WO2008136131A1 - コア/シェル複合ナノ粒子を製造する方法 - Google Patents

コア/シェル複合ナノ粒子を製造する方法 Download PDF

Info

Publication number
WO2008136131A1
WO2008136131A1 PCT/JP2007/059405 JP2007059405W WO2008136131A1 WO 2008136131 A1 WO2008136131 A1 WO 2008136131A1 JP 2007059405 W JP2007059405 W JP 2007059405W WO 2008136131 A1 WO2008136131 A1 WO 2008136131A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
core
nanoparticles
dispersant
solution
Prior art date
Application number
PCT/JP2007/059405
Other languages
English (en)
French (fr)
Inventor
Tetsuya Shoji
Naoki Nakamura
Akira Kato
Shinpei Yamamoto
Mikio Takano
Teruo Ono
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha, Kyoto University filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US12/596,994 priority Critical patent/US20100215851A1/en
Priority to PCT/JP2007/059405 priority patent/WO2008136131A1/ja
Priority to EP07742840A priority patent/EP2140957A4/en
Priority to CN200780052571A priority patent/CN101674906A/zh
Priority to KR1020097022051A priority patent/KR101157942B1/ko
Publication of WO2008136131A1 publication Critical patent/WO2008136131A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • B22F9/305Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis of metal carbonyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a method for producing core-shell composite nanoparticles in which a nano-sized core particle is coated with a shell.
  • nanocomposite material is a core / shell composite nanoparticle in which nano particles with useful properties (so-called functional nanoparticles) are used as the core, and the surface is coated with a shell having properties different from the core. Particles have been proposed.
  • the functional nanoparticles that are cores have two states of crystal structure, regular structure and irregular structure, and many of them exhibit useful properties only in the state of regular structure.
  • Such functional nanoparticles are generally produced by chemical solution synthesis, but the synthesized nanoparticles are in an irregular structure and do not exhibit their original functional properties as they are.
  • the core particles may be converted into an ordered structure by heat treatment at a temperature exceeding the regular / irregular transformation point of the core particles in the core / shell composite state.
  • the rule / irregular transformation point is often a high temperature at which the core and shell atoms actively diffuse. Inter-diffusion of component elements occurs between shells / shells, and the core-shell composite structure, which is clearly two-phase separated, collapses.
  • nano-sized fine particles tend to agglomerate and sinter at the heat treatment temperature, and there is a problem that the nano-size particles cannot be maintained and ordered.
  • a part of the present applicant has proposed a method of applying heat treatment after coating nanoparticles with a barrier layer for preventing sintering in Japanese Patent Application No. 2005-056 1 6 17.
  • the barrier layer is removed after the heat treatment. As a result, it was possible to maintain and regulate the nanosize.
  • the barrier layer is removed by treatment in an aqueous solution, but the nanoparticles with exposed surfaces are easily oxidized by water, which is a solvent, and are therefore moved to an organic solvent that does not pose a risk of oxidation. At this time, the nanoparticles are transferred from water to the organic solvent using a phase transfer catalyst.
  • the surface of the nanoparticles dispersed in the organic solvent is covered with the phase transfer catalyst as a dispersant, so that a shell is formed on the surface of the nanoparticles.
  • a method of forming a shell on the surface of nanoparticles having a specific crystal structure that has been heat-treated in advance in a state in which sintering is prevented by a barrier layer, and having strong adhesion such as a phase transfer catalyst is a need for a method for producing core / shell composite nanoparticles that exhibit superior properties by eliminating the hindering of the shell formation reaction by the dispersant.
  • ferrite fine particles as a core are suspended in water and dispersed therein.
  • a method for producing a composite ferrite magnetic powder in which a shell made of spinel ferrite is formed on the surface of a ferrite fine particle by adding an agent and an aqueous solution of metalion and heat-treating the resulting mixed suspension is described. It is.
  • the dispersant used in the shell formation process needs not to inhibit the shell formation reaction, but the dispersant used in the core particle generation process may not always be suitable for the shell formation reaction.
  • JP-A 6- 6 90 1 8 and JP-A 6 6 9 0 1 8 do not consider the use of different dispersing agents for the core and the shell.
  • the particles cannot be produced reliably.
  • heat treatment is required to make the core into a specific crystal structure such as a regular structure.
  • Japanese Patent Laid-Open No. 20 0 5 — 4 8 2 50 discloses that nanoparticles are monodispersed at predetermined intervals by attaching a surfactant to the surface of Fe Pt nanoparticles.
  • a surfactant to the surface of Fe Pt nanoparticles.
  • the present invention is a method of forming a shell on the surface of nanoparticles having a specific crystal structure that has been heat-treated in a state in which sintering is prevented by a barrier layer, and has a strong adhesion property such as a phase transfer catalyst.
  • An object of the present invention is to provide a method for producing core Z-shell composite nanoparticles that exhibit excellent properties by eliminating the hindrance to the shell-forming reaction by the dispersant.
  • a method for producing core / shell composite nanoparticles in which nano-sized core particles are coated with a shell
  • the first dispersant in which the heat-treated core particles are dispersed is a dispersant such as a phase transfer catalyst that inhibits the shell formation reaction on the core particle surfaces
  • Shell formation is achieved by adding a polar solvent to exfoliate and remove the first dispersant from the core particles to agglomerate the core particles, and select a second dispersant that does not inhibit the shell formation reaction as the second dispersant applied to the agglomerated core particles.
  • the nano-sized heat-treated core is coated with a specified shell, and has excellent characteristics.
  • FIG. 1 is a flowchart showing the process according to the method of the present invention, including the cooperation with the previous process.
  • FIG. 2 shows L l produced by the method of the present invention.
  • 1 is a transmission electron micrograph of FePt core / Fe shell composite nanoparticles. BEST MODE FOR CARRYING OUT THE INVENTION
  • F e P t core / F e shell composite nanoparticle will be described as an example.
  • L l. — F e P t core ZF e shell composite nanoparticles are L 1 with L 1 0 ordered crystal structure.
  • 1 F e P t has a very large coercive force (ultra-hard magnetism), and this is coated with a large magnetization of F e (soft magnetism). It is expected that magnetic nanoparticles with semi-hard magnetism suitable for high-performance permanent magnets can be obtained.
  • the pre-process consists of heat treatment (P 2) for ordering the core particles, pre-treatment (P 1) and post-treatment (P 3, P 4).
  • FePt nanoparticles are typically organically synthesized using Fe (CO) 5 and Pt (acac) 2 .
  • the rule 'irregular transformation point of F e Pt alloy is about 90 ° C, and generally bulk material takes a regular structure at room temperature. However, in the case of nanoparticles, they have an irregular structure even at room temperature. To make this a regular structure, a high temperature of 5500 ° C or higher, preferably It is necessary to heat-treat at a high temperature exceeding the transformation point.
  • nanoscale fine particles are very easy to aggregate, and if heat-treated as they are, the particles are sintered together, and the state of the nanoparticles cannot be secured.
  • step P 1 as pretreatment, as a barrier layer for preventing sintering, that form a F e P t surface, for example, S i ⁇ 2 coating of nanoparticles. This is done by treatment with an aqueous solution.
  • step P2 L 1 is obtained by performing a heat treatment at a temperature higher than 5550 ° C or higher than the transformation point (at about 900). L 1 with an ordered crystal structure. One F e P t nanoparticle is obtained. However stable to S i ⁇ 2 Yoko heat treatment, the resulting L 1 Q - surface F e P t nanoparticles are remains covered in S i ⁇ 2 coating is intact L 1. _ F e P t Shell cannot be formed on the nanoparticle surface.
  • the treatment is carried out in an alkaline aqueous solution to dissolve and remove the Si 2 O 2 film to obtain fresh L 1.
  • _ F e P t Expose the nanoparticle surface.
  • pure metals such as Fe that form shells on the surface of the nanoparticles are easily oxidized by water, so shell formation cannot be performed in an aqueous solution.
  • step P4 the L 1 Q — Fe P t nanoparticles are moved from the aqueous solution into the organic solvent.
  • the phase transfer catalyst is L 1. 1 F e P 1; Covers the surface of the nanoparticle and covers it very effectively, L 1.
  • Disperse the FePt nanoparticles in an organic solvent Since this organic solvent does not oxidize pure metals such as Fe, which is a shell material, it provides a suitable reaction environment for safely forming the Fe shell.
  • phase transfer catalysts generally have a structure with a large molecular weight and a large number of branches. 1 Fe Pt is firmly adhered to the surface of the nanoparticle, preventing the material from reaching the particle surface from the outside. Therefore, L 1 o One F e P t L 1 to perform shell formation on the nanoparticle surface. It is necessary to remove the phase transfer catalyst from the surface of _ F e P t nanoparticles. Therefore, the process of the present invention is applied as described below. In the process of the present invention, the phase transfer catalyst is removed, the nanoparticles are dispersed in another organic solvent with another dispersing agent, and shell formation is performed in that state. First, in Step 1, as the first solution, Prepare the solution obtained in the final step P4. That is, in the first solution, the L 1 Q — Fe P t core particles, which are tightly coated with the phase transfer catalyst as the first dispersant, are dispersed in the above organic solvent as the first organic solvent.
  • the first solution Prepare the solution obtained in the final step P4. That
  • Step 2 L 1 using a polar solvent.
  • the phase transfer catalyst is L1. 1 L 1 from which the phase transfer catalyst was removed because it was acting as a dispersant to disperse the Fe P t nanoparticles in the organic solvent.
  • Suitable polar solvents are lower alcohols such as methanol, ethanol, and propanol, which are relatively weak in polarity.
  • acetone is too polar, and the nanoparticles from which the phase transfer catalyst is peeled and removed are strongly agglomerated and dispersed by the second dispersant added in the next step. It becomes difficult.
  • Water is also a polar solvent, but as explained in the previous process, it is strongly oxidizable and oxidizes the pure metal that forms the shell, so it cannot be used naturally.
  • the nature of the polar solvent it is desirable that the viscosity is not too high and that it has amphiphilic properties.
  • step 3 L 1 recovered in step 2.
  • F e P t The nanoparticle aggregate is dispersed in a second organic solvent containing a second dispersant, and this is used as a second solution.
  • this second dispersant one that does not inhibit the shell formation reaction in the next step and is stable at the shell formation temperature (does not boil or undergo thermal decomposition) is selected.
  • L 1 is obtained by adding a shell precursor to the second solution prepared in step 3 and maintaining the shell formation temperature.
  • a shell precursor eg Fe coating
  • an organic complex containing a constituent element of the shell can be typically used.
  • Fe (C0) 5 or Fe (acac) 3 is suitable as the precursor of the Fe shell. It is.
  • F e (CO) 5 is formed by a thermal decomposition reaction
  • F e (acac) 3 is formed by a reduction reaction
  • F e is deposited on the core surface to form a shell.
  • L l is obtained by the following procedure. — F e P t core ZF e shell composite nanoparticles were fabricated.
  • Step 1 Preparation of the first solution ... according to the previous process
  • step PI The pre-process shown in FIG. 1, carried out moving (step PI) S i ⁇ 2 film formation, (step P 2) heat treatment, (step P 3) S i O 2 film peeling, the (step P 4) an organic solvent
  • step P 1 organic synthesis is treated in TEOS aqueous solution, as a step P 2 5% H 2 + A r Heat in a gas atmosphere at 900 ° CX for 1 hour LI do the processing.
  • the first solution is ordered L 1 by heat treatment.
  • One FePt nanoparticle is dispersed in hexachloroform as the first organic solvent by hexadecyltrimethylammonium bromide as the phase transfer catalyst.
  • the second solution was kept at a shell formation temperature of 1700 ° C., and Fe (CO) 5 as an Fe shell precursor was added in an amount of 0.2 ml every hour. .
  • the reaction time was 4 hours, and a total of 4 additions were made.
  • the oleic acid and oleylamine used as the second dispersant are stable to temperatures up to about 3500 ° C., and do not boil or pyrolyze at a shell formation temperature of 1700 ° C. Does not hinder the formation reaction.
  • L l having a particle diameter of 5 to 10 nm.
  • Figure 2 shows a transmission electron micrograph of the resulting composite nanoparticles.
  • the black circle is L l as the core in the field of view.
  • F e P t nanoparticles, and the gray ring surrounding them is a shell made of Fe.
  • the bright areas between the composite nanoparticles are oleic acid and oleylamine used as secondary dispersants.
  • One F e P t Cano F e shell composite nanoparticle is L 1 with L 10 ordered crystal structure.
  • One F e P t has a very large coercive force (super hard magnetism), and this is coated with a large magnetization of F e (soft magnetism). It is useful as a magnetic nanoparticle with semi-eight magnetism suitable for high performance permanent magnets.
  • increase or decrease the total amount of shell precursor added (each added amount X number of times added) to increase the ratio of the shell thickness to the core diameter. Increase or decrease.
  • the core / shell combination to which the present invention can be applied is not necessarily limited to this.
  • the present invention can be applied to various combinations as described below.
  • a method for forming a shell on the surface of nanoparticles having a specific crystal structure that has been pre-heated by preventing sintering by a barrier layer, and having strong adhesion to a phase transfer catalyst or the like is provided.
  • a method for producing core / shell composite nanoparticles that exhibit superior properties by eliminating the hindering of the shell-forming reaction by the functional dispersant is provided.

Abstract

焼結を防止して予め熱処理され特定の結晶構造とされたナノ粒子をコアとし、その表面にシェル形成する方法であって、相間移動触媒等の強密着性の分散剤によるシェル形成反応への妨害を排除して、優れた特性を発揮するコア/シェル複合ナノ粒子を製造する方法を提供する。ナノサイズのコア粒子にシェルを被覆したコア/シェル複合ナノ粒子を製造する方法であって、必要な特性を発現する結晶構造とするための熱処理を予め施されたコア粒子が第1分散剤により第1有機溶媒中に分散している第1溶液に、極性溶媒を添加することにより、該コア粒子から該第1分散剤を剥離除去し該ナノ粒子を凝集させて回収し、該回収したコア粒子を第2分散剤により第2有機溶媒中に分散させた第2溶液に、該シェルの前駆体を添加し、該コア粒子の表面に該シェルを形成するコア/シェル複合ナノ粒子の製造方法。

Description

コア/シェル複合ナノ粒子を製造する方法
技術分野
本発明は、 ナノサイズのコア粒子にシェルを被覆したコア シェ ル複合ナノ粒子を製造する方法に関する。
明 背景技術
近年、 異なる特性を持つ 2相をナノスケール (数十 n m以下) で 微細に混在させて、 バルクの複合材料や単相材料では得られない優 れた特性を発揮するナノ複合材料が注目されている。
ナノ複合材料の一つの代表的な形態として、 有用な特性を持つナ ノ粒子 (いわゆる機能性ナノ粒子) をコアとして、 その表面にコア とは異なる特性を持つシェルを被覆したコア/シェル複合ナノ粒子 が提案されている。
コァとなる機能性ナノ粒子には、 結晶構造が規則構造と不規則構 造の 2つの状態を持っていて、 規則構造の状態でのみ有用な特性を 発揮するものが多い。 このような機能性ナノ粒子は一般に化学的溶 液合成法により生成されるが、 合成したままのナノ粒子は不規則構 造の状態であり、 そのままでは本来の機能特性は示さない。
したがって、 合成したままのナノ粒子にシェルを被覆してもコア /シェル複合ナノ粒子として期待される特性は得られない。
そこで、 コア/シェル複合状態で、 コア粒子の規則 · 不規則変態 点を超える温度で熱処理してコア粒子を規則構造に変換すれば良い ように考えられる。 しかし現実には、 規則 · 不規則変態点はコアや シェルの原子が活発に拡散するような高温であることが多く、 コア /シェル間で成分元素の相互拡散が起きてしまい、 画然と 2相分離 したコア シェル複合構造が崩壌する。
これを回避するためには、 シェル形成より以前に、 予めナノ粒子 に熱処理を施して規則構造とする必要がある。 しかし、 ナノサイズ の微粒子は凝集し易く、 熱処理温度で焼結してしまい、.ナノサイズ を維持して規則化することができないという問題があつた。
そこで本出願人の一部は、 特願 2 0 0 5 - 2 6 1 6 1 7において 、 ナノ粒子に焼結防止用のバリア層を被覆してから熱処理する方法 を提案した。 バリア層は熱処理後に除去する。 これにより、 ナノサ ィズを維持して規則化することが可能になった。
ただし、 バリア層の除去は水溶液中での処理により行なうが、 表 面が露出したナノ粒子は溶媒である水により酸化されやすいため、 酸化の危険のない有機溶媒中へ移動させる。 その際、 水中から有機 溶媒中へのナノ粒子の移動は相間移動触媒を用いて行なう。
しかし、 上記提案の方法では、 有機溶媒中に分散しているナノ粒 子の表面は分散剤としての相間移動触媒が強固に密着して覆ってい るため、 このままではナノ粒子の表面にシェルを形成する反応を行 なうことができないという問題があった。
そこで、 バリア層により焼結を防止した状態で予め熱処理されて 特定の結晶構造とされたナノ粒子をコアとし、 その表面にシェル形 成する方法であって、 相間移動触媒等の強密着性の分散剤によるシ エル形成反応への妨害を排除して、 優れた特性を発揮するコア/シ エル複合ナノ粒子を製造する方法が求められている。
従来、 コア Zシェル複合構造を持つ機能性ナノ粒子の生成に関す る種々の提案がなされている。
特開平 6 — 6 9 0 1 7号公報および特開平 6 — 6 9 0 1 8号公報 には、 コアとしてのフェライ ト微粒子を水に懸濁させ、 これに分散 剤と金属ィオンの水溶液とを加え、 得られた混合懸濁液を加熱処理 することにより、 フェライ ト微粒子表面にスピネルフェライ 卜から 成るシェルが形成された複合フェライ ト磁性粉の製造方法が記載さ れている。 シェルの形成工程で用いる分散剤は、 シェルの形成反応 を阻害しないことが必要であるが、 コア粒子の生成工程で用いる分 散剤は必ずしもシェルの形成反応には適さない場合がある。 特開平
6 - 6 9 0 1 7号公報および特開平 6 — 6 9 0 1 8号公報では、 こ の観点からコアとシェルとで形成時の分散剤を使い分けるという考 慮がなく、 コア Zシェル複合ナノ粒子を確実に製造することができ ない。 また、 コアを規則構造等の特定の結晶構造とするための熱処 理を必要とする場合についての示唆はない。
特開 2 0 0 5 ― 1 0 3 7 4 6号公報には、 コアとしての半導体ナ ノ粒子にシェルとして有機物コーティ ングする際に、 界面活性剤ま たは両親媒性有機化合物の存在下でナノ粒子を水性溶媒中から油性 溶媒中へ移行させることが開示されている。 コァを規則構造等の特 定の結晶構造とするための熱処理を必要とする場合についての示唆 はない。
特開 2 0 0 5 — 4 8 2 5 0号公報には、 F e P tナノ粒子の表面 に界面活性剤を付着させることで、 ナノ粒子を所定間隔で単分散さ せることが開示されているが、 コア Zシェル複合構造については何 ら示唆がなく、 したがって、 コアを規則構造等の特定の結晶構造と するための熱処理を必要とする場合についての示唆はない。
特表 2 0 0 4— 5 2 8 5 5 0号公報には、 磁化可能な微粒子にコ 一テイ ングを施す際に界面活性剤を用いることが開示されているが 、 コァを規則構造等の特定の結晶構造とするための熱処理を必要と する場合についての示唆はない。 発明の開示
本発明は、 バリア層により焼結を防止した状態で予め熱処理され て特定の結晶構造とされたナノ粒子をコアとし、 その表面にシェル 形成する方法であって、 相間移動触媒等の強密着性の分散剤による シェル形成反応への妨害を排除して、 優れた特性を発揮するコア Z シェル複合ナノ粒子を製造する方法を提供することを目的とする。 上記の目的を達成するために、 本発明によれば、 ナノサイズのコ ァ粒子にシェルを被覆したコア/シェル複合ナノ粒子を製造する方 法であって、
必要な特性を発現する結晶構造とするための熱処理を予め施され たコア粒子が第 1分散剤により第 1有機溶媒中に分散している第 1 溶液を用意する工程、
該第 1溶液に極性溶媒を添加することにより、 該コア粒子から該 第 1分散剤を剥離除去し該ナノ粒子を凝集させて回収する工程、 該回収したコァ粒子を第 2分散剤により第 2有機溶媒中に分散さ せて第 2溶液を形成する工程、 および
該第 2溶液に該シェルの前駆体を添加し、 該コア粒子の表面に該 シェルを形成する工程
を含むことを特徴とするコア/シェル複合ナノ粒子の製造方法が提 供される。
本発明の方法によれば、 熱処理済のコア粒子を分散させている第 1分散剤がコア粒子表面へのシェルの形成反応を阻害する相間移動 触媒などの分散剤である場合であっても、 極性溶媒を添加してコア 粒子から第 1分散剤を剥離除去してコア粒子を凝集させ、 凝集した コア粒子に付与する第 2分散剤としてシェル形成反応を阻害しない ものを選択することによりシェル形成を行なうことができるので、 ナノサイズの熱処理済コアに所定のシェルを被覆して、 優れた特性 を持つコア Zシェル複合ナノ粒子が得られる。 図面の簡単な説明
図 1は、 本発明の方法によるプロセスを、 その前プロセスとの連 携を含めて示すフローチヤ一トである。
図 2は、 本発明の方法により製造した L l 。 一 F e P t コア/ F eシェル複合ナノ粒子の透過電子顕微鏡写真である。 発明を実施するための最良の形態
本発明の製造方法の一実施形態として、 L 1 Q — F e P t のナノ 粒子をコアとし、 F eをシェルとして被覆した L l 。 一 F e P t コ ァ/ F eシェル複合ナノ粒子を例として説明する。
ここで、 L l 。 — F e P t コア ZF eシェル複合ナノ粒子は、 L 1 0 規則結晶構造を持つ L 1 。 一 F e P tが極めて大きい保磁力を 持ち (超ハード磁性) 、 これに磁化の大きい F e (ソフ ト磁性) を 被覆することで、 例えばハードディスクのような磁気記録媒体ゃモ 一夕一用高性能永久磁石に適したセミハ一ド磁性を持つ磁性ナノ粒 子が得られると期待される。
図 1 を参照して、 本発明の製造方法およびその前プロセスを説明 する。
前プロセスは、 コア粒子を規則化するための熱処理 (P 2 ) とそ の前処理 ( P 1 ) および後処理 (P 3、 P 4 ) とから成る。
F e P tナノ粒子は典型的には F e (C O) 5 と P t ( a c a c ) 2 を用いて有機合成される。 F e P t合金の規則 ' 不規則変態点 は 9 0 0 °C程度にあり、 一般にバルク材の場合は常温では規則構造 を取る。 ところがナノ粒子の場合は、 常温でも不規則構造を取って おり、 これを規則構造にするには 5 5 0 °C以上の高温、 望ましくは 変態点を越える高温で熱処理する必要がある。 しかし、 ナノスケ一 ルの微粒子は非常に凝集し易く、 そのまま熱処理すると粒子同士が 焼結してしまい、 ナノ粒子の状態を確保できない。
そこで、 前処理として工程 P 1 において、 焼結を防止するバリア 層として、 F e P tナノ粒子の表面に例えば S i 〇 2 被膜を形成す る。 これは水溶液を用いた処理により行なう。
次いで、 工程 P 2において、 5 5 0 °C以上あるいは変態点 (約 9 0 0で) 以上の高温で熱処理を施すことにより L 1 。 規則結晶構造 を持つ L 1 。 一 F e P tナノ粒子が得られる。 ただし S i 〇 2 はこ の熱処理に対して安定であり、 得られた L 1 Q — F e P tナノ粒子 の表面は S i 〇 2 被膜に覆われたままの状態であり、 そのままでは L 1 。 _ F e P tナノ粒子表面にシェル形成ができない。
そこで、 後処理として工程 P 3 において、 アルカリ水溶液中で処 理することにより、 この S i O 2 被膜を溶解除去してフレッシュな L 1 。 _ F e P tナノ粒子表面を露出させる。 ただし、 ナノ粒子表 面にシェルを形成する F e等の純金属は、 水により容易に酸化され るので、 シェル形成を水溶液中で行なうことはできない。
そこで、 更に後処理として工程 P 4において、 L 1 Q — F e P t ナノ粒子を水溶液中から有機溶媒中に移動させる。 これには、 相間 移動触媒を用いる必要がある。 相間移動触媒は L 1 。 一 F e P 1; ナ ノ粒子の表面に密着して覆い、 極めて効果的に L 1 。 一 F e P t ナ ノ粒子を有機溶媒中に分散させる。 この有機溶媒は、 シェル材料で ある F e等の純金属を酸化することが無いので、 F e シェルの形成 を安全に行なうための好適な反応環境を提供する。
しかしながら、 相間移動触媒は、 一般に分子量が大きく枝も多い 構造を持っていて、 L 1 。 一 F e P tナノ粒子の表面に強固に密着 しており、 外部から粒子表面への物質到達を妨げる。 そのため、 L 1 o 一 F e P tナノ粒子表面にシェル形成を行なうには、 L 1 。 _ F e P tナノ粒子表面から相間移動触媒を除去する必要がある。 そこで、 以下に説明するように、 本発明のプロセスを適用する。 本発明のプロセスは、 相間移動触媒を除去し、 別の分散剤でナノ 粒子を別の有機溶媒中に分散させ、 その状態でシェル形成を行なう まず、 工程 1 において、 第 1溶液として、 前プロセスの最終工程 P 4で得られた溶液を用意する。 すなわち第 1溶液は、 第 1分散剤 としての相間移動触媒が強固に密着被覆している L 1 Q — F e P t コア粒子が、 第 1有機溶媒としての上記の有機溶媒中に分散してい る。
次に、 工程 2において、 極性溶媒を用いて L 1 。 — F e P tナノ 粒子表面から第 1分散剤 (相間移動触媒) を剥離除去する。 相間移 動触媒は L 1 。 一 F e P tナノ粒子を有機溶媒中に分散させる分散 剤として作用していたので、 相間移動触媒を除去された L 1 。 — F e P tナノ粒子は有機溶媒中で凝集する。 これを回収して次工程に 用いる。
極性溶媒としては、 比較的極性が弱いメタノール、 エタノール、 プロパノール程度の低級アルコールが適している。 他の極性溶媒と しては、 例えばアセトンは極性が強すぎて、 相間移動触媒を剥離除 去されたナノ粒子が強く凝集してしまい、 次工程で添加する第 2分 散剤によって分散することが困難になる。 また水も極性溶媒である が、 前プロセスにおいて説明したように酸化性が強く、 シェルの形 成材料である純金属を酸化するため、 当然のことながら用いること ができない。 極性溶媒の性質としては、 粘性が大きすぎないこと、 両親媒性を有すること、 等が望ましいと考えられる。
次いで、 工程 3においては、 工程 2で回収した L 1 。 一 F e P t ナノ粒子凝集物を、 第 2分散剤を含む第 2有機溶媒中に分散させ、 これを第 2溶液とする。 この第 2分散剤としては、 次工程のシェル 形成反応を阻害せず、 且つシェル形成温度で安定な (沸騰や熱分解 しない) ものを選択する。
次いで、 工程 4において、 工程 3で作成した第 2溶液に、 シェル 前駆体を添加し、 シェル形成温度に保持することにより、 L 1 。 - F e P tナノ粒子の表面にシェル (例えば F e被膜) を形成する。 シェル前駆体としては、 典型的にはシェルの構成元素を含む有機錯 体を用いることができ、 F eシェルの前駆体としては例えば F e ( C〇) 5 または F e ( a c a c ) 3 が適当である。 シェル形成温度 において、 F e (C O) 5 は熱分解反応により、 F e ( a c a c ) 3 は還元反応により、 コア表面に F e を析出してシェルを形成する 以上のプロセスにより、 L l 。 一 F e P tナノ粒子をコアとし、 その表面に F eシェルを被覆した L l 。 — F e P 1; コア/ F eシェ ル複合ナノ粒子を得ることができる。 実施例
本発明の方法により、 以下の手順で L l 。 — F e P t コア ZF e シェル複合ナノ粒子を作製した。
〔工程 1 : 第 1溶液の用意…前プロセスによる〕
図 1 に示した前プロセスにより、 (工程 P I ) S i 〇 2 被膜形成 、 (工程 P 2 ) 熱処理、 (工程 P 3 ) S i O 2 被膜剥離、 (工程 P 4 ) 有機溶媒へ移動を行なって得た溶液を第 1溶液として用いる。 この前プロセスでは、 工程 P 1では有機合成された F e P tナノ粒 子を T E O S水溶液中で処理して S i 02 被膜を形成し、 工程 P 2 として 5 % H 2 + A rの混合ガス雰囲気中で 9 0 0 °C X 1時間の熱 処理を行って L I 。 一 F e P tナノ粒子とし、 これを工程 P 3で N (M e ) 4 〇 Hアルカリ水溶液中で処理して S i O 2 被膜を溶解除 去し、 工程 P 4では相間移動触媒として臭化へキサデシルトリメチ ルアンモニゥムを用いて水溶液中から有機溶媒としてのクロ口ホル ム中へ移動させ、 第 1溶液とした。
すなわち第 1溶液は、 熱処理により規則化した L 1 。 一 F e P t ナノ粒子が相間移動触媒としての臭化へキサデシルトリメチルアン モニゥムにより、 第 1有機溶媒としてのクロ口ホルム中に分散して いる。
〔工程 2 : 極性溶媒の添加〕
第 1溶液 ( 1 5 g ) に、 極性溶媒としてエタノール ( 4 0 g ) を 添加し、 l O O O r p mにて 1 0分間の遠心分離を行なうことによ り、 L 1 。 一 F e P tナノ粒子の凝集物を回収した。
〔工程 3 : 第 2溶液の作製〕
回収した L 1 。 一 F e P tナノ粒子の凝集物を、 ォレイン酸 ( 0 . l g) およぴォレイルァミン ( 0. l g) を第 2分散剤として含 む第 2有機溶媒としての n—才クチルエーテル ( 7. 7 1 g) 中に 分散させ、 これを第 2溶液とした。
〔工程 4 : シェルの形成〕
アルゴンガス雰囲気下において、 第 2溶液をシェル形成温度であ る 1 7 0 °Cに保持し、 F eシェル前駆体としての F e (C O) 5 を 1時間毎に 0. 2 m lずつ添加した。 反応時間は 4時間とし、 合計 4回添加を行なつた。
ここで第 2分散剤として用いたォレイン酸およびォレイルァミン は 3 5 0 °C程度までの温度に対して安定であり、 シェル形成温度 1 7 0 °Cにおいて沸騰も熱分解もせず、 かつ、 シェルの形成反応を阻 害しない。 以上の処理により、 粒径 5〜 1 0 nmの L l 。 一 F e P tナノ粒 子をコアとし、 その表面に厚さ約 2 nmの F eシェルを被覆した L 1 。 — F e P t コア/ F e シェル複合ナノ粒子が得られた。
図 2に、 得られた複合ナノ粒子の透過電子顕微鏡写真を示す。 観 察視野内において、 黒丸がコアとしての L l 。 — F e P tナノ粒子 であり、 その周囲を取り囲む灰色の環状部分が F eから成るシェル である。 複合ナノ粒子の間の明るい領域は、 第 2分散剤として用い たォレイン酸およびォレイルァミンである。
得られた L 1 。 一 F e P t コァノ F eシェル複合ナノ粒子は、 L 1 0 規則結晶構造を持つ L 1 。 一 F e P tが極めて大きい保磁力を 持ち (超ハード磁性) 、 これに磁化の大きい F e (ソフ ト磁性) を 被覆することで、 例えばハードディスクのような磁気記録媒体ゃモ —ター用高性能永久磁石に適したセミ八一ド磁性を持つ磁性ナノ粒 子として有用である。 セミハード特性を所望に応じて調整するには 、 工程 4のシェル形成処理において、 シェル前駆体の総添加量 (各 回添加量 X添加回数) を増減させて、 コア直径に対するシェル厚さ の比率を増減させればよい。
以上、 本発明の方法を F e P t コアに F eシェルを形成する場合 の具体例について説明したが、 本発明を適用できるコア/シェルの 組合せはこれに限定する必要はない。 例えば磁性分野の場合だけで も以下のように多種多様な組合せについて、 本発明を適用すること ができる。
〔コア : 磁性ナノ粒子の例〕
F e P t磁性ナノ粒子 · · · (実施例にて説明)
F e P d磁性ナノ粒子
N d 2 F e , 4 B磁性ナノ粒子
S m 2 C o 1 7磁性ナノ粒子 M n B i磁性ナノ粒子
〔シェル : 磁性シェルの例〕
F e · · · (実施例にて説明)
F e C o合金
F e N i合金
F e M n合金
C o
C o N i合金
C o M n合金
N i
N i M n合金
M n
F e 、 C o 、 N i、 M nの 3元合金または 4元合金 (種々の組 成比にて)
以上は、 磁性分野について本発明の適用対象を例示したが、 もち ろん他の分野であっても、 ナノ粒子が製造可能で、 その表面にシェ ルを形成できる組合せであれば、 本発明を適用できる。 産業上の利用可能性
本発明によれば、 バリア層により焼結を防止して予め熱処理され 特定の結晶構造とされたナノ粒子をコアとし、 その表面にシェル形 成する方法であって、 相間移動触媒等の強密着性の分散剤によるシ エル形成反応への妨害を排除して、 優れた特性を発揮するコア/シ エル複合ナノ粒子を製造する方法が提供される。

Claims

請 求 の 範 囲
1 . ナノサイズのコア粒子にシェルを被覆したコア Zシェル複合 ナノ粒子を製造する方法であって、
必要な特性を発現する結晶構造とするための熱処理を予め施され たコア粒子が第 1分散剤により第 1有機溶媒中に分散している第 1 溶液を用意する工程、
該第 1溶液に極性溶媒を添加することにより、 該コア粒子から該 第 1分散剤を剥離除去し該ナノ粒子を凝集させて回収する工程、 該回収したコア粒子を第 2分散剤により第 2有機溶媒中に分散さ せて第 2溶液を形成する工程、 および
該第 2溶液に該シェルの前駆体を添加し、 該コア粒子の表面に該 シェルを形成する工程
を含むことを特徴とするコア Zシェル複合ナノ粒子の製造方法。
2 . 請求項 1 において、 該極性溶媒がアルコール類であることを 特徴とする方法。
3 . 請求項 1 または 2において、 該第 2分散剤が該シェルの形成 温度において安定であることを特徴とする方法。
4 . 請求項 1から 3までのいずれか 1項において、 該第 1分散剤 が相間移動触媒であることを特徴とする方法。
PCT/JP2007/059405 2007-04-25 2007-04-25 コア/シェル複合ナノ粒子を製造する方法 WO2008136131A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/596,994 US20100215851A1 (en) 2007-04-25 2007-04-25 Method of producing core/shell composite nano-particles
PCT/JP2007/059405 WO2008136131A1 (ja) 2007-04-25 2007-04-25 コア/シェル複合ナノ粒子を製造する方法
EP07742840A EP2140957A4 (en) 2007-04-25 2007-04-25 PROCESS FOR PRODUCING A CORE / SHELL COMPOSITE NANOPARTICLE
CN200780052571A CN101674906A (zh) 2007-04-25 2007-04-25 制造核/壳复合纳米粒子的方法
KR1020097022051A KR101157942B1 (ko) 2007-04-25 2007-04-25 코어/셀 복합 나노입자를 제조하는 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/059405 WO2008136131A1 (ja) 2007-04-25 2007-04-25 コア/シェル複合ナノ粒子を製造する方法

Publications (1)

Publication Number Publication Date
WO2008136131A1 true WO2008136131A1 (ja) 2008-11-13

Family

ID=39943253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059405 WO2008136131A1 (ja) 2007-04-25 2007-04-25 コア/シェル複合ナノ粒子を製造する方法

Country Status (5)

Country Link
US (1) US20100215851A1 (ja)
EP (1) EP2140957A4 (ja)
KR (1) KR101157942B1 (ja)
CN (1) CN101674906A (ja)
WO (1) WO2008136131A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775638A (zh) * 2010-03-24 2010-07-14 中国科学院长春应用化学研究所 一种钯纳米单晶的制备方法
JP2010285644A (ja) * 2009-06-10 2010-12-24 Fuji Electric Holdings Co Ltd 微粒子の表面処理方法及び微粒子
US9076579B2 (en) 2010-11-15 2015-07-07 The Board of Trustees of the University of Alabama for and on the behalf of the University of Alabama Magnetic exchange coupled core-shell nanomagnets
JP2015212416A (ja) * 2014-05-06 2015-11-26 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド コア−シェル−コアナノ粒子系、コア−シェル−コアFeCo/SiO2/MnBiナノ粒子系を調製する方法、およびMnBiナノ粒子とのFeCo/SiO2ナノ粒子のコア−シェル−コアナノ凝集体
JP2015212415A (ja) * 2014-05-06 2015-11-26 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド コア−シェル−シェルFeCo/SiO2/MnBiナノ粒子を調製する方法、およびコア−シェル−シェルFeCo/SiO2/MnBiナノ粒子

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100283570A1 (en) * 2007-11-14 2010-11-11 Lavoie Adrien R Nano-encapsulated magnetic particle composite layers for integrated silicon voltage regulators
WO2013030240A1 (en) 2011-08-29 2013-03-07 The Provost, Fellows, Foundation Scholars, And The Other Members Of Board, Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Phase transfer reactions
US9138727B2 (en) 2012-12-12 2015-09-22 The United States of America, as represented by the Secretary of Commerce, The National Institute of Standards and Technology Iron—nickel core-shell nanoparticles
DE102013213644A1 (de) * 2013-07-12 2015-01-15 Siemens Aktiengesellschaft Anisotroper seltenerdfreier kunststoffgebundener hochperformanter Permanentmagnet mit nanokristalliner Struktur und Verfahren zu dessen Herstellung
KR20150010520A (ko) * 2013-07-19 2015-01-28 삼성전자주식회사 경자성 자기교환결합 복합 구조체 및 이를 포함한 수직자기기록매체
KR20150010519A (ko) * 2013-07-19 2015-01-28 삼성전자주식회사 연자성 자기교환결합 복합 구조체 및 이를 포함한 고주파소자 부품, 안테나 모듈 및 자기저항소자
US10410773B2 (en) 2013-09-12 2019-09-10 Toyota Motor Engineering & Manufacturing North America, Inc. Synthesis and annealing of manganese bismuth nanoparticles
KR102620040B1 (ko) 2021-09-15 2024-01-03 주식회사 밴드골드 자석 패치

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669018A (ja) 1992-08-20 1994-03-11 Ube Ind Ltd 複合フェライト磁性粉の製造方法
JPH0669017A (ja) 1992-08-20 1994-03-11 Ube Ind Ltd 複合フェライト磁性粉の製造方法
JP2004528550A (ja) 2001-03-20 2004-09-16 アビバ バイオサイエンシーズ コーポレイション コーティングされた磁気性微粒子を生産するためのプロセスおよびその使用
JP2005048250A (ja) 2003-07-30 2005-02-24 Dowa Mining Co Ltd 金属磁性粒子の集合体およびその製造法
JP2005103746A (ja) 2003-09-09 2005-04-21 Hitachi Software Eng Co Ltd 耐久性に優れたナノ粒子及びその製造方法
JP2005261617A (ja) 2004-03-18 2005-09-29 Shimadzu Corp 医用画像診断装置
JP2005270957A (ja) * 2004-02-26 2005-10-06 Mitsubishi Materials Corp 金属微粒子の抽出方法等および用途
WO2006070572A1 (ja) * 2004-12-27 2006-07-06 Kyoto University 規則合金相ナノ微粒子及びその製造方法、並びに超高密度磁気記録用媒体及びその製造方法
JP2007118147A (ja) * 2005-10-28 2007-05-17 Toyota Motor Corp コア/シェル複合ナノ粒子を製造する方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164201A (ja) * 1982-03-24 1983-09-29 Hitachi Metals Ltd 巻鉄心
AU2002239726A1 (en) * 2001-05-25 2002-12-09 Northwestern University Non-alloying core shell nanoparticles
JP2003073705A (ja) * 2001-09-05 2003-03-12 Fuji Photo Film Co Ltd ナノ粒子、磁気記録媒体
US6972046B2 (en) * 2003-01-13 2005-12-06 International Business Machines Corporation Process of forming magnetic nanocomposites via nanoparticle self-assembly
US7029514B1 (en) * 2003-03-17 2006-04-18 University Of Rochester Core-shell magnetic nanoparticles and nanocomposite materials formed therefrom
SG110125A1 (en) * 2003-09-12 2005-04-28 Univ Waseda Magnetic recording medium and substrate for magnetic recording medium
KR100869547B1 (ko) * 2007-04-09 2008-11-19 한양대학교 산학협력단 초음파 기상 합성법에 의한 규칙격자를 가진 철-백금 나노입자 합성 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669018A (ja) 1992-08-20 1994-03-11 Ube Ind Ltd 複合フェライト磁性粉の製造方法
JPH0669017A (ja) 1992-08-20 1994-03-11 Ube Ind Ltd 複合フェライト磁性粉の製造方法
JP2004528550A (ja) 2001-03-20 2004-09-16 アビバ バイオサイエンシーズ コーポレイション コーティングされた磁気性微粒子を生産するためのプロセスおよびその使用
JP2005048250A (ja) 2003-07-30 2005-02-24 Dowa Mining Co Ltd 金属磁性粒子の集合体およびその製造法
JP2005103746A (ja) 2003-09-09 2005-04-21 Hitachi Software Eng Co Ltd 耐久性に優れたナノ粒子及びその製造方法
JP2005270957A (ja) * 2004-02-26 2005-10-06 Mitsubishi Materials Corp 金属微粒子の抽出方法等および用途
JP2005261617A (ja) 2004-03-18 2005-09-29 Shimadzu Corp 医用画像診断装置
WO2006070572A1 (ja) * 2004-12-27 2006-07-06 Kyoto University 規則合金相ナノ微粒子及びその製造方法、並びに超高密度磁気記録用媒体及びその製造方法
JP2007118147A (ja) * 2005-10-28 2007-05-17 Toyota Motor Corp コア/シェル複合ナノ粒子を製造する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2140957A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285644A (ja) * 2009-06-10 2010-12-24 Fuji Electric Holdings Co Ltd 微粒子の表面処理方法及び微粒子
CN101775638A (zh) * 2010-03-24 2010-07-14 中国科学院长春应用化学研究所 一种钯纳米单晶的制备方法
US9076579B2 (en) 2010-11-15 2015-07-07 The Board of Trustees of the University of Alabama for and on the behalf of the University of Alabama Magnetic exchange coupled core-shell nanomagnets
JP2015212416A (ja) * 2014-05-06 2015-11-26 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド コア−シェル−コアナノ粒子系、コア−シェル−コアFeCo/SiO2/MnBiナノ粒子系を調製する方法、およびMnBiナノ粒子とのFeCo/SiO2ナノ粒子のコア−シェル−コアナノ凝集体
JP2015212415A (ja) * 2014-05-06 2015-11-26 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド コア−シェル−シェルFeCo/SiO2/MnBiナノ粒子を調製する方法、およびコア−シェル−シェルFeCo/SiO2/MnBiナノ粒子

Also Published As

Publication number Publication date
EP2140957A1 (en) 2010-01-06
KR101157942B1 (ko) 2012-06-22
CN101674906A (zh) 2010-03-17
EP2140957A4 (en) 2012-09-19
US20100215851A1 (en) 2010-08-26
KR20100005091A (ko) 2010-01-13

Similar Documents

Publication Publication Date Title
WO2008136131A1 (ja) コア/シェル複合ナノ粒子を製造する方法
JP4938285B2 (ja) コア/シェル複合ナノ粒子を製造する方法
US7029514B1 (en) Core-shell magnetic nanoparticles and nanocomposite materials formed therefrom
JP2008117855A (ja) ナノコンポジット磁石の製造方法
Gandha et al. Synthesis and characterization of FeCo nanowires with high coercivity
WO2003086660A1 (en) Magnetic nanoparticles having passivated metallic cores
Poudyal et al. Synthesis of monodisperse FeCo nanoparticles by reductive salt-matrix annealing
Wang et al. Nickel chains assembled by hollow microspheres and their magnetic properties
Yu et al. Synthesis and Fabrication of a Thin Film Containing Silica‐Encapsulated Face‐Centered Tetragonal FePt Nanoparticles
WO2006070572A1 (ja) 規則合金相ナノ微粒子及びその製造方法、並びに超高密度磁気記録用媒体及びその製造方法
JP2007046074A (ja) 金属微粒子およびその製造方法
JP2008248364A (ja) FePtコア/Feシェル構造を有する複合ナノ粒子の製造方法
JP2013125901A (ja) 磁性ナノ粒子
JP4757232B2 (ja) 永久磁石の製造方法
JP4320729B2 (ja) 磁性金属粒子の製造方法
Sanles-Sobrido et al. Tailoring the magnetic properties of nickel nanoshells through controlled chemical growth
JP2008248367A (ja) FePtコア/Coシェル構造を有する複合ナノ粒子の製造方法
Tomou et al. L1 ordering and magnetic interactions in FePt nanoparticles embedded in MgO and SiO2 shell matrices
JP2010189721A (ja) コア/シェル型のPd/Fe2O3ナノ粒子、その製造方法、およびそれを用いて得られるFePd/Feナノ粒子
Iskandar et al. Fabrication of L10 FePtAg nanoparticles and a study of the effect of Ag during the annealing process
JP5280661B2 (ja) 金属磁性粉末の製造方法
Yan et al. Directed synthesis of molecularly braided magnetic nanoparticle chains using polyelectrolyte and difunctional couplers
Yonekura et al. Relationship between Nd content and magnetic properties of Nd2Fe14B/Nd nanocomposites chemically synthesized using self-assembled block copolymer templates
JP4051451B2 (ja) 磁気記録媒体用磁性材料
Tangwatanakul et al. Magnetic phase transition of annealed FePt based nanoparticles synthesized by using Fe (β-diketonate) 3

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780052571.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742840

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007742840

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20097022051

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12596994

Country of ref document: US