WO2009013174A2 - Verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff - Google Patents

Verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff Download PDF

Info

Publication number
WO2009013174A2
WO2009013174A2 PCT/EP2008/059207 EP2008059207W WO2009013174A2 WO 2009013174 A2 WO2009013174 A2 WO 2009013174A2 EP 2008059207 W EP2008059207 W EP 2008059207W WO 2009013174 A2 WO2009013174 A2 WO 2009013174A2
Authority
WO
WIPO (PCT)
Prior art keywords
iron powder
primary particles
range
carbonyl iron
hydrogen
Prior art date
Application number
PCT/EP2008/059207
Other languages
English (en)
French (fr)
Other versions
WO2009013174A3 (de
Inventor
Bram Willem Hoffer
Stefan Bunzel
Dirk Neumann
Kerem Bay
Ekkehard Schwab
Ulrich GRÄßLE
Jochen Steiner
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2009013174A2 publication Critical patent/WO2009013174A2/de
Publication of WO2009013174A3 publication Critical patent/WO2009013174A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/20Carbonyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/847Vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/85Chromium, molybdenum or tungsten
    • C07C2523/86Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/889Manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/20Carbonyls
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Definitions

  • the present invention relates to a process for the preparation of olefins by reacting carbon monoxide with hydrogen in the presence of a ferrous heterogeneous catalyst.
  • This reaction is also called Fischer-Tropsch synthesis.
  • this area of product distribution can be characterized by the so-called Anderson-Schulz-Flory distribution.
  • M. Janardanarao Ind. Eng. Chem. Res. 1990, 29, pages 1735-53.
  • composition of the hydrocarbons formed in the Fischer-Tropsch process can be greatly influenced by the choice of catalysts used, the reactor types and the reaction conditions.
  • DE-A1-28 22 656 discloses a Fischer-Tropsch process, wherein the catalyst is obtained by precipitating an organometallic iron and / or cobalt and / or nickel aggregate on an inorganic support. The precipitation of the aggregate on the carrier is effected by impregnating the carrier with a solution of the aggregate. According to this process, selective C2-C4 olefins ("light olefins”) and only small amounts of methane are formed. It is believed that the active catalyst components can be volatile under the reaction conditions, meaning metal loss, and that they are toxic.
  • DE-A1-29 19 921 describes another Fischer-Tropsch process in which catalysts are used which contain polycrystalline iron whiskers as the essential catalyst component. These iron whiskers are obtained by thermal decomposition of iron pentacarbonyl in the magnetic field. The iron whiskers are preferably used as pellets. According to the teaching of this DE specification, polycrystalline whiskers are understood to mean fine iron filaments having microscopically small monocrystalline regions (page 5, 3rd paragraph). The filamentary primary particles result in shape from growth in the magnetic field. The threads have a length of z. B. 0.06 to 1 mm. The two pictures in. Expert Reports for Surface Technology, July / August 1970, page 146, show SEM images of such carbonyl iron powder with filamentary primary particles.
  • the process should in particular provide as selectively as possible C2-C4-olefins (C2- to C4-olefins), in particular ethene, propene and 1-butene, with at the same time as little as possible attack of methane, carbon dioxide, alkanes (eg C2-C4-). Alkanes) and higher hydrocarbons, ie hydrocarbons with five or more carbon atoms, (C5 + fraction).
  • Components of the catalyst should not be volatile under the reaction conditions. Furthermore, it should preferably not be necessary to additionally reduce or activate the catalyst before it is used.
  • the proportion of spherical primary particles in the carbonyl iron powder is preferably> 90% by weight, in particular> 95% by weight, very particularly> 98% by weight.
  • the spherical primary particles preferably have a diameter in the range from 0.01 to 250 ⁇ m, in particular in the range from 0.1 to 200 ⁇ m, very particularly in the range from 0.5 to 150 ⁇ m, more particularly in the range from 0.7 to 100 ⁇ m, more particularly in the range from 1 to 70 ⁇ m, particularly preferably in the range from 1.5 to 50 ⁇ m.
  • the iron content of the spherical primary particles is preferably> 97% by weight, in particular> 99% by weight, in particular> 99.5% by weight, in each case calculated without any promoters present.
  • the spherical primary particles are free of pores.
  • the carbonyl iron powder is distinguished in particular by the fact that, in addition to the spherical primary particles, there are no filamentary primary particles, in particular those described in DE-A1-29 19 921 and .Fachberichte für heatntechnik, July / August 1970, pages 145 to 150, (see above). disclosed iron whisker containing.
  • Figures 1 to 3 show SEM images of preferably used carbonyl iron powder with spherical primary particles.
  • the carbonyl iron powder with spherical primary particles is obtained by thermal decomposition of gaseous iron pentacarbonyl (Fe [CO] s), which has been previously purified, in particular by distillation.
  • Fe [CO] s gaseous iron pentacarbonyl
  • the spherical primary particles can partially, z. B. to 25 to 95 wt .-%, be agglomerated.
  • the product thus obtained is aftertreated by reduction with hydrogen.
  • the carbonyl iron powder shows an advantageous catalytic effect.
  • the carbonyl iron powder may be doped with one or more promoters to enhance catalytic activity.
  • Promoters in iron catalysts for Fischer-Tropsch syntheses are, for. As described in M. Janardanarao, Ind. Eng. Chem. Res. 1990, 29, pages 1735 to 1753, or CD. Frohning et al. in "Chemierohstoffe from coal", 1977, pages 219-299.
  • the catalysts may, for. Example, one or more of the elements vanadium, copper, nickel, cobalt, manganese, chromium, zinc, silver, gold, potassium, calcium, sodium, lithium, cesium, platinum, palladium, ruthenium, sulfur, chlorine, each in elemental form or in ionic form, contained.
  • the doping of the carbonyl iron powder is in total (ie in total, if several promoters) preferably in the range of 0.01 to 30 wt .-%, particularly preferably 0.01 to 20 wt .-%, most preferably 0.1 to 15 wt .-%, z. B. 0.2 to 10 wt .-%, particularly 0.3 to 8 wt .-%, each based on iron.
  • the carbonyl iron powder is doped with potassium ions and / or sodium ions as promoter.
  • the carbonyl iron powder is particularly preferably doped with a total of from 0.01 to 10% by weight, preferably from 0.1 to 5% by weight, of potassium ions and / or sodium ions (in each case based on iron).
  • the application of said promoters may, for. Example by impregnation of the carbonyl iron powder with aqueous salt solutions of said metals, preferably carbonates, chlorides, nitrates or oxides carried out.
  • the acting as a promoter elements by thermal decomposition of the corresponding gaseous carbonyl compounds eg. As copper, cobalt or nickel carbonyls are applied during the preparation of carbonyl iron powder.
  • the carbonyl iron powder may be applied to carrier materials in a further embodiment of the catalyst.
  • Preferred support materials are TiO 2 , SiO 2 , Al 2 O 3 , zeolites, carbon (C).
  • the optionally doped and optionally supported carbonyl iron powder can be used in the form of pellets.
  • the pellets are obtained by methods known to those skilled in the art. Preferred forms of the pellets are tablets and rings.
  • the pellets can also be comminuted again before use in the process according to the invention, for. B. by grinding.
  • the catalysts can be converted into a synthesis-active state by treatment with hydrogen and / or carbon monoxide at elevated temperature, in particular at temperatures above 300 ° C., before they are used in the process according to the invention. However, this additional activation is not essential.
  • the reactants carbon monoxide and hydrogen are preferably used in the form of synthesis gas.
  • the synthesis gas can be prepared by well-known methods (such as described in Weissermel et al., Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, pages 15 to 24), such as by reacting coal or methane with water vapor, or produced by partial oxidation of methane.
  • the synthesis gas has a molar ratio of carbon monoxide to hydrogen in the range of 3: 1 to 1: 3.
  • a synthesis gas is used which has a mixing molar ratio of carbon monoxide to hydrogen in the range from 2: 1 to 1: 2.
  • the synthesis gas contains carbon dioxide (CO2).
  • CO2 carbon dioxide
  • the content of CO2 is preferably in the range of 1 to 50 wt .-%.
  • the inventive process is preferably 0 to 400 C, carried out at a temperature in the range of 200 to 500 0 C, particularly 300th
  • the absolute pressure is preferably in the range of 1 to 100 bar, especially 5 to 50 bar.
  • the GHSV Gas Hourly Space Velocity
  • the GHSV is preferably in the range of 100 to 10,000, more preferably 300 to 5000, parts by volume of feed stream per part by volume of catalyst and hour (l / l »h).
  • Preferred reactors for carrying out the process according to the invention are: fluidized bed reactor, fixed bed reactor, slurry reactor.
  • the catalyst is preferably used in powder form.
  • the powder may be the primary particles of the carbonyl iron powder, but also agglomerations thereof.
  • the powder can also be obtained by grinding previously prepared pellets.
  • the catalyst is used as a shaped body, preferably in the form of pellets.
  • the use of such reactors for the Fischer-Tropsch synthesis is z. B. described in CD. Frohning et al. in "Chemierharstoffe aus Kohle", 1977, pages 219-299, or BH Davis, Topics in Catalysis, 2005, 32 (3-4), pages 143-168.
  • the inventive method provides a product mixture containing olefins having an olefin-carbon selectivity, in particular an ⁇ -olefin-carbon selectivity, for the C2-C4 range of preferably at least 30%, z. In the range of 30 to 45%. In the specification of selectivity, formed carbon dioxide is not considered (ie excluding CO2).
  • a product mixture comprising olefins having an olefin-carbon selectivity for the C2-C4 range of at least 30%, of which at least 30% turn at least 90% ethene, Propen, 1-butene accounts ,
  • formed carbon dioxide is not taken into account (i.e., excluding CO2).
  • a product mixture containing olefins having an olefin-carbon selectivity for the C2-C4 range of at least 40%, z. In the range of 40 to 45%, of which at least
  • olefins are z. B. used in processes for the preparation of polyolefins, epoxies, oxo products, acrylonitriles, acrolein, styrene. See also: Weisermel et al., Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, pp. 145-192 and 267-312.
  • formed carbon dioxide is not considered (i.e., without CO2).
  • the product streams were heated via heated stream selectors and lines after condensing the long-chain hydrocarbons in a hot separator (160 0 C,
  • Temperature program 40 ° C-5 min - 7 ° C / min - 250 ° C-5 min, carrier gas, helium.
  • Carbonyl iron powder which can be used according to the invention with spherical primary particles (see also Examples 1 and 2).

Abstract

Verfahren zur Herstellung von Olefinen durch Umsetzung von Kohlenmonoxid mit Wasserstoff in Gegenwart eines eisenhaltigen Heterogenkatalysators, dadurch gekennzeichnet, dass man als Katalysator Carbonyleisenpulver mit sphärischen Primärpartikeln einsetzt.

Description

Verfahren zur Herstellung von Olefinen durch Umsetzung von Kohlenmonoxid mit Wasserstoff
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Olefinen durch Umsetzung von Kohlenmonoxid mit Wasserstoff in Gegenwart eines eisenhaltigen Heterogenkatalysators.
Es ist bekannt, dass niedrigere Olefine aus Kohlenmonoxid (CO) und Wasserstoff (H2) an Metallkatalysatoren, z. B. Eisen- oder Kobalt-Katalysatoren, hergestellt werden können. Als Katalysatorvorläufer werden üblicherweise Eisenoxide eingesetzt. Solche Katalysatoren sind z. B. in US 4,544,674, US 5,100,856, US 5,1 18,715, US 5,248,701 , US 2004/0127582 A1 , H.P. Withers et al., Ind. Eng. Chem. Res. 1990, 29, Seiten 1807 bis 1814, und M.E. Dry et al., Stud. Surf. Sei. Catal., Vol. 152, 2004, Seiten 533 bis 600, beschrieben.
Diese Umsetzung wird auch Fischer-Tropsch-Synthese genannt.
Herkömmliche Verfahren zur Fischer-Tropsch-Synthese produzieren Kohlenwasserstoffe in einem breiten Bereich der Produktverteilung.
Grundsätzlich kann dieser Bereich der Produktverteilung durch die sog. Anderson- Schulz-Flory-Verteilung charakterisiert werden. Vergl. auch: M. Janardanarao, Ind. Eng. Chem. Res. 1990, 29, Seiten 1735-53.
Ebenso ist bekannt, dass die Zusammensetzung der beim Fischer-Tropsch-Prozess gebildeten Kohlenwasserstoffe durch die Wahl der eingesetzten Katalysatoren, der Reaktortypen und der Reaktionsbedingungen stark beeinflusst werden kann.
Z. B. ist bekannt, dass die Produktverteilung durch Anwendung von hohen Temperaturen in Gegenwart modifizierter Eisenkatalysatoren in Richtung niedrigere Olefine verschoben werden kann: B. Büssemeier et al., Hydrocarbon Processing, Nov. 1976, Seiten 105 bis 1 12. Hauptproblem ist hier die Bildung großer Mengen an unerwünschtem Methan (CH4). Darüber hinaus sind die erforderlichen Eisenoxide als Ausgangsstoff für den Katalysator schwierig zu reduzieren.
DE-A1-28 22 656 offenbart ein Fischer-Tropsch-Verfahren, wobei man den Katalysator durch Niederschlagen eines metallorganischen Eisen- und/oder Kobalt- und/oder Ni- ckel-Aggregats auf einem anorganischen Träger erhält. Das Niederschlagen des Aggregats auf dem Träger wird durch Imprägnieren des Trägers mit einer Lösung des Aggregats bewirkt. Nach diesem Verfahren sollen selektiv C2-C4-Olefine („leichte Olefine") und nur geringe Mengen an Methan entstehen. Der Hauptnachteil dieser Kataly- satoren besteht darin, dass die aktiven Katalysatorbestandteile unter den Reaktionsbedingungen flüchtig sein können, was einen Metallverlust bedeutet, und dass sie toxisch sind.
DE-A1-29 19 921 beschreibt ein weiteres Fischer-Tropsch-Verfahren, in dem man Katalysatoren einsetzt, die als wesentliche Katalysatorkomponente polykristalline Ei- senwhisker enthalten. Diese Eisenwhisker werden durch thermische Zersetzung von Eisenpentacarbonyl im magnetischen Feld erhalten. Die Eisenwhisker werden bevorzugt als Pellets eingesetzt. Gemäß der Lehre dieser DE-Schrift werden unter polykri- stallinen Whiskern feine Eisenfäden mit mikroskopisch kleinen Einkristallbereichen verstanden (Seite 5, 3. Absatz). Die fadenförmigen Primärpartikel resultieren in ihrer Form aus dem Wachstum im magnetischen Feld. Die Fäden haben eine Länge von z. B. 0,06 bis 1 mm. Die beiden Bilder in .Fachberichte für Oberflächentechnik, Juli/August 1970, Seite 146, zeigen SEM-Aufnahmen von solchem Carbonyleisenpulver mit fadenförmigen Primärpartikeln.
In .Fachberichte für Oberflächentechnik, Juli/August 1970, Seiten 145 bis 150, werden diese Eisenwhisker auch als Metallhaare beschrieben, die aus einem Kristallwachstum vom Metall in Fadenform, entgegen einem normalen Kristallwachstum, resultieren (Sei- te 145, 2. Absatz). In den polykristallinen Eisenwhiskern beträgt das Verhältnis von Länge zu Durchmesser z. B. > 10.
Solche polykristallinen Eisenwhisker sind auch beschrieben in H. G. F. Wilsdorf et al., Z. Metallkde. 69 (1 1), 1978, Seiten 701 bis 705.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, unter Umgehung von Nachteilen des Stands der Technik, ein verbessertes wirtschaftliches Verfahren zur Herstellung von Olefinen aufzufinden. Das Verfahren sollte insbesondere möglichst selektiv C2-C4 - Olefine (C2- bis C4 - Olefine), besonders Ethen, Propen und 1 -Buten liefern, bei gleichzeitig möglichst geringem Anfall von Methan, Kohlenstoffdioxid, Alkanen (z. B. C2-C4 - Alkanen) und höheren Kohlenwasserstoffen, also Kohlenwasserstoffen mit fünf oder mehr C-Atomen, (C5+ Fraktion). Bestandteile des Katalysators sollten unter den Reaktionsbedingungen nicht flüchtig sein. Weiterhin sollte es bevorzugt nicht notwendig sein, den Katalysator vor seinem Einsatz zusätzlich zu reduzieren bzw. zu aktivieren.
Demgemäß wurde ein Verfahren zur Herstellung von Olefinen durch Umsetzung von Kohlenmonoxid mit Wasserstoff in Gegenwart eines eisenhaltigen Heterogenkatalysators gefunden, welches dadurch gekennzeichnet ist, dass man als Katalysator Carbonyleisenpulver mit sphärischen Primärpartikeln einsetzt.
Der Anteil an sphärischen Primärpartikeln im Carbonyleisenpulver beträgt bevorzugt > 90 Gew.-%, besonders > 95 Gew.-%, ganz besonders > 98 Gew.-%. Die sphärischen Primärpartikel weisen bevorzugt einen Durchmesser im Bereich von 0,01 bis 250 μm, besonders im Bereich von 0,1 bis 200 μm, ganz besonders im Bereich von 0,5 bis 150 μm, weiter besonders im Bereich von 0,7 bis 100 μm, weiter besonders im Bereich von 1 bis 70 μm, besonders bevorzugt im Bereich von 1 ,5 bis 50 μm, auf.
Der Eisengehalt der sphärischen Primärpartikel beträgt bevorzugt > 97 Gew.-%, besonders > 99 Gew.-%, insbesondere > 99,5 Gew.-%, jeweils berechnet ohne ggf. vorhandene Promotoren.
Bevorzugt sind die sphärischen Primärpartikel frei von Poren.
Das Carbonyleisenpulver zeichnet sich im Besonderen dadurch aus, dass es neben den sphärischen Primärpartikeln keine fadenförmigen Primärpartikel, insbesondere nicht die in DE-A1-29 19 921 und .Fachberichte für Oberflächentechnik, Juli/August 1970, Seiten 145 bis 150, (siehe oben) offenbarten Eisenwhisker, enthält.
Die Abbildungen 1 bis 3 zeigen SEM-Aufnahmen von bevorzugt eingesetztem Carbonyleisenpulver mit sphärischen Primärpartikeln.
Im erfindungsgemäßen Verfahren einsetzbares Carbonyleisenpulver mit sphärischen Primärpartikeln ist z. B. unter der Bezeichnung „Carbonyleisenpulver CN" von BASF AG bzw. jetzt BASF SE, D-67056 Ludwigshafen, erhältlich.
Das Carbonyleisenpulver mit sphärischen Primärpartikeln wird durch thermische Zersetzung von gasförmigem Eisenpentacarbonyl (Fe[CO]s), welches besonders durch Destillation zuvor aufgereinigt wurde, erhalten.
Die sphärischen Primärpartikel können teilweise, z. B. zu 25 bis 95 Gew.-%, agglome- riert sein.
Bevorzugt wird das so erhaltene Produkt nachbehandelt durch Reduktion mit Wasserstoff.
Bereits ohne jegliche Zusätze zeigt das Carbonyleisenpulver eine vorteilhafte katalyti- sche Wirkung.
Das Carbonyleisenpulver kann zur Steigerung der katalytischen Wirkung mit einem Promotor oder mehreren Promotoren dotiert sein. Promotoren in Eisenkatalysatoren für Fischer-Tropsch-Synthesen sind z. B. beschrieben in M. Janardanarao, Ind. Eng. Chem. Res. 1990, 29, Seiten 1735 bis 1753, oder CD. Frohning et al. in „Chemierohstoffe aus Kohle", 1977, Seiten 219 bis 299. Als geeignete Promotoren können die Katalysatoren z. B. eines oder mehrere der Elemente Vanadium, Kupfer, Nickel, Kobalt, Mangan, Chrom, Zink, Silber, Gold, Kalium, Calcium, Natrium, Lithium, Caesium, Platin, Palladium, Ruthenium, Schwefel, Chlor, jeweils in elementarer Form oder in ionischer Form, enthalten.
Die Dotierung des Carbonyleisenpulvers beträgt insgesamt (d.h. in Summe, wenn mehrere Promotoren) bevorzugt im Bereich von 0,01 bis 30 Gew.-%, besonders bevorzugt 0,01 bis 20 Gew.-%, ganz besonders bevorzugt 0,1 bis 15 Gew.-%, z. B. 0,2 bis 10 Gew.-%, besonders 0,3 bis 8 Gew.-%, jeweils bezogen auf Eisen.
In einer besonderen Ausgestaltung des erfindungsgemäßen Verfahrens ist das Carbo- nyleisenpulver mit Kaliumionen und/oder Natriumionen als Promotor dotiert.
Besonders bevorzugt ist das Carbonyleisenpulver mit insgesamt im Bereich von 0,01 bis 10 Gew.-%, bevorzugt 0,1 bis 5 Gew.-%, an Kaliumionen und/oder Natriumionen (jeweils bezogen auf Eisen) dotiert.
Das Aufbringen der genannten Promotoren kann z. B. durch Imprägnierung des Carbonyleisenpulvers mit wässrigen Salzlösungen der genannten Metalle, vorzugsweise Carbonaten, Chloriden, Nitraten oder Oxiden, erfolgen.
Weiterhin können die als Promotor wirkenden Elemente durch thermische Zersetzung der entsprechenden gasförmigen Carbonylverbindungen, z. B. Kupfer-, Cobalt- oder Nickelcarbonyle, während der Carbonyleisenpulver-Herstellung aufgebracht werden.
Das Carbonyleisenpulver kann in einer weiteren Ausgestaltung des Katalysators auf Trägermaterialien aufgebracht sein. Bevorzugte Trägermaterialien sind TiO2, SiO2, AI2O3, Zeolite, Kohlenstoff (C).
Im erfindungsgemäßen Verfahren kann das, ggf. dotierte und ggf. geträgerte, Carbonyleisenpulver in Form von Pellets eingesetzt werden.
Die Pellets werden durch dem Fachmann bekannte Methoden erhalten. Bevorzugte Formen der Pellets sind Tabletten und Ringe.
Die Pellets können vor ihrem Einsatz im erfindungsgemäßen Verfahren auch wieder zerkleinert werden, z. B. durch Mahlung.
Die Katalysatoren können vor ihrem Einsatz im erfindungsgemäßen Verfahren durch Behandlung mit Wasserstoff und/oder Kohlenmonoxid bei erhöhter Temperatur, insbesondere bei Temperaturen oberhalb von 3000C, in einen syntheseaktiveren Zustand überführt werden. Diese zusätzliche Aktivierung ist jedoch nicht unbedingt erforderlich. Im erfindungsgemäßen Verfahren werden die Edukte Kohlenmonoxid und Wasserstoff bevorzugt in Form von Synthesegas eingesetzt.
Das Synthesegas kann nach allgemein bekannten Verfahren (wie z. B. beschrieben in Weissermel et al., Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, Seiten 15 bis 24), wie beispielsweise durch Umsetzung von Kohle oder Methan mit Wasserdampf, oder durch partielle Oxidation von Methan hergestellt werden. Vorzugsweise weist das Synthesegas ein Molverhältnis von Kohlenmonoxid zu Wasserstoff im Bereich von 3 : 1 bis 1 : 3 auf. Besonders bevorzugt wird ein Synthesegas eingesetzt, das ein Mischungs-Molverhältnis von Kohlenmonoxid zu Wasserstoff im Bereich von 2 : 1 bis 1 : 2 aufweist.
In einer besonderen Ausführungsform des erfindungsgemäßen Verfahrens enthält das Synthesegas Kohlendioxid (CO2). Der Gehalt an CO2 liegt bevorzugt im Bereich von 1 bis 50 Gew.-%.
Das erfindungsgemäße Verfahren wird bevorzugt bei einer Temperatur im Bereich von 200 bis 500 0C, besonders 300 bis 400 0C, durchgeführt.
Der Absolutdruck liegt bevorzugt im Bereich von 1 bis 100 bar, besonders 5 bis 50 bar.
Die GHSV (Gas Hourly Space Velocity) liegt bevorzugt im Bereich von 100 bis 10000, besonders bevorzugt 300 bis 5000, Volumenteile Feed-Strom pro Volumenteil Katalysator und Stunde (l/l»h).
Bevorzugte Reaktoren zur Durchführung des erfindungsgemäßen Verfahrens sind: Wirbelschichtreaktor, Festbettreaktor, Suspensionsreaktor.
Im Wirbelschicht- und Suspensionsreaktor wird der Katalysator bevorzugt in Pulver- form eingesetzt. Das Pulver können die Primärpartikel des Carbonyleisenpulvers sein, aber auch Agglomerationen davon.
Das Pulver kann auch erhalten werden durch Mahlung von zuvor hergestellten Pellets.
Im Festbettreaktor wird der Katalysator als Formkörper, bevorzugt in Form von Pellets, eingesetzt.
Der Einsatz solcher Reaktoren für die Fischer-Tropsch-Synthese ist z. B. beschrieben in CD. Frohning et al. in „Chemierohstoffe aus Kohle", 1977, Seiten 219 bis 299, oder B.H. Davis, Topics in Catalysis, 2005, 32 (3-4), Seiten 143 bis 168. Das erfindungsgemäße Verfahren liefert ein Produktgemisch enthaltend Olefine mit einer Olefin-Kohlenstoff-Selektivität, insbesondere einer α-Olefin-Kohlenstoff- Selektivität, für den C2-C4 - Bereich von bevorzugt mindestens 30 %, z. B. im Bereich von 30 bis 45 %. Bei der Selektivitätsangabe wird gebildetes Kohlendioxid nicht be- rücksichtigt (d.h. exklusive CO2).
In einer besonderen Ausführungsform erhält man ein Produktgemisch enthaltend Olefine mit einer Olefin-Kohlenstoff-Selektivität für den C2-C4 - Bereich von mindestens 30 %, wobei von diesen mindestens 30 % wiederum mindestens 90 % auf Ethen, Pro- pen, 1 -Buten entfallen. Bei der Selektivitätsangabe wird gebildetes Kohlendioxid nicht berücksichtigt (d.h. exklusive CO2).
In einer besonders bevorzugten Ausführungsform erhält man ein Produktgemisch enthaltend Olefine mit einer Olefin-Kohlenstoff-Selektivität für den C2-C4 - Bereich von mindestens 40 %, z. B. im Bereich von 40 bis 45 %, wobei von diesen mindestens
40 % wiederum mindestens 90 % auf Ethen, Propen, 1 -Buten entfallen. Bei der Selektivitätsangabe wird gebildetes Kohlendioxid nicht berücksichtigt (d.h. exklusive CO2).
Die erhaltenen Olefine werden z. B. in Verfahren zur Herstellung von Polyolefinen, Epoxiden, Oxoprodukten, Acrylnitrilen, Acrolein, Styrol eingesetzt. Siehe auch: Weis- sermel et al., Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, Seiten 145 bis 192 und 267 bis 312.
Beispiele
Katalysatorherstellung
Beispiel 1 (erfindungsgemäß)
Herstellung von K-dotiertem Carbonyleisenkatalysator durch Trockenimprägnierung
30 g Carbonyleisenmaterial (Carbonyleisenpulver Typ CN, BASF AG bzw. jetzt BASF SE, mit einer Korngrößenverteilung der sphärische Primärpartikel derart, dass 90 Gew.-% einen Durchmesser von kleiner 21 μm aufweisen; siehe die Abbildungen 1 bis 3) wurde unter Umgebungsbedingungen (Raumtemperatur, Normaldruck) mit 3,1 g wässriger Kaliumcarbonatlösung getränkt. Die wässrige Kaliumcarbonatlösung wurde durch Auflösen von 0,5 g Kaliumcarbonat (99 %, JT. Baker) in 2,6 g entmineralisiertem Wasser hergestellt. Der getränkte Katalysator wurde 23 h bei 1200C getrocknet. Der erhaltene Katalysator enthielt 0,6 Gew.-% K.
Beispiel 2 (erfindungsgemäß)
Herstellung von Na-dotiertem Carbonyleisenkatalysator durch Trockenimprägnierung 40 g Carbonyleisenmaterial (Carbonyleisenpulver Typ CN, BASF AG bzw. jetzt BASF SE, mit einer Korngrößenverteilung der sphärische Primärpartikel derart, dass 90 Gew.-% einen Durchmesser von kleiner 21 μm aufweisen; siehe die Abbildungen 1 bis 3) wurde unter Umgebungsbedingungen (Raumtemperatur, Normaldruck) mit 5,2 g wässriger Natriumcarbonatlösung getränkt. Die wässrige Natriumcarbonatlösung wurde durch Auflösen von 0,148 g Natriumcarbonat (99,5 %, Merck) in 5,0 g entminera- lisiertem Wasser hergestellt. Der getränkte Katalysator wurde 10 h bei Raumtemperatur und 20 h bei 1200C getrocknet. Der erhaltene Katalysator enthielt 0,1 Gew.-% Na.
Beispiel 3 (Vergleichsbeispiel)
Herstellung von K-dotiertem Fe2θ3-Katalysator durch Trockenimprägnierung
40 g Fe2O3 (BASF AG bzw. jetzt BASF SE) wurden 8 h bei 10500C calciniert. Dann wurde das Material unter Umgebungsbedingungen (Raumtemperatur, Normaldruck) mit 1 ,9 ml wässriger Kaliumcarbonatlösung getränkt. Die wäßrige Kalium- carbonatlösung wurde durch Auflösen von 0,7 g Kaliumcarbonat (99 %, JT. Baker) in 1 ,2 g entmineralisiertem Wasser hergestellt. Der getränkte Katalysator wurde 12 h bei 120°C getrocknet und 3 h bei 5000C calciniert. Der erhaltene Katalysator enthielt 1 ,0 Gew.-% K.
Beispiel 4
Performance der Katalysatoren (Beispiele 1 , 2 und 3) im erfindungsgemäßen Verfahren mit vorheriger Aktivierung
Es wurde eine Reihe von vergleichenden Leistungstests mit je etwa 2,0 g Katalysator aus den Beispielen 1 , 2 und 3 und Inertmaterialverdünnung (Katalysator : Inertstoffe = 1 : 4 (Gewichtsverhältnis)) durchgeführt. Die Katalysatoren wurden in einen Festbettreaktor eingetragen und in Hb)N2 (9:1 ) (molar) 24 h bei 4800C voraktiviert. Dann wurde Synthesegas (H2:CO = 1 :1 (molar)) mit einer Rate von ungefähr 0,9 Nl/h bei 23 bar in den Reaktor eingetragen und die Temperatur auf 3400C erhöht. Als interner Standard für spätere analytische Tests wurde zusätzlich 0,1 Nl/h Stickstoffgas eingeleitet. Die Ergebnisse der über einen Zeitraum von mindestens 60 h durchgeführten Versuche sind nachstehend für die jeweiligen Katalysatorsysteme gezeigt. (Nl = Normliter = auf Normalbedingungen umgerechnetes Volumen).
Figure imgf000008_0001
Beispiel 5
Performance der Katalysatoren im erfindungsgemäßen Verfahren ohne vorherige Aktivierung
Es wurde eine Reihe von vergleichenden Leistungstests mit je etwa 0,75 g Katalysator aus den Beispielen 1 und 3 und Inertmaterialverdünnung (Katalysator : Inertstoffe = 1 : 4 (Gewichtsverhältnis)) durchgeführt. Die Katalysatoren wurden in einen Festbettreaktor eingetragen und nicht voraktiviert. Synthesegas (HbiCO = 1 :1 (molar)) wurde mit einer Rate von ungefähr 0,5 Nl/h bei 10 bar in den Reaktor eingetragen und die Temperatur auf 3400C erhöht. Als interner Standard für spätere analytische Tests wurde zusätzlich 0,05 Nl/h Stickstoffgas eingeleitet. Die Ergebnisse der über einen Zeitraum von mindestens 80 h durchgeführten Versuche sind nachstehend für die jeweiligen Katalysatorsysteme gezeigt.
Figure imgf000009_0001
Bei den Selektivitätsangaben in den Beispielen wird gebildetes Kohlendioxid nicht berücksichtigt (d.h. ohne CO2).
Zur Analytik der Reaktionsprodukte: Die Produktströme wurden über beheizte Streamselektoren und Leitungen nach Auskondensieren der langkettigen Kohlenwasserstoffe in einem Heißabscheider (1600C,
25 bar) beprobt und einem online-Gaschromatograph (GC) zugeführt.
GC: Agilent 6890N mit FID und WLD Detektor.
Vorsäulen: CP-Poraplot Q, Länge 12,5 m, ID 0,53 mm, Filmdicke 20 μm FID:
Injektor 2500C, Splitverhältnis 50:1 , Trägergas Helium, Säule Durabond DB-1 (Länge
60 m, ID 0,32 mm, Filmdicke 3 μm), Detektor 280°C.
WLD:
Injektor 2000C, Splitverhältnis 10:1 , Trägergas Argon, Säule Carboxen 1010 (Länge 30 m, ID 0,53 mm), Detektor 2100C.
Temperaturprogramm: 40°C-5 min - 7°C/ min - 250°C-5 min, Trägergas, Helium.
Abbildungen 1 bis 3:
Erfindungsgemäß einsetzbares Carbonyleisenpulver (CEP) mit sphärischen Primärpar- tikeln (siehe auch Beispiele 1 und 2).

Claims

Patentansprüche
1. Verfahren zur Herstellung von Olefinen durch Umsetzung von Kohlenmonoxid mit Wasserstoff in Gegenwart eines eisenhaltigen Heterogenkatalysators, da- durch gekennzeichnet, dass man als Katalysator Carbonyleisenpulver mit sphärischen Primärpartikeln einsetzt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die sphärischen Primärpartikel teilweise agglomeriert sind.
3. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass die sphärischen Primärpartikel einen Durchmesser im Bereich von 0,01 bis 250 μm aufweisen.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Primärpartikel einen Eisengehalt von größer als 97 Gew.-% aufweisen, berechnet ohne Promotoren.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Primärpartikel porenfrei sind.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Carbonyleisenpulver keine fadenförmigen Primärpartikel enthält.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Carbonyleisenpulver durch thermische Zersetzung von gasförmigem Eisenpentacarbonyl erhalten wurde.
8. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass das nach der Zersetzung von Eisenpentacarbonyl erhaltene Carbonyleisenpulver mit Wasserstoff reduziert wurde.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man die Umsetzung bei einer Temperatur im Bereich von 200 bis 500 0C durchführt.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man die Umsetzung bei einem Absolutdruck im Bereich von 1 bis 100 bar durchführt.
1 1. Verfahren nach einem der vorhergehenden Ansprüche zur Herstellung von C2- C4-Olefinen.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass für die Umsetzung Kohlenmonoxid und Wasserstoff im Form von Synthesegas eingesetzt werden.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Kohlenmonoxid und Wasserstoff in einem Molverhältnis im Bereich von 2 : 1 bis 1 : 2 eingesetzt werden.
14. Verfahren nach einem der beiden vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass das Synthesegas CO2 enthält.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Carbonyleisenpulver mit den Elementen Kalium, Vanadium, Kupfer, Nickel, Kobalt, Mangan, Chrom, Zink, Silber, Gold, Calcium, Natrium, Lithium, Cae- sium, Platin, Palladium, Ruthenium und/oder Schwefel, jeweils in elementarer
Form oder in ionischer Form, dotiert ist.
16. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Dotierung des Carbonyleisenpulvers insgesamt im Bereich von 0,01 bis 30 Gew.-% (bezogen auf Eisen) beträgt.
17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Carbonyleisenpulver mit insgesamt im Bereich von 0,01 bis 10 Gew.-% (bezogen auf Eisen) an Kaliumionen und/oder Natriumionen dotiert ist.
PCT/EP2008/059207 2007-07-20 2008-07-15 Verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff WO2009013174A2 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP07112853.2 2007-07-20
EP07112853 2007-07-20
EP08156965.9 2008-05-27
EP08156965 2008-05-27

Publications (2)

Publication Number Publication Date
WO2009013174A2 true WO2009013174A2 (de) 2009-01-29
WO2009013174A3 WO2009013174A3 (de) 2009-09-24

Family

ID=40281886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/059207 WO2009013174A2 (de) 2007-07-20 2008-07-15 Verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff

Country Status (1)

Country Link
WO (1) WO2009013174A2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2314557A1 (de) 2009-10-23 2011-04-27 Netherlands Organisation for Scientific Research (Advanced Chemical Technologies for Sustainability) Herstellung von niederen Olefinen aus Synthesegas
WO2011054734A1 (de) 2009-11-06 2011-05-12 Basf Se Eisen- und manganhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff
WO2011054735A1 (de) 2009-11-06 2011-05-12 Basf Se Eisen- und kupferhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff
WO2011054738A1 (de) 2009-11-06 2011-05-12 Basf Se Eisenhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff
WO2011061183A1 (de) 2009-11-19 2011-05-26 Basf Se Verfahren zur selektiven herstellung von leichten olefinen
CN105582936A (zh) * 2014-10-24 2016-05-18 中国石油化工股份有限公司 烧结型合成气制低碳烯烃催化剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2417164A (en) * 1944-11-23 1947-03-11 Standard Oil Co Hydrocarbon synthesis
FR2391978A1 (fr) * 1977-05-26 1978-12-22 Inst Francais Du Petrole Nouveau procede catalytique de synthese d'hydrocarbures olefiniques legers par reaction de l'hydrogene avec le monoxyde de carbone
GB2050859A (en) * 1979-05-17 1981-01-14 Vielstich W Process for the manufacture of gaseous olefins from a carbon oxide and hydrogen and catalysts for this process
US4624967A (en) * 1985-12-06 1986-11-25 Exxon Research & Engineering Company Fe-Co catalyst slurry system for use in alpha olefin production
JPH03164435A (ja) * 1989-11-20 1991-07-16 Res Dev Corp Of Japan クラスター固定物質

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2417164A (en) * 1944-11-23 1947-03-11 Standard Oil Co Hydrocarbon synthesis
FR2391978A1 (fr) * 1977-05-26 1978-12-22 Inst Francais Du Petrole Nouveau procede catalytique de synthese d'hydrocarbures olefiniques legers par reaction de l'hydrogene avec le monoxyde de carbone
GB2050859A (en) * 1979-05-17 1981-01-14 Vielstich W Process for the manufacture of gaseous olefins from a carbon oxide and hydrogen and catalysts for this process
US4624967A (en) * 1985-12-06 1986-11-25 Exxon Research & Engineering Company Fe-Co catalyst slurry system for use in alpha olefin production
JPH03164435A (ja) * 1989-11-20 1991-07-16 Res Dev Corp Of Japan クラスター固定物質

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2314557A1 (de) 2009-10-23 2011-04-27 Netherlands Organisation for Scientific Research (Advanced Chemical Technologies for Sustainability) Herstellung von niederen Olefinen aus Synthesegas
WO2011049456A1 (en) 2009-10-23 2011-04-28 Netherlands Organisation For Scientific Research (Advanced Chemical Technologies For Sustainability) Production of lower olefins from synthesis gas
CN102639234A (zh) * 2009-11-06 2012-08-15 巴斯夫欧洲公司 含铁的多相催化剂和通过用氢气转化一氧化碳制备烯烃的方法
WO2011054735A1 (de) 2009-11-06 2011-05-12 Basf Se Eisen- und kupferhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff
WO2011054738A1 (de) 2009-11-06 2011-05-12 Basf Se Eisenhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff
WO2011054734A1 (de) 2009-11-06 2011-05-12 Basf Se Eisen- und manganhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff
CN102711991A (zh) * 2009-11-06 2012-10-03 巴斯夫欧洲公司 含铁和锰的非均相催化剂和通过一氧化碳与氢气反应而制备烯烃的方法
US8410018B2 (en) 2009-11-06 2013-04-02 Basf Se Iron-comprising heterogeneous catalyst and process for preparing olefins by reaction of carbon monoxide with hydrogen
US8614164B2 (en) 2009-11-06 2013-12-24 Basf Se Iron- and copper-comprising heterogeneous catalyst and process for preparing olefins by reacting carbon monoxide with hydrogen
US8618016B2 (en) 2009-11-06 2013-12-31 Basf Se Iron- and manganese-comprising heterogeneous catalyst and process for preparing olefins by reacting carbon monoxide with hydrogen
US9156026B2 (en) 2009-11-06 2015-10-13 Basf Se Iron-comprising heterogeneous catalyst and process for preparing olefins by reaction of carbon monoxide with hydrogen
WO2011061183A1 (de) 2009-11-19 2011-05-26 Basf Se Verfahren zur selektiven herstellung von leichten olefinen
US8461219B2 (en) 2009-11-19 2013-06-11 Basf Se Process for the selective preparation of light olefins
CN105582936A (zh) * 2014-10-24 2016-05-18 中国石油化工股份有限公司 烧结型合成气制低碳烯烃催化剂及其制备方法

Also Published As

Publication number Publication date
WO2009013174A3 (de) 2009-09-24

Similar Documents

Publication Publication Date Title
EP2496348B1 (de) Eisen- und manganhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff
DE3122157C2 (de)
EP0034338B1 (de) Katalysator zur Synthese von Methanol und höhere Alkohole enthaltenden Alkoholgemischen
DE2518097C2 (de)
EP2496347B1 (de) Eisenhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff
DE69920379T2 (de) Palladium-Ceroxid-Trägerkatalysator und Verfahren zur Herstellung von Methanol
DE60105162T2 (de) Katalysator und verfahren zur herstellung von kohlenwasserstoffen
EP2496346A1 (de) Eisen- und kupferhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff
EP2326417A1 (de) Integriertes verfahren zur herstellung von carbonyleisenpulver und von kohlenwasserstoffen
WO2009013174A2 (de) Verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff
DE4422227C2 (de) Katalysator zur Reduktion von Kohlendioxid
DE10393935T5 (de) Fischer-Tropsch-Katalysatoren auf Eisen-Basis und Herstellungs- und Anwendungsverfahren
DE3226518C2 (de)
EP0031472A2 (de) Verfahren zur Herstellung von Methanisierungskatalysatoren
DE2458587A1 (de) Verfahren zur hydro-entalkylierung von alkylaromatischen kohlenwasserstoffen
DE2043995B2 (de) Verwendung eines modifizierten Katalysators auf der Basis der Oxide von Eisen und Antimon bei der Oxidation bzw. oxidativen Dehydrierung von Olefinen
DE2029925C3 (de) Verfahren zum katalytischen Reformieren von Schwerbenzin
DE3146927C2 (de)
DE3047826C2 (de)
DE3146203C2 (de)
DE2620554C3 (de) Verfahren zur Herstellung eines Kupfer-Nickel-Siliciumoxid-Katalysators und seine Verwendung
DE3112855C2 (de)
DE2818307C2 (de)
DE69907347T3 (de) Verfahren zur Umsetzung von Synthesegas in Gegenwart eines Katalysators der ein Metall der Gruppe VIII enthält indem die Metallteilchen als Aggregate verbreitet sind
DE2818308C2 (de)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08775067

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08775067

Country of ref document: EP

Kind code of ref document: A2