WO2008135164A1 - Kühlkörper - Google Patents

Kühlkörper Download PDF

Info

Publication number
WO2008135164A1
WO2008135164A1 PCT/EP2008/003241 EP2008003241W WO2008135164A1 WO 2008135164 A1 WO2008135164 A1 WO 2008135164A1 EP 2008003241 W EP2008003241 W EP 2008003241W WO 2008135164 A1 WO2008135164 A1 WO 2008135164A1
Authority
WO
WIPO (PCT)
Prior art keywords
elevations
structured surface
heat dissipation
heatsink according
wärmeableitplatte
Prior art date
Application number
PCT/EP2008/003241
Other languages
English (en)
French (fr)
Inventor
Isabell Buresch
Karine Brand
Original Assignee
Wieland-Werke Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland-Werke Ag filed Critical Wieland-Werke Ag
Priority to CN2008800114467A priority Critical patent/CN101652857B/zh
Priority to US12/450,030 priority patent/US20100091463A1/en
Priority to EP08735368A priority patent/EP2143138A1/de
Priority to JP2010504526A priority patent/JP2010525588A/ja
Publication of WO2008135164A1 publication Critical patent/WO2008135164A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention relates to a heat sink for power electronics modules or semiconductor components according to the preamble of claim 1.
  • Transistors and microprocessors generate a considerable amount of waste heat during operation.
  • the waste heat must be removed as quickly as possible from the component and the heat-emitting surface must be increased.
  • a heat sink is often additionally arranged on the heat dissipation plate by means of thermal paste. Cooling can be done with air or liquid.
  • the heat sink is a finned metal block, often made of aluminum or copper, often with additional fans mounted on the heat sink.
  • the heat sink consists of a heat exchanger through which fluid flows.
  • soldering / bonding process solder is made of a SnAgCu alloy the melting point at 221 0 C out to a brazing temperature of 250 - 26O 0 C and the heat dissipation plate heated up to 260 ° C.
  • Remedy can be provided by the incorporation of core substrates in multilayer circuits, then mainly Cu-Invar-Cu is used.
  • the Cu Invar Cu layers are arranged symmetrically in the multilayer and can be used as ground and supply level. This arrangement has the advantage that near the surface of the circuit, a coefficient of thermal expansion in the range of 1, 7-2 x10 "6 1 / K is present, which is adapted to the value of the ceramic chip carrier.
  • the larger the SMD component the more there is a need to adapt the expansion coefficient of the multilayer surface to that of ceramic.
  • the Invar can also be arranged as a thick metal core of 0.5 mm to 1.5 mm in the middle of the multilayer in the multilayer Cu-Invar-Cu become.
  • the advantage lies in addition to the limitation of the expansion coefficient at the circuit surface, especially in the additional good heat dissipation. As a result, a two-sided assembly with SMD components is possible.
  • the Cu-Invar-Cu circuit boards can also function as heat sinks.
  • WO 2006/109660 A1 discloses a heat sink for power semiconductor components. At the common contact surface, an intermediate layer for reducing thermal stresses is arranged between the heat sink and the semiconductor component. This intermediate layer consists of an aluminum plate having a plurality of holes for stress relief. The intermediate layer is soldered on the component side with a metallic surface layer applied over an entire area on an insulator substrate and the heat sink.
  • the publication DE 101 34 187 B4 discloses a cooling device for power semiconductor modules, comprising a housing, connecting elements, a ceramic substrate and semiconductor components.
  • the heat dissipation from a power semiconductor module via individual cooling elements which in turn consist of a flat body and a finger-like continuation.
  • These individual cooling elements are arranged in a matrix-like manner in rows and columns on the surface to be cooled.
  • the surfaces of the individual cooling elements which do not face the component or module to be cooled may have smooth surfaces or surfaces of arbitrary structure for better heat dissipation.
  • the invention has for its object to further develop a heat sink for power electronics modules whose composite withstands the thermally induced voltages.
  • the invention is represented by the features of claim 1.
  • the other dependent claims relate to advantageous embodiments and further developments of the invention.
  • the invention includes a heat sink for power electronics modules or for semiconductor devices with a planar metallic réelleableitplatte, wherein the cardboardableitplatte on the power electronics module or the semiconductor device side facing a matrix-shaped structured surface with protruding elevations, wherein the cardboardableitplatte and matrix-shaped structured surface of one piece are made.
  • the invention is based on the consideration that the matrix-shaped structured surface of the heat sink is suitable to absorb the occurring thermally induced stresses by elastic deformation.
  • the metallic heat dissipation plate with the structured surface may be made of highly conductive copper or a copper alloy.
  • the structured surface can be produced in one piece from a strip material with the aid of a single-stage or multistage rolling or embossing process.
  • the forming process usually involves solidification of the material in the structured contours. In particular in the area of the webs formed between the individual elevations, material consolidation takes place.
  • the obtained structure can then also be softened with the aid of a laser or by heat treatment in the oven in order to bring the webs of the contour in a soft as possible state, which can cushion the changes in length by thermal expansion.
  • Milling, extruding or etching may also be suitable as alternative methods of structuring.
  • the heat sink is soldered with its structured surface, for example, under the ceramic substrate.
  • the webs or contours can absorb the stresses occurring, without causing any deformation of a module.
  • the particular advantage is that the composite created by the heat sink and the power electronics module or the semiconductor component withstands the thermally induced stresses in the context of elastic deformation of the individual materials. In this case, it is also possible to use materials which have very different thermal expansion coefficients, without the thermally induced stresses leading to the demolition of the material composite. The material combination can also withstand the stress states resulting from higher soldering temperatures.
  • the structured surface of the heat sink may have truncated or frustoconical elevations.
  • This comparatively simple structure has a particularly small common contact area of the elevations with the power electronics module or the semiconductor component.
  • the elevations thickening towards the heat dissipation plate make a contribution to the heat spreading, ie the areal distribution of the heat input into the heat sink.
  • the structured surface may have mushroom-shaped elevations.
  • the heat dissipation plate is patterned in the x and y directions, so that T-shaped mushroom structures or even pyramid-shaped structures with webs as a connection to the metallic heat dissipation plate absorb the expansion accordingly.
  • the contour surfaces are then upset by rolling or stamping.
  • the structure slims down, whereby elastically deformable regions form there, which are particularly advantageous for reducing stresses in the material.
  • the structured surface may have conical or needle-like elevations.
  • rib-like or rib-like elevations may also be formed.
  • the individual structures may also be present in combination with each other. For example, with a local heat input of a heat source from the module to the heat sink locally different structures can be used immediately adjacent to each other, which are particularly advantageous for heat dissipation or heat spreading.
  • the structure size of the structured surface can in principle be less than one millimeter, but preferably between 0.5 and 20 mm.
  • the width B, length L or the diameter D and height H of such microstructures may have dimensions of a few micrometers to several millimeters.
  • the height H of the structure can be variable.
  • the ratio of the height H of a survey to the lateral extent B, L, D of a survey can be at least 1: 1. With geometric ratios below this quotient, there is a risk that stresses in the material can no longer be compensated elastically and thus the composite can break.
  • the space between the elevations can be filled with a low-expansion iron-nickel alloy of the composition based on Fe: 64% and Ni: 36%.
  • the metallic heat dissipation plate may consist of copper or a copper alloy.
  • the combination of copper and the iron-nickel alloy offers the advantage of having two materials with different thermal expansion on the microstructured surface.
  • the iron-nickel alloy has a thermal expansion coefficient of 1.7 to 2.0x10 6 1 / K, which is approximately equal to the value of the ceramic chip carrier materials.
  • the heat dissipation plate on the power electronics module or the semiconductor device side facing away from the matrix in addition a plurality of structured elevations, for example in the form of ribs or pins in the order of 0.5 to 20 mm
  • a plurality of structured elevations for example in the form of ribs or pins in the order of 0.5 to 20 mm
  • the heat dissipation can be structured on both sides, so that in addition the otherwise necessary finned heat sink and the thermal paste for air cooling can be omitted, whereby the heat resistance caused by previous solutions with thermal paste is eliminated.
  • the structured elevations and the politiciansableitplatte can therefore be integrally formed.
  • the same process technologies as rolling, milling, extruding, embossing or other other processes are used as the manufacturing process.
  • One-piece structures also offer a cost advantage over multi-part solutions.
  • this structure is preferably used for cooling with air, it is important that a large area increase takes place with it.
  • Common geometries are slats or so-called pins, which can have a height of several centimeters and a distance greater than one millimeter. These fins or pins may also be mechanically attached to the heat dissipation plate.
  • a cooling unit with a closed fluid circuit can be arranged on the side of the heat dissipation plate facing away from the power electronics module or the semiconductor component.
  • the structuring of the heat dissipation plate can be bilateral, so that the structured rear side acts directly as open flow channels / structures for the liquid heat sink.
  • An additional lid made of metal or plastic then closes off the heat exchanger.
  • this structure is preferably used for cooling by means of a separate cooling medium, usually a glycol-water mixture or another common refrigerant in the electronics industry, channels, channel sections or even pins should be formed as structures.
  • the cooling can be ensured by a single-phase process, for example liquid cooling, or a two-phase process, for example evaporation.
  • Typical structural heights are 0.5 mm to 10 mm, whereby the shaped channels can have widths of 20 ⁇ m to 3 mm.
  • Fig. 1 is a view of the structured surface of a heat sink with a plane
  • FIG. 2 shows a further view of an embodiment of the structured surface of a heat sink with a flat underside
  • FIG. 3 shows a further view of an embodiment of the structured surface of a heat sink with a flat underside
  • FIG. 4 shows a view of the structured surface of a heat sink with on
  • FIG. 5 is a view of the structured surface of a heat sink with on the
  • FIG. 1 shows a schematic view of the structured surface 12 of a heat sink 1 for power electronics modules, not shown in the figure, or for semiconductor components.
  • the heat sink 1 consists of a planar metallic heat dissipation plate 11, whose upper side, that is to say the side facing a power electronics module or a semiconductor component, has a matrix-shaped structured surface 12 in the form of protruding elevations 13.
  • the sauceableitplatte 11 and the elevations 13 of the matrix-shaped structured surface 12 are made of one piece.
  • the underside of the heat dissipation plate 11, that is, the side facing away from a power electronics module or a semiconductor component, is planar in this case.
  • the elevations 13 are formed as truncated pyramids.
  • the gap 14 between the elevations 13 is not filled.
  • the width B, length L and height H of such structures may have dimensions of a few microns to several millimeters.
  • the ratio of the height H of a survey 13 to the lateral extent B or L of a survey 13 in this case is approximately 3: 1.
  • the height H of a survey 13 tends to be larger than its lateral extent B or L.
  • FIG. 2 shows a further view of an embodiment of the structured surface 12 of a heat sink 1 with a flat underside.
  • the matrix-shaped structured surface 12 is in the form of protruding pyramidal stump-like elevations 13.
  • the perennialableitplatte 11 and the elevations 13 of the matrix-shaped structured surface 12 are in turn made of one piece.
  • the elevations 13 are formed as truncated pyramids, the foot thickened in the transition region to the heat dissipation plate 11 through webs 15. This foot shape serves to further improve the contact surface between the substrate and ableitplatte 11. Again, the gap 14 between the elevations 13 is not filled with material.
  • FIG. 3 shows a further view of an embodiment of the structured surface 12 of a heat sink 1 with a flat underside.
  • the heat dissipation plate 11 is structured in the x and y directions in such a way that the elevations 13 in the form of T-shaped mushroom structures in conjunction with pyramidal structures with bars 15 as a connection to the metallic heat dissipation plate 11 buffer the different expansion accordingly.
  • the structure in the neck region, ie in the middle region of the elevations, the structure is narrowed, as a result of which elastically deformable regions are formed there, which are particularly advantageous for absorbing stresses due to temperature stress on the power electronics module.
  • FIG 4 shows a view of the structured surface 12 of a heat sink 1 with cooling elements 16 arranged on the underside.
  • cooling elements 16 are soldered to the heat dissipation plate 11, for example, mechanically or thermally bonded with paste and therefore in this case two-piece.
  • cooling elements 16 and the may also be integrally formed.
  • the heat dissipation plate is structured on both sides, so that an additional, attached with thermal paste cooling unit for air cooling can be omitted, whereby the heat resistance caused by previous solutions with thermal paste is eliminated.
  • Processes such as rolling, milling, extruding, embossing or other processes are used as the manufacturing process.
  • FIG. 5 shows a view of the structured surface 12 of a heat sink 1 with a closed-circuit cooling unit 17 arranged on the underside. Since this structure is preferably used for cooling by means of a separate cooling medium, the structures formed are channels with structural heights of 0.5 mm to 10 mm, the shaped channels having widths of 20 ⁇ m to 3 mm.
  • a plurality of additional cooling fins 18 for heat dissipation are arranged in matrix-like manner on the underside of the heat dissipation plate 11, which are connected in one piece to the heat dissipation plate 11.
  • An additional lid 18 made of metal or plastic then closes off the heat exchanger.
  • the structuring of the heat dissipation plate 11 on both sides and the entire structure, except for the lid 19 of the cooling unit 17 is integral, so that the structured back directly acts as open flow channels / structures for the liquid heat sink.
  • the composite formed by the heat sink 1 and the power electronics module or the semiconductor device is created so that it withstands the thermally induced stresses in the context of elastic deformation of the individual materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Die Erfindung betrifft einen Kühlkörper für Leistungselektronikmodule oder für Halbleiterbauelemente mit einer ebenen metallischen Wärmeableitplatte, bei dem die Wärmeableitplatte auf der dem Leistungselektronikmodul oder der dem Halbleiterbauelement zugewandten Seite eine matrixförmig strukturierte Oberfläche mit hervortretenden Erhebungen aufweist, wobei die Wärmeableitplatte und matrixförmig strukturierte Oberfläche aus einem Stück gefertigt sind.

Description

Beschreibung
Kühlkörper
Die Erfindung betrifft einen Kühlkörper für Leistungselektronikmodule oder für Halbleiterbauelemente gemäß dem Oberbegriff des Anspruchs 1.
Transistoren und Mikroprozessoren erzeugen im Betrieb ein beträchtliches Maß an Abwärme. Um eine Überhitzung zu verhindern, die zu Fehlfunktionen oder zur Zerstörung der Bauelemente führen kann, reicht die natürliche Wärmeabstrahlung bei modernen Prozessoren für Personal Computer, IGBTs, MOSFETs u. a. ohne weitere Hilfsmittel nicht aus. Um eine optimale Kühlung sowie wenig Verlustleistung zu gewährleisten, muss die Abwärme möglichst schnell vom Bauteil abgeführt und die wärmeabgebende Oberfläche vergrößert werden. Zur Kühlung wird oft an der Wärmeableitplatte zusätzlich noch mittels Wärmeleitpaste ein Kühlkörper angeordnet. Die Kühlung kann mit Luft oder Flüssigkeit unterstützt erfolgen. Im ersten Fall ist der Kühlkörper ein berippter Metallblock, oft aus Aluminium oder Kupfer, oft mit zusätzlich auf dem Kühlkörper angebrachten Lüftern. Im zweiten Fall besteht der Kühlkörper aus einem mit Fluid durchströmten Wärmeübertrager.
Leistungselektronikmodule wie beispielsweise IGBTs, DCB-Elemente, MOSFETs u. a. werden heute mehrteilig aufgebaut. Ein wesentliches Problem bei der Herstellung und im späteren Betrieb ist der große Unterschied der Wärmeausdehnungskoeffizienten von Keramikträger und von Cu-Wärmeableitplatten, welche als mechanischer Stabilisator und zur Wärmeableitung dienen. Beim Löt / Bondprozess (DCB) wird beispielsweise Lot aus einer SnAgCu-Legierung über den Schmelzpunkt bei 2210C hinaus bis zu einer Löttemperatur von 250 - 26O0C und die Wärmeableitplatte auf bis zu 260°C erhitzt. Beim anschließenden Abkühlen verformt sich das komplette Bauteil, da die Wärmeausdehnungskoeffizienten der Keramik mit 4-6x10'6 1/K sich sehr stark von dem Wert der Cu- Wärmeableitplatte mit 17X10"6 1/K unterscheiden. Unter ungünstigen Bedingungen können die auftretenden Spannungen so groß werden, dass die Keramik reißt. Abhilfe könnte eine Wärmeableitplatte aus einem Werkstoff mit niedrigerem Ausdehnungskoeffizienten und ausreichend guter thermischer Leitfähigkeit schaffen. Diese Werkstoffe sind durch ihre Zusammensetzung und ihre Herstellungsprozesse jedoch sehr teuer.
Mit der Einführung der SMD-Technik entstand alternativ auch die Möglichkeit, Chip-Carrier mit ihren Anschlüssen durch Anschlussdrähte direkt auf herkömmliche Epoxid-Glas-Laminate zu bestücken. Bei Leadless Ceramic Chip-Carrier (LCCC) kommt es jedoch durch den linearen Ausdehnungskoeffizienten von ca. 6-8x10"6 1/K gegenüber dem höheren Wert von ca. 12-15 x10"6 1/K des verwendeten Werkstoffes der Leiterplatte ebenfalls zu starken Scherspannungen zwischen Chip-Carrier und Lötstelle. Diese Spannungen können zu Abrissen der Chip-Carrier von der Lötstelle bzw. sogar zu Rissen im Chip-Carrier führen.
Abhilfe kann durch den Einbau von Kernsubstraten in Multilayer-Schaltungen geschaffen werden, wobei dann hauptsächlich Cu-Invar-Cu eingesetzt wird. Die Cu-Invar-Cu-Lagen sind symmetrisch im Multilayer angeordnet und können als Masse- und Versorgungsebene verwendet werden. Diese Anordnung bietet den Vorteil, dass nahe der Oberfläche der Schaltung ein thermischer Ausdehnungskoeffizient im Bereich 1 ,7-2 x10"6 1/K vorliegt, der dem Wert der keramischen Chip-Carrier angepasst ist. Je größer das SMD-Bauteil, desto mehr besteht die Notwendigkeit, den Ausdehnungskoeffizienten der Multilayer-Oberfläche dem von Keramik anzupassen.
In alternativen Lösungen kann im Multilayer Cu-Invar-Cu das Invar auch als dicker Metallkern von 0,5 mm bis 1 ,5 mm in die Mitte des Multilayers angeordnet werden. Der Vorteil liegt neben der Begrenzung des Ausdehnungskoeffizienten an der Schaltungsoberfläche, vor allem in der zusätzlichen guten Wärmeableitung. Hierdurch ist auch eine beidseitige Bestückung mit SMD-Bauteilen möglich. Die Cu-Invar-Cu-Leiterplatten können neben der Ausdehnungskontrolle der Oberfläche auch noch die Funktion einer Wärmesenke einnehmen.
Als weitere spezielle Lösung ist aus der Druckschrift WO 2006/109660 A1 ein Kühlkörper für Leistungshalbleiterbauelemente bekannt. An der gemeinsamen Berührungsfläche ist zwischen dem Kühlkörper und dem Halbleiterbauelement eine Zwischenschicht zum Abbau von thermischen Spannungen angeordnet. Diese Zwischenschicht besteht aus einer Aluminiumplatte, die eine Vielzahl von Löchern zum Spannungsabbau aufweist. Die Zwischenschicht ist bauteilseitig mit einer auf einem Isolatorsubstrat vollflächig aufgebrachten metallischen Oberflächenschicht und dem Kühlkörper verlötet.
Des Weiteren ist aus der Druckschrift DE 101 34 187 B4 eine Kühleinrichtung für Leistungshalbleitermodule, bestehend aus einem Gehäuse, Anschlusselementen, einem keramischen Substrat und Halbleiterbauelementen bekannt. Die Wärmeableitung von einem Leistungshalbleitermodul erfolgt über einzelne Kühlelemente, die ihrerseits aus einem ebenen Grundkörper und einer fingerartigen Fortsetzung bestehen. Diese einzelnen Kühlelemente sind matrixartig in Reihen und Spalten an der zu kühlenden Oberfläche angeordnet. Die nicht dem zu kühlenden Bauelement oder Modul zugewandten Oberflächen der einzelnen Kühlelemente können glatte oder zur besseren Wärmeableitung beliebig strukturierte Oberflächen aufweisen.
Der Erfindung liegt die Aufgabe zugrunde, einen Kühlkörper für Leistungselektronikmodule weiterzuentwickeln, deren Verbund den thermisch bedingten Spannungen standhält. Die Erfindung wird durch die Merkmale des Anspruchs 1 wiedergegeben. Die weiteren rückbezogenen Ansprüche betreffen vorteilhafte Aus- und Weiterbildungen der Erfindung.
Die Erfindung schließt einen Kühlkörper für Leistungselektronikmodule oder für Halbleiterbauelemente mit einer ebenen metallischen Wärmeableitplatte ein, bei dem die Wärmeableitplatte auf der dem Leistungselektronikmodul oder der dem Halbleiterbauelement zugewandten Seite eine matrixförmig strukturierte Oberfläche mit hervortretenden Erhebungen aufweist, wobei die Wärmeableitplatte und matrixförmig strukturierte Oberfläche aus einem Stück gefertigt sind.
Die Erfindung geht dabei von der Überlegung aus, dass die matrixförmig strukturierte Oberfläche des Kühlkörpers geeignet ist, die auftretenden thermisch bedingten Spannungen durch elastische Verformung aufzunehmen. Die metallische Wärmeableitplatte mit der strukturierten Oberfläche kann aus hochleitfähigem Kupfer oder einer Kupferlegierung bestehen. Zu nennen sind in diesem Zusammenhang beispielsweise E-Cu, SE-Cu, ETP-Cu, OFE-Cu, CuFeO1I , CuSnO, 15 in weichem Zustand. Dabei kann die strukturierte Oberfläche mit Hilfe eines ein- oder mehrstufigen Walz- oder Prägeprozesses aus einem Bandmaterial einstückig hergestellt werden. Durch den Umformprozess findet üblicherweise eine Verfestigung des Werkstoffs in den strukturierten Konturen statt. Insbesondere im Bereich der zwischen den einzelnen Erhebungen gebildeten Stege findet eine Materialverfestigung statt. Die erzielte Struktur kann anschließend zudem mit Hilfe eines Lasers oder durch Wärmebehandlung im Ofen erweicht werden, um die Stege der Kontur in einen möglichst weichen Zustand zu bringen, welche die Längenänderungen durch thermische Ausdehnung abfedern können. Als alternative Verfahren zur Strukturierung können auch Fräsen, Fließpressen oder Ätzen geeignet sein.
Der Kühlkörper wird mit seiner strukturierten Oberfläche beispielsweise unter das Keramiksubstrat gelötet. So können die Stege bzw. Konturen die auftretenden Spannungen aufnehmen, ohne dass es zu Verformungen eines Moduls kommt. Der besondere Vorteil besteht darin, dass der durch den Kühlkörper und dem Leistungselektronikmodul oder dem Halbleiterbauelement geschaffene Verbund den thermisch bedingten Spannungen im Rahmen elastischer Verformungen der einzelnen Materialien standhält. Dabei können auch Materialien verwendet werden, die ganz unterschiedliche Wärmeausdehnungskoeffizienten besitzen, ohne dass die thermisch bedingten Spannungen zum Abriss des Materialverbundes führen. Auch den aus höheren Löttemperaturen resultierenden Spannungs- zuständen kann der Materialverbund standhalten.
In bevorzugter Ausgestaltung der Erfindung kann die strukturierte Oberfläche des Kühlkörpers pyramidenstumpfartige oder kegelstumpfartige Erhebungen aufweisen. Diese vergleichsweise einfache Struktur weist eine besonders kleine gemeinsame Berührungsfläche der Erhebungen mit dem Leistungselektronikmodul oder dem Halbleiterbauelement auf. Die sich zur Wärmeableitplatte hin verdickenden Erhebungen liefern einen Beitrag zur Wärmespreizung, also der flächenhaften Verteilung des Wärmeeintrags in den Kühlkörper.
In weiterer vorteilhafter Ausgestaltung der Erfindung kann die strukturierte Oberfläche pilzförmige Erhebungen aufweisen. Die Wärmeableitplatte wird dabei in x- und y-Richtung strukturiert, so dass T-förmige Pilzstrukturen oder auch pyramidenförmige Strukturen mit Stegen als Verbindung zur metallischen Wärmeableitplatte hin die Ausdehnung entsprechend abfedern. Die Konturoberflächen werden hierzu abschließend durch Walzen oder Prägen angestaucht. Insbesondere im mittleren Bereich der Erhebungen verschlankt sich die Struktur, wodurch sich dort elastisch ve.rformbare Bereiche ausbilden, die sich besonders vorteilhaft zum Abbau von Spannungen im Material eignen.
Vorteilhafterweise kann die strukturierte Oberfläche zapfenartige oder nadelartige Erhebungen aufweisen. Alternativ können auch rippenartige oder kreuzrippen- artige Erhebungen ausgebildet sein. Je nach Erfordernis können auch die einzelnen Strukturen miteinander in Kombination vorliegen. Beispielsweise bei einem lokalen Wärmeeintrag einer Wärmequelle vom Modul zum Kühlkörper können lokal unterschiedliche Strukturen unmittelbar benachbart zum Einsatz kommen, die sich besonders vorteilhaft für eine Wärmeableitung oder Wärmespreizung eignen.
In vorteilhafter Ausgestaltung kann die Strukturgröße der strukturierten Oberfläche prinzipiell unter einem Millimeter liegen, bevorzugt jedoch zwischen 0,5 bis 20 mm. Die Breite B, Länge L bzw. der Durchmesser D und Höhe H derartiger Mikrostrukturen können Abmessungen von einigen Mikrometern bis zu mehreren Millimetern aufweisen. Die Höhe H der Struktur kann variabel sein. Vorteilhafterweise kann das Verhältnis der Höhe H einer Erhebung zur lateralen Ausdehnung B, L, D einer Erhebung zumindest 1 :1 betragen. Mit geometrischen Verhältnissen unter diesem Quotienten besteht die Gefahr, dass Spannungen im Material nicht mehr elastisch ausgeglichen werden können und dadurch der Verbund reißen kann.
In besonders bevorzugter Ausgestaltung der Erfindung kann der Zwischenraum zwischen den Erhebungen mit einer ausdehnungsniedrigen Eisen-Nickel- Legierung der Zusammensetzung auf der Basis von Fe: 64 % und Ni: 36 % ausgefüllt sein. Die metallische Wärmeableitplatte kann dabei aus Kupfer oder einer Kupferlegierung bestehen. Die Kombination aus Kupfer und der Eisen- Nickel-Legierung bietet den Vorteil, dass zwei Materialien mit unterschiedlicher thermischer Ausdehnung an der mikrostrukturierten Oberfläche vorhanden sind. Die Eisen-Nickel-Legierung hat einen thermischen Ausdehnungskoeffizient von 1,7 bis 2,0x106 1/K, der ungefähr dem Wert der keramischen Chip-Carrier- Materialien entspricht. Durch das Ausfüllen des durch die Erhebungen gebildeten Zwischenraums kann eine einfache flächige Lötverbindung von Kühlkörper und beispielsweise einem Leistungselektronikmodul geschaffen werden.
Vorteilhafterweise kann die Wärmeableitplatte auf der dem Leistungselektronikmodul oder der dem Halbleiterbauelement abgewandten Seite matrixartig zusätzlich eine Vielzahl von strukturierten Erhebungen, beispielsweise in Form von Rippen oder Zapfen in der Größenordnung von 0,5 bis 20 mm, zur Wärmeableitung aufweisen. Hierzu kann die Wärmeableitplatte beidseitig strukturiert sein, so dass zusätzlich der sonst notwendige berippte Kühlkörper und die Wärmeleitpaste für Luftkühlung entfallen können, wodurch der durch bisherige Lösungen mit Wärmeleitpaste verursachte thermische Widerstand eliminiert wird. Die strukturierten Erhebungen und die Wärmeableitplatte können demnach einstückig ausgebildet sein. Als Herstellungsverfahren kommen dieselben Prozesstechnologien wie Walzen, Fräsen, Fließpressen, Prägen oder weitere andere Verfahren zum Einsatz. Einteilige Strukturen bieten darüber hinaus einen Kostenvorteil gegenüber mehrteiligen Lösungen.
Da diese Struktur vorzugsweise der Entwärmung mit Luft dient, ist es wichtig, dass eine hohe Flächenvergrößerung damit erfolgt. Übliche Geometrien sind Lamellen oder so genannte Pins, die eine Höhe von mehreren Zentimetern und einem Abstand größer als ein Millimeter haben können. Diese Lamellen oder Pins können auch mechanisch an der Wärmeableitplatte befestigt sein.
Alternativ kann auf der dem Leistungselektronikmodul oder der dem Halbleiterbauelement abgewandten Seite der Wärmeableitplatte eine Kühleinheit mit geschlossenem Fluidkreislauf angeordnet sein. Dabei kann die Strukturierung der Wärmeableitplatte beidseitig sein, so dass die strukturierte Rückseite direkt als offene Strömungskanäle/-strukturen für den Flüssigkeitskühlkörper fungiert. Ein zusätzlicher Deckel aus Metall oder Kunststoff schließt dann den Wärmeübertrager ab.
Da diese Struktur vorzugsweise der Entwärmung mit Hilfe eines separaten Kühlmediums dient, meistens einem Glycol-Wasser Gemisch oder einem anderen in der Elektronikindustrie gebräuchlichen Kältemittel, sollten als Strukturen Kanäle, Kanalabschnitte oder auch Pins ausgebildet sein. Die Kühlung kann durch einen einphasigen Prozess, beispielsweise Flüssigkeitskühlung, oder einen zwei- phasigen Prozess, beispielsweise Verdampfung, gewährleistet werden. Übliche Strukturhöhen liegen bei 0,5 mm bis 10 mm, wobei die geformten Kanälen Breiten von 20 μm bis 3 mm aufweisen können. Weitere Ausführungsbeispiele der Erfindung werden anhand von schematischen Zeichnungen näher erläutert.
Darin zeigen:
Fig. 1 eine Ansicht der strukturierten Oberfläche eines Kühlkörpers mit ebener
Unterseite, Fig. 2 eine weitere Ansicht einer Ausgestaltung der strukturierten Oberfläche eines Kühlkörpers mit ebener Unterseite, Fig. 3 eine weitere Ansicht einer Ausgestaltung der strukturierten Oberfläche eines Kühlkörpers mit ebener Unterseite, Fig. 4 eine Ansicht der strukturierten Oberfläche eines Kühlkörpers mit auf der
Unterseite angeordneten Kühlelementen, und Fig. 5 eine Ansicht der strukturierten Oberfläche eines Kühlkörpers mit auf der
Unterseite angeordneten Kühleinheit mit geschlossenem Fluidkreislauf.
Einander entsprechende Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
Fig. 1 zeigt eine schematische Ansicht der strukturierten Oberfläche 12 eines Kühlkörpers 1 für in der Figur nicht dargestellte Leistungselektronikmodule oder für Halbleiterbauelemente.
Der Kühlkörper 1 besteht in seiner Grundform aus einer ebenen metallischen Wärmeableitplatte 11 , deren Oberseite, also die einem Leistungselektronikmodul oder einem Halbleiterbauelement zugewandte Seite, eine matrixförmig strukturierte Oberfläche 12 in Form von hervortretenden Erhebungen 13 aufweist. Die Wärmeableitplatte 11 und die Erhebungen 13 der matrixförmig strukturierten Oberfläche 12 sind dabei aus einem Stück gefertigt. Die Unterseite der Wärmeableitplatte 11 , also die einem Leistungselektronikmodul oder einem Halbleiterbauelement abgewandten Seite, ist in diesem Fall eben. Die Erhebungen 13 sind als Pyramidenstümpfe ausgebildet. Der Zwischenraum 14 zwischen den Erhebungen 13 ist nicht ausgefüllt. Die Breite B, Länge L und Höhe H derartiger Strukturen können Abmessungen von einigen Mikrometern bis zu mehreren Millimetern aufweisen. Das Verhältnis der Höhe H einer Erhebung 13 zur lateralen Ausdehnung B bzw. L einer Erhebung 13 ist in diesem Falle ungefähr 3:1. Tendenziell ist die Höhe H einer Erhebung 13 in der Regel größer als deren laterale Ausdehnung B bzw. L.
Fig. 2 zeigt eine weitere Ansicht einer Ausgestaltung der strukturierten Oberfläche 12 eines Kühlkörpers 1 mit ebener Unterseite. Die matrixförmig strukturierte Oberfläche 12 ist in Form von hervortretenden pyramidenstumpfartigen Erhebungen 13 ausgebildet. Die Wärmeableitplatte 11 und die Erhebungen 13 der matrixförmig strukturierten Oberfläche 12 sind dabei wiederum aus einem Stück gefertigt.
Die Erhebungen 13 sind als Pyramidenstümpfe ausgebildet, deren Fuß sich im Übergangsbereich zur Wärmeableitplatte 11 hin durch Stege 15 verdickt. Diese Fußform dient zur weiteren Verbesserung der Kontaktfläche zwischen Substrat und Wärmeableitplatte 11. Wiederum ist der Zwischenraum 14 zwischen den Erhebungen 13 nicht mit Material ausgefüllt.
Fig. 3 zeigt eine weitere Ansicht einer Ausgestaltung der strukturierten Oberfläche 12 eines Kühlkörpers 1 mit ebener Unterseite. Die Wärmeableitplatte 11 ist dabei in x- und y-Richtung so strukturiert, dass die Erhebungen 13 in Form von T-för- migen Pilzstrukturen in Verbindung mit pyramidenförmigen Strukturen mit Stegen 15 als Verbindung zur metallischen Wärmeableitplatte 11 hin der unterschiedlichen Ausdehnung entsprechend abpuffert. Insbesondere im Halsbereich, also im mittleren Bereich der Erhebungen verschlankt sich die Struktur, wodurch sich dort elastisch verformbare Bereiche ausbilden, die sich besonders vorteilhaft zur Aufnahme von Spannungen durch Temperaturbeanspruchung des Leistungselektronikmoduls eignen.
Fig. 4 zeigt eine Ansicht der strukturierten Oberfläche 12 eines Kühlkörpers 1 mit auf der Unterseite angeordneten Kühlelementen 16. Dabei ist an der Unterseite der Wärmeableitplatte 11 eine Vielzahl von zusätzlichen rippenartigen Kühlele- menten 16 zur Wärmeableitung angeordnet. Die Kühlelemente 16 sind an die Wärmeableitplatte 11 beispielsweise angelötet, mechanisch oder mit Wärmeleitpaste angebunden und daher in diesem Falle zweistückig.
Die Kühlelemente 16 und die Wärmeableitplatte 11 können jedoch auch einstückig ausgebildet sein. Hierzu ist dann die Wärmeableitplatte beidseitig strukturiert, so dass eine zusätzliche, mit Wärmeleitpaste befestigte Kühleinheit für Luftkühlung entfallen kann, wodurch der durch bisherige Lösungen mit Wärmeleitpaste verursachte thermische Widerstand eliminiert wird. Als Herstellungsverfahren kommen Prozesstechnologien wie Walzen, Fräsen, Fließpressen, Prägen oder weitere andere Verfahren zum Einsatz.
Fig. 5 zeigt eine Ansicht der strukturierten Oberfläche 12 eines Kühlkörpers 1 mit einer auf der Unterseite angeordneten Kühleinheit 17 mit geschlossenem Fluidkreislauf. Da diese Struktur vorzugsweise der Entwärmung mit Hilfe eines separaten Kühlmediums dient, sind als Strukturen Kanäle ausgebildet, mit Strukturhöhen bei 0,5 mm bis 10 mm, wobei die geformten Kanälen Breiten von 20 μm bis 3 mm aufweisen.
Hierzu ist an der Unterseite der Wärmeableitplatte 11 matrixartig eine Vielzahl von zusätzlichen Kühlrippen 18 zur Wärmeableitung angeordnet, die in einem Stück mit Wärmeableitplatte 11 in Verbindung stehen. Ein zusätzlicher Deckel 18 aus Metall oder Kunststoff schließt dann den Wärmeübertrager ab.
In diesem Falle ist die Strukturierung der Wärmeableitplatte 11 beidseitig und die gesamte Struktur, bis auf den Deckel 19 der Kühleinheit 17 einstückig, so dass die strukturierte Rückseite direkt als offene Strömungskanäle/-strukturen für den Flüssigkeitskühlkörper fungiert. So ist der durch den Kühlkörper 1 und dem Leistungselektronikmodul oder dem Halbleiterbauelement gebildete Verbund so geschaffen, dass er den thermisch bedingten Spannungen im Rahmen elastischer Verformungen der einzelnen Materialien standhält. Bezugszeichenliste
1 Kühlkörper
11 Wärmeableitplatte
12 strukturierte Oberfläche
13 Erhebungen
14 Zwischenraum
15 Stege
16 strukturierte Erhebungen, Kühlelemente
17 Kühleinheit
18 Kühlrippen
19 Deckel
H Höhe einer Erhebung
B Breite einer rechteckigen Erhebung
L Länge einer rechteckigen Erhebung
D Durchmesser einer runden Erhebung

Claims

Patentansprüche
1. Kühlkörper (1 ) für Leistungselektronikmodule oder für Halbleiterbauelemente mit einer ebenen metallischen Wärmeableitplatte (11), dadurch gekennzeichnet, dass die Wärmeableitplatte (11) auf der dem Leistungselektronikmodul oder der dem Halbleiterbauelement zugewandten Seite eine matrixförmig strukturierte Oberfläche (12) mit hervortretenden Erhebungen (13) aufweist, wobei die Wärmeableitplatte (11) und matrixförmig strukturierte Oberfläche (12) aus einem Stück gefertigt sind.
2. Kühlkörper nach Anspruch 1 , dadurch gekennzeichnet, dass die strukturierte Oberfläche (12) pyramidenstumpfartige oder kegelstumpfartige Erhebungen (13) aufweist.
3. Kühlkörper nach Anspruch 1 , dadurch gekennzeichnet, dass die strukturierte Oberfläche (12) pilzförmige Erhebungen (13) aufweist.
4. Kühlkörper nach Anspruch 1 , dadurch gekennzeichnet, dass die strukturierte Oberfläche (12) zapfenartige oder nadelartige Erhebungen (13) aufweist.
5. Kühlkörper nach Anspruch 1 , dadurch gekennzeichnet, dass die strukturierte Oberfläche (12) rippenartige oder kreuzrippenartige Erhebungen (13) aufweist.
6. Kühlkörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Strukturgröße der strukturierten Oberfläche (12) zwischen 0,5 bis 20 mm liegt.
7. Kühlkörper nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Verhältnis der Höhe (H) einer Erhebung (13) zur lateralen Ausdehnung (B, L, D) einer Erhebung (13) zumindest 1 :1 beträgt.
8. Kühlkörper nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Zwischenraum (14) zwischen den Erhebungen (13) mit einer ausdehnungsniedrigen Eisen-Nickel-Legierung ausgefüllt ist.
9. Kühlkörper nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die metallische Wärmeableitplatte (11) aus Kupfer oder einer Kupferlegierung besteht.
10. Kühlkörper nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Wärmeableitplatte (11) auf der dem Leistungselektronikmodul oder der dem Halbleiterbauelement abgewandten Seite matrixartig zusätzlich eine Vielzahl von strukturierten Erhebungen (16) zur Wärmeableitung aufweist.
11. Kühlkörper nach Anspruch 10, dadurch gekennzeichnet, dass die strukturierten Erhebungen (16) und die Wärmeableitplatte (11) mit der matrixförmig strukturierten Oberfläche (12) einstückig ausgebildet sind.
12. Kühlkörper nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass auf der dem Leistungselektronikmodul oder der dem Halbleiterbauelement abgewandten Seite der Wärmeableitplatte (11) eine Kühleinheit (17) mit geschlossenem Fluidkreislauf angeordnet ist.
PCT/EP2008/003241 2007-04-27 2008-04-23 Kühlkörper WO2008135164A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2008800114467A CN101652857B (zh) 2007-04-27 2008-04-23 冷却体
US12/450,030 US20100091463A1 (en) 2007-04-27 2008-04-23 Cooling body
EP08735368A EP2143138A1 (de) 2007-04-27 2008-04-23 Kühlkörper
JP2010504526A JP2010525588A (ja) 2007-04-27 2008-04-23 冷却体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007019885.1 2007-04-27
DE102007019885A DE102007019885B4 (de) 2007-04-27 2007-04-27 Kühlkörper mit matrixförmig strukturierter Oberfläche

Publications (1)

Publication Number Publication Date
WO2008135164A1 true WO2008135164A1 (de) 2008-11-13

Family

ID=39503901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/003241 WO2008135164A1 (de) 2007-04-27 2008-04-23 Kühlkörper

Country Status (6)

Country Link
US (1) US20100091463A1 (de)
EP (1) EP2143138A1 (de)
JP (1) JP2010525588A (de)
CN (1) CN101652857B (de)
DE (1) DE102007019885B4 (de)
WO (1) WO2008135164A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013506996A (ja) * 2009-10-03 2013-02-28 ウルバリン チューブ,インコーポレイテッド ピン付きコールドプレート
DE102013223461A1 (de) 2013-11-18 2015-05-21 Rohde & Schwarz Gmbh & Co. Kg Kühlkörper zum Abtransport von Wärme

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8860210B2 (en) * 2009-06-10 2014-10-14 Toyota Jidosha Kabushiki Kaisha Semiconductor device
US8587116B2 (en) 2010-09-30 2013-11-19 Infineon Technologies Ag Semiconductor module comprising an insert
WO2012079042A1 (en) * 2010-12-09 2012-06-14 Panasonic Avionics Corporation Heatsink device and method
JP5698542B2 (ja) * 2011-01-14 2015-04-08 アロン化成株式会社 放熱構造体及びその製造方法
US20120186798A1 (en) * 2011-01-26 2012-07-26 Celsia Technologies Taiwan, I Cooling module for led lamp
DE102011078460A1 (de) 2011-06-30 2013-01-03 Robert Bosch Gmbh Elektronische Schaltungsanordnung zur Entwärmung von Verlustwärme abgebenden Komponenten
US9459056B2 (en) * 2011-09-02 2016-10-04 Gabe Cherian SPRDR—heat spreader—tailorable, flexible, passive
US9417017B2 (en) 2012-03-20 2016-08-16 Thermal Corp. Heat transfer apparatus and method
US9470720B2 (en) 2013-03-08 2016-10-18 Sandisk Technologies Llc Test system with localized heating and method of manufacture thereof
US9230878B2 (en) 2013-04-12 2016-01-05 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Integrated circuit package for heat dissipation
US20160069622A1 (en) * 2013-04-23 2016-03-10 Alexiou & Tryde Holding Aps Heat Sink Having a Cooling Structure with Decreasing Structure Density
US9898056B2 (en) 2013-06-19 2018-02-20 Sandisk Technologies Llc Electronic assembly with thermal channel and method of manufacture thereof
US9313874B2 (en) * 2013-06-19 2016-04-12 SMART Storage Systems, Inc. Electronic system with heat extraction and method of manufacture thereof
US10013033B2 (en) 2013-06-19 2018-07-03 Sandisk Technologies Llc Electronic assembly with thermal channel and method of manufacture thereof
US9158349B2 (en) 2013-10-04 2015-10-13 Sandisk Enterprise Ip Llc System and method for heat dissipation
KR102199212B1 (ko) * 2013-12-02 2021-01-07 삼성디스플레이 주식회사 표시장치용 백플레인, 및 이를 포함하는 표시장치
JP6308780B2 (ja) * 2013-12-27 2018-04-11 三菱電機株式会社 パワーモジュール
US9549457B2 (en) 2014-02-12 2017-01-17 Sandisk Technologies Llc System and method for redirecting airflow across an electronic assembly
DE102014101898B3 (de) * 2014-02-14 2015-06-25 Fujitsu Technology Solutions Intellectual Property Gmbh Kühlanordnung für ein Computersystem
US9497889B2 (en) 2014-02-27 2016-11-15 Sandisk Technologies Llc Heat dissipation for substrate assemblies
US9348377B2 (en) 2014-03-14 2016-05-24 Sandisk Enterprise Ip Llc Thermal isolation techniques
US9519319B2 (en) 2014-03-14 2016-12-13 Sandisk Technologies Llc Self-supporting thermal tube structure for electronic assemblies
US9485851B2 (en) 2014-03-14 2016-11-01 Sandisk Technologies Llc Thermal tube assembly structures
JP6423604B2 (ja) * 2014-03-28 2018-11-14 昭和電工株式会社 ヒートシンク及び電子部品
JP2015214738A (ja) * 2014-05-13 2015-12-03 株式会社東芝 耐食性金属部材、パワーデバイス用ヒートシンク、発電機用回転翼及び耐食性金属部材の製造方法
DE102015204915B4 (de) * 2015-03-18 2017-11-16 Continental Automotive Gmbh Wärmeleitkörper mit einer Koppeloberfläche mit Vertiefung und Wärmetransfervorrichtung
CN106558561A (zh) * 2015-09-29 2017-04-05 比亚迪股份有限公司 功率模块和具有其的车辆
DE102017110354A1 (de) * 2017-05-12 2018-11-15 Connaught Electronics Ltd. Gehäuse für eine Steuereinheit für eine Kamera eines Kraftfahrzeugs und mit einem Wärmeabfuhrelement, Kamera, Kraftfahrzeug sowie Verfahren
TW202024553A (zh) * 2018-12-27 2020-07-01 圓剛科技股份有限公司 散熱裝置
TWI758095B (zh) * 2021-02-09 2022-03-11 潘宇翔 適用於一電子元件的散熱結構及散熱模組
DE102022123868A1 (de) * 2022-08-22 2024-02-22 Elringklinger Ag Entwärmungsvorrichtung

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1247489B (de) * 1958-08-04 1967-08-17 Thomson Houston Comp Francaise Halbleiterbauelement-Zwischenplatte
DE2802439A1 (de) 1977-01-28 1978-08-03 Motorola Inc Halbleiter-sockel
EP0223475A2 (de) * 1985-11-06 1987-05-27 The M-O Valve Company Limited Gehäuse für Mikroschaltungen
US20040040327A1 (en) 2001-07-09 2004-03-04 Masakazu Iida Power module and air conditioner
US20040124525A1 (en) 2002-12-27 2004-07-01 Ibm Chip cooling
US20040227230A1 (en) * 2003-05-13 2004-11-18 Ming-Ching Chou Heat spreaders
US20050281000A1 (en) 2004-06-21 2005-12-22 International Business Machines Corporation Thermal dissipation structure and method employing segmented heat sink surface coupling to an electronic component
DE10134187B4 (de) 2001-07-13 2006-09-14 Semikron Elektronik Gmbh & Co. Kg Kühleinrichtung für Halbleitermodule
WO2006109660A1 (ja) 2005-04-06 2006-10-19 Kabushiki Kaisha Toyota Jidoshokki 放熱装置
EP1734577A1 (de) * 2005-06-16 2006-12-20 ABB Research Ltd Kühlvorrichtung sowie Halbleitermodul mit einer solchen Kühlvorrichtung

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2107549A1 (de) * 1970-02-19 1971-09-02 Texas Instruments Inc Trager einer elektronischen Schaltung mit einem Sammelsystem mit Warmeleitungs eigenschaften fur alle Richtungen
US4899210A (en) * 1988-01-20 1990-02-06 Wakefield Engineering, Inc. Heat sink
JP2655426B2 (ja) * 1988-10-11 1997-09-17 日本電気株式会社 半導体装置
JPH07115214B2 (ja) * 1988-11-22 1995-12-13 住友金属工業株式会社 多芯構造複合材料の製造方法
CA1316303C (en) * 1988-12-23 1993-04-20 Thijs Eerkes Composite structure
US5213868A (en) * 1991-08-13 1993-05-25 Chomerics, Inc. Thermally conductive interface materials and methods of using the same
JPH0555417A (ja) * 1991-08-22 1993-03-05 Nec Corp ヒートシンク付半導体装置
JPH09275170A (ja) * 1996-04-03 1997-10-21 Fuji Electric Co Ltd 半導体装置
US5808874A (en) * 1996-05-02 1998-09-15 Tessera, Inc. Microelectronic connections with liquid conductive elements
US6075288A (en) * 1998-06-08 2000-06-13 Micron Technology, Inc. Semiconductor package having interlocking heat sinks and method of fabrication
US6942025B2 (en) * 2000-09-20 2005-09-13 Degree Controls, Inc. Uniform heat dissipating and cooling heat sink
US6836409B1 (en) * 2001-07-10 2004-12-28 Nortel Networks Limited Component cooling in electronic devices
US6896045B2 (en) * 2001-10-24 2005-05-24 Cool Shield, Inc. Structure and method of attaching a heat transfer part having a compressible interface
CN1508866A (zh) * 2002-12-13 2004-06-30 庄福良 一种散热器
JP3934565B2 (ja) * 2003-02-21 2007-06-20 富士通株式会社 半導体装置
US6992382B2 (en) * 2003-12-29 2006-01-31 Intel Corporation Integrated micro channels and manifold/plenum using separate silicon or low-cost polycrystalline silicon
US7182124B2 (en) * 2004-08-31 2007-02-27 Egbon Electronics Ltd. Heat sink structure
US7593230B2 (en) * 2005-05-05 2009-09-22 Sensys Medical, Inc. Apparatus for absorbing and dissipating excess heat generated by a system
CN2833889Y (zh) * 2005-05-16 2006-11-01 杨开艳 一种高效能cpu散热器
US7646608B2 (en) * 2005-09-01 2010-01-12 Gm Global Technology Operations, Inc. Heat transfer plate
DE102005049872B4 (de) * 2005-10-18 2010-09-23 Continental Automotive Gmbh IC-Bauelement mit Kühlanordnung

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1247489B (de) * 1958-08-04 1967-08-17 Thomson Houston Comp Francaise Halbleiterbauelement-Zwischenplatte
DE2802439A1 (de) 1977-01-28 1978-08-03 Motorola Inc Halbleiter-sockel
EP0223475A2 (de) * 1985-11-06 1987-05-27 The M-O Valve Company Limited Gehäuse für Mikroschaltungen
US20040040327A1 (en) 2001-07-09 2004-03-04 Masakazu Iida Power module and air conditioner
DE10134187B4 (de) 2001-07-13 2006-09-14 Semikron Elektronik Gmbh & Co. Kg Kühleinrichtung für Halbleitermodule
US20040124525A1 (en) 2002-12-27 2004-07-01 Ibm Chip cooling
US20040227230A1 (en) * 2003-05-13 2004-11-18 Ming-Ching Chou Heat spreaders
US20050281000A1 (en) 2004-06-21 2005-12-22 International Business Machines Corporation Thermal dissipation structure and method employing segmented heat sink surface coupling to an electronic component
WO2006109660A1 (ja) 2005-04-06 2006-10-19 Kabushiki Kaisha Toyota Jidoshokki 放熱装置
EP1734577A1 (de) * 2005-06-16 2006-12-20 ABB Research Ltd Kühlvorrichtung sowie Halbleitermodul mit einer solchen Kühlvorrichtung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013506996A (ja) * 2009-10-03 2013-02-28 ウルバリン チューブ,インコーポレイテッド ピン付きコールドプレート
DE102013223461A1 (de) 2013-11-18 2015-05-21 Rohde & Schwarz Gmbh & Co. Kg Kühlkörper zum Abtransport von Wärme

Also Published As

Publication number Publication date
US20100091463A1 (en) 2010-04-15
EP2143138A1 (de) 2010-01-13
JP2010525588A (ja) 2010-07-22
DE102007019885B4 (de) 2010-11-25
CN101652857B (zh) 2011-07-20
DE102007019885A1 (de) 2008-11-06
CN101652857A (zh) 2010-02-17

Similar Documents

Publication Publication Date Title
DE102007019885B4 (de) Kühlkörper mit matrixförmig strukturierter Oberfläche
DE102007030389B4 (de) Moduleinheit mit einer Wärmesenke
EP2397754B1 (de) Trägerkörper für Bauelemente oder Schaltungen
DE102013207804B4 (de) Verfahren zum Herstellen eines Leistungsmoduls mit mittels Lichtbogenschweissen direkt verbundenen, wärmeleitenden Strukturen
DE10033977B4 (de) Zwischenverbindungsstruktur zum Einsatz von Halbleiterchips auf Schichtträgern
EP0654820B1 (de) Halbleiter-Modul mit konvexer Bodenplatte
DE102009001722B4 (de) Verfahren zum Aufbringen eines Wärmeleitmediums auf eine Wärmeableitfläche
DE19707514C2 (de) Halbleitermodul
DE102010003533B4 (de) Substratanordnung, Verfahren zur Herstellung einer Substratanordnung, Verfahren zur Herstellung eines Leistungshalbleitermoduls und Verfahren zur Herstellung einer Leistungshalbleitermodulanordnung
EP2392027B1 (de) Verbundbauteil
DE102006006175A1 (de) Leistungselektronikanordnung
EP1378008A2 (de) Leistungsmodul
EP3607581A1 (de) Zweiseitig gekühlter schaltkreis
DE19527867A1 (de) Metall-Substrat für elektrische und/oder elektronische Schaltkreise
DE102016115221A1 (de) Verfahren zum Verbinden von mindestens zwei Substraten zur Bildung eines Moduls
WO2009052814A2 (de) Kühlvorrichtung für halbleiterbauelemente, halbleiter-kühlanordnung und verfahren zu deren herstellung
EP3555913B1 (de) Halbleitermodul mit bodenplatte mit hohlwölbung
DE10134187B4 (de) Kühleinrichtung für Halbleitermodule
EP2721637B1 (de) Elektronische schaltungsanordnung mit verlustwärme abgebenden komponenten
DE10229711B4 (de) Halbleitermodul mit Mikrokühler
EP3360158B1 (de) Zweiseitig gekühlter schaltkreis
DE10249331B4 (de) Kühlvorrichtung
WO2018037047A1 (de) Leistungsmodul, verfahren zur herstellung und leistungselektronikschaltung
WO2012038121A1 (de) Flip-chip anordnung mit einem kühlelement und verfahren zur herstellung einer flip-chip anordnung
DE102004042367B4 (de) Leistungshalbleitermodul

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880011446.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08735368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12450030

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010504526

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008735368

Country of ref document: EP