02-07 Fujitsu Ltd 超伝導チューナブルフィルタ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817940A (en) * 1996-03-14 1998-10-06 Aisin Seiki Kabishiki Kaisha Angular rate detector
JPH10115526A (ja) * 1996-10-15 1998-05-06 Ngk Insulators Ltd 振動ジャイロ・センサ及び振動ジャイロ・センサの製造方法
GB2327265B (en) * 1997-07-11 2001-07-18 British Aerospace Process for reducing bias error in a vibrating structure sensor
JPH11304494A (ja) * 1998-04-22 1999-11-05 Meidensha Corp 振動ジャイロ及びその使用方法
US6151964A (en) * 1998-05-25 2000-11-28 Citizen Watch Co., Ltd. Angular velocity sensing device
GB0001775D0 (en) * 2000-01-27 2000-03-22 British Aerospace Improvements relating to angular rate sensor devices
GB0122254D0 (en) * 2001-09-14 2001-11-07 Bae Systems Plc Vibratory gyroscopic rate sensor
GB0122253D0 (en) * 2001-09-14 2001-11-07 Bae Systems Plc Vibratory gyroscopic rate sensor
CN101910790A (zh) 2008-01-29 2010-12-08 住友精密工业株式会社 使用压电体膜的振动陀螺仪及其制造方法
JP5524044B2 (ja) * 2008-03-25 2014-06-18 住友精密工業株式会社 圧電体膜を用いた振動ジャイロ

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868638A (ja) * 1994-08-30 1996-03-12 Taiyo Yuden Co Ltd 圧電振動ジャイロ,その支持構造,多次元ジャイロ
JPH08271258A (ja) 1995-03-28 1996-10-18 Taiyo Yuden Co Ltd リング状振動子の支持構造
JP2002509615A (ja) 1998-03-14 2002-03-26 ビーエイイー システムズ パブリック リミテッド カンパニー ジャイロスコープ
JP2002510398A (ja) 1998-03-14 2002-04-02 ビーエイイー システムズ パブリック リミテッド カンパニー 2軸ジャイロスコープ
JP2000009473A (ja) 1998-06-22 2000-01-14 Tokai Rika Co Ltd 2軸ヨーレートセンサ及びその製造方法
JP2001194148A (ja) * 2000-01-07 2001-07-19 Citizen Watch Co Ltd 振動ジャイロ
JP2002158214A (ja) 2000-11-21 2002-05-31 Sumitomo Precision Prod Co Ltd シリコンの異方性エッチング方法及び装置
JP2003060254A (ja) * 2001-08-14 2003-02-28 Sony Corp マイクロデバイスの製造方法
JP2005529306A (ja) 2001-09-14 2005-09-29 ビ−エイイ− システムズ パブリック リミテッド カンパニ− 振動ジャイロスコープレートセンサ
JP2003302222A (ja) * 2002-04-10 2003-10-24 Matsushita Electric Ind Co Ltd 薄膜微小機械式共振子ジャイロの製造方法
JP2007195316A (ja) * 2006-01-18 2007-08-02 Seiko Epson Corp アクチュエータ装置及びその製造方法並びに液体噴射ヘッド
JP2008028835A (ja) 2006-07-24 2008-02-07 Fujitsu Ltd 超伝導チューナブルフィルタ
JP2007209014A (ja) 2007-03-12 2007-08-16 Ns Solutions Corp データ通信システムおよび方法、記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2267407A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009119204A1 (ja) * 2008-03-25 2011-07-21 住友精密工業株式会社 圧電体膜を用いた振動ジャイロ
JP5524044B2 (ja) * 2008-03-25 2014-06-18 住友精密工業株式会社 圧電体膜を用いた振動ジャイロ
JP5209716B2 (ja) * 2008-06-23 2013-06-12 住友精密工業株式会社 圧電体膜を用いた振動ジャイロ及びその製造方法
JP2010210605A (ja) * 2009-02-11 2010-09-24 Sumitomo Precision Prod Co Ltd 圧電体膜を用いた振動ジャイロ及びその製造方法
JP5632842B2 (ja) * 2009-07-27 2014-11-26 住友精密工業株式会社 圧電体膜を用いた振動ジャイロ
WO2011086633A1 (ja) * 2010-01-12 2011-07-21 ソニー株式会社 角速度センサ、電子機器及び角速度の検出方法
JP4858662B2 (ja) * 2010-01-12 2012-01-18 ソニー株式会社 角速度センサ、電子機器及び角速度の検出方法
US8910517B2 (en) 2010-01-12 2014-12-16 Sony Corporation Angular velocity sensor, electronic apparatus, and method of detecting an angular velocity
WO2023079849A1 (ja) * 2021-11-05 2023-05-11 住友精密工業株式会社 振動型ジャイロスコープ及びこれを備えた角速度センサ
CN114485600A (zh) * 2022-03-15 2022-05-13 重庆天箭惯性科技股份有限公司 一种多锚点高强度多波动环形结构集成陀螺

Also Published As

Publication number Publication date
EP2267407A4 (en) 2016-03-09
JPWO2009119205A1 (ja) 2011-07-21
EP2267407A1 (en) 2010-12-29
US8601872B2 (en) 2013-12-10
US20110041606A1 (en) 2011-02-24
JP5524045B2 (ja) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5524045B2 (ja) 圧電体膜を用いた振動ジャイロ
JP5524044B2 (ja) 圧電体膜を用いた振動ジャイロ
WO2009096086A1 (ja) 圧電体膜を用いた振動ジャイロ及びその製造方法
JP5523755B2 (ja) 圧電体膜を用いた振動ジャイロ及びその製造方法
JP4353087B2 (ja) 回転振動型角速度センサ
JP3814305B2 (ja) 角速度センサー
US10809061B2 (en) Vibratory gyroscope including a plurality of inertial bodies
KR100539061B1 (ko) 2축 자이로스코프
JP5632842B2 (ja) 圧電体膜を用いた振動ジャイロ
KR19980032646A (ko) 레이트 센서
US9612118B2 (en) Ring gyroscope structure and gyroscope
JP2011027561A (ja) 圧電体膜を用いた振動ジャイロ
JP3135181U (ja) 加速度と角速度との双方を検出するセンサ
JP5189927B2 (ja) 圧電体膜を用いた振動ジャイロ
JP2011027560A (ja) 圧電体膜を用いた振動ジャイロ
JP2009300283A (ja) 圧電体膜を用いた振動ジャイロ
JP4348759B2 (ja) 回転振動型ジャイロ
JP2011027562A (ja) 圧電体膜を用いた振動ジャイロ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724536

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505458

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12934620

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009724536

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009724536

Country of ref document: EP