WO2009104301A1 - 駆動装置制御ユニット - Google Patents

駆動装置制御ユニット Download PDF

Info

Publication number
WO2009104301A1
WO2009104301A1 PCT/JP2008/068278 JP2008068278W WO2009104301A1 WO 2009104301 A1 WO2009104301 A1 WO 2009104301A1 JP 2008068278 W JP2008068278 W JP 2008068278W WO 2009104301 A1 WO2009104301 A1 WO 2009104301A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed
box
control unit
drive device
shaped portion
Prior art date
Application number
PCT/JP2008/068278
Other languages
English (en)
French (fr)
Inventor
角田健太郎
久保亮平
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to DE112008003062.6T priority Critical patent/DE112008003062B4/de
Priority to CN2008801157633A priority patent/CN101855826B/zh
Publication of WO2009104301A1 publication Critical patent/WO2009104301A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a drive device control unit for controlling a drive device provided with a rotating electrical machine, which is used in, for example, an electric vehicle or a hybrid vehicle.
  • a drive unit control unit that is integrally fixed to the drive unit has been developed as a control unit of a drive unit that includes a rotating electrical machine (motor or generator) used in, for example, an electric vehicle or a hybrid vehicle (for example, see Patent Document 1 below).
  • a drive device control unit there are high demands for ensuring the vibration resistance of the drive device and improving the reliability, as well as reducing the size, reducing the weight, reducing the number of parts, and improving the manufacturability.
  • the drive device control unit described in Patent Document 1 below has the following configuration.
  • the drive device control unit is a unit that houses an inverter for driving a rotating electrical machine included in the drive device and a control board for controlling the drive device, and in which a switching element power module of the inverter is placed.
  • Japanese Patent Laid-Open No. 2003-199363 page 5-7, FIG. 1
  • the drive unit control unit described above includes two brackets, a capacitor bracket for fixing the smoothing capacitor and a control board bracket for fixing the control board.
  • the control board bracket with a flat board fixing surface is provided separately from the capacitor bracket whose upper surface has a complicated uneven shape according to the shape of the smoothing capacitor, so that the fastening fixing location of the control board can be appropriately
  • the main purpose is to secure the required number at the appropriate position and to improve the vibration resistance of the control board.
  • these brackets are required to have rigidity for ensuring vibration resistance, which causes an increase in the weight of the drive device control unit and an increase in the number of parts.
  • the present invention has been made in view of the above-mentioned problems, and the object thereof is to secure each component securely and ensure vibration resistance, and to reduce the number of components to achieve downsizing and weight reduction. It is an object of the present invention to provide a drive unit control unit that can be used.
  • the drive device control unit for controlling a drive device provided with a rotating electrical machine includes a control board for controlling the drive device and an inverter for driving the rotating electrical machine.
  • the control board is fixed to a surface of the second base opposite to the surface on which the smoothing capacitor is fixed.
  • the “rotary electric machine” is used as a concept including any of a motor (electric motor), a generator (generator), and a motor / generator that functions as both a motor and a generator as necessary.
  • control board since the control board is also fixed to the second base to which the smoothing capacitor is fixed, there is no need to provide a dedicated base for fixing the control board. Therefore, the number of parts can be reduced and the drive device control unit can be reduced in size and weight compared to the conventional case where a dedicated base for fixing the control board is provided.
  • control board since the control board is fixed to the surface of the second base opposite to the surface on which the smoothing capacitor is fixed, both the smoothing capacitor and the control board are securely fixed, and the fixing portion of the control board is fixed. It is easy to secure the required number at appropriate positions. Therefore, the vibration resistance of each component including the control board can be ensured.
  • the second base includes a first box-shaped portion having an opening opening toward the first base and a substantially flat bottom
  • the smoothing capacitor includes the first base
  • the control board is fixed to the outer surface of the bottom part.
  • the second base since the second base has a box-like portion, it is easy to ensure rigidity while reducing the weight of the second base itself.
  • the control board is fixed to the outer surface of the substantially flat bottom portion of the box-shaped part of the second base, it is possible to secure the necessary number of fixing positions of the control board at appropriate positions. Since it becomes very easy, the vibration resistance of the control board can be easily secured.
  • the smoothing capacitor is accommodated in the first box-shaped portion of the second base, and the control board is fixed to the outer surface of the first box-shaped portion, so that electromagnetic noise generated from the smoothing capacitor is reduced. It can be shielded by the second base, and the electromagnetic noise can be effectively suppressed from affecting the control board.
  • control board is configured to be fastened and fixed to the bottom portion at a plurality of peripheral edge portions and at least one central portion thereof.
  • the smoothing capacitor has a substantially rectangular parallelepiped shape
  • the first box-like portion has a substantially rectangular parallelepiped internal space that matches the shape of the smoothing capacitor.
  • the shape of the second base can be simplified as compared with the case where a conventional cylindrical smoothing capacitor is used.
  • the first box-shaped portion is formed so as to have an internal space that matches the shape of the substantially rectangular parallelepiped smoothing capacitor, the smoothing capacitor is appropriately accommodated in the first box-shaped portion of the second base.
  • the drive unit control unit can be reduced in size by reducing useless space.
  • the smoothing capacitor includes a connection terminal that protrudes outward from the opening while being accommodated in the first box-shaped portion.
  • the shape of the second base can be further simplified.
  • the boosting device further boosts a power supply voltage
  • the boosting device includes a boosting switching element, a boosting capacitor, and a reactor, and the boosting switching element is provided on the first base. It is preferable that the switching element module is fixed on the same plane, the reactor is fixed to the first base, and the boosting capacitor is fixed to the second base.
  • the drive unit control unit when the drive unit control unit includes the booster, the boosting switching element having a large heat generation amount is fixed on the same surface as the switching element module having the same heat generation amount. Cooling with a circuit becomes easy. Furthermore, by sharing the cooling circuit in this way, the drive device control unit can be reduced in size and weight. Further, by fixing a relatively heavy reactor to the first base and fixing a boosting capacitor lighter than the reactor to the second base, the load acting on the second base is reduced and the center of gravity is increased. 1 can be brought close to the base side. Therefore, the vibration resistance of the drive device control unit can be improved.
  • the second base includes a second box-shaped portion that is adjacent to the first box-shaped portion and opens in a direction opposite to an opening direction of the first box-shaped portion, and the booster It is preferable that the capacitor for use is configured to be housed and fixed in the second box-shaped portion.
  • each box-shaped portion can be reduced as compared with the case where both the smoothing capacitor and the boosting capacitor are accommodated in one box-shaped portion, and the first A wall separating the box-shaped portion and the second box-shaped portion serves to reinforce the second base. Therefore, it is easy to reduce the weight while securing the rigidity of the second base.
  • a noise filter for removing power supply noise is further provided, and the noise filter is fixed to the side opposite to the first box-shaped portion with respect to the boosting capacitor.
  • the boosting capacitor heavier than the noise filter on the first box-shaped part side having high rigidity, the deflection near the second box-shaped part in the second base is suppressed, The vibration of the noise filter and the boosting capacitor can be reduced. Therefore, the vibration resistance of the noise filter and boosting capacitor can be improved.
  • the electromagnetic noise generated from the boosting capacitor accommodated in the second box-shaped portion can be shielded by the cover member and the second base. Therefore, it is possible to suppress the electromagnetic noise from affecting the control board and the cable connected to the control board. Further, since this cover also serves as a bracket of the cable connected to the control board, the number of parts can be reduced, and the drive device control unit can be reduced in size and weight.
  • the cable is configured to connect the control board and the switching element module, a sensor for detecting an operation state of the rotating electrical machine, or each part of the vehicle including the driving device.
  • the drive device 2 includes a generator G disposed on the first shaft A1, a planetary gear mechanism P as a power distribution device, a motor M disposed on the second shaft A2, A differential device D arranged on the four axes A4 is provided as a main configuration. Further, on the third axis A3, a counter gear mechanism T that drives and connects the output rotation element of the planetary gear mechanism P and the motor M to the differential device D is disposed.
  • the planetary gear mechanism P is a single pinion type planetary gear mechanism
  • the sun gear s is connected to the generator G
  • the carrier c is an output shaft of the engine via a damper 61 disposed on the first axis A1.
  • the ring gear r is an output rotation element and is drivingly connected to the counter gear mechanism T.
  • Each configuration of the driving device 2 is accommodated in the driving device case 60.
  • the motor M and the generator G correspond to the rotating electrical machine in the present invention.
  • the drive device control unit 1 is integrally attached to the upper portion of the drive device 2. Specifically, as shown in FIG. 3, the case frame 10 corresponding to the first base of the drive device control unit 1 is fastened and fixed to the inclined upper surface 60 a of the drive device case 60.
  • the upper surface 60 a of the drive device case 60 is provided so as to be inclined so as to substantially contact the outer diameters of the motor M and the generator G.
  • the drive device control unit 1 is integrally attached to the drive device case 60.
  • the cover 39 of the drive device control unit 1 is a drive device case in a side view when the drive device 2 is viewed from the engine coupling side.
  • the lateral width decreases with increasing distance from 60, and the drive device control unit 1 is attached to the drive device 2 and one side surface is substantially horizontal. And the other side surface is formed to be substantially vertical. Thereby, the whole drive device 2 to which the drive device control unit 1 is integrally attached has a small external shape with little protrusion upward and sideward (right side in FIG. 3).
  • a cooling structure for cooling the switching element modules 31, 32, the motor M, the generator G, and the like is provided at the joint between the drive device control unit 1 and the drive device 2.
  • This cooling structure has a hydraulic fluid passage 65 through which hydraulic fluid circulating inside the drive device 2 flows, and a refrigerant passage 16 through which a refrigerant such as cooling water or a coolant flows, and heat exchange is performed between them. It is configured to do.
  • the hydraulic oil passage 65 is formed as a space having fins 63 on the upper surface of the drive device case 60, and a heat transfer wall 64 is attached so as to cover the opening surface.
  • the heat transfer wall 64 includes heat transfer fins on both sides, and performs heat exchange between the hydraulic oil in the hydraulic oil passage 65 and the refrigerant in the refrigerant passage 16.
  • the refrigerant flow path 16 is separated into two upper and lower stages by a flat plate-like separation member 15 attached to the lower surface of the bottom 11 of the case frame 10, and the case frame 10 side of the separation member 15 is the upper refrigerant flow path 16 ⁇ / b> A and the separation member 15.
  • the drive device case 60 side is a lower refrigerant flow path 16B.
  • the upper-stage refrigerant flow path 16 is formed as a space between the cooling fins 13 formed integrally with the bottom portion 11 of the case frame 10, and the separation member 15 is attached so as to cover the opening surface of the space. It has been.
  • the lower refrigerant flow path 16 ⁇ / b> B is formed as a space between and around the separation member 15 and the heat transfer wall 64.
  • the hydraulic oil that has been circulated through the inside of the driving device 2 and has reached a high temperature exchanges heat with the refrigerant flowing through the lower refrigerant passage 16 in the hydraulic oil passage 65 via the heat transfer wall 64.
  • the switching element modules 31 and 32 generate a large amount of heat because a large current flows. Therefore, the switching element modules 31 and 32 are arranged so as to be in contact with the upper surface of the bottom portion 11 of the case frame 10, and the refrigerant flowing through the upper-side refrigerant flow path 16 via the cooling fins 13 formed on the bottom portion 11 of the case frame 10. Heat is exchanged between the two and cooled.
  • the case frame 10 and the heat transfer wall 64 provided with the cooling fins 13 are made of a highly thermally conductive material such as aluminum.
  • the separation member 15 is preferably made of a low thermal conductivity material in order to suppress heat exchange between the upper stage side refrigerant flow path 16 and the lower stage side refrigerant flow path 16.
  • the driving device control unit 1 includes a control board 33 that controls the driving device 2 and a first switching that constitutes an inverter 3 that drives (controls) the motor M and the generator G.
  • the drive unit control unit 1 also includes a boosting switching unit 41 including a boosting switching element 8 (see FIG. 5), a boosting capacitor 42, and a reactor 43, which boost the power supply voltage.
  • the apparatus 4 is configured.
  • the step-up switching unit 41 is integrally incorporated in the second switching element module 32 as will be described later, and is thereby fixed on the same plane as the switching element modules 31 and 32 in the case frame 10.
  • the reactor 43 is fixed to the case frame 10, and the boosting capacitor 42 is fixed to the support bracket 20.
  • the drive device control unit 1 includes a noise filter 35 for removing power supply noise.
  • the noise filter 35 is fixed to the support bracket 20 adjacent to the boosting capacitor 42.
  • the case frame 10 has a bottom portion 11 (see FIG. 4) and a peripheral wall portion 12 erected so as to surround the peripheral edge portion of the bottom portion 11, and a box whose upper surface on the support bracket 20 side is opened. It is made into a shape.
  • the case frame 10 is made of a metal material such as aluminum and is manufactured by die casting or the like.
  • the bottom portion 11 has a substantially rectangular planar shape
  • the case frame 10 has a substantially rectangular parallelepiped box shape with an open top surface.
  • a plurality of ribs are formed on the outer peripheral surface of the peripheral wall portion 12 in order to improve the heat dissipation of the case frame 10 and to reduce the weight and the rigidity.
  • the 1st switching element module 31, the 2nd switching element module 32, and the reactor 43 are accommodated and fixed.
  • the first switching element module 31, the second switching element module 32, and the reactor 43 are disposed so as to be in contact with the bottom portion 11 (see FIG. 4).
  • the first current sensor 44 that detects the magnitude of the current flowing from the first switching element module 31 to the motor M, and the magnitude of the current that flows from the second switching element module 32 to the generator G are shown.
  • a second current sensor 45 to be detected is also housed.
  • the case frame 10 is provided with a plurality of mounting attachment portions 14 for attaching the support bracket 20 along the inner peripheral surface of the peripheral wall portion 12, and the support bracket 20 is fastened and fixed to the mounting attachment portion 14. Is supported.
  • the support bracket 20 includes an opening 22 that opens to the lower surface (downward) on the case frame 10 side, a substantially flat bottom 23, and a peripheral wall 24 that is erected so as to surround the peripheral edge of the bottom 23. It has the 1st box-shaped part 21 (refer FIG. 8, FIG. 9) which has.
  • the support bracket 20 is made of a metal material such as aluminum and is manufactured by die casting or the like.
  • a smoothing capacitor 34 is accommodated and fixed inside the first box-shaped portion 21 of the support bracket 20. As shown in FIGS. 1, 7, and 9, the smoothing capacitor 34 has a substantially rectangular parallelepiped shape, and is a connection terminal 34 a that protrudes outward from the opening 22 while being accommodated in the first box-shaped portion 21. It has.
  • a control board 33 is fixed to the outer surface 23 a of the bottom 23 of the first box-shaped part 21.
  • the support bracket 20 has an opening that is adjacent to the first box-shaped portion 21 and opens to the upper surface (upward) that is opposite to the opening direction of the first box-shaped portion 21. It has the 2nd box-shaped part 26 which has 26a.
  • a boosting capacitor 42 is accommodated and fixed inside the second box-shaped portion 26.
  • a noise filter 35 is fixed on the side of the support bracket 20 opposite to the first box-shaped portion 21 with respect to the boosting capacitor 42.
  • a first wiring bracket 36 is fixed to the support bracket 20 on one side in the longitudinal direction of the support bracket 20 adjacent to the control board 33, and a second wiring bracket 37 is mounted on the other side. It is fixed.
  • the first wiring bracket 36 corresponds to the cover member in the present invention.
  • the cable 38 connected to the control board 33 is being fixed to each upper surface of these 1st wiring bracket 36 and the 2nd wiring bracket 37 using the clamp member 58 (refer FIG.6 and FIG.7).
  • the switching element modules 31 and 32, the smoothing capacitor 34, the boosting capacitor 42, the reactor 43, the current sensors 44 and 45, and the like are provided between predetermined terminals of each component so as to constitute an electric circuit (see FIG. 5) described later. Are electrically connected by a plurality of bus bars 46 connecting the two.
  • the cover 39 is fixed to the upper surface of the case frame 10, specifically, the upper end surface 12 a of the peripheral wall portion 12.
  • the internal space covered by the case frame 10 and the cover 39 has a liquid-tight structure, and the members fixed in the case frame 10 and the support bracket 20 can be protected.
  • the cover 39 is fixed to the case frame 10 at a flange-like peripheral portion 39a formed at the lower end of the cover 39 with respect to a plurality of bolt holes provided along the upper end surface 12a of the peripheral wall portion 12. This is done by fastening and fixing a bolt as a fastening member inserted through the fastening hole.
  • the drive device control unit 1 controls the motor M and the generator G of the drive device 2.
  • the motor M and the generator G are rotating electrical machines driven by three-phase alternating current.
  • the drive device control unit 1 includes a first switching element module 31, a second switching element module 32, a control board 33, a smoothing capacitor 34, a noise filter 35, as circuit components constituting an electric circuit.
  • a discharge resistor 55, a boost capacitor 42, a reactor 43, a first current sensor 44, and a second current sensor 45 are provided.
  • the drive device control unit 1 is connected with a battery 50 as a power source.
  • the noise filter 35 has a function of removing power supply noise of the battery 50, although a detailed description of the configuration is omitted.
  • the drive device control unit 1 boosts the voltage of the battery 50, converts the direct current of the battery 50 into a three-phase alternating current of a predetermined frequency, and supplies it to the motor M to control the driving state of the motor M. Further, the driving device control unit 1 controls the driving state of the generator G, stores the AC power generated by the generator G by converting it into a direct current and supplying it to the battery 50, or further converts it into a direct current. It is converted into three-phase alternating current with a predetermined frequency and supplied to the motor M.
  • the motor M includes a motor rotation sensor 48, and the generator G includes a generator rotation sensor 49. The motor M is configured to output a signal representing a detected value of each rotation speed to the control board 33.
  • the first switching element module 31 includes a first inverter unit 51 for driving the motor M and a first control circuit 53.
  • the first switching element module 31 is configured by integrally molding elements and substrates constituting the first inverter unit 51 and the first control circuit 53, and terminals for connecting them to the outside, etc., using a resin.
  • the second switching element module 32 includes a boosting switching unit 41 for boosting the power supply voltage, a second inverter unit 52 for driving the generator G, and a second control circuit 54.
  • elements and substrates constituting the boosting switching unit 41, the second inverter unit 52, and the second control circuit 54, and terminals for connecting them to the outside are integrally formed of resin. Configured.
  • the first inverter unit 51 and the second inverter unit 52 correspond to the inverter 3 for driving the rotating electrical machine (the motor M and the generator G) in the present invention. Therefore, the switching element modules 31 and 32 incorporating these constitute the inverter 3.
  • the first inverter unit 51 includes a pair of first upper arm element 6A and first lower arm element 6B connected in series as the switching element 6 for the first inverter. Two sets of four first inverter switching elements 6 are provided for each of the phases (U phase, V phase, and W phase). In the present embodiment, an IGBT (insulated gate bipolar transistor) is used as the first inverter switching element 6. The emitters of the first upper arm elements 6A and the collectors of the first lower arm elements 6B of each set are connected to coils of respective phases (not shown) of the motor M.
  • IGBT insulated gate bipolar transistor
  • each first upper arm element 6A is connected to a high voltage power supply line Lh to which electric power boosted by a booster 4 described later is supplied, and the emitter of each first lower arm element 6B is the negative electrode of the battery 50. It is connected to a ground line Lg connected to the terminal.
  • a free wheel diode 56 is connected in parallel to each first inverter switching element 6, and these free wheel diodes 56 are also included in the first inverter unit 51.
  • the first inverter switching element 6 in addition to the IGBT, power transistors having various structures such as a bipolar type, a field effect type, and a MOS type can be used.
  • the first inverter unit 51 is electrically connected to the control board 33 via the first control circuit 53. Then, the plurality of first inverter switching elements 6 operate according to the motor gate signal output from the motor control unit MCU included in the control board 33, so that the DC power after boosting by the boosting device 4 is It is converted into three-phase AC power having a predetermined frequency and current value and supplied to the motor M. As a result, the motor M is driven at a predetermined output torque and rotational speed.
  • the energization amount between the first inverter unit 51 and each phase coil of the motor M is detected by a first current sensor 44 provided between the first inverter unit 51 and the motor M. The detection value of the first current sensor 44 is sent to the motor control unit MCU included in the control board 33.
  • the second inverter unit 52 includes a pair of second upper arm element 7A and second lower arm element 7B connected in series as the switching element 7 for the second inverter.
  • One set of two second inverter switching elements 7 is provided for each of the phases (U phase, V phase, and W phase).
  • an IGBT insulated gate bipolar transistor
  • the emitters of the second upper arm elements 7A and the collectors of the second lower arm elements 7B of each set are connected to coils of respective phases (not shown) of the generator G.
  • each second upper arm element 7A is connected to the high voltage power supply line Lh, and the emitter of each second lower arm element 7B is connected to the ground line Lg connected to the negative terminal of the battery 50.
  • a free wheel diode 57 is connected in parallel to each second inverter switching element 7, and these free wheel diodes 57 are also included in the second inverter unit 52.
  • the second inverter switching element 7 power transistors having various structures such as a bipolar type, a field effect type, and a MOS type can be used in addition to the IGBT.
  • the second inverter unit 52 is electrically connected to the control board 33 via the second control circuit 54.
  • the second inverter unit 52 generates power by the generator G by the plurality of second inverter switching elements 7 operating according to the generator gate signal output from the generator control unit GCU included in the control board 33.
  • the converted three-phase AC power is converted to DC power and supplied to the battery 50 or the first inverter unit 51.
  • the second inverter unit 52 controls the rotational speed and output torque of the generator G by controlling the value of current flowing through the coils of the respective phases of the generator G.
  • the energization amount between the second inverter unit 52 and the coils of each phase of the generator G is detected by a second current sensor 45 provided between the second inverter unit 52 and the generator G.
  • the detection value of the second current sensor 45 is sent to the generator control unit GCU included in the control board 33.
  • the boosting switching unit 41 includes a pair of boosting upper arm elements 8A and a boosting lower arm element 8B connected in series as the boosting switching elements 8, and here, two sets of four boosting elements.
  • Switching element 8 is provided.
  • an IGBT insulated gate bipolar transistor
  • the emitter of the boosting upper arm element 8A and the collector of the boosting lower arm element 8B of each set are connected to the positive terminal of the battery 50 via the reactor 43.
  • the collector of each boosting upper arm element 8A is connected to a high voltage power supply line Lh to which the power boosted by the boosting device 4 is supplied, and the emitter of each boosting lower arm element 8B is connected to the negative terminal of the battery 50.
  • a free wheel diode 47 is connected in parallel to each boost switching element 8, and these free wheel diodes 47 are also included in the boost switching unit 41.
  • power transistors having various structures such as a bipolar type, a field effect type, and a MOS type can be used in addition to the IGBT.
  • the step-up switching unit 41 is electrically connected to the control board 33 via the second control circuit 54.
  • the plurality of boosting switching elements 8 operate according to the boosting gate signal output from the transaxle control unit TCU included in the control board 33, so that the voltage of the battery 50 is increased.
  • the voltage is boosted to a predetermined voltage and supplied to the first inverter unit 51.
  • the plurality of step-up switching elements 8 step down the voltage generated by the generator G to a predetermined voltage and supply it to the battery 50.
  • the step-up capacitor 42 is connected in parallel to the battery 50 via the noise filter 35.
  • the step-up capacitor 42 functions to smooth the voltage of the battery 50 and supply the smoothed DC voltage to the step-up switching unit 41. Therefore, the boosting device 4 is configured by the boosting switching unit 41 including the boosting switching element 8, the boosting capacitor 42, and the reactor 43.
  • the smoothing capacitor 34 is connected between the high-voltage power supply line Lh to which the power boosted by the booster 4 is supplied and the ground line Lg connected to the negative terminal of the battery 50.
  • the smoothing capacitor 34 functions to smooth the DC voltage boosted by the booster 4 and supply the smoothed DC voltage mainly to the first inverter unit 51.
  • a discharge resistor 55 is connected in parallel to the smoothing capacitor 34. The discharge resistor 55 functions to discharge the charge stored in the smoothing capacitor 34 when the power is turned off.
  • the control board 33 is a board on which a control circuit for controlling the driving device 2 is formed.
  • the control board 33 has a control circuit that controls the first inverter unit 51 and the second inverter unit 52 as the inverter 3. Thereby, the control board 33 controls the drive of the motor M and the generator G via these inverter units 51 and 52.
  • the control board 33 also has a control circuit for controlling the boosting switching unit 41.
  • the control board 33 includes a transaxle control unit TCU, a motor control unit MCU, and a generator control unit GCU when divided into units for each function.
  • the transaxle control unit TCU is a control unit for controlling the entire drive device 2.
  • the transaxle control unit TCU receives the detected value of the power supply voltage before boosting (voltage before boosting) by the boosting device 4 via the first control circuit 53 and the voltage after boosting (voltage after boosting). A detection value is input.
  • the transaxle control unit TCU communicates with the control device on the vehicle side including the driving device 2 via communication means such as CAN (controller area network), for example, the amount of accelerator operation, brake operation, etc. Deliver various information such as volume and vehicle speed. Based on these pieces of information, the transaxle control unit TCU generates and outputs operation commands for the motor control unit MCU and the generator control unit GCU.
  • the transaxle control unit TCU generates a boost gate signal as a drive signal for driving each boost switching element 8 of the boost switching unit 41 and outputs the boost gate signal to the second control circuit 54.
  • the operation commands output from the transaxle control unit TCU to the motor control unit MCU and the generator control unit GCU are command values for the rotational speed and output torque of the motor M and the generator G.
  • the motor control unit MCU is detected by the detected value of the energization amount between the first inverter unit 51 detected by the first current sensor 44 and the coil of each phase of the motor M, and detected by the motor rotation sensor 48.
  • the detected value of the rotation speed of the motor M is input.
  • the motor control unit MCU serves as a drive signal for driving each first inverter switching element 6 of the first inverter unit 51 based on these detected values and the operation command from the transaxle control unit TCU. Are generated and output to the first control circuit 53.
  • the generator control unit GCU serves as a drive signal for driving each second inverter switching element 7 of the second inverter unit 52 based on these detected values and an operation command from the transaxle control unit TCU.
  • a generator gate signal is generated and output to the second control circuit 54.
  • the drive unit control unit 1 is supported by a case frame 10 as a first base, and is supported as a second base to which a smoothing capacitor 34 is fixed.
  • the control board 33 is fixed to the surface (upper surface on the cover 39 side) opposite to the surface (lower surface on the case frame 10 side) of the support bracket 20 on which the smoothing capacitor 34 is fixed. It has a configuration.
  • the drive device control unit 1 has a feature in the arrangement structure of components such as the smoothing capacitor 34 and the control board 33 with respect to the support bracket 20.
  • the configuration of each part around the support bracket 20 will be described in detail.
  • the support bracket 20 is supported by the case frame 10.
  • the case frame 10 is provided with a plurality (six in the illustrated example) of mounting attachment portions 14 along the inner surface of the peripheral wall portion 12.
  • the mounting attachment portion 14 has a cylindrical shape with a bolt hole formed in an axial center portion, and is formed so as to stand in contact with the inner surface of the peripheral wall portion 12.
  • the placement surface (upper surface) of the placement attachment portion 14 is set to be one level lower than the upper end surface 12 a of the peripheral wall portion 12.
  • the support bracket 20 is provided with fastening portions 25 at a plurality of locations (six locations in the illustrated example) at the peripheral edge so as to match the position of the mounting portion 14 of the case frame 10.
  • the fastening portion 25 has a boss shape in which a bolt through hole is formed at the center, and is formed so as to slightly protrude from the peripheral portion of the support bracket 20.
  • the support bracket 20 is fastened and fixed to the case frame 10 at each fastening portion 25 by fastening the bolts inserted through the bolt through holes of the fastening portions 25 into the bolt holes of the mounting attachment portion 14.
  • the support bracket 20 includes a first box-shaped portion 21 that opens on the case frame 10 side (lower surface side), and a first box-shaped portion on one side in the longitudinal direction of the support bracket 20. 21 and a second box-shaped portion 26 that opens to the cover 39 side (upper surface side) that is opposite to the opening direction of the first box-shaped portion 21. Furthermore, in this embodiment, as shown in FIG. 7, the support bracket 20 is provided adjacent to the first box-shaped portion 21 on the other longitudinal side of the support bracket 20, and the first box-shaped portion 21. The third box-shaped portion 28 is opened to the cover 39 side (upper surface side) which is the direction opposite to the opening direction.
  • the first box-shaped portion 21 includes an opening 22 that opens to the case frame 10 side (lower surface side), a substantially flat bottom portion 23, and a peripheral wall portion 24 that stands up so as to surround the peripheral portion of the bottom portion 23. And have.
  • the bottom 23 has a substantially rectangular planar shape.
  • the first box-shaped portion 21 is formed in a substantially rectangular parallelepiped box shape having an open bottom surface, and includes a substantially rectangular parallelepiped internal space surrounded by the peripheral wall portion 24 as shown in FIG. ing.
  • the peripheral wall portion 24 includes a first partition wall portion 24 a that also functions as a partition wall that separates the first box-shaped portion 21 and the second box-shaped portion 26 on one side in the longitudinal direction of the support bracket 20, and the support bracket 20.
  • a second partition wall portion 24b that also functions as a partition wall separating the first box-shaped portion 21 and the third box-shaped portion 28 on the other side in the longitudinal direction, and a first side wall on one side in the width direction of the support bracket 20 Part 24c and a second side wall part 24d on the other side in the width direction of the support bracket 20.
  • the support bracket 20 is provided with a plurality (eight in the illustrated example) of capacitor mounting portions 21a for fixing the smoothing capacitor 34 along the peripheral wall portion 24 that defines the first box-shaped portion 21. ing.
  • two capacitor mounting portions 21a are provided for each wall constituting the peripheral wall portion 24, and are formed along the first partition wall portion 24a and the second partition wall portion 24b.
  • the configuration differs from that formed along the side wall 24c and the second side wall 24d. That is, as shown in FIG. 9, the capacitor mounting portion 21a formed along the first partition wall portion 24a and the second partition wall portion 24b has a cylindrical shape with a bolt hole formed in the axial center portion, and It is formed to stand in contact with the inner surface of the partition wall 24a or the second partition wall 24b.
  • the capacitor mounting portion 21a formed along the first side wall portion 24c and the second side wall portion 24d has a boss shape in which a bolt hole is formed in the center portion, and the first side wall portion 24c or the second side wall portion. It is formed so as to slightly protrude from 24d to the side (width direction of the support bracket 20).
  • Each of these capacitor mounting portions 21a has a mounting surface (lower surface) on which the smoothing capacitor 34 is mounted at a position one step higher than the lower end surface 24e of the peripheral wall portion 24, that is, a position where the distance from the bottom surface 23 is short (a low position in FIG. 9). ).
  • the smoothing capacitor 34 is accommodated and fixed in the first box-shaped portion 21 from the case frame 10 side (lower side) of the support bracket 20.
  • the smoothing capacitor 34 has a substantially rectangular parallelepiped shape.
  • the first box-shaped portion 21 is formed so as to have a substantially rectangular parallelepiped internal space as described above so that the smoothing capacitor 34 can be appropriately accommodated.
  • the size is set to match the shape of the capacitor 34.
  • the smoothing capacitor 34 is provided with fastening portions 34b at a plurality of locations (eight locations in the illustrated example) at the peripheral edge so as to match the position of the capacitor mounting portion 21a provided on the first box-shaped portion 21. It has been.
  • the fastening portion 34b is formed in a substantially rectangular parallelepiped shape protruding sideways from the side wall of the smoothing capacitor 34, and a bolt through hole is formed in the center portion. Then, the smooth capacitor 34 is fastened and fixed to the support bracket 20 at each fastening portion 34b by fastening the bolt inserted into the bolt through hole of each fastening portion 34b into the bolt hole of the capacitor mounting portion 21a. Further, the smoothing capacitor 34 includes a connection terminal 34 a that protrudes outward from the opening 22 in the state of being accommodated in the first box-shaped portion 21 in this manner. Here, the connection terminal 34 a is provided so as to protrude from the opening 22 toward the side of the support bracket 20 in parallel with the lower surface of the smoothing capacitor 34.
  • connection terminal 34 a is provided only on one side in the width direction of the smoothing capacitor 34.
  • the height of the second side wall 24d which is the peripheral wall 24 on the side where the connection terminal 34a is provided, corresponds to the connection terminal 34a.
  • the position is set to a position one step higher than the lower end surface 24e (a low position in FIG. 9).
  • the bottom 23 of the first box-shaped portion 21 in the support bracket 20 is formed in a flat plate shape having a substantially rectangular planar shape.
  • the outer surface 23a used as the surface by the side of the cover 39 of this bottom part 23 is used as the board
  • the board mounting portions 23b are arranged in four rows in the longitudinal direction of the control board 33, that is, in the longitudinal direction of the support bracket 20, and in three rows in the width direction. It is provided in a total of 12 places, two places on the central side.
  • a plurality of ribs 23c extending along the longitudinal direction and the width direction of the support bracket 20 are formed on the outer surface 23a of the bottom portion 23 in order to enhance heat dissipation and reduce weight and rigidity. ing.
  • the board attachment portion 23b is provided at a position where these ribs 23c intersect.
  • the board mounting portion 23b basically has a boss shape with a bolt hole formed in the center.
  • the support bracket 20 has a configuration in which two board mounting portions 23b are combined and two bolt holes are formed in one base-like portion 23e. Further, a part of the ribs at positions corresponding to the peripheral portions of the board mounting part 23b and the control board 33 are used as support ribs 23d, and the height from the bottom part 23 is higher than the ribs 23c at other positions. Yes.
  • the plurality of board mounting portions 23b and the supporting ribs 23d have a function of supporting the control board 33 from below by contacting the lower surface of the control board 33 with the upper end surfaces thereof.
  • the control board 33 is fixed to the outer surface 23 a which is the surface on the cover 39 side of the bottom 23 of the first box-shaped portion 21 in the support bracket 20.
  • the smoothing capacitor 34 is accommodated and fixed in the first box-shaped portion 21 from the case frame 10 side (lower side) of the support bracket 20. Therefore, the control board 33 is fixed to the surface opposite to the surface on which the smoothing capacitor 34 is fixed with the support bracket 20 interposed therebetween.
  • the control board 33 includes a flat board body 33a, a connector 33c disposed on the front surface 33b (upper surface) of the board body 33a, and various types of devices disposed on the front surface 33b and the back surface (lower surface) of the substrate body 33a.
  • a plurality of connectors 33c are arranged along the edge on one side and the other side in the longitudinal direction of the control board 33 (longitudinal direction of the support bracket 20).
  • the board body 33a of the control board 33 has a fastening portion at a plurality of positions on the peripheral edge and at least one position on the center side so as to match the position of the board mounting portion 23b provided on the support bracket 20.
  • 33d is provided.
  • the fastening portions 33d are arranged in four rows in the longitudinal direction of the control board 33, that is, in the longitudinal direction of the support bracket 20, and three rows in the width direction, similarly to the board mounting portion 23b.
  • the fastening portion 33d is configured by a bolt through hole provided in the substrate body 33a.
  • the control board 33 is fastened and fixed to the support bracket 20 in each fastening part 33d by the bolt inserted in the bolt through hole of each fastening part 33d being fastened in the bolt hole of the board attachment part 23b.
  • a heavy component 33e which is a component having a predetermined weight or more, is disposed in the vicinity of the fastening portion 33d.
  • Examples of such heavy component 33e include a transformer and a capacitor.
  • the second box-shaped portion 26 of the support bracket 20 is adjacent to the first box-shaped portion 21 and is in the direction opposite to the opening direction of the first box-shaped portion 21. It is a box-shaped part opened to (upper surface side).
  • the second box-shaped portion 26 includes an opening portion 26a that opens to the cover 39 side (upper surface side), a substantially flat bottom portion 26b, and a peripheral wall portion 26c that stands up to surround the peripheral edge of the bottom portion 26b. And have.
  • the opening 26a is opened on the upper surface slightly inclined so that one side in the longitudinal direction of the support bracket 20 is lowered.
  • the bottom portion 26b has a substantially rectangular planar shape.
  • the 2nd box-shaped part 26 is made into the box shape which the inclined upper surface opened, and is provided with the internal space enclosed by the surrounding wall part 26c.
  • the peripheral wall portion 26c is shared with the first partition wall portion 24a on the other longitudinal side of the support bracket 20.
  • the peripheral wall portion 26 c is provided on one side in the longitudinal direction of the support bracket 20 and on both sides in the width direction of the support bracket 20 and a partition wall that separates a filter mounting surface 27 and a second box-shaped portion 26, which will be described later. And an inclined side wall.
  • the boosting capacitor 42 is accommodated in the second box-shaped portion 26 and fixed. Therefore, as shown in FIG. 8, the second box-shaped portion 26 is provided with a capacitor mounting portion 26 d for fixing the boosting capacitor 42.
  • a plurality of capacitor mounting portions 26d are provided, specifically, one at the bottom portion 26b of the second box-shaped portion 26 and one at each of the two side walls constituting the peripheral wall portion 26c.
  • Each capacitor mounting portion 26d has a boss shape with a bolt hole formed in the center.
  • the step-up capacitor 42 has a substantially rectangular parallelepiped shape that is accommodated in the second box-shaped portion 26.
  • the boosting capacitor 42 is provided with fastening portions 42a at a plurality of locations (three locations in the illustrated example) so as to match the position of the capacitor mounting portion 26c provided on the second box-shaped portion 26. Yes.
  • the fastening portion 42a has a bolt through hole, and the bolt inserted into the bolt through hole is fastened to the bolt hole of the capacitor mounting portion 26d, so that the boosting capacitor 42 is supported by the support bracket at each fastening portion 42a. Fastened to 20.
  • the support bracket 20 has a filter mounting surface 27 for fixing the noise filter 35 adjacent to one side in the longitudinal direction of the support bracket 20 with respect to the second box-shaped portion 26. is doing.
  • the filter mounting surface 27 has a substantially flat plate shape that extends from the second box-shaped portion 26 to one side in the longitudinal direction of the support bracket 20.
  • the noise filter 35 is fixed to the side opposite to the first box portion 21 with respect to the boosting capacitor 42 housed in the second box portion 26.
  • the filter mounting surface 27 is provided with a filter mounting portion 27 a for fixing the noise filter 35.
  • the filter attachment portion 27a is configured by bolt holes provided at a plurality of locations (three locations in the illustrated example) of the filter placement surface 27. As shown in FIG.
  • the noise filter 35 is provided with fastening portions 35a at a plurality of locations (three locations in the illustrated example) so as to match the position of the filter mounting portion 27a.
  • the fastening portion 35a has a bolt through hole, and the bolt inserted into the bolt through hole is fastened to the bolt hole of the filter mounting portion 27a, so that the noise filter 35 is supported by the support bracket 20 at each fastening portion 35a. Fastened and fixed to.
  • the third box-shaped portion 28 of the support bracket 20 is provided adjacent to the first box-shaped portion 21 on the side opposite to the second box-shaped portion 26. It is a box-shaped portion that opens to the cover 39 side (upper surface side) that is opposite to the opening direction of the box-shaped portion 21.
  • the third box-shaped portion 28 has an opening that opens to the cover 39 side (upper surface side), a substantially flat bottom portion 28b, and a peripheral wall portion 28c that stands up to surround the bottom portion 28b. ing.
  • the third box-shaped portion 28 is formed to have a substantially triangular prism-shaped internal space. Therefore, the opening 28a is opened on the upper surface inclined so that the other side in the longitudinal direction of the support bracket 20 is lowered.
  • the bottom portion 28b has a substantially rectangular planar shape.
  • the peripheral wall portion 28 c is shared with the second partition wall portion 24 b on one side in the longitudinal direction of the support bracket 20. Further, the peripheral wall portion 28 c has substantially triangular side walls provided on both sides in the width direction of the support bracket 20 and having an inclined upper surface.
  • a discharge resistor 55 is accommodated and fixed in the third box-shaped portion 28.
  • a first wiring bracket 36 as a cover member is fixed to the support bracket 20 so as to cover the opening 22 of the second box-shaped portion 26.
  • the first wiring bracket 36 is made of a metal material such as aluminum and is manufactured by sheet metal processing or the like.
  • the first wiring bracket 36 has a plate shape having substantially the same width as the support bracket 20, and includes a boosting capacitor 42 housed in the second box-shaped portion 26 and a noise filter disposed adjacent thereto. It is formed in a shape that covers the entire upper surface of 35.
  • the first wiring bracket 36 is inclined so as to approach the case frame 10 side (lower side) toward the end side of the support bracket 20 along the shape of the upper surface of the boosting capacitor 42 and the noise filter 35.
  • the first wiring bracket 36 shields electromagnetic noise generated from the boosting capacitor 42 and the noise filter 35, and suppresses the electromagnetic noise from affecting the control board 33 and the cable connected to the control board 33. Therefore, it is preferable to have a shape having no opening or a shape having few openings.
  • the first wiring bracket 36 includes two fastening portions 36a and 36b at one end and the other end in the longitudinal direction (longitudinal direction of the support bracket 20), and an intermediate portion in the longitudinal direction. Fastening portions 36c are also provided at two places.
  • the fastening portion 36a on one side in the longitudinal direction is fastened and fixed to a bracket mounting portion 43a (see FIG. 1) provided on the reactor 43, and the fastening portion 36b on the other side in the longitudinal direction and the fastening portion 36c on the middle portion in the longitudinal direction are supported.
  • the bracket 20 is fastened and fixed to a bracket mounting portion 26e provided along the peripheral wall portion 26c of the second box-shaped portion 26 of the bracket 20.
  • Each fastening portion 36a to 36c has a bolt through hole
  • each bracket mounting portion 43a, 26e has a bolt hole. Then, the bolts inserted into the bolt through holes of the respective fastening portions 36a to 36c are fastened to the bolt holes of the bracket mounting portions 43a and 26e, so that the first wiring bracket 36 has a support bracket as shown in FIG. 20 and the case frame 10 are fastened and fixed.
  • the second wiring is provided on the support bracket 20 so as to cover the third box-shaped portion 28 adjacent to the control board 33 on the side opposite to the first wiring bracket 36.
  • the bracket 37 is fixed. Similar to the first wiring bracket 36, the second wiring bracket 37 is made of a metal material such as aluminum and is manufactured by sheet metal processing or the like.
  • the second wiring bracket 37 has a plate shape having substantially the same width as that of the support bracket 20 and is formed in a shape that covers the upper surface of the third box-shaped portion 28.
  • the second wiring bracket 37 is a surface inclined so as to approach the case frame 10 side (downward side) toward the end side of the support bracket 20 along the shape of the upper surface of the third box-shaped portion 28. Configure. Note that almost no electromagnetic noise is generated from the discharge resistor 55 accommodated in the third box-shaped portion 28. Therefore, unlike the first wiring bracket 36, the second wiring bracket 37 does not need to shield electromagnetic noise, and thus has an opening 37a for the purpose of weight reduction.
  • the second wiring bracket 37 includes two fastening portions 37b and 37c at each of the end portions on one side and the other side in the longitudinal direction (longitudinal direction of the support bracket 20). These fastening portions 37 b and 37 c are fastened and fixed to a bracket mounting portion 28 a provided on the third box-like portion 28 of the support bracket 20. Each fastening portion 37b, 37c has a bolt through hole, and each bracket mounting portion 28a has a bolt hole.
  • the second wiring bracket 37 is fastened and fixed to the support bracket 20 by fastening the bolts inserted through the bolt through holes of the fastening portions 37b and 37c into the bolt holes of the bracket mounting portion 28a.
  • the cable 38 connected to the control board 33 is fixed to the first wiring bracket 36 and the second wiring bracket 37.
  • clamp members 58 are fixed to a plurality of locations on the upper surfaces of the first wiring bracket 36 and the second wiring bracket 37.
  • the cable 38 is fixed to the first wiring bracket 36 or the second wiring bracket 37 via these clamp members 58.
  • the cable 38 electrically connects the drive device control unit 1, the drive device 2 provided with the drive device control unit 1, or a vehicle or the like provided with the drive device 2, and the control board 33. This is a wiring cable for connection. Therefore, one end of the cable 38 is coupled to the connector 33 c of the control board 33.
  • the other end of the cable 38 is, for example, current sensors 44 and 45 for detecting the operating states of the switching element modules 31 and 32, the motor M and the generator G, rotation sensors 72 and 73, It is connected to a vehicle-side control device or the like via communication means such as a coil temperature sensor or CAN (controller area network).
  • the cable 38 for transmitting and receiving electrical signals representing various kinds of information is required to suppress the influence of electromagnetic noise.
  • the cable 38 includes a power cable that is connected to the battery 50 to supply power to the control board 33.
  • the arrangement of the parts with respect to the support bracket 20 is as shown in the schematic cross-sectional view of FIG. That is, the smoothing capacitor 34 is accommodated and fixed in the first box-shaped portion 21 that opens to the case frame 10 side (lower surface side). Further, the control board 33 is fixed to the outer surface 23 a which is the surface on the cover 39 side of the bottom 23 of the first box-shaped portion 21. As a result, the control board 33 is fixed to the surface opposite to the surface on which the smoothing capacitor 34 is fixed with the support bracket 20 interposed therebetween.
  • the second box-shaped portion 26 that is adjacent to the first box-shaped portion 21 and opens on the cover 39 side (upper surface side) that is in the direction opposite to the opening direction of the first box-shaped portion 21 is used for boosting.
  • a capacitor 42 is accommodated and fixed.
  • a noise filter 35 is fixed to a filter mounting surface 27 provided adjacent to the second box-shaped portion 26 on the side opposite to the first box-shaped portion 21.
  • the first wiring bracket 36 is disposed and fixed so as to cover the entire upper surfaces of the boosting capacitor 42 and the noise filter 35.
  • a cable 38 having one end connected to the control board 33 is fixed to the upper surface of the first wiring bracket 36.
  • cover 39 side (upper surface side) is provided adjacent to the first box-shaped portion 21 on the side opposite to the second box-shaped portion 26 and is opposite to the opening direction of the first box-shaped portion 21.
  • the discharge resistor 55 is accommodated and fixed in the third box-shaped portion 28 that is open at (3).
  • the 2nd wiring bracket 37 is arrange
  • a cable 38 having one end connected to the control board 33 is fixed to the upper surface of the second wiring bracket 37.
  • the first box-shaped portion 21 and the second box-shaped portion 26 having different opening directions of the support bracket 20 are configured to reduce the size of each box-shaped portion
  • the partition wall that separates the two box-shaped portions also functions to reinforce the support bracket 20, thereby ensuring rigidity while reducing the weight of the support bracket 20.
  • the outer surface 23 a of the bottom 23 of the first box-shaped portion 21 that accommodates the smoothing capacitor 34 that is larger than other circuit components of the drive device control unit 1 has a plane that is wider than the planar shape of the control board 33. It is substantially flat.
  • control board 33 is fixed to the outer surface 23a of the bottom 23 of the first box-shaped part 21, it becomes possible to secure the necessary number of fixing positions of the control board 33 at appropriate positions.
  • the vibration resistance of the control board 33 is ensured.
  • the smoothing capacitor 34 is accommodated in the first box-shaped portion 21, and the control substrate 33 is fixed to the outer surface 23 a of the bottom portion 23 on the opposite side to the smoothing capacitor 34, thereby generating from the smoothing capacitor 34.
  • the electromagnetic noise is shielded by the support bracket 20 to suppress the electromagnetic noise from affecting the control board 33.
  • the noise filter 35 is disposed adjacent to the boosting capacitor 42 on the side opposite to the first box-like part 21 with respect to the boosting capacitor 42 accommodated in the second box-like part 26, so that the noise filter A step-up capacitor 42 heavier than 35 is arranged on the first box-like portion 21 side having high rigidity. This suppresses the deflection of the support bracket 20 in the vicinity of the second box-shaped portion 26, reduces the vibrations of the noise filter 35 and the boosting capacitor 42, and improves their vibration resistance.
  • the first wiring bracket 36 is disposed so as to cover the entire upper surfaces of the boosting capacitor 42 and the noise filter 35, and the cable 38 connected to the control board 33 is fixed to the upper surface of the first wiring bracket 36. Yes.
  • the electromagnetic noise generated from the noise filter 35 and the boosting capacitor 42 is shielded by the first wiring bracket 36 and the support bracket 20, and the electromagnetic noise is prevented from affecting the control board 33 and the cable 38.
  • the first wiring bracket 36 has both a function as a shield for shielding electromagnetic noise and a function as a bracket for fixing the cable 38, thereby reducing the number of parts and driving device.
  • the control unit 1 is reduced in size and weight. As described above, almost no electromagnetic noise is generated from the discharge resistor 55. Therefore, the second wiring bracket 37 does not need to shield electromagnetic noise, and simply functions as a bracket for fixing the cable 38.
  • FIG. 12 is a schematic cross-sectional view showing the arrangement of components with respect to the support bracket 20 of the drive device control unit 1 according to the present embodiment.
  • the smoothing capacitor 34 is accommodated and fixed in the first box-shaped portion 21 that opens to the case frame 10 side (lower surface side), and the cover of the bottom 23 of the first box-shaped portion 21 is covered.
  • the control board 33 is fixed to the outer surface 23a which is the 39 side surface.
  • the control board 33 is fixed to the surface opposite to the surface on which the smoothing capacitor 34 is fixed with the support bracket 20 interposed therebetween. This is the same as in the above embodiment.
  • the second box-shaped portion 26 of the support bracket 20 is different from the above embodiment. That is, the support bracket 20 has a second box-shaped portion 26 that is adjacent to the first box-shaped portion 21 and that opens to the case frame 10 side (lower surface side), like the first box-shaped portion 21. .
  • a boosting capacitor 42 is housed and fixed in the second box-shaped portion 26.
  • the noise filter 35 and the discharge resistor 55 are also housed and fixed in the second box-shaped portion 26.
  • the smoothing capacitor 34, the boosting capacitor 42, and the noise filter 35 are all fixed to the case frame 10 side (lower surface side) of the support bracket 20, and the control board 33 and the cable 38 are connected to the support bracket 20. Therefore, the smoothing capacitor 34 and the like are fixed to the surface opposite to the surface where the capacitor is fixed. Therefore, the electromagnetic noise generated from the smoothing capacitor 34, the boosting capacitor 42, and the noise filter 35 is shielded only by the support bracket 20, and the electromagnetic noise can be prevented from affecting the control board 33 and the cable 38. Therefore, it is not necessary to provide a member such as the first wiring bracket 36 in order to shield the electromagnetic noise, and the number of parts can be reduced, so that the drive device control unit 1 can be reduced in size and weight. .
  • the cable 38 is directly fixed to the support bracket 20 by the clamp member 58.
  • the first partition wall portion 24 a that is a partition wall separating the first box-shaped portion 21 and the second box-shaped portion 26 functions to reinforce the support bracket 20. It is also possible to adopt a configuration without the first partition wall portion 24a.
  • the support bracket 20 as the second base has the first box shape having the opening 22 that opens to the case frame 10 side as the first base.
  • the case where the smoothing capacitor 34 is housed and fixed in the first box-shaped portion 21 has been described as an example.
  • the embodiment of the present invention is not limited to this, and the shape of the support bracket 20 can be appropriately modified. Therefore, for example, the support bracket 20 may have a shape that does not have a box-like portion such as a flat plate shape, and the smoothing capacitor 34 and the control board 33 may be fixed to opposite surfaces. It is one of the preferred embodiments of the invention.
  • the smoothing capacitor 34 has a substantially rectangular parallelepiped shape
  • the embodiment of the present invention is not limited to this. Therefore, the smoothing capacitor 34 having another shape such as a cylindrical shape can be used.
  • the support bracket 20 needs to have a shape corresponding to the shape of the smoothing capacitor 34.
  • the surface opposite to the surface on which the smoothing capacitor 34 is fixed has a planar shape, and the control board 33 can be fixed. This is preferable.
  • the drive device control unit 1 includes the booster 4 that boosts the power supply voltage
  • the embodiment of the present invention is not limited to this, It is one of the preferred embodiments of the present invention that the booster 4 is not provided.
  • the support bracket 20 can be configured not to include the second box-shaped portion 26.
  • the drive device has been described as an example of the configuration including the two rotating electric machines of the motor M and the generator G, but the embodiment of the present invention is not limited to this, and the drive device
  • the number of rotating electrical machines and the function of each rotating electrical machine can be changed as appropriate. Therefore, for example, if necessary, one or two or more motor / generators that perform both functions of the motor and the generator may be provided, or the driving device may include only one motor M or generator G. It is one of the preferred embodiments of the present invention.
  • the present invention can be suitably used for, for example, a drive device control unit that controls a drive device including a rotating electrical machine, which is used in an electric vehicle, a hybrid vehicle, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 各部品を確実に固定して耐振性を確保できるとともに、部品点数を減少させて小型化及び軽量化を図ることができる駆動装置制御ユニットを提供する。  回転電機を備えた駆動装置を制御する駆動装置制御ユニット1であって、駆動装置を制御する制御基板33と、前記回転電機を駆動するためのインバータ3を構成するスイッチング素子モジュール31、32と、インバータ3の入力電源を平滑する平滑コンデンサ34と、スイッチング素子モジュール31、32が固定された第1の基台10と、第1の基台10に支持され、平滑コンデンサ34が固定された第2の基台20と、を備え、第2の基台20における平滑コンデンサ34が固定された面とは反対側の面に、制御基板33が固定される。

Description

駆動装置制御ユニット
 本発明は、例えば、電動車両やハイブリッド車両等に用いられる、回転電機を備えた駆動装置を制御する駆動装置制御ユニットに関する。
   近年、例えば、電動車両やハイブリッド車両等に用いられる回転電機(モータやジェネレータ)を備えた駆動装置の制御ユニットとして、当該駆動装置に一体的に固定される駆動装置制御ユニットが開発されている(例えば、下記の特許文献1参照)。このような駆動装置制御ユニットでは、駆動装置の振動に対する耐振性を確保して信頼性を高めることとともに、小型化、軽量化、部品数の削減、製造性の向上等に対する要求も高い。
 このような要求を満たすべく、下記の特許文献1に記載された駆動装置制御ユニットは、以下のような構成を備えている。すなわち、この駆動装置制御ユニットは、駆動装置が備える回転電機を駆動するためのインバータと、駆動装置を制御する制御基板とを収容したユニットであって、インバータのスイッチング素子パワーモジュールを載置するケースと、インバータ用の平滑コンデンサを載置するコンデンサブラケットと、制御基板を載置する制御基板ブラケットと、を備え、前記コンデンサブラケットをケースに固定すると共に、制御基板ブラケットをコンデンサブラケットに固定した構造となっている。
特開2003-199363号公報(第5-7頁、第1図)
  上記の駆動装置制御ユニットは、平滑コンデンサを固定するためのコンデンサブラケットと、制御基板を固定するための制御基板ブラケットとの2つのブラケットを備えた構成となっている。これは、平滑コンデンサの形状に合わせて上面が複雑な凹凸形状とされたコンデンサブラケットとは別に、平面的な基板固定面を備えた制御基板ブラケットを設けることにより、制御基板の締結固定箇所を適切な位置に必要数確保し、制御基板の耐振性を高めることを主な目的としている。しかし、これらのブラケットは、耐振性を確保するための剛性が必要であることから、駆動装置制御ユニットの重量の増加や部品点数の増加の要因となっていた。
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、各部品を確実に固定して耐振性を確保できるとともに、部品点数を減少させて小型化及び軽量化を図ることができる駆動装置制御ユニットを提供することにある。
 上記目的を達成するための本発明に係る、回転電機を備えた駆動装置を制御する駆動装置制御ユニットの特徴構成は、前記駆動装置を制御する制御基板と、前記回転電機を駆動するためのインバータを構成するスイッチング素子モジュールと、前記インバータの入力電源を平滑する平滑コンデンサと、前記スイッチング素子モジュールが固定された第1の基台と、前記第1の基台に支持され、前記平滑コンデンサが固定された第2の基台と、を備え、前記第2の基台における前記平滑コンデンサが固定された面とは反対側の面に、前記制御基板が固定された点にある。
 なお、本願では、「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
 この特徴構成によれば、平滑コンデンサが固定された第2の基台に制御基板も固定するため、制御基板を固定するための専用の基台を設ける必要がない。したがって、従来のように制御基板を固定するための専用の基台を設ける場合と比較して、部品点数を減少させることができ、駆動装置制御ユニットの小型化及び軽量化を図ることができる。また、第2の基台における平滑コンデンサが固定された面とは反対側の面に制御基板を固定することから、平滑コンデンサ及び制御基板の双方を確実に固定しつつ、制御基板の固定箇所を適切な位置に必要数確保することが容易となっている。したがって、制御基板を含む各部品の耐振性を確保することができる。
 ここで、前記第2の基台は、前記第1の基台側に開口する開口部と略平板状の底部とを有する第1の箱状部を有し、前記平滑コンデンサは、前記第1の箱状部に収容されて固定され、前記制御基板は、前記底部の外面に固定された構成とすると好適である。
 この構成によれば、第2の基台が箱状部を有する構成にしたことにより、第2の基台自体の軽量化を図りつつ剛性を確保することが容易となる。また、このような第2の基台の箱状部の略平板状の底部の外面に制御基板を固定する構成としたことにより、制御基板の固定箇所を適切な位置に必要数確保することが非常に容易となるため、制御基板の耐振性を容易に確保することができる。更に、第2の基台の第1の箱状部内に平滑コンデンサを収容し、当該第1の箱状部の外面に制御基板を固定する構成としたことにより、平滑コンデンサから発生する電磁ノイズを第2の基台により遮蔽することができ、当該電磁ノイズが制御基板に影響を与えることを効果的に抑制することができる。
 また、前記制御基板は、周縁部の複数箇所及びそれより中央側の少なくとも一箇所において、前記底部に締結固定された構成とすると好適である。
 この構成によれば、制御基板の中央部のたわみを抑制し、第2の基台に対して適切に締結固定することができる。したがって、制御基板の耐振性を確保することができる。
 また、前記平滑コンデンサは略直方体形状であり、前記第1の箱状部は前記平滑コンデンサの形状に合致する略直方体形状の内部空間を有する構成とすると好適である。
 この構成によれば、従来の円筒状の平滑コンデンサを用いる場合と比較して第2の基台の形状を簡略化することができる。また、略直方体形状の平滑コンデンサの形状に合致する内部空間を有するように第1の箱状部を形成したことにより、平滑コンデンサを第2の基台の第1の箱状部に適切に収容して固定することができるとともに、無駄な空間を減らして駆動装置制御ユニットの小型化を図ることができる。
 また、前記平滑コンデンサは、前記第1の箱状部に収容された状態で前記開口部から外側に突出する接続端子を備える構成とすると好適である。
 この構成によれば、平滑コンデンサの接続端子に配線するための切り欠き等を第2の基台に設ける必要がないため、第2の基台の形状をより一層簡略化することができる。
 また、電源電圧を昇圧する昇圧装置を更に備え、前記昇圧装置は、昇圧用スイッチング素子と、昇圧用コンデンサと、リアクトルとを有し、前記昇圧用スイッチング素子は、前記第1の基台における前記スイッチング素子モジュールと同一面上に固定され、前記リアクトルは、前記第1の基台に固定され、前記昇圧用コンデンサは、前記第2の基台に固定された構成とすると好適である。
 この構成によれば、駆動装置制御ユニットが昇圧装置を備える場合において、発熱量が多い昇圧用スイッチング素子を、同じく発熱量が多いスイッチング素子モジュールと同一面上に固定するので、これらを共通の冷却回路で冷却することが容易となる。更に、このように冷却回路を共通化することにより、駆動装置制御ユニットの小型化及び軽量化を図ることができる。また、比較的重いリアクトルを第1の基台に固定し、リアクトルより軽い昇圧用コンデンサを第2の基台に固定することにより、第2の基台に作用する負荷を軽減するとともに重心を第1の基台側に寄せることができる。したがって、駆動装置制御ユニットの耐振性を高めることができる。
 また、前記第2の基台は、前記第1の箱状部に隣接して前記第1の箱状部の開口方向とは反対方向に開口する第2の箱状部を有し、前記昇圧用コンデンサは、前記第2の箱状部に収容されて固定された構成とすると好適である。
 この構成によれば、一つの箱状部に平滑用コンデンサと昇圧用コンデンサの双方を収容する構成とする場合に比べて、それぞれの箱状部の大きさを小さくすることができるとともに、第1の箱状部と第2の箱状部との間を隔てる壁が第2の基台を補強する役割を果たすことになる。したがって、第2の基台の剛性を確保しつつ軽量化を図ることが容易となる。
 また、電源ノイズを除去するためのノイズフィルタを更に備え、前記ノイズフィルタは、前記昇圧用コンデンサに対して前記第1の箱状部とは反対側に固定された構成とすると好適である。
 この構成によれば、ノイズフィルタより重い昇圧用コンデンサを、剛性が高い第1の箱状部側に配置することにより、第2の基台における第2の箱状部付近のたわみを抑制し、ノイズフィルタ及び昇圧用コンデンサの振動を軽減することができる。したがってノイズフィルタ及び昇圧用コンデンサの耐振性を高めることができる。
 また、前記第2の箱状部の開口部を覆うように前記第2の基台に固定されるカバー部材を更に備え、前記制御基板に接続されるケーブルが、前記カバー部材に固定される構成とすると好適である。
 この構成によれば、第2の箱状部内に収容された昇圧用コンデンサから発生する電磁ノイズをカバー部材及び第2の基台により遮蔽することができる。したがって、当該電磁ノイズが制御基板及び制御基板に接続されるケーブルに影響を与えることを抑制できる。また、このカバーが制御基板に接続されるケーブルのブラケットを兼ねるので、部品点数を減少させることができ、駆動装置制御ユニットの小型化及び軽量化を図ることができる。
 ここで、前記ケーブルは、例えば、前記制御基板と、前記スイッチング素子モジュール、前記回転電機の動作状態を検出するセンサ、又は前記駆動装置を備えた車両の各部とを接続するものとされる。
本発明の第1の実施形態に係る駆動装置制御ユニットの分解斜視図である。 駆動装置制御ユニットからカバーを取り外した状態の斜視図である。 駆動装置制御ユニットが一体的に取り付けられた駆動装置の側面図である。 駆動装置の軸方向展開断面図である。 駆動装置制御ユニットの回路構成を示す模式図である。 駆動装置制御ユニットの要部を示す分解斜視図である。 駆動装置制御ユニットの要部を図6とは異なる方向から示す分解斜視図である。 支持ブラケットの上側を示す斜視図である。 支持ブラケットの下側及びそこに固定される平滑コンデンサを示す斜視図である。 制御基板上の部品配置を示す図である。 支持ブラケットに対する各部品の配置を示す模式断面図である。 本発明の第2の実施形態に係る支持ブラケットに対する各部品の配置を示す模式断面図である。
  以下に、本発明の実施形態について図面に基づいて説明する。まず、第1の実施形態について説明する。ここでは、本発明を、ハイブリッド車両用の駆動装置2を制御する駆動装置制御ユニット1に適用した場合を例として説明する。
1.駆動装置の構成
 まず、本実施形態に係る駆動装置制御ユニット1による制御対象となる、ハイブリッド車両用の駆動装置2の構成について説明する。図4に示すように、この駆動装置2は、第1軸A1上に配置されたジェネレータG及び動力分配装置としての遊星歯車機構Pと、第2軸A2上に配置されたモータMと、第4軸A4上に配置されたディファレンシャル装置Dとを主要な構成として備えている。また、第3軸A3上には、遊星歯車機構Pの出力回転要素及びモータMをディファレンシャル装置Dに駆動連結するカウンタギヤ機構Tが配置されている。ここで、遊星歯車機構Pは、シングルピニオン式遊星歯車機構となっており、サンギヤsはジェネレータGに連結され、キャリアcは第1軸A1上に配置されたダンパ61を介してエンジンの出力軸62に連結され、リングギヤrは出力回転要素とされ、カウンタギヤ機構Tに駆動連結されている。このような駆動装置2の各構成は、駆動装置ケース60内に収容されている。本実施形態においては、モータM及びジェネレータGが、本発明における回転電機に相当する。
 そして、このような駆動装置2の上部に、駆動装置制御ユニット1が一体的に取り付けられている。具体的には、図3に示すように、駆動装置制御ユニット1の第1の基台に相当するケースフレーム10が、駆動装置ケース60の傾斜した上面60aに締結固定される。ここで、駆動装置ケース60の上面60aは、モータM及びジェネレータGの外径にほぼ接するように傾斜して設けられている。これにより、駆動装置制御ユニット1が駆動装置ケース60に一体的に取り付けられている。このように駆動装置制御ユニット1が傾斜して駆動装置2に取り付けられることに合せて、駆動装置制御ユニット1のカバー39は、駆動装置2をエンジン連結側から見た側面視で、駆動装置ケース60から離れるほど横幅(上面60aに平行な方向の長さ)が小さくなる略台形状に形成されており、駆動装置制御ユニット1が駆動装置2に取り付けられた状態で、一方の側面が略水平となり、他方の側面が略垂直となるように形成されている。これにより、駆動装置制御ユニット1が一体的に取り付けられた駆動装置2の全体が、上方及び側方(図3における右側方)に突出が少ない小型の外形となっている。
 また、図4に示すように、駆動装置制御ユニット1と駆動装置2との接合部には、スイッチング素子モジュール31、32やモータM及びジェネレータG等を冷却するための冷却構造が設けられている。この冷却構造は、駆動装置2の内部を循環する作動油が流れる作動油流路65と、冷却水や冷却液等の冷媒が流れる冷媒流路16とを有し、これらの間で熱交換を行う構成となっている。本実施形態においては、作動油流路65は、駆動装置ケース60の上面にフィン63を有する空間として形成され、その開口面を覆うように伝熱壁64が取り付けられている。伝熱壁64は、両面に伝熱フィンを備え、作動油流路65内の作動油と、冷媒流路16内の冷媒との間で熱交換を行う。また、冷媒流路16は、ケースフレーム10の底部11の下面に取り付けられる平板状の離隔部材15により上下2段に分離され、離隔部材15のケースフレーム10側が上段冷媒流路16A、離隔部材15の駆動装置ケース60側が下段冷媒流路16Bとされている。ここで、上段側冷媒流路16は、ケースフレーム10の底部11に一体的に形成された冷却フィン13間の空間として形成されており、その空間の開口面を覆うように離隔部材15が取り付けられている。また、下段冷媒流路16Bは、離隔部材15と伝熱壁64との間及びその周囲の空間として形成されている。
 駆動装置2の内部を循環して高温になった作動油は、作動油流路65内において、下段側冷媒流路16を流れる冷媒との間で伝熱壁64を介して熱交換を行い、冷却される。また、後述するように、スイッチング素子モジュール31、32は、大電流が流れるため発熱量が多い。そこで、スイッチング素子モジュール31、32は、ケースフレーム10の底部11の上面に接するように配置され、ケースフレーム10の底部11に形成された冷却フィン13を介して上段側冷媒流路16を流れる冷媒との間で熱交換を行い、冷却される。このような熱交換を行うために、冷却フィン13を備えたケースフレーム10や伝熱壁64は、アルミニウム等の高熱伝導性材料で構成されていると好適である。一方、離隔部材15は、上段側冷媒流路16と下段側冷媒流路16との間の熱交換を抑制するために、低熱伝導性材料で構成されていると好適である。
2.駆動装置制御ユニットの全体の概略構造
 次に、駆動装置制御ユニット1の全体の概略構造について説明する。なお、以下の説明においては、特に断らない限り、「上」というときは駆動装置制御ユニット1のカバー39側(図1、図2、図4、図6~図8、及び図11における上側)を指し、「下」というときは駆動装置制御ユニット1のケースフレーム10側(図1、図2、図4、図6~図8、及び図11における下側)を指すものとする。図1及び図2に示すように、この駆動装置制御ユニット1は、駆動装置2を制御する制御基板33と、モータM及びジェネレータGを駆動(制御)するためのインバータ3を構成する第1スイッチング素子モジュール31及び第2スイッチング素子モジュール32と、インバータ3の入力電源を平滑する平滑コンデンサ34と、スイッチング素子モジュール31、32が固定された第1の基台としてのケースフレーム10と、このケースフレーム10に支持され、一方の面(上面)に制御基板33が固定され、他方の面(下面)に平滑コンデンサ34が固定された第2の基台としての支持ブラケット20と、を備えている。
 また、駆動装置制御ユニット1は、昇圧用スイッチング素子8(図5参照)を含む昇圧用スイッチングユニット41と、昇圧用コンデンサ42と、リアクトル43とを備えており、これらは電源電圧を昇圧する昇圧装置4を構成している。昇圧用スイッチングユニット41は、後述するように第2スイッチング素子モジュール32に一体的に組み込まれており、これにより、ケースフレーム10におけるスイッチング素子モジュール31、32と同一面上に固定されている。また、リアクトル43は、ケースフレーム10に固定され、昇圧用コンデンサ42は、支持ブラケット20に固定されている。更に、駆動装置制御ユニット1は、電源ノイズを除去するためのノイズフィルタ35を備え、このノイズフィルタ35は、昇圧用コンデンサ42と隣接して、支持ブラケット20に固定されている。
 ここで、ケースフレーム10は、底部11(図4参照)と、この底部11の周縁部を囲むように立設された周壁部12とを有し、支持ブラケット20側となる上面が開口した箱状とされている。このケースフレーム10は、アルミニウム等の金属材料で構成され、ダイカスト等により製造される。ここでは、底部11は、平面形状が略矩形状とされており、ケースフレーム10は、上面が開口した略直方体形状の箱状とされている。なお、周壁部12の外周面には、ケースフレーム10の放熱性を高め、軽量化及び高剛性化を図るために複数のリブが形成されている。そして、このケースフレーム10内には、第1スイッチング素子モジュール31、第2スイッチング素子モジュール32、及びリアクトル43が収納されて固定されている。この際、第1スイッチング素子モジュール31、第2スイッチング素子モジュール32、及びリアクトル43は、底部11に接するように配置されている(図4参照)。更に、ケースフレーム10内には、第1スイッチング素子モジュール31からモータMへ流れる電流の大きさを検出する第1電流センサ44、及び第2スイッチング素子モジュール32からジェネレータGへ流れる電流の大きさを検出する第2電流センサ45も収納されている。また、ケースフレーム10には、支持ブラケット20を取り付けるための載置取付部14が周壁部12の内周面に沿って複数設けられており、この載置取付部14に支持ブラケット20が締結固定され、支持されている。
 支持ブラケット20は、ケースフレーム10側となる下面(下方)に開口する開口部22と、略平板状の底部23と、この底部23の周縁部を囲むように立設された周壁部24とを有する第1の箱状部21(図8、図9参照)を有している。この支持ブラケット20は、アルミニウム等の金属材料で構成され、ダイカスト等により製造される。そして、支持ブラケット20の第1の箱状部21の内部に平滑コンデンサ34が収容されて固定されている。図1、図7、及び図9に示すように、平滑コンデンサ34は略直方体形状とされており、第1の箱状部21に収容された状態で開口部22から外側に突出する接続端子34aを備えている。一方、この第1の箱状部21の底部23の外面23aに制御基板33が固定されている。また、図8に示すように、支持ブラケット20は、第1の箱状部21に隣接して第1の箱状部21の開口方向とは反対方向となる上面(上方)に開口する開口部26aを有する第2の箱状部26を有している。この第2の箱状部26の内部に昇圧用コンデンサ42が収容されて固定されている。更に、支持ブラケット20における、昇圧用コンデンサ42に対して第1の箱状部21とは反対側にノイズフィルタ35が固定されている。
 また、図1に示すように、支持ブラケット20には、制御基板33に隣接して、支持ブラケット20の長手方向一方側に第1配線ブラケット36が固定され、他方側に第2配線ブラケット37が固定されている。本実施形態においては、第1配線ブラケット36が、本発明におけるカバー部材に相当する。そして、これらの第1配線ブラケット36及び第2配線ブラケット37のそれぞれの上面には、制御基板33に接続されるケーブル38がクランプ部材58(図6及び図7参照)を用いて固定されている。また、スイッチング素子モジュール31、32、平滑コンデンサ34、昇圧用コンデンサ42、リアクトル43、電流センサ44、45等は、後述する電気回路(図5参照)を構成すべく、各部品の所定の端子間をつなぐ複数のバスバー46により電気的に接続されている。
 カバー39は、ケースフレーム10の上面、具体的には周壁部12の上端面12aに固定される。これにより、ケースフレーム10及びカバー39により覆われる内部空間を液密構造とし、ケースフレーム10内及び支持ブラケット20に固定される各部材を保護することができる構成となっている。なお、カバー39のケースフレーム10への固定は、周壁部12の上端面12aに沿って設けられた複数のボルト孔に対して、カバー39の下端に形成されたフランジ状の周縁部39aに設けられた締結孔を挿通した締結部材としてのボルトが締結固定されることにより行われる。
3.駆動装置制御ユニットの電気回路の構成
 次に、駆動装置制御ユニット1の電気回路の構成について説明する。この駆動装置制御ユニット1は、駆動装置2のモータM及びジェネレータGを制御する。ここで、モータM及びジェネレータGは、三相交流により駆動される回転電機である。図5に示すように、駆動装置制御ユニット1は、電気回路を構成する回路構成部品として、第1スイッチング素子モジュール31、第2スイッチング素子モジュール32、制御基板33、平滑コンデンサ34、ノイズフィルタ35、放電抵抗55、昇圧用コンデンサ42、リアクトル43、第1電流センサ44、及び第2電流センサ45を備えている。この駆動装置制御ユニット1には、電源としてのバッテリ50が接続されている。ノイズフィルタ35は、詳細な構成についての説明を省略するが、バッテリ50の電源ノイズを除去する機能を果たす。そして、駆動装置制御ユニット1は、バッテリ50の電圧を昇圧するとともに、バッテリ50の直流を、所定周波数の3相交流に変換してモータMに供給し、モータMの駆動状態を制御する。また、駆動装置制御ユニット1は、ジェネレータGの駆動状態を制御し、ジェネレータGにより発電された交流を、直流に変換してバッテリ50に供給することにより蓄電し、或いは直流に変換した後で更に所定周波数の三相交流に変換してモータMに供給する。なお、モータMはモータ回転センサ48を備え、ジェネレータGはジェネレータ回転センサ49を備えており、それぞれの回転速度の検出値を表す信号を制御基板33に出力するように構成されている。
 第1スイッチング素子モジュール31は、モータMを駆動するための第1インバータユニット51、及び第1制御回路53を内蔵している。第1スイッチング素子モジュール31は、第1インバータユニット51及び第1制御回路53を構成する素子や基板、及びそれらと外部とを接続するための端子等を樹脂により一体成形して構成されている。第2スイッチング素子モジュール32は、電源電圧を昇圧するための昇圧用スイッチングユニット41、ジェネレータGを駆動するための第2インバータユニット52、及び第2制御回路54を内蔵している。第2スイッチング素子モジュール32は、昇圧用スイッチングユニット41、第2インバータユニット52、及び第2制御回路54を構成する素子や基板、及びそれらと外部とを接続するための端子等を樹脂により一体成形して構成されている。本実施形態においては、第1インバータユニット51及び第2インバータユニット52が、本発明における回転電機(モータM及びジェネレータG)を駆動するためのインバータ3に相当する。よって、これらを内蔵するスイッチング素子モジュール31、32が、当該インバータ3を構成している。
 第1インバータユニット51は、第1インバータ用スイッチング素子6として、直列に接続された一組の第1上アーム素子6Aと第1下アーム素子6Bとを備えており、ここでは、モータMの各相(U相、V相、W相の3相)のそれぞれについて2組4個の第1インバータ用スイッチング素子6を備えている。本実施形態においては、これらの第1インバータ用スイッチング素子6として、IGBT(絶縁ゲートバイポーラトランジスタ)を用いる。各組の第1上アーム素子6Aのエミッタと第1下アーム素子6Bのコレクタとが、モータMの図示しない各相のコイルにそれぞれ接続されている。また、各第1上アーム素子6Aのコレクタは、後述する昇圧装置4による昇圧後の電力が供給される高圧電源ラインLhに接続され、各第1下アーム素子6Bのエミッタは、バッテリ50の負極端子につながるグランドラインLgに接続されている。また、各第1インバータ用スイッチング素子6には、フリーホイールダイオード56が並列接続されており、これらのフリーホイールダイオード56も第1インバータユニット51に含まれている。なお、第1インバータ用スイッチング素子6としては、IGBTの他に、バイポーラ型、電界効果型、MOS型など種々の構造のパワートランジスタを用いることができる。
 第1インバータユニット51は、第1制御回路53を介して制御基板33と電気的に接続されている。そして、複数の第1インバータ用スイッチング素子6が、制御基板33に含まれるモータ・コントロール・ユニットMCUから出力されるモータ用ゲート信号に従って動作することにより、昇圧装置4による昇圧後の直流電力を、所定の周波数及び電流値の3相交流電力に変換してモータMに供給する。これにより、モータMは所定の出力トルク及び回転速度で駆動される。第1インバータユニット51とモータMの各相のコイルとの間の通電量は、第1インバータユニット51とモータMとの間に設けられた第1電流センサ44により検出される。第1電流センサ44の検出値は、制御基板33に含まれるモータ・コントロール・ユニットMCUに送られる。
 第2インバータユニット52は、第2インバータ用スイッチング素子7として、直列に接続された一組の第2上アーム素子7Aと第2下アーム素子7Bとを備えており、ここでは、ジェネレータGの各相(U相、V相、W相の3相)のそれぞれについて1組2個の第2インバータ用スイッチング素子7を備えている。本実施形態においては、これらの第2インバータ用スイッチング素子7として、IGBT(絶縁ゲートバイポーラトランジスタ)を用いる。各組の第2上アーム素子7Aのエミッタと第2下アーム素子7Bのコレクタとが、ジェネレータGの図示しない各相のコイルにそれぞれ接続されている。また、各第2上アーム素子7Aのコレクタは高圧電源ラインLhに接続され、各第2下アーム素子7Bのエミッタは、バッテリ50の負極端子につながるグランドラインLgに接続されている。また、各第2インバータ用スイッチング素子7には、フリーホイールダイオード57が並列接続されており、これらのフリーホイールダイオード57も第2インバータユニット52に含まれている。なお、第2インバータ用スイッチング素子7としては、IGBTの他に、バイポーラ型、電界効果型、MOS型など種々の構造のパワートランジスタを用いることができる。
 第2インバータユニット52は、第2制御回路54を介して制御基板33と電気的に接続されている。そして、第2インバータユニット52は、複数の第2インバータ用スイッチング素子7が、制御基板33に含まれるジェネレータ・コントロール・ユニットGCUから出力されるジェネレータ用ゲート信号に従って動作することにより、ジェネレータGにより発電された3相交流電力を、直流電力に変換してバッテリ50又は第1インバータユニット51に供給する。この際、第2インバータユニット52は、ジェネレータGの各相のコイルを流れる電流値を制御することにより、ジェネレータGの回転速度及び出力トルクを制御する。第2インバータユニット52とジェネレータGの各相のコイルとの間の通電量は、第2インバータユニット52とジェネレータGとの間に設けられた第2電流センサ45により検出される。第2電流センサ45の検出値は、制御基板33に含まれるジェネレータ・コントロール・ユニットGCUに送られる。
 昇圧用スイッチングユニット41は、昇圧用スイッチング素子8として、直列に接続された一組の昇圧用上アーム素子8Aと昇圧用下アーム素子8Bとを備えており、ここでは、2組4個の昇圧用スイッチング素子8を備えている。本実施形態においては、これらの昇圧用スイッチング素子8として、IGBT(絶縁ゲートバイポーラトランジスタ)を用いる。各組の昇圧用上アーム素子8Aのエミッタと昇圧用下アーム素子8Bのコレクタとが、リアクトル43を介してバッテリ50の正極端子に接続されている。また、各昇圧用上アーム素子8Aのコレクタは、昇圧装置4による昇圧後の電力が供給される高圧電源ラインLhに接続され、各昇圧用下アーム素子8Bのエミッタは、バッテリ50の負極端子につながるグランドラインLgに接続されている。また、各昇圧用スイッチング素子8には、フリーホイールダイオード47が並列接続されており、これらのフリーホイールダイオード47も昇圧用スイッチングユニット41に含まれている。なお、昇圧用スイッチング素子8としては、IGBTの他に、バイポーラ型、電界効果型、MOS型など種々の構造のパワートランジスタを用いることができる。
 昇圧用スイッチングユニット41は、第2制御回路54を介して制御基板33と電気的に接続されている。そして、昇圧用スイッチングユニット41は、複数の昇圧用スイッチング素子8が、制御基板33に含まれるトランスアクスル・コントロール・ユニットTCUから出力される昇圧用ゲート信号に従って動作することにより、バッテリ50の電圧を所定電圧に昇圧して第1インバータユニット51に供給する。一方、ジェネレータGから電力を受ける場合には、複数の昇圧用スイッチング素子8が、ジェネレータGにより発電された電圧を所定電圧まで降圧してバッテリ50に供給する。昇圧用コンデンサ42は、ノイズフィルタ35を介してバッテリ50に並列に接続されている。この昇圧用コンデンサ42は、バッテリ50の電圧を平滑化し、当該平滑化した直流電圧を昇圧用スイッチングユニット41へ供給する機能を果たす。したがって、昇圧用スイッチング素子8を含む昇圧用スイッチングユニット41、昇圧用コンデンサ42、及びリアクトル43により、昇圧装置4が構成されている。
 平滑コンデンサ34は、昇圧装置4による昇圧後の電力が供給される高圧電源ラインLhとバッテリ50の負極端子につながるグランドラインLgとの間に接続されている。この平滑コンデンサ34は、昇圧装置4による昇圧後の直流電圧を平滑化し、当該平滑化した直流電圧を主に第1インバータユニット51へ供給する機能を果たす。この平滑コンデンサ34には、放電抵抗55が並列接続されている。この放電抵抗55は、電源オフ時等に平滑コンデンサ34に蓄えられた電荷を放電する機能を果たす。
 制御基板33は、駆動装置2を制御するための制御回路が形成された基板である。本実施形態においては、制御基板33は、インバータ3としての第1インバータユニット51及び第2インバータユニット52を制御する制御回路を有している。これにより、制御基板33は、これらのインバータユニット51、52を介してモータM及びジェネレータGの駆動を制御する。また、この制御基板33は、昇圧用スイッチングユニット41を制御する制御回路も有している。この制御基板33は、機能毎のユニットに分けて考えると、トランスアクスル・コントロール・ユニットTCU、モータ・コントロール・ユニットMCU、及びジェネレータ・コントロール・ユニットGCUを含んでいる。トランスアクスル・コントロール・ユニットTCUは、駆動装置2の全体を制御するための制御ユニットである。ここでは、トランスアクスル・コントロール・ユニットTCUには、第1制御回路53を介して昇圧装置4による昇圧前の電源電圧(昇圧前電圧)の検出値、及び昇圧後の電圧(昇圧後電圧)の検出値が入力される。また、トランスアクスル・コントロール・ユニットTCUは、CAN(コントローラー・エリア・ネットワーク)等の通信手段を介して、駆動装置2を備える車両側の制御装置との間で、例えば、アクセル操作量、ブレーキ操作量、車速等の各種情報の受け渡しを行う。トランスアクスル・コントロール・ユニットTCUは、これらの情報に基づいて、モータ・コントロール・ユニットMCU及びジェネレータ・コントロール・ユニットGCUのそれぞれに対する動作指令を生成し、出力する。また、トランスアクスル・コントロール・ユニットTCUは、昇圧用スイッチングユニット41の各昇圧用スイッチング素子8を駆動する駆動信号としての昇圧用ゲート信号を生成し、第2制御回路54へ出力する。
 トランスアクスル・コントロール・ユニットTCUから、モータ・コントロール・ユニットMCU及びジェネレータ・コントロール・ユニットGCUに対して出力される動作指令は、モータM及びジェネレータGの回転速度や出力トルクの指令値である。また、モータ・コントロール・ユニットMCUには、第1電流センサ44により検出された第1インバータユニット51とモータMの各相のコイルとの間の通電量の検出値、及びモータ回転センサ48により検出されたモータMの回転速度の検出値が入力される。モータ・コントロール・ユニットMCUは、これらの検出値と、トランスアクスル・コントロール・ユニットTCUからの動作指令とに基づいて、第1インバータユニット51の各第1インバータ用スイッチング素子6を駆動する駆動信号としてのモータ用ゲート信号を生成し、第1制御回路53へ出力する。また、ジェネレータ・コントロール・ユニットGCUにも同様に、第2電流センサ45により検出された第2インバータユニット52とジェネレータGの各相のコイルとの間の通電量の検出値、及びジェネレータ回転センサ49により検出されたジェネレータGの回転速度の検出値が入力される。ジェネレータ・コントロール・ユニットGCUは、これらの検出値と、トランスアクスル・コントロール・ユニットTCUからの動作指令に基づいて、第2インバータユニット52の各第2インバータ用スイッチング素子7を駆動する駆動信号としてのジェネレータ用ゲート信号を生成し、第2制御回路54へ出力する。
4.駆動装置制御ユニットの要部の詳細構造
 次に、本実施形態に係る駆動装置制御ユニット1の要部の詳細な構造について説明する。図1、図6及び図7に示すように、この駆動装置制御ユニット1は、第1の基台としてのケースフレーム10に支持され、平滑コンデンサ34が固定された第2の基台としての支持ブラケット20を備えており、支持ブラケット20における平滑コンデンサ34が固定された面(ケースフレーム10側となる下面)とは反対側の面(カバー39側となる上面)に、制御基板33が固定された構成を有している。この駆動装置制御ユニット1は、この支持ブラケット20に対する平滑コンデンサ34や制御基板33等の各部品の配置構造に特徴を有している。以下、支持ブラケット20の周辺の各部の構成について詳細に説明する。
 図1に示すように、支持ブラケット20は、ケースフレーム10に支持されている。本実施形態においては、ケースフレーム10には、周壁部12の内面に沿って複数(図示の例では6個)の載置取付部14が設けられている。この載置取付部14は、軸心部にボルト穴が形成された円柱状であって、周壁部12の内面に接して立設するように形成されている。載置取付部14の載置面(上面)は、周壁部12の上端面12aより一段低い位置となるように設定されている。一方、支持ブラケット20には、ケースフレーム10の載置取付部14の位置に合致するように、周縁部の複数箇所(図示の例では6箇所)に締結部25が設けられている。この締結部25は、中心部にボルト通し孔が形成されたボス形状であって、支持ブラケット20の周縁部からやや突出するように形成されている。そして、各締結部25のボルト通し孔に挿通されたボルトが載置取付部14のボルト穴に締結されることにより、支持ブラケット20は、各締結部25においてケースフレーム10に締結固定される。
 図8及び図9に示すように、支持ブラケット20は、ケースフレーム10側(下面側)に開口する第1の箱状部21と、支持ブラケット20の長手方向一方側に第1の箱状部21と隣接して設けられ、第1の箱状部21の開口方向とは反対方向となるカバー39側(上面側)に開口する第2の箱状部26とを有している。更に、本実施形態においては、支持ブラケット20は、図7に示すように、支持ブラケット20の長手方向他方側に第1の箱状部21と隣接して設けられ、第1の箱状部21の開口方向とは反対方向となるカバー39側(上面側)に開口する第3の箱状部28を有している。第1の箱状部21は、ケースフレーム10側(下面側)に開口する開口部22と、略平板状の底部23と、この底部23の周縁部を囲むように立設された周壁部24とを有している。ここで、底部23は、平面形状が略矩形状とされている。したがって、第1の箱状部21は、下面が開口している略直方体形状の箱状とされており、図9に示すように、周壁部24により囲まれた略直方体形状の内部空間を備えている。この周壁部24は、支持ブラケット20の長手方向一方側において第1の箱状部21と第2の箱状部26との間を隔てる隔壁としても機能する第1隔壁部24aと、支持ブラケット20の長手方向他方側において第1の箱状部21と第3の箱状部28との間を隔てる隔壁としても機能する第2隔壁部24bと、支持ブラケット20の幅方向一方側の第1側壁部24cと、支持ブラケット20の幅方向他方側の第2側壁部24dと、を有する。
 また、支持ブラケット20には、この第1の箱状部21を区画する周壁部24に沿って、平滑コンデンサ34を固定するためのコンデンサ取付部21aが複数(図示の例では8個)設けられている。ここでは、コンデンサ取付部21aは、周壁部24を構成する各壁について2つずつ設けられており、また、第1隔壁部24a及び第2隔壁部24bに沿って形成されるものと、第1側壁部24c及び第2側壁部24dに沿って形成されるものとで構成が異なっている。すなわち、図9に示すように、第1隔壁部24a及び第2隔壁部24bに沿って形成されるコンデンサ取付部21aは、軸心部にボルト孔が形成された円柱状であって、第1隔壁部24a又は第2隔壁部24bの内面に接して立設するように形成されている。また、第1側壁部24c及び第2側壁部24dに沿って形成されるコンデンサ取付部21aは、中心部にボルト穴が形成されたボス形状であって、第1側壁部24c又は第2側壁部24dから側方(支持ブラケット20の幅方向)にやや突出するように形成されている。これらのコンデンサ取付部21aは、いずれも平滑コンデンサ34を取り付ける取付面(下面)が、周壁部24の下端面24eより一段高い位置、すなわち底面23からの距離が短い位置(図9においては低い位置)となるように設定されている。
 図6、図7及び図9に示すように、平滑コンデンサ34は、支持ブラケット20のケースフレーム10側(下方側)から第1の箱状部21に収容されて固定される。ここで、平滑コンデンサ34は、略直方体形状とされている。そこで、第1の箱状部21は、この平滑コンデンサ34を適切に収納すべく、上記のような略直方体形状の内部空間を有するように形成されており、この内部空間の大きさは、平滑コンデンサ34の形状に合致する大きさに設定されている。また、平滑コンデンサ34には、第1の箱状部21に設けられたコンデンサ取付部21aの位置に合致するように、周縁部の複数箇所(図示の例では8箇所)に締結部34bが設けられている。この締結部34bは、平滑コンデンサ34の側壁から側方に突出する略直方体形状に形成され、中心部にボルト通し孔が形成されている。そして、各締結部34bのボルト通し孔に挿通されたボルトがコンデンサ取付部21aのボルト穴に締結されることにより、平滑コンデンサ34は、各締結部34bにおいて支持ブラケット20に締結固定される。また、平滑コンデンサ34は、このように第1の箱状部21に収容された状態で、開口部22から外側に突出する接続端子34aを備えている。ここで、接続端子34aは、平滑コンデンサ34の下面と平行に、開口部22から支持ブラケット20の側方へ向けて突出するように設けられている。また、図示の例では、接続端子34aは、平滑コンデンサ34の幅方向一方側にのみ設けられている。支持ブラケット20は、この接続端子34aを突出させるために、当該接続端子34aが設けられている側の周壁部24である第2側壁部24dの高さが、当該接続端子34aに対応する位置について、コンデンサ取付部21aと同様に下端面24eより一段高い位置(図9においては低い位置)に設定している。
 また、図6~図8に示すように、支持ブラケット20における第1の箱状部21の底部23は、平面形状が略矩形状の平板状に形成されている。そして、この底部23のカバー39側の面となる外面23aは、制御基板33を固定するための基板取付面とされており、複数の基板取付部23bが設けられている。そのため、第1の箱状部21の底部23の外面23aは、制御基板33の平面形状よりも広い平面を有している。この外面23aに対して基板取付部23bは、制御基板33の周縁部の複数箇所及びそれより中央側の少なくとも一箇所に設けられていると好適である。図示の例では、基板取付部23bは、制御基板33の長手方向すなわち支持ブラケット20の長手方向に4列、幅方向に3列配置されており、したがって、制御基板33の周縁部の10箇所及びそれより中央側の2箇所の合計12箇所に設けられている。また、この底部23の外面23aには、放熱性を高め、軽量化及び高剛性化を図るために、支持ブラケット20の長手方向及び幅方向のそれぞれに沿って延びる複数本のリブ23cが形成されている。本実施形態においては、基板取付部23bは、これらのリブ23cが交差する位置に設けられている。基板取付部23bは、基本的に、中心部にボルト穴が形成されたボス形状とされている。なお、図示の例では、支持ブラケット20は、一部に、2つの基板取付部23bをまとめて一つの台状部23eに2つのボルト穴が形成された構成を備えている。また、基板取付部23b及び制御基板33の周縁部に対応する位置にある一部のリブを支持用リブ23dとし、他の位置にあるリブ23cよりも底部23からの高さが高く形成している。これら複数の基板取付部23b及び支持用リブ23dは、その上端面が制御基板33の下面に接することにより、制御基板33を下方から支持する機能を果たす。
 図6及び図7に示すように、制御基板33は、支持ブラケット20における第1の箱状部21の底部23のカバー39側の面となる外面23aに固定される。上記のとおり、平滑コンデンサ34は、支持ブラケット20のケースフレーム10側(下方側)から第1の箱状部21に収容されて固定される。したがって、制御基板33は、支持ブラケット20を挟んで平滑コンデンサ34が固定された面とは反対側の面に固定されることになる。ここで、制御基板33は、平板状の基板本体33aと、当該基板本体33aの表面33b(上面)に配置されたコネクタ33cと、基板本体33aの表面33b及び裏面(下面)に配置された各種電子部品(図10参照)とを有する。コネクタ33cは、制御基板33の長手方向(支持ブラケット20の長手方向)の一方側及び他方側の端縁に沿って複数配置されている。そして、この制御基板33の基板本体33aには、支持ブラケット20に設けられた基板取付部23bの位置に合致するように、周縁部の複数箇所及びそれより中央側の少なくとも一箇所に、締結部33dが設けられている。図示の例では、締結部33dは、基板取付部23bと同様に、制御基板33の長手方向すなわち支持ブラケット20の長手方向に4列、幅方向に3列配置されており、したがって、制御基板33の周縁部の10箇所及びそれより中央側の2箇所の合計12箇所に設けられている。この締結部33dは、基板本体33aに設けられたボルト通し孔により構成されている。そして、各締結部33dのボルト通し孔に挿通されたボルトが基板取付部23bのボルト穴に締結されることにより、制御基板33は、各締結部33dにおいて支持ブラケット20に締結固定される。このように、締結部33dを、制御基板33を周縁部だけでなく、中央部にも設けたことにより、制御基板33の中央部のたわみを抑制し、制御基板33の耐振性を確保することができる。
 また、図10に示すように、制御基板33の基板本体33aの表面には、各種の電子部品が配置されている。これら複数の電子部品のうち、所定重量以上の部品である重量部品33eを、締結部33dの近傍に配置している。このような重量部品33eとしては、例えばトランスやコンデンサ等がある。このような構成とすれば、締結部33dが締結固定される基板取付部23bにより重量部品33eの重量を支持することができる。したがって、当該重量部品33eが配置されている位置における制御基板33のたわみを抑制することができ、制御基板33の耐振性を向上させることができる。
 図8に示すように、支持ブラケット20の第2の箱状部26は、第1の箱状部21に隣接して第1の箱状部21の開口方向とは反対方向となるカバー39側(上面側)に開口する箱状部である。この第2の箱状部26は、カバー39側(上面側)に開口する開口部26aと、略平板状の底部26bと、この底部26bの周縁部を囲むように立設された周壁部26cとを有している。ここで、開口部26aは、支持ブラケット20の長手方向一方側が低くなるようにやや傾斜した上面に開口している。底部26bは、平面形状が略矩形状とされている。したがって、第2の箱状部26は、傾斜した上面が開口している箱状とされており、周壁部26cにより囲まれた内部空間を備えている。この周壁部26cは、支持ブラケット20の長手方向他方側においては上記第1隔壁部24aと共用されている。また、周壁部26cは、支持ブラケット20の長手方向一方側において後述するフィルタ載置面27と第2の箱状部26との間を隔てる隔壁と、支持ブラケット20の幅方向両側に設けられて上面が傾斜した側壁とを有する。
 図6及び図7に示すように、昇圧用コンデンサ42は、この第2の箱状部26に収容されて固定される。そのために、図8に示すように、第2の箱状部26には、昇圧用コンデンサ42を固定するためのコンデンサ取付部26dが設けられている。ここでは、コンデンサ取付部26dは、複数設けられており、具体的には第2の箱状部26の底部26bに1つ、周壁部26cを構成する2つの側壁にそれぞれ1つずつの合計3つが設けられている。各コンデンサ取付部26dは、中心部にボルト穴が形成されたボス形状とされている。昇圧用コンデンサ42は、第2の箱状部26に収容される略直方体形状とされている。また、昇圧用コンデンサ42には、第2の箱状部26に設けられたコンデンサ取付部26cの位置に合致するように、複数箇所(図示の例では3箇所)に締結部42aが設けられている。この締結部42aは、ボルト通し孔を有し、当該ボルト通し孔に挿通されたボルトがコンデンサ取付部26dのボルト穴に締結されることにより、昇圧用コンデンサ42は、各締結部42aにおいて支持ブラケット20に締結固定される。
 また、図8に示すように、支持ブラケット20は、第2の箱状部26に対する支持ブラケット20の長手方向一方側に隣接して、ノイズフィルタ35を固定するためのフィルタ載置面27を有している。このフィルタ載置面27は、第2の箱状部26から支持ブラケット20の長手方向一方側に延出された略平板状とされている。これにより、ノイズフィルタ35は、第2の箱状部26に収容された昇圧用コンデンサ42に対して第1の箱状部21とは反対側に固定されることになる。フィルタ載置面27には、ノイズフィルタ35を固定するためのフィルタ取付部27aが設けられている。ここでは、フィルタ取付部27aは、フィルタ載置面27の複数箇所(図示の例では3箇所)に設けられたボルト穴により構成されている。図6に示すように、ノイズフィルタ35には、このフィルタ取付部27aの位置に合致するように、複数箇所(図示の例では3箇所)に締結部35aが設けられている。この締結部35aは、ボルト通し孔を有し、当該ボルト通し孔に挿通されたボルトがフィルタ取付部27aのボルト穴に締結されることにより、ノイズフィルタ35は、各締結部35aにおいて支持ブラケット20に締結固定される。
 図7に示すように、支持ブラケット20の第3の箱状部28は、上記第2の箱状部26とは反対側において第1の箱状部21と隣接して設けられ、第1の箱状部21の開口方向とは反対方向となるカバー39側(上面側)に開口する箱状部である。この第3の箱状部28は、カバー39側(上面側)に開口する開口部と、略平板状の底部28bと、この底部28bを囲むように立設された周壁部28cとを有している。図示の例では、第3の箱状部28は、略三角柱形状の内部空間を有するように形成されている。したがって、開口部28aは、支持ブラケット20の長手方向他方側が低くなるように傾斜した上面に開口している。底部28bは、平面形状が略矩形状とされている。周壁部28cは、支持ブラケット20の長手方向一方側においては上記第2隔壁部24bと共用されている。また、周壁部28cは、支持ブラケット20の幅方向両側に設けられて上面が傾斜した略三角形状の側壁を有する。そして、この第3の箱状部28には、放電抵抗55が収納されて固定されている。
 図1、図2、及び図6に示すように、支持ブラケット20には、第2の箱状部26の開口部22を覆うように、カバー部材としての第1配線ブラケット36が固定される。この第1配線ブラケット36は、アルミニウム等の金属材料で構成され、板金加工等により製造される。ここでは、第1配線ブラケット36は、支持ブラケット20とほぼ同じ幅を有する板状であって、第2の箱状部26に収容された昇圧用コンデンサ42及びそれに隣接して配置されたノイズフィルタ35の上面の全体を覆う形状に形成されている。この際、第1配線ブラケット36は、昇圧用コンデンサ42及びノイズフィルタ35の上面の形状に沿って、支持ブラケット20の端部側に向かうに従ってケースフレーム10側(下方側)へ近づくように傾斜した面を構成する。この第1配線ブラケット36は、昇圧用コンデンサ42及びノイズフィルタ35から発生する電磁ノイズを遮蔽して、当該電磁ノイズが制御基板33及び制御基板33に接続されるケーブルに影響を与えることを抑制すべく、開口部を有しない形状、或いは開口部が少ない形状とされるのが好適である。
 また、第1配線ブラケット36は、その長手方向(支持ブラケット20の長手方向)一方側及び他方側の端部にそれぞれ2箇所ずつの締結部36a、36bを備えるとともに、その長手方向の中間部の2箇所にも締結部36cを備えている。長手方向一方側の締結部36aは、リアクトル43に設けられたブラケット取付部43a(図1参照)に締結固定され、長手方向他方側の締結部36b及び長手方向中間部の締結部36cは、支持ブラケット20の第2の箱状部26の周壁部26cに沿って設けられたブラケット取付部26eに締結固定される。各締結部36a~36cはボルト通し孔を有しており、各ブラケット取付部43a、26eはボルト穴を有している。そして、各締結部36a~36cのボルト通し孔に挿通されたボルトがブラケット取付部43a、26eのボルト穴に締結されることにより、第1配線ブラケット36は、図2に示すように、支持ブラケット20及びケースフレーム10に締結固定される。
 また、図2及び図7に示すように、支持ブラケット20には、第1配線ブラケット36とは反対側において制御基板33と隣接して、第3の箱状部28を覆うように第2配線ブラケット37が固定される。この第2配線ブラケット37は、第1配線ブラケット36と同様に、アルミニウム等の金属材料で構成され、板金加工等により製造される。ここでは、第2配線ブラケット37は、支持ブラケット20とほぼ同じ幅を有する板状であって、第3の箱状部28の上面を覆う形状に形成されている。この際、第2配線ブラケット37は、第3の箱状部28の上面の形状に沿って、支持ブラケット20の端部側に向かうに従ってケースフレーム10側(下方側)へ近づくように傾斜した面を構成する。なお、第3の箱状部28に収容される放電抵抗55からは電磁ノイズはほとんど発生しない。したがって、第2配線ブラケット37は、第1配線ブラケット36とは異なり、電磁ノイズを遮蔽する必要がないため、軽量化を目的とした開口部37aが形成されている。
 また、第2配線ブラケット37は、その長手方向(支持ブラケット20の長手方向)一方側及び他方側の端部にそれぞれ2箇所ずつの締結部37b、37cを備えている。これらの締結部37b、37cは、支持ブラケット20の第3の箱状部28に設けられたブラケット取付部28aに締結固定される。各締結部37b、37cはボルト通し孔を有しており、各ブラケット取付部28aはボルト穴を有している。そして、各締結部37b、37cのボルト通し孔に挿通されたボルトがブラケット取付部28aのボルト穴に締結されることにより、第2配線ブラケット37は、支持ブラケット20に締結固定される。
 そして、第1配線ブラケット36及び第2配線ブラケット37には、制御基板33に接続されるケーブル38が固定される。ここでは、第1配線ブラケット36及び第2配線ブラケット37のそれぞれの上面の複数箇所にクランプ部材58が固定されている。そして、ケーブル38は、これらのクランプ部材58を介して第1配線ブラケット36又は第2配線ブラケット37に固定されている。ここで、ケーブル38は、駆動装置制御ユニット1、この駆動装置制御ユニット1が設けられた駆動装置2、又はこの駆動装置2が設けられた車両等の各部と、制御基板33とを電気的に接続するための配線ケーブルである。したがって、ケーブル38は、一端部が制御基板33のコネクタ33cに結合されている。また、図示は省略するが、ケーブル38の他端部は、例えば、スイッチング素子モジュール31、32、モータM及びジェネレータGの動作状態を検出するための電流センサ44、45や回転センサ72、73やコイル温度センサ、CAN(コントローラー・エリア・ネットワーク)等の通信手段を介して車両側の制御装置等に接続される。このような各種の情報を表す電気信号を送受信するためのケーブル38については、特に電磁ノイズの影響を抑制することが求められる。なお、ケーブル38には、制御基板33への電源供給を行うべくバッテリ50に接続される電源ケーブルも含まれている。
 以上のような構造としたことにより、支持ブラケット20に対する各部品の配置は、図11の模式断面図に示すようになる。すなわち、ケースフレーム10側(下面側)に開口する第1の箱状部21に、平滑コンデンサ34が収容され固定されている。また、第1の箱状部21の底部23のカバー39側の面となる外面23aに、制御基板33が固定されている。これにより、制御基板33は、支持ブラケット20を挟んで平滑コンデンサ34が固定された面とは反対側の面に固定されていることになる。また、第1の箱状部21に隣接して第1の箱状部21の開口方向とは反対方向となるカバー39側(上面側)に開口する第2の箱状部26に、昇圧用コンデンサ42が収容され固定されている。更に、第2の箱状部26に対する第1の箱状部21とは反対側に隣接して設けられたフィルタ載置面27に、ノイズフィルタ35が固定されている。そして、昇圧用コンデンサ42及びノイズフィルタ35の上面の全体を覆うように、第1配線ブラケット36が配置されて固定されている。この第1配線ブラケット36の上面には、一端部が制御基板33に接続されたケーブル38が固定されている。また、第2の箱状部26とは反対側において第1の箱状部21と隣接して設けられ、第1の箱状部21の開口方向とは反対方向となるカバー39側(上面側)に開口する第3の箱状部28に、放電抵抗55が収容され固定されている。そして、第3の箱状部28の上面を覆うように、第2配線ブラケット37が配置されて固定されている。この第2配線ブラケット37の上面には、一端部が制御基板33に接続されたケーブル38が固定されている。
 上記のように、支持ブラケット20が開口する方向が異なる第1の箱状部21と第2の箱状部26とを備える構成としたことにより、各箱状部の大きさを小さくするとともに、2つの箱状部を隔てる隔壁に支持ブラケット20を補強する機能も果たさせ、支持ブラケット20の軽量化を図りつつ剛性を確保している。また、駆動装置制御ユニット1の他の回路構成部品と比べて大きい平滑コンデンサ34を収容する第1の箱状部21の底部23の外面23aは、制御基板33の平面形状よりも広い平面を有する略平板状となっている。そこで、この第1の箱状部21の底部23の外面23aに、制御基板33を固定する構成としたことにより、制御基板33の固定箇所を適切な位置に必要数確保することが可能となっており、制御基板33の耐振性を確保している。更に、平滑コンデンサ34が第1の箱状部21内に収容され、制御基板33が平滑コンデンサ34とは反対側となる底部23の外面23aに固定されていることにより、平滑コンデンサ34から発生する電磁ノイズを支持ブラケット20により遮蔽し、当該電磁ノイズが制御基板33に影響を与えることを抑制している。
 また、第2の箱状部26に収容された昇圧用コンデンサ42に対する第1の箱状部21とは反対側に、昇圧用コンデンサ42と隣接してノイズフィルタ35を配置したことにより、ノイズフィルタ35より重い昇圧用コンデンサ42を、剛性が高い第1の箱状部21側に配置している。これにより、支持ブラケット20における第2の箱状部26付近のたわみを抑制し、ノイズフィルタ35及び昇圧用コンデンサ42の振動を軽減し、これらの耐振性を高めている。更に、昇圧用コンデンサ42及びノイズフィルタ35の上面の全体を覆うように、第1配線ブラケット36を配置し、この第1配線ブラケット36の上面に制御基板33に接続されるケーブル38を固定している。これにより、ノイズフィルタ35及び昇圧用コンデンサ42から発生する電磁ノイズを、第1配線ブラケット36と支持ブラケット20とにより遮蔽し、当該電磁ノイズが制御基板33及びケーブル38に影響を与えることを抑制している。また、この第1配線ブラケット36に、電磁ノイズの遮蔽のためのシールドとしての機能と、ケーブル38を固定するためのブラケットとしての機能の双方を兼ねさせることにより、部品点数を減少させ、駆動装置制御ユニット1の小型化及び軽量化を図っている。なお、上記のとおり、放電抵抗55からは電磁ノイズはほとんど発生しない。したがって、第2配線ブラケット37は、電磁ノイズを遮蔽する必要がなく、単にケーブル38を固定するためのブラケットとして機能する。
5.第2の実施形態
 次に、本発明の第2の実施形態について説明する。図12は、本実施形態に係る駆動装置制御ユニット1の支持ブラケット20に対する各部品の配置を示す模式断面図である。この図に示す例では、ケースフレーム10側(下面側)に開口する第1の箱状部21に平滑コンデンサ34が収容され固定されているとともに、第1の箱状部21の底部23のカバー39側の面となる外面23aに、制御基板33が固定されている。これにより、制御基板33は、支持ブラケット20を挟んで平滑コンデンサ34が固定された面とは反対側の面に固定されていることになる。この点は上記の実施形態と同様である。一方、支持ブラケット20の第2の箱状部26が、上記の実施形態とは異なっている。すなわち、支持ブラケット20は、第1の箱状部21に隣接して第1の箱状部21と同じくケースフレーム10側(下面側)に開口する第2の箱状部26を有している。そして、この第2の箱状部26に、昇圧用コンデンサ42が収納され固定されている。また、この例では、ノイズフィルタ35、及び放電抵抗55も、第2の箱状部26に収容され固定されている。
 この構成によれば、平滑コンデンサ34、昇圧用コンデンサ42、及びノイズフィルタ35が、いずれも支持ブラケット20のケースフレーム10側(下面側)に固定され、制御基板33及びケーブル38が、支持ブラケット20を挟んでこれら平滑コンデンサ34等が固定された面とは反対側の面に固定されていることになる。したがって、平滑コンデンサ34、昇圧用コンデンサ42、及びノイズフィルタ35から発生する電磁ノイズを支持ブラケット20のみにより遮蔽し、当該電磁ノイズが制御基板33やケーブル38に影響を与えることを抑制できる。よって、電磁ノイズを遮蔽するために、第1配線ブラケット36等の部材を設ける必要がなく、部品点数を減少させることができるので、駆動装置制御ユニット1の小型化及び軽量化を図ることができる。
 この場合、ケーブル38は、クランプ部材58により支持ブラケット20に直接固定される。また、この例では、第1の箱状部21と第2の箱状部26との間を隔てる隔壁である第1隔壁部24aが、支持ブラケット20を補強する機能を果たす。なお、この第1隔壁部24aを備えない構成とすることも可能である。以上、上記第1の実施形態との相違点を主に説明したが、特に説明しなかった点については、上記第1の実施形態の構成と同様とすることができる。
6.その他の実施形態
(1)上記の実施形態においては、第2の基台としての支持ブラケット20が、第1の基台としてのケースフレーム10側に開口する開口部22を有する第1の箱状部21を有し、平滑コンデンサ34が、この第1の箱状部21に収容されて固定される場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、支持ブラケット20の形状は適宜変形することが可能である。したがって、例えば、支持ブラケット20が平板形状等のような箱状部を有しない形状とされ、平滑コンデンサ34と制御基板33とが、互いに反対側の面に固定された構成とすることも、本発明の好適な実施形態の一つである。
(2)上記の実施形態においては、平滑コンデンサ34が略直方体形状である場合を例として説明したが、本発明の実施形態はこれに限定されるものではない。したがって、平滑コンデンサ34として、例えば円筒形等のような他の形状のものを用いることも可能である。この場合、支持ブラケット20は、平滑コンデンサ34の形状に応じた形状とする必要があるが、平滑コンデンサ34が固定された面とは反対側の面を平面形状とし、制御基板33を固定できる構成とすると好適である。
(3)上記の実施形態においては、駆動装置制御ユニット1が、電源電圧を昇圧する昇圧装置4を備える場合を例として説明したが、本発明の実施形態はこれに限定されるものではなく、そのような昇圧装置4を備えない構成とすることも、本発明の好適な実施形態の一つである。この場合、昇圧用コンデンサ42が必要ないため、支持ブラケット20が第2の箱状部26を備えない構成とすることができる。
(4)上記の実施形態においては、ノイズフィルタ35を、第2の箱状部26に隣接して設けられたフィルタ載置面27に固定する場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではない。したがって、例えば、ノイズフィルタ35を、昇圧用コンデンサ42とともに、第2の箱状部26に収容して固定する構成とすることも、本発明の好適な実施形態の一つである。
(5)上記の実施形態においては、駆動装置がモータM及びジェネレータGの2つの回転電機を備える構成を例として説明したが、本発明の実施形態はこれに限定されるものではなく、駆動装置が備える回転電機の数及び各回転電機の機能は、適宜変更することが可能である。したがって、例えば、必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータを一つ又は二つ以上備え、或いは、駆動装置がモータM又はジェネレータGを一つだけ備える構成とすることも、本発明の好適な実施形態の一つである。
(6)上記の実施形態においては、本発明が、ハイブリッド車両用駆動装置を制御する駆動装置制御ユニット1に適用された場合を例として説明したが、本発明の適用範囲はこれに限定されるものではなく、本発明は、例えば電動車両等のように、回転電機を備えた各種の駆動装置の制御ユニットに好適に適用することができる。
 本発明は、例えば、電動車両やハイブリッド車両等に用いられる、回転電機を備えた駆動装置を制御する駆動装置制御ユニットに好適に利用可能である。

Claims (10)

  1.  回転電機を備えた駆動装置を制御する駆動装置制御ユニットであって、
     前記駆動装置を制御する制御基板と、
     前記回転電機を駆動するためのインバータを構成するスイッチング素子モジュールと、
     前記インバータの入力電源を平滑する平滑コンデンサと、
     前記スイッチング素子モジュールが固定された第1の基台と、
     前記第1の基台に支持され、前記平滑コンデンサが固定された第2の基台と、を備え、
     前記第2の基台における前記平滑コンデンサが固定された面とは反対側の面に、前記制御基板が固定された駆動装置制御ユニット。
  2.  前記第2の基台は、前記第1の基台側に開口する開口部と略平板状の底部とを有する第1の箱状部を有し、
     前記平滑コンデンサは、前記第1の箱状部に収容されて固定され、
     前記制御基板は、前記底部の外面に固定された請求項1に記載の駆動装置制御ユニット。
  3.  前記制御基板は、周縁部の複数箇所及びそれより中央側の少なくとも一箇所において、前記底部に締結固定された請求項2に記載の駆動装置制御ユニット。
  4.  前記平滑コンデンサは略直方体形状であり、前記第1の箱状部は前記平滑コンデンサの形状に合致する略直方体形状の内部空間を有する請求項2又は3に記載の駆動装置制御ユニット。
  5.  前記平滑コンデンサは、前記第1の箱状部に収容された状態で前記開口部から外側に突出する接続端子を備える請求項2から4のいずれか一項に記載の駆動装置制御ユニット。
  6.  電源電圧を昇圧する昇圧装置を更に備え、
     前記昇圧装置は、昇圧用スイッチング素子と、昇圧用コンデンサと、リアクトルとを有し、
     前記昇圧用スイッチング素子は、前記第1の基台における前記スイッチング素子モジュールと同一面上に固定され、
     前記リアクトルは、前記第1の基台に固定され、
     前記昇圧用コンデンサは、前記第2の基台に固定された請求項1から5のいずれか一項に記載の駆動装置制御ユニット。
  7.  前記第2の基台は、前記第1の箱状部に隣接して前記第1の箱状部の開口方向とは反対方向に開口する第2の箱状部を有し、
     前記昇圧用コンデンサは、前記第2の箱状部に収容されて固定された請求項6に記載の駆動装置制御ユニット。
  8.  電源ノイズを除去するためのノイズフィルタを更に備え、
     前記ノイズフィルタは、前記昇圧用コンデンサに対して前記第1の箱状部とは反対側に固定された請求項7に記載の駆動装置制御ユニット。
  9.  前記第2の箱状部の開口部を覆うように前記第2の基台に固定されるカバー部材を更に備え、
     前記制御基板に接続されるケーブルが、前記カバー部材に固定される請求項7又は8に記載の駆動装置制御ユニット。
  10.  前記ケーブルは、前記制御基板と、前記スイッチング素子モジュール、前記回転電機の動作状態を検出するセンサ、又は前記駆動装置を備えた車両の各部とを接続する請求項9に記載の駆動装置制御ユニット。
PCT/JP2008/068278 2008-02-21 2008-10-08 駆動装置制御ユニット WO2009104301A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112008003062.6T DE112008003062B4 (de) 2008-02-21 2008-10-08 Antriebsvorrichtungssteuereinheit
CN2008801157633A CN101855826B (zh) 2008-02-21 2008-10-08 驱动装置控制组件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008040376A JP5099433B2 (ja) 2008-02-21 2008-02-21 駆動装置制御ユニット
JP2008-040376 2008-02-21

Publications (1)

Publication Number Publication Date
WO2009104301A1 true WO2009104301A1 (ja) 2009-08-27

Family

ID=40985195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068278 WO2009104301A1 (ja) 2008-02-21 2008-10-08 駆動装置制御ユニット

Country Status (5)

Country Link
US (1) US8154160B2 (ja)
JP (1) JP5099433B2 (ja)
CN (1) CN101855826B (ja)
DE (1) DE112008003062B4 (ja)
WO (1) WO2009104301A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005385A1 (ja) * 2011-07-05 2013-01-10 株式会社神戸製鋼所 ノイズ低減用巻線素子、インバータ用筐体およびインバータ装置
WO2013065849A1 (ja) * 2011-11-04 2013-05-10 アイシン・エィ・ダブリュ株式会社 インバータ装置
JP2015146704A (ja) * 2014-02-04 2015-08-13 株式会社日本自動車部品総合研究所 回転電機

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009040915A1 (de) * 2009-09-10 2011-04-07 Continental Automotive Gmbh Verfahren zum Verbinden von Gehäuseteilen
JP5407895B2 (ja) * 2010-01-22 2014-02-05 トヨタ自動車株式会社 コンデンサ収容ユニット
US8336657B2 (en) * 2010-02-12 2012-12-25 Ford Global Technologies, Llc Support structure for inverter system controller module
JP5740986B2 (ja) * 2010-03-17 2015-07-01 株式会社安川電機 電力変換装置
WO2011125784A1 (ja) 2010-03-31 2011-10-13 株式会社 東芝 電気車制御装置
JP5551048B2 (ja) * 2010-11-09 2014-07-16 本田技研工業株式会社 電力変換装置
JP5580789B2 (ja) * 2011-07-13 2014-08-27 トヨタ自動車株式会社 電力変換装置
JP5630581B2 (ja) 2011-07-19 2014-11-26 トヨタ自動車株式会社 車両用駆動装置
WO2013014745A1 (ja) * 2011-07-26 2013-01-31 トヨタ自動車株式会社 車両駆動用モータを有する自動車
DE102011080912A1 (de) * 2011-08-12 2013-02-14 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit Leistungselektronik
US9623756B2 (en) 2011-11-30 2017-04-18 Honda Motor Co., Ltd. Power control unit
WO2013081097A1 (ja) * 2011-11-30 2013-06-06 本田技研工業株式会社 パワーコントロールユニット
JP5265825B1 (ja) * 2011-11-30 2013-08-14 本田技研工業株式会社 パワーコントロールユニット
JP5699997B2 (ja) * 2012-07-20 2015-04-15 トヨタ自動車株式会社 トランスアクスルの取付装置
KR102215960B1 (ko) * 2012-08-30 2021-02-15 알리손 트랜스미션, 인크. 전기적으로 또는 기계적으로 여기된 커패시터로부터의 가청 및/또는 전기적 노이즈를 감소시키기 위한 방법 및 시스템
JP6028222B2 (ja) * 2012-09-27 2016-11-16 パナソニックIpマネジメント株式会社 電気機器
JP5932704B2 (ja) 2013-04-04 2016-06-08 株式会社日本自動車部品総合研究所 電力変換装置
CN105246729B (zh) * 2013-05-31 2017-09-19 爱信艾达株式会社 车辆用驱动装置
JP5958432B2 (ja) * 2013-07-23 2016-08-02 トヨタ自動車株式会社 車両
JP6115430B2 (ja) * 2013-09-27 2017-04-19 株式会社デンソー 電力変換装置
JP5885773B2 (ja) * 2014-04-29 2016-03-15 三菱電機株式会社 電力変換装置
JP6256304B2 (ja) * 2014-10-31 2018-01-10 株式会社安川電機 駆動装置及びそれを備える乗り物
DE112015004417T5 (de) * 2014-12-15 2017-07-13 Aisin Aw Co., Ltd. Fahrzeugantriebs-Vorrichtung
JP6516357B2 (ja) * 2015-04-20 2019-05-22 三菱重工サーマルシステムズ株式会社 電力変換用回路基板及び電動圧縮機
WO2016186101A1 (ja) * 2015-05-18 2016-11-24 カルソニックカンセイ株式会社 電力変換装置
JP5919423B1 (ja) * 2015-05-18 2016-05-18 カルソニックカンセイ株式会社 電力変換装置
JP5919420B1 (ja) * 2015-05-18 2016-05-18 カルソニックカンセイ株式会社 電力変換装置
JP5919419B1 (ja) * 2015-05-18 2016-05-18 カルソニックカンセイ株式会社 電力変換装置
JP2019040816A (ja) * 2017-08-28 2019-03-14 カルソニックカンセイ株式会社 組電池
EP3474434B1 (de) * 2017-10-23 2021-12-29 Audi Ag Elektrisches antriebssystem
JP7036092B2 (ja) * 2018-08-10 2022-03-15 株式会社デンソー 電力変換装置
JP6827519B1 (ja) * 2019-12-18 2021-02-10 三菱電機株式会社 電力変換装置
DE112020006724T5 (de) * 2020-02-14 2022-12-01 Nidec Corporation Wechselrichter-vorrichtung, motor und motoreinheit
EP4144551A4 (en) * 2020-04-27 2023-06-21 Nissan Motor Co., Ltd. PROTECTIVE STRUCTURE FOR ELECTRICAL COMPONENT
US11951857B2 (en) * 2020-11-04 2024-04-09 Ford Global Technologies, Llc Liquid cooled electrical connectors
DE102021128996A1 (de) * 2021-11-08 2023-05-11 Schaeffler Technologies AG & Co. KG Umrichter zur Stromversorgung einer Elektromaschine
WO2023098728A1 (zh) * 2021-12-01 2023-06-08 广东高标电子科技有限公司 一种双电机控制器及车辆
WO2024127884A1 (ja) * 2022-12-14 2024-06-20 株式会社アイシン 筐体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350474A (ja) * 1999-06-04 2000-12-15 Mitsubishi Electric Corp 電力変換装置
JP2003199363A (ja) * 2001-12-27 2003-07-11 Aisin Aw Co Ltd 電動駆動装置制御ユニット
JP2007089259A (ja) * 2005-09-20 2007-04-05 Aisin Aw Co Ltd インバータ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100190154B1 (ko) 1994-06-16 1999-06-01 가나이 쓰도무 인버터 장치
JP4243954B2 (ja) 2002-12-27 2009-03-25 アイシン・エィ・ダブリュ株式会社 電動駆動装置制御ユニットの防振装置
JP4324846B2 (ja) * 2003-06-13 2009-09-02 アイシン・エィ・ダブリュ株式会社 電動機駆動電流検出装置
JP4756935B2 (ja) 2005-06-29 2011-08-24 本田技研工業株式会社 コンデンサ搭載型インバータユニット
JP2009247119A (ja) * 2008-03-31 2009-10-22 Aisin Aw Co Ltd 駆動装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350474A (ja) * 1999-06-04 2000-12-15 Mitsubishi Electric Corp 電力変換装置
JP2003199363A (ja) * 2001-12-27 2003-07-11 Aisin Aw Co Ltd 電動駆動装置制御ユニット
JP2007089259A (ja) * 2005-09-20 2007-04-05 Aisin Aw Co Ltd インバータ装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005385A1 (ja) * 2011-07-05 2013-01-10 株式会社神戸製鋼所 ノイズ低減用巻線素子、インバータ用筐体およびインバータ装置
JP2013033924A (ja) * 2011-07-05 2013-02-14 Kobe Steel Ltd インバータ用筐体およびインバータ装置
WO2013065849A1 (ja) * 2011-11-04 2013-05-10 アイシン・エィ・ダブリュ株式会社 インバータ装置
JP2015146704A (ja) * 2014-02-04 2015-08-13 株式会社日本自動車部品総合研究所 回転電機

Also Published As

Publication number Publication date
DE112008003062B4 (de) 2023-03-23
DE112008003062T5 (de) 2010-09-09
JP5099433B2 (ja) 2012-12-19
US8154160B2 (en) 2012-04-10
CN101855826B (zh) 2013-01-23
CN101855826A (zh) 2010-10-06
US20090213564A1 (en) 2009-08-27
JP2009201257A (ja) 2009-09-03

Similar Documents

Publication Publication Date Title
JP5099433B2 (ja) 駆動装置制御ユニット
JP5051456B2 (ja) ハイブリッド駆動装置
JP5099431B2 (ja) インバータユニット
JP5155426B2 (ja) 電力変換装置
JP4848187B2 (ja) 電力変換装置
EP2224584A2 (en) Power inverter
EP2899866B1 (en) Power conversion device to be mounted in electric-powered vehicle
CN109889066B (zh) 电设备及其制造方法
JP7056450B2 (ja) 電気機器とその製造方法
JP2014176237A (ja) 電力変換装置
WO2016186089A1 (ja) 電力変換装置
WO2017188268A1 (ja) 電力変換装置
JP2012105369A (ja) パワーコントロールユニット
JP5155425B2 (ja) 電力変換装置
JP6827519B1 (ja) 電力変換装置
JP5174936B2 (ja) 電力変換装置
JP5964715B2 (ja) 電気機器ケース及びパワーコントロールユニット
JP5919420B1 (ja) 電力変換装置
JP2014096908A (ja) 電力変換装置
JP2020167837A (ja) インバータ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880115763.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08872514

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112008003062

Country of ref document: DE

Date of ref document: 20100909

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08872514

Country of ref document: EP

Kind code of ref document: A1