WO2008062548A1 - Pasty metal particle composition and method of joining - Google Patents

Pasty metal particle composition and method of joining Download PDF

Info

Publication number
WO2008062548A1
WO2008062548A1 PCT/JP2007/000276 JP2007000276W WO2008062548A1 WO 2008062548 A1 WO2008062548 A1 WO 2008062548A1 JP 2007000276 W JP2007000276 W JP 2007000276W WO 2008062548 A1 WO2008062548 A1 WO 2008062548A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion medium
volatile
metal
volatile dispersion
particle composition
Prior art date
Application number
PCT/JP2007/000276
Other languages
French (fr)
Japanese (ja)
Inventor
Katsutoshi Mine
Kimio Yamakawa
Hidetomo Asami
Nobuhiro Takahashi
Yuko Maeda
Original Assignee
Nihon Handa Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Handa Co., Ltd. filed Critical Nihon Handa Co., Ltd.
Priority to JP2008528275A priority Critical patent/JP4247801B2/en
Publication of WO2008062548A1 publication Critical patent/WO2008062548A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2733Manufacturing methods by local deposition of the material of the layer connector in solid form
    • H01L2224/27334Manufacturing methods by local deposition of the material of the layer connector in solid form using preformed layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED

Definitions

  • the present invention uses a metal particle and a volatile dispersion medium, a paste-like metal particle composition in which sedimentation and separation of the metal particle are suppressed, and the paste-like metal particle composition.
  • the present invention relates to a method for joining metal members.
  • the present inventors have developed a paste-like silver composition comprising silver powder and a volatile dispersion medium, and the volatile dispersion medium volatilizes when heated, and the silver powder is sintered. As a result, it was found that it became solid silver having extremely high electrical conductivity and thermal conductivity, and that it was useful for joining metal members and forming conductive circuits (Japanese Patent Application 2005- 1 52827, Japanese Patent Application 2005-3091 26). Shi However, a paste-like composition composed of metal particles having a high specific gravity such as silver, copper, nickel and a volatile dispersion medium having a low specific gravity has a large difference in specific gravity. The present inventors have noticed that there is a problem of separation and sedimentation.
  • Japanese Patent Application Laid-Open No. 20 0 5-9 9 3 3 80 describes a silver ink comprising a silver powder and a polyol, and a silver powder, a polyol and a viscosity modifier (water, ketones or alcohols).
  • a silver ink consisting of It is described that the dispersibility is improved by the combined use of polyols and ketones or alcohols.
  • a paste-like composition composed of metal particles with high specific gravity such as silver, copper, nickel and polyols with low specific gravity, and further a viscosity modifier, the metal particles over time due to the large specific gravity difference between them.
  • the present inventors have noticed that there is a problem of separation and sedimentation.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 _ 9 3 3 8 0
  • the inventors of the present invention have a paste-like metal particle composition that does not have the above problem, that is, the metal particles and the volatile dispersion medium are prevented from separating over time, and the metal particles having a large specific gravity are allowed to settle.
  • the object of the present invention is to suppress separation of metal particles having a large specific gravity from a volatile dispersion medium and settling of metal particles even after long-term storage, that is, excellent storage stability. It is to provide a method for strongly joining a metal member using a paste-like metal particle composition and the paste-like metal particle composition.
  • Average particle size is 0.0 0 1 to 50 m, and the surface is made of water-repellent organic material. It consists of 100 parts by weight of coated metal particles and (B) 3-30 parts by weight of a volatile dispersion medium.
  • the volatile dispersion medium (B) is volatilized with a volatile dispersion medium (B1) having a different dielectric constant. And a volatile dispersion medium (B1) and a volatile dispersion medium (B2) in a mixing ratio that is not completely compatible at room temperature.
  • Metal particle composition is 0.0 0 1 to 50 m, and the surface is made of water-repellent organic material. It consists of 100 parts by weight of coated metal particles and (B) 3-30 parts by weight of a volatile dispersion medium.
  • the volatile dispersion medium (B) is volatilized with a volatile dispersion medium (B1) having a different dielectric constant. And a volatile dispersion medium (B1) and a volatile dispersion medium (B2) in a mixing ratio that is not
  • the water-repellent organic substance is a higher fatty acid, a higher fatty acid amide or a higher fatty acid ester, and the metal particles (A) are gold, silver, copper, palladium, nickel, tin, aluminum, or an alloy thereof.
  • Volatile dispersion medium (B1) and volatile dispersion medium (B2) are water, volatile monohydric alcohol, volatile monohydric alcohol with ether bond, volatile polyhydric alcohol, volatile hydrocarbon, Selected from the group consisting of volatile ethers, volatile fatty acid esters, volatile ketones, volatile fatty acid amides, volatile aliphatic amines and alkyl nitriles, and the volatile dispersion medium (B1) and the volatile dispersion.
  • the paste-like metal particle composition according to any one of to [6] is interposed between a plurality of metal members, and is heated and pressurized while applying ultrasonic vibration, or is pressurized and heated. While applying ultrasonic vibration, the volatile dispersion medium is volatilized and the metal particles (A) are sintered together, so that multiple metal members
  • a method for joining metal members characterized in that:
  • a paste-like metal particle composition comprising 3 to 30 parts by weight of a volatile dispersion medium that does not repel particles (A).
  • the water-repellent organic substance is a higher fatty acid, a higher fatty acid amide or a higher fatty acid ester, and the metal particles (A) are gold, silver, copper, palladium, nickel, tin, aluminum, or an alloy thereof.
  • the pace-like metal particle composition according to [8].
  • the paste-like metal particle composition according to any one of [1 1] is interposed between a plurality of metal members, and is heated, pressurized and applied with ultrasonic vibration, or pressurized and heated while being superheated.
  • a method for joining metal members comprising: volatilizing a volatile dispersion medium (C) by applying sonic vibrations and sintering metal particles (A) together to join a plurality of metal members. . Achieved by;
  • the paste-like metal particle composition of the present invention is capable of separating metal particles having a high specific gravity and volatile dispersion medium (B) having a low specific gravity even after storage for a long time, and metal particles having a high specific gravity (A ) Is prevented from settling, and a uniform pace can be maintained.
  • the paste-like metal particle composition between metal members is volatilized by heating, and the volatile dispersion medium is volatilized at a temperature equal to or higher than the sintering temperature of the metal particles (A).
  • the metal particles (A) sinter together into a solid state, and a plurality of metal parts The materials can be firmly bonded to each other.
  • FIG. 1 is a side view of a syringe in measurement of separability between metal particles and a volatile dispersion medium in an example.
  • the pace-like metal particle composition of the present invention has (A) an average particle diameter of 0.001 to 50 m, and 100 parts by weight of metal particles whose surfaces are coated with a water-repellent organic substance. And (B) 3 to 30 parts by weight of a volatile dispersion medium, and the volatile dispersion medium (B) comprises a volatile dispersion medium (B1) and a volatile dispersion medium (B2) having different dielectric constants.
  • the volatile dispersion medium (B1) and the volatile dispersion medium (B2) have a mixing ratio that is not completely compatible at room temperature.
  • the surface of the metal particle (A) needs to be coated with a water-repellent organic substance.
  • the organic substance is preferably excellent in lubricity, and higher fatty acids, higher fatty acid metal salts (excluding alkali metal salts), higher fatty acid amides and higher fatty acid esters are preferable, and higher fatty acids are particularly preferable.
  • the covering amount of the water-repellent organic material varies depending on the particle size, specific surface area, shape, etc. of the metal particles, but is preferably 0.1 to 3% by weight, more preferably 0.2 to 2% by weight of the metal particles. If the amount is too small, the storage stability is lowered, and if too much, the heat-sinterability is lowered.
  • the material of the metal particles (A) is solid at room temperature, and may be easily sintered by heating or heating and applying ultrasonic vibration.
  • silver, copper, and nickel are preferable, and silver is particularly preferable in terms of heat sintering, thermal conductivity, and conductivity.
  • the silver particles may have part or all of the surface thereof made of silver oxide.
  • the average particle diameter of the metal particles (A) is from 0.001 to 50 m.
  • This average particle size is an average particle size of primary particles obtained by a laser-diffraction scattering type particle size distribution measurement method. If the average particle size exceeds 50 m, it will be difficult to prevent metal particles from settling. Therefore, it is preferable that the average particle size is small, and it is preferable that the average particle size is 20 m or less.
  • the so-called nano-size is less than 0.1 m, the surface activity is too strong, and the storage stability of the pace-like metal particle composition may be lowered. Therefore, it is preferably 0.1 m or more, and more preferably 0.1 to 10 m.
  • the shape of the metal particles (A) is spherical, approximately spherical, approximately cubic, flakes, indefinite. From the viewpoint of storage stability, a flake shape is preferable.
  • the silver particles produced by the reduction method are made into flakes.
  • a silver oxide aqueous solution is added to a silver nitrate aqueous solution to produce silver oxide, and an aqueous solution of a reducing agent such as formalin is added thereto.
  • silver oxide is reduced to produce silver particles, which are then washed with water, filtered, and dried.
  • the flaky metal particles to which the water-repellent organic material is adhered can be produced by adding the water-repellent organic material to a spherical metal particle and crushing with a pole mill or the like. Koyo 4 0-6 9 7 1, JP-A 2 0 0 0-2 3 4 1 0 7 [0 0 0 4])).
  • water-repellent organic substances such as higher fatty acids, higher fatty acid metal salts (excluding alkali metal salts), higher fatty acid esters, and higher fatty acid amides for improving lubricity adhere to the flaky metal particles.
  • higher fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid, and higher saturated fatty acids are preferred.
  • higher saturated fatty acids are lauralic acid, myristic acid, palmitic acid, and stearic acid.
  • the surface of the flake metal may be covered with more than half of such a higher fatty acid, but it is preferable that the entire surface is covered.
  • covered with the water-repellent organic substance shows water repellency.
  • the adhesion amount of the water-repellent organic substance is preferably from 0.1 to 3%, and more preferably from 0.1 to 1%.
  • the amount of the water-repellent organic substance attached can be measured by a usual method. For example, a method of measuring weight loss by heating above the boiling point of a water-repellent organic substance in nitrogen gas, or heating carbon particles in an oxygen stream to convert carbon in the water-repellent organic substance attached to the metal particles into carbon dioxide gas Another example is a method of quantitative analysis using the infrared absorption spectrum method.
  • the metal particle (A) whose surface is coated with a water-repellent organic substance can also be produced by a usual method.
  • it can be produced by pulverizing metal particles in a water-repellent organic substance solution, taking out the metal particles and drying.
  • the volatile dispersion medium (B) is composed of a volatile dispersion medium (B1) and a volatile dispersion medium (B2) having different dielectric constants, and the volatile dispersion medium (B1) and the volatile dispersion medium (B2). However, it is a mixture with a ratio that is not completely compatible at room temperature.
  • Whether it is not completely compatible can be determined by the following method.
  • the volatile dispersion medium (B1) and the volatile dispersion medium (B2) are stirred and mixed in a glass container, and left to stand until bubbles disappear, and then visually observed. If the two layers are separated or turbid, it can be determined that they are not compatible. If the mixed solution is one layer and transparent, it can be determined that the mixed solution is compatible.
  • volatile dispersion medium (B1) and the volatile dispersion medium (B2) are compatible and in a uniform state, the metal particles (A) in the base bowl-shaped metal composition are separated, so that they settle. It cannot be prevented.
  • the mixing ratio of volatile dispersion medium (B1) and volatile dispersion medium (B2) is completely compatible. The ratio is preferably in the range of 9 9: 2 to 2: 9 9.
  • the dispersion medium is not non-volatile and volatile. It is necessary to be sex.
  • the metal particles (A) are silver particles, if the dispersion medium is volatilized during sintering, the silver particles are easy to sinter, making it easier to use as a bonding agent or adhesive.
  • the boiling point of the volatile dispersion medium is preferably 60 ° C. to 300 ° C.
  • Such a volatile dispersion medium (B) includes water, volatile hydrocarbon compounds composed of carbon atoms and hydrogen atoms, volatile organic compounds composed of carbon atoms, hydrogen atoms and oxygen atoms, carbon atoms, hydrogen atoms and It is selected from volatile organic compounds consisting of nitrogen atoms, volatile organic compounds consisting of carbon atoms, hydrogen atoms, oxygen atoms and nitrogen atoms. These are all liquid at room temperature.
  • volatile monovalent alcohol such as water, ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, ethylene glycol monomethyl ether (Methyl ceguchi sorb, methyl carb! ⁇ 1l), Ethylene glycol monoethyl ether (Emethyl ceguchi sorb, ethyl carb! ⁇ 1l), Ethylene glycol monopropyl ether (propyl cellosolve, propyl carb!
  • volatile monovalent alcohol such as water, ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, ethylene glycol monomethyl ether (Methyl ceguchi sorb, methyl carb! ⁇ 1l), Ethylene glycol monoe
  • Ethylene glycol Volatile monohydric alcohols with ether linkages such as monobutyl ether (Ptylcetone solve, Ptylcarbi! ⁇ L), propylene glycol monomethyl ether, methylmethoxybutanol, etc.
  • Volatile aralkyl alcohols such as benzyl alcohol and 2-phenyl alcohol, volatile polyhydric aliphatic alcohols such as ethylene glycol, propylene glycol and glycerin, volatile fats such as lower n-paraffins and lower isoparaffins Group hydrocarbons, toluene, Volatile aromatic hydrocarbons such as xylene, acetone, methyl ethyl ketone, methyl butyl ketone, cyclohexanone, diacetone alcohol (4-hydroxy-4_methyl_2_pentanone), 2-octanone, Volatile aliphatic ketones such as isophorone (3,5,5_trimethyl_2-cyclohexene_1_one), dibutylkene (2,6-dimethyl_4_heptanone), ethyl acetate (ethyl acetate) ), Volatile aliphatic carboxylic acid esters such as butyl acetate, methyl
  • the water is preferably pure water, and its electric conductivity is preferably 100 SZ cm or less, more preferably 10 SZ cm or less.
  • the pure water production method may be an ordinary method, and examples include an ion exchange method, reverse permeation method, and distillation method.
  • the volatile dispersion medium (B1) and volatile dispersion medium (B2) must be selected from the above volatile dispersion medium (B) so that the difference in dielectric constant at 25 ° C is 2 or more. Select a value that is 3 or more, more preferably 5 or more.
  • a volatile dispersion medium (B1) water, volatile monovalent alcohol, volatile polyhydric alcohol, volatile aralkyl alcohol, ⁇ , ⁇ -dimethylformamide, volatile, with a high dielectric constant at 25 ° C
  • Fatty amines, volatile aliphatic ethers, volatile fats Select an aliphatic carboxylic acid ester or volatile aliphatic ketone
  • the volatile dispersion medium (B2) has a dielectric constant at 25 ° C that is 2 or more smaller than the volatile dispersion medium (B1), preferably 3 or more Select a small, more preferably 5 or smaller volatile aliphatic ether, volatile aliphatic carboxylic acid ester, volatile aliphatic ketone, volatile aliphatic hydrocarbon, volatile aromatic hydrocarbon or volatile silicone oil It is preferable.
  • the volatile dispersion medium (B1) and the volatile dispersion medium (B2) have the same organic difference if the difference in dielectric constant at 25 ° C is 2 or more, preferably 3 or more, more preferably 5 or more. It may be a compound.
  • the compatibility between the two volatile dispersion media will be high, and paste-like metal particles This is because it becomes difficult to prevent separation and settling of the metal particles (A) in the composition.
  • the selected volatile dispersion medium (B1) and volatile dispersion medium (B2) are It must be compatible but not completely compatible.
  • the volatile dispersion medium (B1) and the volatile dispersion medium (B2) should be mixed to a certain extent but not so completely. is required.
  • Two or more volatile dispersion media (B1) and (B2) may be used in combination, but it is necessary that the mixing ratio is incompatible with the mixing of (B1) and (B2).
  • the blending amount of the volatile dispersion medium (B), that is, the total blending amount of the volatile dispersion medium (B1) and the volatile dispersion medium (B2) is 3 to 3 parts by weight per 100 parts by weight of the metal particles (A). It is 30 parts by weight, and is an amount sufficient to make the metal particles (A) into a paste-like shape at room temperature.
  • the paste-like metal particle composition of the present invention includes a non-metallic powder other than the metal particles (A), a metal compound, a metal complex, a thixotropic agent, a stabilizer, unless it is contrary to the object of the present invention. Additives such as colorants may be contained in small or trace amounts.
  • the pasty bowl-shaped metal particle composition of the present invention comprises (A) an average particle diameter of 0.001 to 50 m, and 100 parts by weight of metal particles whose surfaces are coated with a water-repellent organic substance. And (B) 3 to 30 parts by weight of a volatile dispersion medium is put into a mixer and stirred and mixed until it is uniform. Volatile dispersion medium (B1) and volatile The dispersion medium (B2) is mixed in advance and is compatible to some extent, but it may be mixed with the metal particles (A) in a state where it is not completely compatible. Alternatively, the volatile dispersion medium (B1) and the volatile dispersion medium (B2) may be mixed separately.
  • the paste-like metal particle composition of the present invention is a mixture of metal particles (A) and a volatile dispersion medium (B), and is paste-like at room temperature.
  • the paste form includes cream.
  • a paste-like metal particle composition according to another embodiment of the present invention comprises (A) an average particle size of 0.
  • the metal particles (A) are as described above.
  • Volatile dispersion media are volatile organic compounds consisting of carbon, hydrogen and oxygen atoms, volatile organic compounds consisting of carbon, hydrogen and nitrogen atoms, carbon atoms, hydrogen atoms, oxygen atoms and nitrogen. It can be obtained by selecting a volatile organic compound consisting of atoms having a dielectric constant of 30 to 75 at 25 ° C. Specifically, volatile monohydric alcohol, volatile polyhydric alcohol, volatile lower aliphatic carboxylic acid amide, volatile alkyl nitrile, and volatile Selected from aqueous solutions of volatile alcohols (eg, volatile monohydric alcohols, volatile polyhydric alcohols).
  • volatile dispersion medium volatile monovalent alcohol such as methyl alcohol, an aqueous solution of volatile monovalent lower alcohol (for example, ethyl alcohol), volatilization of ethylene glycol, propylene glycol, glycerin, etc.
  • Volatile properties such as polyhydric alcohols, volatile lower aliphatic carboxylic acid amides such as acetoamide and dimethylformamide, acetonitrile and propionitol Alkyl nitrile is exemplified.
  • polyhydric alcohols having a dielectric constant of 30 to 70 are preferred. Even if two or more types of dispersion media are used in combination, the mixture may have a dielectric constant of 30 to 75 at 25 ° C.
  • the compounding amount of the volatile dispersion medium (C) is 3 to 30 parts by weight per 100 parts by weight of the metal particles (A), and is sufficient to paste the metal particles (A) into a paste form. It is.
  • the above paste-like metal particle composition of the present invention includes non-metallic powders other than metal particles, metal compounds, metal complexes, thixotropic agents, stabilizers, colorants, etc. An additive may be contained in a small amount or a trace amount.
  • the above-mentioned pace-like metal particle composition of the present invention comprises: (A) metal particles having an average particle diameter of 0.001 to 50 m, and the surface of which is coated with a water-repellent organic substance. And (C) 3 to 30 parts by weight of a volatile dispersion medium are charged into a mixer and mixed with stirring until uniform.
  • the paste-like metal particle composition of the present invention is a mixture of metal particles (A) and a volatile dispersion medium (C), and is paste-like at room temperature.
  • the paste form includes cream.
  • the two types of paste-like metal particle compositions of the present invention volatilize the volatile dispersion medium when heated.
  • the above two types of paste-like metal particle compositions of the present invention can be heated by heating to a temperature equal to or higher than the sintering temperature of the metal particles, or by applying ultrasonic vibration while applying pressure.
  • the volatile dispersion medium (B) or volatile dispersion medium (C) is volatilized, and the metal particles (A) sinter together, resulting in strength and conductivity. Solid metal with excellent thermal conductivity. Pressure may be applied during the heating of the paste-like metal particle composition.
  • the volatile dispersion medium (B) or the volatile dispersion medium (C) may be volatilized, and then the metal particles (A) may be sintered, and the volatile dispersion medium (B) or the volatile dispersion medium.
  • the metal particles (A) may be sintered together with the volatilization of (C).
  • the metal particles (A) are silver particles, since silver has inherently high strength and extremely high electrical and thermal conductivity, the sintered product of the silver particles of the present invention is also very strong and extremely high. Electrical and thermal conductivity Have sex.
  • the heating temperature at this time may be a temperature at which the volatile dispersion medium (B) or the volatile dispersion medium (C) is volatilized and the silver particles can be sintered, and is usually 100 ° C or higher and 150 ° C or higher Is more preferable. However, if it exceeds 400 ° C, the volatile dispersion medium may evaporate suddenly, which may adversely affect the shape of the solid metal. 300 ° C or less.
  • Metal particles (A) which are difficult to sinter by heating alone, sinter well by applying ultrasonic vibration while applying pressure, or by applying ultrasonic vibration while applying pressure and heating.
  • the frequency of the ultrasonic vibration is 2 kHz or more, and preferably 10 kHz or more.
  • the upper limit is not particularly limited, but it is about 500 kHz due to the capability of the device.
  • the amplitude of the ultrasonic vibration affects the sinterability, it is preferably 0.1 to 40 m, more preferably 0.3 to 20 m, and still more preferably 0.5 to 12 m.
  • it is preferable to directly press the transmitting portion of the ultrasonic vibration to the pace-like metal particle composition.
  • the pressing pressure to the paste-like metal particle composition is preferably 0.9 kP a (0.09 gf / mm 2 ) or more, more preferably 9 kPa (0.92 g fZm m 2 ) or more, more preferably 39 k Pa (3.98 gf / mm 2 ) or more.
  • the upper limit of the pressing pressure is the maximum pressure at which the members to be joined are not destroyed.
  • the heating temperature is higher than room temperature, and the volatile dispersion medium (B) or volatile dispersion medium (C) is volatilized to form metal particles (A). Any temperature that can be sintered is acceptable. However, if the heating temperature exceeds 400 ° C, the volatile dispersion medium (B) or volatile dispersion medium (C) may evaporate suddenly, which may adversely affect the shape of the solid metal.
  • the temperature is preferably 400 ° C or lower and less than the melting point of the metal particles (A), more preferably 300 ° C or lower.
  • the shape of the solid metal formed by sintering the metal particles (A) is not particularly limited. Examples include shapes, films, tapes, lines, disks, blocks, spots, and irregular shapes.
  • the two types of paste-like metal particle compositions of the present invention can be obtained by applying ultrasonic vibration while applying pressure, heating, or applying ultrasonic vibration while applying pressure and heating.
  • the volatile dispersion medium (C) is volatilized and the metal particles are sintered.
  • Sintered solid metal has excellent strength, electrical conductivity, and thermal conductivity, and is in contact with metal parts such as gold-plated substrates, silver substrates, silver-plated metal substrates, copper substrates, aluminum substrates, Adhesion to metal substrates such as nickel plating substrates and tin plating metal substrates, and adhesion to metal parts such as electrodes on electrically insulating substrates, so electronic parts, electronic devices, Useful for joining parts and electrical equipment.
  • Such bonding includes bonding of chip components such as capacitors and resistors to circuit boards, bonding of semiconductor chips such as diodes, memories, and CPUs to lead frames or circuit boards, and high-heat generation CPU chips and cooling plates.
  • the two types of paste-like metal particle compositions of the present invention contain a volatile dispersion medium (B) or a volatile dispersion medium (C), they are preferably stored in a sealed container. Storage may be refrigerated for the purpose of improving stability, and the storage temperature is 10 ° C or less.
  • Paste-like metal particle composition 1 is placed on syringe 3 (inner diameter 12 mm, length 55 mm, internal volume 5 cc, manufactured by EFD) with tip cap 2 and 3 Omm with syringe 3 tip facing downward After the height was reached, the plunger 4 was attached, and finally the end cap 5 was attached and sealed. The tip of the syringe 3 was held downward and held for 24 hours. The thickness (mm) of the volatile dispersion medium layer separated on the upper part of the paste-like metal particle composition 1 in the syringe 3 was measured.
  • Adhesive strength B Apply paste metal particle composition (applicable area: 5 mm x 5 mm) to a silver-plated silver plate with a diameter of 25 mm x length 75 mm x thickness 1 mm using a 100 jW m thick metal mask.
  • the (probe) was pressed from above onto the upper part of the silver chip of the precursor for adhesive strength measurement, and crimped at a temperature of 200 ° C. for 30 seconds while applying ultrasonic vibration.
  • the test specimen for measuring the adhesive strength is attached to the die shear strength measurement tester, and the side of the silver chip is pressed at a speed of 23 mmZ by the die shear tool of the die shear strength measurement tester.
  • the bond strength (unit: kgf) was defined as the load when the joint between the copper plates was sheared and destroyed.
  • the bond strength test was performed three times, and the average value was defined as bond strength B.
  • Flaked silver particles (0.5% by weight) produced by flaking commercially available silver particles produced by the reduction method and having an average primary particle size of 3.0 m (measured by laser diffraction method)
  • the silver surface is coated with 100 parts of stearic acid, and the silver particles have water repellency.
  • Benzyl alcohol as a volatile dispersion medium (B1) (a reagent released by Wako Pure Chemical Industries, Ltd., dielectric constant 13.0) 1
  • B1 a reagent released by Wako Pure Chemical Industries, Ltd., dielectric constant 13.0
  • B2 a volatile dispersion medium
  • a mixture of 2 parts of benzyl alcohol 12 as the volatile dispersion medium (B1) and 3 parts of 1-hexane as the volatile dispersion medium (B2) is in an incompatible ratio. When both were stirred and mixed, they became cloudy, and upon standing, they separated into two layers.
  • Example 1 instead of silver particles, commercially available flakes made from copper particles were flaked, and the average primary particle size was 4.0 m (measured by laser diffraction method).
  • Paste-like copper particle composition in the same manner as in Example 1, except that the copper particles (the copper surface is covered with 0.5% by weight of stearic acid, which has water repellency) are used. A product was prepared. In this paste-like copper particle composition, separation of the copper particles and the volatile dispersion medium was not observed in the syringe. The results are summarized in Table 1.
  • this paste-like copper particle composition is excellent in long-term storage stability without separation of copper particles and volatile dispersion medium.
  • Flaked nickel particles (0.8% by weight) made by flaking commercially available nickel particles with an average primary particle size of 6.0 m (measured by laser diffraction method) The nickel surface is coated with oleic acid, and the nickel particles have water repellency.
  • a paste-like nickel particle composition was prepared by mixing uniformly with a spatula N, N-dimethylformamide 12 parts as volatile dispersion medium (B1) and volatile dispersion medium (B2) 1
  • a mixture of 3 parts of 1-hexane is incompatible ratio. The mixture became cloudy when mixed with stirring, and immediately separated into two layers upon standing.
  • Flaked silver particles (average particle size of 3.0 m (measured by laser diffractometry) made by flaking silver particles produced by the reduction method on the market)
  • the silver surface is coated with 5% by weight of stearic acid, and the silver particles have water repellency.
  • B1 bis (2-ethoxyethyl) ether
  • B2 ethylene glycol
  • the paste-like metal particle composition was prepared by adding and mixing uniformly using a spatula.
  • a mixture of 1 part of bis (2_ethoxyethyl) ether 1 which is a volatile dispersion medium (B1) and 4 parts of ethylene glycol which is a volatile dispersion medium (B2) is incompatible ratio. When both were stirred and mixed, they became cloudy, and upon standing, they separated into two layers.
  • this paste-like silver particle composition has no separation of silver particles and volatile dispersion medium, has excellent storage stability, and is useful for strongly joining metal members. Recognize.
  • Example 5 as the volatile dispersion medium (B1), instead of 1,2_diacetoxetane, methyl-n-hexylkenne (a reagent sold by Wako Pure Chemical Industries, Ltd., dielectric constant 1 2 2) Paste silver in the same manner as in Example 5 except that 4 parts were used and 2 parts of pure water (distilled water, dielectric constant 80.0) were used instead of the volatile dispersion medium (B2).
  • a particle composition was prepared. A mixture of 4 parts of methyl-n-hexylcane, which is a volatile dispersion medium (B1), and 2 parts of pure water, which is a volatile dispersion medium (B2), is incompatible with each other. did.
  • this paste-like silver particle composition separation of the silver particles and the volatile dispersion medium was not observed in the syringe.
  • the adhesive strength of this pasty silver particle composition was measured, and the results are summarized in Table 1. From the above results, it can be seen that this paste-like silver particle composition has no separation between the silver particles and the volatile dispersion medium, has excellent storage stability, and is useful for strongly joining metal members. .
  • Flaked silver particles (0. 0) produced by flaking commercially available silver particles produced by the reduction method, and having an average primary particle size of 3.0 m obtained by laser diffraction.
  • the silver surface is coated with 5% by weight of stearic acid, and the silver particles have water repellency.
  • a paste-like silver particle composition was prepared by adding 15 parts of a dielectric constant of 39.0) and mixing uniformly using a rotary kneader.
  • This paste-like silver particle composition separates silver particles from the dispersion medium in a syringe. Was not recognized.
  • the adhesive strength of this paste-like silver particle composition was measured, and the results are summarized in Table 2. From the above results, it can be seen that this pasty silver particle composition has no separation of silver particles and dispersion medium, has excellent storage stability, and is useful for strongly joining metal members.
  • Flaked copper particles (0.5% by weight of stearic acid) produced by flaking copper particles on the market and having an average primary particle size of 4.0 m (measured by laser diffraction method)
  • the copper surface is coated with a copper repellant, and the copper particles have water repellency.
  • C volatile dispersion medium
  • Example 8 instead of copper particles, commercially available nickel particles were flaked and the average particle size of primary particles was 6.0 m (measured by laser diffraction method).
  • a pace-like nickel particle composition was prepared in the same manner as in Example 8 except that nickel particles (the nickel surface was coated with 0.8% by weight of oleic acid, and the nickel particles had water repellency) were used. Prepared. In this paste-like nickel particle composition, separation of the nickel particles and the dispersion medium was not observed in the syringe. The results are summarized in Table 2. From the above results, it can be seen that this paste-like nickel particle composition is excellent in long-term storage stability without separation of the nickel particles and the dispersion medium.
  • this paste-like silver particle composition separation of the silver particles and the dispersion medium was not observed in the syringe.
  • the adhesive strength of this paste-like silver particle composition was measured, and the results are summarized in Table 2. From the above results, it can be seen that this pasty silver particle composition has no separation of silver particles and dispersion medium, has excellent storage stability, and is useful for strongly joining metal members.
  • Example 1 as volatile dispersion medium (B1), instead of benzyl alcohol, pure water (dielectric constant 80.0) 15 parts, and as volatile dispersion medium (B2), instead of 1-hexane
  • a paste-like silver particle composition was prepared in the same manner as in Example 1 except that 3 parts of ethanol (a reagent sold by Wako Pure Chemical Industries, Ltd., dielectric constant 24.0) was used.
  • the dielectric constant of a mixed solution of 15 parts pure water and 3 parts ethanol is 68.
  • This paste-like silver particle composition separation of the silver particles and the dispersion medium was not observed in the syringe.
  • the adhesive strength of this pasty silver particle composition was measured, and the results are summarized in Table 2. From the above results, it can be seen that this paste-like silver particle composition has no separation of silver particles and dispersion medium, has excellent storage stability, and is useful for strongly joining metal parts. .
  • Example 1 Example 1 except that 1 hexane, which is a volatile dispersion medium (B2), is not added, and the amount of benzyl alcohol, which is a volatile dispersion medium (B1), is 15 parts.
  • a pasty silver particle composition was prepared. In this paste-like silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 3.
  • Example 1 benzyl alcohol 14.8 parts as volatile dispersion medium (B1)
  • a pasty silver particle composition was prepared in the same manner as in Example 1 except that 0.2 part of 1-hexane was used as the volatile dispersion medium (B2). Stir and mix 14.8 benzyl alcohol of volatile dispersion medium (B1) and 0.2 part of 1-hexane of volatile dispersion medium (B2), and it will not separate into two layers even if left standing. It was. In this best silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 3.
  • Example 1 except that 0.2 part of benzyl alcohol was used as the volatile dispersion medium (B1) and 1-hexane 14.8 part was used as the volatile dispersion medium (B2).
  • a paste-like silver particle composition was prepared in the same manner as in 1. Stir and mix 0.2 part of benzyl alcohol as the volatile dispersion medium (B1) and 1-hexane 14.8 parts as the volatile dispersion medium (B2). Did not separate. In this pasty silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 3.
  • Example 1 as a volatile dispersion medium (B2), instead of 1_hexane, hexanol hexanol (a reagent sold by Wako Pure Chemical Industries, Ltd., dielectric constant 15.0) was used for 3 parts, A pasty silver particle composition was prepared in the same manner as in Example 1. Volatile dispersion medium (B1) benzyl alcohol 1 2 parts and volatile dispersion medium (B2) cyclohexanol 3 parts are stirred and mixed to become transparent, and do not separate into two layers when left standing. It was. In this pasty silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 3.
  • Example 5 instead of the water-repellent silver particles, granular silver particles (repellent particles) having a mean particle size of primary particles produced by a commercially available precipitation method of 1. (measured by laser diffraction method) A pasty silver particle composition was prepared in the same manner as in Example 5 except that it was not coated with an aqueous organic substance and had no water repellency. This pasty silver particle composition separates silver particles and volatile dispersion media in a syringe. Was recognized. The results are summarized in Table 3.
  • Example 1 As a volatile dispersion medium (B1), instead of benzyl alcohol, ethylene glycol (a reagent sold by Wako Pure Chemical Industries, Ltd., dielectric constant 39.0) 4 parts, and as a volatile dispersion medium (B2), A pasty silver particle composition was prepared in the same manner as in Example 1 except that 1 part of acetone (reagent, dielectric constant 21.0) 1 1-hexane was used instead of 1-hexane. When 4 parts of ethylene glycol, which is a volatile dispersion medium (B1), and 11 parts of aceton, which is a volatile dispersion medium (B2), were stirred and mixed, the mixture became transparent. In this pasty silver particle composition, separation of the silver particles and the volatile dispersion medium was confirmed in the syringe. The results are summarized in Table 3.
  • Example 1 instead of benzyl alcohol, 4 parts of ethylene glycol (a reagent released by Wako Pure Chemical Industries, dielectric constant 39.0) instead of benzyl alcohol, and as a volatile dispersion medium (B2), 1 A paste-like silver particle composition was prepared in the same manner as in Example 1 except that 1 part of pure water (dielectric constant 80.0) 1 was used instead of 1-hexane.
  • the mixture of 4 parts of ethylene glycol and 1 part of pure water has a dielectric constant of 69.
  • Example 5 instead of water-repellent silver particles, commercially available, precipitated silver particles with an average primary particle size of 1.1 m (measured by laser diffraction method) are used. (It is not coated with water repellent organic material and has no water repellency.)
  • a volatile dispersion medium (B1) instead of 1,2_diacetoxetane, ethylene glycol (Wako Pure Chemical Industries, Ltd.) Company-released reagent, dielectric constant 39.0) 4 parts, and volatile dispersion medium (B2) as acetone (instead of Isosol 300)
  • a paste-like silver particle composition was prepared in the same manner as in Example 5 except that 1 part of a dielectric constant, 21.0) 1 1 reagent, sold by Wako Pure Chemical Industries, Ltd. was used. In this paced silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 4.
  • Example 5 instead of water-repellent silver particles, granular silver particles produced by a commercially available precipitation method and having an average primary particle size (measured by laser diffraction method) of 1.1 m (repellency)
  • a volatile dispersion medium (B1) ethanol instead of 1, 2 _diacetoxetane (reagent released by Wako Pure Chemical Industries, Ltd.) is used.
  • Paste silver particle composition in the same manner as in Example 5, except that 6 parts of dielectric constant 24.0) and 9 parts of isosol 300 as volatile dispersion medium (B2) were used. I adjusted things. In this paste-like silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 4.
  • Example 5 instead of water-repellent silver particles, a commercially available, precipitation-prepared granular silver particle having an average primary particle size of 1.1 m (measured by laser diffraction method) (Not coated with water-repellent organic material and not water-repellent), as a volatile dispersion medium (B1), instead of 1, 2 _diacetoxetane, pure water (electric conductivity 8 0.0.0 ) Implemented except that 6 parts and 9 parts of ethanol (a reagent released by Wako Pure Chemical Industries, Ltd., dielectric constant 24.0) were used as the volatile dispersion medium (B2) in place of Isosol 300 A pasty silver particle composition was prepared in the same manner as in Example 5. The dielectric constant of a mixture of 6 parts pure water and 9 parts ethanol is 46.4. In this best silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 4.
  • Example 7 paste was used in the same manner as in Example 7 except that 5 parts of pure water (dielectric constant 80.0) was used instead of ethylene glycol as the volatile dispersion medium. A silver particle composition was prepared. The volatile dispersion medium was repelled by the silver particles and did not become paced. The results are summarized in Table 4.
  • Example 7 is the same as Example 7 except that 5 parts of Isosol 300 (isoparaffin mixture released by Nippon Oil Co., Ltd., dielectric constant 2.1) 15 instead of ethylene glycol was used as the volatile dispersion medium. In the same manner, a paste-like silver particle composition was prepared. In this pasty silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 4.
  • Example 7 and Example 7 except that 1-octanol (reagent, dielectric constant 10.0) released by Wako Pure Chemical Industries, Ltd. was used as the volatile dispersion medium instead of ethylene glycol. Similarly, a paste-like silver particle composition was prepared. In this paste-like silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 5.
  • Granular silver particles (not coated with a water-repellent organic material) with a primary particle average particle size of 1.1 m (measured by laser diffractometry) manufactured by a precipitation method and commercially available.
  • 100 parts, 75 parts of pure water (distilled water, dielectric constant 80.0) as dispersion medium (volatile dispersion medium (B1)), ethylene glycol as volatile dispersion medium (B2) (Wako Pure Chemical Industries, Ltd.) Add 75 parts of a commercially available reagent, dielectric constant 39.0), and 3.75 parts of acetone (a reagent released by Wako Pure Chemical Industries, Ltd., dielectric constant 21.0) as a volatile dispersion medium (B2), and use a rotary kneader.
  • a paste-like silver particle composition was prepared by mixing uniformly.
  • the paste-like metal particle composition of the present invention has a metal particle and a volatile component over a long period of time. Since there is no separation of the dispersion medium and storage stability is excellent, it is useful for joining metal parts.
  • the method for joining metal members of the present invention is useful for joining chip components such as capacitors, resistors, diodes, memories, and arithmetic elements (CPUs) to substrates.

Abstract

A pasty metal particle composition comprising 100 parts by weight of metal particles which have a mean particle diameter of 0.001 to 50μm and whose surfaces are coated with a water-repellent organic substance and 3 to 30 parts by weight of a volatile dispersion medium, characterized either in that the volatile dispersion medium is a mixture consisting of a volatile dispersion medium (B1) and a volatile dispersion medium (B2) which are different from each other in permittivity at a such a mixing ratio that the medium (B1) and the medium (B2) cannot completely be dissolved in each other at 25°C or in that the volatile dispersion medium is a volatile dispersion medium (C) which has a permittivity of 30 to 75 at 25°C and does not repel the metal particles; and a method of joining metal members with the composition.

Description

明 細 書  Specification
ペースト状金属粒子組成物および接合方法  Paste-like metal particle composition and joining method
技術分野  Technical field
[0001] 本発明は、 金属粒子と揮発性分散媒からなリ、 該金属粒子の沈降, 分離が抑 制されたペースト状金属粒子組成物、 および、 当該ペースト状金属粒子組成 物を使用した, 金属製部材の接合方法に関する。  [0001] The present invention uses a metal particle and a volatile dispersion medium, a paste-like metal particle composition in which sedimentation and separation of the metal particle are suppressed, and the paste-like metal particle composition. The present invention relates to a method for joining metal members.
背景技術  Background art
[0002] 銀, 銅, ニッケルなどの金属粉末を液状熱硬化性樹脂組成物中に分散させて なる導電性■熱伝導性ペース卜は、 加熱によリ硬化して導電性■熱伝導性被 膜が形成される。 したがって、 プリント回路基板上の導電性回路の形成、 抵 抗器ゃコンデンサ等の各種電子部品及び各種表示素子の電極の形成、 電磁波 シールド用導電性被膜の形成、 コンデンサ, 抵抗, ダイオード, メモリ, 演 算素子 (CPU) 等のチップ部品の基板への接着、 太陽電池の電極の形成、 特に, アモルファスシリコン半導体を用いているために, 高温処理のできな い太陽電池の電極の形成、 積層セラミックコンデンサ, 積層セラミックイン ダクタ, 積層セラミックァクチユエータ等のチップ型セラミック電子部品の 外部電極の形成等に使用されている。  [0002] Conductivity made by dispersing metal powder such as silver, copper, nickel in a liquid thermosetting resin composition ■ Thermal conductive paste is cured by heating and becomes conductive ■ thermal conductive coating A film is formed. Therefore, formation of conductive circuits on printed circuit boards, formation of electrodes for various electronic components such as resistor capacitors and various display elements, formation of conductive films for electromagnetic wave shielding, capacitors, resistors, diodes, memories, performances Adhesion of chip parts such as arithmetic elements (CPU) to substrates, formation of solar cell electrodes, especially formation of solar cell electrodes that cannot be processed at high temperatures due to the use of amorphous silicon semiconductors, multilayer ceramic capacitors It is used to form external electrodes for chip-type ceramic electronic components such as multilayer ceramic inductors and multilayer ceramic actuators.
近年、 チップ部品の高性能化により、 チップ部品からの発熱量が増え、 電気 伝導性はもとより、 熱伝導性の向上が要求される。 したがって、 金属粒子の 含有率を可能な限り増加することにより電気伝導性、 熱伝導性を向上しょう とする。 ところが、 そうすると、 ペーストの粘度が上昇し、 作業性が著しく 低下するという問題がある。  In recent years, the higher the performance of chip components, the greater the amount of heat generated from the chip components, and the improvement of thermal conductivity as well as electrical conductivity is required. Therefore, we will try to improve electrical and thermal conductivity by increasing the content of metal particles as much as possible. However, in this case, there is a problem that the viscosity of the paste is increased and workability is significantly reduced.
[0003] このような問題を解決するため、 本発明者らは、 銀粉末と揮発性分散媒とか らなるペースト状銀組成物は、 加熱すると当該揮発性分散媒が揮発し銀粉末 が焼結して、 極めて高い導電性と熱伝導性を有する固形状銀となること、 お よび、 金属製部材の接合や, 導電回路の形成に有用なことを見出して特許出 願した (特願 2005— 1 52827、 特願 2005— 3091 26) 。 し かしながら、 銀, 銅, ニッケルのような比重の大きい金属粒子と比重の小さ い揮発性分散媒とからなるペース卜状組成物は、 両者の大きな比重差のため 、 経時的に金属粒子が分離して沈降するという問題があることに、 本発明者 らは気付いた。 [0003] In order to solve such a problem, the present inventors have developed a paste-like silver composition comprising silver powder and a volatile dispersion medium, and the volatile dispersion medium volatilizes when heated, and the silver powder is sintered. As a result, it was found that it became solid silver having extremely high electrical conductivity and thermal conductivity, and that it was useful for joining metal members and forming conductive circuits (Japanese Patent Application 2005- 1 52827, Japanese Patent Application 2005-3091 26). Shi However, a paste-like composition composed of metal particles having a high specific gravity such as silver, copper, nickel and a volatile dispersion medium having a low specific gravity has a large difference in specific gravity. The present inventors have noticed that there is a problem of separation and sedimentation.
[0004] 特開 2 0 0 5— 9 3 3 8 0には、 銀粉末とポリオール類とからなる銀インク 、 および、 銀粉末とポリオール類と粘度調整剤 (水、 ケトン類またはアルコ ール類) とからなる銀インクが提案されている。 そして、 ポリオール類と, ケトン類またはアルコール類との併用により、 分散性が向上すると記載され ている。 ところが、 銀, 銅, ニッケルのような比重の大きい金属粒子と比重 の小さいポリオール類、 さらには粘度調整剤とからなるペース卜状組成物は 、 両者の大きな比重差のため、 経時的に金属粒子が分離して沈降するという 問題があることに、 本発明者らは気付いた。  [0004] Japanese Patent Application Laid-Open No. 20 0 5-9 9 3 3 80 describes a silver ink comprising a silver powder and a polyol, and a silver powder, a polyol and a viscosity modifier (water, ketones or alcohols). A silver ink consisting of It is described that the dispersibility is improved by the combined use of polyols and ketones or alcohols. However, a paste-like composition composed of metal particles with high specific gravity such as silver, copper, nickel and polyols with low specific gravity, and further a viscosity modifier, the metal particles over time due to the large specific gravity difference between them. The present inventors have noticed that there is a problem of separation and sedimentation.
[0005] 特許文献 1 :特開 2 0 0 5 _ 9 3 3 8 0  Patent Document 1: Japanese Patent Laid-Open No. 2 0 0 _ 9 3 3 8 0
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明者らは、 上記問題のないペースト状金属粒子組成物、 すなわち、 金属 粒子と揮発性分散媒が経時的に分離することが抑制され, 比重の大きい金属 粒子の沈降することが抑制された, ペース卜状金属粒子組成物を開発すべく 鋭意研究した。 その結果、 金属粒子表面の被覆剤と揮発性分散媒の選択によ リ、 ペースト状金属粒子組成物における金属粒子の分離, 沈降を抑制できる ことを見出し、 本発明を完成するに至った。 本発明の目的は、 長期間保管し ても、 比重の大きい金属粒子が揮発性分散媒から分離すること、 および、 金 属粒子の沈降することが抑制された、 すなわち、 保存安定性に優れたペース 卜状金属粒子組成物、 ならびに、 当該ペースト状金属粒子組成物を使用して 金属製部材を強固に接合する方法を提供することにある。 [0006] The inventors of the present invention have a paste-like metal particle composition that does not have the above problem, that is, the metal particles and the volatile dispersion medium are prevented from separating over time, and the metal particles having a large specific gravity are allowed to settle. We have intensively studied to develop a suppressed, pace-like metal particle composition. As a result, it has been found that the separation and settling of metal particles in the paste-like metal particle composition can be suppressed by selecting the coating material and the volatile dispersion medium on the surface of the metal particles, and the present invention has been completed. The object of the present invention is to suppress separation of metal particles having a large specific gravity from a volatile dispersion medium and settling of metal particles even after long-term storage, that is, excellent storage stability. It is to provide a method for strongly joining a metal member using a paste-like metal particle composition and the paste-like metal particle composition.
課題を解決するための手段  Means for solving the problem
[0007] この目的は、 [0007] This purpose is
[ 1 ] (A)平均粒径 0. 0 0 1〜5 0 mであり, その表面が撥水性有機物で 被覆された金属粒子 1 00重量部と、 (B)揮発性分散媒 3〜 30重量部とから なり、 該揮発性分散媒 (B)が, 誘電率の異なる揮発性分散媒 (B1)と揮発性分散 媒 (B2)とからなり、 かつ、 揮発性分散媒 (B1)と揮発性分散媒 (B2)が, 常温に おいて完全には相溶しない混合比率であることを特徴とする、 ペースト状金 属粒子組成物。 [1] (A) Average particle size is 0.0 0 1 to 50 m, and the surface is made of water-repellent organic material. It consists of 100 parts by weight of coated metal particles and (B) 3-30 parts by weight of a volatile dispersion medium. The volatile dispersion medium (B) is volatilized with a volatile dispersion medium (B1) having a different dielectric constant. And a volatile dispersion medium (B1) and a volatile dispersion medium (B2) in a mixing ratio that is not completely compatible at room temperature. Metal particle composition.
[2] 撥水性有機物が高級脂肪酸, 高級脂肪酸アミドまたは高級脂肪酸エス テルであり、 金属粒子 (A)の金属が金, 銀, 銅, パラジウム, ニッケル, スズ , アルミニウム, または, それらの合金であることを特徴とする、 [1 ] 記 載のペース卜状金属粒子組成物。  [2] The water-repellent organic substance is a higher fatty acid, a higher fatty acid amide or a higher fatty acid ester, and the metal particles (A) are gold, silver, copper, palladium, nickel, tin, aluminum, or an alloy thereof. [1] The pace-like metal particle composition described in [1].
[3] 金属粒子 (A)が高級脂肪酸被覆銀粒子であることを特徴とする、 [2] 記載のペース卜状金属粒子組成物。  [3] The pace-like metal particle composition according to [2], wherein the metal particles (A) are higher fatty acid-coated silver particles.
[4] 揮発性分散媒 (B1)と揮発性分散媒 (B2)が、 水, 揮発性 1価アルコール , エーテル結合を有する揮発性一価アルコール、 揮発性多価アルコール, 揮 発性炭化水素, 揮発性エーテル, 揮発性脂肪酸エステル, 揮発性ケトン, 揮 発性脂肪酸アミド, 揮発性脂肪族ァミンおよびアルキル二トリルからなる群 から選択され、 かつ、 該揮発性分散媒 (B1)と該揮発性分散媒 (B2)の 25°Cに おける誘電率の差が 2.0以上であることを特徴とする、 [1 ] 記載のペース 卜状金属粒子組成物。  [4] Volatile dispersion medium (B1) and volatile dispersion medium (B2) are water, volatile monohydric alcohol, volatile monohydric alcohol with ether bond, volatile polyhydric alcohol, volatile hydrocarbon, Selected from the group consisting of volatile ethers, volatile fatty acid esters, volatile ketones, volatile fatty acid amides, volatile aliphatic amines and alkyl nitriles, and the volatile dispersion medium (B1) and the volatile dispersion. The pace-like metal particle composition according to [1], wherein the difference in dielectric constant of the medium (B2) at 25 ° C is 2.0 or more.
[5] 揮発性分散媒 (B1)と揮発性分散媒 (B2)の混合比率が 98 : 2から 2 : 98の範囲であることを特徴とする、 [1 ] 記載のペースト状金属粒子組成 物。  [5] The paste-like metal particle composition according to [1], wherein the mixing ratio of the volatile dispersion medium (B1) and the volatile dispersion medium (B2) is in the range of 98: 2 to 2:98. .
[6] 揮発性分散媒 (B1)と揮発性分散媒 (B2)の混合比率が 98 : 2から 2 : 98の範囲であることを特徴とする、 [4] 記載のペースト状金属粒子組成 物。  [6] The paste-like metal particle composition according to [4], wherein the mixing ratio of the volatile dispersion medium (B1) and the volatile dispersion medium (B2) is in the range of 98: 2 to 2:98. .
[7] [1:! 〜 [6] のいずれかに記載のペースト状金属粒子組成物を、 複 数の金属製部材間に介在させ、 加熱により, 加圧しつつ超音波振動印加によ リ, または, 加圧および加熱しつつ超音波振動印加により、 揮発性分散媒を 揮散させ, 金属粒子 (A)同士を焼結させることにより、 複数の金属製部材同士 を接合させることを特徴とする、 金属製部材の接合方法。 [7] [1 :! The paste-like metal particle composition according to any one of to [6] is interposed between a plurality of metal members, and is heated and pressurized while applying ultrasonic vibration, or is pressurized and heated. While applying ultrasonic vibration, the volatile dispersion medium is volatilized and the metal particles (A) are sintered together, so that multiple metal members A method for joining metal members, characterized in that:
[8] (A)平均粒径 0.001〜50 mであり、 その表面が撥水性有機物で 被覆された金属粒子 100重量部と、 (C) 25°Cにおける誘電率が 30〜75 であり, 金属粒子 (A)をはじかない揮発性分散媒 3〜 30重量部とからなるこ とを特徴とする、 ペースト状金属粒子組成物。  [8] (A) 100 parts by weight of metal particles having an average particle size of 0.001 to 50 m and the surface coated with a water-repellent organic substance, and (C) a dielectric constant of 30 to 75 at 25 ° C. A paste-like metal particle composition comprising 3 to 30 parts by weight of a volatile dispersion medium that does not repel particles (A).
[9] 撥水性有機物が高級脂肪酸, 高級脂肪酸アミドまたは高級脂肪酸エス テルであり、 金属粒子 (A)の金属が金, 銀, 銅, パラジウム, ニッケル, スズ , アルミニウム, または, それらの合金であることを特徴とする、 [8] 記 載のペース卜状金属粒子組成物。  [9] The water-repellent organic substance is a higher fatty acid, a higher fatty acid amide or a higher fatty acid ester, and the metal particles (A) are gold, silver, copper, palladium, nickel, tin, aluminum, or an alloy thereof. [8] The pace-like metal particle composition according to [8].
[10] 金属粒子 (A)が高級脂肪酸被覆銀粒子であることを特徴とする、 [9 ] 記載のペース卜状金属粒子組成物。  [10] The pace-like metal particle composition according to [9], wherein the metal particles (A) are higher fatty acid-coated silver particles.
[1 1] 揮発性分散媒 (C)が揮発性多価アルコール, ジメチルホルムアミドま たは揮発性一価アルコール水溶液であることを特徴とする、 [8] 記載のぺ ース卜状金属粒子組成物。  [11] The pesticidal metal particle composition according to [8], wherein the volatile dispersion medium (C) is a volatile polyhydric alcohol, dimethylformamide or a volatile monohydric alcohol aqueous solution. object.
[1 2] [7:! 〜 [1 1] のいずれかに記載のペースト状金属粒子組成物を , 複数の金属製部材間に介在させ、 加熱により, 加圧しつつ超音波振動印加 により, または, 加圧および加熱しつつ超音波振動印加により、 揮発性分散 媒 (C)を揮散させ, 金属粒子 (A)同士を焼結させることにより、 複数の金属製 部材同士を接合させることを特徴とする、 金属製部材の接合方法。 ;により 達成される。  [1 2] [7 :! [11] The paste-like metal particle composition according to any one of [1 1] is interposed between a plurality of metal members, and is heated, pressurized and applied with ultrasonic vibration, or pressurized and heated while being superheated. A method for joining metal members, comprising: volatilizing a volatile dispersion medium (C) by applying sonic vibrations and sintering metal particles (A) together to join a plurality of metal members. . Achieved by;
発明の効果 The invention's effect
本発明のペースト状金属粒子組成物は、 長期間保存しても、 比重の大きい金 属粒子と比重の小さい揮発性分散媒 (B)が分離すること, および, 比重の大き い金属粒子 (A)が沈降することが抑制され, 均一なペース卜状態を保つことが できる。 The paste-like metal particle composition of the present invention is capable of separating metal particles having a high specific gravity and volatile dispersion medium (B) having a low specific gravity even after storage for a long time, and metal particles having a high specific gravity (A ) Is prevented from settling, and a uniform pace can be maintained.
本発明の接合方法によると、 金属製部材間のペース卜状金属粒子組成物は、 加熱によリ該揮発性分散媒が揮散し、 該金属粒子 (A)の焼結温度以上の温度で の加熱により, 該金属粒子 (A)同士が焼結して固体状となり、 複数の金属製部 材同士を強固に接合させることができる。 According to the joining method of the present invention, the paste-like metal particle composition between metal members is volatilized by heating, and the volatile dispersion medium is volatilized at a temperature equal to or higher than the sintering temperature of the metal particles (A). By heating, the metal particles (A) sinter together into a solid state, and a plurality of metal parts The materials can be firmly bonded to each other.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1 ]実施例における, 金属粒子と揮発性分散媒の分離性の測定におけるシリ ンジの側面図である。  [0009] FIG. 1 is a side view of a syringe in measurement of separability between metal particles and a volatile dispersion medium in an example.
符号の説明  Explanation of symbols
[0010] A 分離性試験器 [0010] A Separability tester
1 ペース卜状金属粒子組成物  1 Pace rod-shaped metal particle composition
2 先端キャップ  2 Tip cap
3 シリンジ  3 Syringe
4 プランジャー  4 Plunger
5 エンドキャップ  5 End cap
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011 ] 本発明のペース卜状金属粒子組成物は、 (A)平均粒径 0 . 0 0 1〜5 0 mで あり, その表面が撥水性有機物で被覆された金属粒子 1 0 0重量部と(B)揮発 性分散媒 3〜 3 0重量部とからなること、 該揮発性分散媒 (B)が, 誘電率の異 なる揮発性分散媒 (B1)と揮発性分散媒 (B2)とからなること、 かつ、 揮発性分 散媒 (B1)と揮発性分散媒 (B2)が, 常温において完全には相溶しない混合比率 であることを特徴とする。  [0011] The pace-like metal particle composition of the present invention has (A) an average particle diameter of 0.001 to 50 m, and 100 parts by weight of metal particles whose surfaces are coated with a water-repellent organic substance. And (B) 3 to 30 parts by weight of a volatile dispersion medium, and the volatile dispersion medium (B) comprises a volatile dispersion medium (B1) and a volatile dispersion medium (B2) having different dielectric constants. The volatile dispersion medium (B1) and the volatile dispersion medium (B2) have a mixing ratio that is not completely compatible at room temperature.
[0012] 金属粒子 (A)は、 その表面が撥水性有機物で被覆されていることが必要である 。 該有機物は潤滑性も優れていることが好ましく、 高級脂肪酸, 高級脂肪酸 金属塩 (ただし、 アルカリ金属塩を除く) , 高級脂肪酸アミドおよび高級脂 肪酸エステルが好ましく、 特には高級脂肪酸が好ましい。 撥水性有機物の被 覆量は、 金属粒子の粒径、 比表面積、 形状などにより変わるが、 金属粒子の 0 . 0 1〜 3重量%が好ましく、 0 . 2〜 2重量%がよリ好ましい。 少なすぎ ると保存安定性が低下し、 多すぎると加熱焼結性が低下するからである。  [0012] The surface of the metal particle (A) needs to be coated with a water-repellent organic substance. The organic substance is preferably excellent in lubricity, and higher fatty acids, higher fatty acid metal salts (excluding alkali metal salts), higher fatty acid amides and higher fatty acid esters are preferable, and higher fatty acids are particularly preferable. The covering amount of the water-repellent organic material varies depending on the particle size, specific surface area, shape, etc. of the metal particles, but is preferably 0.1 to 3% by weight, more preferably 0.2 to 2% by weight of the metal particles. If the amount is too small, the storage stability is lowered, and if too much, the heat-sinterability is lowered.
[0013] 金属粒子 (A)の材質は、 常温で固体であり、 加熱, または, 加熱と超音波振動 印加により焼結しやすければよく、 金, 銀, 銅, パラジウム, ニッケル, ス ズ, アルミニウム, および, それらの合金が例示される。 これらのうちでは 、 銀, 銅, ニッケルが好ましく、 加熱焼結性, 熱伝導性および導電性の点で 、 銀が特に好ましい。 銀粒子は、 その表面の一部または全部が酸化銀になつ ていてもよい。 [0013] The material of the metal particles (A) is solid at room temperature, and may be easily sintered by heating or heating and applying ultrasonic vibration. Gold, silver, copper, palladium, nickel, soot, aluminum And alloys thereof. Of these Silver, copper, and nickel are preferable, and silver is particularly preferable in terms of heat sintering, thermal conductivity, and conductivity. The silver particles may have part or all of the surface thereof made of silver oxide.
[0014] 金属粒子 (A)の平均粒径は 0 . 0 0 1〜5 0 mである。 この平均粒径は、 レ 一ザ一回折散乱式粒度分布測定法により得られる一次粒子の平均粒径である 。 平均粒径が 5 0 mを越えると, 金属粒子の沈降を防止できにくくなる。 そのため、 平均粒子径は小さい方が好ましく、 2 0 m以下であることが好 ましい。 いわゆるナノサイズとなる 0 . 1 m未満の場合、 表面活性が強すぎ て, ペース卜状金属粒子組成物の保存安定性が低下する恐れがある。 そのた め 0 . 1 m以上であることが好ましく、 0 . 1〜 1 0 mがより好ましい。 金属粒子 (A)の形状は、 球状, 略球状, 略立方体状, フレーク状, 不定形状な どである。 保存安定性の点で、 好ましくはフレーク状である。  [0014] The average particle diameter of the metal particles (A) is from 0.001 to 50 m. This average particle size is an average particle size of primary particles obtained by a laser-diffraction scattering type particle size distribution measurement method. If the average particle size exceeds 50 m, it will be difficult to prevent metal particles from settling. Therefore, it is preferable that the average particle size is small, and it is preferable that the average particle size is 20 m or less. When the so-called nano-size is less than 0.1 m, the surface activity is too strong, and the storage stability of the pace-like metal particle composition may be lowered. Therefore, it is preferably 0.1 m or more, and more preferably 0.1 to 10 m. The shape of the metal particles (A) is spherical, approximately spherical, approximately cubic, flakes, indefinite. From the viewpoint of storage stability, a flake shape is preferable.
特に好ましくは、 還元法で作られた銀粒子をフレーク化したものである。 な お、 還元法の銀粒子の製造方法は多く提案されているが、 硝酸銀水溶液に水 酸化ナ卜リゥム水溶液を加えて酸化銀を作製し、 これにホルマリンのような 還元剤の水溶液を加えることにより酸化銀を還元して銀粒子を生成し、 水洗 , ろ過, 乾燥等をおこなうことが一般的である。  Particularly preferably, the silver particles produced by the reduction method are made into flakes. There are many proposals for the production of silver particles by the reduction method, but a silver oxide aqueous solution is added to a silver nitrate aqueous solution to produce silver oxide, and an aqueous solution of a reducing agent such as formalin is added thereto. In general, silver oxide is reduced to produce silver particles, which are then washed with water, filtered, and dried.
[0015] 撥水性有機物が付着したフレーク状金属粒子は、 球状のような粒状の金属粒 子に撥水性有機物を添加して、 ポールミル等による粉砕をおこなうことによ リ製造することができる (特公昭 4 0— 6 9 7 1、 特開 2 0 0 0— 2 3 4 1 0 7の [ 0 0 0 4 ]参照) 。  [0015] The flaky metal particles to which the water-repellent organic material is adhered can be produced by adding the water-repellent organic material to a spherical metal particle and crushing with a pole mill or the like. Koyo 4 0-6 9 7 1, JP-A 2 0 0 0-2 3 4 1 0 7 [0 0 0 4])).
粒状の金属粒子と、 高級脂肪酸, 高級脂肪酸金属塩 (ただし、 アルカリ金属 塩を除く) , 高級脂肪酸エステル, 高級脂肪酸アミド等の撥水性有機物とを 、 セラミック製のポールとともに、 回転式ドラム装置 (例えばポールミル) に投入し、 ポールで金属粒子を物理的にたたくことにより、 容易にフレーク 状 (鱗片状) に加工できる。 この際、 潤滑性向上のための高級脂肪酸, 高級 脂肪酸金属塩 (ただし、 アルカリ金属塩を除く) , 高級脂肪酸エステル, 高 級脂肪酸アミド等の撥水性有機物が、 フレーク状金属粒子に付着する。 この ような高級脂肪酸としては、 ラウリン酸, ミリスチン酸, パルミチン酸, ス テアリン酸, ォレイン酸, リノール酸, リノレン酸が例示されるが、 高級飽 和脂肪酸であることが好ましい。 このような高級飽和脂肪酸としては、 ララ ゥリン酸, ミリスチン酸, パルミチン酸, ステアリン酸が例示される。 フレ ーク状金属表面は、 このような高級脂肪酸等によリ半分以上が被覆されてお ればよいが、 全部が被覆されていることが好ましい。 このように金属表面が 撥水性有機物により被覆された金属粒子は、 撥水性を示す。 撥水性有機物の 付着量が少なすぎると、 金属粒子が分離沈降しやすくなリ、 多すぎると焼結 性が低下することがある。 したがって、 撥水性有機物の付着量は、 0 . 0 1〜 3 %が好ましく、 0 . 1〜1 %であることがより好ましい。 撥水性有機物の付 着量は通常の方法で測定できる。 例えば、 窒素ガス中で撥水性有機物の沸点 以上に加熱して重量減少を測定する方法、 金属粒子を酸素気流中で加熱して 金属粒子に付着していた撥水性有機物中の炭素を炭酸ガスに変え, 赤外線吸 収スぺクトル法により定量分析する方法が例示される。 Granular metal particles, higher fatty acids, higher fatty acid metal salts (excluding alkali metal salts), water-repellent organic substances such as higher fatty acid esters and higher fatty acid amides, together with ceramic poles, rotating drum devices (for example, It can be easily processed into flakes (scales) by putting them into a pole mill and physically hitting the metal particles with the poles. At this time, water-repellent organic substances such as higher fatty acids, higher fatty acid metal salts (excluding alkali metal salts), higher fatty acid esters, and higher fatty acid amides for improving lubricity adhere to the flaky metal particles. this Examples of such higher fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid, and higher saturated fatty acids are preferred. Examples of such higher saturated fatty acids are lauralic acid, myristic acid, palmitic acid, and stearic acid. The surface of the flake metal may be covered with more than half of such a higher fatty acid, but it is preferable that the entire surface is covered. Thus, the metal particle by which the metal surface was coat | covered with the water-repellent organic substance shows water repellency. If the amount of the water-repellent organic substance is too small, the metal particles are likely to separate and settle, and if too much, the sinterability may decrease. Therefore, the adhesion amount of the water-repellent organic substance is preferably from 0.1 to 3%, and more preferably from 0.1 to 1%. The amount of the water-repellent organic substance attached can be measured by a usual method. For example, a method of measuring weight loss by heating above the boiling point of a water-repellent organic substance in nitrogen gas, or heating carbon particles in an oxygen stream to convert carbon in the water-repellent organic substance attached to the metal particles into carbon dioxide gas Another example is a method of quantitative analysis using the infrared absorption spectrum method.
表面を撥水性有機物で被覆した金属粒子 (A)は、 通常の方法でも製造すること ができる。 例えば、 撥水性有機物の溶液中に金属粒子を浸潰し、 金属粒子を 取り出して乾燥することにより製造することができる。 The metal particle (A) whose surface is coated with a water-repellent organic substance can also be produced by a usual method. For example, it can be produced by pulverizing metal particles in a water-repellent organic substance solution, taking out the metal particles and drying.
揮発性分散媒 (B)は、 誘電率の異なる揮発性分散媒 (B1)と揮発性分散媒 (B2)と からなリ、 かつ、 揮発性分散媒 (B1)と揮発性分散媒 (B2)が, 常温において完 全には相溶しない比率の混合物である。 The volatile dispersion medium (B) is composed of a volatile dispersion medium (B1) and a volatile dispersion medium (B2) having different dielectric constants, and the volatile dispersion medium (B1) and the volatile dispersion medium (B2). However, it is a mixture with a ratio that is not completely compatible at room temperature.
完全には相溶しないかどうかは、 次の方法で判定できる。 Whether it is not completely compatible can be determined by the following method.
すなわち、 ガラス容器内で揮発性分散媒 (B1)と揮発性分散媒 (B2)を攪拌混合 し、 泡が消えるまで静置後、 目視観察する。 二層に分離しているか, または , 濁っている場合には、 相溶していないと判定できる。 混合液が一層であり 透明であれば、 相溶していると判定できる。 That is, the volatile dispersion medium (B1) and the volatile dispersion medium (B2) are stirred and mixed in a glass container, and left to stand until bubbles disappear, and then visually observed. If the two layers are separated or turbid, it can be determined that they are not compatible. If the mixed solution is one layer and transparent, it can be determined that the mixed solution is compatible.
揮発性分散媒 (B1)と揮発性分散媒 (B2)が相溶して均一な状態であると、 ベー ス卜状金属組成物中の金属粒子 (A)が分離するため, 沈降することを防止でき ない。 揮発性分散媒 (B1)と揮発性分散媒 (B2)の混合比率は、 完全には相溶し なければ良く、 その比率は 9 9 : 2〜2 : 9 9の範囲内であることが好まし い。 When the volatile dispersion medium (B1) and the volatile dispersion medium (B2) are compatible and in a uniform state, the metal particles (A) in the base bowl-shaped metal composition are separated, so that they settle. It cannot be prevented. The mixing ratio of volatile dispersion medium (B1) and volatile dispersion medium (B2) is completely compatible. The ratio is preferably in the range of 9 9: 2 to 2: 9 9.
本発明のペースト状金属粒子組成物を、 加熱焼結性, あるいは, 加熱,超音 波振動焼結性の接合剤、 接着剤として使用するためには、 分散媒は非揮発性 ではなく、 揮発性であることが必要である。 特に、 金属粒子 (A)が銀粒子の場 合、 焼結する際に分散媒が揮散すると, 銀粒子が焼結しやすくなリ, 接合剤 、 接着剤として利用しやすくなるからである。 揮発性分散媒の沸点は、 6 0 °C〜3 0 0°Cであることが好ましい。 沸点が 6 0°C未満であると、 ペースト 状金属粒子組成物を調製する作業中に溶媒が揮散しやすく、 沸点が 3 0 0°C ょリ大であると、 加熱後も揮発性分散媒 (B)が残留しかねないからである。 そのような揮発性分散媒 (B)は、 水、 炭素原子および水素原子からなる揮発性 炭化水素化合物、 炭素原子, 水素原子および酸素原子からなる揮発性有機化 合物、 炭素原子, 水素原子および窒素原子からなる揮発性有機化合物、 炭素 原子, 水素原子, 酸素原子および窒素原子からなる揮発性有機化合物などか ら選択される。 これらはいずれも常温において液状である。 In order to use the paste-like metal particle composition of the present invention as a heat-sinterable, or heat- and ultrasonic vibration-sinterable bonding agent or adhesive, the dispersion medium is not non-volatile and volatile. It is necessary to be sex. In particular, when the metal particles (A) are silver particles, if the dispersion medium is volatilized during sintering, the silver particles are easy to sinter, making it easier to use as a bonding agent or adhesive. The boiling point of the volatile dispersion medium is preferably 60 ° C. to 300 ° C. If the boiling point is less than 60 ° C, the solvent tends to evaporate during the preparation of the paste-like metal particle composition, and if the boiling point is 300 ° C or more, the volatile dispersion medium even after heating. This is because (B) may remain. Such a volatile dispersion medium (B) includes water, volatile hydrocarbon compounds composed of carbon atoms and hydrogen atoms, volatile organic compounds composed of carbon atoms, hydrogen atoms and oxygen atoms, carbon atoms, hydrogen atoms and It is selected from volatile organic compounds consisting of nitrogen atoms, volatile organic compounds consisting of carbon atoms, hydrogen atoms, oxygen atoms and nitrogen atoms. These are all liquid at room temperature.
具体的には、 水、 エチルアルコール, プロピルアルコール, ブチルアルコー ル, ペンチルアルコール, へキシルアルコール, ヘプチルアルコール, ォク チルアルコール, ノニルアルコール, デシルアルコール等の揮発性一価アル コール、 エチレングリコールモノメチルエーテル (メチルセ口ソルブ, メチ ルカルビ! ^一ル) , エチレングリコールモノェチルエーテル (ェメチルセ口 ソルブ, ェチルカルビ! ^一ル) , エチレングリコールモノプロピルエーテル (プロピルセロソルブ, プロピルカルビ! ^一ル) , エチレングリコールモノ ブチルエーテル (プチルセ口ソルブ, プチルカルビ! ^一ル) , プロピレング リコールモノメチルエーテル, メチルメトキシブタノール等のエーテル結合 を有する揮発性一価アルコール、 ベンジルアルコール、 2—フ Iニルェチル アルコールなどの揮発性ァラルキルアルコール、 エチレングリコール, プロ ピレンダリコール, グリセリンなどの揮発性多価脂肪族アルコール、 低級 n —パラフィン, 低級イソパラフィン等の揮発性脂肪族炭化水素、 トルエン, キシレン等の揮発性芳香族炭化水素、 アセトン, メチルェチルケトン, メチ ルイゾブチルケトン, シクロへキサノン, ジアセトンアルコール (4—ヒド 口キシ一 4 _メチル _ 2 _ペンタノン) , 2—ォクタノン, イソホロン (3 , 5, 5 _トリメチル _ 2—シクロへキセン _ 1 _オン) , ジイブチルケ卜 ン (2, 6—ジメチル _ 4 _ヘプタノン) 等の揮発性脂肪族ケトン、 酢酸ェ チル (ェチルアセテート) , 酢酸プチル, ァセトキシェタン, 酪酸メチル, へキサン酸メチル, オクタン酸メチル, デカン酸メチル, メチルセ口ソルブ ァセテ一卜, プロピレンダリコールモノメチルエーテルァセテ一卜のような 揮発性脂肪族カルボン酸エステル、 テトラヒドロフラン, ジプロピルエーテ ル, エチレングリコールジメチルエーテル, エチレングリコールジェチルェ 一テル, エチレングリコールジブチルエーテル, プロピレングリコールジメ チルエーテル, ェトキシェチルエーテル等の揮発性脂肪族エーテル、 低分子 量の揮発性シリコーンオイルおよび揮発性有機変成シリコーンオイル、 ァセ 卜アミド, Ν, Ν-ジメチルホルムアミドのような揮発性カルボン酸アミド、 メ チルァミン, ェチルァミン, プロピルァミン, エチレンジァミンのような揮 発性 1級脂肪族ァミン, ジメチルァミン, ジェチルァミンのような揮発性 2 級脂肪族ァミン, 卜リメチルァミン, 卜リエチルァミンのような揮発性 3級 脂肪族ァミン, その他の揮発性脂肪族ァミン、 ァセトニトリル, プロピオ二 卜リルのような揮発性アルキル二卜リルが例示される。 水は純水が好ましく 、 その電気伝導度は 1 0 0 SZ c m以下が好ましぐ 1 0 SZ c m以下が より好ましい。 純水の製造方法は、 通常の方法で良く、 イオン交換法, 逆浸 透法, 蒸留法が例示される。 Specifically, volatile monovalent alcohol such as water, ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, ethylene glycol monomethyl ether (Methyl ceguchi sorb, methyl carb! ^ 1l), Ethylene glycol monoethyl ether (Emethyl ceguchi sorb, ethyl carb! ^ 1l), Ethylene glycol monopropyl ether (propyl cellosolve, propyl carb! ^ 1l), Ethylene glycol Volatile monohydric alcohols with ether linkages such as monobutyl ether (Ptylcetone solve, Ptylcarbi! ^ L), propylene glycol monomethyl ether, methylmethoxybutanol, etc. Volatile aralkyl alcohols such as benzyl alcohol and 2-phenyl alcohol, volatile polyhydric aliphatic alcohols such as ethylene glycol, propylene glycol and glycerin, volatile fats such as lower n-paraffins and lower isoparaffins Group hydrocarbons, toluene, Volatile aromatic hydrocarbons such as xylene, acetone, methyl ethyl ketone, methyl butyl ketone, cyclohexanone, diacetone alcohol (4-hydroxy-4_methyl_2_pentanone), 2-octanone, Volatile aliphatic ketones such as isophorone (3,5,5_trimethyl_2-cyclohexene_1_one), dibutylkene (2,6-dimethyl_4_heptanone), ethyl acetate (ethyl acetate) ), Volatile aliphatic carboxylic acid esters such as butyl acetate, methyl acetate, methyl butyrate, methyl hexanoate, methyl octoate, methyl decanoate, methyl acetate sorbate, and propylene dallicol monomethyl ether acetate Tetrahydrofuran, dipropyl ether, ethylene glycol dimethyl ether, ethyl Glycol Jetyl ether, volatile aliphatic ethers such as ethylene glycol dibutyl ether, propylene glycol dimethyl ether, ethoxetyl ether, low molecular weight volatile silicone oil and volatile organic modified silicone oil, aceamide, Volatile carboxylic acid amides such as Ν, ジ メ チ ル -dimethylformamide, volatile primary aliphatic amines such as methylamine, ethylamine, propylamine, and ethylenediamine, volatile secondary aliphatic amines such as dimethylamine, and jetylamine, 卜Examples include volatile tertiary aliphatic amines such as limethylamine and 卜 ethylamine, other volatile aliphatic amines, acetonitrile, and volatile alkyldiaryls such as propionylamine. The water is preferably pure water, and its electric conductivity is preferably 100 SZ cm or less, more preferably 10 SZ cm or less. The pure water production method may be an ordinary method, and examples include an ion exchange method, reverse permeation method, and distillation method.
揮発性分散媒 (B1)と揮発性分散媒 (B2)は、 上記揮発性分散媒 (B)から、 2 5 °C における誘電率の差が 2以上になるようなものを選択する必要があリ、 好ま しくは 3以上, より好ましくは 5以上になるようなものを選択する。 The volatile dispersion medium (B1) and volatile dispersion medium (B2) must be selected from the above volatile dispersion medium (B) so that the difference in dielectric constant at 25 ° C is 2 or more. Select a value that is 3 or more, more preferably 5 or more.
揮発性分散媒 (B1)として、 2 5 °Cにおける誘電率の高い、 水, 揮発性 1価ァ ルコール, 揮発性多価アルコール, 揮発性ァラルキルアルコール, Ν, Ν-ジメ チルホルムアミド, 揮発性脂肪族ァミン, 揮発性脂肪族エーテル, 揮発性脂 肪族カルボン酸エステルまたは揮発性脂肪族ケトンを選択すること、 揮発性 分散媒 (B2)として、 2 5 °Cにおける誘電率が揮発性分散媒 (B1)より 2以上小 さい, 好ましくは 3以上小さい, より好ましくは 5以上小さい揮発性脂肪族 エーテル, 揮発性脂肪族カルボン酸エステル, 揮発性脂肪族ケトン, 揮発性 脂肪族炭化水素, 揮発性芳香族炭化水素または揮発性シリコーンオイルを選 択することが好ましい。 この際、 揮発性分散媒 (B1)と揮発性分散媒 (B2)は、 2 5 °Cにおける誘電率の差が 2以上, 好ましくは 3以上, より好ましくは 5 以上であれば、 同種の有機化合物であってもよい。 As a volatile dispersion medium (B1), water, volatile monovalent alcohol, volatile polyhydric alcohol, volatile aralkyl alcohol, Ν, Ν-dimethylformamide, volatile, with a high dielectric constant at 25 ° C Fatty amines, volatile aliphatic ethers, volatile fats Select an aliphatic carboxylic acid ester or volatile aliphatic ketone, and the volatile dispersion medium (B2) has a dielectric constant at 25 ° C that is 2 or more smaller than the volatile dispersion medium (B1), preferably 3 or more Select a small, more preferably 5 or smaller volatile aliphatic ether, volatile aliphatic carboxylic acid ester, volatile aliphatic ketone, volatile aliphatic hydrocarbon, volatile aromatic hydrocarbon or volatile silicone oil It is preferable. At this time, the volatile dispersion medium (B1) and the volatile dispersion medium (B2) have the same organic difference if the difference in dielectric constant at 25 ° C is 2 or more, preferably 3 or more, more preferably 5 or more. It may be a compound.
揮発性分散媒 (B1)と揮発性分散媒 (B2)の 2 5 °Cにおける誘電率の差が 2未満 であると、 両揮発性分散媒同士の相溶性が高くなリ、 ペースト状金属粒子組 成物における金属粒子 (A)の分離, 沈降が防止できにくくなるからである。  If the difference in dielectric constant between the volatile dispersion medium (B1) and the volatile dispersion medium (B2) at 25 ° C is less than 2, the compatibility between the two volatile dispersion media will be high, and paste-like metal particles This is because it becomes difficult to prevent separation and settling of the metal particles (A) in the composition.
2 5 °Cにおける誘電率の差が 2以上, 好ましくは 3以上, より好ましくは 5 以上であっても、 選択した揮発性分散媒 (B1)と揮発性分散媒 (B2)とが、 ある 程度相溶するが、 完全には相溶しないことが必要である。 また、 金属粒子 (A) と配合する際に、 揮発性分散媒 (B1)と揮発性分散媒 (B2)は、 ある程度相溶す るが, 完全には相溶しないような混合比率であることが必要である。  2 Even if the difference in dielectric constant at 25 ° C is 2 or more, preferably 3 or more, more preferably 5 or more, the selected volatile dispersion medium (B1) and volatile dispersion medium (B2) are It must be compatible but not completely compatible. In addition, when blended with the metal particles (A), the volatile dispersion medium (B1) and the volatile dispersion medium (B2) should be mixed to a certain extent but not so completely. is required.
なお、 揮発性分散媒は (B1)、 (B2)ともに 2種類以上を併用しても良いが、 (B1 )と(B2)の混合時に相溶しない混合比率であることが必要である。  Two or more volatile dispersion media (B1) and (B2) may be used in combination, but it is necessary that the mixing ratio is incompatible with the mixing of (B1) and (B2).
[0019] 揮発性分散媒 (B)の配合量、 すなわち、 揮発性分散媒 (B1)と揮発性分散媒 (B2) の合計配合量は、 金属粒子 (A) 1 0 0重量部当たり 3〜3 0重量部であり、 金 属粒子 (A)を常温においてペース卜状にするのに十分な量である。 本発明のぺ 一スト状金属粒子組成物には、 本発明の目的に反しない限り、 金属粒子 (A)以 外の非金属系の粉体, 金属化合物, 金属錯体, チクソ剤, 安定剤, 着色剤等 の添加物を少量ないし微量含有しても良い。  [0019] The blending amount of the volatile dispersion medium (B), that is, the total blending amount of the volatile dispersion medium (B1) and the volatile dispersion medium (B2) is 3 to 3 parts by weight per 100 parts by weight of the metal particles (A). It is 30 parts by weight, and is an amount sufficient to make the metal particles (A) into a paste-like shape at room temperature. The paste-like metal particle composition of the present invention includes a non-metallic powder other than the metal particles (A), a metal compound, a metal complex, a thixotropic agent, a stabilizer, unless it is contrary to the object of the present invention. Additives such as colorants may be contained in small or trace amounts.
[0020] 本発明のペース卜状金属粒子組成物は、 (A)平均粒径 0 . 0 0 1〜5 0 mで あり, その表面が撥水性有機物で被覆された金属粒子 1 0 0重量部と, (B)揮 発性分散媒 3〜 3 0重量部を, ミキサーに投入し、 均一になるまで撹拌混合 することにより、 容易に製造することができる。 揮発性分散媒 (B1)と揮発性 分散媒 (B2)は、 予め混合して, ある程度相溶しているが, 完全には相溶しな い状態で、 金属粒子 (A)と混合しても良い。 あるいは、 揮発性分散媒 (B1)と揮 発性分散媒 (B2) を別々に混合しても良い。 [0020] The pasty bowl-shaped metal particle composition of the present invention comprises (A) an average particle diameter of 0.001 to 50 m, and 100 parts by weight of metal particles whose surfaces are coated with a water-repellent organic substance. And (B) 3 to 30 parts by weight of a volatile dispersion medium is put into a mixer and stirred and mixed until it is uniform. Volatile dispersion medium (B1) and volatile The dispersion medium (B2) is mixed in advance and is compatible to some extent, but it may be mixed with the metal particles (A) in a state where it is not completely compatible. Alternatively, the volatile dispersion medium (B1) and the volatile dispersion medium (B2) may be mixed separately.
[0021 ] 本発明のペースト状金属粒子組成物は、 金属粒子 (A)と揮発性分散媒 (B)との 混合物であり、 常温でペースト状である。 なお、 ペースト状はクリーム状を 含む。 ペース卜化することによりシリンダーゃノズルから細い線状に吐出で き、 また、 メタルマスクによる印刷塗布が容易である。  [0021] The paste-like metal particle composition of the present invention is a mixture of metal particles (A) and a volatile dispersion medium (B), and is paste-like at room temperature. The paste form includes cream. By thinning the pace, the cylinder can be discharged in a thin line from the nozzle, and printing with a metal mask is easy.
[0022] 本発明の別の実施態様であるペースト状金属粒子組成物は、 (A)平均粒径 0 .  [0022] A paste-like metal particle composition according to another embodiment of the present invention comprises (A) an average particle size of 0.
0 0 1〜5 0 mであり, その表面が撥水性有機物で被覆された金属粒子 1 0 0重量部と、 (C) 2 5 °Cにおける誘電率が 3 0〜 7 5である揮発性分散媒 3 〜3 0重量部とからなることを特徴とする。 金属粒子 (A)が撥水性有機物で被 覆されているので、 誘電率が 3 0〜7 5である揮発性分散媒との併用により 、 分離,沈降が抑制されている。 金属粒子が撥水性有機物で被覆されていな いと、 揮発性分散媒 (C)と併用しても、 分離,沈降を抑制できない。  100 parts by weight of metal particles whose surface is coated with a water-repellent organic substance, and (C) a volatile dispersion having a dielectric constant of 30 to 75 at 25 ° C It is characterized by comprising 3 to 30 parts by weight of a medium. Since the metal particles (A) are covered with a water-repellent organic substance, separation and settling are suppressed by the combined use with a volatile dispersion medium having a dielectric constant of 30 to 75. If the metal particles are not coated with a water-repellent organic substance, separation and sedimentation cannot be suppressed even when used in combination with the volatile dispersion medium (C).
金属粒子 (A)は、 前述したとおりである。  The metal particles (A) are as described above.
揮発性分散媒 (C)は、 炭素原子, 水素原子および酸素原子からなる揮発性有機 化合物、 炭素原子, 水素原子および窒素原子からなる揮発性有機化合物、 炭 素原子, 水素原子, 酸素原子および窒素原子からなる揮発性有機化合物など から、 2 5 °Cにおける誘電率が 3 0〜7 5であるものを選択することにより 得られる。 具体的には、 2 5 °Cにおける誘電率が 3 0〜 7 5である揮発性一 価アルコール, 揮発性多価アルコール, 揮発性低級脂肪族カルボン酸アミド , 揮発性アルキル二トリル, および, 揮発性アルコール (例えば、 揮発性一 価アルコール, 揮発性多価アルコール) の水溶液から選択される。  Volatile dispersion media (C) are volatile organic compounds consisting of carbon, hydrogen and oxygen atoms, volatile organic compounds consisting of carbon, hydrogen and nitrogen atoms, carbon atoms, hydrogen atoms, oxygen atoms and nitrogen. It can be obtained by selecting a volatile organic compound consisting of atoms having a dielectric constant of 30 to 75 at 25 ° C. Specifically, volatile monohydric alcohol, volatile polyhydric alcohol, volatile lower aliphatic carboxylic acid amide, volatile alkyl nitrile, and volatile Selected from aqueous solutions of volatile alcohols (eg, volatile monohydric alcohols, volatile polyhydric alcohols).
そのような揮発性分散媒 (C)として、 メチルアルコール等の揮発性一価低級ァ ルコール、 揮発性一価低級アルコール (例えば、 エチルアルコール) の水溶 液、 エチレングリコール, プロピレングリコール, グリセリンなどの揮発性 多価アルコール、 ァセトアミド, ジメチルホルムアミドなどの揮発性低級脂 肪族カルボン酸アミド、 ァセトニトリル, プロピオ二トリルのような揮発性 アルキル二トリルが例示される。 これらのうちでは、 誘電率が 3 0〜 7 0で ある多価アルコールが好ましい。 なお、 分散媒は 2種類以上を併用しても、 その混合物の 2 5 °Cにおける誘電率が 3 0〜7 5であれば良い。 As such a volatile dispersion medium (C), volatile monovalent alcohol such as methyl alcohol, an aqueous solution of volatile monovalent lower alcohol (for example, ethyl alcohol), volatilization of ethylene glycol, propylene glycol, glycerin, etc. Volatile properties such as polyhydric alcohols, volatile lower aliphatic carboxylic acid amides such as acetoamide and dimethylformamide, acetonitrile and propionitol Alkyl nitrile is exemplified. Of these, polyhydric alcohols having a dielectric constant of 30 to 70 are preferred. Even if two or more types of dispersion media are used in combination, the mixture may have a dielectric constant of 30 to 75 at 25 ° C.
[0023] 揮発性分散媒 (C)の配合量は、 金属粒子 (A) 1 0 0重量部当たり 3〜3 0重量 部であり、 金属粒子 (A)をペースト状にするのに十分な量である。 本発明の上 記ペースト状金属粒子組成物は、 本発明の目的に反しない限り、 金属粒子以 外の非金属系の粉体, 金属化合物, 金属錯体, チクソ剤, 安定剤, 着色剤等 の添加物を少量ないし微量含有しても良い。  [0023] The compounding amount of the volatile dispersion medium (C) is 3 to 30 parts by weight per 100 parts by weight of the metal particles (A), and is sufficient to paste the metal particles (A) into a paste form. It is. The above paste-like metal particle composition of the present invention includes non-metallic powders other than metal particles, metal compounds, metal complexes, thixotropic agents, stabilizers, colorants, etc. An additive may be contained in a small amount or a trace amount.
[0024] 本発明の上記ペース卜状金属粒子組成物は、 (A)平均粒径 0 . 0 0 1〜5 0 mであり, その表面が撥水性有機物で被覆された金属粒子 1 0 0重量部と、 ( C)揮発性分散媒 3〜 3 0重量部をミキサーに投入し、 均一になるまで撹拌混 合することにより、 容易に製造することができる。  [0024] The above-mentioned pace-like metal particle composition of the present invention comprises: (A) metal particles having an average particle diameter of 0.001 to 50 m, and the surface of which is coated with a water-repellent organic substance. And (C) 3 to 30 parts by weight of a volatile dispersion medium are charged into a mixer and mixed with stirring until uniform.
[0025] 本発明の上記ペースト状金属粒子組成物は、 金属粒子 (A)と揮発性分散媒 (C) との混合物であり、 常温でペースト状である。 なお、 ペースト状はクリーム 状も含む。 ペース卜化することによりシリンダーゃノズルから細い線状に吐 出でき、 また、 メタルマスクによる印刷塗布が容易である。  [0025] The paste-like metal particle composition of the present invention is a mixture of metal particles (A) and a volatile dispersion medium (C), and is paste-like at room temperature. The paste form includes cream. By slowing down the pace, the cylinder can be discharged in a thin line from the nozzle, and printing with a metal mask is easy.
[0026] 本発明の上記 2種のペースト状金属粒子組成物は、 加熱することにより揮発 性分散媒が揮散する。 本発明の上記 2種のペースト状金属粒子組成物は、 金 属粒子の焼結温度以上の温度に加熱することにより、 あるいは、 加圧しつつ 超音波振動を印加することにより、 特には加圧, 加熱しつつ超音波振動を印 加することにより、 揮発性分散媒 (B)もしくは揮発性分散媒 (C)が揮散して, 該金属粒子同士 (A)が焼結し、 強度と導電性と熱伝導性が優れた固形状の金属 となる。 ペースト状金属粒子組成物の加熱時に圧力を加えても良い。 この際 、 揮発性分散媒 (B)もしくは揮発性分散媒 (C)が揮散し、 ついで金属粒子 (A)同 士が焼結してもよく、 揮発性分散媒 (B)もしくは揮発性分散媒 (C)の揮散と共 に金属粒子 (A)同士が焼結してもよい。 特に金属粒子 (A)が銀粒子の場合は、 銀が本来大きな強度と極めて高い電気伝導性と熱伝導性を有するため、 本発 明の銀粒子同士の焼結物も、 大きな強度ときわめて高い電気伝導性と熱伝導 性を有する。 この際の加熱温度は、 揮発性分散媒 (B)もしくは揮発性分散媒 (C )が揮散し、 銀粒子が焼結できる温度であればよく、 通常 100°C以上であり 、 150°C以上がより好ましい。 しかし、 400°Cを越えると揮発性分散媒 が突沸的に蒸発して、 固形状金属の形状に悪影響が出る可能性があるため、 400°C以下であることが必要であり、 より好ましくは 300°C以下である 。 加熱だけでは、 焼結しにくい金属粒子 (A)も、 加圧しつつ超音波振動を印加 することにより、 あるいは加圧, 加熱しつつ超音波振動を印加することによ リ、 よく焼結する。 [0026] The two types of paste-like metal particle compositions of the present invention volatilize the volatile dispersion medium when heated. The above two types of paste-like metal particle compositions of the present invention can be heated by heating to a temperature equal to or higher than the sintering temperature of the metal particles, or by applying ultrasonic vibration while applying pressure. By applying ultrasonic vibration while heating, the volatile dispersion medium (B) or volatile dispersion medium (C) is volatilized, and the metal particles (A) sinter together, resulting in strength and conductivity. Solid metal with excellent thermal conductivity. Pressure may be applied during the heating of the paste-like metal particle composition. At this time, the volatile dispersion medium (B) or the volatile dispersion medium (C) may be volatilized, and then the metal particles (A) may be sintered, and the volatile dispersion medium (B) or the volatile dispersion medium. The metal particles (A) may be sintered together with the volatilization of (C). In particular, when the metal particles (A) are silver particles, since silver has inherently high strength and extremely high electrical and thermal conductivity, the sintered product of the silver particles of the present invention is also very strong and extremely high. Electrical and thermal conductivity Have sex. The heating temperature at this time may be a temperature at which the volatile dispersion medium (B) or the volatile dispersion medium (C) is volatilized and the silver particles can be sintered, and is usually 100 ° C or higher and 150 ° C or higher Is more preferable. However, if it exceeds 400 ° C, the volatile dispersion medium may evaporate suddenly, which may adversely affect the shape of the solid metal. 300 ° C or less. Metal particles (A), which are difficult to sinter by heating alone, sinter well by applying ultrasonic vibration while applying pressure, or by applying ultrasonic vibration while applying pressure and heating.
[0027] 超音波振動の周波数は、 2 kH z以上であり, 10 kH z以上であることが 好ましい。 その上限は特に制限されないが、 装置の能力上 500 k H z位で ある。 また、 超音波振動の振幅は焼結性に影響するので、 好ましくは 0. 1 〜40 m, より好ましくは 0. 3〜20 m, さらに好ましくは 0. 5〜 1 2 mである。 なお、 超音波振動がペースト状金属粒子組成物に確実に伝 わるようにするため、 ペース卜状金属粒子組成物に直接超音波振動の発信部 分を押し当てることが好ましい。 あるいは、 超音波振動を吸収しにくい素材 からなる力/ 一材等を介して, 超音波振動の発信部分を押し当てることが好 ましい。 ペースト状金属粒子組成物への押当て圧力は、 好ましくは 0.9 kP a (0.09 g f /mm2) 以上, より好ましくは 9 kPa (0.92 g fZm m2) 以上, さらに好ましくは 39 k P a (3.98 g f /mm2) 以上である 。 押当て圧力の上限は、 接合する部材が破壊されない圧力の最大値である。 加圧, 加熱しつつ超音波振動を印加して焼結する場合の加熱温度は、 常温よ リ高く、 揮発性分散媒 (B)もしくは揮発性分散媒 (C)が揮散し金属粒子 (A)が焼 結できる温度であればよい。 しかし、 加熱温度が 400°Cを越えると、 揮発 性分散媒 (B)もしくは揮発性分散媒 (C)が突沸的に蒸発して、 固形状金属の形 状に悪影響が出る恐れがあるため、 400°C以下, かつ該金属粒子 (A)の融点 未満の温度であることが好ましく、 300°C以下であることがより好ましい [0027] The frequency of the ultrasonic vibration is 2 kHz or more, and preferably 10 kHz or more. The upper limit is not particularly limited, but it is about 500 kHz due to the capability of the device. Further, since the amplitude of the ultrasonic vibration affects the sinterability, it is preferably 0.1 to 40 m, more preferably 0.3 to 20 m, and still more preferably 0.5 to 12 m. In order to ensure that the ultrasonic vibration is transmitted to the paste-like metal particle composition, it is preferable to directly press the transmitting portion of the ultrasonic vibration to the pace-like metal particle composition. Alternatively, it is preferable to press the transmitting part of the ultrasonic vibration through a force / single material made of a material that hardly absorbs the ultrasonic vibration. The pressing pressure to the paste-like metal particle composition is preferably 0.9 kP a (0.09 gf / mm 2 ) or more, more preferably 9 kPa (0.92 g fZm m 2 ) or more, more preferably 39 k Pa (3.98 gf / mm 2 ) or more. The upper limit of the pressing pressure is the maximum pressure at which the members to be joined are not destroyed. When sintering by applying ultrasonic vibration while applying pressure and heating, the heating temperature is higher than room temperature, and the volatile dispersion medium (B) or volatile dispersion medium (C) is volatilized to form metal particles (A). Any temperature that can be sintered is acceptable. However, if the heating temperature exceeds 400 ° C, the volatile dispersion medium (B) or volatile dispersion medium (C) may evaporate suddenly, which may adversely affect the shape of the solid metal. The temperature is preferably 400 ° C or lower and less than the melting point of the metal particles (A), more preferably 300 ° C or lower.
[0028] 該金属粒子 (A)が焼結してできた固形状金属の形状は特に限定されず、 シート 状、 フィルム状、 テープ状、 線状、 円盤状、 ブロック状、 スポッ卜状、 不定 形状が例示される。 [0028] The shape of the solid metal formed by sintering the metal particles (A) is not particularly limited. Examples include shapes, films, tapes, lines, disks, blocks, spots, and irregular shapes.
[0029] 本発明の上記 2種のペースト状金属粒子組成物は、 加熱により、 加圧しつつ 超音波振動印加により、 あるいは加圧, 加熱しつつ超音波振動印加により、 揮発性分散媒 (B)もしくは揮発性分散媒 (C)が揮散し, 金属粒子が焼結する。 焼結してできた固形状金属は、 強度と電気伝導性, 熱伝導性が優れ、 接触し ていた金属製部材, 例えば金メッキ基板, 銀基板, 銀メツキ金属基板, 銅基 板, アルミニウム基板, ニッケルメツキ基板, スズメツキ金属基板等の金属 系基板への接着性、 電気絶縁性基板上の電極等金属部分への接着性を有する ので、 金属系基板や金属部分を有する電子部品, 電子装置, 電気部品, 電気 装置等の接合に有用である。 そのような接合として、 コンデンサ, 抵抗等の チップ部品と回路基板との接合、 ダイオード, メモリ, C P U等の半導体チ ップとリードフレームもしくは回路基板との接合、 高発熱の C P Uチップと 冷却板との接合が例示される。  [0029] The two types of paste-like metal particle compositions of the present invention can be obtained by applying ultrasonic vibration while applying pressure, heating, or applying ultrasonic vibration while applying pressure and heating. Alternatively, the volatile dispersion medium (C) is volatilized and the metal particles are sintered. Sintered solid metal has excellent strength, electrical conductivity, and thermal conductivity, and is in contact with metal parts such as gold-plated substrates, silver substrates, silver-plated metal substrates, copper substrates, aluminum substrates, Adhesion to metal substrates such as nickel plating substrates and tin plating metal substrates, and adhesion to metal parts such as electrodes on electrically insulating substrates, so electronic parts, electronic devices, Useful for joining parts and electrical equipment. Such bonding includes bonding of chip components such as capacitors and resistors to circuit boards, bonding of semiconductor chips such as diodes, memories, and CPUs to lead frames or circuit boards, and high-heat generation CPU chips and cooling plates. Are exemplified.
[0030] 本発明の上記 2種のペースト状金属粒子組成物を焼結した後は、 分散媒が残 存しないので洗浄は不要であるが、 水や有機溶媒で洗浄してもよい。  [0030] After sintering the above two types of paste-like metal particle compositions of the present invention, no dispersion medium is left, so no washing is necessary, but washing with water or an organic solvent may be used.
[0031 ] 本発明の上記 2種のペースト状金属粒子組成物は、 揮発性分散媒 (B)もしくは 揮発性分散媒 (C)を含有するので、 密閉容器に保存することが好ましい。 保存 安定性を向上する目的で冷蔵保管をしても良く、 保管温度として 1 0 °C以下 が例示される。  [0031] Since the two types of paste-like metal particle compositions of the present invention contain a volatile dispersion medium (B) or a volatile dispersion medium (C), they are preferably stored in a sealed container. Storage may be refrigerated for the purpose of improving stability, and the storage temperature is 10 ° C or less.
実施例  Example
[0032] 本発明の実施例と比較例を掲げる。 実施例と比較例中、 部と記載されている のは、 重量部を意味する。 金属粒子中の撥水性有機物量の測定方法、 揮発性 分散媒の誘電率の測定方法、 ペース卜状金属粒子組成物の保管中における金 属粒子と揮発性分散媒の分離性の測定方法、 および、 ペース卜状金属粒子組 成物を加熱または超音波熱圧着して焼結することにより生成した固形状金属 の接着強度は、 下記の方法により測定した。 なお、 特に記載のない場合の温 度は 2 5 °Cである。 [0033] [撥水性有機物量] [0032] Examples and comparative examples of the present invention will be given. In the examples and comparative examples, “parts” means “parts by weight”. A method for measuring the amount of water-repellent organic matter in the metal particles, a method for measuring the dielectric constant of the volatile dispersion medium, a method for measuring the separation between the metal particles and the volatile dispersion medium during storage of the paste-like metal particle composition, and The adhesion strength of the solid metal produced by heating or sintering the paced cocoon-shaped metal particle composition was measured by the following method. Unless otherwise noted, the temperature is 25 ° C. [0033] [Amount of water-repellent organic matter]
TG A法により以下のように測定した。 金属粒子を窒素気流中で 1 0°CZ分 の割合で 500°Cまで昇温し、 そのまま 500°Cで 1時間保持した。 [加熱前 の重量一加熱後の重量]/ [加熱前の重量] X1 00=撥水性有機物量 (単位%) とした。  Measurement was carried out by the TGA method as follows. The metal particles were heated to 500 ° C at a rate of 10 ° CZ in a nitrogen stream and held at 500 ° C for 1 hour. [Weight before heating minus weight after heating] / [Weight before heating] X100 = amount of water-repellent organic substance (unit%).
[0034] [誘電率] [0034] [Dielectric constant]
液体誘電率測定装置 (S c i e n t i f i c a社製、 モデル 870) により 測定した。  It was measured with a liquid dielectric constant measuring device (model 870, manufactured by Sci ntifica).
[0035] [金属粒子と揮発性分散媒の分離性]  [0035] [Separability of metal particles and volatile dispersion medium]
ペースト状金属粒子組成物 1を、 先端キャップ 2を装着したシリンジ 3 (内 径 1 2mm、 長さ 55mm、 内容積 5 c c、 E F D社製) に、 シリンジ 3の 先端部を下向きにして 3 Ommの高さまで入れた後、 プランジャー 4を装着 し、 最後にエンドキャップ 5を装着して密閉した。 シリンジ 3の先端部を下 向きにして垂直に保持して 24時間静置した。 シリンジ 3内のペースト状金 属粒子組成物 1の上部に分離した揮発性分散媒層の厚さ (mm) を測定した  Paste-like metal particle composition 1 is placed on syringe 3 (inner diameter 12 mm, length 55 mm, internal volume 5 cc, manufactured by EFD) with tip cap 2 and 3 Omm with syringe 3 tip facing downward After the height was reached, the plunger 4 was attached, and finally the end cap 5 was attached and sealed. The tip of the syringe 3 was held downward and held for 24 hours. The thickness (mm) of the volatile dispersion medium layer separated on the upper part of the paste-like metal particle composition 1 in the syringe 3 was measured.
[0036] [接着強度 A ] [0036] [Adhesive strength A]
Φ畐 25mmX長さ 75mmX厚さ 1 mmの銀 ツキ翁可板に、 1 00 jW m厚の メタルマスクを用いて、 ペースト状金属粒子組成物を塗布し(塗布面積: 5m mX 5mm)、 その上に幅 5 mm X長さ 5 mm X厚さ 0. 5 mmの銀製チップ を搭載後、 強制循環式オーブン内で 200°Cで 1時間加熱することにより、 銀製チップを銀メツキ銅板に接着させた。 かくして得られた接着強度測定用 試験体をダイシェア強度測定試験機に取付け、 銀製チップの側面を、 ダイシ エア強度測定試験機のダイシェアツールにより、 速度 23 mmZ分で押圧し た。 銀製チップと銀メツキ銅板間の接合部がせん断破壊したときの荷重をも つて、 接着強度 (単位; k g f ) とした。 なお、 接着強度試験は 3回であり 、 その平均値を接着強度 Aとした。  Apply paste metal particle composition (applicable area: 5 mm x 5 mm) to a silver-plated silver plate with a diameter of 25 mm x length 75 mm x thickness 1 mm using a 100 jW m thick metal mask. After mounting a silver chip with a width of 5 mm x length 5 mm x thickness 0.5 mm, the silver chip was adhered to the silver plated copper plate by heating at 200 ° C for 1 hour in a forced circulation oven. . The test specimen for measuring the adhesive strength thus obtained was attached to a die shear strength measuring tester, and the side surface of the silver chip was pressed at a speed of 23 mmZ by the die shear tool of the die shear strength measuring tester. The adhesive strength (unit: kgf) was defined as the load when the joint between the silver tip and the silver-plated copper plate was sheared. The adhesive strength test was performed three times, and the average value was defined as adhesive strength A.
[接着強度 B] Φ畐 25mmX長さ 75mmX厚さ 1 mmの銀 ツキ翁可板に、 1 00 jW m厚の メタルマスクを用いて、 ペースト状金属粒子組成物を塗布し(塗布面積: 5m mX 5mm)、 その上に幅 5 mm X長さ 5 mm X厚さ 0.5 mmの銀製チップ を搭載して接着強度測定用前躯体を作った。 接着強度測定用前躯体を超音波 熱圧着装置に取付け、 超音波振動の周波数 30 k H z、 超音波振動の振幅 4 m、 押当て圧力 1 OONZcm2という条件で、 超音波熱圧着装置の圧着部[Adhesive strength B] Apply paste metal particle composition (applicable area: 5 mm x 5 mm) to a silver-plated silver plate with a diameter of 25 mm x length 75 mm x thickness 1 mm using a 100 jW m thick metal mask. A silver chip having a width of 5 mm, a length of 5 mm, and a thickness of 0.5 mm was mounted on the substrate to prepare a precursor for measuring adhesive strength. Attach the precursor for adhesive strength measurement to an ultrasonic thermocompression bonding device, and press the ultrasonic thermocompression bonding device with the following conditions: ultrasonic vibration frequency 30 kHz, ultrasonic vibration amplitude 4 m, pressing pressure 1 OONZcm 2 Part
(プローブ) を上方から該接着強度測定用前躯体の銀製チップの上部に押し 当てて、 超音波振動を印加しながら 200°Cの温度で 30秒間圧着した。 か <して得られた接着強度測定用試験体をダイシェア強度測定試験機に取付け 、 銀製チップの側面をダイシェア強度測定試験機のダイシェアツールによリ 速度 23mmZ分で押圧し、 銀製チップと銀メツキ銅板間の接合部がせん断 破壊したときの荷重をもって接着強度 (単位; k g f ) とした。 なお、 接着 強度試験は 3回であり、 その平均値を接着強度 Bとした。 The (probe) was pressed from above onto the upper part of the silver chip of the precursor for adhesive strength measurement, and crimped at a temperature of 200 ° C. for 30 seconds while applying ultrasonic vibration. The test specimen for measuring the adhesive strength is attached to the die shear strength measurement tester, and the side of the silver chip is pressed at a speed of 23 mmZ by the die shear tool of the die shear strength measurement tester. The bond strength (unit: kgf) was defined as the load when the joint between the copper plates was sheared and destroyed. The bond strength test was performed three times, and the average value was defined as bond strength B.
[実施例 1] [Example 1]
市販の, 還元法で製造された銀粒子をフレーク化することにより作られた, 1次粒子の平均粒径が 3.0 m (レーザー回折法により測定) であるフレー ク状の銀粒子 (0.5重量%のステアリン酸で銀表面が被覆されており、 この 銀粒子は撥水性を有する) 100部に、 揮発性分散媒 (B1)としてベンジルァ ルコール (和光純薬工業株式会社発売の試薬、 誘電率 13.0) 1 2部、 およ び、 揮発性分散媒 (B2)として 1一へキサン (和光純薬工業株式会社発売の試 薬、 誘電率 2.0) 3部を添加し、 ヘラを用いて均一に混合することにより、 ペースト状銀粒子組成物を調製した。 揮発性分散媒 (B1)としてのベンジルァ ルコール 1 2部と揮発性分散媒 (B2)としての 1—へキサン 3部の混合物は、 相溶しない比率である。 両者を攪拌, 混合すると白濁し、 静置するとすぐに 2層に分離した。 Flaked silver particles (0.5% by weight) produced by flaking commercially available silver particles produced by the reduction method and having an average primary particle size of 3.0 m (measured by laser diffraction method) The silver surface is coated with 100 parts of stearic acid, and the silver particles have water repellency. Benzyl alcohol as a volatile dispersion medium (B1) (a reagent released by Wako Pure Chemical Industries, Ltd., dielectric constant 13.0) 1 Add 2 parts and 1 part hexane as a volatile dispersion medium (B2) (Reagent, dielectric constant 2.0 released by Wako Pure Chemical Industries, Ltd.) and mix evenly using a spatula Thus, a pasty silver particle composition was prepared. A mixture of 2 parts of benzyl alcohol 12 as the volatile dispersion medium (B1) and 3 parts of 1-hexane as the volatile dispersion medium (B2) is in an incompatible ratio. When both were stirred and mixed, they became cloudy, and upon standing, they separated into two layers.
このペースト状銀粒子組成物は、 シリンジ内において銀粒子と揮発性分散媒 の分離が認められなかった。 このペースト状銀粒子組成物の接着強度を測定 し、 結果を表 1にまとめて示した。 以上の結果より、 このペースト状銀粒子 組成物は、 銀粒子と揮発性分散媒の分離がなく、 保存安定性に優れておリ、 金属製部材を強固に接合するのに有用なことがわかる。 In this paste-like silver particle composition, separation of the silver particles and the volatile dispersion medium was not observed in the syringe. The adhesive strength of this pasty silver particle composition was measured, and the results are summarized in Table 1. From the above results, the pasty silver particles It can be seen that the composition has no separation between the silver particles and the volatile dispersion medium, has excellent storage stability, and is useful for firmly joining metal members.
[0038] [実施例 2 ]  [0038] [Example 2]
実施例 1において、 銀粒子の代わりに、 市販の, 銅粒子をフレーク化するこ とにより作られた, 1次粒子の平均粒径が 4. 0 m (レーザー回折法により 測定) であるフレーク状の銅粒子 (0. 5重量%のステアリン酸で銅表面が被 覆されており、 この銅粒子は撥水性を有する) を用いた以外は、 実施例 1と 同様にして、 ペースト状銅粒子組成物を調製した。 このペースト状銅粒子組 成物は、 シリンジ内において銅粒子と揮発性分散媒の分離が認められなかつ た。 結果を表 1にまとめて示した。  In Example 1, instead of silver particles, commercially available flakes made from copper particles were flaked, and the average primary particle size was 4.0 m (measured by laser diffraction method). Paste-like copper particle composition in the same manner as in Example 1, except that the copper particles (the copper surface is covered with 0.5% by weight of stearic acid, which has water repellency) are used. A product was prepared. In this paste-like copper particle composition, separation of the copper particles and the volatile dispersion medium was not observed in the syringe. The results are summarized in Table 1.
以上の結果より、 このペースト状銅粒子組成物は、 銅粒子と揮発性分散媒の 分離がなく、 長時間の保存安定性が優れていることがわかる。  From the above results, it can be seen that this paste-like copper particle composition is excellent in long-term storage stability without separation of copper particles and volatile dispersion medium.
[0039] [実施例 3 ] [0039] [Example 3]
市販の, ニッケル粒子をフレーク化することにより作られた, 1次粒子の平 均粒径が 6. 0 m (レーザー回折法により測定) であるフレーク状のニッケ ル粒子 (0. 8重量%のォレイン酸でニッケル表面が被覆されており、 この二 ッケル粒子は撥水性を有する) 1 0 0部に、 揮発性分散媒 (B1)として N, N ージメチルホルムアミド (和光純薬工業株式会社発売の試薬、 誘電率 3 8. 0 ) 1 2部、 および、 揮発性分散媒 (B2)として 1 一へキサン ( (和光純薬工業 株式会社発売の試薬、 誘電率 2. 0 ) 3部を添加し、 ヘラを用いて均一に混合 することにより、 ペースト状ニッケル粒子組成物を調製した。 揮発性分散媒( B1)としての N, N—ジメチルホルムアミド 1 2部と揮発性分散媒 (B2)として の 1 一へキサン 3部の混合物は、 相溶しない比率である。 両者を攪拌混合す ると白濁し、 静置するとすぐに 2層に分離した。 Flaked nickel particles (0.8% by weight) made by flaking commercially available nickel particles with an average primary particle size of 6.0 m (measured by laser diffraction method) The nickel surface is coated with oleic acid, and the nickel particles have water repellency. 100 parts N, N-dimethylformamide (Wako Pure Chemical Industries, Ltd.) Reagent, dielectric constant 38.0) 1 2 parts, and volatile dispersion medium (B2) 1 hexane (Reagent, dielectric constant 2.0 0 released by Wako Pure Chemical Industries, Ltd.) A paste-like nickel particle composition was prepared by mixing uniformly with a spatula N, N-dimethylformamide 12 parts as volatile dispersion medium (B1) and volatile dispersion medium (B2) 1 A mixture of 3 parts of 1-hexane is incompatible ratio. The mixture became cloudy when mixed with stirring, and immediately separated into two layers upon standing.
このペース卜状ニッケル粒子組成物は、 シリンジ内においてニッケル粒子と 揮発性分散媒の分離が認められなかった。 結果を表 1にまとめて示した。 以 上の結果より、 このペースト状ニッケル粒子組成物は、 ニッケル粒子と揮発 性分散媒の分離がなく、 長時間の保存安定性が優れていることがわかる。 [0040] [実施例 4 ] In this paste-like nickel particle composition, separation of the nickel particles and the volatile dispersion medium was not observed in the syringe. The results are summarized in Table 1. From the above results, it can be seen that this nickel paste composition is excellent in long-term storage stability without separation of nickel particles and volatile dispersion medium. [0040] [Example 4]
市販の, 還元法で製造された銀粒子をフレーク化することにより作られた, 1次粒子の平均粒径が 3 . 0 m (レーザー回折法により測定) であるフレー ク状の銀粒子 (0. 5重量%のステアリン酸で銀表面が被覆されており、 この 銀粒子は撥水性を有する) 1 0 0部に、 揮発性分散媒 (B1)としてビス (2— エトキシェチル) エーテル (和光純薬工業株式会社発売の試薬、 誘電率 5. 6 ) 1 1部、 および、 揮発性分散媒 (B2)としてエチレングリコール (和光純薬 工業株式会社発売の試薬、 誘電率 3 9. 0 ) 4部を添加し、 ヘラを用いて均一 に混合することにより、 ペースト状金属粒子組成物を調製した。 揮発性分散 媒 (B1)であるビス ( 2 _エトキシェチル) エーテル 1 1部と揮発性分散媒 (B2 )であるエチレングリコール 4部の混合物は、 相溶しない比率である。 両者を 攪拌混合すると白濁し、 静置するとすぐに 2層に分離した。  Flaked silver particles (average particle size of 3.0 m (measured by laser diffractometry) made by flaking silver particles produced by the reduction method on the market) The silver surface is coated with 5% by weight of stearic acid, and the silver particles have water repellency. 100 parts of bis (2-ethoxyethyl) ether (Wako Pure Chemical) as the volatile dispersion medium (B1) Reagents released by Kogyo Co., Ltd., dielectric constant 5.6) 1 1 part, and ethylene glycol as a volatile dispersion medium (B2) (Reagents released by Wako Pure Chemical Industries, Ltd., dielectric constant 39.0) 4 parts The paste-like metal particle composition was prepared by adding and mixing uniformly using a spatula. A mixture of 1 part of bis (2_ethoxyethyl) ether 1 which is a volatile dispersion medium (B1) and 4 parts of ethylene glycol which is a volatile dispersion medium (B2) is incompatible ratio. When both were stirred and mixed, they became cloudy, and upon standing, they separated into two layers.
このペース卜状金属粒子組成物は、 シリンジ内において銀粒子と揮発性分散 媒の分離が認められなかった。 このペースト状銀粒子組成物の接着強度を測 定し、 結果を表 1にまとめて示した。 以上の結果より、 このペースト状銀粒 子組成物は、 銀粒子と揮発性分散媒の分離がなく、 保存安定性に優れておリ 、 金属製部材を強固に接合するのに有用なことがわかる。  In this paced metal particle composition, separation of the silver particles and the volatile dispersion medium was not observed in the syringe. The adhesive strength of this pasty silver particle composition was measured, and the results are summarized in Table 1. From the above results, this paste-like silver particle composition has no separation of silver particles and volatile dispersion medium, has excellent storage stability, and is useful for strongly joining metal members. Recognize.
[0041] [実施例 5 ] [0041] [Example 5]
市販の, 沈殿法で製造された, 1次粒子の平均粒径が 1 . 1 m (レーザー回 折法により測定) である粒状の銀粒子 (1 . 5重量%のステアリン酸で銀表面 が被覆されており、 この銀粒子は撥水性を有する) 1 0 0部に、 揮発性分散 媒 (B1)として 1, 2 _ジァセトキシェタン (和光純薬工業株式会社発売の試 薬、 誘電率 7 . 3 ) 1 4部、 および、 揮発性分散媒 (B2)としてアイソゾール 3 0 0 (新日本石油株式会社発売のイソパラフィン混合物、 誘電率 2. 1 ) 2部 を添加し、 ヘラを用いて均一に混合することにより、 ペースト状銀粒子組成 物を調製した。 揮発性分散媒 (B1)である 1, 2 _ジァセトキシェタン 1 4部 と揮発性分散媒 (B2)であるアイソゾール 3 0 0 2部の混合物は、 相溶しない 比率である。 両者を攪拌混合すると白濁し、 静置するとすぐに 2層に分離し このペースト状銀粒子組成物は、 シリンジ内において銀粒子と揮発性分散媒 の分離が認められなかった。 このペースト状銀粒子組成物の接着強度を測定 し、 結果を表 1にまとめて示した。 以上の結果より、 このペースト状銀粒子 組成物は、 銀粒子と揮発性分散媒の分離がなく、 保存安定性に優れておリ、 金属製部材を強固に接合するのに有用なことがわかる。 Commercially available granular silver particles with a primary particle size of 1.1 m (measured by laser diffraction method) produced by a precipitation method (coated with 1.5% by weight stearic acid on the silver surface) This silver particle has water repellency. In 100 parts, as a volatile dispersion medium (B1), 1, 2_diacetoxetane (a reagent marketed by Wako Pure Chemical Industries, Ltd., dielectric constant) 7.3) Add 4 parts and 2 parts of ISOZOL 300 (an isoparaffin mixture released by Nippon Oil Corporation, dielectric constant 2.1) as volatile dispersion medium (B2) and use a spatula A paste-like silver particle composition was prepared by mixing the mixture. The mixture of 1,2_diacetoxetane 14 parts of volatile dispersion medium (B1) and 300 parts of isolazole volatile dispersion medium (B2) is incompatible with each other. When both are stirred and mixed, they become cloudy, and upon standing, they immediately separate into two layers. In this paste-like silver particle composition, separation of the silver particles and the volatile dispersion medium was not observed in the syringe. The adhesive strength of this pasty silver particle composition was measured, and the results are summarized in Table 1. From the above results, it can be seen that this paste-like silver particle composition has no separation between the silver particles and the volatile dispersion medium, has excellent storage stability, and is useful for strongly joining metal members. .
[0042] [実施例 6 ]  [Example 6]
実施例 5において、 揮発性分散媒 (B1)として、 1, 2 _ジァセトキシェタン の代わリにメチル— n—へキシルケ卜ン (和光純薬工業株式会社発売の試薬 、 誘電率 1 2. 2 ) 1 4部を用い、 揮発性分散媒 (B2)の代わりに純水 (蒸留水 、 誘電率 8 0. 0 ) 2部を用いた以外は実施例 5と同様にして、 ペースト状銀 粒子組成物を調製した。 揮発性分散媒 (B1)であるメチルー n—へキシルケ卜 ン 1 4部と揮発性分散媒 (B2)である純水 2部の混合物は、 相溶しない比率で あり、 両者を攪拌混合すると白濁した。  In Example 5, as the volatile dispersion medium (B1), instead of 1,2_diacetoxetane, methyl-n-hexylkenne (a reagent sold by Wako Pure Chemical Industries, Ltd., dielectric constant 1 2 2) Paste silver in the same manner as in Example 5 except that 4 parts were used and 2 parts of pure water (distilled water, dielectric constant 80.0) were used instead of the volatile dispersion medium (B2). A particle composition was prepared. A mixture of 4 parts of methyl-n-hexylcane, which is a volatile dispersion medium (B1), and 2 parts of pure water, which is a volatile dispersion medium (B2), is incompatible with each other. did.
このペースト状銀粒子組成物は、 シリンジ内において銀粒子と揮発性分散媒 の分離は認められなかった。 このペースト状銀粒子組成物の接着強度を測定 し、 結果を表 1にまとめて示した。 以上の結果より、 このペースト状銀粒子 組成物は、 銀粒子と揮発性分散媒の分離がなく、 保存安定性に優れておリ、 金属製部材を強固に接合するのに有用なことがわかる。  In this paste-like silver particle composition, separation of the silver particles and the volatile dispersion medium was not observed in the syringe. The adhesive strength of this pasty silver particle composition was measured, and the results are summarized in Table 1. From the above results, it can be seen that this paste-like silver particle composition has no separation between the silver particles and the volatile dispersion medium, has excellent storage stability, and is useful for strongly joining metal members. .
[0043] [実施例 7 ] [0043] [Example 7]
市販の, 還元法で製造された銀粒子をフレーク化することにより作られた, 1次粒子の平均粒径が 3 . 0 mレーザー回折法により得られるであるフレー ク状の銀粒子 (0. 5重量%のステアリン酸で銀表面が被覆されており、 この 銀粒子は撥水性を有する) 1 0 0部に、 揮発性分散媒 (C)としてエチレンダリ コール (和光純薬工業株式会社発売の試薬、 誘電率 3 9. 0 ) 1 5部を添加し 、 回転式混練機を用いて均一に混合することにより、 ペースト状銀粒子組成 物を調製した。  Flaked silver particles (0. 0) produced by flaking commercially available silver particles produced by the reduction method, and having an average primary particle size of 3.0 m obtained by laser diffraction. The silver surface is coated with 5% by weight of stearic acid, and the silver particles have water repellency. 100 parts of ethylene diol as a volatile dispersion medium (C) (Reagent released by Wako Pure Chemical Industries, Ltd.) A paste-like silver particle composition was prepared by adding 15 parts of a dielectric constant of 39.0) and mixing uniformly using a rotary kneader.
このペースト状銀粒子組成物は、 シリンジ内において銀粒子と分散媒の分離 が認められなかった。 このペースト状銀粒子組成物の接着強度を測定し、 結 果を表 2にまとめて示した。 以上の結果より、 このペースト状銀粒子組成物 は、 銀粒子と分散媒の分離がなく、 保存安定性に優れておリ、 金属製部材を 強固に接合するのに有用なことがわかる。 This paste-like silver particle composition separates silver particles from the dispersion medium in a syringe. Was not recognized. The adhesive strength of this paste-like silver particle composition was measured, and the results are summarized in Table 2. From the above results, it can be seen that this pasty silver particle composition has no separation of silver particles and dispersion medium, has excellent storage stability, and is useful for strongly joining metal members.
[0044] [実施例 8 ]  [0044] [Example 8]
市販の, 銅粒子をフレーク化することにより作られた, 1次粒子の平均粒径 が 4 . 0 m (レーザー回折法により測定) であるフレーク状の銅粒子 (0 . 5重量%のステアリン酸で銅表面が被覆されており、 この銅粒子は撥水性を 有する) 1 0 0部に、 揮発性分散媒 (C)としてグリセリン (和光純薬工業株式 会社発売の試薬、 誘電率 4 7 . 0 ) 1 5部を添加し、 回転式混練機を用いて均 一に混合することにより、 ペースト状銅粒子組成物を調製した。  Flaked copper particles (0.5% by weight of stearic acid) produced by flaking copper particles on the market and having an average primary particle size of 4.0 m (measured by laser diffraction method) The copper surface is coated with a copper repellant, and the copper particles have water repellency. 100 parts of glycerol as a volatile dispersion medium (C) (a reagent sold by Wako Pure Chemical Industries, Ltd., dielectric constant 47.0) ) 15 parts were added and mixed uniformly using a rotary kneader to prepare a paste-like copper particle composition.
このペースト状銅粒子組成物は、 シリンジ内において銅粒子と分散媒の分離 が認められなかった。 結果を表 2にまとめて示した。 以上の結果より、 この ペースト状銅粒子組成物は、 銅粒子と分散媒の分離がなく、 長時間の保存安 定性が優れていることがわかる。  In this paste-like copper particle composition, separation of the copper particles and the dispersion medium was not observed in the syringe. The results are summarized in Table 2. From the above results, it can be seen that this paste-like copper particle composition is excellent in long-term storage stability without separation of copper particles and dispersion medium.
[0045] [実施例 9 ] [0045] [Example 9]
実施例 8において、 銅粒子の代わりに, 市販の, ニッケル粒子をフレーク化 することにより作られた、 1次粒子の平均粒径が 6 . 0 m (レーザー回折法 により測定) であるフレーク状のニッケル粒子 (0 . 8重量%のォレイン酸で ニッケル表面が被覆されており、 このニッケル粒子は撥水性を有する) を用 いた以外は、 実施例 8と同様にしてペース卜状ニッケル粒子組成物を調製し た。 このペースト状ニッケル粒子組成物は、 シリンジ内においてニッケル粒 子と分散媒の分離が認められなかった。 結果を表 2にまとめて示した。 以上 の結果より、 このペースト状ニッケル粒子組成物は、 ニッケル粒子と分散媒 の分離がなく、 長時間の保存安定性が優れていることがわかる。  In Example 8, instead of copper particles, commercially available nickel particles were flaked and the average particle size of primary particles was 6.0 m (measured by laser diffraction method). A pace-like nickel particle composition was prepared in the same manner as in Example 8 except that nickel particles (the nickel surface was coated with 0.8% by weight of oleic acid, and the nickel particles had water repellency) were used. Prepared. In this paste-like nickel particle composition, separation of the nickel particles and the dispersion medium was not observed in the syringe. The results are summarized in Table 2. From the above results, it can be seen that this paste-like nickel particle composition is excellent in long-term storage stability without separation of the nickel particles and the dispersion medium.
[0046] [実施例 1 0 ] [Example 1 0]
市販の, 沈殿法で製造された, 1次粒子の平均粒径 (レーザー回折法により 測定) が 1 . 1 mである粒状の銀粒子 (1 . 5重量%のステアリン酸で銀表 面が被覆されており、 この銀粒子は撥水性を有する) 1 0 0部に、 揮発性分 散媒 (C)として N, N—ジメチルホルムアミド (和光純薬工業株式会社発売の 試薬、 誘電率 3 8. 0 ) 1 5部を添加し、 回転式混練機を用いて均一に混合す ることにより、 ペースト状銀粒子組成物を調製した。 Commercially available granular silver particles with a primary particle average particle size (measured by laser diffraction method) of 1.1 m produced by precipitation method (1.5% by weight of stearic acid and silver The surface is coated, and the silver particles have water repellency. 100 parts, N, N-dimethylformamide as a volatile dispersion medium (C) (Reagent, dielectric constant released by Wako Pure Chemical Industries, Ltd.) 38.0) 1 5 parts were added and mixed uniformly using a rotary kneader to prepare a paste-like silver particle composition.
このペースト状銀粒子組成物は、 シリンジ内において銀粒子と分散媒の分離 が認められなかった。 このペースト状銀粒子組成物の接着強度を測定し、 結 果を表 2にまとめて示した。 以上の結果より、 このペースト状銀粒子組成物 は、 銀粒子と分散媒の分離がなく、 保存安定性に優れておリ、 金属製部材を 強固に接合するのに有用なことがわかる。  In this paste-like silver particle composition, separation of the silver particles and the dispersion medium was not observed in the syringe. The adhesive strength of this paste-like silver particle composition was measured, and the results are summarized in Table 2. From the above results, it can be seen that this pasty silver particle composition has no separation of silver particles and dispersion medium, has excellent storage stability, and is useful for strongly joining metal members.
[0047] [実施例 1 1 ]  [Example 1 1]
実施例 1において、 揮発性分散媒 (B1)として、 ベンジルアルコールの代わり に純水 (誘電率 8 0. 0 ) 1 5部、 および、 揮発性分散媒 (B2)として、 1 —へ キサンの代わりにエタノール (和光純薬工業株式会社発売の試薬、 誘電率 2 4. 0 ) 3部を用いた以外は、 実施例 1と同様にして、 ペースト状銀粒子組成 物を調製した。 純水 1 5部とエタノール 3部の混合溶液の誘電率は 6 8であ る。 このペースト状銀粒子組成物は、 シリンジ内において銀粒子と分散媒の 分離が認められなかった。 このペースト状銀粒子組成物の接着強度を測定し 、 結果を表 2にまとめて示した。 以上の結果より、 このペースト状銀粒子組 成物は、 銀粒子と分散媒の分離がなく、 保存安定性に優れておリ、 金属製部 材を強固に接合するのに有用なことがわかる。  In Example 1, as volatile dispersion medium (B1), instead of benzyl alcohol, pure water (dielectric constant 80.0) 15 parts, and as volatile dispersion medium (B2), instead of 1-hexane A paste-like silver particle composition was prepared in the same manner as in Example 1 except that 3 parts of ethanol (a reagent sold by Wako Pure Chemical Industries, Ltd., dielectric constant 24.0) was used. The dielectric constant of a mixed solution of 15 parts pure water and 3 parts ethanol is 68. In this paste-like silver particle composition, separation of the silver particles and the dispersion medium was not observed in the syringe. The adhesive strength of this pasty silver particle composition was measured, and the results are summarized in Table 2. From the above results, it can be seen that this paste-like silver particle composition has no separation of silver particles and dispersion medium, has excellent storage stability, and is useful for strongly joining metal parts. .
[0048] [比較例 1 ]  [0048] [Comparative Example 1]
実施例 1において、 揮発性分散媒 (B2)である 1 一へキサンを添加せず、 揮発 性分散媒 (B1) であるべンジルアルコールの量を 1 5部とした以外は、 実施例 1と同様にして、 ペースト状銀粒子組成物を調製した。 このペースト状銀粒 子組成物は、 シリンジ内において銀粒子と揮発性分散媒の分離が認められた 。 結果を表 3にまとめて示した。  Example 1 Example 1 except that 1 hexane, which is a volatile dispersion medium (B2), is not added, and the amount of benzyl alcohol, which is a volatile dispersion medium (B1), is 15 parts. In the same manner as above, a pasty silver particle composition was prepared. In this paste-like silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 3.
[0049] [比較例 2 ]  [0049] [Comparative Example 2]
実施例 1において、 揮発性分散媒 (B1)としてべンジルアルコール 1 4. 8部 、 および、 揮発性分散媒 (B2)として 1—へキサン 0 . 2部を用いた以外は、 実施例 1と同様にしてペースト状銀粒子組成物を調製した。 揮発性分散媒 (B1 )のベンジルアルコール 1 4 . 8部と揮発性分散媒 (B2)の 1—へキサン 0 . 2 部を攪拌混合すると透明となり、 静置しても 2層に分離しなかった。 このべ ースト状銀粒子組成物は、 シリンジ内において銀粒子と揮発性分散媒の分離 が認められた。 結果を表 3にまとめて示した。 In Example 1, benzyl alcohol 14.8 parts as volatile dispersion medium (B1) A pasty silver particle composition was prepared in the same manner as in Example 1 except that 0.2 part of 1-hexane was used as the volatile dispersion medium (B2). Stir and mix 14.8 benzyl alcohol of volatile dispersion medium (B1) and 0.2 part of 1-hexane of volatile dispersion medium (B2), and it will not separate into two layers even if left standing. It was. In this best silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 3.
[0050] [比較例 3 ] [0050] [Comparative Example 3]
実施例 1において、 揮発性分散媒 (B1)としてべンジルアルコール 0 . 2部、 お よび、 揮発性分散媒 (B2)として 1—へキサン 1 4 . 8部を用いた以外は、 実施 例 1と同様にしてペースト状銀粒子組成物を調製した。 揮発性分散媒 (B1)と してのベンジルアルコール 0 . 2部と揮発性分散媒 (B2)としての 1—へキサン 1 4 . 8部を攪拌混合すると透明となり、 静置しても 2層に分離しなかった。 このペースト状銀粒子組成物は、 シリンジ内において銀粒子と揮発性分散媒 の分離が認められた。 結果を表 3にまとめて示した。  In Example 1, except that 0.2 part of benzyl alcohol was used as the volatile dispersion medium (B1) and 1-hexane 14.8 part was used as the volatile dispersion medium (B2). A paste-like silver particle composition was prepared in the same manner as in 1. Stir and mix 0.2 part of benzyl alcohol as the volatile dispersion medium (B1) and 1-hexane 14.8 parts as the volatile dispersion medium (B2). Did not separate. In this pasty silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 3.
[0051 ] [比較例 4 ] [0051] [Comparative Example 4]
実施例 1において、 揮発性分散媒 (B2)として、 1 _へキサンの代わりにシク 口へキサノール (和光純薬工業株式会社発売の試薬、 誘電率 1 5 . 0 ) 3部用 いた以外は、 実施例 1と同様にしてペースト状銀粒子組成物を調製した。 揮 発性分散媒 (B1)であるべンジルアルコール 1 2部と揮発性分散媒 (B2)である シクロへキサノール 3部を攪拌混合すると透明となり、 静置しても 2層に分 離しなかった。 このペースト状銀粒子組成物は、 シリンジ内において銀粒子 と揮発性分散媒の分離が認められた。 結果を表 3にまとめて示した。  In Example 1, as a volatile dispersion medium (B2), instead of 1_hexane, hexanol hexanol (a reagent sold by Wako Pure Chemical Industries, Ltd., dielectric constant 15.0) was used for 3 parts, A pasty silver particle composition was prepared in the same manner as in Example 1. Volatile dispersion medium (B1) benzyl alcohol 1 2 parts and volatile dispersion medium (B2) cyclohexanol 3 parts are stirred and mixed to become transparent, and do not separate into two layers when left standing. It was. In this pasty silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 3.
[0052] [比較例 5 ] [0052] [Comparative Example 5]
実施例 5において、 撥水性の銀粒子の代わりに、 市販の, 沈殿法で製造され た、 1次粒子の平均粒径) が 1 . (レーザー回折法により測定) である 粒状の銀粒子 (撥水性有機物で被覆されておらず撥水性を有しない) を用い た以外は、 実施例 5と同様にしてペースト状銀粒子組成物を調製した。 この ペースト状銀粒子組成物はシリンジ内において銀粒子と揮発性分散媒の分離 が認められた。 結果を表 3にまとめて示した。 In Example 5, instead of the water-repellent silver particles, granular silver particles (repellent particles) having a mean particle size of primary particles produced by a commercially available precipitation method of 1. (measured by laser diffraction method) A pasty silver particle composition was prepared in the same manner as in Example 5 except that it was not coated with an aqueous organic substance and had no water repellency. This pasty silver particle composition separates silver particles and volatile dispersion media in a syringe. Was recognized. The results are summarized in Table 3.
[0053] [比較例 6]  [0053] [Comparative Example 6]
実施例 1において、 揮発性分散媒 (B1)として、 ベンジルアルコールの代わり にエチレングリコール (和光純薬工業株式会社発売の試薬、 誘電率 39.0) 4部、 および、 揮発性分散媒 (B2)として、 1—へキサンの代わりにアセトン (和光純薬工業株式会社発売の試薬、 誘電率 21.0) 1 1部用いた以外は、 実施例 1と同様にしてペースト状銀粒子組成物を調製した。 揮発性分散媒 (B1 )であるエチレングリコール 4部と揮発性分散媒 (B2)であるァセトン 1 1部を 攪拌混合すると透明となり、 静置しても 2層に分離しなかった。 このペース ト状銀粒子組成物は、 シリンジ内において銀粒子と揮発性分散媒の分離が認 められた。 結果を表 3にまとめて示した。  In Example 1, as a volatile dispersion medium (B1), instead of benzyl alcohol, ethylene glycol (a reagent sold by Wako Pure Chemical Industries, Ltd., dielectric constant 39.0) 4 parts, and as a volatile dispersion medium (B2), A pasty silver particle composition was prepared in the same manner as in Example 1 except that 1 part of acetone (reagent, dielectric constant 21.0) 1 1-hexane was used instead of 1-hexane. When 4 parts of ethylene glycol, which is a volatile dispersion medium (B1), and 11 parts of aceton, which is a volatile dispersion medium (B2), were stirred and mixed, the mixture became transparent. In this pasty silver particle composition, separation of the silver particles and the volatile dispersion medium was confirmed in the syringe. The results are summarized in Table 3.
[0054] [比較例 7] [0054] [Comparative Example 7]
実施例 1において、 発性分散媒 (B1)として、 ベンジルアルコールの代わりに エチレングリコール (和光純薬工業株式会社発売の試薬、 誘電率 39.0) 4 部、 および、 揮発性分散媒 (B2)として、 1一へキサンの代わりに純水 (誘電 率 80.0) 1 1部用いた以外は、 実施例 1と同様にしてペースト状銀粒子組 成物を調製した。 エチレングリコール 4部と純水 1 1部の混合液の誘電率は 69である。 揮発性分散媒 (B1)であるエチレングリコール 4部と揮発性分散 媒 (B2)である純水 1 1部を攪拌混合すると透明となり、 静置しても 2層に分 離しなかった。 分散媒が銀粒子にはじかれてペースト状にならなかった。 結 果を表 4にまとめて示した。  In Example 1, instead of benzyl alcohol, 4 parts of ethylene glycol (a reagent released by Wako Pure Chemical Industries, dielectric constant 39.0) instead of benzyl alcohol, and as a volatile dispersion medium (B2), 1 A paste-like silver particle composition was prepared in the same manner as in Example 1 except that 1 part of pure water (dielectric constant 80.0) 1 was used instead of 1-hexane. The mixture of 4 parts of ethylene glycol and 1 part of pure water has a dielectric constant of 69. When 4 parts of ethylene glycol, which is a volatile dispersion medium (B1), and 11 parts of pure water, which is a volatile dispersion medium (B2), were stirred and mixed, the mixture became transparent and did not separate into two layers even when allowed to stand. The dispersion medium was repelled by the silver particles and did not become a paste. The results are summarized in Table 4.
[0055] [比較例 8] [0055] [Comparative Example 8]
実施例 5において、 撥水性の銀粒子の代わりに、 市販の, 沈殿法で製造され た, 1次粒子の平均粒径が 1. 1 m (レーザー回折法により測定) である粒 状の銀粒子 (撥水性有機物で被覆されておらず撥水性を有しない) を用い、 揮発性分散媒 (B1)として、 1, 2_ジァセトキシェタンの代わりに、 ェチレ ングリコール (和光純薬工業株式会社発売の試薬、 誘電率 39.0) 4部、 お よび、 揮発性分散媒 (B2)として、 アイソゾール 300の代わりにアセトン ( 和光純薬工業株式会社発売の試薬、 誘電率 2 1 . 0 ) 1 1部を用いた以外は、 実施例 5と同様にしてペースト状銀粒子組成物を調整した。 このペース卜状 銀粒子組成物は、 シリンジ内において銀粒子と揮発性分散媒の分離が認めら れた。 結果を表 4にまとめて示した。 In Example 5, instead of water-repellent silver particles, commercially available, precipitated silver particles with an average primary particle size of 1.1 m (measured by laser diffraction method) are used. (It is not coated with water repellent organic material and has no water repellency.) As a volatile dispersion medium (B1), instead of 1,2_diacetoxetane, ethylene glycol (Wako Pure Chemical Industries, Ltd.) Company-released reagent, dielectric constant 39.0) 4 parts, and volatile dispersion medium (B2) as acetone (instead of Isosol 300) A paste-like silver particle composition was prepared in the same manner as in Example 5 except that 1 part of a dielectric constant, 21.0) 1 1 reagent, sold by Wako Pure Chemical Industries, Ltd. was used. In this paced silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 4.
[0056] [比較例 9 ] [0056] [Comparative Example 9]
実施例 5において、 撥水性の銀粒子の代わりに、 市販の沈殿法で製造された , 1次粒子の平均粒径 (レーザー回折法により測定) が 1 . 1 mである粒状 の銀粒子 (撥水性有機物で被覆されておらず撥水性を有しない) を用い、 揮 発性分散媒 (B1)として、 1, 2 _ジァセトキシェタンの代わりにエタノール (和光純薬工業株式会社発売の試薬、 誘電率 2 4. 0 ) 6部を用い、 および 、 揮発性分散媒 (B2)としてアイソゾール 3 0 0の量を 9部にした以外は、 実 施例 5と同様にしてペースト状銀粒子組成物を調整した。 このペースト状銀 粒子組成物はシリンジ内において銀粒子と揮発性分散媒の分離が認められた 。 結果を表 4にまとめて示した。  In Example 5, instead of water-repellent silver particles, granular silver particles produced by a commercially available precipitation method and having an average primary particle size (measured by laser diffraction method) of 1.1 m (repellency) As a volatile dispersion medium (B1), ethanol instead of 1, 2 _diacetoxetane (reagent released by Wako Pure Chemical Industries, Ltd.) is used. Paste silver particle composition in the same manner as in Example 5, except that 6 parts of dielectric constant 24.0) and 9 parts of isosol 300 as volatile dispersion medium (B2) were used. I adjusted things. In this paste-like silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 4.
[0057] [比較例 1 0 ]  [0057] [Comparative Example 1 0]
実施例 5において、 撥水性の銀粒子の代わりに、 市販の, 沈殿法で製造され た, 1次粒子の平均粒径が 1 . 1 m (レーザー回折法により測定) である粒 状の銀粒子 (撥水性有機物で被覆されておらず撥水性を有しない) を用い、 揮発性分散媒 (B1)として、 1, 2 _ジァセトキシェタンの代わりに純水 (誘 電率 8 0. 0 ) 6部、 および、 揮発性分散媒 (B2)として、 アイソゾール 3 0 0 の代わりにエタノール (和光純薬工業株式会社発売の試薬、 誘電率 2 4. 0 ) 9部を用いた以外は、 実施例 5と同様にしてペースト状銀粒子組成物を調製 した。 純水 6部とエタノール 9部の混合液の誘電率は 4 6. 4である。 このべ ースト状銀粒子組成物は、 シリンジ内において銀粒子と揮発性分散媒の分離 が認められた。 結果を表 4にまとめて示した。  In Example 5, instead of water-repellent silver particles, a commercially available, precipitation-prepared granular silver particle having an average primary particle size of 1.1 m (measured by laser diffraction method) (Not coated with water-repellent organic material and not water-repellent), as a volatile dispersion medium (B1), instead of 1, 2 _diacetoxetane, pure water (electric conductivity 8 0.0.0 ) Implemented except that 6 parts and 9 parts of ethanol (a reagent released by Wako Pure Chemical Industries, Ltd., dielectric constant 24.0) were used as the volatile dispersion medium (B2) in place of Isosol 300 A pasty silver particle composition was prepared in the same manner as in Example 5. The dielectric constant of a mixture of 6 parts pure water and 9 parts ethanol is 46.4. In this best silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 4.
[0058] [比較例 1 1 ]  [0058] [Comparative Example 1 1]
実施例 7において、 揮発性分散媒として、 エチレングリコールの代わりに純 水 (誘電率 8 0. 0 ) 1 5部を用いた以外は、 実施例 7と同様にしてペースト 状銀粒子組成物を調製した。 揮発性分散媒が銀粒子にはじかれてペース卜状 にならなかった。 結果を表 4にまとめて示した。 In Example 7, paste was used in the same manner as in Example 7 except that 5 parts of pure water (dielectric constant 80.0) was used instead of ethylene glycol as the volatile dispersion medium. A silver particle composition was prepared. The volatile dispersion medium was repelled by the silver particles and did not become paced. The results are summarized in Table 4.
[0059] [比較例 1 2 ]  [0059] [Comparative Example 1 2]
実施例 7において、 揮発性分散媒として、 エチレングリコールの代わりにァ イソゾール 3 0 0 (新日本石油株式会社発売のイソパラフィン混合物、 誘電 率 2 . 1 ) 1 5部を用いた以外は、 実施例 7と同様にしてペースト状銀粒子組 成物を調製した。 このペースト状銀粒子組成物は、 シリンジ内において銀粒 子と揮発性分散媒の分離が認められた。 結果を表 4にまとめて示した。  Example 7 is the same as Example 7 except that 5 parts of Isosol 300 (isoparaffin mixture released by Nippon Oil Co., Ltd., dielectric constant 2.1) 15 instead of ethylene glycol was used as the volatile dispersion medium. In the same manner, a paste-like silver particle composition was prepared. In this pasty silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 4.
[0060] [比較例 1 3 ]  [0060] [Comparative Example 1 3]
実施例 7において、 揮発性分散媒として、 エチレングリコールの代わりに 1 —ォクタノール (和光純薬工業株式会社発売の試薬、 誘電率 1 0 . 0 ) 1 5部 を用いた以外は、 実施例 7と同様にしてペースト状銀粒子組成物を調製した 。 このペースト状銀粒子組成物は、 シリンジ内において銀粒子と揮発性分散 媒の分離が認められた。 結果を表 5にまとめて示した。  Example 7 and Example 7 except that 1-octanol (reagent, dielectric constant 10.0) released by Wako Pure Chemical Industries, Ltd. was used as the volatile dispersion medium instead of ethylene glycol. Similarly, a paste-like silver particle composition was prepared. In this paste-like silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 5.
[0061 ] [比較例 1 4 ]  [0061] [Comparative Example 1 4]
市販の, 沈殿法で製造された, 1次粒子の平均粒径が 1 . 1 m (レーザー回 折法により測定) である粒状の銀粒子 (撥水性有機物で被覆されておらず撥 水性を有しない) 1 0 0部に、 揮発性分散媒 (ひとして、 1, 4 _ブタンジォ ール (和光純薬工業株式会社発売の試薬、 誘電率 3 1 . 0 ) 7 5部を添加し、 回転式混練機を用いて均一に混合してペースト状銀粒子組成物を調製した。 このペースト状銀粒子組成物はシリンジ内において銀粒子と揮発性分散媒の 分離が認められた。 結果を表 5にまとめて示した。  Commercially available granular silver particles with an average primary particle size of 1.1 m (measured by laser diffraction method) produced by a precipitation method (not coated with a water repellent organic substance and having water repellency) Do not) To 100 parts, add volatile dispersion medium (as an example, 1, 4_butanediol (reagent, dielectric constant 31.0) released by Wako Pure Chemical Industries, Ltd.) A paste-like silver particle composition was prepared by uniformly mixing using a kneader, and separation of the silver particles and the volatile dispersion medium was observed in the syringe. Shown together.
[0062] [比較例 1 5 ]  [0062] [Comparative Example 1 5]
市販の, 沈殿法で製造された, 1次粒子の平均粒径が 1 . 1 m (レーザー回 折法により測定) である粒状の銀粒子 (撥水性有機物で被覆されておらず撥 水性を有しない) 1 0 0部に、 揮発性分散媒 (C)としてプロピレングリコール Commercially available granular silver particles with an average primary particle size of 1.1 m (measured by laser diffraction method) produced by a precipitation method (not coated with a water repellent organic substance and having water repellency) 1) 0 parts, propylene glycol as volatile dispersion medium (C)
(和光純薬工業株式会社発売の試薬、 誘電率 3 4 . 0 ) 7 5部を添加し、 回 転式混練機を用いて均一に混合することにより、 ペースト状銀粒子組成物を 調製した。 (Reagent sold by Wako Pure Chemical Industries, Ltd., dielectric constant 34.0) 7 5 parts are added and mixed uniformly using a rotary kneader to obtain a paste-like silver particle composition. Prepared.
このペースト状銀粒子組成物は、 シリンジ内において銀粒子と揮発性分散媒 の分離が認められた。 結果を表 5にまとめて示した。  In this pasty silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 5.
[0063] [比較例 1 6 ] [0063] [Comparative Example 1 6]
市販の, 沈殿法で製造された, 1次粒子の平均粒径が 1 . 1 m (レーザー回 折法により測定) である粒状の銀粒子 (撥水性有機物で被覆されておらず、 撥水性を有しない) 1 0 0部に、 揮発性分散媒 (C)としてエチレングリコール Commercially available granular silver particles with an average primary particle size of 1.1 m (measured by laser diffraction method) produced by a precipitation method (not coated with a water-repellent organic substance, 1) 0 part, ethylene glycol as volatile dispersion medium (C)
(和光純薬工業株式会社発売の試薬、 誘電率 3 9. 0 ) 7 5部を添加し、 回 転式混練機を用いて均一に混合することにより、 ペースト状銀粒子組成物を 調製した。 (Reagent sold by Wako Pure Chemical Industries, Ltd., dielectric constant: 39.0) 7 5 parts were added and mixed uniformly using a rotary kneader to prepare a paste-like silver particle composition.
このペースト状銀粒子組成物は、 シリンジ内において銀粒子と揮発性分散媒 の分離が認められた。 結果を表 5にまとめて示した。  In this pasty silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 5.
[0064] [比較例 1 7 ] [0064] [Comparative Example 1 7]
市販の, 沈殿法で製造された, 1次粒子の平均粒径が 1 . 1 m (レーザー回 折法により測定) である粒状の銀粒子 (撥水性有機物で被覆されておらず、 撥水性を有しない) 1 0 0部に、 揮発性分散媒 (B1)として純水 (蒸留水、 誘 電率 8 0. 0 ) 7 5部、 揮発性分散媒 (B2)として 1, 4 _ブタンジオール (和 光純薬工業株式会社発売の試薬、 誘電率 3 1 . 0 ) 7 5部、 および、 揮発性分 散媒 (B2)としてアセトン (和光純薬工業株式会社発売の試薬、 誘電率 2 1 . 0 ) 3 . 7 5部を添加し、 回転式混練機を用いて均一に混合することにより、 ペースト状銀粒子組成物を調製した。  Commercially available granular silver particles with a primary particle size of 1.1 m (measured by laser diffraction method) produced by a precipitation method (not coated with a water repellent organic substance, 1) 0 parts, pure water as volatile dispersion medium (B1) (distilled water, dielectric constant 80.0) 7 5 parts, volatile dispersion medium (B2) 1, 4_butanediol ( Reagents released by Wako Pure Chemical Industries, Ltd., dielectric constant 31.0) 75 parts, and acetone as volatile dispersion medium (B2) (reagents released by Wako Pure Chemical Industries, Ltd., dielectric constant 21.0) ) 3.75 5 parts was added and mixed uniformly using a rotary kneader to prepare a pasty silver particle composition.
このペースト状銀粒子組成物は、 シリンジ内において銀粒子と揮発性分散媒 の分離が認められた。 結果を表 6にまとめて示した。  In this pasty silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 6.
[0065] [比較例 1 8 ] [0065] [Comparative Example 1 8]
市販の, 沈殿法で製造された, 1次粒子の平均粒径が 1 . 1 m (レーザー回 折法により測定) である粒状の銀粒子 (撥水性有機物で被覆されておらず撥 水性を有しない) 1 0 0部に、 揮発性分散媒 (B1)として純水 (蒸留水、 誘電 率 8 0. 0 ) 7 5部、 揮発性分散媒 (B2)としてプロピレングリコール (和光純 薬工業株式会社発売の試薬、 誘電率 34.0) 75部、 および、 揮発性分散媒 (B2)としてアセトン (和光純薬工業株式会社発売の試薬、 誘電率 21.0) 3 .75部を添加し、 回転式混練機を用いて均一に混合することによりペースト 状銀粒子組成物を調製した。 Commercially available granular silver particles with an average primary particle size of 1.1 m (measured by laser diffraction method) produced by a precipitation method (not coated with a water repellent organic substance and having water repellency) 1) 100 parts pure water as volatile dispersion medium (B1) (distilled water, dielectric constant 80.0) 7 5 parts, volatile dispersion medium (B2) propylene glycol (Wako Pure) Reagent added to Yaku Kogyo Co., Ltd., dielectric constant 34.0) 75 parts, and acetone as a volatile dispersion medium (B2) (Reagent, dielectric constant 21.0) 3.75 parts added to rotate A paste-like silver particle composition was prepared by uniformly mixing using a kneader.
このペースト状銀粒子組成物は、 シリンジ内において銀粒子と揮発性分散媒 の分離が認められた。 結果を表 6にまとめて示した。 In this pasty silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 6.
[比較例 19] [Comparative Example 19]
市販の, 沈殿法で製造された, 1次粒子の平均粒径が 1. 1 m (レーザー 回折法により測定) である粒状の銀粒子 (撥水性有機物で被覆されておらず 、 撥水性を有しない) 100部に、 分散媒 (揮発性分散媒 (B1)) として純水 (蒸留水、 誘電率 80.0) 75部、 揮発性分散媒 (B2)としてエチレングリコ ール (和光純薬工業株式会社発売の試薬、 誘電率 39.0) 75部、 および、 揮発性分散媒 (B2)としてアセトン (和光純薬工業株式会社発売の試薬、 誘電 率 21.0) 3.75部を添加し、 回転式混練機を用いて均一に混合すること により、 ペースト状銀粒子組成物を調製した。 Granular silver particles (not coated with a water-repellent organic material) with a primary particle average particle size of 1.1 m (measured by laser diffractometry) manufactured by a precipitation method and commercially available. 100 parts, 75 parts of pure water (distilled water, dielectric constant 80.0) as dispersion medium (volatile dispersion medium (B1)), ethylene glycol as volatile dispersion medium (B2) (Wako Pure Chemical Industries, Ltd.) Add 75 parts of a commercially available reagent, dielectric constant 39.0), and 3.75 parts of acetone (a reagent released by Wako Pure Chemical Industries, Ltd., dielectric constant 21.0) as a volatile dispersion medium (B2), and use a rotary kneader. A paste-like silver particle composition was prepared by mixing uniformly.
このペースト状銀粒子組成物は、 シリンジ内において銀粒子と揮発性分散媒 の分離が認められた。 結果を表 6にまとめて示した。 In this pasty silver particle composition, separation of the silver particles and the volatile dispersion medium was observed in the syringe. The results are summarized in Table 6.
[表 1] [table 1]
表 1
Figure imgf000030_0001
table 1
Figure imgf000030_0001
[表 2] [Table 2]
表 2
Figure imgf000031_0001
[表 3]
Table 2
Figure imgf000031_0001
[Table 3]
表 3
Figure imgf000032_0001
[表 4]
Table 3
Figure imgf000032_0001
[Table 4]
表 4
Figure imgf000033_0001
[表 5]
Table 4
Figure imgf000033_0001
[Table 5]
表 5
Figure imgf000034_0001
[表 6]
Table 5
Figure imgf000034_0001
[Table 6]
表 6 Table 6
Figure imgf000035_0001
産業上の利用可能性
Figure imgf000035_0001
Industrial applicability
本発明のペースト状金属粒子組成物は、 長時間にわたり金属粒子と揮発性分 散媒の分離がなく、 保存安定性が優れているので、 金属製部材の接合に有用 である。 本発明の金属製部材の接合方法は、 コンデンサ、 抵抗、 ダイオード 、 メモリ、 演算素子 (CPU) 等のチップ部品の基板への接合に有用である The paste-like metal particle composition of the present invention has a metal particle and a volatile component over a long period of time. Since there is no separation of the dispersion medium and storage stability is excellent, it is useful for joining metal parts. The method for joining metal members of the present invention is useful for joining chip components such as capacitors, resistors, diodes, memories, and arithmetic elements (CPUs) to substrates.

Claims

請求の範囲 The scope of the claims
[1 ] (A)平均粒径 0 . 0 0 1〜5 0 mであり, その表面が撥水性有機物で被覆さ れた金属粒子 1 0 0重量部と、 (B)揮発性分散媒 3〜 3 0重量部とからなり、 該揮発性分散媒 (B)が, 誘電率の異なる揮発性分散媒 (B1)と揮発性分散媒 (B2) とからなり、 かつ、 揮発性分散媒 (B1)と揮発性分散媒 (B2)が, 常温において 完全には相溶しない混合比率であることを特徴とする、 ペース卜状金属粒子 組成物。  [1] (A) 100 parts by weight of metal particles having an average particle diameter of 0.001 to 50 m, the surface of which is coated with a water-repellent organic substance, and (B) a volatile dispersion medium of 3 to The volatile dispersion medium (B) is composed of a volatile dispersion medium (B1) and a volatile dispersion medium (B2) having different dielectric constants, and the volatile dispersion medium (B1). And a volatile dispersion medium (B2) having a mixing ratio that is not completely compatible at room temperature.
[2] 撥水性有機物が高級脂肪酸, 高級脂肪酸アミドまたは高級脂肪酸エステルで あり、 金属粒子 (A)の金属が金, 銀, 銅, パラジウム, ニッケル, スズ, アル ミニゥム, または, それらの合金であることを特徴とする、 請求項 1記載の ペース卜状金属粒子組成物。  [2] The water-repellent organic substance is a higher fatty acid, a higher fatty acid amide or a higher fatty acid ester, and the metal particles (A) are gold, silver, copper, palladium, nickel, tin, aluminum, or an alloy thereof. The pace-like metal particle composition according to claim 1, wherein:
[3] 金属粒子 (A)が高級脂肪酸被覆銀粒子であることを特徴とする、 請求項 2記載 のペース卜状金属粒子組成物。  [3] The pace-like metal particle composition according to claim 2, wherein the metal particles (A) are higher fatty acid-coated silver particles.
[4] 揮発性分散媒 (B1)と揮発性分散媒 (B2)が、 水, 揮発性 1価アルコール, エー テル結合を有する揮発性 1価アルコール, 揮発性多価アルコール, 揮発性炭 化水素, 揮発性エーテル, 揮発性脂肪酸エステル, 揮発性ケトン, 揮発性脂 肪酸アミド, 揮発性脂肪族ァミンおよびアルキル二トリルからなる群から選 択され、 かつ、 該揮発性分散媒 (B1)と該揮発性分散媒 (B2)の 2 5 °Cにおける 誘電率の差が 2 . 0以上であることを特徴とする、 請求項 1記載のペースト状 金属粒子組成物。  [4] Volatile dispersion medium (B1) and volatile dispersion medium (B2) are water, volatile monohydric alcohol, volatile monohydric alcohol with ether bond, volatile polyhydric alcohol, volatile hydrocarbon. , Volatile ether, volatile fatty acid ester, volatile ketone, volatile fatty acid amide, volatile aliphatic amine, and alkyl nitrile, and the volatile dispersion medium (B1) and the volatile dispersion medium (B1) 2. The paste-like metal particle composition according to claim 1, wherein a difference in dielectric constant of the volatile dispersion medium (B2) at 25 ° C. is 2.0 or more.
[5] 揮発性分散媒 (B1)と揮発性分散媒 (B2)の混合比率が 9 8 : 2から 2 : 9 8の 範囲であることを特徴とする、 請求項 1記載のペース卜状金属粒子組成物。  [5] The pace rod-shaped metal according to claim 1, wherein the mixing ratio of the volatile dispersion medium (B1) and the volatile dispersion medium (B2) is in the range of 98: 2 to 2:98. Particle composition.
[6] 揮発性分散媒 (B1)と揮発性分散媒 (B2)の混合比率が 9 8 : 2から 2 : 9 8の 範囲であることを特徴とする、 請求項 4記載のペース卜状金属粒子組成物。  [6] The pace rod-shaped metal according to claim 4, wherein the mixing ratio of the volatile dispersion medium (B1) and the volatile dispersion medium (B2) is in the range of 98: 2 to 2:98. Particle composition.
[7] 請求項 1〜請求項 6のいずれか 1項に記載のペース卜状金属粒子組成物を、 複数の金属製部材間に介在させ、 加熱により, 加圧しつつ超音波振動印加に より, または, 加圧および加熱しつつ超音波振動印加により、 揮発性分散媒 を揮散させ, 金属粒子 (A)同士を焼結させることにより、 複数の金属製部材同 士を接合させることを特徴とする、 金属製部材の接合方法。 [7] The pace bowl-like metal particle composition according to any one of claims 1 to 6 is interposed between a plurality of metal members, and by applying ultrasonic vibration while applying pressure by heating, Alternatively, by applying ultrasonic vibration while applying pressure and heating, the volatile dispersion medium is volatilized and the metal particles (A) are sintered together, so that a plurality of metal members can be combined. A method for joining metal members, characterized by joining a technician.
[8] (A)平均粒径 0. 0 0 1〜5 0 mであり、 その表面が撥水性有機物で被覆さ れた金属粒子 1 0 0重量部と、 (C) 2 5 °Cにおける誘電率が 3 0〜7 5であり , 金属粒子 (A)をはじかない揮発性分散媒 3〜 3 0重量部とからなることを特 徴とする、 特徴とするペースト状金属粒子組成物。  [8] (A) 100 parts by weight of metal particles having an average particle diameter of 0.0 0 1 to 50 m and having a surface coated with a water-repellent organic substance, and (C) a dielectric at 25 ° C. A paste-like metal particle composition, characterized in that it has a rate of 30 to 75 and comprises 30 to 30 parts by weight of a volatile dispersion medium that does not repel the metal particles (A).
[9] 撥水性有機物が高級脂肪酸, 高級脂肪酸アミドまたは高級脂肪酸エステルで あり、 金属粒子 (A)の金属が金, 銀, 銅, パラジウム, ニッケル, スズ, アル ミニゥム, または, それらの合金であることを特徴とする、 請求項 8記載の ペース卜状金属粒子組成物。  [9] The water-repellent organic material is a higher fatty acid, a higher fatty acid amide or a higher fatty acid ester, and the metal particles (A) are gold, silver, copper, palladium, nickel, tin, aluminum, or an alloy thereof. The pace-like metal particle composition according to claim 8, wherein
[10] 金属粒子 (A)が高級脂肪酸被覆銀粒子であることを特徴とする、 請求項 9記載 のペース卜状金属粒子組成物。  [10] The pace-like metal particle composition according to claim 9, wherein the metal particles (A) are higher fatty acid-coated silver particles.
[11 ] 揮発性分散媒 (C)が揮発性多価アルコール, ジメチルホルムアミドまたは揮発 性一価アルコール水溶液であることを特徴とする、 請求項 8記載のペース卜 状金属粒子組成物。  [11] The pace-like metal particle composition according to claim 8, wherein the volatile dispersion medium (C) is a volatile polyhydric alcohol, dimethylformamide, or a volatile monohydric alcohol aqueous solution.
[12] 請求項 8〜請求項 1 1のいずれか 1項に記載のペース卜状金属粒子組成物を , 複数の金属製部材間に介在させ、 加熱により, 加圧しつつ超音波振動印加 により, または, 加圧および加熱しつつ超音波振動印加により、 揮発性分散 媒 (C)を揮散させ, 金属粒子 (A)同士を焼結させることにより、 複数の金属製 部材同士を接合させることを特徴とする、 金属製部材の接合方法。  [12] Claim 8 to Claim 11 The pace bowl-shaped metal particle composition according to any one of claims 1 to 5, interposing between a plurality of metal members, and applying ultrasonic vibration while applying pressure by heating, Or, by applying ultrasonic vibration while applying pressure and heating, the volatile dispersion medium (C) is volatilized and the metal particles (A) are sintered together, thereby joining multiple metal members. The joining method of metal members.
PCT/JP2007/000276 2006-11-24 2007-03-20 Pasty metal particle composition and method of joining WO2008062548A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008528275A JP4247801B2 (en) 2006-11-24 2007-03-20 Paste-like metal particle composition and joining method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006317791 2006-11-24
JP2006-317791 2006-11-24

Publications (1)

Publication Number Publication Date
WO2008062548A1 true WO2008062548A1 (en) 2008-05-29

Family

ID=39429491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000276 WO2008062548A1 (en) 2006-11-24 2007-03-20 Pasty metal particle composition and method of joining

Country Status (3)

Country Link
JP (1) JP4247801B2 (en)
TW (1) TW200822991A (en)
WO (1) WO2008062548A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123760A (en) * 2008-11-19 2010-06-03 Denso Corp Filling material for electrical conduction, and filling method thereof
JP2012084514A (en) * 2010-09-03 2012-04-26 Heraeus Materials Technology Gmbh & Co Kg Use of aliphatic hydrocarbon and paraffin as solvent in silver paste to be sintered
WO2014057633A1 (en) * 2012-10-12 2014-04-17 バンドー化学株式会社 Bonding composition
WO2015076385A1 (en) * 2013-11-22 2015-05-28 東洋製罐グループホールディングス株式会社 Curable resin composition having antibacterial properties
WO2016140204A1 (en) * 2015-03-02 2016-09-09 株式会社スリーボンド Thermosetting conductive adhesive
JP2016196043A (en) * 2016-05-30 2016-11-24 株式会社アルテクス Acoustic wave joining method
WO2017009586A1 (en) * 2015-07-16 2017-01-19 Valeo Equipements Electriques Moteur Brazing process involving sintering a conductive powder by ultrasonic thermocompression and electronic power module produced by this process
WO2017043541A1 (en) * 2015-09-07 2017-03-16 日立化成株式会社 Copper paste for joining, method for manufacturing joined body, and method for manufacturing semiconductor device
WO2017043545A1 (en) * 2015-09-07 2017-03-16 日立化成株式会社 Copper paste for joining, method for producing joined body, and method for producing semiconductor device
EP3069811A4 (en) * 2013-11-11 2017-11-29 Nippon Steel & Sumitomo Metal Corporation Metal bonding structure, metal bonding method, and metal bonding material using metal nanoparticles
JP2019099900A (en) * 2017-11-28 2019-06-24 協立化学産業株式会社 Coated metal particle, conductive composition, conductor, laminate for bonding, circuit formation and method for producing sintered body

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010044329A1 (en) * 2010-09-03 2012-03-08 Heraeus Materials Technology Gmbh & Co. Kg Contacting agent and method for contacting electrical components
HUE028880T2 (en) * 2011-09-20 2017-01-30 Heraeus Deutschland Gmbh & Co Kg Paste and method for connecting electronic components with a substrate
WO2013185839A1 (en) * 2012-06-15 2013-12-19 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic semiconductor device comprising a connecting layer sintered under the action of heat, pressure and ultrasound
JP5856038B2 (en) 2012-10-31 2016-02-09 三ツ星ベルト株式会社 Conductive adhesive for screen printing, joined body of inorganic material, and manufacturing method thereof
EP3238239A4 (en) 2014-12-26 2018-07-25 Henkel AG & Co. KGaA Sinterable bonding material and semiconductor device using the same
KR102236786B1 (en) 2014-12-26 2021-04-05 헨켈 아게 운트 코. 카게아아 Sinterable bonding material and semiconductor device using the same
JP6920029B2 (en) 2016-04-04 2021-08-18 日亜化学工業株式会社 Metal powder sintered paste and its manufacturing method, conductive material manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082996A1 (en) * 2005-02-02 2006-08-10 Dowa Electronics Materials Co., Ltd. Silver particle powder and process for producing the same
JP2006241494A (en) * 2005-03-01 2006-09-14 Dowa Mining Co Ltd Particle powder of silver and production method therefor
WO2006126614A1 (en) * 2005-05-25 2006-11-30 Nihon Handa Co., Ltd. Paste-like silver composition, method for producing same, method for producing solid silver, solid silver, bonding method, and method for manufacturing circuit board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082996A1 (en) * 2005-02-02 2006-08-10 Dowa Electronics Materials Co., Ltd. Silver particle powder and process for producing the same
JP2006241494A (en) * 2005-03-01 2006-09-14 Dowa Mining Co Ltd Particle powder of silver and production method therefor
WO2006126614A1 (en) * 2005-05-25 2006-11-30 Nihon Handa Co., Ltd. Paste-like silver composition, method for producing same, method for producing solid silver, solid silver, bonding method, and method for manufacturing circuit board

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123760A (en) * 2008-11-19 2010-06-03 Denso Corp Filling material for electrical conduction, and filling method thereof
JP2012084514A (en) * 2010-09-03 2012-04-26 Heraeus Materials Technology Gmbh & Co Kg Use of aliphatic hydrocarbon and paraffin as solvent in silver paste to be sintered
WO2014057633A1 (en) * 2012-10-12 2014-04-17 バンドー化学株式会社 Bonding composition
US9365592B2 (en) 2012-10-12 2016-06-14 Bando Chemical Industries, Ltd. Bonding composition
JPWO2014057633A1 (en) * 2012-10-12 2016-08-25 バンドー化学株式会社 Bonding composition
US9960140B2 (en) 2013-11-11 2018-05-01 Nippon Steel & Sumitomo Metal Corporation Metal joining structure using metal nanoparticles and metal joining method and metal joining material
EP3069811A4 (en) * 2013-11-11 2017-11-29 Nippon Steel & Sumitomo Metal Corporation Metal bonding structure, metal bonding method, and metal bonding material using metal nanoparticles
WO2015076385A1 (en) * 2013-11-22 2015-05-28 東洋製罐グループホールディングス株式会社 Curable resin composition having antibacterial properties
US10174208B2 (en) 2013-11-22 2019-01-08 Toyo Seikan Group Holdings, Ltd. Curable resin composition having antibacterial power
JPWO2016140204A1 (en) * 2015-03-02 2017-12-14 株式会社スリーボンド Thermosetting conductive adhesive
US10266729B2 (en) 2015-03-02 2019-04-23 Three Bond Co., Ltd. Thermocurable electroconductive adhesive
WO2016140204A1 (en) * 2015-03-02 2016-09-09 株式会社スリーボンド Thermosetting conductive adhesive
FR3039025A1 (en) * 2015-07-16 2017-01-20 Valeo Equip Electr Moteur WELDING PROCESS WITH MATERIAL SUPPLY AND ELECTRONIC POWER MODULE MADE THEREBY
WO2017009586A1 (en) * 2015-07-16 2017-01-19 Valeo Equipements Electriques Moteur Brazing process involving sintering a conductive powder by ultrasonic thermocompression and electronic power module produced by this process
JPWO2017043545A1 (en) * 2015-09-07 2018-07-12 日立化成株式会社 Copper paste for bonding, method for manufacturing bonded body, and method for manufacturing semiconductor device
JP7359267B2 (en) 2015-09-07 2023-10-12 株式会社レゾナック Copper paste for bonding, method for manufacturing bonded body, and method for manufacturing semiconductor device
KR102509767B1 (en) 2015-09-07 2023-03-14 레조낙 가부시끼가이샤 Copper paste for bonding, manufacturing method of junction body, and manufacturing method of semiconductor device
KR20180050714A (en) * 2015-09-07 2018-05-15 히타치가세이가부시끼가이샤 Copper paste for bonding, method of manufacturing a bonded body, and method of manufacturing a semiconductor device
CN107921540A (en) * 2015-09-07 2018-04-17 日立化成株式会社 The manufacture method of engagement copper thickener, the manufacture method of conjugant and semiconductor device
WO2017043545A1 (en) * 2015-09-07 2017-03-16 日立化成株式会社 Copper paste for joining, method for producing joined body, and method for producing semiconductor device
CN107949447A (en) * 2015-09-07 2018-04-20 日立化成株式会社 The manufacture method of engagement copper thickener, the manufacture method of conjugant and semiconductor device
WO2017043541A1 (en) * 2015-09-07 2017-03-16 日立化成株式会社 Copper paste for joining, method for manufacturing joined body, and method for manufacturing semiconductor device
US10363608B2 (en) 2015-09-07 2019-07-30 Hitachi Chemical Company, Ltd. Copper paste for joining, method for producing joined body, and method for producing semiconductor device
CN107921540B (en) * 2015-09-07 2020-03-03 日立化成株式会社 Copper paste for bonding, method for producing bonded body, and method for producing semiconductor device
CN111283206A (en) * 2015-09-07 2020-06-16 日立化成株式会社 Copper paste for bonding, method for producing bonded body, and method for producing semiconductor device
JP2021048396A (en) * 2015-09-07 2021-03-25 昭和電工マテリアルズ株式会社 Jointing copper paste, manufacturing method of joint body, and manufacturing method of semiconductor device
US11040416B2 (en) 2015-09-07 2021-06-22 Showa Denko Materials Co., Ltd. Copper paste for joining, method for manufacturing joined body, and method for manufacturing semiconductor device
JP7192842B2 (en) 2015-09-07 2022-12-20 昭和電工マテリアルズ株式会社 COPPER PASTE FOR JOINING, METHOD FOR MANUFACTURING JOINTED BODY, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JP2016196043A (en) * 2016-05-30 2016-11-24 株式会社アルテクス Acoustic wave joining method
JP2019099900A (en) * 2017-11-28 2019-06-24 協立化学産業株式会社 Coated metal particle, conductive composition, conductor, laminate for bonding, circuit formation and method for producing sintered body

Also Published As

Publication number Publication date
JP4247801B2 (en) 2009-04-02
TW200822991A (en) 2008-06-01
JPWO2008062548A1 (en) 2010-03-04

Similar Documents

Publication Publication Date Title
WO2008062548A1 (en) Pasty metal particle composition and method of joining
JP4353380B2 (en) Paste-like silver particle composition, method for producing solid silver, solid silver, joining method, and method for producing printed wiring board
JP4870223B1 (en) Pasty silver particle composition, method for producing metal member assembly, and metal member assembly
JP4347381B2 (en) Paste silver composition for adhesion of metal-based adherend, method for producing the same, and method for bonding metal-based adherend
JP5611537B2 (en) Conductive bonding material, bonding method using the same, and semiconductor device bonded thereby
JP4895994B2 (en) Joining method and joining material using metal particles
JP4362742B2 (en) Method for solidifying paste-like metal particle composition, method for joining metal members, and method for producing printed wiring board
JP4685145B2 (en) Method for manufacturing metal member assembly and metal member assembly
JP5011225B2 (en) Metal member bonding agent, metal member bonded body manufacturing method, metal member bonded body, and electric circuit connecting bump manufacturing method
CN109070206A (en) The engagement manufacturing method of copper thickener, the manufacturing method of conjugant and semiconductor device
KR20130129392A (en) Binding material, binding body, and binding method
TW200822990A (en) Sintering metal particle composition with plasticity, method for the preparation thereof, jointing agent, and jointing method
TW201942293A (en) Electroconductive adhesive composition
JPH1166953A (en) Conductive adhesive and usage thereof
JP2010248617A (en) Porous silver sheet, method of manufacturing metal member joined body, metal member joined body, method of manufacturing bump for connecting electric circuit, and bump for connecting electric circuit
JP5609492B2 (en) Electronic component and manufacturing method thereof
JP6556302B1 (en) Paste-like silver particle composition, method for producing metal member assembly, and method for producing composite of sintered porous silver particle and cured resin
JP6669420B2 (en) Bonding composition
JP2015224263A (en) Adhesive composition, semiconductor device using the same and production method of semiconductor device
JP6624620B1 (en) Paste-like silver particle composition, method for producing metal member joined body, and metal member joined body
JP2006111807A (en) Electronic part and method for producing the same
JP3759383B2 (en) Conductive resin paste and semiconductor device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008528275

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07736933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07736933

Country of ref document: EP

Kind code of ref document: A1