WO2008087789A1 - 車両の制御装置、制御方法、その方法を実現するプログラムを記録した記録媒体 - Google Patents

車両の制御装置、制御方法、その方法を実現するプログラムを記録した記録媒体 Download PDF

Info

Publication number
WO2008087789A1
WO2008087789A1 PCT/JP2007/072060 JP2007072060W WO2008087789A1 WO 2008087789 A1 WO2008087789 A1 WO 2008087789A1 JP 2007072060 W JP2007072060 W JP 2007072060W WO 2008087789 A1 WO2008087789 A1 WO 2008087789A1
Authority
WO
WIPO (PCT)
Prior art keywords
degree
control
vehicle
accelerator opening
brake
Prior art date
Application number
PCT/JP2007/072060
Other languages
English (en)
French (fr)
Inventor
Kiyoshiro Ueoka
Yu Nakao
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US12/522,224 priority Critical patent/US8135530B2/en
Priority to EP07831790.6A priority patent/EP2103492B1/en
Publication of WO2008087789A1 publication Critical patent/WO2008087789A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/122Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger for locking of reverse movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0038Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/175Brake regulation specially adapted to prevent excessive wheel spin during vehicle acceleration, e.g. for traction control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/06Hill holder; Start aid systems on inclined road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/413Plausibility monitoring, cross check, redundancy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • Recording medium recording a program for realizing the method
  • the present invention relates to control of a vehicle in which brake hold control is executed, and more particularly to control of a vehicle in which brake hold control is canceled when the accelerator opening reaches a predetermined value.
  • the degree of brake pedal operation for example, the amount of brake pedal
  • a control brake hold control
  • the braking force at the time of stopping is maintained even if the driver takes his foot off the brake pedal when starting.
  • the brake hold control is canceled and the vehicle can be started. Therefore, when starting on an uphill road, even if the driver removes his / her foot from the brake pedal, the vehicle will not move backward, making it easier to start.
  • the brake control system disclosed in Japanese Patent Laid-Open No. 10-3 2 9 6 7 1 is a brake applied from a master cylinder linked to the brake pedal even when the foot is released from the brake pedal while the vehicle is stopped.
  • a brake hold function that holds pressure is provided.
  • This brake control system is based on at least the accelerator position of the vehicle And a control unit that controls to release the brake pressure holding state when the road is in a downhill state.
  • the road gradient state is judged based on at least the accelerator opening, and if the road is in a downhill state, the brake pressure The holding state is released. For this reason, when starting on a downhill road, the brake pressure holding state has already been released, so the acceleration by the engine and the acceleration by the downhill road are applied at the same timing, causing the vehicle to start suddenly. Can be suppressed.
  • the brake hold control may be released.
  • the brake hold control is canceled, if a driving force having a magnitude corresponding to the accelerator opening having a predetermined value is already output, the vehicle may start suddenly.
  • the present invention has been made to solve the above-described problems, and its purpose is to reduce wasteful energy consumption in a vehicle in which the brake hold control is released based on the degree of acceleration demand by the driver.
  • the present invention also provides a control device, a control method, and a recording medium on which a program for realizing the method is recorded, which can suppress a sudden start of the vehicle when the brake hold control is released.
  • a control device controls a vehicle.
  • brake hold control is executed to control the braking device so as to maintain the braking force.
  • the brake hold control is stopped when the first degree detected as the actual degree of acceleration request by the driver is greater than a predetermined degree.
  • the control device A detection unit that detects the first degree, a degree setting unit that sets a second degree used for controlling the output of the driving force of the vehicle as a degree of control of the acceleration request by the driver, and a second degree And a control unit for controlling the driving force.
  • the degree setting unit determines whether the first degree is larger than a predetermined degree during execution of the brake hold control, and determines that the first degree is larger than the predetermined degree. Until it is determined that the setting unit sets the second degree smaller than the first degree, and the first degree is greater than the predetermined degree,
  • the brake hold control is stopped when the first degree (for example, the actual accelerator opening) detected as the actual degree of the acceleration request by the driver becomes larger than a predetermined degree.
  • the second degree used for controlling the driving force of the vehicle for example, the control accelerator opening degree
  • Force Set to be smaller than the first degree (for example, approximately zero).
  • the driving force can be increased more slowly than when the second degree is set to the same value as the first degree immediately after the first degree becomes larger than the predetermined degree. It is possible to suppress a sudden start of the vehicle. As a result, in a vehicle in which brake hold control is released based on the degree of acceleration requested by the driver, control that can reduce wasteful energy consumption and suppress sudden start of the vehicle when brake hold control is released An apparatus can be provided.
  • the raising unit raises the second degree based on a difference between the first degree and the second degree.
  • the difference between the first degree and the second degree can be said to be the difference between the driving force corresponding to the driver's acceleration request and the actual driving force. So, the first degree and the second Based on the difference from the degree, the second degree is raised. Therefore, the actual driving force can be increased based on the difference between the driving force corresponding to the driver's acceleration request and the actual driving force.
  • the ascending unit raises the second degree at a rate that makes a difference between the amount of increase during a predetermined time when the brake hold control is stopped.
  • the second degree is increased at a rate that makes a difference between when the brake hold control is stopped during the predetermined time. Therefore, the driving force can be gradually increased at a constant rate by adjusting the predetermined time.
  • the rising portion increases the second degree greatly as the difference is larger.
  • the greater the difference between the first degree and the second degree the greater the difference between the driving force corresponding to the driver's acceleration request and the actual driving force. Therefore, the greater the difference between the first degree and the second degree, the greater the second degree. Therefore, the larger the difference between the first degree and the second degree, the shorter the time for the second degree to converge to the first degree, and the faster the driving force according to the driver's acceleration request is Can be output.
  • the raising unit raises the second degree based on the first degree.
  • the second degree is raised based on the first degree. Therefore, the actual driving force can be increased based on the driver's degree of acceleration demand.
  • the rising portion increases the second degree more greatly as the first degree is larger.
  • the greater the first degree the greater the second degree. Therefore, the greater the driver's acceleration request is, the shorter the time for the second degree to converge to the first degree, and the driving force corresponding to the driver's acceleration request can be output earlier.
  • FIG. 1 is a diagram showing a structure of a vehicle on which a control device according to a first embodiment of the present invention is mounted.
  • Fig. 2 shows the output characteristics of the accelerator pedal position sensor.
  • FIG. 3 is a functional block diagram of the control device according to the first embodiment of the present invention.
  • FIG 4 and 5 are flowcharts showing the control structure of the ECU which is the control apparatus according to the first embodiment of the present invention.
  • FIG. 6 is a timing chart showing the accelerator opening in the vehicle on which the control device according to the first embodiment of the present invention is mounted.
  • FIG. 7 is a flowchart showing a control structure of ECU which is a control apparatus according to the second embodiment of the present invention.
  • FIG. 8 is a graph showing the relationship between the actual accelerator opening and the fluctuation increase coefficient of the control accelerator opening.
  • FIG. 9 is a timing chart showing the accelerator opening in a vehicle equipped with a control device according to the second embodiment of the present invention.
  • the vehicle to which the control device according to the present invention can be applied is not limited to the electric vehicle shown in FIG. 1, and may be an electric vehicle having another aspect. Further, instead of an electric vehicle, a hybrid vehicle that travels by the power of an engine and a motor may be used.
  • the electric vehicle 20 includes wheels 2 2 A, 2 2 B, 2 2 C, 2 2 D, and propulsion shafts 2 6 connected to the wheels 2 2 A, 2 2 B via the differential gear 2 4, A traveling motor 30 that outputs power for driving wheels to the propulsion shaft 26, and this motor 30 A battery 36 for supplying electric power via a converter 34 and an electronic control unit (ECU) 100 for controlling the entire electric vehicle 20.
  • ECU electronice control unit
  • the motor 30 is configured, for example, as a well-known permanent magnet (PM) type synchronous generator motor, and is driven by the three-phase AC power from the inverter 34.
  • PM permanent magnet
  • the inverter 34 is configured as a well-known inverter circuit having six switching elements, and the direct current power from the battery 36 is converted into pseudo three-phase alternating current power by PWM (Pulse Width Modulation) control. To supply.
  • PWM Pulse Width Modulation
  • the ECU 100 is configured as a microphone processor centered on a CPU (Central Processing Unit) 102.
  • a ROM (Read Only Memory) 104 that stores a processing program and data are temporarily stored.
  • a random access memory (RAM) 106 and an input / output port (not shown) are provided.
  • the electric vehicle 20 further includes a brake disk 62 provided on a drive shaft 28 connected to the wheel 22D, a brake mechanism 64, a brake pipe 66 ', and a hydraulic controller 68.
  • the brake disc 62, the brake mechanism 64, and the brake pipe 66 may be provided for each wheel 22A, 22B, 22C, 22D.
  • the brake mechanism 64 receives the pressure of the brake oil filled in the brake pipe 66, and sandwiches the brake disc 62 in accordance with the received brake hydraulic pressure, thereby frictional braking force.
  • the brake hydraulic pressure in the brake pipe 66 is adjusted by the hydraulic controller 68.
  • the hydraulic controller 68 receives the brake control signal from the ECU 100 and outputs the brake hydraulic pressure corresponding to the brake control signal to the brake pipe 66.
  • Accelerator pedal position sensor that detects the operation amount of 53 Brake pedal position sensor that detects the actual accelerator opening from 54, the operation amount of the brake pedal 55
  • the accelerator pedal position sensor 54 detects the actual accelerator opening as the degree of acceleration requested by the driver, and transmits a signal representing the detection result to the ECU 100.
  • the actual accelerator opening here means the ratio of the current operation amount to the operation amount when the accelerator pedal 53 is fully opened.
  • the accelerator pedal position sensor 54 is not limited to detecting the actual accelerator opening.
  • the accelerator pedal position sensor 54 may detect the current operation amount of the accelerator pedal 53, and the ECU 100 may detect the actual accelerator opening.
  • the accelerator pedal position sensor 54 includes two position sensors (not shown) including a control sensor and an abnormality detection sensor in order to ensure detection reliability. As shown in Fig. 2, the output characteristics of the control sensor and the abnormality detection sensor are different. The difference in the output voltage value between the control sensor and the abnormality detection sensor is V (0) when the actual accelerator opening is zero. When the control sensor and the abnormality detection sensor are functioning normally, the output voltage value of the control sensor and the output voltage value of the abnormality detection sensor increase at the same rate when the actual accelerator opening increases. Due to the characteristics, the difference in output voltage value is maintained at V (0).
  • the accelerator pedal position sensor 54 monitors the voltage difference VA (0) when the actual accelerator opening reaches a predetermined opening A (0), and the voltage difference VA (0) When is maintained at V (0), it is determined that the accelerator pedal position sensor 54 is functioning normally. In other words, in order to ensure the reliability of the acceleration request by the driver, the actual accelerator opening needs to be larger than the predetermined opening A (0).
  • signals from the brake hydraulic pressure sensor 72 and the brake hold switch 74 are input to the ECU 100 via the input port.
  • the brake hydraulic pressure sensor 72 detects the brake hydraulic pressure in the brake pipe 66 adjusted by the hydraulic pressure controller 68, and sends a signal representing the detection result to the ECU 100.
  • the brake hold switch 74 is a switch for selecting whether or not the driver desires execution of brake hold control described later.
  • the brake hold switch 74 When the brake hold switch 74 is turned on, the brake hold switch 74 A signal indicating that the driver wants to execute the brake hold control is transmitted to the ECU 100.
  • the brake hold switch 74 When the brake hold switch 74 is turned off, the brake hold switch 74 transmits a signal to the ECU 100 indicating that the driver does not wish to execute the brake hold control.
  • the ECU 100 sets the control accelerator opening based on the actual accelerator opening and the vehicle status. This control accelerator opening is used for driving force output control as a degree of control of acceleration request by the driver.
  • the ECU 100 drives and controls the motor 30 so as to output the required torque set based on the control accelerator opening and the vehicle speed V to the motor 3 °.
  • the actual accelerator opening is not directly used for output control of the driving force of the electric vehicle 20, but the control accelerator opening set by the ECU 100 based on the actual accelerator opening is used.
  • the ECU 100 drives and controls the motor 30 so that the motor 30 outputs a braking torque set based on the brake pedal operation amount BP and the vehicle speed V.
  • the ECU 100 generates a switching control signal for controlling on / off of the switching elements constituting the inverter 34 so that the motor current that generates the required torque and the braking torque is supplied to the motor 3 °.
  • the inverter 34 supplies AC power to the motor 30 by performing power conversion in response to the switching control signal.
  • the ECU 100 executes brake hold control in order to reduce the burden of the driver's brake operation during a traffic jam or the like. Specifically, the ECU 100 detects the shift position SP, the vehicle speed V, the actual accelerator opening, and the brake pedal operation amount BP.
  • the shift position SP is the forward position (D position)
  • the actual accelerator opening is substantially zero
  • the vehicle speed V is substantially zero (that is, the vehicle is stopped)
  • the brake pedal operation amount BP is When the value exceeds a predetermined threshold value, control is performed to maintain the braking force when the vehicle is stopped even if the brake pedal operation amount BP subsequently decreases.
  • the ECU 100 operates the accelerator pedal 53 so that the actual accelerator opening is When the opening is larger than the predetermined opening A (0) (that is, the reliability of the acceleration request by the driver is ensured), the brake hold control is canceled.
  • the brake hold control is continued until the actual accelerator opening becomes larger than the predetermined opening A (0), and the brake force is held. Therefore, setting the control accelerator opening to the same value as the actual accelerator opening during brake hold control and driving the motor 30 to generate a cleave torque consumes wasted energy. . Further, when the brake opening control is released when the actual accelerator opening reaches a predetermined opening A (0), the control accelerator opening is equal to the actual accelerator opening (that is, the predetermined opening) If it is set to (A (0)), a driving force with a magnitude corresponding to the predetermined opening A (0) has already been output, so the vehicle may start suddenly. .
  • the control accelerator opening is set to 0 during the brake hold control, and when the actual accelerator opening reaches a predetermined opening A (0), the control accelerator opening is set to the actual accelerator opening. Set the control accelerator opening so that it gradually converges to the opening.
  • this control device is connected to an acceleration request determination unit 1 1 0, a brake hold control unit 1 2 0 connected to the acceleration request determination unit 1 1 0, and a brake hold control unit 1 2 0
  • the control accelerator opening setting unit 1 3 0 is included.
  • the acceleration request determination unit 110 determines whether the driver is requesting acceleration based on the actual accelerator opening from the accelerator pedal position sensor 54.
  • the brake hold control unit 1 2 0 is the shift position SP from the shift position sensor 52, the brake pedal operation amount BP from the brake pedal position sensor 56, the vehicle speed V from the vehicle speed sensor 58, and the acceleration request determination unit 1 A command signal is output to the hydraulic controller 60 so as to execute and release the brake hold control based on the determination result of 1 0.
  • the control accelerator opening setting unit 1 3 0 is based on the actual accelerator opening from the accelerator pedal position sensor 5 4 and the command signal from the brake hold control unit 1 2 0. Then, the control accelerator opening is set, and a command signal is output to the inverter 34 so that the torque corresponding to the set control accelerator opening is output to the motor 3 °.
  • the control device according to the present embodiment having such a function block is read from the CPU 102, the ROM 104, and the ROM 104 included in the ECU 100 even with hardware mainly composed of a digital circuit and an analog circuit. It can also be realized by software mainly composed of programs executed by the CPU 102. In general, it is said that it is advantageous in terms of operating speed when realized by hardware, and advantageous in terms of design change when realized by software. In the following, the case where the control device is realized as software will be described. Note that a recording medium on which such a program is recorded is also an embodiment of the present invention.
  • step (hereinafter, step is abbreviated as S) 100 ECU 100 determines whether or not brake hold control is being performed. If brake hold control is in progress (YES at S100), the process proceeds to S102. Otherwise (NO at S100), the process ends.
  • ECU 100 sets the control accelerator opening to zero.
  • ECU 100 detects the actual accelerator opening based on the signal from accelerator pedal position sensor 54.
  • ECU 100 determines whether or not the actual accelerator opening is larger than a predetermined opening A (0). It should be noted that the predetermined opening A (0) can determine that the accelerator pedal position sensor 54 is functioning normally as described above, and can ensure the reliability of the driver's acceleration request. This is a possible value. If it is larger than the predetermined opening A (0) (YES in S106), the process proceeds to S112. Otherwise (NO in S106), the process proceeds to S108.
  • ECU 100 determines that there is no acceleration request from the driver. In S 110, ECU 100 outputs a brake hold control maintenance command to hydraulic controller 68. At SI 12, ECU 100 determines that there is an acceleration request from the driver. In S 114, ECU 100 outputs a brake hold control release command to hydraulic controller 68. In S200, ECU 100 performs control accelerator opening convergence processing.
  • ECU 100 calculates a fixed increase amount.
  • the ECU 100 calculates the fixed increase amount so that the difference between the actual accelerator opening and the control accelerator opening when the brake hold control is released is converged in a predetermined time. That is, the ECU 100 calculates a value obtained by dividing the predetermined opening A (0) by the predetermined time as the fixed increase amount.
  • the fixed increase amount may be stored in advance.
  • ECU 100 increases the control accelerator opening by a fixed increase amount.
  • ECU 100 detects the actual accelerator opening based on the signal from accelerator pedal position sensor 54.
  • ECU 100 determines whether or not the control accelerator opening has converged to the actual accelerator opening. For example, when the difference between the control accelerator opening and the actual accelerator opening is equal to or less than a predetermined value, the ECU 100 determines that the control accelerator opening has converged to the actual accelerator opening. If it is determined that the actual accelerator opening has converged (YES in S208), the process proceeds to S210. Otherwise (NO in S208), the process returns to S204. In S210, ECU 100 sets the control accelerator opening to the actual accelerator opening.
  • the brake hold control is released (S 114). Furthermore, until the control accelerator opening converges to the actual accelerator opening, it is gradually increased by a fixed increase (NO in S204 and S208). As a result, the output torque of the motor 30 can be increased more slowly than when the control accelerator opening is set to the same value as the actual accelerator opening at time T (2). Can be suppressed.
  • the control accelerator opening converges to the actual accelerator opening at time T (3) (YES in S208)
  • the control accelerator opening is set to the actual accelerator opening (S210). For this reason, the driver's acceleration request and the output of the motor 30 can be matched.
  • the control accelerator opening is set to zero. As a result, wasteful power consumption due to driving the motor during brake hold control is suppressed.
  • the actual accelerator opening becomes a predetermined opening, it is determined that there is an acceleration request from the driver, and the brake hold control is released.
  • the control accelerator opening is gradually increased by a fixed increase until it converges to the actual accelerator opening.
  • the output torque of the motor can be gradually increased. Therefore, the sudden start of the vehicle when the brake hold control is released can be suppressed.
  • the control accelerator opening is set to 0 during the brake hold control. However, if the control accelerator opening is set to a value smaller than the actual accelerator opening, the control is performed. It is not limited to setting the accelerator opening to zero.
  • the control device is The installed electric vehicle differs from the configuration of the electric vehicle 20 according to the first embodiment described above only in the control structure of the program executed by the ECU 100.
  • the other configuration is the same as the configuration of the electric vehicle 20 according to the first embodiment described above.
  • the same reference numerals are assigned to the same components. Their functions are the same. Therefore, detailed description thereof will not be repeated here.
  • FIG. 7 a control structure of a program executed when the ECU 100, which is the control apparatus according to the present embodiment, performs the convergence process of the control accelerator opening will be described.
  • the same steps as those in the flowchart shown in FIG. 5 are given the same step numbers. Therefore, detailed description thereof will not be repeated here.
  • ECU 100 calculates a variable increase coefficient used for calculating the increase amount of the control accelerator opening based on the actual accelerator opening from accelerator pedal position sensor 54.
  • the ECU 100 calculates the fluctuation increase coefficient based on, for example, a map having the actual accelerator opening as a parameter. In this map, as shown in Fig. 8, the fluctuation increase coefficient is calculated as 0 when the actual accelerator opening is smaller than A (1), and gradually increases as the actual accelerator opening increases from A (1). Therefore, 1 is calculated when the actual accelerator opening is greater than A (2). Note that the method of calculating the fluctuation increase coefficient is not limited to this.
  • ECU 100 reads the offset amount (difference between control accelerator opening and actual accelerator opening) stored when the program was executed last time.
  • ECU 100 calculates the fluctuation increase amount. For example, the ECU 100 calculates the product of the read previous offset amount and the calculated fluctuation increase coefficient as the fluctuation increase amount.
  • ECU 100 determines whether or not the fixed increase amount is larger than the fluctuation increase amount. If it is determined that the fixed increase amount is larger than the fluctuation increase amount (YES in S1206), the process proceeds to S1208. Otherwise (NO in S 1206), the process proceeds to S 1210.
  • ECU 100 increases the control accelerator opening by a fixed increase amount.
  • ECU 100 increases the control accelerator opening by the fluctuation increase amount. Raise it.
  • ECU 100 determines whether or not the control accelerator opening has converged to the actual accelerator opening. For example, when the difference between the control accelerator opening and the actual accelerator opening is equal to or less than a predetermined value, the ECU 100 determines that the control accelerator opening has converged to the actual accelerator opening. If it is determined that the actual accelerator opening has converged (YE S in S1212), the process proceeds to S210. Otherwise (NO at S 1 2 12), the process proceeds to S 1214.
  • ECU 100 stores the difference between the control accelerator opening and the actual accelerator opening as an offset amount.
  • the first execution is performed until time T (5) when the actual accelerator opening is smaller than the predetermined opening A (0) (O at 5106).
  • the control accelerator opening is set to 0 (S 1 0 2) and it is determined that there is no acceleration request by the driver (S 108), and the brake hold control is maintained (S 1 10). .
  • S 1 0 2 the control accelerator opening is set to 0 (S 1 0 2) and it is determined that there is no acceleration request by the driver (S 108), and the brake hold control is maintained (S 1 10). .
  • S 1 10 wasteful power consumption due to driving the motor 30 during brake hold control is suppressed.
  • the fluctuation increase amount is calculated as the product of the previous offset amount and the fluctuation increase coefficient (S 1 2 0 4). Therefore, the larger the offset amount, the larger the fluctuation increase amount, and the control accelerator opening can be converged to the actual accelerator opening earlier. As a result, the driving force according to the driver's acceleration request can be output to the motor 30 earlier.
  • the fluctuation increase coefficient is set so that it increases as the actual accelerator opening increases (see Fig. 8).
  • the greater the actual accelerator opening and the greater the driver's acceleration request the larger the fluctuation increase amount, and the control accelerator opening can converge to the actual accelerator opening earlier.
  • the driving force according to the driver's acceleration request can be output to the motor 30 earlier.
  • the control device of the present embodiment it is determined that there is no need for acceleration * by the driver and the brake hold control is maintained until the actual accelerator opening reaches a predetermined opening. At the same time, the control accelerator opening is set to zero. As a result, wasteful power consumption due to driving the motor during brake hold control is suppressed.
  • the actual accelerator opening becomes a predetermined opening, it is determined that there is an acceleration request from the driver, and the brake hold control is released.
  • the control accelerator opening is increased by the larger one of the fixed increase and the fluctuation increase calculated based on the difference between the actual accelerator opening and the actual accelerator opening. As a result, it is possible to moderately increase the control accelerator opening to suppress the sudden start of the vehicle when the brake hold control is released, and to output the driving force according to the driver's acceleration request to the motor earlier. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 ECUは、ブレーキホールド制御中であると(S100にてYES)、運転者による加速要求の制御上の度合いとして駆動力の出力制御に用いられる制御アクセル開度を0に設定するステップ(S102)と、運転者による加速要求の実際の度合いである実アクセル開度が予め定められた開度A(0)より大きいと(S106にてYES)、運転者による加速要求があると判断するステップ(S112)と、ブレーキホールド制御の解除指令を出力するステップ(S114)と、制御アクセル開度を実アクセル開度に徐々に収束させるステップ(S200)とを含む、プログラムを実行する。

Description

明細書 車両の制御装置、 制御方法、
その方法を実現するプログラムを記録した記録媒体 技術分野
本発明は、 ブレーキホールド制御が実行される車両の制御に関し、 特に、 ァク セル開度が予め定められた値になるとブレーキホールド制御が解除される車両の 制御に関する。 背景技術
近年、 自動変速機を備えた車両において、 渋滞時などにおける運転者のブレー キ操作の負担を軽減するために、 前進ポジションでの停車中に、 ブレーキペダル の操作の度合い (たとえばブレーキペダルの操作量) が予め定められた度合いよ り大きくなると、 ブレーキペダルが操作されていなくても、 停車時のブレーキ力 を保持する制御 (ブレーキホールド制御) が実行される車両が知られている。 ブ レーキホールド制御が実行される車両では、 発進時に運転者がブレーキペダルか ら足を離しても停車時のブレーキ力が保持される。 さらに、 運転者によりァクセ ノレペダルが操作されるとブレーキホールド制御を解除して車両を発進させること ができるようになつている。 そのため、 登坂路での発進時には、 運転者がブレー キペダルから足を離しても車両が後退せず発進が容易になる。 一方、 降坂路での 発進時には、 アクセルペダルが踏まれた時点でブレーキホールド制御が解除され るので、 エンジンによる加速と降坂路による加速とが同時に加わって、 車両が急 発進する恐れがある。 この問題を解決する技術として、 たとえば、 特開平 1 0— 3 2 9 6 7 1号公報に開示された技術がある。
特開平 1 0— 3 2 9 6 7 1号公報に開示されたブレーキ制御システムは、 車両 の停止中にブレーキペダルから足を離した時にも、 ブレーキペダルに連動したマ スタシリンダから加えられたブレーキ圧を保持するブレーキホールド機能を備え る。 このブレーキ制御システムは、 少なくとも車両のアクセル開度に基いて道路 の勾配状態を判断する勾配判断部と、 道路の勾配状態が降坂状態である場合には、 ブレーキ圧の保持状態を解除するように制御する制御部とを含む。
特開平 1 0—3 2 9 6 7 1号公報に開示されたブレーキ制御システムによると、 少なくともアクセル開度に基いて道路の勾配状態が判断され、 降坂状態である場 合には、 ブレーキ圧の保持状態が解除される。 そのため、 降坂路での発進時にお いては、 ブレーキ圧の保持状態が既に解除された状態となるため、 エンジンによ る加速と降坂路による加速とが同じタイミングで加わることによる車両の急発進 を抑制することができる。
ところで、 たとえば、 運転者による加速要求の検出精度を向上させるために、 単にアクセルぺダルが操作されたときではなく、 アクセル開度が予め定められた 値になったときに、 運転者による加速要求があつたとして、 ブレーキホールド制 御を解除する場合が考えられる。 この場合、 ブレーキホールド制御の解除時に、 予め定められた値のァクセル開度に応じた大きさの駆動力が既に出力されている と、 車両が急発進してしまうことが考えられる。
しかしながら、 特開平 1 0— 3 2 9 6 7 1号公報に開示されたブレーキ制御シ ステムにおいては、 アクセル開度が予め定められた値になったときに、 ブレーキ ホールド制御を解除する場合については、 何ら言及されていない。 発明の開示
本発明は、 上述の課題を解決するためになされたものであって、 その目的は、 運転者による加速要求の度合いに基づいてブレーキホールド制御が解除される車 両において、 無駄なエネルギ消費を削減するとともに、 ブレーキホールド制御解 除時の車両の急発進を抑制することができる制御装置、 制御方法、 その方法を実 現するプログラムを記録した記録媒体を提供することである。
この発明に係る制御装置は、 車両を制御する。 この車両においては、 車両の状 態に基づいて、 運転者によりブレーキペダルが踏み込まれていなくても、 制動力 を保持するように制動装置を制御するブレーキホールド制御が実行される。 ブレ ーキホールド制御は、 運転者による加速要求の実際の度合いとして検出される第 1の度合いが予め定められた度合いより大きくなると停止される。 制御装置は、 第 1の度合いを検出する検出部と、 運転者による加速要求の制御上の度合いとし て車両の駆動力の出力制御に用いられる第 2の度合いを設定する度合い設定部と、 第 2の度合いに基づいて、 駆動力を制御する制御部とを含む。 度合い設定部は、 ブレーキホールド制御の実行中において、 第 1の度合いが予め定められた度合い より大きいか否かを判断する判断部と、 第 1の度合いが予め定められた度合いよ り大きいと判断されるまでは、 第 2の度合いを第 1の度合いより小さく設定する 設定部と、 第 1の度合いが予め定められた度合いより大きいと判断されると、 第
2の度合いが第 1の度合いに徐々に近づくように、 第 2の度合いを上昇させる上 昇部とを含む。
この発明によると、 運転者による加速要求の実際の度合いとして検出される第 1の度合い (たとえば実アクセル開度) が予め定められた度合いより大きくなる と、 ブレーキホールド制御が停止される。 第 1の度合いが予め定められた度合い より大きいと判断されるまでは、 運転者による加速要求の制御上の度合いとして 車両の駆動力の出力制御に用いられる第 2の度合い (たとえば制御アクセル開 度) 力 第 1の度合いより小さく (たとえば略零に) 設定される。 これにより、 ブレーキホールド制御中に第 2の度合いを第 1の度合いと同じ値に設定して駆動 力を出力する場合と比べて、 無駄なエネルギ消費が抑制される。 第 1の度合いが 予め定められた度合いより大きいと判断されると、 第 2の度合いが第 1の度合い に徐々に近づくように上昇される。 これにより、 第 1の度合いが予め定められた 度合いより大きくなつた直後に第 2の度合いを第 1の度合いと同じ値に設定する 場合と比べて、 駆動力を緩やかに上昇させることができるため、 車両が急発進す ることを抑制することができる。 その結果、 運転者による加速要求の度合いに基 づいてブレーキホールド制御が解除される車両において、 無駄なエネルギ消費を 削減するとともに、 ブレーキホールド制御解除時の車両の急発進を抑制すること ができる制御装置を提供することができる。
好ましくは、 上昇部は、 第 1の度合いと第 2の度合いとの差に基づいて、 第 2 の度合いを上昇させる。 、 この発明によると、 第 1の度合いと第 2の度合いとの差は、 運転者の加速要求 に応じた駆動力と実際の駆動力との差と言える。 そこで、 第 1の度合いと第 2の 度合いとの差に基づいて、 第 2の度合いが上昇される。 そのため、 運転者の加速 要求に応じた駆動力と実際の駆動力との差に基づいて、 実際の駆動力を上昇させ ることができる。
さらに好ましくは、 上昇部は、 予め定められた時間における上昇量がブレーキ ホールド制御が停止された時の差となる割合で、 第 2の度合いを上昇させる。 この発明によると、 予め定められた時間における上昇量がブレーキホールド制 御が停止された時の差となる割合で、 第 2の度合いを上昇させる。 そのため、 予 め定められた時間を調整することにより、 駆動力を一定の割合で緩やかに上昇さ せることができる。
さらに好ましくは、 上昇部は、 差が大きいほど、 第 2の度合いを大きく上昇さ せる。
この発明によると、 第 1の度合いと第 2の度合いとの差が大きいほど、 運転者 の加速要求に応じた駆動力と実際の駆動力との差がより大きいと言える。 そこで、 第 1の度合いと第 2の度合いとの差が大きいほど、 第 2の度合いを大きく上昇さ せる。 そのため、 第 1の度合いと第 2の度合いとの差が大きいほど第 2の度合い が第 1の度合いに収束する時間を短縮して、 運転者の加速要求に応じた駆動力を iり早期に出力することができる。
さらに好ましくは、 上昇部は、 第 1の度合いに基づいて、 第 2の度合いを上昇 させる。
この発明によると、 第 1の度合いに基づいて、 第 2の度合いを上昇させる。 そ のため、 運転者の加速要求の度合いに基づいて、 実際の駆動力を上昇させること ができる。
さらに好ましくは、 上昇部は、 第 1の度合いが大きいほど、 第 2の度合いを大 きく上昇させる。
この発明によると、 第 1の度合いが大きいほど、 第 2の度合いを大きく上昇さ せる。 そのため、 運転者の加速要求が大きいほど第 2の度合いが第 1の度合いに 収束する時間を短縮して、 運転者の加速要求に応じた駆動力をより早期に出力す ることができる。 図面の簡単な説明
図 1は、 本発明の第 1の実施例に係る制御装置が搭載される車両の構造を示す 図である。
図 2は、 アクセルペダルポジションセンサの出力特性を示す図である。
図 3は、 本発明の第 1の実施例に係る制御装置の機能ブロック図である。
図 4、 5は、 本発明の第 1の実施例に係る制御装置である E C Uの制御構造を 示すフローチヤ一トである。
図 6は、 本発明の第 1の実施例に係る制御装置が搭載される車両におけるァク セル開度を示すタイミングチャートである。
図 7は、 本発明の第 2の実施例に係る制御装置である E C Uの制御構造を示す フローチヤ一トである。
図 8は、 実ァクセル開度と制御ァクセル開度の変動上昇係数との関係を示す図 である。
図 9は、 本発明の第 2の実施例に係る制御装置が搭載される車両におけるァク セル開度を示すタイミングチャートである。 発明を実施するための最良の形態
以下、 図面を参照しつつ、 本発明の実施例について説明する。 以下め説明では、 同一の部品には同一の符号を付してある。 それらの名称および機能も同じである。 したがって、 それらについての詳細な説明は繰返さない。
く第 1の実施例〉
図 1を参照して、 本実施例に係る制御装置が搭載された電気自動車 2 0の構成 について説明する。 なお、 本発明に係る制御装置を適用できる車両は、 図 1に示 す電気自動車に限定されず、 他の態様を有する電気自動車であってもよい。 また、 電気自動車ではなく、 エンジンとモータとの動力により走行するハイブリッド車 両であってもよい。
電気自動車 2 0は、 車輪 2 2 A, 2 2 B , 2 2 C , 2 2 Dと、 車輪 2 2 A, 2 2 Bにディファレンシャルギヤ 2 4を経由して接続された推進軸 2 6と、 推進軸 2 6へ車輪駆動用の動力を出力する走行用のモータ 3 0と、 このモータ 3 0にィ ンバ一タ 34を経由して電力を供給するバッテリ 36と、 電気自動車 20全体を コントロールする電子制御ユニット (ECU) 100とを備える。
モータ 30は、 たとえば周知の永久磁石 (PM) 型同期発電電動機として構成 されており、 インバータ 34からの 3相交流電力により駆動される。
ィンバータ 34は、 6個のスィツチング素子を有する周知のィンバータ回路と して構成されており、 バッテリ 3 6からの直流電力を PWM (Pulse Width Modulation) 制御等により擬似的な 3相交流電力としてモータ 30へ供給する。
ECU 100は、 CPU (Central Processing Unit) 102を中心とするマ イク口プロセッサとして構成されており、 CPU102の他に処理プログラムを 記憶する ROM (Read Only Memory) 104と、 データを一時的に記憶する R A M (Random Access Memory) 106と、 図示しない入出力ポートとを備える。 電気自動車 20は、 さらに、 車輪 22Dに接続されるドライブシャフ ト 28に 設けられるブレーキディスク 62と、 ブレーキ機構 64と、 ブレーキ配管 66'と、 油圧コントローラ 68とを含む。 なお、 ブレーキディスク 62、 ブレーキ機構 6 4と、 ブレーキ配管 66は、 各車輪 22 A, 22 B, 22C, 22Dごとに設け- られてもよい。
ブレーキ機構 64は、 ブレーキ配管 66に充填されるブレーキ油の圧力を受け、 その受けたブレーキ油圧に応じてブレーキディスク 62を挟み込んで摩擦制動力
(油圧ブレーキ) を発生する。 ブレーキ配管 66内のブレーキ油圧は、 油圧コン トローラ 68により調整される。 油圧コントローラ 68は、 ECU100からの ブレーキ制御信号を受信し、 ブレーキ制御信号に応じたブレーキ油圧をブレーキ 配管 66に出力する。
ECU 100へは、 モータ 30の回転子の回転位置を検出する回転位置検出セ ンサ 32からの検出信号 0や、 インバータ 34の各相に取付けられた図示しない 電流センサからの相電流 i u, i V , i w、 シフトレバー 5 1の動作位置を検出 するシフトポジションセンサ 52からのシフトポジション S P、 アクセルペダル
53の操作量を検出するアクセルペダルポジションセンサ 54からの実アクセル 開度、 ブレーキペダル 55の操作量を検出するブレーキペダルポジションセンサ
56からのブレーキペダル操作量 B P、 車速センサ 58からの車速 Vなどが入力 ポートを経由して入力されている。
アクセルペダルポジションセンサ 54は、 運転者による加速要求の度合いとし て、 実アクセル開度を検出し、 検出結果を表わす信号を ECU 100に送信する。 ここでいう実アクセル開度とは、 アクセルペダル 53の全開時の操作量に対する 現在の操作量の割合を意味するものとする。 なお、 アクセルペダルポジションセ ンサ 54が実アクセル開度を検出することに限定されない。 たとえば、 アクセル ペダルポジションセンサ 54でアクセルペダル 53の現在の操作量を検出して、 ECU 100で実アクセル開度を検出するようにしてもよレ、。
アクセルペダルポジションセンサ 54は、 検出の信頼性を確保するために、 制 御用センサと異常検出用センサとの 2つのポジションセンサ (図示せず) を含む。 制御用センサと異常検出用センサとは、 図 2に示すように、 出力特性が異なる。 制御用センサと異常検出用センサとの出力電圧値の差は、 実ァクセル開度が 0の ときに V (0) である。 制御用センサと異常検出用センサとが正常に機能してい る場合、 実アクセル開度が上昇すると、 制御用センサの出力電圧値と異常検出用 センサの出力電圧値とは、 同じ割合で上昇する特性を有するため、 出力電圧値の 差は V (0) に維持される。 この特性を用いて、 アクセルペダルポジションセン サ 54は、 実アクセル開度が予め定められた開度 A (0) になったときの電圧差 VA (0) を監視し、 電圧差 VA (0) が V (0) に維持されている場合に、 了 クセルペダルポジションセンサ 54が正常に機能していると判断する。 すなわち、 運転者による加速要求の信頼性を確保するためには、 実アクセル開度が予め定め られた開度 A (0) より大きくなる必要がある。
さらに、 ECU 100へは、 ブレーキ油圧センサ 72およびブレーキホールド スィツチ 74からの信号が入力ポートを経由して入力されている。
ブレーキ油圧センサ 72は、 油圧コントローラ 68により調整されるブレーキ 配管 66内のブレーキ油圧を検出し、 検出結果を表わす信号を ECU 100に送 信する。
ブレーキホールドスィツチ 74は、 後述するブレーキホールド制御の実行を運 転者が希望するか否かを選択するためのスィツチである。 ブレーキホールドスィ ツチ 74がオン状態にされている場合には、 ブレーキホールドスィツチ 74は、 運転者がブレーキホールド制御の実行を希望していることを表わす信号を ECU 100へ送信する。 ブレーキホールドスィッチ 74がオフ状態にされている場合 には、 ブレーキホールドスィッチ 74は、 運転者がブレーキホールド制御の実行 を希望していないことを表わす信号を ECU 100へ送信する。
ECU 100は、 実アクセル開度や車両の状況に基づいて、 制御アクセル開度 を設定する。 この制御アクセル開度は、 運転者による加速要求の制御上の度合い として駆動力の出力制御に用いられる。 ECU 100は、 電気自動車 20を走行 させる場合、 制御アクセル開度と車速 Vとに基づいて設定される要求トルクをモ —タ 3◦に出力させるようにモータ 30を駆動制御する。 すなわち、 電気自動車 20の駆動力の出力制御には、 実アクセル開度が直接用いられるのではなく、 実 アクセル開度に基づいて ECU 100にて設定された制御アクセル開度が用いら れる。
一方、 ECU 100は、 電気自動車 20を制動させる場合、 ブレーキペダル操 作量 B Pと車速 Vとに基づいて設定される制動トルクをモータ 30に出力させる ようにモータ 30を駆動制御する。
ECU100は、 モータ 3◦に対して上記要求トルクや制動トルクを発生する ようなモータ電流が供給されるように、 ィンバータ 34を構成するスィツチング 素子のオン ·オフを制御するスィツチング制御信号を生成する。 インバータ 34 は、 このスイッチング制御信号に応答した電力変換を行なうことにより、 モータ 30へ交流電力を供給する。
さらに、 ECU 100は、 ブレーキホールドスィッチ 74がオン状態である場 合、 渋滞時などにおける運転者のブレーキ操作の負担を軽減するために、 ブレー キホールド制御を実行する。 具体的には、 ECU 100は、 シフトポジション S P、 車速 V、 実アクセル開度、 ブレーキペダル操作量 B Pを検出する。 ECU 1 00は、 シフトポジション S Pが前進ポジション (Dポジション) であり、 実ァ クセル開度が略零であり、 車速 Vが略零 (すなわち停車中) であり、 ブレーキぺ ダル操作量 B Pが予め定められたしきい値より大きくなると、 その後にブレーキ ペダル操作量 B Pが低下しても、 停車時のブレーキ力を保持する制御を実行する。
ECU 100は、 アクセルペダル 53が操作されて実アクセル開度が上述の予 め定められた開度 A ( 0 ) より大きくなる (すなわち、 運転者による加速要求の 信頼性が確保される) と、 ブレーキホールド制御の実行を解除する。
本実施例においては、 ブレーキホールド制御中において、 実アクセル開度が予 め定められた開度 A ( 0 ) より大きくなるまではブレーキホールド制御が継続さ れ、 ブレーキ力が保持される。 そのため、 ブレーキホールド制御中に制御ァクセ ル開度を実アクセル開度と同じ値に設定してモータ 3 0を駆動してクリーブトル クを発生させることは、 無駄なエネルギを消費していることになる。 さらに、 実 アクセル開度が予め定められた開度 A ( 0 ) になってブレーキホールド制御を解 除する時点で、 制御アクセル開度が実アクセル開度と同じ値 (すなわち予め定め られた開度 A ( 0 ) ) に設定されていると、 予め定められた開度 A ( 0 ) に応じ た大きさの駆動力が既に出力されているため、 車両が急発進す-る場合が考えられ る。
そこで、 本実施例に係る制御装置においては、 ブレーキホールド制御中は制御 アクセル開度を 0とし、 実アクセル開度が予め定められた開度 A ( 0 ) になると、 制御ァクセル開度を実ァクセル開度に徐々に収束させるように、 制御ァクセル開 度を設定する。
図 3を参照して、 本実施例に係る制御装置の機能プロック図について説明する。 図 3に示すように、 この制御装置は、 加速要求判断部 1 1 0と、 加速要求判断部 1 1 0に接続されたブレーキホールド制御部 1 2 0と、 ブレーキホールド制御部 1 2 0に接続された制御アクセル開度設定部 1 3 0とを含む。
加速要求判断部 1 1 0は、 アクセルペダルポジションセンサ 5 4からの実ァク セル開度に基づいて、 運転者が加速を要求しているか否かを判断する。
ブレーキホールド制御部 1 2 0は、 シフトポジションセンサ 5 2からのシフト ポジション S P、 ブレーキペダルポジションセンサ 5 6からのブレーキペダル操 作量 B P、 車速センサ 5 8からの車速 V、 および加速要求判断部 1 1 0の判断結 果に基づいて、 ブレーキホールド制御の実行および解除を行なうように、 油圧コ ントローラ 6 0に指令信号を出力する。
制御アクセル開度設定部 1 3 0は、 アクセルペダルポジションセンサ 5 4から の実アクセル開度およびブレーキホールド制御部 1 2 0からの指令信号に基づい て、 制御アクセル開度を設定し、 設定された制御アクセル開度に応じたトルクを モータ 3◦に出力させるように、 インバ一タ 34に指令信号を出力する。
このような機能プロックを有する本実施例に係る制御装置は、 デジタル回路や アナログ回路の構成を主体としたハードウエアでも、 ECU 100に含まれる C PU 102および ROM 104と ROM 104から読み出されて C PU 102で 実行されるプログラムとを主体としたソフトウエアでも実現することが可能であ る。 一般的に、 ハードウェアで実現した場合には動作速度の点で有利で、 ソフト ウェアで実現した場合には設計変更の点で有利であると言われている。 以下にお いては、 ソフトゥヱァとして制御装置を実現した場合を説明する。 なお、 このよ うなプログラムを記録した記録媒体についても本発明の一態様である。
図 4を参照して、 本実施例に係る制御装置である ECU 100が実行するプロ グラムの制御構造について説明する。 なお、 このプログラムは、 予め定められた サイクルタイムで繰り返し実行される。
ステップ (以下、 ステップを Sと略す) 100にて、 ECU 100は、 ブレー キホールド制御中であるか否かを判断する。 ブレーキホールド制御中であると (S 100にて YES) 、 処理は S 102に移される。 そうでないと (S 100 にて NO) 、 この処理は終了する。
S 102にて、 ECU 100は、 制御アクセル開度を 0に設定する。 S 104 にて、 ECU 100は、 アクセルペダルポジションセンサ 54からの信号に基づ いて、 実アクセル開度を検出する。
S 106にて、 ECU 1 00は、 実アクセル開度が予め定められた開度 A (0) より大きいか否かを判断する。 なお、 予め定められた開度 A (0) は、 上 述のように、 アクセルペダルポジションセンサ 54が正常に機能していることを 判断でき、 運転者の加速要求の信頼性を確保することができる値である。 予め定 められた開度 A (0) より大きいと (S 106にて YE S) 、 処理は S 1 12に 移される。 そうでないと (S 106にて NO) 、 処理は S 108に移される。
S 108にて、 ECU 100は、 運転者による加速要求がないと判断する。 S 1 10にて、 ECU 100は、 ブレーキホールド制御の維持指令を油圧コント口 ーラ 68に出力する。 S I 12にて、 ECU 100は、 運転者による加速要求があると判断する。 S 1 14にて、 ECU100は、 ブレーキホールド制御の解除指令を油圧コント口 ーラ 68に出力する。 S 200にて、 ECU 100は、 制御アクセル開度の収束 処理を行なう。
図 5を参照して、 本実施例に係る制御装置である ECU 100が制御アクセル 開度の収束処理を行なう際に実行するプログラムの制御構造について説明する。
S 202にて、 ECU 100は、 固定上昇量を算出する。 ECU 100は、 ブ レーキホールド制御解除時の実アクセル開度と制御アクセル開度との差を、 予め 定められた時間で収束させるように、 固定上昇量を算出する。 すなわち、 ECU 100は、 予め定められた開度 A (0) を予め定められた時間で除算した値を固 定上昇量として算出する。 なお、 固定上昇量は予め記憶されていてもよい。
S 204にて、 ECU 100は、 制御アクセル開度を固定上昇量だけ上昇させ る。 S 206にて、 ECU 100は、 アクセルペダルポジションセンサ 54から の信号に基づいて、 実アクセル開度を検出する。
S 208にて、 ECU 100は、 制御アクセル開度が実アクセル開度に収束し たか否かを判断する。 ECU100は、 たとえば、 制御アクセル開度と実ァクセ ル開度との差が予め定められた値以下である場合に、 制御ァクセル開度が実ァク セル開度に収束したと判断する。 実アクセル開度に収束したと判断されると (S 208にて YES) 、 処理は S 210に移される。 そうでないと (S 208にて NO) 、 処理は S 204に戻される。 S 210にて、 ECU 100は、 制御ァク セル開度を実アクセル開度に設定する。
以上のような構造およびフローチャートに基づく、 本実施例に係る制御装置で ある ECU 100により制御される電気自動車 20の動作について説明する。 図 6に示すように、 ブレーキホールド制御中 (S 100にて YES) において、 時刻 T (1) で実アクセル開度が上昇し始めた場合を想定する。
実アクセル開度が予め定められた開度 A (0) になる時刻 T (2) までの間 (S 106にて NO) は、 アクセルペダルポジションセンサ 54が正常に機能し ているか否かを判断することができず、 運転者の加速要求の信頼性を確保するこ とができない。 そこで、 制御アクセル開度が 0に設定される (S 102) ととも に、'運転者による加速要求がないと判断され (S 108) 、 ブレーキホールド制 御が維持される (S 1 10) 。 これにより、 ブレーキホールド制御中にモータ 3 0を駆動することによる無駄な電力消費が押制される。
時刻 T (2) で実アクセル開度が予め定められた開度 A (0) まで上昇すると (S 1 06にて YE S) 、 運転者による加速要求があると判断されて (S 1 1
2) 、 図 6に示すように、 ブレーキホールド制御が解除される (S 1 14) 。 さらに、 制御アクセル開度が、 実アクセル開度に収束するまでは、 固定上昇量 で徐々に上昇される (S 204、 S 208にて NO) 。 これにより、 時刻 T ( 2 ) で制御ァクセル開度を実ァクセル開度と同じ値に設定する場合と比べて、 モータ 30の出力トルクを緩やかに上昇させることができるため、 車両が急発進 することを抑制することができる。
時刻 T (3) で制御アクセル開度が実アクセル開度に収束すると (S 208に て YES) 、 制御アクセル開度は実アクセル開度に設定される (S 210) 。 そ のため、 運転者の加速要求とモータ 30の出力とを合致させることができる。 以上のように、 本実施例に係る制御装置によれば、 実アクセル開度が予め定め られた開度になるまでは、 運転者による加速要求がないと判断されて、 ブレーキ ― ホールド制御が維持されるとともに、 制御アクセル開度が 0に設定される。 これ により、 ブレーキホールド制御中にモータを駆動することによる無駄な電力消費 が抑制される。 実アクセル開度が予め定められた開度になると、 運転者による加 速要求があると判断されて、 ブレーキホールド制御が解除される。 このとき、 制 御アクセル開度が、 実アクセル開度に収束するまでは、 固定上昇量で徐々に上昇 される。 これにより、 モータの出力トルクを緩やかに上昇させることができる。 そのため、 ブレーキホールド制御解除時の車両の急発進を抑制することができる。 なお、 本実施例においては、 ブレーキホールド制御中において制御アクセル開 度が 0に設定される場合について説明したが、 制御アクセル開度が実アクセル開 度より小さい値に設定されるのであれば、 制御アクセル開度が 0に設定ざれるこ とに限定されない。
ぐ第 2の実施例 >
以下、 本実施例に係る制御装置について説明する。 本実施例に係る制御装置が 搭載された電気自動車は、 上述の第 1の実施例に係る電気自動車 20の構成と比 較して、 ECU 100で実行されるプログラムの制御構造のみが異なる。 これら 以外の構成は、 上述の第 1の実施例に係る電気自動車 20の構成と同じ構成であ る。 同じ構成については同じ参照符号が付してある。 それらの機能も同じである。 したがって、 それらについての詳細な説明はここでは繰返さない。
図 7を参照して、 本実施例に係る制御装置である ECU 100が、 制御ァクセ ル開度の収束処理を行なう際に実行するプログラムの制御構造について説明する。 なお、 図 7に示したフローチャートの中で、 前述の図 5に示したフローチャート と同じ処理については同じステップ番号を付してある。 したがって、 それらにつ いての詳細な説明はここでは繰返さない。
S 1200にて、 ECU 100は、 アクセルペダルポジションセンサ 54から の実アクセル開度に基づいて、 制御アクセル開度の上昇量の算出に用いられる変 動上昇係数を算出する。 ECU 100は、 たとえば、 実アクセル開度をパラメ一 タとするマップに基づいて変動上昇係数を算出する。 このマップにおいては、 図 8に示すように、 変動上昇係数は、 実アクセル開度が A (1) より小さいと 0と 算出され、 実アクセル開度が A (1) から大きくなるほど徐々に大きぐなり、 実 アクセル開度が A (2) より大きくなると 1と算出される。 なお、 変動上昇係数 の算出方法はこれに限定されない。
S 1202にて、 ECU 100は、 前回に本プログラムを実行した際に記憶し たオフセット量 (制御アクセル開度と実アクセル開度との差) を読み出す。
S 1204にて、 ECU 100は、 変動上昇量を算出する。 ECU 100は、 たとえば、 読み出された前回のオフセット量と算出された変動上昇係数との積を、 変動上昇量として算出する。
S 1206にて、 ECU 100は、 固定上昇量が変動上昇量より大きいか否か を判断する。 固定上昇量が変動上昇量より大きいと判断されると (S 1 206に て YE S) 、 処理は S 1 208に移される。 そうでないと (S 1206にて N O) 、 処理は S 1210に移される。
S 1208にて、 ECU 100は、 制御アクセル開度を固定上昇量だけ上昇さ せる。 S 1210にて、 ECU 100は、 制御アクセル開度を変動上昇量だけ上 昇させる。
S 1 21 2にて、 ECU 100は、 制御アクセル開度が実アクセル開度に収束 したか否かを判断する。 ECU 100は、 たとえば、 制御アクセル開度と実ァク セル開度との差が予め定められた値以下である場合に、 制御アクセル開度が実ァ クセル開度に収束したと判断する。 実アクセル開度に収束したと判断されると (S 121 2にて YE S) 、 処理は S 210に移される。 そうでないと (S 1 2 12にて NO) 、 処理は S 1214に移される。
S 1214にて、 ECU 100は、 制御アクセル開度と実アクセル開度との差 をオフセット量として記憶する。
以上のような構造およびフローチャートに基づく、 本実施例に係る制御装置で ある ECUにより制御される電気自動車の動作について説明する。
図 9に示すように、 ブレーキホールド制御中 (S 100にて YES) において 時刻 T (4) で実アクセル開度が上昇し始めた場合を想定する。
ブレーキホールド制御中 (S 100にて YES) において、 実アクセル開度が 予め定められた開度 A (0) より小さい時刻 T (5) までの間 (5106にて O) は、 第 1の実施例と同様に、 制御アクセル開度が 0に設定される (S 1 0 2) とともに、 運転者による加速要求がないと判断され (S 108) 、 ブレーキ ホールド制御が維持される (S 1 10) 。 これにより、 ブレーキホ一ルド制御中 にモータ 30を駆動することによる無駄な電力消費が抑制される。
時刻 T (5) で実アクセル開度が予め定められた開度 A (0) まで上昇すると
(S 106にて YE S) 、 運転者による加速要求があると判断されて (S 1 1 2) 、 図 9に示すように、 ブレーキホールド制御が解除される (S 1 14) 。 ここで、 制御アクセル開度は、 固定上昇量と変動上昇量との大きい方で上昇さ れる (S 126、 S 1208、 S 1210) 。 なお、 図 9では、 時刻 T ( 6 ) で 実アクセル開度が A (1) となり、 変動上昇係数が 0以上の値に算出され (S 1 200) 、 実アクセル開度の上昇に伴ない、 時刻 T (7) で、 固定上昇量より変 動上昇量が大きくなつた場合を表わす。 これにより、 制御アクセル開度を固定上 昇量のみで上昇させる場合 (図 9の 2点鎖線参照) と比べて、 制御アクセル開度 が実アクセル開度に収束する時間を時刻 T (9) から時刻 T (8) に短縮するこ とができる。
ざらに、 変動上昇量は、 前回のオフセッ ト量と変動上昇係数との積として算出 される (S 1 2 0 4 ) 。 そのため、 オフセット量が大きいほど、 変動上昇量を大 きく して、 より早期に制御アクセル開度を実アクセル開度に収束させることがで きる。 これにより、 運転者の加速要求に応じた駆動力をより早期にモータ 3 0に 出力させることができる。
さらに、 変動上昇係数は、 実アクセル開度が大きいほど大きな値となるように 設定される (図 8参照) 。 これにより、 実アクセル開度が大きく、 運転者の加速 要求が大きいほど、 変動上昇量を大きくして、 より早期に制御アクセル開度を実 アクセル開度に収束させることができる。 これにより、 運転者の加速要求に応じ た駆動力をより早期にモータ 3 0に出力させることができる。
以上のように、 本実施例に係る制御装置によれば、 実アクセル開度が予め定め られた開度になるまでは、 運転者による加速要 *がないと判断されて、 ブレーキ ホールド制御が維持されるとともに、 制御アクセル開度が 0に設定される。 これ により、 ブレーキホールド制御中にモータを駆動することによる無駄な電力消費 が抑制される。 実アクセル開度が予め定められた開度になると、 運転者による加 速要求があると判断されて、 ブレーキホールド制御が解除される。 このとき、 制 御アクセル開度が、 固定上昇量と、 実アクセル開度および実アクセル開度との差 に基づいて算出される変動上昇量とのうち、 大きい方で上昇される。 これにより、 制御アクセル開度を緩やかに上昇させてブレーキホールド制御解除時の車両の急 発進を抑制することができるとともに、 運転者の加速要求に応じた駆動力をより 早期にモータに出力させることができる。
今回開示された実施例はすべての点で例示であって制限的なものではないと考 えられるべきである。 本発明の範囲は上記した説明ではなくて請求の範囲によつ て示され、 請求の範囲と均等の意味および範囲内でのすべての変更が含まれるこ とが意図される。

Claims

請求の範囲
1 . 車両の制御装置であって、
前記車両においては、 前記車両の状態に基づいて、 運転者によりブレーキぺダ ルが踏み込まれていなくても、 制動力を保持するように制動装置を制御するブレ 一キホ一ルド制御が実行され、 前記ブレーキホールド制御は、 前記運転者による 加速要求の実際の度合いとして検出される第 1の度合いが予め定められた度合い より大きくなると停止され、
前記制御装眞は、
前記第 1の度合いを検出する検出部と、
前記運転者による加速要求の制御上の度合いとして前記車両の駆動力の出力制 御に用いられる第 2の度合いを設定する度合い設定部と、 '
前記第 2の度合いに基づいて、 前記駆動力を制御する制御部とを含み、 前記度合い設定部は、
前記ブレーキホールド制御の実行中において、 前記第 1の度合いが前記予め定 められた度合いより大きいか否かを判断する判断部と、
前記第 1の度合いが前記予め定められた度合いより大きいと判断されるまでは、 前記第 2の度合いを前記第 1の度合いより小さく設定する設定部と、
前記第 1の度合いが前記予め定められた度合いより大きいと判断されると、 前 記第 2の度合いが前記第 1の度合いに徐々に近づくように、 前記第 2の度合いを 上昇させる上昇部とを含む、 車両の制御装置。
2 . 前記上昇部は、 前記第 1の度合いと前記第 2の度合いとの差に基づいて、 前記第 2の度合いを上昇させる、 請求の範囲第 1項に記載の車両の制御装置。
3 . 前記上昇部は、 予め定められた時間における上昇量が前記ブレーキホー ルド制御が停止された時の前記差となる割合で、 前記第 2の度合いを上昇させる、 請求の範囲第 2項に記載の車両の制御装置。
4 . 前記上昇部は、 前記差が大きいほど、 前記第 2の度合いを大きく上昇さ せる、 請求の範囲第 2項に記載の車両の制御装置。
5 . 前記上昇部は、 前記第 1の度合いに基づいて、 前記第 2の度合いを上昇 させる、 請求の範囲第 1項に記載の車両の制御装置。
6 . 前記上昇部は、 前記第 1の度合いが大きいほど、 前記第 2の度合いを大 きく上昇させる、 請求の範囲第 5項に記載の車両の制御装置。
7 . 車両の制御装置であって、
前記車両においては、 前記車両の状態に基づいて、 運転者によりブレーキぺダ ルが踏み込まれていなくても、 制動力を保持するように制動装置を制御するブレ ーキホールド制御が実行され、 前記ブレーキホールド制御は、 前記運転者による 加速要求の実際の度合いとして検出される第 1の度合いが予め定められた度合い より大きくなると停止され、
前記制御装置は、
前記第 1の度合いを検出するための手段と、
前記運転者による加速要求の制御上の度合いとして前記車両の駆動力の出力制 御に用いられる第 2の度合いを設定するための設定手段と、
前記第 2の度合レ、に基づいて、 前記駆動力を制御するための手段とを含み、 前記設定丰段は、
前記ブレーキホールド制御の実行中において、 前記第 1の度合いが前記予め定 められた度合いより大きいか否かを判断するための手段と、
前記第 1の度合いが前記予め定められた度合いより大きいと判断されるまでは、 前記第 2の度合いを前記第 1の度合いより小さく設定するための手段と、
前記第 1の度合いが前記予め定められた度合いより大きいと判断されると、 前 記第 2の度合いが前記第 1の度合いに徐々に近づくように、 前記第 2の度合いを 上昇させるための上昇手段とを含む、 車両の制御装置。
8 . 前記上昇手段は、 前記第 1の度合いと前記第 2の度合いとの差に基づい て、 前記第 2の度合いを上昇させるための手段を含む、 請求の範囲第 7項に記載 の車両の制御装置。
9 . 前記上昇手段は、 予め定められた時間における上昇量が前記ブレーキホ ールド制御が停止された時の前記差となる割合で、 前記第 2の度合いを上昇させ るための手段を含む、 請求の範囲第 8項に記載の車両の制御装置。
1 0 . 前記上昇手段は、 前記差が大きいほど、 前記第 2の度合いを大きく上 昇させるための手段を含む、 請求の範囲第 8項に記載の車両の制御装置。
1 1 . 前記上昇手段は、 前記第 1の度合いに基づいて、 前記第 2の度合いを 上昇させるための手段を含む、 請求の範囲第 7項に記載の車両の制御装置。
.
1 2 . 前記上昇手段は、 前記第 1の度合いが大きいほど、 前記第 2の度合い を大きく上昇させるための手段を含む、 請求の範囲第 1 1項に記載の車両の制御 装置。
1 3 . 車両の制御方法であって、
前記車両においては、 前記車両の状態に基づいて、 運転者によりブレーキぺダ ルが踏み込まれていなくても、 制動力を保持するように制動装置を制御するブレ 一キホ一ルド制御が実行され、 前記ブレーキホールド制御は、 前記運転者による 加速要求の実際の度合いとして検出される第 1の度合いが予め定められた度合い より大きくなると停止され、
前記制御方法は、
前記第 1の度合いを検出するステップと、
前記運転者による加速要求の制御上の度合いとして前記車両の駆動力の出力制 御に用いられる第 2の度合いを設定する設定ステップと、
前記第 2の度合いに基づいて、 前記駆動力を制御するステップとを含み、 前記設定ステップは、
前記ブレーキホールド制御の実行中において、 前記第 1の度合いが前記予め定 められた度合レ、より大きいか否かを判断するステップと、
前記第 1の度合いが前記予め定められた度合いより大きいと判断されるまでは、 前記第 2の度合いを前記第 1の度合いより小さく設定するステップと、
前記第 1の度合いが前記予め定められた度合いより大きいと判断されると、 前 記第 2の度合いが前記第 1の度合いに徐々に近づくように、 前記第 2の度合いを 上昇させる上昇ステップとを含む、 車両の制御方法。
1 4 . 前記上昇ステップは、 前記第 1の度合いと前記第 2の度合いとの差に 基づいて、 前記第 2の度合いを上昇させるステップを含む、 請求の範囲第 1 3項 に記載の車両の制御方法。
1 5 . 前記上昇ステップは、 予め定められた時間における上昇量が前記ブレ 一キホ一ルド制御が停止された時の前記差となる割合で、 前記第 2の度合いを上 昇させるステップを含む、 請求の範囲第 1 4項に記載の車両の制御方法。
1 6 . 前記上昇ステップは、 前記差が大きいほど、 前記第 2の度合いを大き く上昇させるステップを含む、 請求の範囲第 1 4項に記載の車両の制御方法。
1 7 . 前記上昇ステップは、 前記第 1の度合いに基づいて、 前記第 2の度合 いを上昇させるステップを含む、 請求の範囲第 1 3項に記載の車両の制御方法。
1 8 . 前記上昇ステップは、 前記第 1の度合いが大きいほど、 前記第 2の度 合いを大きく上昇させるステップを含む、 請求の範囲第 1 7項に記載の車両の制 御方法。'
1 9 . 請求の範囲第 1 3〜1 8項のいずれか 1項に記載の制御方法をコンビ ユータに実行させるためのプログラムをコンピュータ読み取り可能に記録した記 録媒体。
PCT/JP2007/072060 2007-01-17 2007-11-07 車両の制御装置、制御方法、その方法を実現するプログラムを記録した記録媒体 WO2008087789A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/522,224 US8135530B2 (en) 2007-01-17 2007-11-07 Vehicular control device, method of controlling a vehicle, and storage medium having stored therein a program that implements the method
EP07831790.6A EP2103492B1 (en) 2007-01-17 2007-11-07 Vehicular control device, method of controlling a vehicle, and storage medium having stored therein a program that implements the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-008108 2007-01-17
JP2007008108A JP4434212B2 (ja) 2007-01-17 2007-01-17 車両の制御装置、制御方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体

Publications (1)

Publication Number Publication Date
WO2008087789A1 true WO2008087789A1 (ja) 2008-07-24

Family

ID=39635795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072060 WO2008087789A1 (ja) 2007-01-17 2007-11-07 車両の制御装置、制御方法、その方法を実現するプログラムを記録した記録媒体

Country Status (4)

Country Link
US (1) US8135530B2 (ja)
EP (1) EP2103492B1 (ja)
JP (1) JP4434212B2 (ja)
WO (1) WO2008087789A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4127310B2 (ja) * 2006-12-27 2008-07-30 トヨタ自動車株式会社 車両の制御装置、制御方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体
US9604526B2 (en) * 2008-12-05 2017-03-28 Ford Global Technologies, Llc Method for providing improved driveability for a vehicle
JP5019002B2 (ja) * 2009-12-17 2012-09-05 トヨタ自動車株式会社 車両の制御装置
CN103347764B (zh) 2011-02-10 2015-07-29 丰田自动车株式会社 混合动力车辆及混合动力车辆的控制方法
US9067585B2 (en) * 2012-03-15 2015-06-30 Nissan Motor Co., Ltd. Control device for hybrid vehicle
JP6056734B2 (ja) * 2013-10-25 2017-01-11 トヨタ自動車株式会社 車両制御装置
JP6508534B2 (ja) * 2016-03-29 2019-05-08 マツダ株式会社 エンジンの制御装置
JP6332316B2 (ja) * 2016-03-29 2018-05-30 マツダ株式会社 車両の制御装置
JP7301466B2 (ja) * 2019-03-19 2023-07-03 ダイハツ工業株式会社 車両制御装置
JP7264036B2 (ja) 2019-12-13 2023-04-25 トヨタ自動車株式会社 車両
CN113815411B (zh) * 2020-06-19 2023-11-14 比亚迪股份有限公司 标定方法、装置以及存储介质、新能源汽车、控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09130909A (ja) * 1995-10-31 1997-05-16 Sanyo Electric Co Ltd 電気自動車の駆動制御装置
JPH10329671A (ja) 1997-05-28 1998-12-15 Fujitsu Ten Ltd ブレーキ制御システム
JP2003182404A (ja) * 2001-12-17 2003-07-03 Aisin Seiki Co Ltd 電動車輌の坂路停止制御装置
JP2004090679A (ja) * 2002-08-29 2004-03-25 Advics:Kk クリープ走行制御装置
JP2006232014A (ja) * 2005-02-23 2006-09-07 Toyota Motor Corp 車両用制動装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0781698B1 (en) * 1995-12-27 2001-03-14 Denso Corporation Brake control apparatus for a vehicle
JPH09286324A (ja) * 1996-04-23 1997-11-04 Toyota Motor Corp 制動力制御装置
US7074161B2 (en) * 2001-05-08 2006-07-11 Continental Teves, Inc. Method for assisting a vehicle to start on a slope
JP4725281B2 (ja) * 2005-10-14 2011-07-13 株式会社アドヴィックス 車両の制動力保持装置、及び車両の制動力保持方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09130909A (ja) * 1995-10-31 1997-05-16 Sanyo Electric Co Ltd 電気自動車の駆動制御装置
JPH10329671A (ja) 1997-05-28 1998-12-15 Fujitsu Ten Ltd ブレーキ制御システム
JP2003182404A (ja) * 2001-12-17 2003-07-03 Aisin Seiki Co Ltd 電動車輌の坂路停止制御装置
US20040012250A1 (en) 2001-12-17 2004-01-22 Tetsuya Kuno Control device for electric vehicle stopping at slope road
JP2004090679A (ja) * 2002-08-29 2004-03-25 Advics:Kk クリープ走行制御装置
JP2006232014A (ja) * 2005-02-23 2006-09-07 Toyota Motor Corp 車両用制動装置

Also Published As

Publication number Publication date
EP2103492A4 (en) 2013-09-18
US8135530B2 (en) 2012-03-13
EP2103492B1 (en) 2014-12-17
US20100076661A1 (en) 2010-03-25
JP2008174048A (ja) 2008-07-31
JP4434212B2 (ja) 2010-03-17
EP2103492A1 (en) 2009-09-23

Similar Documents

Publication Publication Date Title
WO2008087789A1 (ja) 車両の制御装置、制御方法、その方法を実現するプログラムを記録した記録媒体
US8010270B2 (en) Vehicle controller and control method
WO2008081619A1 (ja) 車両の制御装置、制御方法、およびその方法を実現するプログラムを記録した記録媒体
WO2009034792A1 (ja) 車両の制御装置および制御方法
JP5381954B2 (ja) 車両駆動力制御装置
US7291090B2 (en) Motor torque control system for vehicle
US7828394B2 (en) Vehicle and control method of vehicle slip-down velocity
WO2008146762A1 (ja) 車両の制御装置および制御方法
JP2018098905A (ja) 電動車両の制動制御方法、及び電動車両の制御装置
JP5471483B2 (ja) 車両走行制御装置
JP2006200526A (ja) 車両の出力特性制御装置
JP4665390B2 (ja) 車両の制動制御装置
JP3951649B2 (ja) 電気自動車のモータ制御装置
JP2009011057A (ja) 車両の制御装置
JP3347096B2 (ja) 電気自動車の駆動力制御システム
JP2002152911A (ja) 車両の4輪駆動制御装置
JP3783661B2 (ja) ハイブリッド車両
JP4449927B2 (ja) 車両用駆動制御装置、自動車及び車両用駆動制御方法
JP2003327104A (ja) 制動制御装置
WO2022264738A1 (ja) 車両の制御装置
JP4111780B2 (ja) 車両用トラクション制御装置
JP2004001625A (ja) 制動制御装置
JP2007230526A (ja) 車両用駆動制御装置、自動車及び車両用駆動制御方法
JP2005161933A (ja) ハイブリッド型四輪駆動車両の制御装置

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831790

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007831790

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12522224

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE