JP4320729B2 - 磁性金属粒子の製造方法 - Google Patents

磁性金属粒子の製造方法 Download PDF

Info

Publication number
JP4320729B2
JP4320729B2 JP2004098453A JP2004098453A JP4320729B2 JP 4320729 B2 JP4320729 B2 JP 4320729B2 JP 2004098453 A JP2004098453 A JP 2004098453A JP 2004098453 A JP2004098453 A JP 2004098453A JP 4320729 B2 JP4320729 B2 JP 4320729B2
Authority
JP
Japan
Prior art keywords
particles
magnetic metal
metal particles
boron
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004098453A
Other languages
English (en)
Other versions
JP2005281786A (ja
Inventor
一人 成田
健夫 奥
久人 所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004098453A priority Critical patent/JP4320729B2/ja
Publication of JP2005281786A publication Critical patent/JP2005281786A/ja
Application granted granted Critical
Publication of JP4320729B2 publication Critical patent/JP4320729B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は高磁束密度材料、電波吸収体および高密度磁気記録媒体などに使用される優れた磁気特性を有するナノサイズ磁性金属粒子製造方法に関わる。
近年、ナノテクノロジーが次世代産業創生のキーテクノロジーとして国内外で注目されている。その中で、ナノメーターサイズ(nm)の粒径を有するナノサイズ磁性粒子はバルク体では得られない磁気特性ならびに機能性を発揮するため、注目されている。例えば、高飽和磁化を有する金属粒子としてはFe,Fe−Co系が使用され、電波吸収体としてはFe、Ni−Fe系材料が主に使用される。また、高密度磁気記録媒体用材料として、近年Fe−Pt系のナノサイズ粒子も注目されている。ナノサイズ磁性金属粒子の製造プロセスとしては、ゲータイトの水素還元、金属塩グリコールの加熱・還元といった方法が提案されている(特許文献1,2)。また、Fe−Pt系の場合は、例えば遷移金属錯塩を含む多価アルコール溶液を加熱・攪拌しながら、還元剤を滴下することによりFePt合金ナノサイズ粒子を得るポリオール法が提案されている。なお、この2元系組成でナノサイズ粒子を作製すると、各元素が均一に混合せずに、クラスター・イン・クラスター構造、コア/シェル構造、半球合体構造になることが知られていて均質なランダム合金構造は得にくい(非特許文献1)。また、これら金属のナノサイズ粉は活性で酸化しやすいため、大気中で取り扱うにはその表面を耐酸化性被膜で被覆する必要がある。そのため、これら金属ナノサイズ粒子の表面被覆方法についても種々の方法が提案されている。特許文献3,4には炭素質、セラミックス類の酸化物、窒化物を被覆層とする方法等が開示されている。
特開平10−17901号公報(第2〜6、表1) 特開2003−277803号公報(第1〜6頁) 特開平9−86915号公報(第1〜6頁) 特開2001−358493号公報(第16頁、図5) MATERIAL STAGE(マテリアル ステージ),vol.3,No.1(2004)(第3頁)
例えば従来のナノサイズ磁性金属粒子の製造に使用されるゲータイトは紡錘状の粒子であり、ナノサイズ粒子としての分散性が良好とは言えず、粒径の均一性も必ずしも十分なものではなかった。また、金属のナノサイズ粒子は酸化しやすいため、表面に被膜を形成することが一般的であるが、従来の方法では、核である金属の保護が十分とは言えず、耐蝕性に劣る結果、核の飽和磁化が経時変化で劣化するという問題があった。さらに、被覆を設ける方法はCVD等を利用するため、簡便とは言えず、工業生産性上も問題があった。
さらに、被覆物としては炭素、酸化物、窒化物といった種々の被膜が検討されているものの、十分な耐蝕性を得るには至っていない。特に粒径の小さいナノサイズ粒子の場合、該粒子を作製した後に上記皮膜を形成する方法では、粒子の酸化が顕著になり、飽和磁化等の特性が劣化するという問題があった。
上述のようにナノサイズ粒子を簡便な方法でナノサイズの膜厚で被覆するとともに均一な粒径を得る製造方法については確立されているとは言い難い。そこで、本発明の目的は、工業的量産性に優れ、耐蝕性・分散性に優れ、粒径の均一なナノサイズの磁性金属粒子の製造方法を提供することにある。
上記課題を解決するための本発明の磁性金属粒子の製造方法は、Fe,Co,Niの少なくとも1種以上を含窒化ほう素膜で被覆され、かつ個数率で90%以上の粒子が1〜30nmの範囲内の粒径を有する磁性金属粒子の製造方法であって、
Fe,Co,Niの少なくとも1種以上を含有する金属錯体および有機金属化合物のうちの1種以上とほう素化合物とを混合して混合粉末を形成し、前記混合粉末について、窒素を含有する非酸化性ガス雰囲気中で500〜1100℃の範囲内の温度で熱処理を行うことを特徴とする前記ほう素化合物が、水素化ほう素化合物又は水酸化ほう素化合物であるであることが好ましい。
前記磁性金属粒子の酸素含有量が質量比で100〜100000ppmであることを特徴とする。
また、本発明は、Fe,Co,Niの少なくとも1種以上を含有する金属錯体および有機金属化合物のうちの1種以上と、水酸化ほう素化合物とを混合して混合粉末を形成し、前記混合粉末について、窒素を含有する非酸化性ガス雰囲気中で500〜1100℃の範囲内の温度で熱処理を行うことを特徴とする磁性金属粒子の製造方法である。
本発明では、液相処理で有機金属錯塩を還元する方法とは異なり、目的とする微粒子の構成金属元素を含有する金属錯体等を粉末状態で気相処理によって還元し、同時に窒化ほう素の被膜を形成する新規な製造方法を用いる。また、ほう素化合物も粉末状態で用いる。すなわち、窒素を含有するガスの非酸化性雰囲気中で混合粉末を還元反応させることにより、ナノサイズの金属粒子とそれを被覆する窒化ほう素被膜を同一の熱処理工程で形成させる。よって窒化ほう素を被覆膜とするナノサイズの磁性金属粒子を簡便に製造することができる。本発明の製造方法を用いて、Fe,Fe−Co,Ni−Fe,さらにはFe−Pt,Fe−Co−Pt,Co−Sm系等のナノサイズ粒子を作製すると、薄い窒化ほう素の被膜により優れた耐食性を得ることができる。また、粒径分布の揃った粉末であるナノサイズ磁性金属粒子を得ることができ、高磁束密度材料、電波吸収体材料、高密度磁気記録媒体等に使用できる。
本発明の製造方法は、液相での還元方法と比較すると、より高温で還元・拡散反応を行う。そのため、Fe,Co,Ni等から選ばれる複数の元素が均質に分布したナノサイズの磁性金属粒子が得られる。磁性金属粒子の核を窒化ほう素の被膜で覆うため、分散性に優れ、凝集しにくいナノサイズの磁性金属粒子となる。
本発明の金属粒子の製造方法によれば、ナノサイズの金属粒子とそれを被覆する窒化ほう素被膜を同一の熱処理工程で形成させることができ、窒化ほう素膜を被覆したナノサイズの磁性金属粒子を極めて簡便に製造することができる。さらに、前記方法によれば、粒径が細かく均一で、さらに磁気特性等の劣化が小さい磁性金属粒子を得ることができる。また、本発明の磁性金属粒子は、ナノレベルの磁性金属粒子として優れた耐蝕性、分散性、磁気特性を発揮する。
本発明に係る磁性金属粒子において、“個数率で90%以上の粒子が1〜30nmの範囲内の粒径を有し”とは、無作為に100個以上の粒子を選び、その90%の個数の粒子が粒径1〜30nmの範囲内にあることを指す。測定は、例えば磁性金属粒子の粉末を透過型電子顕微鏡で観察して写真を撮り、写真に写った粒子の外観から測定する。球状ではない不定形の粒子を含む場合には、最大径と最小径の平均値をその粒子の粒径として計算する。なお、ここでいう粒径は、窒化ほう素膜の厚みを含まない核となる金属部分の粒径を指す。粒径が1nm以下の粒子は、比表面積が大きく活性なため、大気中で取り扱うことが難しい。一方、粒径が30nm以上の粒子が多くなると粒径分布が広がり、小さく均一な粒径が要求される高密度磁気記録媒体用途に適用することが困難となる。したがって大気中での取り扱いを容易にするとともに、好ましい粉体特性とする観点から粒径が1〜30nmの範囲にある粒子は個数率で90%以上であることが好ましい。より好ましくは95%以上である。
本発明に係る磁性金属粒子はFe、Co、Niの少なくとも1種以上を含む。また、磁性金属粒子である限り、これらの元素以外の元素を含有することができる。例えばこれらの元素とともに強磁性相を形成するPt、Sm等を含むことができる。核となる磁性金属粒子の組成としては例えば次のものが挙げられる。単一成分の場合、Fe粒子、Co粒子、Ni粒子が挙げられる。2元系以上の組成の場合、例えば高磁束密度材料用途としてはFe−Co系、電波吸収体用途には高透磁率を有するNi−Fe系、高密度磁気記録用途には高保磁力を有するFe−Pt,Fe−Co−Pt,Co−Sm系が挙げられる。高磁束密度材料として用いる場合、Co/Feの質量比は0.01〜1.1が好ましい。Co/Feの質量比が0.01未満または1.1超となると飽和磁化が低下し、窒化ほう素膜も含めた粒子としてFeの飽和磁化の60%に相当する130Am/kg以上を得ることが困難となる。Co/Feの質量比はより好ましくは0.4〜1.1である。また、例えば電波吸収体の材料として用いる場合、Ni/Feの質量比は0.2〜5.0の範囲内であることが望ましい。Ni/Feの質量比が0.2未満であると初比透磁率が低下し、1000以上の初透磁率を得ることが困難となり、5.0超では飽和磁化が大きく低下し、50Am/kg以上を得ることが困難となってしまう。一方、(Fe,Co)−Pt系の組成の場合はPt/(Fe+Co)の質量比は1.5〜5.5が望ましく、かかる範囲とすることで高密度磁気記録媒体用として十分な160kA/m以上の保磁力を得ることができる。逆に、Pt/(Fe+Co)の質量比が0.2未満または0.4超では保磁力の低下が大きい。Pt/(Fe+Co)の質量比はより好ましくは1.9〜4.0である。また例えばCo−Sm系ではSm/Coの質量比は0.3〜0.85が望ましい。0.3未満または0.85超では保磁力が大きく低下し、160kA/m以上の保磁力が得られない。2元系以上の組成の場合、本発明に係る製造方法では比較的高い温度で熱処理するため、各元素が均質に拡散し合った磁性金属粒子が得られる。
前記ナノサイズ磁性金属粒子は、不純物として、酸素を質量比で100〜100000ppmの範囲内で含有することができる。酸素の含有量が100ppm未満では、磁性金属粒子は活性となり、急激な酸化を起こす場合があり、生産上好ましくない。前記含有量が100000ppm超では飽和磁化が低下する。より好ましくは、500〜70000ppmであり、さらに好ましくは1000〜70000ppmである。また、さらに炭素、金属元素等の不可避不純物を含むことができる。なお本発明において、酸素量は磁性金属粒子の集合体である粉末について、ガス分析値装置で測定した値を用いた。
金属粒子を被覆する窒化ほう素膜の結晶構造は、h−BN,r−BN,c−BN,w−BN,非晶質BNの1種以上からなる。好ましくはh−BNまたはr−BNの結晶構造のものを主相とする。また、窒化ほう素膜の膜厚は1〜50nmが好ましい。膜厚が1nm未満となると被膜としての機能が維持できず、耐酸化性等が劣化する。また、膜厚が50nmを超えると飽和磁化の低下が大きくなる。窒化ほう素の膜厚はより好ましくは5〜20nmである。なお、窒化ほう素の膜厚としては、透過電子顕微鏡写真において窒化ほう素膜が被覆された粒子の最大径L及び最小径S並びに核の金属部分の最大径l及び最小径sを計測し、(L+S)/2、(l+s)/2をそれぞれ被覆された粒子、金属核の粒径とし、これらの粒径の差の1/2をもって窒化ほう素膜の膜厚とした。
本発明に係る製造方法は、金属錯体、有機金属化合物から選ばれる1種以上を還元することと、窒化ほう素膜の形成とを、同一の熱処理工程で行うことを可能とする。すなわち、金属錯体等の粉末とほう素化合物の粉末を、窒素を含有するガスの非酸化性雰囲気中で熱処理することにより、金属錯体等に含有されるH,C,N,Oなどの元素がガスとして気散し、残された金属成分が核(コア)となり、次いで金属成分同士がクラスターを形成し、球状の磁性金属粒子となる。融点の低いほう素化合物の1種以上が、還元された前記磁性金属粒子の表面を覆い、ほう素(B)と窒素(N)が反応することにより窒化ほう素の被膜(保護層)が形成される。このようなプロセスにより、窒化ほう素膜によって被覆されたナノサイズの磁性金属粒子を得ることが可能となる。
上記の窒素を含有するガスは、たとえば窒素(N)もしくはアンモニア(NH3)から選ばれる少なくとも1種を含有する。さらに水素(H)との混合ガスとして使用することもできる。
本発明では1〜30nmの非常に細かい磁性金属粒子が得られることを特徴の一つしているが、このような粒径の磁性金属粒子に被膜を形成しようとすると粒子同士の凝集が顕著なため、得られる被覆された磁性金属粒子の分散性は非常に低いものとなる。すなわち一つ一つ均一に被覆された磁性金属粒子を得ることは極めて困難である。これに対して本発明は磁性金属粒子に後から被膜を形成する方法と異なり、磁性金属粒子の生成と窒化ほう素膜の形成を同一の熱処理で実現できるため、得られる窒化ほう素膜で被覆された磁性金属粒子の分散性を非常に高いものとすることができる。本発明ではかかる分散性の評価は以下の評価指数を用いて行った。
分散性評価指数=(領域内の粒子接合箇所数)/(領域内粒子数)
上記分散性評価指数は、以下のようにして求めた。透過型電子顕微鏡により、Co粒子の形態を約500万倍の倍率で観察し、写真を撮影する。写真の10cm×10cmの正方形の領域内で磁性金属粒子同士が接する箇所数と磁性金属粒子数を計測する。磁性金属粒子同士が接するとは、金属部分同士が接していることを言う。分散性評価指数の数値が小さいほど分散性が良く、ナノサイズの粒子としての機能を十分に発揮させるためには、分散評価指数は0.4以下が好ましく、より好ましくは0.2以下、特に好ましくは0.1以下である。
本発明では、金属化合物として金属錯体および有機金属化合物のうちの1種以上を用いる。金属化合物として金属酸化物や金属水酸化物、ほう素化合物として水素化ほう素化合物等を使用して本発明と同様の方法を適用することによって窒化ほう素膜で被覆した磁性金属粒子を得ることも可能である。しかし、金属酸化物等を使用する場合は、最終的に得られる磁性金属粒子径は使用する金属酸化物の粒子径に大きく依存するため、目的とする1〜30nmの磁性金属粒子を得るためには金属酸化物の粒子径もそれと同等以下とする必要があり、1〜30nmの磁性金属粒子の製造は困難となる。一方、金属錯体等を使用する場合は、最終的に得られる磁性金属粒子径は使用する金属錯体等の粒子径に直接は依存せず、粒径が小さく、かつ均一な磁性金属微粒子を得ることができるのである。すなわち、金属錯体および有機金属化合物のうちの1種以上とほう素化合物を用いるという新たな知見をもって、窒化ほう素膜で被覆された1〜30nmの磁性金属粒子の製造を容易ならしめるのである。特に本発明は、混合した原料粉末を所定の雰囲気で加熱処理するという簡便な方法で、粒径が小さく均一であると同時に窒化ほう素膜で被覆された磁性金属微粒子を得ることを可能とする。さらに、本発明では、金属錯体等を用いて還元反応と窒化ほう素膜の形成を同一の熱処理工程で行うので、例えば金属粒子を出発原料として後から被膜を形成する場合に比べて、酸化による酸素量の増加を抑制し、高い飽和磁化を得ることができる。
本発明では、原料として金属錯体、有機金属化合物を用いることができる。その一例を以下に記す。Fe原料としては、鉄(II,III)アセチルアセトナート〔C1014FeO,Fe(CHCOCHCH)〕、酢酸鉄(II)〔CFe〕、ヘキサアンミン錯塩(Fe(NH)Cl)、乳酸鉄(II)三水和物〔Fe(CHCH(OH)COO)〕、しゅう酸鉄(II)二水和物〔FeC2HO〕などが挙げられる。Co原料としては、オレイン酸コバルトCo(C1733COO)、ヘキサアンミンコバルト錯塩(Co(NH)Cl)、コバルト(II)アセチルアセトナート(CHCOCH:C(CH)O)Co、コバルト(III)アセチルアセトナート〔Co(CHCOCHCOCH)〕が望ましい。Ni原料としては、しゅう酸ニッケル〔NiC2HO〕、ヘキサアンミンニッケル錯塩〔Ni(NH)Cl〕、炭酸ニッケル〔NiCO・2Ni(OH)・nHO〕、クエン酸ニッケル〔Ni(C)・14HO〕などが挙げられる。これらのうち、アンミン錯塩とは、M(NH)(M:金属元素、X:ハロゲン元素)で表される化合物で、一配位六配位の錯体でFe(NH)Cl,Co(NH)Cl2,Ni(NH)Clなどがあり、本発明の製造方法に用いる金属錯体の粉末として好ましい。
上記ほう素化合物として、水素化ほう素化合物、水酸化ほう素化合物、酸化ほう素、ほう酸、ほう酸塩類もしくはほう化物の一例を以下に記す。KBH、NaBH、B、BO、ほう酸〔HBO〕、メタほう酸、五ほう酸アンモニウム八水和物、四ほう酸アンモニウム四水和物、五ほう酸ナトリウム+水和物、四ほう酸ナトリウム+水和物、四ほう酸カリウム四水和物、四ほう酸リチウム(無水)、メタほう酸リチウム八水和物、メタほう酸リチウム(無水)、ボロジサリチル酸アンモニウム一・五水和物、テトラヒドロほう酸カリウム〔KB(OH)4〕が挙げられる。さらに、ほう化物MBとは、MB,MB,M,MB(M:金属元素)の組成を有する全ての粉末で、例えば、CrB,AlB,TiB,CoB,NiB,Mo,BeBである。さらに、窒化ほう素(BN)の粉末そのものであっても良い。前記水素化ほう素化合物および水酸化ほう素化合物としては、KBH,NaBHおよび〔Na(B(OH))Cl,K(B(OH))Cl〕がある。これらのうち、水素化ほう素化合物を用いることにより、より低温で還元することができるようになり、細かい粒子を得やすいことから、ほう素化合物として水素化ほう素化合物を用いることがより好ましい。
本発明において、Fe、Co、Niの少なくとも1種に加えてPtまたはSmを含有する磁性金属粒子を製造する場合、Ptを含有する有機金属化合物(原料)としては、例えばヘキサクロロ白金(IV)酸六水和物〔HPtCl・6HO〕、また、Sm原料を含有する有機金属化合物(原料)としては、例えばサマリウム(III)アセチルアセトナート二水和物〔Sm(CHCOCHCOCH)・2HO〕などがある。
原料粉末の混合としては、ライカイ機、ボールミルなどによる大気中での乾式混合でも良いが、均質な混合を行う場合にはボールミルにイソプロピルアルコールなどの溶媒を用いた湿式混合が望ましい。得られた混合粉末は、雰囲気の酸素濃度を100ppm以下に制御可能な加熱炉において、温度500〜1100℃の範囲内で熱処理される。温度が500℃未満であると反応が不十分となり、金属錯体等の分解・還元や窒化ほう素膜の形成が不完全となりやすい。一方、1100℃を超えると粒子の粗大化が生じ、1〜30nmの細かい粒子を得ることが困難となる。より、好ましくは、600〜1000℃であり、さらに好ましくは700〜900℃である。使用する加熱炉としては、箱型ボートを有する静置型炉、もしくはロータリーキルン型炉を用いることができる。使用する雰囲気のガスは窒素を含有する非酸化性ガスとし、例えば純度99.9%以上の窒素ガス(N)もしくはアンモニア(NH)から選ばれる少なくとも1種のガス、またはそれらのガスと水素ガス(H)の混合ガスを用いることができる。上記金属錯体等は熱処理の過程で分解し、H,C,N,Oなどを含有するガスが気散し、残された金属成分が磁性金属粒子を形成し、それをほう素化合物が覆い、ほう素(B)と窒素(N)が反応することにより、窒化ほう素の保護層が形成される。熱処理の反応終了後に窒化ほう素同士が接着し、凝集している場合、解砕を行う。解砕には、例えばバンタムミルなどの衝突型粉砕機が用いられる。余剰に成長した窒化ほう素が磁性金属粒子に被着している場合には、例えば長さ約1mの半円管に粉末を乗せ、電磁振動を印加することにより、磁性金属粒子(金属含有粒子)と窒化ほう素(BN粒子)を分離することができる。
次に本発明を実施例によって具体的に説明するが、これら実施例により必ずしも本発明が限定されるものではない。
(実施例1)
平均粒径0.07μmのヘキサアンミンコバルト(III)塩化物:Co(NH)Cl)と平均粒径0.03μmの水素化ほう素カリウム粉末〔KBH〕を7:3の質量比で秤量・混合し、総質量100gの混合粉を得た。この混合粉を空焼きしたアルミナ製ボートにのせ、雰囲気制御可能な熱処理炉で熱処理した。雰囲気ガスには窒素(N2)ガスを用い、酸素量を10ppm以下に制御し、700℃×3hの条件で行った。得られた試料を回収し、窒化ほう素で表面を被覆した構造を有するナノサイズCo粒子を得た。
また、この粒子粉末のX線回折図を図1に示す。X線回折にはリガク製RINT2500を用い、theta/2thetaスキャンで2theta=10〜90°の範囲で測定した。2theta=10〜30°のピークは試料保持テープによるもので、非晶質BNも一部含まれていると思われる。2theta=40〜55°のピークはfcc−Co類によるものである。また、このナノサイズCo粒子の透過型電子顕微鏡写真を図2に示す。そして、その模式図を図3に示す。図2および図3では粒径15〜35nmのCo粒子を膜厚5.6〜9.3nmのBN膜が覆っているのが分かる。また、このCo粒子100個について粒径1〜30nmの範囲内の個数率を求めたところ、96%という粒径均一性に優れた値を得た。このBN膜は優れた耐食性を発揮した。このナノサイズCo粒子の酸素量をガス分析装置(堀場製作所製EMGA−1300)により分析したところ、酸素量57000ppmであった。模式図の符号1、2は生成したナノサイズCo粒子で、その周りを符号3、4のBN膜が覆っている。また、符号5は余分なBNが粒子を形成しているものである。さらに、分散性評価指数=0であり、良い分散性であった。
また、実施例1におけるヘキサアンミンコバルト(III)塩化物と水素化ほう素カリウムの混合粉末20gについて、島津製作所製DTG−60A/60AHを用いてTG(熱天秤)測定を行い、図4の結果を得た。図4のTG曲線から、約200℃および800℃前後で試料が熱分解してガス状分解生成物が発生し、質量が減少したと考えられる。このため、純度の高いナノサイズ磁性金属粒子を得るにはガス状分解生成物の発生が終了する温度・熱処理時間を選ぶことが望ましいとわかる。
(比較例1)
Co含有ゲータイト粉末(Co/Fe質量比=0.4)100gを箱型静置炉で、400℃×5hの熱処理条件で水素ガスを用いて還元した。還元反応終了後、炉内酸素濃度を徐々に上げる徐酸化処理を行い、酸化物被膜を有するナノサイズFeCo粒子を得た。得られた金属粒子の平均粒径は33nmと、30nmを超える大きなものとなり、1〜30nmの範囲の粒径を有する粒子の個数率も50%を下回る小さいものとなった。また、酸化の進行が早く、酸素量を分析したところ100000ppmを超えていた。
(実施例2)
Fe原料(ヘキサアンミン鉄錯塩粉末)(Fe(NH)Cl)、Co原料(ヘキサアンミンCo錯塩粉末)(Co(NH)Cl)と粉末の〔KB(OH)Cl〕を表1に示す質量比で秤量・混合した。混合には乾式ボールミルを用いた。得られた混合粉をアルミナ製ボートにのせ、雰囲気制御可能な熱処理炉で熱処理した。雰囲気ガスには窒素・水素の混合ガス(N:H=1:1)を用い、酸素量を10ppm以下に制御し、800℃×3hの条件で熱処理した。このようにして、窒化ほう素で表面を被覆したナノサイズのFeCo粒子の粉末を得た。得られたFeCo粒子の粉末について、東英工業製振動試料型磁力計(VSM−5)を用いて1.6MA/mの印加磁界で磁化測定を行い、飽和磁化を求めた。また、実施例1と同様な方法で透過型電子顕微鏡観察を行い、FeCo粒子の平均粒径を求めた結果を表1に示す。なお、平均粒径の観察の際に、粒径1〜30nmの範囲内の個数率を求めたところ、各実施例では90%以上という粒径均一性に優れた値を得た。また、平均粒径は、粉末試料の透過型電子顕微鏡写真から算出した。写真内で任意の100個の微粒子について各々の粒径を測定して平均値を求めた。すなわち、平均粒径=(測定した粒径の総和)/100とした。なお、球状ではない不定形の粒子を含む場合には、最大径と最小径の平均値をその粒子の粒径として計算した。
Figure 0004320729
(参考例)
平均粒径0.05μmの酸化鉄(α−Fe)の粉末60gと水素化ほう素ナトリウム(NaBH)の粉末30g、塩化アンモニウム(NHCl)10gを乾式ボールミルで混合した。得られた混合粉末をアルミナ製ボートにのせ、雰囲気制御可能な熱処理炉で熱処理した。雰囲気ガスには窒素(N2)ガスを用い、酸素量を10ppm以下に制御し、1000℃×2hの条件で行った。これにより、BN膜厚の均一なFe粒子の粉末を得た。この粉末について、東英工業製振動試料型磁力計(VSM−5型)を用いて、印加磁界が1.6MA/mの範囲で飽和磁束密度を測定すると、飽和磁化は140Am/kgであった。また、酸素量を分析した結果は3000ppmであった。なお、得られた磁性金属粒子においては粒径が500nm以上のものが生成しており、有機化合物を使用した場合に比べて大きなものとなった。また、1〜30nmの範囲の粒径を有する粒子の個数率も3%と低いものとなった。
窒化硼素で被覆されたCo粒子のX線回折図である。 窒化硼素で被覆されたCo粒子の透過型電子顕微鏡写真である。 図2の模式図である。 Coアンミン錯塩粉末と B(OH) Cl粉末の混合粉末をTG測定した結果のグラフである。
符号の説明
1、2:Co粒子
3、4:BN膜
5:BN粒子

Claims (3)

  1. Fe,Co,Niの少なくとも1種以上を含窒化ほう素膜で被覆され、かつ個数率で90%以上の粒子が1〜30nmの範囲内の粒径を有する磁性金属粒子の製造方法であって、
    Fe,Co,Niの少なくとも1種以上を含有する金属錯体および有機金属化合物のうちの1種以上とほう素化合物とを混合して混合粉末を形成し、前記混合粉末について、窒素を含有する非酸化性ガス雰囲気中で500〜1100℃の範囲内の温度で熱処理を行うことを特徴とする磁性金属粒子の製造方法
  2. 前記ほう素化合物が、水素化ほう素化合物又は水酸化ほう素化合物であることを特徴とする請求項1に記載の磁性金属粒子の製造方法
  3. Fe,Co,Niの少なくとも1種以上を含有する金属錯体および有機金属化合物のうちの1種以上と水素化ほう素化合物とを混合して混合粉末を形成し、前記混合粉末について、窒素を含有する非酸化性ガス雰囲気中で500〜1100℃の範囲内の温度で熱処理を行うことを特徴とする磁性金属粒子の製造方法。
JP2004098453A 2004-03-30 2004-03-30 磁性金属粒子の製造方法 Expired - Fee Related JP4320729B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004098453A JP4320729B2 (ja) 2004-03-30 2004-03-30 磁性金属粒子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004098453A JP4320729B2 (ja) 2004-03-30 2004-03-30 磁性金属粒子の製造方法

Publications (2)

Publication Number Publication Date
JP2005281786A JP2005281786A (ja) 2005-10-13
JP4320729B2 true JP4320729B2 (ja) 2009-08-26

Family

ID=35180503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004098453A Expired - Fee Related JP4320729B2 (ja) 2004-03-30 2004-03-30 磁性金属粒子の製造方法

Country Status (1)

Country Link
JP (1) JP4320729B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105097165A (zh) * 2014-05-14 2015-11-25 Tdk株式会社 软磁性金属粉末、以及使用了该粉末的软磁性金属压粉磁芯

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4895151B2 (ja) * 2004-02-27 2012-03-14 日立金属株式会社 鉄系ナノサイズ粒子およびその製造方法
CN100355939C (zh) * 2005-11-24 2007-12-19 上海交通大学 镍或镍合金粉末表面包覆蜂窝状金属钴或钴合金的方法
CN101500733B (zh) * 2006-06-19 2012-05-30 卡伯特公司 含有金属的纳米颗粒、其合成及用途
US8840800B2 (en) * 2011-08-31 2014-09-23 Kabushiki Kaisha Toshiba Magnetic material, method for producing magnetic material, and inductor element
JP6155440B2 (ja) * 2011-09-22 2017-07-05 戸田工業株式会社 強磁性窒化鉄粒子粉末の製造方法、異方性磁石、ボンド磁石及び圧粉磁石の製造方法
JP2014192454A (ja) * 2013-03-28 2014-10-06 Hitachi Metals Ltd 複合被覆軟磁性金属粉末の製造方法および複合被覆軟磁性金属粉末、並びにこれを用いた圧粉磁心
JP6511831B2 (ja) * 2014-05-14 2019-05-15 Tdk株式会社 軟磁性金属粉末、およびその粉末を用いた軟磁性金属圧粉コア
JP6511832B2 (ja) 2014-05-14 2019-05-15 Tdk株式会社 軟磁性金属粉末、およびその粉末を用いた軟磁性金属圧粉コア

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105097165A (zh) * 2014-05-14 2015-11-25 Tdk株式会社 软磁性金属粉末、以及使用了该粉末的软磁性金属压粉磁芯

Also Published As

Publication number Publication date
JP2005281786A (ja) 2005-10-13

Similar Documents

Publication Publication Date Title
JP4895151B2 (ja) 鉄系ナノサイズ粒子およびその製造方法
US7029514B1 (en) Core-shell magnetic nanoparticles and nanocomposite materials formed therefrom
Amara et al. Solventless thermal decomposition of ferrocene as a new approach for one-step synthesis of magnetite nanocubes and nanospheres
JP4938285B2 (ja) コア/シェル複合ナノ粒子を製造する方法
Wu et al. Controlled synthesis, structure and magnetic properties of Fe1− xNix alloy nanoparticles attached on carbon nanotubes
Wu et al. Synthesis and magnetic properties of size-controlled FeNi alloy nanoparticles attached on multiwalled carbon nanotubes
JP4320729B2 (ja) 磁性金属粒子の製造方法
JP5556756B2 (ja) 鉄系ナノサイズ粒子およびその製造方法
WO2006100986A1 (ja) 被覆金属微粒子及びその製造方法
JP2007046074A (ja) 金属微粒子およびその製造方法
JP2007046074A5 (ja)
Roy et al. Effect of interstitial oxygen on the crystal structure and magnetic properties of Ni nanoparticles
WO2006070572A1 (ja) 規則合金相ナノ微粒子及びその製造方法、並びに超高密度磁気記録用媒体及びその製造方法
Caiulo et al. Carbon‐Decorated FePt Nanoparticles
JP4288674B2 (ja) 磁性金属微粒子の製造方法および磁性金属微粒子
JP4811658B2 (ja) 被覆金属微粒子およびその製造方法、
Dias et al. Structural, Morphological and Magnetic Properties of FeCo-(Fe, Co) 3 O 4 Nanocomposite Synthesized by Proteic Sol-Gel Method Using a Rotary Oven
Khurshid et al. Chemically synthesized nanoparticles of iron and iron-carbides
Wu et al. Magnetic properties and thermal stability of γ′-Fe4N nanoparticles prepared by a combined method of reduction and nitriding
JP2008069431A (ja) 磁性粒子の製造方法および磁性粒子
Wu et al. Controllable synthesis and magnetic properties of Fe–Co alloy nanoparticles attached on carbon nanotubes
Zafiropoulou et al. Optimized synthesis and annealing conditions of L10 FePt nanoparticles
Zhang et al. Lactic acid based sol–gel process of Ag nanoparticles and crystalline phase control of Ni particles in aqueous sol–gel process
JP5280661B2 (ja) 金属磁性粉末の製造方法
JP2008248364A (ja) FePtコア/Feシェル構造を有する複合ナノ粒子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees