WO2009107544A1 - 防眩フィルム、防眩性偏光板および画像表示装置 - Google Patents

防眩フィルム、防眩性偏光板および画像表示装置 Download PDF

Info

Publication number
WO2009107544A1
WO2009107544A1 PCT/JP2009/052898 JP2009052898W WO2009107544A1 WO 2009107544 A1 WO2009107544 A1 WO 2009107544A1 JP 2009052898 W JP2009052898 W JP 2009052898W WO 2009107544 A1 WO2009107544 A1 WO 2009107544A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
film
antiglare
glare
antiglare film
Prior art date
Application number
PCT/JP2009/052898
Other languages
English (en)
French (fr)
Inventor
勉 古谷
麻利 豊嶋
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN2009801064898A priority Critical patent/CN101960334A/zh
Publication of WO2009107544A1 publication Critical patent/WO2009107544A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers

Definitions

  • the present invention is an anti-glare film that exhibits excellent anti-glare performance, does not turn white, and exhibits high contrast and good visibility when it is applied to an image display device without causing glare. And an antiglare polarizing plate and an image display device using the antiglare film.
  • Image display devices such as a liquid crystal display, a plasma display panel, a cathode ray tube (CRT) display, and an organic electroluminescence (EL) display, when external light is reflected on the display surface, remarkably deteriorates the visibility.
  • display is performed using a television or a personal computer that emphasizes image quality, a video camera and a digital camera that are used outdoors with strong external light, and reflected light.
  • a film layer that prevents reflection of external light has been provided on the surface of an image display device.
  • the film used as such a film layer scatters incident light by forming a fine unevenness on the surface of the film (nonreflective film) that has been subjected to antireflective treatment using interference by the optical multilayer film. It is roughly divided into a film (antiglare film) that has been subjected to an antiglare treatment that blurs the reflected image.
  • the former non-reflective film is costly because it is necessary to form a multilayer film having a uniform optical film thickness.
  • the latter anti-glare film can be manufactured relatively inexpensively, it is widely used for applications such as large personal computers and monitors.
  • an antiglare film is based on random surface irregularities, for example, by applying a resin solution in which a filler is dispersed on a substrate sheet while adjusting the film thickness and exposing the filler to the surface of the coating film. It is manufactured by a method of forming on a material sheet.
  • the anti-glare film manufactured using the resin solution in which the filler is dispersed is affected by the arrangement and shape of the surface irregularities depending on the dispersion state and application state of the filler in the resin solution. It is difficult to obtain unevenness, and when the haze of the antiglare film is set low, there is a problem that sufficient antiglare performance cannot be obtained.
  • Patent Document 1 discloses a three-dimensional 10-point average roughness and a three-dimensional roughness reference surface on a transparent resin film.
  • An antiglare film is disclosed in which a cured product layer of an ionizing radiation curable resin layer having fine surface irregularities in which the average distance between adjacent convex portions on the top satisfies a predetermined value.
  • This antiglare film is manufactured by curing the ionizing radiation curable resin in a state where the ionizing radiation curable resin is sandwiched between the embossing mold and the transparent resin film.
  • This document describes that an uneven surface for embossing is formed by a sandblasting method or a bead shot method using a roller having a chromium plating on the surface of iron.
  • chrome plating for the purpose of improving durability during use, thereby making it harder and preventing corrosion.
  • Patent Document 3 discloses a method for producing an embossing roll by a bead shot method.
  • Patent Document 4 includes a step of forming a metal plating layer on the surface of an embossing roll, a step of mirror polishing the surface of the metal plating layer, and using a ceramic bead on the mirror-polished metal plating layer surface.
  • a method for producing an embossing roll through a step of performing a blasting process and a step of performing a peening process as necessary is disclosed.
  • Patent Document 5 In Japanese Patent Laid-Open No. 2006-53371 (Patent Document 5, Claims 1 and 2), a metal mold is formed by bumping fine particles against a polished metal surface to form unevenness, and electroless nickel plating is applied to the uneven surface. And the method of manufacturing the anti-glare film which was excellent in the anti-glare performance although it was a low haze by transferring the uneven surface of the metal mold
  • Patent Document 6 Claim 1 is a film having an antiglare hard coat layer on a transparent support, which is transmitted when light is incident from the transparent support side.
  • An antiglare antireflection film is disclosed in which the amount of light scattered in a specific direction of light is within a specific range with respect to the amount of light traveling straight.
  • Patent Document 7 discloses an antiglare film in which the scattering angle indicating the maximum value of scattered light intensity and the total light transmittance are within a specific range. .
  • the present invention has been made in view of the present situation, and the object thereof is to provide a high-definition image display device in which deterioration in visibility due to whitish is prevented while exhibiting excellent anti-glare performance. Another object of the present invention is to provide an antiglare film that exhibits high contrast without causing glare. Another object of the present invention is to provide an antiglare polarizing plate and an image display device to which the antiglare film is applied.
  • the inventors of the present invention have provided two types of resin layers having different refractive indexes on the transparent support on the side far from the transparent support in each resin layer.
  • the haze inside the antiglare film made of such a laminate (typically haze due to the interface region between the two types of resin layers) is provided so that a fine uneven shape is formed on the surface. It has been found that an antiglare film exhibiting excellent antiglare performance can be obtained if the specific range is satisfied.
  • the intensity of the scattered light is controlled including the control of the scattering at the interface region between these two resin layers. It was found that the reflection characteristics can be controlled as well as the control.
  • the incident angle 30 from the surface opposite to the transparent support side in the antiglare film.
  • the reflectance R (30) at a reflection angle of 30 °, the reflectance R (40) at a reflection angle of 40 °, and the reflectance R (50) at a reflection angle of 50 ° are in specific ranges, respectively.
  • the relative scattered light intensity T (30) in the normal direction of the anti-glare film when light is incident can be set to a specific range, thereby preventing glare sufficiently and also providing an image display device. Contrast when applied to I found out that it almost never declined. The present invention has been completed based on such findings and further various studies.
  • the antiglare film of the present invention includes a transparent support, a first resin layer laminated on the transparent support, and a second resin layer laminated on the first resin layer. It is related with an anti-glare film provided with.
  • the first resin layer and the second resin layer have different refractive indexes.
  • the first resin layer is made of an ionizing radiation curable resin having a fine uneven shape on the surface opposite to the transparent support side, and the second resin layer is also formed on the surface opposite to the transparent support side. It consists of an ionizing radiation curable resin having a fine uneven shape.
  • the internal haze of the antiglare film of the present invention is 5% or more and 30% or less.
  • the reflectance R (30) at a reflection angle of 30 ° is 0.05% or more and 2% or less.
  • the reflectance R (40) at a reflection angle of 40 ° is 0.0001% or more and 0.005% or less
  • the reflectance R (50) at a reflection angle of 50 ° is 0.00001% or more and 0.0005% or less. It is preferable.
  • the relative scattered light intensity T (20) in the normal direction of the antiglare film is 0.0001% to 0.0005%
  • the transparent support side When the light is incident at an incident angle of 30 °, the relative scattered light intensity T (30) in the normal direction of the antiglare film is preferably 0.00004% or more and 0.00025% or less.
  • the ionizing radiation curable resin constituting the first resin layer and the ionizing radiation curable resin constituting the second resin layer are not mixed with each other. It is preferable that a clear interface is formed.
  • the absolute value of the difference between the refractive index of the first resin layer and the refractive index of the second resin layer is preferably 0.08 or more.
  • the first resin layer and / or the second resin layer may contain a conductivity imparting substance.
  • the antiglare film of the present invention may further have a low reflection film including a low refractive index layer having a refractive index lower than that of the transparent support on the surface of the second resin layer.
  • the fine concavo-convex shape of the first resin layer and / or the fine concavo-convex shape of the second resin layer is preferably a mold having irregularities on the surface, and the concavo-convex shape is ionized radiation curable resin. It is formed by transferring to.
  • the present invention also provides an antiglare polarizing plate comprising any one of the above antiglare films and a polarizing film laminated on the antiglare film.
  • the polarizing film is disposed on the transparent support side of the antiglare film.
  • the antiglare film or the antiglare polarizing plate of the present invention can be combined with an image display element such as a liquid crystal display element or a plasma display panel to form an image display device. That is, according to the present invention, the antiglare film or the antiglare polarizing plate according to any one of the above and an image display element, wherein the antiglare film or the antiglare polarizing plate is the second resin.
  • An image display device is provided that is disposed on the viewing side of the image display element with the layer side facing outward.
  • the anti-glare film of the present invention exhibits excellent anti-glare performance, prevents deterioration of visibility due to whitening, and also generates glare when placed on the surface of a high-definition image display device. And high contrast can be exhibited.
  • the anti-glare polarizing plate obtained by combining the anti-glare film of the present invention with a polarizing film also exhibits the same effect.
  • positioned the anti-glare film or anti-glare polarizing plate of this invention has high anti-glare performance, and is excellent in visibility.
  • FIG. 1 is a schematic cross-sectional view showing a preferred example of the antiglare film of the present invention.
  • the antiglare film of the present invention comprises a transparent support 100, a first resin layer 101 laminated thereon, and a second laminate laminated on the first resin layer 101. And a resin layer 102.
  • the first resin layer 101 is ionized having a fine uneven shape (first fine uneven surface 101a in FIG. 1) on the surface opposite to the transparent support 100 side (surface on the second resin layer 102 side). It is a resin layer made of a radiation curable resin.
  • the second resin layer 102 is a resin made of an ionizing radiation curable resin having a fine uneven shape (second fine uneven surface 102a in FIG.
  • the upper surface (surface opposite to the transparent support 100 side) of the antiglare film shown in FIG. 1 is constituted by the fine uneven surface 102a of the second resin layer 102.
  • the 2nd resin layer 102 is formed on the 1st resin layer 101 so that the recessed part of the fine uneven surface 101a which it has (it touches the fine uneven surface 101a).
  • ionizing radiation curable resin means a cured product of a resin or a resin composition (hereinafter referred to as ionizing radiation curable resin) that can be cured by irradiation with ionizing radiation.
  • ionizing radiation include ultraviolet rays, electron beams, and visible light.
  • the antiglare film of the present invention having the above-described configuration is a part that determines the reflection characteristics of the antiglare film (second fine uneven surface 102a) and a part that determines the internal scattering characteristics of the antiglare film (first inside the antiglare film). Since the interface region between the resin layer 101 and the second resin layer 102, that is, the first fine uneven surface 101a region) is separately provided, the reflection characteristics and the internal scattering characteristics can be controlled independently. Is possible.
  • the antiglare film having such a configuration it is possible to easily achieve desirable optical characteristics that the antiglare film should have, excellent antiglare performance, prevention of deterioration of visibility due to whitishness, high It is possible to simultaneously achieve glare prevention and high contrast when arranged on the surface of a fine image display device.
  • corrugated shape of the 1st fine uneven surface and the uneven shape of the 2nd fine uneven surface are mutually independent.
  • the antiglare film of the present invention is laminated on the transparent support and the transparent support, and has a fine uneven shape (first fine uneven surface) on the surface opposite to the transparent support.
  • the first resin layer made of an ionizing radiation curable resin having a second resin layer made of an ionizing radiation curable resin having a fine uneven shape (second fine uneven surface) on the surface opposite to the transparent support side It is a laminated body.
  • the “internal haze” of the antiglare film is 5% or more and 30% or less.
  • the “internal haze” of the antiglare film is caused by fine irregularities on the surface of the antiglare film (unevenness on the surface of the second fine irregularities) among the hazes indicated by the entire antiglare film. Haze other than haze, that is, haze caused by the inside of the antiglare film.
  • the haze caused by the second fine uneven surface of the second resin layer surface is defined as “surface haze”.
  • the “internal haze” of the antiglare film is 30% or less. If the internal haze exceeds 30%, the screen becomes dark when applied to an image display device, and the visibility tends to be impaired. In order to ensure sufficient brightness, the internal haze is preferably 20% or less.
  • the “surface haze” of the antiglare film is preferably 0.1% or more and 5% or less. By setting the surface haze to 5% or less, whitening can be effectively suppressed. When the surface haze is less than 0.1%, sufficient antiglare properties tend not to be exhibited.
  • the “internal haze” and “surface haze” of the antiglare film are measured as follows. That is, first, the haze of the entire antiglare film including the transparent support and the first and second resin layers (hereinafter referred to as “total haze”) is measured according to JIS K 7136. Next, a triacetyl cellulose film (TAC film) having a haze of almost 0 is bonded to the second fine uneven surface of the anti-glare film using glycerin, and the haze is again applied according to JIS K 7136. taking measurement.
  • TAC film triacetyl cellulose film
  • This haze value can be regarded as the “internal haze” of the antiglare film because the haze (surface haze) caused by the second fine uneven surface is almost canceled. Therefore, the “surface haze” of the antiglare film is obtained from the following formula (1).
  • Surface haze Overall haze-Internal haze (1)
  • the “inner haze” of the antiglare film is substantially the same between the first resin layer and the second resin layer inside the antiglare film. It can be regarded as haze caused by the interface region (first fine uneven surface region). Since the internal haze of the first resin layer alone and the second resin layer alone does not contain a light diffusing agent such as fine particles, it is usually 1% or less.
  • the “total haze” of the antiglare film is preferably 5% or more in order to effectively eliminate glare. However, if the overall haze exceeds 30%, the screen becomes dark when placed in an image display device, and the visibility tends to be impaired.
  • the ionizing radiation curable resin constituting the first resin layer and the second resin layer are within a range in which the adhesion between the first resin layer and the second resin layer can be secured. It is preferable that the interface with the ionizing radiation curable resin constituting the is clearly formed. Thereby, the internal scattering effect by the said interface area
  • the ionizing radiation curable resin constituting the first resin layer and the ionizing radiation curable resin constituting the second resin layer are partially mixed, and a mixed phase composed of these cured resins. In this case, it may be relatively difficult to control the optical characteristics of the antiglare film, particularly the internal scattering characteristics.
  • Both the first resin layer and the second resin layer are made of ionizing radiation curable resin, but have different refractive indexes.
  • the refractive index is the same, the scattered light does not scatter on the first fine uneven surface.
  • the refractive index of the first resin layer is n 1 and the refractive index of the second resin layer is n 2 , the absolute value
  • of the difference between these refractive indexes is 0.08 or more. It is preferable that it is 0.1 or more.
  • the refractive index n 1 of the first resin layer is more preferably larger than the refractive index n 2 of the second resin layer.
  • ionizing radiation curable resin used for the first resin layer and the second resin layer conventionally known ones can be used.
  • acrylic resins examples include ether acrylate resins and ester acrylate resins.
  • the ionizing radiation curable resins used for the first resin layer and the second resin layer are selected so that the refractive indexes of the cured resins obtained by curing them are different from each other, and preferably satisfy the above preferable refractive index difference. Is done.
  • the refractive index of a cured product of generally available ionizing radiation curable resin is about 1.45 to 1.80.
  • a photopolymerization initiator may be added to the ionizing radiation curable resin as necessary.
  • the photopolymerization initiator may be a conventionally known one. Examples of commercially available photopolymerization initiators include “Irgacure 907”, “Irgacure 184” (above, manufactured by Ciba Specialty Chemicals), “Lucirin TPO” (produced by BASF), and the like.
  • the transparent support is not particularly limited as long as it is made of a material that is substantially optically transparent.
  • thermoplastics such as amorphous cyclic polyolefins having triacetyl cellulose, polyethylene terephthalate, polycarbonate, and norbornene compounds as monomers.
  • a solvent cast film or an extruded film made of a resin can be used.
  • the transparent support may be formed by forming the resin surface into a film sheet by an extrusion method or the like while embossing a resin surface such as an acrylate resin using a metal mold as described later.
  • the thickness of the transparent support is not particularly limited and is, for example, 20 to 250 ⁇ m, preferably 40 to 150 ⁇ m.
  • the refractive index of a cured product of generally available ionizing radiation curable resin is about 1.45 to 1.80.
  • the arithmetic average height Pa in an arbitrary cross-sectional curve on the surface of the fine uneven surface is 0.1 ⁇ m or more and 1.0 ⁇ m or less, and the maximum cross-sectional height Pt is 0.5 ⁇ m or more and 3.5 ⁇ m or less.
  • the length PSm is preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the arithmetic average height Pa in an arbitrary cross section curve of the surface is 0.05 ⁇ m or more and 0.20 ⁇ m or less, and the maximum cross section height Pt is 0.2 ⁇ m or more and 1.5 ⁇ m or less.
  • the average length PSm is preferably 15 ⁇ m or more and 100 ⁇ m or less.
  • the arithmetic average height Pa is less than 0.05 ⁇ m, the second fine uneven surface (antiglare film surface) becomes almost flat and does not exhibit sufficient antiglare performance.
  • the arithmetic average height Pa is larger than 0.20 ⁇ m, the surface shape becomes rough, whitishness occurs, and the texture when the appearance is visually observed tends to be rough.
  • the antiglare film surface is also almost flat and does not exhibit sufficient antiglare performance. Further, when the maximum cross-sectional height Pt is larger than 1.5 ⁇ m, the surface shape becomes too rough, and problems such as whiteness and deterioration of texture may occur.
  • the average length PSm is less than 15 ⁇ m, sufficient antiglare properties tend not to be obtained. This is presumably because when the average length PSm is too small, the uneven peak (the surface inclination angle is considered to be approximately 0 °) interval is close, so that an image is formed when visually observed. In addition, when the average length PSm is larger than 100 ⁇ m, the texture when the appearance is visually observed tends to be rough.
  • the arithmetic average height Pa is the same as the value called centerline average roughness.
  • the second fine uneven surface (antiglare film surface) has 50 or more and 100 or less convex portions in the region of 200 ⁇ m ⁇ 200 ⁇ m. If the number of convex portions on the uneven surface is small, glare due to interference with pixels occurs when applied to a high-definition image display device, and the image tends to be difficult to see and the texture tends to deteriorate. Further, when the number of convex portions is excessively large, the inclination angle of the surface irregularity shape becomes steep, and whitening is likely to occur.
  • the surface shape is measured by an apparatus such as a confocal microscope, an interference microscope, an atomic force microscope (AFM), and the like.
  • a convex portion is determined by the following algorithm, and the number of the convex portions is counted. That is, when an arbitrary point on the surface of the second fine concavo-convex surface is focused, there is no point higher than the focused point around the point, and the altitude on the concavo-convex surface of the point is uneven.
  • the point is assumed to be the vertex of the convex part, and the number of convex parts obtained in this way is counted. And More specifically, as shown in FIG. 2, paying attention to an arbitrary point 201 on the second fine uneven surface 202, a radius of 2 ⁇ m to 5 ⁇ m parallel to the antiglare film reference surface 203 is centered on that point. When a circle is drawn, a point on the second fine uneven surface 202 included in the projection surface 204 of the circle on the anti-glare film reference surface 203 has a higher elevation than the point 201 of interest.
  • the point 201 is determined to be the apex of the convex portion when the elevation on the concave-convex surface of the point is higher than the midpoint between the highest elevation and the lowest elevation of the concave-convex surface. Find a number.
  • the radius of the projected circle 204 is required to be a size that does not count fine irregularities on the surface of the second fine irregularities and does not include a plurality of convex portions, and is preferably about 3 ⁇ m.
  • a magnification of the objective lens of about 50 times and a reduced resolution. This is because if the measurement is performed at a high resolution, the fine irregularities on the surface of the second fine irregularities are measured, and the counting of the convex portions is hindered. Note that when the objective lens has a low magnification, the resolution in the height direction also decreases. Therefore, when measuring an anti-glare film with few unevenness
  • the average area of the polygon formed when the surface of the second fine uneven surface (antiglare film surface) is Voronoi divided with the top of the convex portion as a generating point is 100 ⁇ m 2 or more and 1000 ⁇ m 2 or less. It is preferable.
  • the Voronoi division will be explained. When several points (called mother points) are arranged on a plane, the plane can be divided depending on which mother point is closest to any point in the plane. The figure is called Voronoi diagram, and the division is called Voronoi division.
  • FIG. 3 shows an example in which the surface of the second fine uneven surface is Voronoi divided with the apex of the convex portion as a generating point. A plurality of points shown in FIG.
  • Voronoi division generating points 301 are Voronoi division generating points 301, and a Voronoi polygon (also referred to as a Voronoi region) 302 including one generating point 301 is formed by Voronoi division.
  • a Voronoi polygon also referred to as a Voronoi region
  • the number of generating points coincides with the number of Voronoi polygons.
  • the average area of the Voronoi polygon formed when Voronoi is divided with the vertex of the convex portion as the base point is less than 100 ⁇ m 2 , the inclination angle of the second fine uneven surface (antiglare film surface) is steep. As a result, whitening is likely to occur. Further, when the average area of the Voronoi polygon is larger than 1000 ⁇ m 2 , the uneven surface shape becomes rough, glare is likely to occur, and the texture tends to deteriorate.
  • the surface shape is measured by the above-mentioned apparatus, and the three-dimensional coordinate value of each point on the second fine irregular surface is obtained, and then the Voronoi division is performed by the following algorithm to obtain the average area of the Voronoi polygon. That is, according to the algorithm described with reference to FIG. 2, first, the vertex of the convex portion on the second fine uneven surface is obtained, and then the vertex of the convex portion is projected onto the antiglare film reference plane.
  • the average area of the Voronoi polygon is determined.
  • the generating point in the Voronoi polygon 303 that is in contact with the boundary of the measurement visual field is included when obtaining the number of convex portions described above.
  • the antiglare film of the present invention has a configuration capable of independently controlling the reflection characteristics and the internal scattering characteristics, and can exhibit excellent optical characteristics.
  • the antiglare film of the present invention has a reflectance R (30) at a reflection angle of 30 ° of 0.05% or more and 2% or less when light is incident at an incident angle of 30 ° from the second fine uneven surface side.
  • the reflectance R (40) at a reflection angle of 40 ° is 0.0001% or more and 0.005% or less
  • the reflectance R (50) at a reflection angle of 50 ° is 0.00001% or more and 0.0005% or less.
  • FIG. 4 is a perspective view schematically showing an incident direction and a reflection direction of light from the second resin layer side with respect to the antiglare film when the reflectance is obtained.
  • the direction of the reflection angle of 30 ° with respect to the light 405 incident at an angle of 30 ° from the normal line 402 of the anti-glare film on the second fine uneven surface side of the anti-glare film 401 that is,
  • the reflectance (that is, the regular reflectance) of the reflected light in the regular reflection direction 406 is R (30).
  • the direction of the reflected light when measuring the reflectance is within the plane 409 including the direction of the incident light 405 and the normal 402. To do.
  • the regular reflectance R (30) exceeds 2%, a sufficient antiglare function cannot be obtained, and the visibility tends to decrease. On the other hand, even if the regular reflectance R (30) is too small, it tends to cause whitening. Therefore, the regular reflectance R (30) is preferably 0.05% or more. The regular reflectance R (30) is more preferably 1.5% or less, particularly 0.7% or less. On the other hand, if R (40) exceeds 0.005% or R (50) exceeds 0.0005%, the antiglare film is whitened and the visibility tends to be lowered.
  • R (40) and R (50) are not so large.
  • R (40) is generally preferably 0.0001% or more
  • R (50) is generally 0, since sufficient antiglare properties are not exhibited even if the reflectance at these angles is too small. It is preferably 0.0001% or more.
  • R (50) is more preferably 0.0001% or less.
  • FIG. 5 shows the reflection angle ⁇ and the reflectance of the light 407 reflected at the reflection angle ⁇ with respect to the light 405 incident at an angle of 30 ° from the normal 402 on the second fine uneven surface side of the antiglare film 401 in FIG.
  • a reflectance is a logarithmic scale
  • Such a graph representing the relationship between the reflection angle and the reflectance, or the reflectance for each reflection angle read therefrom may be referred to as a reflection profile.
  • the regular reflectance R (30) is a reflectance peak with respect to the light 405 incident at 30 °, and the reflectance tends to decrease as the angle deviates from the regular reflection direction.
  • the regular reflectance R (30) is about 0.17%
  • R (40) is about 0.0004%
  • R (50) is about 0.00005%. .
  • the regular reflectance R (30) is 0. .05% or more and 2% or less
  • reflectance R (40) at a reflection angle of 40 ° is 0.0001% or more and 0.005% or less
  • reflectance R (50) at a reflection angle of 50 ° is 0.00001% or more.
  • the anti-glare film of the present invention has a sufficient anti-glare performance, but is suppressed in whiteness and excellent in optical characteristics.
  • a detector In measuring the reflectance of an antiglare film, it is necessary to accurately measure a reflectance of 0.001% or less. Therefore, it is effective to use a detector with a wide dynamic range.
  • a detector for example, a commercially available optical power meter can be used, and an aperture is provided in front of the detector of this optical power meter so that the angle at which the antiglare film is viewed is 2 °. Measurements can be made using an angular photometer.
  • incident light visible light of 380 to 780 nm can be used, and as a measurement light source, collimated light emitted from a light source such as a halogen lamp can be used, or in parallel with a monochromatic light source such as a laser. A high degree may be used.
  • reflection from the back surface of the antiglare film may affect the measured value.
  • the smooth surface of the antiglare film is adhered to a black acrylic resin plate with an adhesive or It is preferable that only the reflectance of the outermost surface of the antiglare film (second fine uneven surface) can be measured by optical adhesion using a liquid such as water or glycerin.
  • the antiglare film of the present invention has a relative scattered light intensity observed in the normal direction of the second fine uneven surface (second resin layer) side when light is incident from the transparent support side at an incident angle of 20 °.
  • T (20) shows a value of 0.0001% or more and 0.0005% or less, and the relative observation observed in the normal direction of the second fine unevenness surface side when light is incident at an incident angle of 30 ° from the transparent support side.
  • the scattered light intensity T (30) preferably exhibits a value of 0.00004% or more and 0.00025% or less.
  • FIG. 6 shows the incident direction of light and the measurement of transmitted scattered light intensity when light is incident from the transparent support side and the scattered light intensity is measured in the normal direction of the second fine uneven surface (second resin layer) side. It is the perspective view which showed the direction typically.
  • the intensity of the transmitted scattered light 604 transmitted in the direction of the line 602 is measured, and a value obtained by dividing the transmitted scattered light intensity by the light intensity of the light source is defined as a relative scattered light intensity T ( ⁇ ).
  • the transmitted scattered light is observed in the direction of the second fine uneven surface side normal line 602.
  • the value obtained by dividing the intensity of 604 by the light intensity of the light source is T (20)
  • a value obtained by dividing the intensity of the transmitted scattered light 604 observed in the direction of the irregular surface side normal 602 by the light intensity of the light source is T (30).
  • the light 603 is incident such that the direction of the light 603 incident from the transparent support side and the normal line 602 of the antiglare film are on the same plane (plane 609 in FIG. 6).
  • the relative scattered light intensity T (30) at 30 ° incidence is less than 0.00004%, the scattering effect is low, and glare occurs when applied to a high-definition image display device.
  • the antiglare film is applied to a liquid crystal display that is not self-luminous, the effect of increasing the brightness due to scattering caused by light leakage during black display is large, and therefore the relative scattered light intensities T (20) and T (30) are high. If it exceeds the preferable range, the contrast is remarkably lowered and the visibility is impaired.
  • FIG. 7 is an example of a graph in which the relative scattered light intensity (logarithmic scale) measured by changing the incident angle ⁇ of light incident from the transparent support side of the antiglare film 601 in FIG. 6 is plotted against the incident angle ⁇ . It is.
  • a graph representing the relationship between the incident angle and the relative scattered light intensity, or the relative scattered light intensity for each incident angle read therefrom may be referred to as a transmission scattering profile.
  • the relative scattered light intensity has a peak at an incident angle of 0 °, and the scattered light intensity tends to decrease as the angle from the normal direction of the incident light 603 increases.
  • the transmission / scattering profile usually appears symmetrically about the incident angle of 0 °.
  • the relative scattered light intensity T (0) at 0 ° incidence shows a peak at about 30%
  • the relative scattered light intensity T (20) at 20 ° incidence is about
  • the relative scattered light intensity T (30) at 0.0002% and 30 ° incidence is about 0.00004%.
  • Patent Documents 6 and 7 as references referring to the transmitted scattered light intensity, but in any reference, unlike the scattering characteristics that can be exhibited by the antiglare film of the present invention, image display is possible. When applied to the apparatus, it has not always been sufficient to achieve high contrast and suppress glare.
  • a detector In measuring the relative scattered light intensity of the antiglare film, it is necessary to accurately measure the relative scattered light intensity of 0.001% or less, as in the reflectance measurement. Therefore, it is effective to use a detector with a wide dynamic range.
  • a detector for example, a commercially available optical power meter can be used, and an aperture is provided in front of the detector of this optical power meter so that the angle at which the antiglare film is viewed is 2 °. Measurements can be made using an angular photometer.
  • Visible light of 380 to 780 nm can be used as incident light, and a collimated light emitted from a light source such as a halogen lamp can be used as a measurement light source, or a parallel light source using a monochromatic light source such as a laser. Higher ones may be used.
  • a light source such as a halogen lamp
  • a parallel light source using a monochromatic light source such as a laser. Higher ones may be used.
  • an optically transparent adhesive is used to bond the antiglare film to the glass substrate so that the uneven surface (second fine uneven surface) is the surface. It is preferable to use for a measurement.
  • the antiglare film of the present invention may be imparted with conductivity in order to prevent dust adhesion or to adversely affect the image display element used in combination.
  • Examples of the method for imparting conductivity include a method of incorporating a conductivity imparting substance into the first resin layer and / or the second resin layer.
  • Examples of the conductivity-imparting substance include metal fine particles, metal oxide fine particles, conductive polymers, and surfactants.
  • One kind or two or more kinds of conductivity imparting substances can be contained in the ionizing radiation curable resin constituting the first resin layer and / or the second resin layer.
  • the antiglare film of the present invention exhibits a sufficient antiglare function even when there is no low reflection film on the outermost surface, that is, on the second fine uneven surface side, but the low antireflection film is provided on the second fine uneven surface. It can also be provided.
  • the low reflection film can be formed by providing a layer made of a low refractive index material having a refractive index lower than that of the transparent support on the second resin layer. Specific examples of such a low refractive index material include lithium fluoride (LiF), magnesium fluoride (MgF 2 ), aluminum fluoride (AlF 3 ), cryolite (3NaF ⁇ AlF 3 or Na 3 AlF).
  • Inorganic low reflection material containing inorganic material fine particles such as acrylic resin or epoxy resin; fluorine or silicone organic compound, thermoplastic resin, thermosetting resin, ultraviolet curable resin, etc.
  • the organic low reflection material can be mentioned.
  • the antiglare film of the present invention can be preferably produced by using an embossing method in which a metal mold having irregularities is used and the irregularities of the mold are transferred to an ionizing radiation curable resin. Specifically, when the first resin layer having the first fine uneven surface is formed by an embossing method using a metal mold, for example, ionization as described above is performed on the surface of the transparent support.
  • a radiation curable resin is applied to form an ionizing radiation curable resin layer, and ionizing radiation (for example, ultraviolet rays) is irradiated from the transparent support side in a state where the curable resin layer is in close contact with the uneven surface of the metal mold.
  • ionizing radiation for example, ultraviolet rays
  • the curable resin layer is cured, and the uneven shape of the metal mold is transferred to the layer made of the ionizing radiation curable resin.
  • the transparent support on which the first resin layer (ionizing radiation curable resin) is formed is peeled from the metal mold. The same applies when the second resin layer is formed on the first resin layer by an embossing method.
  • At least one of the surface of the first resin layer (first fine uneven surface) or the surface of the second resin layer (second fine uneven surface) of the antiglare film uses a metal mold. It is preferably formed by an embossing method, and at least the first fine uneven surface is more preferably formed by an embossing method. Particularly preferably, both the first fine uneven surface and the second fine uneven surface are formed by an embossing method.
  • the metal mold suitably used for producing the antiglare film of the present invention can be produced as follows.
  • this mold manufacturing method in order to obtain a metal mold having surface irregularities, the surface of the metal substrate is subjected to copper plating or nickel plating, and after the plated surface is polished, fine particles are applied to the polished surface. After forming unevenness and processing to make the uneven shape dull, chromium plating is applied to the uneven surface to obtain a mold.
  • the mold manufacturing method will be described in detail.
  • copper plating or nickel plating is applied to the surface of the metal substrate.
  • copper plating or nickel plating is applied to the surface of the metal substrate constituting the mold.
  • chrome plating is applied to the surface of iron, etc., or if chrome plating is applied again after forming irregularities on the chrome plating surface by the sandblasting method or the bead shot method, the surface becomes rough as described above. It is easy to cause fine cracks and may adversely affect the uneven shape of the antiglare film. In contrast, it has been found that such inconvenience is eliminated by applying copper plating or nickel plating to the surface.
  • copper plating and nickel plating have a high covering property and a strong smoothing action, so that a flat and glossy surface is formed by filling minute irregularities and nests of the metal substrate.
  • Such characteristics of copper plating and nickel plating eliminate the roughness of the chrome plating surface, which is thought to be due to minute irregularities and nests existing in the metal substrate, and the high coverage of copper plating and nickel plating. Therefore, it is considered that the occurrence of fine cracks is reduced.
  • Copper or nickel can be pure metal, respectively, or an alloy mainly composed of copper or an alloy mainly composed of nickel. Therefore, in this specification, copper is meant to include copper and copper alloys, and nickel is meant to include nickel and nickel alloys. Copper plating and nickel plating may be performed by electrolytic plating or electroless plating, respectively, but electrolytic plating is usually employed.
  • aluminum, iron, and the like can be cited from the viewpoint of cost. From the viewpoint of handling convenience, lightweight aluminum is more preferable.
  • Aluminum and iron can also be pure metals, respectively, or can be alloys mainly composed of aluminum or iron. After copper plating or nickel plating is applied to the surface of such a metal substrate, and the surface is further polished to obtain a smoother and more glossy surface, fine irregularities are formed by hitting the surface with fine particles. After performing the process of blunting the uneven shape, chrome plating is further applied thereto to form a mold.
  • the thickness is preferably 10 ⁇ m or more.
  • the upper limit of the plating layer thickness is not critical, but generally about 500 ⁇ m is sufficient in consideration of cost and the like.
  • the metal substrate constituting the metal mold may be a flat metal plate or a columnar or cylindrical metal roll. If a metal mold
  • FIG. 8 shows an example of a metal mold manufacturing method in the case where a flat metal substrate is used.
  • FIG. 8 is a schematic cross-sectional view showing the state of the metal mold in each step.
  • FIG. 8A shows a cross section of a metal substrate after copper plating or nickel plating and mirror polishing, and a plating layer 802 is formed on the surface of the metal substrate 801, and the surface is A polished surface 803 is formed. Concavities and convexities are formed by hitting fine particles against the surface of the plated layer 802 after such mirror polishing (see blast treatment, FIG. 8B). A fine concave surface 804 having a partial spherical shape is formed by hitting the fine particles.
  • FIGS. 8C1 and 8C2 a process for dulling the uneven shape is applied to the surface on which the unevenness due to the fine particles is thus formed (see FIGS. 8C1 and 8C2).
  • Examples of the method for dulling the uneven shape include a method by etching (FIG. 8 (c1)) and a method by copper plating (FIG. 8 (c2)).
  • the etching method the partially spherical concave surface 804 shown in FIG. 8B and the acute protrusion formed thereby are cut away by etching, and the acute protrusion on the partial spherical surface is blunted.
  • a surface 806a is formed.
  • FIG. 8C1 a state before being blunted by etching (partial spherical concave surface 804 shown in FIG.
  • the copper plating layer 805 is formed on the partial spherical concave surface 804 shown in FIG. 8 (b), whereby the surface 806b on which the acute protrusion on the partial spherical surface is blunted. Is formed.
  • FIG. 8D1 is a schematic cross-sectional view showing a state in which a chromium plating layer 807 is formed on the surface 806a on which acute protrusions have been blunted by an etching process.
  • FIG. 8D2 is a schematic cross-sectional view showing a state in which the chromium plating layer 807 is formed on the surface 806b on which the acute protrusions are blunted by copper plating.
  • a chromium plating layer 807 is formed on the surface 806a on which acute protrusions are blunted by the etching shown in FIG. 8 (c1). .
  • the unevenness of the surface 808 of the chrome plating layer is further dulled by chromium plating compared to the unevenness of the surface 806a, in other words, the uneven shape is relaxed.
  • the copper plating layer 805 is formed on the fine concave surface formed in the plating layer 802 which consists of copper or nickel on the metal base material 801.
  • a chromium plating layer 807 is formed thereon.
  • the surface 808 of the chromium plating layer is duller than the unevenness of the surface 806b shown in FIG. 8C2 by the chromium plating, in other words, the uneven shape is relaxed.
  • the surface 806a or 806b subjected to the process of dulling the irregularities is subjected to chromium plating, thereby substantially
  • a metal mold having no flat portion can be obtained.
  • such a mold is suitable for obtaining an antiglare film exhibiting preferable optical characteristics.
  • the fine particles are applied to the plating layer made of copper or nickel on the metal substrate while the surface is polished.
  • the plating layer made of copper or nickel is particularly preferably polished in a state close to a mirror surface. This is because the metal plate or metal roll as the base material is often subjected to machining such as cutting or grinding in order to obtain a desired shape with high accuracy, so that the processing surface remains on the surface of the base material. Because it is. Even when copper plating or nickel plating is applied, those processed marks may remain, and the surface may not be completely smooth in the plated state.
  • the unevenness such as the processed eyes may be deeper than the unevenness formed by the fine particles, and the effects of the processed eyes remain. there is a possibility.
  • the optical properties may be unexpectedly affected.
  • the method for polishing the substrate surface on which plating has been performed there is no particular limitation on the method for polishing the substrate surface on which plating has been performed, and any of mechanical polishing, electrolytic polishing, and chemical polishing can be used.
  • the mechanical polishing method include a superfinishing method, lapping, fluid polishing method, and buff polishing method.
  • the surface roughness after polishing is expressed as an arithmetic average height Pa, and Pa is preferably 1 ⁇ m or less, and more preferably Pa is 0.5 ⁇ m or less. If Pa is too large, even if the metal surface is deformed by hitting fine particles, the influence of the surface roughness before deformation may remain, which is not preferable. Further, the lower limit of Pa is not particularly limited, and is set to an appropriate value in consideration of processing time, processing cost, and the like.
  • an injection processing method is preferably used as a method for hitting the surface of the metal substrate plated with fine particles.
  • the injection processing method include a sand blast method, a shot blast method, and a liquid honing method.
  • the particles used in these processes are preferably in a shape close to a sphere rather than a shape having sharp corners, and particles of a hard material that are crushed during processing and do not produce sharp corners are preferable.
  • spherical zirconia beads or spherical alumina beads are preferably used for ceramic particles.
  • beads made of steel or stainless steel are preferred.
  • particles in which ceramic or metal particles are supported on a resin binder may be used.
  • fine particles having an average particle size of 10 to 150 ⁇ m, particularly spherical fine particles, as the fine particles that strike the plated surface of the metal substrate an anti-glare film exhibiting excellent anti-glare performance can be produced.
  • the average particle size of the fine particles is smaller than 10 ⁇ m, it becomes difficult to form sufficient irregularities on the plated surface, and it becomes difficult to obtain sufficient antiglare performance.
  • the average particle size of the fine particles is larger than 150 ⁇ m, the surface irregularities become rough, and glare is likely to occur or the texture is liable to deteriorate.
  • a wet blast method in which the particles are processed by being dispersed in an appropriate dispersion medium so that the particles do not aggregate due to static electricity or the like.
  • the pressure at the time of hitting the fine particles, the amount of the fine particles used, and the distance from the nozzle for injecting the fine particles to the metal surface are also the uneven shape of the metal mold after processing, and the first and / or the first of the antiglare film. 2 affects the shape of the surface of fine irregularities, but in general, the pressure is about 0.05 to 0.4 MPa in gauge pressure, and the amount of fine particles is about 2 to 12 g per cm 2 surface area of the metal to be treated. From the distance of about 200 mm to 600 mm from the nozzle to the metal surface, the type and particle diameter of the fine particles to be used, the type of metal, the shape of the nozzle for injecting the fine particles, the desired uneven shape, etc. may be appropriately selected.
  • the uneven shape formed by hitting fine particles on the surface of the metal substrate plated is an arithmetic of an arbitrary cross-sectional curve.
  • the average height Pa is 0.1 ⁇ m or more and 1.5 ⁇ m or less, and the ratio Pa / PSm between the arithmetic average height Pa and the average length PSm in the cross-sectional curve is preferably 0.02 or more and 0.1 or less.
  • the arithmetic average height Pa is smaller than 0.1 ⁇ m or the ratio Pa / PSm is smaller than 0.02
  • the uneven surface is almost flat when the uneven shape is blunted before chrome plating. It becomes difficult to obtain a mold having a desired surface shape.
  • the processing for dulling the concavo-convex shape before chrome plating must be performed under strong conditions.
  • the surface shape tends to be difficult to control.
  • the substrate on which the unevenness is formed on the surface of the copper plating or the nickel plating is subjected to a process for dulling the uneven shape.
  • etching treatment or copper plating is preferable.
  • the sharp portions of the concavo-convex shape produced by hitting the fine particles are eliminated.
  • die can be changed to a preferable direction.
  • the copper plating has a strong smoothing action, the effect of dulling the uneven shape is stronger than that of the chromium plating. Thereby, the optical characteristic of the anti-glare film produced using the said metal mold
  • the second resin layer is not laminated on the first resin layer, as will be described later, and the first fine uneven surface. Since it is preferable that the haze of the laminated film in a state where the surface is in contact with air is 50% or more, the chrome plating process is performed without the process of dulling the uneven shape, and the surface fine uneven shape It is also possible to use a mold having a rough roughness, that is, a large arithmetic average height.
  • Etching is usually performed by corroding the surface using an aqueous ferric chloride (FeCl 3 ) solution, an aqueous cupric chloride (CuCl 2 ) solution, an alkaline etchant (Cu (NH 3 ) 4 Cl 2 ), or the like.
  • a strong acid such as hydrochloric acid or sulfuric acid can be used, or reverse electrolytic etching by applying a potential opposite to that during electrolytic plating can be used.
  • the degree of unevenness after etching is different depending on the type of base metal and the size and depth of the unevenness obtained by blasting techniques. The largest factor is the etching amount.
  • the etching amount is the thickness of the base material (plating layer) to be cut by etching.
  • the etching amount is preferably 1 ⁇ m or more and 20 ⁇ m or less, and more preferably 2 ⁇ m or more and 10 ⁇ m or less. preferable.
  • the unevenness of the unevenness differs depending on the type of base metal, the size and depth of the unevenness obtained by blasting techniques, and the type and thickness of the plating.
  • the biggest factor in controlling the degree of rounding is the plating thickness. If the thickness of the copper plating layer is thin, the effect of dulling the surface shape of the unevenness obtained by a technique such as blasting is insufficient, and the optical properties of the antiglare film obtained by transferring the uneven shape are not so good. . On the other hand, when the plating thickness is too thick, the productivity is deteriorated and the uneven shape is almost lost, so that the antiglare film does not exhibit sufficient antiglare property. Therefore, for the metal mold for forming the second fine uneven surface of the antiglare film, the thickness of the copper plating is preferably 1 ⁇ m to 20 ⁇ m, and more preferably 4 ⁇ m to 10 ⁇ m. Is more preferable.
  • the surface of the surface of the unevenness is further blunted by further chrome plating, and the surface hardness is reduced.
  • An enhanced metal mold is obtained.
  • the degree of unevenness at this time also varies depending on the type of base metal, the size and depth of the unevenness obtained by techniques such as blasting, and the type and thickness of the plating. The greatest factor in controlling the thickness is the plating thickness. If the thickness of the chrome plating layer is thin, the effect of dulling the surface shape of the unevenness obtained before the chrome plating process is insufficient, and the optical properties of the antiglare film obtained by transferring the uneven shape are not so good. .
  • the thickness of the chrome plating is preferably 1 ⁇ m or more and 10 ⁇ m or less, and more preferably 2 ⁇ m or more and 6 ⁇ m or less. Is more preferable.
  • Chromium plating is preferable because it is glossy, has high hardness, has a low coefficient of friction, and can provide good releasability.
  • the type of chrome plating is not particularly limited, but it is preferable to use a chrome plating that expresses a good luster, such as so-called bright chrome plating or decorative chrome plating.
  • Chromium plating is usually performed by electrolysis, and an aqueous solution containing chromic anhydride (CrO 3 ) and a small amount of sulfuric acid is used as the plating bath. By adjusting the current density and electrolysis time, the thickness of the chromium plating can be controlled.
  • the die surface to which chrome plating is applied preferably has a Vickers hardness of 800 or more, more preferably 1000 or more. If the Vickers hardness is low, the durability when using the mold is reduced, and the decrease in hardness due to chrome plating is likely to cause abnormalities in the plating bath composition and electrolytic conditions during the plating process. There is a high possibility that the occurrence of defects will also have an undesirable effect.
  • Patent Documents 1 and 4 disclose chrome plating on the surface of a metal base material to be a mold.
  • chrome plating is applied, depending on the base before plating of the mold or the type of chrome plating, the surface is often roughened after plating or many fine cracks are generated due to chrome plating.
  • the optical properties of the antiglare film proceed in an undesirable direction.
  • Those with a rough plating surface are not suitable for a mold for an antiglare film. This is because, in general, the plating surface is polished after chromium plating in order to eliminate roughness, but as described later, polishing of the surface after plating is not preferable.
  • such an inconvenience easily caused by chromium plating is eliminated by applying copper plating or nickel plating to the base metal.
  • the chrome plating must be thickened to sufficiently dull the concavo-convex shaped sharp parts produced by hitting the fine particles.
  • the thickness of the chrome plating is too thick, nodules are likely to be generated, which is not preferable.
  • the uneven shape produced by hitting the fine particles cannot be sufficiently dulled, and a mold having a desired surface shape cannot be obtained.
  • Antiglare films also tend not to exhibit excellent antiglare performance.
  • Patent Document 1 describes that a chrome-plated roller is formed on a surface of iron by forming a concavo-convex surface by a sandblasting method or a bead shot method, and Patent Documents 3 and 4 described above. Further, it is described that the roll surface is subjected to a bead shot method or a blast treatment. However, there is no mention of a method of further dulling the surface uneven shape by applying a chrome plating process after applying a process of actively dulling the surface shape after forming the uneven shape by hitting fine particles, and the present invention According to their study, an anti-glare film exhibiting excellent anti-glare performance could not be produced unless the surface shape was actively dulled as described above.
  • plating other than chrome plating it is not preferable to apply plating other than chrome plating to the metal surface with irregularities. This is because plating other than chromium has low hardness and wear resistance, so that the durability as a mold is lowered, and unevenness is worn away during use or the mold is damaged. In the antiglare film obtained from such a mold, there is a high possibility that a sufficient antiglare function cannot be obtained, and there is a high possibility that defects will occur on the surface of the antiglare film.
  • Patent Document 4 describes that the surface after plating is polished, but it is not preferable in the present invention to polish the chromium plating surface in this way. This is because the flat part on the outermost surface is generated by polishing, which may lead to deterioration of the optical characteristics of the antiglare film, and the control factor of the uneven shape of the mold increases, so the reproducibility. This is because good shape control becomes difficult.
  • FIG. 9 shows a process in which the uneven shape obtained by hitting the fine particles is blunted, here, the surface subjected to the chromium plating shown in FIG. 8 (d1) after performing the etching process shown in FIG. 8 (c1).
  • FIG. 9 shows an example in which the chrome-plated surface after etching shown in FIG. 8 (d1) is polished. However, even when chrome-plated after copper plating shown in FIG. If polished, a flat surface will be produced as well.
  • both the first resin layer and the second resin layer may be formed by an embossing method using a metal mold having irregularities with a predetermined shape, which is produced by the method described above. preferable.
  • the uneven shape of the metal mold is transferred to an ionizing radiation curable resin applied on a transparent support, and the cured resin (first resin layer) on which the uneven surface is transferred is laminated with the transparent support.
  • an ionizing radiation curable resin is applied onto the first resin layer, and a metal mold having irregularities of a predetermined shape is used to form the irregular shape of the metal mold with an ionizing radiation curable resin.
  • the antiglare film can be produced by peeling the laminate of the cured resin (second resin layer), the first resin layer, and the transparent support onto which the uneven surface is transferred, from the mold. .
  • the second resin layer is not laminated on the first resin layer, and the laminated film (transparent support) in which the first fine uneven surface is the outermost surface in contact with air.
  • the first resin layer preferably have a haze of 50% or more.
  • the haze is less than 50%, when the difference in refractive index between the first resin layer and the second resin layer is relatively small, the internal scattering effect by the first fine uneven surface of the obtained antiglare film is small.
  • the ionizing radiation curable resin is applied on the first resin layer without using a metal mold and is cured.
  • the second resin layer can be formed.
  • the uneven shape on the surface of the second resin layer greatly depends on the shape of the first fine uneven surface, although it depends on the thickness of the second resin layer.
  • it is preferable that the reflection characteristic and the internal scattering characteristic are independently controlled.
  • the shape of the first fine uneven surface and the second fine uneven surface Since the shape is preferably controlled independently, the anti-glare film of the present invention has an influence on the fine uneven shape of the surface of the second resin layer formed on the first fine uneven surface. It is preferable to be manufactured so as not to reach. Therefore, in the antiglare film of the present invention, it is preferable that both the first resin layer and the second resin layer are formed by an embossing method using a metal mold.
  • the antiglare film of the present invention is excellent in the antiglare effect, effectively prevents whitening, and can effectively suppress the occurrence of glare and the decrease in contrast.
  • An image display device provided with such an antiglare film of the present invention has excellent visibility.
  • the polarizing plate generally has a form in which a protective film is bonded to at least one surface of a polarizing film made of a polyvinyl alcohol-based resin film in which iodine or a dichroic dye is adsorbed and oriented.
  • an antiglare polarizing plate can be obtained by laminating the polarizing film and the antiglare film of the present invention on the transparent support side of the antiglare film.
  • the other surface of the polarizing film may be in a state where nothing is laminated, another protective film or an optical film may be laminated, or an adhesive layer for bonding to a liquid crystal cell. May be formed.
  • the antiglare film of the present invention may be bonded on the transparent support side of the polarizing film having a protective film bonded to at least one surface of the polarizing film to form an antiglare polarizing plate. it can.
  • the above transparent support is used as the protective film, and the first and second resin layers are formed on the transparent support, thereby providing antiglare properties. It can also be a polarizing plate.
  • the image display device of the present invention is a combination of the antiglare film or the antiglare polarizing plate of the present invention and an image display element.
  • the image display element is typically a liquid crystal panel that includes a liquid crystal cell in which liquid crystal is sealed between upper and lower substrates and displays an image by changing the alignment state of the liquid crystal by applying a voltage.
  • the antiglare film or the antiglare polarizing plate of the present invention can be applied to various known displays such as a display, a CRT display, and an organic EL display.
  • the antiglare film is disposed on the viewing side with respect to the image display element.
  • the antiglare film may be directly bonded to the surface of the image display element.
  • the image display device provided with the antiglare film of the present invention can scatter incident light due to the unevenness of the surface of the antiglare film and blur the reflected image, and has excellent visibility in the image display device. give.
  • the anti-glare film of the present invention does not cause glare as seen in conventional anti-glare films even when applied to a high-definition image display device. Prevention performance, glare suppression, and contrast reduction suppression performance.
  • the antiglare film is bonded to a glass substrate using an optically transparent adhesive so that the second fine uneven surface is the surface.
  • the overall haze (overall haze) was measured using a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd. in accordance with JIS K 7136.
  • HM-150 haze meter
  • JIS K 7136 haze meter
  • a triacetyl cellulose film having a haze of almost 0 was bonded to the second fine uneven surface of the antiglare film using glycerin, and the internal haze was measured again in accordance with JIS K 7136.
  • the surface haze was calculated based on the above formula (1).
  • Examples 1 to 3 and Comparative Examples 2 to 4 below a laminate in which only a first resin layer having a fine concavo-convex shape on the surface is laminated on a triacetyl cellulose film as a transparent support.
  • the film was also measured for haze (referred to as “single-layer haze value” in Table 1). This haze measurement was performed in the same manner as the overall haze measurement, except that the target was a laminated film having no second resin layer.
  • the reflection sharpness of the anti-glare film was measured using an image clarity measuring device “ICM-1DP” manufactured by Suga Test Instruments Co., Ltd. based on JIS K 7105.
  • ICM-1DP image clarity measuring device manufactured by Suga Test Instruments Co., Ltd. based on JIS K 7105.
  • measurement is performed after bonding to a glass substrate so that the uneven surface (second fine uneven surface) becomes the surface using an optically transparent adhesive.
  • a 2 mm thick black acrylic resin plate is adhered and adhered to the glass surface of the glass substrate on which the antiglare film is pasted. Measurement was performed by entering light from the surface of the uneven surface.
  • the measured value here is a total value of values measured using three types of optical combs in which the widths of the dark part and the bright part are 0.5 mm, 1.0 mm, and 2.0 mm, respectively (maximum value 300 %).
  • a photomask having a unit cell pattern as shown in a plan view in FIG. 10 was prepared.
  • the unit cell 1000 has a key-shaped chrome light-shielding pattern 1001 with a line width of 10 ⁇ m formed on a transparent substrate, and a portion where the chrome light-shielding pattern 1001 is not formed is an opening 1002.
  • the unit cell 1000 has a size of 254 ⁇ m ⁇ 84 ⁇ m (vertical ⁇ horizontal in the drawing), and therefore the size of the opening 1002 is 244 ⁇ m ⁇ 74 ⁇ m (vertical ⁇ horizontal in the drawing).
  • a large number of unit cells 1000 shown in the figure are arranged vertically and horizontally to form a photomask.
  • the photomask 1003 is placed in a light box 1005 with the chrome light-shielding pattern 1001 facing up, and the antiglare film 1101 is attached to the glass plate 1007 with an adhesive.
  • the sample bonded so that the surface of the fine irregularities of 2) becomes the surface is placed on the photomask 1003.
  • a light source 1006 is arranged in the light box 1005. In this state, by visually observing from a position 1009 that is about 30 cm away from the sample, the degree of glare was sensory evaluated in seven stages. Level 1 corresponds to a state where no glare is recognized, level 7 corresponds to a state where severe glare is observed, and level 3 refers to a state where only slight glare is observed.
  • Example 1 Production of first mold for resin layer A surface of an iron roll having a diameter of 200 mm (STKM13A by JIS) was prepared by applying copper ballad plating.
  • the copper ballad plating was composed of a copper plating layer / a thin silver plating layer / a surface copper plating layer, and the thickness of the entire plating layer was about 200 ⁇ m.
  • the surface of the copper-plated layer is mirror-polished, and the blasting device (Fuji Seisakusho Co., Ltd.) is used on the polished surface to make the zirconia beads “TZ-SX-17” (product of Tosoh Corporation) Name, average particle diameter 17 ⁇ m), bead usage 8 g / cm 2 (use per roll surface area 1 cm 2 , hereinafter referred to as “blasting amount”), blast pressure 0.2 MPa (gauge pressure, the same applies hereinafter), beads Was blasted at a distance of 300 mm (hereinafter referred to as “blasting distance”) from the nozzle for jetting the metal to the surface of the metal, and the surface was made uneven.
  • the blasting device Fluji Seisakusho Co., Ltd.
  • Chromium plating was performed on the obtained copper-plated iron roll having surface unevenness without subjecting the uneven shape to blunting, and a metal mold (A) was produced. At this time, the chromium plating thickness was set to 4 ⁇ m.
  • the obtained metal mold (A) had a surface Vickers hardness of 1,000.
  • Etching was performed on the obtained copper-plated iron roll having surface irregularities with an aqueous cupric chloride solution.
  • the etching amount was set to 8 ⁇ m.
  • chrome plating was performed to produce a metal mold (B).
  • the chromium plating thickness was set to 4 ⁇ m.
  • the obtained metal mold (B) had a surface Vickers hardness of 1,000.
  • the resin composition (a) was applied on a triacetyl cellulose film (TAC film) having a thickness of 80 ⁇ m so that the coating thickness after drying was 10 ⁇ m, and dried in a dryer set at 60 ° C. for 3 minutes. I let you. Next, the dried film is placed so that the layer made of the resin composition (a) is on the uneven surface side of the metal mold (A) produced above, and the film is placed on the metal mold (A ) Was pressed against the uneven surface with a rubber roll and adhered.
  • TAC film triacetyl cellulose film
  • the layer made of the resin composition (a) was cured by irradiating light from a high-pressure mercury lamp having an intensity of 20 mW / cm 2 from the TAC film side so that the amount of light in terms of h-line was 200 mJ / cm 2 . . Thereafter, the TAC film was peeled from the metal mold (A) together with the cured resin layer to obtain a laminated film in which a first resin layer having irregularities was formed on the TAC film.
  • the resin composition (b) is applied to the uneven surface (first fine uneven surface) of the laminated film so that the coating thickness after drying is 5 ⁇ m, and is 3 minutes in a dryer set at 55 ° C. Dried. Next, the dried film is arranged so that the layer made of the resin composition (b) is on the uneven surface side of the metal mold (B) produced above, and the film is placed on the metal mold (B ) Was pressed against the uneven surface with a rubber roll and adhered.
  • Example 2 The first and second resins are the same as in Example 1 except that the resin composition (b) is used for the first resin layer and the resin composition (a) is used for the second resin layer.
  • the anti-glare film which consists of a laminated body of a layer and a TAC film was produced.
  • Example 1 uses the metal mold (A) for forming the uneven surface of the first resin layer and uses the metal mold (B) for forming the uneven surface of the second resin layer. It is.
  • the second resin was formed in the same manner as in Example 2, except that the first resin layer was not formed and only the second resin layer was formed using the metal mold (B) and the resin composition (a).
  • the anti-glare film which consists of a laminated body of a layer and a TAC film was produced.
  • ⁇ Comparative Examples 2-3> It consists of a laminate of the first and second resin layers and the TAC film in the same manner as in Example 1 except that the first resin layer is formed using the metal mold (C) or (D). Antiglare films were prepared (Comparative Example 2 and Comparative Example 3).
  • the resin composition (a) is used for the first resin layer, and the resin composition (b) is used for the second resin layer.
  • Metal molds (C) and (D) were produced in the same manner as the metal mold (A) except that the blast pressure and the etching amount were set to the values shown in Table 1.
  • FIG. 12 shows the angle dependency (reflection graph) of the reflected light obtained by the reflectance measurement for the antiglare films of Examples 1 and 2, and FIG. 12 shows the angle dependency of the scattered light intensity obtained by the scattered light intensity measurement.
  • FIGS. 14 and 15 are a reflection profile graph and a transmission / scattering profile graph for the antiglare films of Comparative Examples 1 to 3, respectively.
  • the antiglare films of Examples 1 and 2 that satisfy the requirements of the present invention exhibited excellent antiglare performance, but did not cause glare or whitishness.
  • the antiglare films of Comparative Examples 1 to 3 have substantially no internal haze due to the absence of the first resin layer (Comparative Example 1), or different metals for forming the first fine uneven surface. Since the internal haze was small due to the use of the mold (Comparative Examples 2 and 3), the glare was relatively remarkable as compared with Example 1.
  • the antiglare films of Examples 1 and 2 and the antiglare films of Comparative Examples 1 to 3 have almost the same surface shape with respect to the second fine uneven surface, and therefore both have excellent antiglare performance ( Have white).
  • Example 3 An antiglare film comprising a laminate of the first and second resin layers and the TAC film is formed in the same manner as in Example 1 except that the second resin layer is formed using the metal mold (E). Produced.
  • the resin composition (a) is used for the first resin layer, and the resin composition (b) is used for the second resin layer.
  • the metal mold (E) was produced in the same manner as the metal mold (A) except that the blast pressure and the etching amount were the values shown in Table 2.
  • the refractive index after curing of this composition is 1.66.
  • Example 1 uses the metal mold (A) for forming the uneven surface of the first resin layer and uses the metal mold (B) for forming the uneven surface of the second resin layer. It is.
  • the anti-glare film of Example 3 has a lower relative scattering intensity T (30) than that of Examples 1 and 2, the anti-glare performance (whiteness and glare) is low. Although somewhat inferior to Examples 1 and 2, almost good results are given.
  • the antiglare film of Comparative Example 4 is cured to constitute these resin layers in the interface region between the first resin layer and the second resin layer by changing the constituent material of the second resin layer. Resin mixing occurs and the internal haze is reduced. Therefore, the glare is larger than the antiglare films of Examples 1 to 3.
  • the antiglare film of the present invention By arranging the antiglare film of the present invention on the viewer side from the image display element to constitute an image display device, whitening and in various displays such as a liquid crystal display, a plasma display, a CRT display, an organic EL display, etc.
  • a liquid crystal display a plasma display
  • a CRT display a CRT display
  • an organic EL display etc.
  • the occurrence of glare can be prevented, the reflected image can be blurred, and excellent visibility can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

 透明支持体(100)と、透明支持体(100)の上に積層された第1の樹脂層(101)と、第1の樹脂層(101)の上に積層された第2の樹脂層(102)とを備え、第1の樹脂層(101)および第2の樹脂層(102)は、互いに異なる屈折率を有し、第1の樹脂層(101)は、透明支持体(100)側とは反対側の表面に微細な凹凸形状を有する電離放射線硬化樹脂からなり、第2の樹脂層(102)は、前記透明支持体(100)側とは反対側の表面に微細な凹凸形状を有する電離放射線硬化樹脂からなり、かつ、内部ヘイズが5%以上30%以下である防眩フィルム、およびこれを用いた防眩性偏光板、画像表示装置が提供される。

Description

防眩フィルム、防眩性偏光板および画像表示装置
 本発明は、優れた防眩性能を示しながら白ちゃけず、画像表示装置に適用したときに、ギラツキが発生することなく、高いコントラストを発現し、良好な視認性を与える防眩(アンチグレア)フィルム、ならびに当該防眩フィルムを用いた防眩性偏光板および画像表示装置に関するものである。
 液晶ディスプレイ、プラズマディスプレイパネル、ブラウン管(陰極線管:CRT)ディスプレイ、有機エレクトロルミネッセンス(EL)ディスプレイ等の画像表示装置は、その表示面に外光が映り込むと視認性が著しく損なわれてしまう。従来、このような外光の映り込みを防止するために、画質を重視するテレビやパーソナルコンピュータ、外光の強い屋外で使用されるビデオカメラおよびデジタルカメラ、ならびに反射光を利用して表示を行なう携帯電話等においては、画像表示装置の表面に外光の映り込みを防止するフィルム層が設けられてきた。このようなフィルム層として用いられるフィルムは、光学多層膜による干渉を利用した無反射処理が施されたフィルム(無反射フィルム)と、表面に微細な凹凸を形成することにより入射光を散乱させて映り込み像をぼかす防眩処理が施されたフィルム(防眩フィルム)とに大別される。前者の無反射フィルムは、均一な光学膜厚の多層膜を形成する必要があるため、コスト高になる。これに対して、後者の防眩フィルムは、比較的安価に製造することができるため、大型のパーソナルコンピュータやモニタ等の用途に広く用いられている。
 このような防眩フィルムは従来、たとえば、フィラーを分散させた樹脂溶液を基材シート上に膜厚を調整して塗布し、該フィラーを塗布膜表面に露出させることでランダムな表面凹凸を基材シート上に形成する方法などにより製造されている。しかしながら、フィラーを分散させた樹脂溶液を用いて製造された防眩フィルムは、樹脂溶液中のフィラーの分散状態や塗布状態等によって表面凹凸の配置や形状が左右されてしまうため、意図したとおりの凹凸を得ることが困難であり、防眩フィルムのヘイズを低く設定する場合、十分な防眩性能が得られないという問題があった。さらに、このような従来の防眩フィルムを画像表示装置の表面に配置した場合、散乱光によって表示面全体が白っぽくなり、表示が濁った色になる、いわゆる白ちゃけが発生しやすいという問題があった。
 また、従来、高精細化された画像表示装置においては、画像表示装置の画素と防眩フィルムの表面凹凸形状が干渉し、その結果、輝度分布が発生して、表示面が見にくくなる、いわゆるギラツキ現象が発生しやすいという問題があった。ギラツキを解消するために、バインダ樹脂とこれに分散されるフィラーとの間に屈折率差を設けて光を散乱させる試みもあるが、そのような防眩フィルムを画像表示装置に適用した場合には、散乱光によって黒表示の輝度が上がり、その結果、コントラストが低下して視認性を著しく低下させるという問題があった。
 一方、フィラーを含有させずに、透明樹脂層の表面に形成された微細な凹凸だけで防眩性を発現させる試みもある。たとえば、特開2002-189106号公報(特許文献1、請求項1~6、段落0043~0046)には、透明樹脂フィルム上に、三次元10点平均粗さ、および、三次元粗さ基準面上における隣接する凸部同士の平均距離が、それぞれ所定値を満足する微細な表面凹凸を有する電離放射線硬化性樹脂層の硬化物層が積層された防眩フィルムが開示されている。この防眩フィルムは、エンボス鋳型と透明樹脂フィルムとの間に電離放射線硬化性樹脂を挟んだ状態で、当該電離放射線硬化性樹脂を硬化させることにより製造される。この文献には、鉄の表面にクロムめっきしたローラーを用い、サンドブラスト法やビーズショット法により、エンボス用の凹凸型面を形成することが記載されている。さらに、このように凹凸が形成された型面には、使用時の耐久性を向上させる目的で、クロムめっきなどを施してから使用することが好ましく、それにより硬膜化および腐食防止を図ることができる旨の記載もある。
 しかし、特許文献1に記載のエンボスロールの凹凸型面形成法では、硬度の高いクロムめっき上にブラストやショットを行なうため、凹凸が形成されにくく、しかも形成された凹凸の形状を精密に制御することが困難であった。また、特開2004-29672号公報(特許文献2、段落0030)にも記載されるとおり、クロムめっきは、下地となる材質およびその形状に依存してその表面が荒れることが多く、ブラストにより形成された凹凸上にクロムめっきにより生じた細かいクラックが形成されやすい。このため、特許文献1に記載の凹凸型面形成法では、どのような凹凸ができるのかが想定し難く、凹凸型面の設計が難しいという課題もあった。さらに、クロムめっきにより生じる細かいクラックの存在により、最終的に得られる防眩フィルムの散乱特性が好ましくない方向に変化するという問題もあった。
 表面に凹凸を有するフィルムの作製に用いられるロールの作製方法を開示する別の文献として、たとえば、特開2004-29240号公報(特許文献3)および特開2004-90187号公報(特許文献4)がある。特許文献3(請求項2)には、ビーズショット法によってエンボスロールを作製する方法が開示されている。特許文献4(請求項1および2)には、エンボスロールの表面に金属めっき層を形成する工程、金属めっき層の表面を鏡面研磨する工程、鏡面研磨した金属めっき層面に、セラミックビーズを用いてブラスト処理を施す工程、さらに必要に応じてピーニング処理をする工程を経て、エンボスロールを作製する方法が開示されている。
 しかし、このようにエンボスロールの表面にブラスト処理を施したままの状態では、ブラスト粒子の粒径分布に起因してエンボスロール表面の凹凸径に分布が生じるとともに、ブラストにより得られるくぼみの深さを制御することが困難であり、防眩機能に優れた表面凹凸形状を有する防眩フィルムを再現性良く得ることが容易でないという課題があった。
 特開2006-53371号公報(特許文献5、請求項1および2)には、研磨された金属の表面に微粒子をぶつけて凹凸を形成し、その凹凸面に無電界ニッケルメッキを施して金型とし、その金型の凹凸面を透明樹脂フィルムに転写することにより、低ヘイズでありながら防眩性能に優れた防眩フィルムを製造する方法が開示されている。
 特開2003-248101号公報(特許文献6、請求項1)には、透明支持体上に防眩性ハードコート層を有するフィルムであって、透明支持体側から光を入射したときの、透過した光のうち特定の方向に散乱された光の光量が、直進の光量に対して特定の範囲内である防眩性反射防止フィルムが開示されている。
 特開2004-126495号公報(特許文献7、請求項1)には、散乱光強度の極大値を示す散乱角および全光線透過率が特定の範囲内である防眩性フィルムが開示されている。
 しかし、上記特許文献5~7に記載のいずれの防眩フィルムによっても、特に高精細の画像表示装置に適用したときに、高いコントラストを達成することは困難であった。
特開2002-189106号公報 特開2004-29672号公報 特開2004-29240号公報 特開2004-90187号公報 特開2006-53371号公報 特開2003-248101号公報 特開2004-126495号公報
 本発明は、かかる現状に鑑みなされたものであり、その目的は、優れた防眩性能を示しながら、白ちゃけによる視認性の低下が防止され、高精細の画像表示装置に適用した場合においても、ギラツキを発生せずに高いコントラストを発現する防眩フィルムを提供することである。また、本発明の他の目的は、その防眩フィルムを適用した防眩性偏光板および画像表示装置を提供することである。
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、透明支持体の上に、互いに屈折率の異なる2種類の樹脂層を、それぞれの樹脂層における透明支持体から遠い側の面に微細な凹凸形状が形成されるように設け、かつ、このような積層体からなる防眩フィルム内部のヘイズ(典型的には、上記2種類の樹脂層の界面領域に起因するヘイズ)が特定範囲となるようにすれば、優れた防眩性能を示す防眩フィルムが得られることを見出した。
 そして、上記のように、透明支持体上に微細な凹凸形状を有する2種類の樹脂層を積層することにより、これら2つの樹脂層の界面領域での散乱の制御を含め、散乱光の強度を制御することができるとともに、反射特性を制御できることを見出した。具体的には、上記した透明支持体上に微細な凹凸形状を有する2種類の樹脂層を積層した防眩フィルムによれば、防眩フィルムにおける透明支持体側とは反対側の表面から入射角30°で光を入射したときの、反射角30°の反射率R(30)、反射角40°の反射率R(40)および反射角50°の反射率R(50)をそれぞれ特定範囲となるようにすることができ、また、透明支持体側から入射角20゜で光を入射したときの防眩フィルム法線方向の相対散乱光強度T(20)および、透明支持体側から入射角30°で光を入射したときの防眩フィルム法線方向の相対散乱光強度T(30)をそれぞれ特定範囲となるようにすることができ、これにより、ギラツキが十分に防止されるうえに、画像表示装置に適用したときにコントラストがほとんど低下しなくなることを見出した。本発明は、かかる知見に基づき、さらに種々の検討を加えて完成されたものである。
 すなわち、本発明の防眩フィルムは、透明支持体と、該透明支持体の上に積層された第1の樹脂層と、該第1の樹脂層の上に積層された第2の樹脂層とを備える防眩フィルムに関する。本発明において、第1の樹脂層および第2の樹脂層は、互いに異なる屈折率を有する。また、第1の樹脂層は、透明支持体側とは反対側の表面に微細な凹凸形状を有する電離放射線硬化樹脂からなり、第2の樹脂層もまた、透明支持体側とは反対側の表面に微細な凹凸形状を有する電離放射線硬化樹脂からなる。本発明の防眩フィルムの内部ヘイズは、5%以上30%以下である。
 本発明の防眩フィルムにおいては、第2の樹脂層側から入射角30゜で光を入射したときに、反射角30゜の反射率R(30)が0.05%以上2%以下であり、反射角40゜の反射率R(40)が0.0001%以上0.005%以下であり、反射角50゜の反射率R(50)が0.00001%以上0.0005%以下であることが好ましい。また、透明支持体側から入射角20゜で光を入射したときに、防眩フィルム法線方向の相対散乱光強度T(20)が0.0001%以上0.0005%以下であり、透明支持体側から入射角30°で光を入射したときに、防眩フィルム法線方向の相対散乱光強度T(30)が0.00004%以上0.00025%以下であることが好ましい。
 第1の樹脂層と第2の樹脂層とが接する領域においては、第1の樹脂層を構成する電離放射線硬化樹脂と第2の樹脂層を構成する電離放射線硬化樹脂とが互いに混和することなく、明確な界面が形成されていることが好ましい。
 また、第1の樹脂層の屈折率と第2の樹脂層の屈折率との差の絶対値は、0.08以上であることが好ましい。第1の樹脂層および/または第2の樹脂層は、導電性付与物質を含有していてもよい。
 本発明の防眩フィルムは、第2の樹脂層表面上に、透明支持体よりも低い屈折率を有する低屈折率層を含む低反射膜をさらに有していてもよい。
 本発明において、第1の樹脂層が有する微細凹凸形状および/または第2の樹脂層が有する微細凹凸形状は、好ましくは、表面に凹凸を有する金型を用い、該凹凸形状を電離放射線硬化樹脂に転写することにより形成される。
 また、本発明により、上記いずれかに記載の防眩フィルムと該防眩フィルム上に積層された偏光フィルムとを備える防眩性偏光板が提供される。本発明の防眩性偏光板において、偏光フィルムは、防眩フィルムの透明支持体側に配置される。
 本発明の防眩フィルムまたは防眩性偏光板は、液晶表示素子やプラズマディスプレイパネルなどの画像表示素子と組み合わせて、画像表示装置とすることができる。すなわち、本発明によれば、上記いずれかに記載の防眩フィルムまたは上記防眩性偏光板と、画像表示素子とを備え、該防眩フィルムまたは防眩性偏光板が、その第2の樹脂層側を外側にして画像表示素子の視認側に配置される画像表示装置が提供される。
 本発明の防眩フィルムは、優れた防眩性能を示しながら、白ちゃけによる視認性の低下が防止され、また、高精細の画像表示装置の表面に配置したときにも、ギラツキを発生させずに高いコントラストを発現し得る。かかる本発明の防眩フィルムを偏光フィルムと組み合わせた防眩性偏光板も、同様の効果を発現する。そして、本発明の防眩フィルムまたは防眩性偏光板を配置した画像表示装置は、防眩性能が高く、視認性に優れる。
本発明の防眩フィルムの好ましい一例を示す断面模式図である。 防眩フィルムの凸部判定のアルゴリズムを模式的に示す斜視図である。 防眩フィルムの凸部頂点を母点としてボロノイ分割したときの例を示すボロノイ図である。 反射率を求めるときの第2の微細凹凸表面側からの光の入射方向と反射方向とを模式的に示す斜視図である。 防眩フィルムの法線から30°の角度で入射した光に対する反射光の反射角と反射率(反射率は対数目盛)との関係をプロットしたグラフの一例である。 透明支持体側から光を入射して第2の微細凹凸表面側法線方向で観測される散乱光強度を測定するときの、光の入射方向と透過散乱光強度測定方向とを模式的に示す斜視図である。 入射角φを変えて測定される相対散乱光強度(対数目盛)を入射角に対してプロットしたグラフの一例である。 本発明の防眩フィルムを作製するのに好適に用いられる金属金型の製造方法を模式的に示す工程図である。 金属金型作製時において、クロムめっき後に表面を研磨した場合における金属金型の表面状態を示す断面模式図である。 ギラツキ評価用フォトマスクパターンのユニットセルを示す平面図である。 ギラツキの評価方法を模式的に示す断面図である。 実施例1および2で得られた防眩フィルムの反射プロファイルを表すグラフである。 実施例1および2で得られた防眩フィルムの透過散乱プロファイルを表すグラフである。 比較例1~3で得られた防眩フィルムの反射プロファイルを表すグラフである。 比較例1~3で得られた防眩フィルムの透過散乱プロファイルを表すグラフである。
符号の説明
 100 透明支持体、101 第1の樹脂層、101a 第1の微細凹凸表面、102 第2の樹脂層、102a,202 第2の微細凹凸表面、201 第2の微細凹凸表面上の任意の点、203 防眩フィルム基準面、204 第2の微細凹凸表面上の任意の点を中心とする円の防眩フィルム基準面への投影円、301 ボロノイ分割の母点(凸部頂点の投影点)、302 ボロノイ多角形、303 測定視野の境界に接するボロノイ多角形、401,601,1101 防眩フィルム、402,602 防眩フィルムの法線、405 30°の角度で入射される光、406 正反射方向、407 反射角θで反射した光、409,609 入射光方向と防眩フィルムの法線とを含む平面、603 法線からφの角度で入射される光、604 法線方向に透過された透過散乱光、801 金属基材、802 めっき層、803 研磨面、804 微粒子をぶつけて形成される凹面、805 銅めっき層、806a,806b 鋭角的な突起が鈍らされた表面、807 クロムめっき層、808 クロムめっき層の表面、809 平坦面、1000 フォトマスクのユニットセル、1001 フォトマスクのクロム遮光パターン、1002 フォトマスクの開口部、1003 フォトマスク、1005 ライトボックス、1006 光源、1007 ガラス板、1009 ギラツキの観察位置。
 <防眩フィルム>
 図1は、本発明の防眩フィルムの好ましい一例を示す断面模式図である。図1に示されるように、本発明の防眩フィルムは、透明支持体100と、その上に積層された第1の樹脂層101と、第1の樹脂層101上に積層された第2の樹脂層102とを備える。第1の樹脂層101は、その透明支持体100側とは反対側の表面(第2の樹脂層102側表面)に微細な凹凸形状(図1における第1の微細凹凸表面101a)を有する電離放射線硬化樹脂からなる樹脂層である。また、第2の樹脂層102は、その第1の樹脂層101側とは反対側の表面に微細な凹凸形状(図1における第2の微細凹凸表面102a)を有する電離放射線硬化樹脂からなる樹脂層である。すなわち、図1に示される防眩フィルムの上側表面(透明支持体100側とは反対側の表面)は、第2の樹脂層102が有する微細凹凸表面102aによって構成されている。第2の樹脂層102は、第1の樹脂層101上に、それが有する微細凹凸表面101aの凹部を埋めるように(微細凹凸表面101aに接するように)形成されている。
 ここで、本明細書中において「電離放射線硬化樹脂」とは、電離放射線の照射により硬化し得る樹脂または樹脂組成物(以下、電離放射線硬化性樹脂という)の硬化物を意味する。電離放射線とは、たとえば、紫外線、電子線、可視光線などである。
 上記構成を有する本発明の防眩フィルムは、防眩フィルムの反射特性を決定づける部位(第2の微細凹凸表面102a)と、防眩フィルムの内部散乱特性を決定づける部位(防眩フィルム内部の第1の樹脂層101と第2の樹脂層102との界面領域、すなわち、第1の微細凹凸表面101a領域)とを別途に有しているため、反射特性と内部散乱特性とを独立に制御することが可能となっている。したがって、かかる構成の防眩フィルムによれば、防眩フィルムが具備すべき望ましい光学特性を容易に達成することが可能であり、優れた防眩性能、白ちゃけによる視認性の低下防止、高精細の画像表示装置の表面に配置したときのギラツキ防止および高コントラストを同時に達成し得る。このように、本発明においては、第1の微細凹凸表面の凹凸形状と、第2の微細凹凸表面の凹凸形状とは、互いに独立していることが好ましい。
 以下、本発明の防眩フィルムについてさらに詳細に説明する。上記したように、本発明の防眩フィルムは、透明支持体と、該透明支持体上に積層され、該透明支持体側とは反対側の表面に微細な凹凸形状(第1の微細凹凸表面)を有する電離放射線硬化樹脂からなる第1の樹脂層と、透明支持体側とは反対側の表面に微細な凹凸形状(第2の微細凹凸表面)を有する電離放射線硬化樹脂からなる第2の樹脂層との積層体である。
 本発明において、防眩フィルムの「内部ヘイズ」は、5%以上30%以下とされる。ここで、本明細書中において、防眩フィルムの「内部ヘイズ」とは、防眩フィルム全体が示すヘイズのうち、防眩フィルム表面の微細凹凸(第2の微細凹凸表面の凹凸)に起因するヘイズ以外のヘイズ、すなわち、防眩フィルムの内部に起因するヘイズをいう。第2の樹脂層表面の第2の微細凹凸表面に起因するヘイズは、「表面ヘイズ」と定義される。かかる防眩フィルムの「内部ヘイズ」を5%以上、好ましくは10%以上とすることにより、ギラツキを効果的に解消することができる。また、防眩フィルムの「内部ヘイズ」は30%以下である。内部ヘイズが30%を上回ると、画像表示装置に適用したときに、画面が暗くなり、視認性が損なわれる傾向にある。十分な明るさを確保するためには、内部ヘイズを20%以下とすることが好ましい。
 防眩フィルムの「表面ヘイズ」は、0.1%以上5%以下とすることが好ましい。表面ヘイズを5%以下とすることにより、効果的に白ちゃけを抑制することができる。表面ヘイズが0.1%未満である場合には、十分な防眩性を示さなくなる傾向にある。
 防眩フィルムの「内部ヘイズ」および「表面ヘイズ」は、次のようにして測定される。すなわち、まず、透明支持体と第1および第2の樹脂層とを備える防眩フィルム全体のヘイズ(以下、「全体ヘイズ」と称する)を、JIS K 7136に準拠して測定する。次に、防眩フィルムの第2の微細凹凸表面に、ヘイズがほぼ0であるトリアセチルセルロースフィルム(TACフィルム)を、グリセリンを用いて貼合し、再度、JIS K 7136に準拠してヘイズを測定する。このヘイズ値は、第2の微細凹凸表面に起因するヘイズ(表面ヘイズ)がほぼ打ち消されていることから、防眩フィルムの「内部ヘイズ」とみなすことができる。したがって、防眩フィルムの「表面ヘイズ」は、下記式(1)より求められる。
表面ヘイズ=全体ヘイズ-内部ヘイズ      (1)
 防眩フィルムの「内部ヘイズ」は、第1の樹脂層を平坦な透明支持体上に積層する場合、実質的には、防眩フィルム内部の第1の樹脂層と第2の樹脂層との界面領域(第1の微細凹凸表面領域)に起因するヘイズとみなすことができる。第1の樹脂層単独および第2の樹脂層単独での内部ヘイズは、微粒子などの光拡散剤を含有しないことから、通常、それぞれ1%以下である。
 防眩フィルムの「全体ヘイズ」は、5%以上であることが、効果的にギラツキを解消するために好ましい。しかしながら、全体ヘイズが30%を上回ると、画像表示装置に配置したときに、画面が暗くなり、視認性が損なわれる傾向にある。
 第1の微細凹凸表面においては、第1の樹脂層と第2の樹脂層との密着性が確保できる範囲内で、第1の樹脂層を構成する電離放射線硬化樹脂と、第2の樹脂層を構成する電離放射線硬化樹脂との界面が明確に形成されていることが好ましい。これにより、当該界面領域による内部散乱効果を十分に発現させることができる。第1の微細凹凸表面領域において、第1の樹脂層を構成する電離放射線硬化樹脂と、第2の樹脂層を構成する電離放射線硬化樹脂とが一部混和し、これらの硬化樹脂からなる混合相が形成されてもよいが、この場合、防眩フィルムの光学的特性、特には内部散乱特性の制御が比較的困難となる場合がある。
 第1の樹脂層および第2の樹脂層は、ともに電離放射線硬化樹脂からなるが、互いに異なる屈折率を有する。屈折率が同じであると、第1の微細凹凸表面での透過光の散乱が生じない。第1の樹脂層の屈折率をn1、第2の樹脂層の屈折率をn2としたとき、これらの屈折率の差の絶対値|n1-n2|は、0.08以上であることが好ましく、0.1以上であることがより好ましい。屈折率の差の絶対値が0.08より小さい場合、第1の微細凹凸表面での透過光の散乱が効果的に生じず、上記範囲内の防眩フィルムの内部ヘイズを得るために、第1の微細凹凸表面の凹凸形状をより精密に制御する必要が生じ得る。また、第1の樹脂層の屈折率n1は、第2の樹脂層の屈折率n2より大きいことがより好ましい。これにより、第1の微細凹凸表面での透過光の反射による全光線透過率の低下を低く抑えることができる。
 第1の樹脂層および第2の樹脂層に用いられる電離放射線硬化性樹脂としては、従来公知のものを用いることができ、たとえば、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレート、S,S’-(チオジエチレン)-ビス(チオメタクリレート)、多官能ウレタン化アクリレート(たとえば、ヘキサメチレンジイソシアネートとペンタエリスリトールトリアクリレートとの反応生成物等)、トリメチロールエタントリアクリレート、グリセリントリアクリレート、ペンタエリスリトールトリアクリレートおよびジペンタエリスリトールヘキサアクリレート等の多官能アクリレート;ならびに、電離放射線によりラジカル重合を開始し、硬化し得るその他のアクリル系樹脂などを挙げることができる。その他のアクリル系樹脂としては、エーテルアクリレート系樹脂、エステルアクリレート系樹脂等が挙げられる。第1の樹脂層および第2の樹脂層のそれぞれについて、電離放射線硬化性樹脂として1種のみが用いられてもよく、2種以上を併用してもよい。第1の樹脂層および第2の樹脂層に用いられる電離放射線硬化性樹脂は、それらを硬化して得られる硬化樹脂の屈折率が互いに異なり、望ましくは、上記好ましい屈折率差を満たすように選択される。一般に入手可能な電離放射線硬化性樹脂の硬化物の屈折率は、1.45~1.80程度である。
 上記電離放射線硬化性樹脂には、必要に応じて光重合開始剤が添加されてもよい。光重合開始剤は、従来公知のものであってよい。市販の光重合開始剤として、たとえば、「イルガキュアー 907」、「イルガキュアー 184」(以上、チバ・スペシャルティー・ケミカルズ社製)、「ルシリン TPO」(BASF社製)等を挙げることができる。
 透明支持体は、実質的に光学的に透明である材料からなる限り特に制限されず、たとえば、トリアセチルセルロース、ポリエチレンテレフタレート、ポリカーボネートおよびノルボルネン系化合物をモノマーとする非晶性環状ポリオレフィン等の熱可塑性樹脂からなる溶剤キャストフィルムまたは押出フィルムなどを用いることができる。また、透明支持体は、アクリレート樹脂等の樹脂表面を、後述するような金属金型を用いてエンボスしながら、該樹脂を押し出し法等でフィルムシートに成形したものであってもよい。透明支持体の厚みは、特に制限されず、たとえば20~250μm、好ましくは40~150μmである。
 ここで、防眩フィルムの内部ヘイズを上記範囲内とするためには、一般に入手可能な電離放射線硬化性樹脂の硬化物の屈折率が1.45~1.80程度であることから、第1の微細凹凸表面における、該表面での任意の断面曲線における算術平均高さPaは0.1μm以上1.0μm以下であり、最大断面高さPtは0.5μm以上3.5μm以下であり、平均長さPSmは5μm以上20μm以下であることが好ましい。
 一方、第2の微細凹凸表面における、該表面の任意の断面曲線における算術平均高さPaは0.05μm以上0.20μm以下であり、最大断面高さPtは0.2μm以上1.5μm以下であり、平均長さPSmは15μm以上100μm以下であることが好ましい。算術平均高さPaが0.05μm未満である場合には、第2の微細凹凸表面(防眩フィルム表面)がほぼ平坦となり、十分な防眩性能を示さなくなる。また、算術平均高さPaが0.20μmより大きい場合には、表面形状が粗くなり、白ちゃけが発生し、また、外観を目視で観察した際の質感が粗くなる傾向にある。最大断面高さPtが0.2μm未満である場合には、やはり防眩フィルム表面がほぼ平坦となり、十分な防眩性能を示さなくなる。また、最大断面高さPtが1.5μmより大きい場合には、やはり表面形状が粗くなり、白ちゃけや質感の低下などの問題が発生し得る。平均長さPSmが15μm未満である場合には、十分な防眩性が得られない傾向にある。これは平均長さPSmがあまりにも小さいと、凹凸のピーク(表面傾斜角度がほぼ0°であると考えられる)間隔が近いことから、目視で観察した際に結像するためと考えられる。また、平均長さPSmが100μmより大きい場合には、外観を目視で観察した際の質感が粗くなる傾向にある。
 第1および第2の微細凹凸表面における算術平均高さPa、最大断面高さPtおよび平均長さPSmは、JIS B 0601(=ISO 4287)に準じ、市販の一般的な接触式表面粗さ計を用いて測定することができる。また、共焦点顕微鏡、干渉顕微鏡、原子間力顕微鏡(Atomic Force Microscope:AFM)などの装置により表面形状を測定し、その表面形状の三次元情報から計算により求めることも可能である。なお、三次元情報から計算する場合には、十分な基準長さを確保するために、200μm×200μm以上の領域を3点以上測定し、その平均値をもって測定値とすることが好ましい。なお、算術平均高さPaは、中心線平均粗さと呼称されていた値と同じである。
 また、第2の微細凹凸表面(防眩フィルム表面)は、その200μm×200μmの領域内に50個以上100個以下の凸部を有することが好ましい。凹凸表面における凸部の数が少ないと、高精細の画像表示装置に適用した場合に、画素との干渉によるギラツキが発生し、画像が見えにくくなり、かつ質感も悪くなる傾向にある。また、凸部の数が多くなりすぎると、表面凹凸形状の傾斜角度が急峻なものとなり、白ちゃけが発生しやすくなる。
 第2の微細凹凸表面における凸部の数を求めるにあたっては、共焦点顕微鏡、干渉顕微鏡、原子間力顕微鏡(AFM)などの装置により表面形状を測定し、第2の微細凹凸表面の各点の三次元的な座標値を求めてから、以下に示すアルゴリズムにより凸部を判定し、その個数をカウントする。すなわち、第2の微細凹凸表面上の任意の点に着目したときに、その点の周囲において、着目した点よりも標高の高い点が存在せず、かつ、その点の凹凸面における標高が凹凸面の最高点の標高と最低点の標高との中間より高い場合に、その点が凸部の頂点であるとし、そのようにして求めた凸部の頂点の数をカウントし、凸部の数とする。より具体的には、図2に示すように、第2の微細凹凸表面202上の任意の点201に着目し、その点を中心として、防眩フィルム基準面203に平行な半径2μm~5μmの円を描いたとき、その円の防眩フィルム基準面203への投影面204内に含まれる第2の微細凹凸表面202上の点の中に、着目した点201よりも標高の高い点が存在せず、かつ、その点の凹凸面における標高が凹凸面の最高点の標高と最低点の標高との中間より高い場合に、その点201が凸部の頂点であると判定し、凸部の数を求める。その際、上記投影円204の半径は、第2の微細凹凸表面の細かい凹凸をカウントせず、また、複数の凸部を含まない程度の大きさであることが求められ、3μm程度が好ましい。測定に際しては、誤差を少なくするために、200μm×200μmの領域を3点以上測定し、その平均値をもって測定値とすることが好ましい。
 共焦点顕微鏡を用いる場合、対物レンズの倍率は50倍程度とし、解像度を落として測定するのが好ましい。高解像度で測定すると、第2の微細凹凸表面の細かい凹凸を測定してしまい、凸部のカウントに支障をきたすためである。なお、対物レンズを低倍率にすると、高さ方向の解像度も低下する。したがって、凹凸の少ない防眩フィルムを測定する場合は表面形状が測定しにくくなることもある。このような場合には、高倍率の対物レンズで測定を行なった後、得られたデータにローパスフィルターをかけて空間周波数の高い成分を落とし、凹凸表面に観察される細かいざらつきが見えなくなるようにしてから、凸部の個数をカウントしてもよい。
 また、第2の微細凹凸表面(防眩フィルム表面)の凸部の頂点を母点として、その表面をボロノイ分割したときに形成される多角形の平均面積は、100μm2以上1000μm2以下であることが好ましい。まず、ボロノイ分割について説明すると、平面上にいくつかの点(母点という)が配置されているとき、その平面内の任意の点がどの母点に最も近いかによってその平面を分割してできる図をボロノイ図といい、その分割のことをボロノイ分割という。図3に、第2の微細凹凸表面における凸部の頂点を母点としてその表面をボロノイ分割した例を示す。図3に示される複数の点は、ボロノイ分割の母点301であり、ボロノイ分割により、1つの母点301を含むボロノイ多角形(ボロノイ領域ともいう)302が形成される。ボロノイ図においては、母点の数とボロノイ多角形の数は一致する。
 凸部の頂点を母点としてボロノイ分割したときに形成されるボロノイ多角形の平均面積が100μm2を下回る場合には、第2の微細凹凸表面(防眩フィルム表面)の傾斜角度が急峻なものとなり、結果として白ちゃけが発生しやすくなる。また、ボロノイ多角形の平均面積が1000μm2より大きい場合には、凹凸表面形状が粗くなり、ギラツキが発生しやすくなり、質感も悪化する傾向にある。
 第2の微細凹凸表面の凸部の頂点を母点としたボロノイ分割を行なうことにより得られるボロノイ多角形の平均面積を求めるにあたっては、共焦点顕微鏡、干渉顕微鏡、原子間力顕微鏡(AFM)などの装置により表面形状を測定し、第2の微細凹凸表面の各点の三次元的な座標値を求めてから、以下に示すアルゴリズムによりボロノイ分割を行ない、ボロノイ多角形の平均面積を求める。すなわち、図2を参照して説明したアルゴリズムに従って、まず第2の微細凹凸表面上の凸部の頂点を求め、次に、防眩フィルム基準面にその凸部の頂点を投影する。その後、表面形状の測定によって得られた三次元座標全てをその基準面に投影し、それら投影された全ての点を最近接の母点に帰属させることによってボロノイ分割を行ない、分割されて得られる多角形の面積を求めることにより、ボロノイ多角形の平均面積を求める。測定に際しては、誤差を少なくするために、図3に示される測定視野の境界に接するボロノイ多角形303については、平均面積を求めるときには算入しない。ただし、測定視野の境界に接するボロノイ多角形303内の母点は、上述した凸部の数を求める際には算入される。また、測定誤差を少なくするために、200μm×200μm以上の領域を3点以上測定し、その平均値をもって測定値とすることが好ましい。
 なお、図3においては、一部の母点及びボロノイ多角形に対してのみ引き出し線と符号を付しているが、母点とボロノイ多角形が多数存在することは、以上の説明とこの図から容易に理解されるであろう。
 上記したように、本発明の防眩フィルムは、反射特性と内部散乱特性とを独立に制御することが可能な構成を有しており、優れた光学特性を示し得る。
 本発明の防眩フィルムは、第2の微細凹凸表面側から入射角30゜で光を入射したときに、反射角30゜の反射率R(30)が0.05%以上2%以下であり、反射角40゜の反射率R(40)が0.0001%以上0.005%以下であり、そして反射角50゜の反射率R(50)が0.00001%以上0.0005%以下であることが好ましい。反射率R(30)、反射率R(40)および反射率R(50)を上記範囲内とすることにより、優れた防眩性能を示しつつ、白ちゃけがより効果的に抑制された防眩フィルムが提供される。
 ここで、第2の微細凹凸表面(第2の樹脂層)側から入射角30°で光を入射したときの角度毎の反射率について説明する。図4は、反射率を求めるときの防眩フィルムに対する第2の樹脂層側からの光の入射方向と反射方向とを模式的に示した斜視図である。図4を参照して、防眩フィルム401の第2の微細凹凸表面側で、防眩フィルムの法線402から30°の角度で入射した光405に対し、反射角30°の方向、すなわち、正反射方向406への反射光の反射率(つまり正反射率)をR(30)とする。また、任意の反射角θで反射した光407のうち、θ=40°の反射光の反射率、θ=50°の反射光の反射率をそれぞれ、R(40)、R(50)とする。なお、反射率を測定するときの反射光の方向(正反射方向406および反射角θで反射した光407の反射方向)は、入射した光405の方向と法線402とを含む平面409内とする。
 正反射率R(30)が2%を超えると、十分な防眩機能が得られず、視認性が低下する傾向にある。一方、正反射率R(30)があまり小さすぎても、白ちゃけが発生する傾向を示すことから、正反射率R(30)は、0.05%以上であるのが好ましい。正反射率R(30)は、1.5%以下、とりわけ0.7%以下であるのがより好ましい。また、R(40)が0.005%を上回るか、またはR(50)が0.0005%を上回ると、防眩フィルムに白ちゃけが発生してしまい、視認性が低下する傾向にある。すなわち、たとえば、画像表示装置の最前面に防眩フィルムを設置した状態で表示面に黒を表示した場合でも、周囲からの光を拾って表示面が全体的に白くなる白ちゃけが発生してしまう傾向にある。そのため、R(40)およびR(50)はあまり大きくならないようにするのが好ましい。一方、これらの角度における反射率があまり小さすぎても、十分な防眩性を示さなくなることから、R(40)は一般に0.0001%以上であるのが好ましく、R(50)は一般に0.00001%以上であるのが好ましい。R(50)は、より好ましくは0.0001%以下である。
 図5は、図4における防眩フィルム401の第2の微細凹凸表面側で法線402から30゜の角度で入射した光405に対する反射角θで反射した光407の、反射角θと反射率(反射率は対数目盛)との関係をプロットしたグラフの一例である。このような反射角と反射率の関係を表すグラフ、またはそれから読み取られる反射角毎の反射率を、反射プロファイルと呼ぶことがある。このグラフに示す如く、正反射率R(30)は30゜で入射した光405に対する反射率のピークであり、正反射方向から角度がずれるほど反射率は低下する傾向にある。図5に示す反射プロファイルの例では、正反射率R(30)が約0.17%、R(40)が約0.0004%、そしてR(50)が約0.00005%となっている。
 本発明者らの調査によれば、現在市場に出回っている防眩フィルムの大部分は、フィラーを分散させたタイプであり、このタイプの防眩フィルムでは、正反射率R(30)が0.05%以上2%以下、反射角40゜の反射率R(40)が0.0001%以上0.005%以下、反射角50゜の反射率R(50)が0.00001%以上0.0005%以下であるものは存在せず、したがって、十分な防眩性能を示しながら、白ちゃけない防眩フィルムとはいえない。これに対し、本発明の防眩フィルムは、十分な防眩性能を示しながらも、白ちゃけが抑えられており、光学特性に優れる。
 防眩フィルムの反射率を測定するにあたっては、0.001%以下の反射率を精度良く測定することが必要である。そこで、ダイナミックレンジの広い検出器の使用が有効である。このような検出器としては、たとえば、市販の光パワーメーターなどを用いることができ、この光パワーメーターの検出器前にアパーチャーを設け、防眩フィルムを見込む角度が2°になるようにした変角光度計を用いて測定を行なうことができる。入射光としては、380~780nmの可視光線を用いることができ、測定用光源としては、ハロゲンランプ等の光源から出た光をコリメートしたものを用いてもよいし、レーザーなどの単色光源で平行度の高いものを用いてもよい。裏面が平滑で透明な防眩フィルムの場合は、防眩フィルム裏面からの反射が測定値に影響を及ぼすことがあるため、たとえば、黒色のアクリル樹脂板に防眩フィルムの平滑面を粘着剤または水やグリセリン等の液体を用いて光学密着させることにより、防眩フィルム最表面(第2の微細凹凸表面)の反射率のみが測定できるようにするのが好ましい。
 また、本発明の防眩フィルムは、透明支持体側から入射角20゜で光を入射したときに第2の微細凹凸表面(第2の樹脂層)側法線方向で観測される相対散乱光強度T(20)が0.0001%以上0.0005%以下の値を示し、透明支持体側から入射角30°で光を入射したときに第2の微細凹凸表面側法線方向で観測される相対散乱光強度T(30)が0.00004%以上0.00025%以下の値を示すことが好ましい。ここで、透明支持体側から入射角20゜で光を入射したとき、および入射角30°で光を入射したときの、第2の微細凹凸表面側法線方向における相対散乱光強度T(20)およびT(30)について説明する。
 図6は、透明支持体側から光を入射し、第2の微細凹凸表面(第2の樹脂層)側法線方向における散乱光強度を測定するときの、光の入射方向と透過散乱光強度測定方向とを模式的に示した斜視図である。図6を参照して、防眩フィルム601の透明支持体側で、防眩フィルムの法線602からある角度φ(入射角とする)で入射した光603に対し、第2の樹脂層側の法線602方向に透過する透過散乱光604の強度を測定し、その透過散乱光強度を光源の光強度で除した値を相対散乱光強度T(φ)とする。すなわち、防眩フィルム601の透明支持体側で、防眩フィルムの法線から20°の角度で光603を入射したときに、第2の微細凹凸表面側法線602方向で観測される透過散乱光604の強度を光源の光強度で除した値がT(20)であり、防眩フィルム601の透明支持体側で法線602から30°の角度で光603を入射したときに、第2の微細凹凸表面側法線602方向で観測される透過散乱光604の強度を光源の光強度で除した値がT(30)である。なお、光603は、透明支持体側から入射される光603の方向と防眩フィルムの法線602とが同一平面(図6における平面609)上となるように入射される。
 20°入射のときの相対散乱光強度T(20)が0.0005%を上回る場合には、この防眩フィルムを画像表示装置に適用したときに、散乱光によって黒表示時の輝度が上昇し、コントラストを低下させる。また、20°入射のときの相対散乱光強度T(20)が0.0001%を下回る場合には、散乱効果が低く、高精細な画像表示装置に適用したときにギラツキが発生する。同様に、30°入射のときの相対散乱光強度T(30)が0.00025%を上回る場合にも、この防眩フィルムを画像表示装置に適用したときに、散乱光によって黒表示時の輝度が上昇し、コントラストを低下させる。また、30°入射のときの相対散乱光強度T(30)が0.00004%を下回る場合にも、散乱効果が低く、高精細な画像表示装置に適用したときにギラツキが発生する。特に、防眩フィルムを自発光型ではない液晶ディスプレイに適用したときには、黒表示時の光漏れに起因する散乱による輝度上昇効果が大きいため、相対散乱光強度T(20)およびT(30)が上記好ましい範囲を上回ると、コントラストを顕著に低下させ、視認性を損なう結果となる。
 図7は、図6における防眩フィルム601の透明支持体側から入射される光の入射角φを変えて測定される相対散乱光強度(対数目盛)を入射角φに対してプロットしたグラフの一例である。このような入射角と相対散乱光強度との関係を表すグラフ、またはそれから読み取られる入射角毎の相対散乱光強度を、透過散乱プロファイルと呼ぶことがある。このグラフに示されるように、相対散乱光強度は入射角0゜でピークを示し、入射される光603の法線方向からの角度が大きくなるほど、散乱光強度は低下する傾向にある。なお、入射角のプラス(+)とマイナス(-)は、法線方向(0°)を中心に、入射される光603の方向と法線602とを含む平面609内での入射光の傾きによって定まるものである。したがって、透過散乱プロファイルは、入射角0°を中心に、左右対称に現れるのが通例である。図7に示す透過散乱プロファイルの例では、0°入射のときの相対散乱光強度T(0)が約30%でピークを示し、20°入射のときの相対散乱光強度T(20)が約0.0002%、30°入射のときの相対散乱光強度T(30)が約0.00004%となっている。
 これまでに、透過散乱光強度について言及した文献として、たとえば、上記特許文献6および7などがあるが、いずれの文献においても、本発明の防眩フィルムが示し得る散乱特性とは異なり、画像表示装置に適用したときに高いコントラストを達成し、ギラツキを抑制するのに必ずしも十分なものとはいえなかった。
 防眩フィルムの相対散乱光強度を測定するにあたっては、反射率測定と同様に、0.001%以下の相対散乱光強度を精度良く測定することが必要である。そこで、ダイナミックレンジの広い検出器の使用が有効である。このような検出器としては、たとえば、市販の光パワーメーターなどを用いることができ、この光パワーメーターの検出器前にアパーチャーを設け、防眩フィルムを見込む角度が2°になるようにした変角光度計を用いて測定を行なうことができる。入射光には380~780nmの可視光線を用いることができ、測定用光源としては、ハロゲンランプ等の光源から出た光をコリメートしたものを用いてもよいし、レーザーなどの単色光源で平行度の高いものを用いてもよい。また、フィルムの反りを防止するため、光学的に透明な粘着剤を用いて、防眩フィルムを、凹凸面(第2の微細凹凸表面)が表面となるようにガラス基板に貼合してから測定に供することが好ましい。
 本発明の防眩フィルムには、埃付着防止や組み合わせて用いられる画像表示素子への悪影響を回避するために、導電性が付与されてもよい。導電性を付与する方法としては、第1の樹脂層および/または第2の樹脂層に導電性付与物質を含有させる方法を挙げることができる。導電性付与物質としては、金属微粒子、金属酸化物微粒子、導電性ポリマーおよび界面活性剤などを挙げることができる。導電性付与物質の1種または2種以上を第1の樹脂層および/または第2の樹脂層を構成する電離放射線硬化性樹脂に含有させることができる。
 本発明の防眩フィルムは、その最表面、すなわち第2の微細凹凸表面側に低反射膜がない状態でも十分な防眩機能を発揮するが、第2の微細凹凸表面上に低反射膜を設けることもできる。低反射膜は、第2の樹脂層の上に、透明支持体よりも屈折率の低い低屈折率材料からなる層を設けることにより形成できる。そのような低屈折率材料としては、具体的には、フッ化リチウム(LiF)、フッ化マグネシウム(MgF2)、フッ化アルミニウム(AlF3)、氷晶石(3NaF・AlF3またはNa3AlF6)等の無機材料微粒子を、アクリル系樹脂やエポキシ系樹脂等に含有させた無機系低反射材料;フッ素系またはシリコーン系の有機化合物、熱可塑性樹脂、熱硬化型樹脂、紫外線硬化型樹脂等の有機系低反射材料を挙げることができる。低反射膜の屈折率をn3としたとき、n3<n1<n2となるようにし、低反射膜および第2の樹脂層の膜厚を制御することにより、第2の微細凹凸表面側からの光の反射をより小さくすることができる。
 <防眩フィルムの製造方法>
 次に、本発明の防眩フィルムを好適に製造し得る方法について説明する。本発明の防眩フィルムは、凹凸が形成された金属金型を用い、その金型の凹凸形状を電離放射線硬化樹脂に転写するエンボス法を用いて好適に製造することができる。具体的には、第1の微細凹凸表面を有する第1の樹脂層を、金属金型を用いたエンボス法により形成する場合には、たとえば、透明支持体の表面上に、上記したような電離放射線硬化性樹脂を塗布して電離放射線硬化性樹脂層を形成し、その硬化性樹脂層を金属金型の凹凸表面に密着させた状態で透明支持体側から電離放射線(たとえば紫外線など)を照射することにより硬化性樹脂層を硬化させ、金属金型の凹凸形状を電離放射線硬化樹脂からなる層に転写させる。ついで、金属金型から、第1の樹脂層(電離放射線硬化樹脂)が形成された透明支持体を剥離する。第2の樹脂層をエンボス法により第1の樹脂層上に形成する場合も同様である。
 本発明においては、防眩フィルムの第1の樹脂層の表面(第1の微細凹凸表面)または第2の樹脂層の表面(第2の微細凹凸表面)の少なくとも一方が金属金型を用いたエンボス法により形成されることが好ましく、少なくとも第1の微細凹凸表面は、エンボス法により形成されることがより好ましい。特に好ましくは、第1の微細凹凸表面および第2の微細凹凸表面の双方がエンボス法により形成される。
 本発明の防眩フィルムを製造するために好適に用いられる金属金型は、以下のようにして製造することができる。この金型製造方法においては、表面凹凸を有する金属金型を得るために、金属基材の表面に銅めっきまたはニッケルめっきを施し、そのめっき表面を研磨した後、その研磨面に微粒子をぶつけて凹凸を形成し、その凹凸形状を鈍らせる加工を施した後、その凹凸面にクロムめっきを施して、金型とする。以下、当該金型製造方法について詳細に説明する。
 まず、金属基材表面に銅めっきまたはニッケルめっきを施す。金型を構成する金属基材の表面に銅めっきまたはニッケルめっきを施すことにより、後工程におけるクロムめっきの密着性や光沢性を上げることができる。鉄などの表面にクロムめっきを施した場合、あるいはクロムめっき表面にサンドブラスト法やビーズショット法などで凹凸を形成してから再度クロムめっきを施した場合は、先に述べたように、表面が荒れやすく、細かいクラックが生じて、防眩フィルムの凹凸形状に好ましくない影響を与えることがある。これに対して、表面に銅めっきまたはニッケルめっきを施すことにより、このような不都合がなくなることが見出された。これは、銅めっきやニッケルめっきは、被覆性が高く、また平滑化作用が強いために、金属基材の微小な凹凸や巣などを埋めて平坦で光沢のある表面を形成するためである。銅めっきおよびニッケルめっきのかかる特性によって、金属基材に存在していた微小な凹凸や巣に起因すると思われるクロムめっき表面の荒れが解消され、また、銅めっきやニッケルめっきの被覆性の高さから、細かいクラックの発生が低減されるものと考えられる。
 銅またはニッケルは、それぞれ純金属であることができるほか、銅を主体とする合金、またはニッケルを主体とする合金であってもよい。したがって、本明細書において銅は、銅および銅合金を含む意味であり、またニッケルは、ニッケルおよびニッケル合金を含む意味である。銅めっきおよびニッケルめっきは、それぞれ電解めっきで行なっても無電解めっきで行なってもよいが、通常は電解めっきが採用される。
 金型を構成するのに好適な金属として、コストの観点からアルミニウムや鉄などが挙げられる。取扱いの利便性からは、軽量なアルミニウムがより好ましい。アルミニウムや鉄も、それぞれ純金属であることができるほか、アルミニウムまたは鉄を主体とする合金であってもよい。このような金属基材の表面に銅めっきまたはニッケルめっきを施し、さらにその表面を研磨して、より平滑で光沢のある表面を得た後、その表面に微粒子をぶつけて微細な凹凸を形成し、その凹凸形状を鈍らせる加工を施した後、さらにそこにクロムめっきを施して、金型を構成する。
 銅めっきまたはニッケルめっきを施す際には、めっき層があまり薄いと、下地金属の影響が排除しきれないことから、その厚みは10μm以上であることが好ましい。めっき層厚みの上限は臨界的でないが、コスト等を考慮すれば、一般には500μm程度までで十分である。
 金属金型を構成する金属基材は、平らな金属板であってもよいし、円柱状または円筒状の金属ロールであってもよい。金属ロールを用いて金型を作製すれば、防眩フィルムを連続的なロール状で製造することができる。
 ここで、平板状の金属基材を用いた場合における金属金型の製造方法の一例を図8に示す。図8は、各工程での金属金型の状態を模式的な断面図で示している。図8(a)は、銅めっきまたはニッケルめっきおよび鏡面研磨を施した後の金属基材の断面を示すものであって、金属基材801の表面にはめっき層802が形成され、その表面が研磨面803となっている。このような鏡面研磨後のめっき層802の表面に微粒子をぶつけることにより、凹凸を形成する(ブラスト処理、図8(b)参照)。微粒子がぶつけられることで、部分球面状の微細な凹面804が形成されている。
 次に、こうして微粒子による凹凸が形成された面に、凹凸形状を鈍らせる加工を施す(図8(c1)および(c2)参照)。凹凸形状を鈍らせる方法としては、エッチング処理による方法(図8(c1))、銅めっきによる方法(図8(c2))を挙げることができる。エッチング処理による方法では、図8(b)に示される部分球面状の凹面804と、これによって形成される鋭角的な突起が、エッチングにより削られて、部分球面上の鋭角的な突起が鈍らされた表面806aが形成されている。なお、図8(c1)においては、エッチングにより鈍らされる前の状態(図8(b)に示される部分球面状の凹面804)を破線で示している。一方、銅めっきによる方法では、図8(b)に示される部分球面状の凹面804上に銅めっき層805が形成され、これによって、部分球面上の鋭角的な突起が鈍らされた表面806bが形成されている。
 その後、鋭角的な突起が鈍らされた表面上にクロムめっきを施すことによって、表面の凹凸形状をさらに鈍らせる(図8(d1)および(d2)参照)。図8(d1)はエッチング処理によって鋭角的な突起が鈍らされた表面806a上にクロムめっき層807が形成された状態を示す概略断面図である。また、図8(d2)は銅めっきによって鋭角的な突起が鈍らされた表面806b上にクロムめっき層807が形成された状態を示す概略断面図である。図8(c1)から(d1)に至るエッチング処理を採用する例では、図8(c1)に示したエッチングにより鋭角的な突起が鈍らされた表面806a上にクロムめっき層807が形成されている。クロムめっき層の表面808の凹凸は、表面806aの凹凸に比べて、クロムめっきによりさらに鈍った状態、換言すれば凹凸形状が緩和された状態になっている。また、図8(c2)から(d2)に至る銅めっきを採用する例では、金属基材801上の銅またはニッケルからなるめっき層802に形成された微細な凹面上に、銅めっき層805が形成され、さらにその上にクロムめっき層807が形成されている。クロムめっき層の表面808は、クロムめっきにより、図8(c2)に示される表面806bの凹凸に比べてさらに鈍った状態、換言すれば凹凸形状が緩和された状態になっている。このように、銅またはニッケルからなるめっき層802の表面に微粒子をぶつけて凹凸を形成した後、その凹凸形状を鈍らせる加工を施した表面806aまたは806bに、クロムめっきを施すことにより、実質的に平坦部がない金属金型を得ることができる。また、そのような金型が、好ましい光学特性を示す防眩フィルムを得るのに好適である。
 金属基材上の銅またはニッケルからなるめっき層には、表面が研磨された状態で、微粒子がぶつけられる。銅またはニッケルからなるめっき層は、特に、鏡面に近い状態に研磨されていることが好ましい。なぜなら、基材となる金属板や金属ロールは、所望の形状を精度良く得るために、切削や研削などの機械加工が施されていることが多く、それにより基材表面に加工目が残っているためである。銅めっきまたはニッケルめっきが施された状態でも、それらの加工目が残ることがあるし、また、めっきした状態で、表面が完全に平滑になるとは限らない。深い加工目などが残った状態では、微粒子をぶつけて基材表面を変形させても、微粒子により形成される凹凸よりも加工目などの凹凸のほうが深いことがあり、加工目などの影響が残る可能性がある。そのような金型を用いて防眩フィルムを製造した場合には、光学特性に予期できない影響を及ぼすことがある。
 めっきが施された基材表面を研磨する方法に特別な制限はなく、機械研磨法、電解研磨法、化学研磨法のいずれも使用できる。機械研磨法としては、超仕上げ法、ラッピング、流体研磨法およびバフ研磨法などが例示される。研磨後の表面粗度は、算術平均高さPaで表して、Paが1μm以下であることが好ましく、より好ましくはPaが0.5μm以下である。Paがあまり大きくなると、微粒子をぶつけて金属の表面を変形させても、変形前の表面粗度の影響が残る可能性があるので好ましくない。また、Paの下限については特に制限されず、加工時間や加工コストなどを考慮して適宜の値とされる。
 金属基材のめっきが施された表面に微粒子をぶつける方法としては、噴射加工法が好適に用いられる。噴射加工法には、サンドブラスト法、ショットブラスト法、液体ホーニング法などがある。これらの加工に用いられる粒子としては、鋭い角があるような形状よりは、球形に近い形状であるほうが好ましく、また加工中に破砕されて鋭い角が出ないような、硬い材質の粒子が好ましい。これらの条件を満たす粒子として、セラミックス系の粒子では、球形ジルコニアのビーズまたは球形アルミナのビーズが好ましく用いられる。また金属系の粒子では、スチールまたはステンレススチール製のビーズが好ましい。さらには、樹脂バインダにセラミックスまたは金属の粒子を担持させた粒子を用いてもよい。
 金属基材のめっきが施された表面にぶつける微粒子として、平均粒径が10~150μmのもの、特に球形の微粒子を用いることにより、優れた防眩性能を示す防眩フィルムを作製することができる。微粒子の平均粒径が10μmより小さいと、めっきが施された表面に十分な凹凸を形成することが困難となり、十分な防眩性能が得られにくくなる。一方、微粒子の平均粒径が150μmより大きいと、表面凹凸が粗くなり、ギラツキが発生したり質感が低下したりしやすい。平均粒径が15μm以下の微粒子を用いて加工する際には、粒子が静電気等で凝集しないよう、適当な分散媒に分散させて加工する湿式ブラスト法を採用することが好ましい。
 また、微粒子をぶつける際の圧力、微粒子の使用量、微粒子を噴射するノズルから金属表面までの距離も、加工後の金属金型の凹凸形状、延いては防眩フィルムの第1および/または第2の微細凹凸表面の形状に影響するが、一般には、ゲージ圧で0.05~0.4MPa程度の圧力、また処理される金属の表面積1cm2あたり2~12g程度の微粒子量、微粒子を噴射するノズルから金属表面まで200mm~600mm程度の距離から、用いる微粒子の種類や粒径、金属の種類、微粒子を噴射するノズルの形状、所望の凹凸形状などに応じて、適宜選択すればよい。
 防眩フィルムの第2の微細凹凸表面を形成するための金属金型については、金属基材のめっきが施された表面に微粒子をぶつけることによって形成された凹凸形状は、任意の断面曲線の算術平均高さPaが0.1μm以上1.5μm以下であり、その断面曲線における算術平均高さPaと平均長さPSmとの比Pa/PSmが0.02以上0.1以下であることが好ましい。算術平均高さPaが0.1μmより小さいか、または比Pa/PSmが0.02より小さい場合には、クロムめっき加工前に凹凸形状を鈍らせる加工を施した際に、凹凸表面がほぼ平坦面となってしまい、望ましい表面形状の金型が得られにくい。また、算術平均高さPaが1.5μmより大きいか、または比Pa/PSmが0.1より大きい場合には、クロムめっき加工前の凹凸形状を鈍らせる加工を強い条件で行なわなければならず、表面形状の制御が困難なものとなりやすい。
 このようにして銅めっきまたはニッケルめっき表面に凹凸が形成された基材に、凹凸形状を鈍らせる加工を施す。凹凸形状を鈍らせる加工としては、先に図8を参照して説明したように、エッチング処理または銅めっきが好ましい。エッチング処理を行なうことによって、微粒子をぶつけて作製した凹凸形状の鋭利な部分がなくなる。それにより、当該金型を使用して作製される防眩フィルムの光学特性を好ましい方向へと変化させることができる。また、銅めっきは平滑化作用が強いため、クロムめっきより凹凸形状を鈍らせる効果が強い。それにより、当該金型を使用して作製される防眩フィルムの光学特性を好ましい方向へと変化させることができる。
 ただし、防眩フィルムの第1の微細凹凸表面を形成するための金属金型については、後述するように第1の樹脂層上に第2の樹脂層を積層せず、第1の微細凹凸表面が空気と接する最表面となっている状態での積層フィルムのヘイズが50%以上であることが好ましいことから、凹凸形状を鈍らせる加工を行なわずにクロムめっき加工を施して、表面微細凹凸形状の粗い、すなわち算術平均高さの大きい金型としても構わない。
 エッチング処理は通常、塩化第二鉄(FeCl3)水溶液、塩化第二銅(CuCl2)水溶液、アルカリエッチング液(Cu(NH3)4Cl2)などを用い、表面を腐食させることによって行なわれるが、塩酸や硫酸などの強酸を用いることもできるし、電解めっき時と逆の電位をかけることによる逆電解エッチングを用いることもできる。エッチング処理を施した後の凹凸のなまり具合は、下地金属の種類、ブラストなどの手法により得られた凹凸のサイズおよび深さなどによって異なるため、一概には言えないが、なまり具合を制御するうえで最も大きな因子は、エッチング量である。エッチング量とは、エッチングにより削られる基材(めっき層)の厚さである。エッチング量が小さいと、ブラストなどの手法により得られた凹凸の表面形状を鈍らせる効果が不十分であり、その凹凸形状を転写して得られる防眩フィルムの光学特性があまり良くならない。一方、エッチング量が大きすぎると、凹凸形状がほとんどなくなってしまい、ほぼ平坦な金型となってしまうので、防眩フィルムが十分な防眩性を示さなくなってしまう。そこで、防眩フィルムの第2の微細凹凸表面を形成するための金属金型については、エッチング量は1μm以上20μm以下となるようにするのが好ましく、さらには2μm以上10μm以下であるのがより好ましい。
 鈍らせる加工として銅めっきを採用する場合、凹凸のなまり具合は、下地金属の種類、ブラストなどの手法により得られた凹凸のサイズおよび深さ、ならびに、めっきの種類および厚みなどによって異なるため、一概には言えないが、なまり具合を制御するうえで最も大きな因子はめっき厚みである。銅めっき層の厚みが薄いと、ブラストなどの手法により得られた凹凸の表面形状を鈍らせる効果が不十分であり、その凹凸形状を転写して得られる防眩フィルムの光学特性があまり良くならない。一方、めっき厚みが厚すぎると、生産性が悪くなるうえ、凹凸形状がほとんどなくなってしまうので、防眩フィルムが十分な防眩性を示さなくなってしまう。そこで、防眩フィルムの第2の微細凹凸表面を形成するための金属金型については、銅めっきの厚みは1μm以上20μm以下となるようにするのが好ましく、さらには4μm以上10μm以下であるのがより好ましい。
 このようにして銅めっきまたはニッケルめっき表面に凹凸が形成された金属基材の表面形状を鈍らせた後、さらにクロムめっきを施すことにより、凹凸の表面をより一層鈍らせるとともに、その表面硬度が高められた金属金型が得られる。この際の凹凸のなまり具合も、下地金属の種類、ブラストなどの手法により得られた凹凸のサイズおよび深さ、ならびに、めっきの種類や厚みなどによって異なるため、一概には言えないが、なまり具合を制御するうえで最も大きな因子は、やはりめっき厚みである。クロムめっき層の厚みが薄いと、クロムめっき加工前に得られた凹凸の表面形状を鈍らせる効果が不十分であり、その凹凸形状を転写して得られる防眩フィルムの光学特性があまり良くならない。一方、めっき厚みが厚すぎると、生産性が悪くなるうえに、ノジュールと呼ばれる突起状のめっき欠陥が発生してしまう。そこで、防眩フィルムの第2の微細凹凸表面を形成するための金属金型については、クロムめっきの厚みは1μm以上10μm以下となるようにするのが好ましく、さらには2μm以上6μm以下であるのがより好ましい。
 クロムめっきは、光沢があって、硬度が高く、摩擦係数が小さく、良好な離型性を与え得るため好ましい。クロムめっきの種類は特に制限されないが、いわゆる光沢クロムめっきまたは装飾用クロムめっきなどと呼ばれる、良好な光沢を発現するクロムめっきを用いることが好ましい。クロムめっきは通常、電解によって行なわれ、そのめっき浴としては、無水クロム酸(CrO3)と少量の硫酸とを含む水溶液が用いられる。電流密度と電解時間を調節することにより、クロムめっきの厚みを制御することができる。
 クロムめっきが施された金型表面は、そのビッカース硬度が800以上であることが好ましく、より好ましくは1000以上である。ビッカース硬度が低いと、金型使用時の耐久性が低下するうえに、クロムめっきで硬度が低下することは、めっき処理時にめっき浴組成や電解条件等に異常が発生している可能性が高く、欠陥の発生状況についても好ましくない影響を与える可能性が高い。
 ここで、上記特許文献1および4には、金型となる金属基材表面にクロムめっきすることが開示されている。クロムめっきを適用する場合、金型のめっき前の下地またはクロムめっきの種類によっては、めっき後に表面が荒れたり、クロムめっきによる微小なクラックが多数発生したりすることが多く、その結果、作製される防眩フィルムの光学特性が好ましくない方向へと進む。めっき表面が荒れた状態のものは、防眩フィルム用の金型に向いていない。なぜなら、一般的にざらつきを消すためにクロムめっき後にめっき表面を研磨することが行なわれているが、後述するように、めっき後の表面の研磨は好ましくないからである。本発明において好適に用いられる上述の金型の製造方法においては、下地金属に銅めっきまたはニッケルめっきを施すことにより、クロムめっきで生じやすいこのような不都合を解消している。
 クロムめっきを施す前に凹凸形状を鈍らせる加工を施さない場合には、微粒子をぶつけて作製した凹凸形状の鋭利な部分を十分に鈍らせるために、クロムめっきを厚くしなくてはならない。しかしながら、クロムめっきの厚みを厚くしすぎると、ノジュールが発生しやすくなるので、好ましくない。また、クロムめっきの厚みを薄くした場合には、微粒子をぶつけて作製した凹凸形状を十分に鈍らせることができず、望ましい表面形状の金型が得られず、その金型を用いて作製した防眩フィルムも優れた防眩性能を示さない傾向にある。
 上記特許文献1には、鉄の表面にクロムめっきしたローラーにサンドブラスト法やビーズショット法により凹凸型面を形成した後、クロムめっきを施すことが記載され、また、上記特許文献3および4には、ロール表面にビーズショット法やブラスト処理を施すことが記載されている。しかし、微粒子をぶつけて凹凸形状を形成した後に表面形状を積極的に鈍らせる加工を施したうえで、クロムめっき加工を施して表面凹凸形状をさらに鈍らせる方法について言及したものはなく、本発明者らの検討によれば、上で説明したように積極的に表面形状を鈍らせる加工を施さなければ、優れた防眩性能を示す防眩フィルムを製造することはできなかった。
 なお、凹凸をつけた金属表面にクロムめっき以外のめっきを施すことは好ましくない。なぜなら、クロム以外のめっきでは、硬度や耐摩耗性が低くなるため、金型としての耐久性が低下し、使用中に凹凸が磨り減ったり、金型が損傷したりする。そのような金型から得られた防眩フィルムでは、十分な防眩機能が得られにくい可能性が高く、また、防眩フィルム表面に欠陥が発生する可能性も高くなる。
 クロムめっき後は、表面を研磨せず、そのままクロムめっき面を金型の凹凸面として用いるのが有利である。上記特許文献4には、めっき後の表面を研磨することが記載されているが、このようにクロムめっき面を研磨することは、本発明においては好ましくない。これは、研磨することにより、最表面に平坦な部分が生じるため、防眩フィルムの光学特性の悪化を招く可能性があること、および、金型の凹凸形状の制御因子が増えるため、再現性の良い形状制御が困難になることなどの理由からである。図9は、微粒子をぶつけて得られた凹凸形状を鈍らせる加工、ここでは、図8(c1)に示したエッチング処理を施した後、図8(d1)に示したクロムめっきを施した面を研磨した場合における、金属金型の表面状態を示す断面模式図である。研磨により、銅またはニッケルからなるめっき層802の表面に形成されたクロムめっき層の表面808の凹凸のうち、一部の凸が削られ、平坦面809が生じている。図9には、図8(d1)に示したエッチング後クロムめっきした表面を研磨した場合の例を示したが、図8(d2)に示した銅めっき後クロムめっきした場合も、その表面を研磨すれば、同様に平坦面が生じることになる。
 本発明の防眩フィルムは、第1の樹脂層および第2の樹脂層がともに、上記した方法により作製された、所定形状の凹凸を有する金属金型を用いたエンボス法により形成されることが好ましい。具体的には、金属金型の凹凸形状を、透明支持体上に塗布した電離放射線硬化樹脂に転写し、凹凸面が転写された硬化樹脂(第1の樹脂層)と透明支持体との積層体を金型から剥離した後、第1の樹脂層上に電離放射線硬化性樹脂を塗布し、所定形状の凹凸を有する金属金型を用いて、該金属金型の凹凸形状を電離放射線硬化樹脂に転写し、凹凸面が転写された硬化樹脂(第2の樹脂層)と第1の樹脂層と透明支持体との積層体を金型から剥離することにより防眩フィルムを作製することができる。
 この際、本発明においては、第1の樹脂層上に第2の樹脂層を積層せず、第1の微細凹凸表面が空気と接する最表面となっている状態での積層フィルム(透明支持体と第1の樹脂層との積層体)のヘイズが50%以上であることが好ましい。ヘイズが50%よりも小さいと、第1の樹脂層と第2の樹脂層との屈折率差が比較的小さい場合、得られる防眩フィルムの第1の微細凹凸表面による内部散乱効果が小さいため、所定の散乱特性およびヘイズを防眩フィルムに与えてギラツキを解消するための第1の微細凹凸表面の形成が困難となる傾向にある。
 なお、透明支持体上に、第1の樹脂層をエンボス法により形成した後、金属金型を用いることなく、電離放射線硬化性樹脂を第1の樹脂層上に塗布し、これを硬化させることにより、第2の樹脂層を形成することも可能である。この場合、第2の樹脂層表面(第2の微細凹凸表面)の凹凸形状は、第2の樹脂層の厚みにもよるが、第1の微細凹凸表面の形状に大きく依存することになる。ただし、上記したように、本発明においては、反射特性と内部散乱特性とが独立に制御されることが好ましく、このためには、第1の微細凹凸表面の形状と第2の微細凹凸表面の形状とは、独立に制御されることが好ましいことから、本発明の防眩フィルムは、第1の微細凹凸表面が、その上に形成される第2の樹脂層表面の微細凹凸形状に影響を及ぼさないように製造されることが好ましい。したがって、本発明の防眩フィルムは、その第1の樹脂層および第2の樹脂層がともに金属金型を用いたエンボス法により形成されることが好ましい。
 <防眩性偏光板>
 本発明の防眩フィルムは、防眩効果に優れ、白ちゃけも有効に防止され、ギラツキの発生およびコントラストの低下を効果的に抑制できる。このような本発明の防眩フィルムを備える画像表示装置は、視認性に優れたものとなる。画像表示装置が液晶ディスプレイである場合には、この防眩フィルムを偏光板に適用することができる。すなわち、偏光板は一般に、ヨウ素または二色性染料が吸着配向されたポリビニルアルコール系樹脂フィルムからなる偏光フィルムの少なくとも片面に保護フィルムが貼合された形態のものが多いが、その一方の保護フィルムを本発明の防眩フィルムとすることにより、防眩性偏光板とすることができる。より具体的には、偏光フィルムと、本発明の防眩フィルムとを、その防眩フィルムの透明支持体側で貼り合わせることにより、防眩性偏光板とすることができる。この場合、偏光フィルムの他方の面は、何も積層されていない状態でもよいし、別の保護フィルムまたは光学フィルムが積層されていてもよいし、または液晶セルに貼合するための粘着剤層が形成されていてもよい。また、偏光フィルムの少なくとも片面に保護フィルムが貼合された偏光板の当該保護フィルム上に、本発明の防眩フィルムをその透明支持体側で貼合して、防眩性偏光板とすることもできる。さらに、少なくとも片面に保護フィルムが貼合された偏光板において、当該保護フィルムとして上記透明支持体を用い、この透明支持体上に第1および第2の樹脂層を形成することにより、防眩性偏光板とすることもできる。
 <画像表示装置>
 本発明の画像表示装置は、本発明の防眩フィルムまたは防眩性偏光板を画像表示素子と組み合わせたものである。ここで、画像表示素子は、上下基板間に液晶が封入された液晶セルを備え、電圧印加により液晶の配向状態を変化させて画像の表示を行なう液晶パネルが代表的であるが、その他、プラズマディスプレイ、CRTディスプレイ、有機ELディスプレイなど、公知の各種ディスプレイに対しても、本発明の防眩フィルムまたは防眩性偏光板を適用することができる。本発明の画像表示装置においては、防眩フィルムは、画像表示素子よりも視認側に配置される。この際、防眩フィルムの凹凸面、すなわち第2の樹脂層側が外側(視認側)となるように配置される。防眩フィルムは、画像表示素子の表面に直接貼合してもよいし、液晶パネルを画像表示素子とする場合は、たとえば先述のように、偏光フィルムを介して液晶パネルの表面に貼合することもできる。このように、本発明の防眩フィルムを備えた画像表示装置は、防眩フィルムの有する表面の凹凸により入射光を散乱して映り込み像をぼかすことができ、画像表示装置に優れた視認性を与える。
 また、本発明の防眩フィルムは、高精細の画像表示装置に適用した場合でも、従来の防眩フィルムに見られたようなギラツキが発生することもなく、十分な映り込み防止、白ちゃけの防止、ギラツキの抑制およびコントラストの低下抑制性能を示す。
 以下に実施例を示して、本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。以下の例における金型および防眩フィルムの評価方法は、次のとおりである。
 (1)金型のビッカース硬度の測定
 Krautkramer社製の超音波硬度計「MIC10」を用いて、JIS Z 2244に準拠した方法でビッカース硬度を測定した。測定は、金型自体の表面にて行なった。
 (2)防眩フィルムの光学特性の測定
 (2-1)反射プロファイル
 防眩フィルムの凹凸面(第2の微細凹凸表面)に、防眩フィルム法線に対して30゜傾斜した方向から、He-Neレーザーからの平行光を照射し、防眩フィルム法線と照射方向を含む平面内における反射率の角度変化の測定を行なった。反射率の測定には、いずれも横河電機(株)製の「3292 03 オプティカルパワーセンサー」および「3292 オプティカルパワーメーター」を用いた。
 (2-2)透過散乱プロファイル
 防眩フィルムを、その凹凸面(第2の微細凹凸表面)が表面となるようガラス基板に貼合し、そのガラス面側より、防眩フィルム法線に対して所定の角度傾斜した方向から、He-Neレーザーからの平行光を照射し、防眩フィルム凹凸面(第2の微細凹凸表面)側での防眩フィルム法線方向の透過散乱光強度を測定した。透過散乱光強度の測定には、いずれも横河電機(株)製の「3292 03 オプティカルパワーセンサー」および「3292 オプティカルパワーメーター」を用いた。
 (2-3)ヘイズ
 防眩フィルムの反りを防止するため、防眩フィルムを光学的に透明な粘着剤を用いて、その第2の微細凹凸表面が表面となるようにガラス基板に貼合し、JIS K 7136に準拠した(株)村上色彩技術研究所製のヘイズメーター「HM-150」型を用いて全体のヘイズ(全体ヘイズ)を測定した。次に、防眩フィルムの第2の微細凹凸表面に、ヘイズがほぼ0であるトリアセチルセルロースフィルムをグリセリンを用いて貼合し、再度JIS K 7136に準拠して、内部ヘイズを測定した。表面ヘイズは、上記式(1)に基づいて算出した。
 また、下記の実施例1~3および比較例2~4においては、透明支持体であるトリアセチルセルロースフィルム上に、表面に微細凹凸形状を有する第1の樹脂層のみが積層された状態の積層フィルムについてもヘイズを測定した(表1において、「単層のヘイズ値」と称している。)。このヘイズの測定は、対象を第2の樹脂層を有しない状態の積層フィルムとした以外は、上記全体ヘイズの測定と同様にして行なった。
 (2-4)反射鮮明度
 JIS K 7105に準拠したスガ試験機(株)製の写像性測定器「ICM-1DP」を用いて、防眩フィルムの反射鮮明度を測定した。この場合も、防眩フィルムの反りを防止するため、光学的に透明な粘着剤を用いて凹凸面(第2の微細凹凸表面)が表面となるようにガラス基板に貼合してから測定に供した。また、裏面のガラス面からの反射を防止するために、防眩フィルムを貼ったガラス基板のガラス面に2mm厚みの黒色アクリル樹脂板を水で密着させて貼り付け、この状態で第2の微細凹凸表面側から光を入射し、測定を行なった。ここでの測定値は、暗部と明部との幅がそれぞれ0.5mm、1.0mmおよび2.0mmである3種類の光学くしを用いて測定された値の合計値である(最大値300%)。
 (3)防眩フィルムの表面形状の測定
 Sensofar社製の共焦点顕微鏡「PLμ2300」を用いて、防眩フィルムの表面形状(第2の微細凹凸表面の形状)を測定した。この場合も、防眩フィルムの反りを防止するため、光学的に透明な粘着剤を用いて凹凸面(第2の微細凹凸表面)が表面となるようにガラス基板に貼合してから測定に供した。測定の際、対物レンズの倍率は50倍とし、解像度を落として測定を行なった。高解像度で測定すると、防眩フィルム表面の細かい凹凸を測定してしまい、凸部のカウントに支障をきたすためである。
 (3-1)算術平均高さPa、最大断面高さPtおよび平均長さPSm
 上記測定データをもとに、JIS B 0601に準拠した計算により、断面曲線における算術平均高さPa、最大断面高さPt、および平均長さPSmを求めた。
 (3-2)凸部の数
 上記測定で得られた防眩フィルム表面各点の三次元的な座標値をもとに、先に図2を参照して説明したアルゴリズムに従って、200μm×200μmの領域内に存在する凸部の数を求めた。
 (3-3)ボロノイ分割したときのボロノイ多角形平均面積
 上記測定で得られた防眩フィルム表面各点の三次元的な座標値をもとに、先に図2および図3を参照して説明したアルゴリズムに基づいて計算し、ボロノイ多角形の平均面積を求めた。
 (4)防眩フィルムの防眩性能の評価
 (4-1)白ちゃけの評価
 防眩フィルムの裏面からの反射を防止するために、凹凸面(第2の微細凹凸表面)が表面となるように黒色アクリル樹脂板に防眩フィルムを貼合し、蛍光灯のついた明るい室内で凹凸面側から目視で観察し、白ちゃけの程度を次の3段階で評価した。
 白ちゃけ;1 白ちゃけが観察されない。2:白ちゃけが少し観察される。3:白ちゃけが明瞭に観察される。
 (4-2)ギラツキの評価
 ギラツキは以下の方法で評価した。まず、図10に平面図で示すようなユニットセルのパターンを有するフォトマスクを用意した。この図において、ユニットセル1000は、透明な基板上に、線幅10μmでカギ形のクロム遮光パターン1001が形成され、そのクロム遮光パターン1001の形成されていない部分が開口部1002となっている。ユニットセル1000の寸法は、254μm×84μm(図の縦×横)であり、したがって開口部1002の寸法は、244μm×74μm(図の縦×横)である。図示するユニットセル1000が縦横に多数並んで、フォトマスクを形成する。
 そして、図11に模式的な断面図で示すように、フォトマスク1003のクロム遮光パターン1001を上にしてライトボックス1005に置き、ガラス板1007に粘着剤で防眩フィルム1101をその凹凸面(第2の微細凹凸表面)が表面となるように貼合したサンプルをフォトマスク1003上に置く。ライトボックス1005の中には、光源1006が配置されている。この状態で、サンプルから約30cm離れた位置1009から目視観察することにより、ギラツキの程度を7段階で官能評価した。レベル1はギラツキが全く認められない状態、レベル7はひどくギラツキが観察される状態に該当し、レベル3はごくわずかにギラツキが観察される状態である。
 <実施例1>
 (A)第1の樹脂層用金型の作製
 直径200mmの鉄ロール(JISによるSTKM13A)の表面に銅バラードめっきが施されたものを用意した。銅バラードめっきは、銅めっき層/薄い銀めっき層/表面銅めっき層からなるものであり、めっき層全体の厚さは約200μmであった。その表面銅めっき層の表面を鏡面研磨し、さらにその研磨面に、ブラスト装置((株)不二製作所製)を用いて、東ソー(株)製のジルコニアビーズ「TZ-SX-17」(商品名、平均粒径17μm)を、ビーズ使用量8g/cm2(ロールの表面積1cm2あたりの使用量、以下「ブラスト量」とする)、ブラスト圧力0.2MPa(ゲージ圧、以下同じ)、ビーズを噴射するノズルから金属表面までの距離300mm(以下「ブラスト距離」とする)でブラストし、表面に凹凸をつけた。得られた表面凹凸を有する銅めっき鉄ロールに対し、凹凸形状を鈍らせる加工を施さずに、クロムめっき加工を行ない、金属金型(A)を作製した。このとき、クロムめっき厚みが4μmとなるように設定した。得られた金属金型(A)は、表面のビッカース硬度が1,000であった。
 (B)第2の樹脂層用金型の作製
 上記と同様に、直径200mmの鉄ロール(JISによるSTKM13A)の表面に銅バラードめっきが施されたものを用意した。その表面銅めっき層の表面を鏡面研磨し、さらにその研磨面に、ブラスト装置((株)不二製作所製)を用いて、東ソー(株)製のジルコニアビーズ「TZ-B53」(商品名、平均粒径53μm)を、ブラスト量8g/cm2、ブラスト圧力0.15MPa、ブラスト距離450mmでブラストし、表面に凹凸をつけた。得られた表面凹凸を有する銅めっき鉄ロールに対し、塩化第二銅水溶液でエッチングを行なった。エッチング量は8μmとなるように設定した。その後、クロムめっき加工を行ない、金属金型(B)を作製した。このとき、クロムめっき厚みが4μmとなるように設定した。得られた金属金型(B)は、表面のビッカース硬度が1,000であった。
 (C)防眩フィルムの作製
 (C-1)第1の樹脂層の形成
 ペンタエリスリトールトリアクリレートと多官能ウレタン化アクリレート(ヘキサメチレンジイソシアネートとペンタエリスリトールトリアクリレートの反応生成物)とが重量比60/40、固形分濃度60重量%で酢酸エチルに溶解し、レベリング剤が配合されている紫外線硬化性樹脂組成物(樹脂組成物(a))を入手した。この組成物の硬化後の屈折率は1.53である。
 上記樹脂組成物(a)を、厚さ80μmのトリアセチルセルロースフィルム(TACフィルム)上に、乾燥後の塗布厚みが10μmとなるように塗布し、60℃に設定した乾燥機中で3分間乾燥させた。次に、乾燥後のフィルムを、その樹脂組成物(a)からなる層が上で作製した金属金型(A)の凹凸表面側になるように配置し、該フィルムを、金属金型(A)の凹凸面にゴムロールで押し付け、密着させた。この状態でTACフィルム側より、強度20mW/cm2の高圧水銀灯からの光をh線換算光量で200mJ/cm2となるように照射して、樹脂組成物(a)からなる層を硬化させた。この後、TACフィルムを硬化樹脂層ごと金属金型(A)から剥離して、TACフィルム上に凹凸を有する第1の樹脂層が形成された積層フィルムを得た。
 (C-2)第2の樹脂層の形成
 S,S’-(チオジエチレン)-ビス(チオメタクリレート)が酢酸エチルに固形分濃度60重量%で溶解している紫外線硬化性樹脂組成物(樹脂組成物(b))を入手した。この組成物の硬化後の屈折率は1.63である。
 上記積層フィルムの凹凸面(第1の微細凹凸表面)に、上記樹脂組成物(b)を、乾燥後の塗布厚みが5μmとなるように塗布し、55℃に設定した乾燥機中で3分間乾燥させた。次に、乾燥後のフィルムを、その樹脂組成物(b)からなる層が上で作製した金属金型(B)の凹凸表面側になるように配置し、該フィルムを、金属金型(B)の凹凸面にゴムロールで押し付け、密着させた。この状態でTACフィルム側より、強度20mW/cm2の高圧水銀灯からの光をh線換算光量で200mJ/cm2となるように照射して、樹脂組成物(b)からなる層を硬化させた。この後、2層の硬化樹脂層を有するTACフィルムを金属金型(B)から剥離して、表面に凹凸を有する2層の硬化樹脂層(第1および第2の樹脂層)とTACフィルムとの積層体からなる防眩フィルムを得た。
 <実施例2>
 第1の樹脂層に上記樹脂組成物(b)を用い、第2の樹脂層に上記樹脂組成物(a)を用いたこと以外は実施例1と同様にして、第1および第2の樹脂層とTACフィルムとの積層体からなる防眩フィルムを作製した。第1の樹脂層の凹凸表面形成のために金属金型(A)を用い、第2の樹脂層の凹凸表面形成のために金属金型(B)を用いたことは、実施例1と同じである。
 <比較例1>
 第1の樹脂層を形成せず、金属金型(B)および樹脂組成物(a)を用いて第2の樹脂層のみ形成したこと以外は、実施例2と同様にして、第2の樹脂層とTACフィルムとの積層体からなる防眩フィルムを作製した。
 <比較例2~3>
 金属金型(C)または(D)を用いて第1の樹脂層を形成したこと以外は、実施例1と同様にして、第1および第2の樹脂層とTACフィルムとの積層体からなる防眩フィルムを作製した(それぞれ比較例2、比較例3)。第1の樹脂層には樹脂組成物(a)を、第2の樹脂層には樹脂組成物(b)を用いている。金属金型(C)および(D)は、ブラスト圧力およびエッチング量を表1に示される値としたこと以外は、金属金型(A)と同様にして作製した。
 実施例1~2の防眩フィルムについての反射率測定により得られた反射光の角度依存性(反射プロファイルのグラフ)を図12に、散乱光強度測定により得られた散乱光強度の角度依存性(透過散乱プロファイルのグラフ)を図13にそれぞれ示す。同様に、図14、図15はそれぞれ、比較例1~3の防眩フィルムについての反射プロファイルのグラフ、透過散乱プロファイルのグラフである。
 また、上記実施例1~2および比較例1~3の防眩フィルムについての、(I)金型作製条件および防眩フィルムの構成材料、(II)第1および第2の微細凹凸表面の表面形状、ならびに(III)防眩フィルムの光学特性および防眩性能を、それぞれ表1~3にまとめた。なお、表3に示される実施例1の防眩フィルムの反射鮮明度の内訳は、次のとおりである。
              反射鮮明度
 0.5mm光学くし  : 10.6%
 1.0mm光学くし  : 11.1%
 2.0mm光学くし  : 21.0%
 合計           42.7%
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~3に示されるように、本発明の要件を満たす実施例1および2の防眩フィルムは、優れた防眩性能を示しながら、ギラツキや白ちゃけが発生しなかった。比較例1~3の防眩フィルムは、第1の樹脂層を有しないことに起因して実質的に内部ヘイズを有しないため(比較例1)、または第1の微細凹凸表面形成に異なる金属金型を用いたことに起因して内部ヘイズが小さいため(比較例2および3)に、実施例1に比べギラツキが比較的顕著であった。なお、実施例1~2の防眩フィルムと、比較例1~3の防眩フィルムとは、第2の微細凹凸表面について、ほぼ同一の表面形状をもつため、いずれも優れた防眩性能(白ちゃけなど)を有している。
 <実施例3>
 金属金型(E)を用いて第2の樹脂層を形成したこと以外は、実施例1と同様にして、第1および第2の樹脂層とTACフィルムとの積層体からなる防眩フィルムを作製した。第1の樹脂層には樹脂組成物(a)を、第2の樹脂層には樹脂組成物(b)を用いている。金属金型(E)は、ブラスト圧力およびエッチング量を表2に示される値としたこと以外は、金属金型(A)と同様にして作製した。
 <比較例4>
 5価のアンチモン化合物を含有する酸化スズ(IV)が16重量部、アクリレートモノマーが80重量部、光重合開始剤が3重量部、および変性シリコーンが1重量部の割合で配合され、メチルエチルケトンとジアセトンアルコールとの混合溶媒に固形分濃度60重量%で溶解している紫外線硬化性樹脂組成物(樹脂組成物(c))を入手した。この組成物の硬化後の屈折率は1.66である。
 次に、上記樹脂組成物(c)を第2の樹脂層に用いた以外は、実施例1と同様にして、第1および第2の樹脂層とTACフィルムとの積層体からなる防眩フィルムを作製した。第1の樹脂層の凹凸表面形成のために金属金型(A)を用い、第2の樹脂層の凹凸表面形成のために金属金型(B)を用いたことは、実施例1と同じである。
 上記実施例3および比較例4の防眩フィルムについての、(I)金型作製条件および防眩フィルムの構成材料、(II)第1および第2の微細凹凸表面の表面形状、ならびに(III)防眩フィルムの光学特性および防眩性能を、それぞれ表4~6にまとめた。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表4~6に示されるように、実施例3の防眩フィルムは、相対散乱強度T(30)が、実施例1および2と比べて低いため、防眩性能(白ちゃけおよびギラツキ)が実施例1および2に比べるとやや劣るものの、ほぼ良好な結果を与えている。一方、比較例4の防眩フィルムは、第2の樹脂層の構成材料の変更により、第1の樹脂層と第2の樹脂層との間の界面領域において、これらの樹脂層を構成する硬化樹脂の混和が生じ、内部ヘイズが小さくなっている。そのため、実施例1~3の防眩フィルムに比べ、ギラツキが大きくなっている。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明の防眩フィルムを、画像表示素子よりも視認側に配置して画像表示装置を構成することにより、液晶ディスプレイ、プラズマディスプレイ、CRTディスプレイ、有機ELディスプレイなどの各種ディスプレイにおける、白ちゃけおよびギラツキの発生を防止することができるとともに、映り込み像をぼかすことができ、優れた視認性を得ることができる。

Claims (9)

  1.  透明支持体(100)と、
     前記透明支持体(100)の上に積層された第1の樹脂層(101)と、
     前記第1の樹脂層(101)の上に積層された第2の樹脂層(102)と、
    を備え、
     前記第1の樹脂層(101)および前記第2の樹脂層(102)は、互いに異なる屈折率を有し、
     前記第1の樹脂層(101)は、前記透明支持体(100)側とは反対側の表面に微細な凹凸形状を有する電離放射線硬化樹脂からなり、
     前記第2の樹脂層(102)は、前記透明支持体(100)側とは反対側の表面に微細な凹凸形状を有する電離放射線硬化樹脂からなり、かつ、
     内部ヘイズが5%以上30%以下である防眩フィルム。
  2.  前記第2の樹脂層(102)側から入射角30゜で光を入射したときに、
     反射角30゜の反射率R(30)が0.05%以上2%以下であり、
     反射角40゜の反射率R(40)が0.0001%以上0.005%以下であり、
     反射角50゜の反射率R(50)が0.00001%以上0.0005%以下であり、
     前記透明支持体(100)側から入射角20゜で光を入射したときに、防眩フィルム法線方向の相対散乱光強度T(20)が0.0001%以上0.0005%以下であり、
     前記透明支持体(100)側から入射角30°で光を入射したときに、防眩フィルム法線方向の相対散乱光強度T(30)が0.00004%以上0.00025%以下である請求の範囲第1項に記載の防眩フィルム。
  3.  前記第1の樹脂層(101)と前記第2の樹脂層(102)とは、明確な界面を有する請求の範囲第1項に記載の防眩フィルム。
  4.  前記第1の樹脂層(101)の屈折率と前記第2の樹脂層(102)の屈折率との差の絶対値は、0.08以上である請求の範囲第1項に記載の防眩フィルム。
  5.  前記第1の樹脂層(101)および/または前記第2の樹脂層(102)は、導電性付与物質を含有する請求の範囲第1項に記載の防眩フィルム。
  6.  前記第2の樹脂層(102)表面上に、前記透明支持体(100)よりも低い屈折率を有する低屈折率層を含む低反射膜をさらに有する請求の範囲第1項に記載の防眩フィルム。
  7.  前記第1の樹脂層(101)が有する微細凹凸形状および/または前記第2の樹脂層(102)が有する微細凹凸形状は、表面に凹凸を有する金型を用い、該凹凸形状を電離放射線硬化樹脂に転写することにより形成される請求の範囲第1項に記載の防眩フィルム。
  8.  請求の範囲第1項に記載の防眩フィルムと、前記防眩フィルム上に積層された偏光フィルムとを備える防眩性偏光板であって、
     前記偏光フィルムは、前記防眩フィルムの前記透明支持体(100)側に配置される防眩性偏光板。
  9.  請求の範囲第1項に記載の防眩フィルムまたは請求の範囲第8項に記載の防眩性偏光板と、画像表示素子とを備え、
     前記防眩フィルムまたは防眩性偏光板は、その第2の樹脂層(102)側を外側にして画像表示素子の視認側に配置される画像表示装置。
PCT/JP2009/052898 2008-02-26 2009-02-19 防眩フィルム、防眩性偏光板および画像表示装置 WO2009107544A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801064898A CN101960334A (zh) 2008-02-26 2009-02-19 防眩膜、防眩性偏振板和图像显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008044321A JP5163943B2 (ja) 2008-02-26 2008-02-26 防眩フィルム、防眩性偏光板および画像表示装置
JP2008-044321 2008-02-26

Publications (1)

Publication Number Publication Date
WO2009107544A1 true WO2009107544A1 (ja) 2009-09-03

Family

ID=41015943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052898 WO2009107544A1 (ja) 2008-02-26 2009-02-19 防眩フィルム、防眩性偏光板および画像表示装置

Country Status (5)

Country Link
JP (1) JP5163943B2 (ja)
KR (1) KR20100117630A (ja)
CN (1) CN101960334A (ja)
TW (1) TW200951517A (ja)
WO (1) WO2009107544A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011031087A2 (ko) * 2009-09-10 2011-03-17 동우화인켐 주식회사 방현 필름, 이를 구비한 편광판 및 표시 장치
JP2012506159A (ja) * 2008-12-02 2012-03-08 エスケーシー カンパニー,リミテッド 太陽電池モジュール用封止材シート及びこれを含む太陽電池モジュール
TWI676162B (zh) * 2015-03-02 2019-11-01 日商木本股份有限公司 顯示裝置、使用彼之保護膜、顯示裝置之製作方法及使用保護膜之方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221197A (ja) * 2010-04-08 2011-11-04 Suntechopt Co Ltd アンチグレア拡散フィルム
KR101718864B1 (ko) * 2010-12-14 2017-03-23 엘지디스플레이 주식회사 눈부심방지필름, 편광판 및 디스플레이장치
KR101463949B1 (ko) * 2011-07-18 2014-11-27 주식회사 엘지화학 고 명암비를 나타내는 눈부심 방지 필름 및 이의 제조 방법
JP5748603B2 (ja) * 2011-08-03 2015-07-15 株式会社石井表記 加飾フイルム構造体及び加飾成形部材
KR101541583B1 (ko) * 2011-11-25 2015-08-06 주식회사 엘지화학 초발수 기판 및 그 제조방법
JP2013123838A (ja) * 2011-12-14 2013-06-24 Canon Inc 液体吐出ヘッドの製造方法
JP2013187245A (ja) * 2012-03-06 2013-09-19 Stanley Electric Co Ltd 半導体発光装置
CN108051879B (zh) 2012-11-21 2020-09-08 3M创新有限公司 光学扩散膜及其制备方法
KR101503896B1 (ko) 2013-04-15 2015-03-19 주식회사 에프아이엠엠 근접센서에서 이용되는 백색 투과창
WO2015050750A1 (en) 2013-10-02 2015-04-09 3M Innovative Properties Company Microstuctured diffuser comprising first microstructured layer and coating, optical stacks, and method
JP2015152657A (ja) * 2014-02-12 2015-08-24 住友化学株式会社 防眩フィルム
JP2015152659A (ja) * 2014-02-12 2015-08-24 住友化学株式会社 防眩フィルム
JP2015152660A (ja) * 2014-02-12 2015-08-24 住友化学株式会社 防眩フィルム
JP2015200698A (ja) * 2014-04-04 2015-11-12 日東電工株式会社 透明樹脂層、粘着剤層付偏光フィルムおよび画像表示装置
EP3193194A4 (en) * 2014-09-08 2017-10-18 Panasonic Intellectual Property Management Co., Ltd. Anti-reflection member, and production method therefor
CN107406312B (zh) 2015-04-10 2021-03-26 积水化学工业株式会社 夹层玻璃用中间膜、夹层玻璃、压花辊的制造方法和夹层玻璃用中间膜的制造方法
CN104808277A (zh) * 2015-05-11 2015-07-29 武汉华星光电技术有限公司 偏振光片和包含其的液晶显示装置
WO2018084052A1 (ja) * 2016-11-01 2018-05-11 アルプス電気株式会社 光学パネルおよびその製造方法ならびに機器
CN109270618B (zh) * 2017-07-18 2021-05-18 三星Sdi株式会社 偏光板以及包括偏光板的光学显示器
KR102301279B1 (ko) 2017-07-18 2021-09-13 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치
CN114347578A (zh) * 2017-08-04 2022-04-15 株式会社大赛璐 防眩膜
CN107728372B (zh) * 2017-10-31 2020-06-09 武汉华星光电技术有限公司 显示模组及其制作方法
JP7067077B2 (ja) * 2018-01-18 2022-05-16 Agc株式会社 ガラス板及び表示装置
DE112019000737T5 (de) * 2018-02-08 2020-10-22 AGC Inc. Transparentes Substrat, das mit einem Blendschutzfilm versehen ist

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004777A (ja) * 2002-04-24 2004-01-08 Dainippon Printing Co Ltd 防眩性フィルム、偏光素子、および画像表示装置
JP2006106290A (ja) * 2004-10-04 2006-04-20 Daicel Chem Ind Ltd 防眩性フィルム
JP2007187746A (ja) * 2006-01-11 2007-07-26 Daicel Chem Ind Ltd 防眩性フィルム及びその製造方法
JP2007256765A (ja) * 2006-03-24 2007-10-04 Sumitomo Chemical Co Ltd 防眩性偏光フィルム積層体及びそれを用いた液晶表示装置
JP2007256766A (ja) * 2006-03-24 2007-10-04 Sumitomo Chemical Co Ltd 液晶表示装置及びそれに用いる防眩性偏光フィルム積層体
JP2008281596A (ja) * 2007-05-08 2008-11-20 Sumitomo Chemical Co Ltd 防眩フィルム、防眩性偏光板及び画像表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004777A (ja) * 2002-04-24 2004-01-08 Dainippon Printing Co Ltd 防眩性フィルム、偏光素子、および画像表示装置
JP2006106290A (ja) * 2004-10-04 2006-04-20 Daicel Chem Ind Ltd 防眩性フィルム
JP2007187746A (ja) * 2006-01-11 2007-07-26 Daicel Chem Ind Ltd 防眩性フィルム及びその製造方法
JP2007256765A (ja) * 2006-03-24 2007-10-04 Sumitomo Chemical Co Ltd 防眩性偏光フィルム積層体及びそれを用いた液晶表示装置
JP2007256766A (ja) * 2006-03-24 2007-10-04 Sumitomo Chemical Co Ltd 液晶表示装置及びそれに用いる防眩性偏光フィルム積層体
JP2008281596A (ja) * 2007-05-08 2008-11-20 Sumitomo Chemical Co Ltd 防眩フィルム、防眩性偏光板及び画像表示装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506159A (ja) * 2008-12-02 2012-03-08 エスケーシー カンパニー,リミテッド 太陽電池モジュール用封止材シート及びこれを含む太陽電池モジュール
WO2011031087A2 (ko) * 2009-09-10 2011-03-17 동우화인켐 주식회사 방현 필름, 이를 구비한 편광판 및 표시 장치
WO2011031087A3 (ko) * 2009-09-10 2011-08-04 동우화인켐 주식회사 방현 필름, 이를 구비한 편광판 및 표시 장치
CN102792191A (zh) * 2009-09-10 2012-11-21 东友精细化工有限公司 防眩薄膜、具有该防眩薄膜的偏光板及显示装置
CN102792191B (zh) * 2009-09-10 2015-05-20 东友精细化工有限公司 防眩薄膜、具有该防眩薄膜的偏光板及显示装置
TWI676162B (zh) * 2015-03-02 2019-11-01 日商木本股份有限公司 顯示裝置、使用彼之保護膜、顯示裝置之製作方法及使用保護膜之方法

Also Published As

Publication number Publication date
JP5163943B2 (ja) 2013-03-13
JP2009204687A (ja) 2009-09-10
CN101960334A (zh) 2011-01-26
KR20100117630A (ko) 2010-11-03
TW200951517A (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP5163943B2 (ja) 防眩フィルム、防眩性偏光板および画像表示装置
JP5135871B2 (ja) 防眩フィルム、防眩性偏光板及び画像表示装置
JP4844254B2 (ja) 防眩フィルム及び画像表示装置
KR101314399B1 (ko) 방현 필름 및 화상 디스플레이
JP5076334B2 (ja) 表面に微細な凹凸形状を有する金型、その金型の製造方法及びその金型を用いた防眩フィルムの製造方法
JP2007187952A (ja) 防眩フィルム、その製造方法、そのための金型の製造方法、及び表示装置
JP5145938B2 (ja) 帯電防止防眩フィルム
CN107718800B (zh) 防眩性膜、偏振片和图像显示装置
KR101209381B1 (ko) 방현 필름, 그의 제조 방법, 그를 위한 금형의 제조 방법및 표시 장치
KR101598637B1 (ko) 방현 필름
WO2009107536A1 (ja) 防眩フィルム、防眩性偏光板および画像表示装置
KR20100094469A (ko) 방현 필름, 방현성 편광판 및 화상 표시 장치
KR20090071555A (ko) 광학 적층체, 편광판 및 화상 표시 장치
JP2009150998A (ja) 防眩フィルム、防眩性偏光板および画像表示装置
JP5099546B2 (ja) 金型の製造方法および当該方法によって得られた金型を用いた防眩フィルムの製造方法
JP2011017829A (ja) 防眩フィルムおよびその製造方法
JP2009122371A (ja) 防眩フィルムおよび画像表示装置
JP2009122645A (ja) 防眩フィルム、防眩性偏光板および画像表示装置
JP5900112B2 (ja) 防眩シート、防眩シートの製造方法、防眩シートを成型するための金型、及び金型の製造方法
JP2016085471A (ja) 防眩シート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106489.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09713802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107019140

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09713802

Country of ref document: EP

Kind code of ref document: A1