JP2006111807A - Electronic part and method for producing the same - Google Patents

Electronic part and method for producing the same Download PDF

Info

Publication number
JP2006111807A
JP2006111807A JP2004302767A JP2004302767A JP2006111807A JP 2006111807 A JP2006111807 A JP 2006111807A JP 2004302767 A JP2004302767 A JP 2004302767A JP 2004302767 A JP2004302767 A JP 2004302767A JP 2006111807 A JP2006111807 A JP 2006111807A
Authority
JP
Japan
Prior art keywords
conductive
particles
conductive composition
electronic component
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004302767A
Other languages
Japanese (ja)
Inventor
秀次 ▲桑島▼
Hideji Kuwajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004302767A priority Critical patent/JP2006111807A/en
Publication of JP2006111807A publication Critical patent/JP2006111807A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic part to easily connect terminals in electrically conductive manner. <P>SOLUTION: The electronic part connects a pair of oppositely placed terminals or connecting parts needing connection with an electrically conductive composition or a heat-conductive composition containing electrically conductive particles and a binder. The relative filling density of the conductive particle in the electrically conductive composition or the heat-conductive composition is 68-90% and the connection of the oppositely placed terminals or the connecting parts is performed mainly through fine silver powder in the conductive particle. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、配線板とパッケージ間を電気的熱伝導的に接続するか又はパッケージとICチップ間などのように電気的には低抵抗で、熱的には高熱伝導の接続要求に対応する電気的熱伝導的接続に優れた電子部品及びその製造法に関する。勿論、電気的には導電性を要求しないが、絶縁性を要求せず、高い熱伝導性を要求する用途にも適するものである。   In the present invention, the wiring board and the package are electrically and thermally conductively connected, or such as between the package and the IC chip, the electrical corresponding to the connection requirement of low electrical resistance and high thermal conductivity. The present invention relates to an electronic component having excellent thermal conductive connection and a manufacturing method thereof. Of course, it does not require electrical conductivity, but does not require insulation and is suitable for applications requiring high thermal conductivity.

従来、配線板とパッケージ間のように導電性を要求する電気的接続は、特許文献1などに記載されているように、導電ペーストを所望の位置に塗布した後、接続を必要とする両者を接着し、次いで加熱硬化させるか又は導電ペースト中の溶剤を揮発させて導電ペーストを固化することで、接続していた。
また、熱的な接続も同様に、特許文献2、3等に記載されているように、接続させる材料の一方の面に導電ペーストを塗布し、次いで他方の材料をその上に載置した後、加熱硬化させるか又は導電ペースト中の溶剤を揮発させて導電ペーストを固化することで、接続していた。
Conventionally, electrical connection requiring electrical conductivity, such as between a wiring board and a package, is performed by applying a conductive paste at a desired position and then requiring both connections as described in Patent Document 1 and the like. The connection was made by bonding and then heat-curing or evaporating the solvent in the conductive paste to solidify the conductive paste.
Similarly, as described in Patent Documents 2 and 3, etc., the thermal connection is performed after applying the conductive paste on one surface of the material to be connected and then placing the other material thereon. The conductive paste was solidified by heat curing or volatilizing the solvent in the conductive paste.

特公平6−11842号公報Japanese Examined Patent Publication No. 6-11842 特公平5−11364号公報Japanese Patent Publication No. 5-11364 特公平5−11365号公報Japanese Patent Publication No. 5-11365

このような電気的接続又は熱的接続、即ち電気的熱伝導的接続に優れた電子部品を得るには、ペースト中の導電粉又は熱伝導粉の含有量を多くし、粉体同士の接触を高くする必要があった。詳しくは、電気的かつ熱伝導的に接続させるためには、両者の特性に優れる銀粉や銅粉を充填材として高い割合でペースト中に含有させる必要があった。   In order to obtain an electronic component excellent in such electrical connection or thermal connection, that is, electrical and thermal conductive connection, the content of the conductive powder or the thermal conductive powder in the paste is increased, and the contact between the powders is increased. It was necessary to make it high. Specifically, in order to connect electrically and thermally conductively, it was necessary to contain silver powder and copper powder excellent in both characteristics as a filler in a high ratio.

これまで実際に販売されている導電粉又は熱伝導粉の場合、例えば銀粉では、粒子は一部凝集しており、粒径が5〜20μmの銀粉では相対充填密度は高々60%前後であり、粒径が1μm前後の銀微粉では粒子同士の凝集が強いため、相対充填密度は高々40〜60%前後であり、これらを単純に組み合わせて混合しても、相対充填密度は60%前後にとどまる。このため、ペースト中の導電粉含有率を高くすることはできなかった。   In the case of conductive powder or heat conductive powder that has actually been sold so far, for example, in silver powder, the particles are partially agglomerated, and in silver powder with a particle size of 5-20 μm, the relative packing density is at most about 60%, Since the fine particles of silver having a particle size of about 1 μm have strong aggregation between particles, the relative packing density is at most about 40 to 60%. Even if these are simply combined and mixed, the relative packing density remains at about 60%. . For this reason, it was not possible to increase the conductive powder content in the paste.

一般的に電気的熱伝導的接続に優れた電子部品を得るには、接続に用いる導電ペースト中の銀粉又は銅粉の含有率を多くすると同時に、これら導電粉同士の接触確率を高め、かつその結合を強くすることが望ましかった。銅は耐マイグレーション性が良好であるが表面が酸化し易く導電性が低下し易い。また銀粉より堅いため、粒子同士を強い力で押しつけないと良好な接続が得られない欠点があった。従って、パッケージと配線板を接続するような用途では、粒子同士を強く押しつけられないという欠点があった。
一方、銀粉は耐酸化性も良好で柔らかいため、薄片と粒子を使用することで、電気的接続は良好であるが、反面耐マイグレーション性が銅に比べて大きく劣るという欠点があった。
In general, in order to obtain an electronic component excellent in electrical and thermal conductive connection, the content of silver powder or copper powder in the conductive paste used for connection is increased, and at the same time, the contact probability between these conductive powders is increased, and It was desirable to strengthen the bond. Copper has good migration resistance, but the surface tends to oxidize and the conductivity tends to decrease. Further, since it is harder than silver powder, there is a drawback that good connection cannot be obtained unless the particles are pressed against each other with a strong force. Accordingly, there is a drawback that the particles cannot be strongly pressed against each other in applications where the package and the wiring board are connected.
On the other hand, since silver powder has good oxidation resistance and is soft, the electrical connection is good by using flakes and particles, but there is a drawback that migration resistance is greatly inferior to copper.

また、電気的熱伝導的接続に優れた電子部品の特性を高めるには、導電粉を多く含むペーストを用いることが好ましいが、これらの導電粉は凝集し易いためペースト中に多く含有することができず、このため粉末同士の接触確率を高めることもできなかった。例えば、無溶剤のバインダ組成物を使用して、銀粉の概略単分散された略球状粒子及び銀微粉からなる高充填化(相対充填密度75%)された混合粒子をペースト化する場合、バインダ組成物に94重量%になるような割合で混合粒子を添加しても均一混合できる。   Moreover, in order to improve the characteristics of the electronic component excellent in electrical and thermal conductive connection, it is preferable to use a paste containing a large amount of conductive powder. However, since these conductive powders easily aggregate, they are often contained in the paste. Therefore, the contact probability between the powders could not be increased. For example, when a solvent-free binder composition is used to paste a substantially monodispersed substantially spherical particle of silver powder and a highly filled (relative filling density 75%) mixed particle consisting of silver fine powder, the binder composition Even if mixed particles are added to the product at a ratio of 94% by weight, uniform mixing can be achieved.

しかしながら、相対充填密度が63%の混合粒子の場合、バインダ組成物が不足してしまい、同じ割合でバインダ組成物に混合粒子を添加すると、ばさばさの状態になりペースト状にはならず、均一混合することができない。即ち、相対充填密度が68〜80%に高充填化された混合粒子を使用することで、初めて高充填化されたペーストを安定に生産することができる。混合粒子の相対充填密度を80%より高くできればより好ましいが、80%以上にすることは非常に困難である。   However, in the case of mixed particles with a relative packing density of 63%, the binder composition is insufficient, and when mixed particles are added to the binder composition at the same rate, the mixture becomes bulky and does not become a paste, and is mixed uniformly. Can not do it. That is, by using mixed particles with a high relative packing density of 68 to 80%, it is possible to stably produce a highly filled paste for the first time. It is more preferable if the relative packing density of the mixed particles can be made higher than 80%, but it is very difficult to make it 80% or more.

このように、導電粉を高含有率で配合するとペースト化することができなくなり、導電粉が銀粉又は銀と銅との合金粉の場合、これまで含有率が92重量%を越える無溶剤のペーストはできなかった。また溶剤を添加したペーストでも、導電粉の相対充填密度が低い場合は、バインダの必要量が高くなり、電子部品の特性は悪くなる。
一方、バインダの量を減らすと、凝集粉のため接続部分の強度が低下するという欠点があった。
Thus, when the conductive powder is blended at a high content, it cannot be made into a paste, and when the conductive powder is silver powder or an alloy powder of silver and copper, a solvent-free paste having a content of over 92% by weight so far. I couldn't. Further, even in a paste to which a solvent is added, if the relative packing density of the conductive powder is low, the required amount of binder is increased, and the characteristics of the electronic component are deteriorated.
On the other hand, when the amount of the binder is reduced, there is a drawback that the strength of the connection portion is reduced due to the agglomerated powder.

請求項1記載の発明は、端子間を容易に電気的熱伝導的接続することができる電子部品を提供するものである。
請求項2記載の発明は、請求項1記載の発明に加えて、高充填化が可能な電子部品を提供するものである。
請求項3及び4記載の発明は、請求項1又は2記載の発明に加えて、粒子同士の接続を効率よく行うことができる電子部品を提供するものである。
請求項5記載の発明は、請求項1〜4記載の発明に加えて、耐マイグレーション性に優れ、導電性と熱伝導性にも優れる
請求項6、7及び8記載の発明は、端子間又は接続を必要とする部品の電気的熱伝導的接続が良好な電子部品の製造法を提供するものである。
The invention according to claim 1 provides an electronic component that can be easily electrically and thermally conductively connected between terminals.
The invention described in claim 2 provides an electronic component capable of high filling in addition to the invention described in claim 1.
In addition to the invention described in claim 1 or 2, the invention described in claims 3 and 4 provides an electronic component capable of efficiently connecting particles.
The invention according to claim 5 is excellent in migration resistance and excellent in conductivity and thermal conductivity in addition to the inventions in claims 1 to 4. It is an object of the present invention to provide a method for manufacturing an electronic component having a good electrical and heat conductive connection of components requiring connection.

本発明は、相互に向かい合う端子間又は接続を必要とする部品間を導電粒子及びバインダを含む導電組成物又は熱伝導組成物で接続する電子部品において、該導電組成物又は熱伝導組成物中の導電粒子の相対充填密度が68〜90%であり、かつ主として導電粒子中に含まれる銀微粉を介して相互に向かい合う端子間又は接続を必要とする部品を接触させるようにした電子部品に関する。
また、本発明は、導電組成物又は熱伝導組成物中の導電粒子の割合が、導電組成物又は熱伝導組成物に対して90〜99重量%である電子部品に関する。
また、本発明は、導電組成物又は熱伝導組成物中の導電粒子が、略球状粒子及び銀微粉を含み、かつ略球状粒子の平均粒径が銀微粉の平均粒径の5〜25倍である電子部品に関する。
また、本発明は、銀微粉の平均粒径が、0.3〜2.5μmである電子部品に関する。
また、本発明は、略球状粒子が、略球状銀粉又は略球状銅粉に対して3〜30重量%の銀で略球状銅粉の一部及び銀との合金部分を露出させて表面を被覆した略球状銀被覆銅粉であって、かつ被覆された銀が平滑化処理された略球状銀被覆銅粉である電子部品に関する。
The present invention relates to an electronic component in which conductive terminals or conductive compositions containing conductive particles and a binder are connected between terminals facing each other or between components requiring connection, in the conductive composition or the thermal conductive composition. The present invention relates to an electronic component in which a relative packing density of conductive particles is 68 to 90%, and a component that needs to be connected between terminals facing each other or mainly through silver fine powder contained in the conductive particles.
Moreover, this invention relates to the electronic component whose ratio of the electrically-conductive particle in an electrically conductive composition or a heat conductive composition is 90 to 99 weight% with respect to a conductive composition or a heat conductive composition.
In the present invention, the conductive particles in the conductive composition or the heat conductive composition include substantially spherical particles and silver fine powder, and the average particle diameter of the substantially spherical particles is 5 to 25 times the average particle diameter of the silver fine powder. It relates to an electronic component.
Moreover, this invention relates to the electronic component whose average particle diameter of silver fine powder is 0.3-2.5 micrometers.
Further, in the present invention, the substantially spherical particles are coated with 3 to 30% by weight of silver with respect to the substantially spherical silver powder or the substantially spherical copper powder to expose a part of the substantially spherical copper powder and an alloy part with the silver. The present invention relates to an electronic component which is a substantially spherical silver-coated copper powder and is a substantially spherical silver-coated copper powder obtained by smoothing the coated silver.

また、本発明は、相互に向かい合う端子間又は接続を必要とする部品間を導電粒子及びバインダを含む導電組成物又は熱伝導組成物で接続する電子部品の製造法において、導電組成物又は熱伝導組成物をペースト化した導電ペーストを接続する側の一方の端子に塗布した後、この端子に該導電ペーストを介して他の一方の端子を合わせて相互に向かい合う端子間又は接続を必要とする部品間を接続させることを特徴とする電子部品の製造法に関する。
また、本発明は、相互に向かい合う端子間又は接続を必要とする部品間を導電粒子及びバインダを含む導電組成物又は熱伝導組成物で接続する電子部品の製造法において、導電組成物又は熱伝導組成物をペースト化した導電ペーストを接続する側の一方の端子に塗布した後、この端子に該導電ペーストを介して他の一方の端子を合わせて相互に接続し、次いでこれを圧縮して導電ペースト中の金属粒子同士を圧接し、相互に向かい合う端子間又は接続を必要とする部品間を接触させることを特徴とする電子部品の製造法に関する。
さらに、本発明は、導電組成物又は熱伝導組成物中の導電粒子の割合が、90〜99重量%である電子部品の製造法に関する。
The present invention also relates to a method of manufacturing an electronic component in which a conductive composition containing a conductive particle and a binder or a thermal conductive composition is connected between terminals that face each other or between components that require connection. After applying the composition paste to one of the terminals to which the conductive paste is to be connected, the other terminal is combined with this terminal via the conductive paste, and the parts that need to be connected or connected to each other The present invention relates to a method of manufacturing an electronic component characterized by connecting the two.
The present invention also relates to a method of manufacturing an electronic component in which a conductive composition containing a conductive particle and a binder or a thermal conductive composition is connected between terminals that face each other or between components that require connection. After the composition is applied to one terminal on the side to which the conductive paste made into a paste is connected, the other terminal is aligned with this terminal through the conductive paste, and then connected to each other, and then compressed to conduct The present invention relates to a method of manufacturing an electronic component, characterized in that metal particles in a paste are pressed against each other, and terminals facing each other or components requiring connection are brought into contact with each other.
Furthermore, this invention relates to the manufacturing method of the electronic component whose ratio of the electrically-conductive particle in an electrically conductive composition or a heat conductive composition is 90 to 99 weight%.

請求項1記載の電子部品は、端子間を容易に電気的熱伝導的接続することができる。
請求項2記載の電子部品は、請求項1記載の発明に加えて、高充填化が可能である。
請求項3及び4記載の電子部品は、請求項1又は2記載の発明に加えて、粒子同士の接続を効率よく行うことができる。
請求項5記載の電子部品は、請求項1〜4記載の電子部品に加えて、耐マイグレーション性に優れ、導電性と熱伝導性にも優れる。
請求項6、7及び8記載の方法で得られる電子部品は、端子間又は接続を必要とする部品を容易に電気的熱伝導的接続することができる。
In the electronic component according to the first aspect, the terminals can be easily electrically and thermally conductively connected.
The electronic component described in claim 2 can be highly filled in addition to the invention described in claim 1.
In addition to the invention described in claim 1 or 2, the electronic component described in claims 3 and 4 can efficiently connect particles.
The electronic component according to claim 5 is excellent in migration resistance and excellent in conductivity and thermal conductivity in addition to the electronic component according to claims 1 to 4.
The electronic component obtained by the method according to claims 6, 7 and 8 can be easily electrically and thermally conductively connected between terminals or a component requiring connection.

本発明において、相互に向かい合う端子間又は接続を必要とする部品間を接続するのに用いる導電組成物又は熱伝導組成物は、導電粒子とバインダ組成物を含む導電ペーストの固化物であり、電気的熱伝導的接続に適した物質である。このうち導電粒子としては、電導性がよく、熱伝導性も良好な銀、銅、金又はこれらの合金が適しており、その他の導電粒子としてはアルミニウム、白金、パラジウム又はこれらの合金が使用される。   In the present invention, the conductive composition or the heat conductive composition used for connecting between the terminals facing each other or between the components requiring connection is a solidified product of a conductive paste containing conductive particles and a binder composition, It is a material suitable for thermal conductive connection. Among these, silver, copper, gold or alloys thereof having good conductivity and good thermal conductivity are suitable as the conductive particles, and aluminum, platinum, palladium or alloys thereof are used as the other conductive particles. The

また、導電粒子同士を金属結合させる目的で銀微粉が使用される。この銀微粉は、導電粒子として均一に分散した後、バインダ組成物と一緒に混合され、導電ペーストとなり、相互に向かい合う端子間又は接続を必要とする部品間を接続する際に、銀微粉より大きい導電粒子間で挟まれて押しつぶされ、導電粒子表面と接触する。接触が全ての粒子間で行われていれば理想であるが、実際には難しく、導電粒子間で挟まれ、変形して導電粒子に強く貼り付いている状態のものが含まれていたり、導電粒子間の隙間に銀微粉が存在するものが含まれていても差し支えない。   Moreover, silver fine powder is used for the purpose of metal-bonding the conductive particles. After the silver fine powder is uniformly dispersed as conductive particles, it is mixed with the binder composition to form a conductive paste, which is larger than the silver fine powder when connecting between terminals facing each other or between parts requiring connection. It is sandwiched and crushed between the conductive particles, and comes into contact with the surface of the conductive particles. It is ideal if the contact is made between all the particles, but it is difficult in practice, and some of the particles are sandwiched between the conductive particles and deformed and strongly adhered to the conductive particles. It does not matter even if silver particles exist in the gaps between the particles.

バインダ組成物としては特に制限はないが、接着力を必要とする場合にはエポキシ樹脂が適しており、無溶剤又は溶剤含有率の低い導電ペーストを作製する場合には、常温で液状、かつ粘度の低い、ビスフェノールA型、ビスフェノールF型、ビスフェノールAD型等で低分子のエポキシ樹脂がその硬化剤と一緒に使用される。   The binder composition is not particularly limited, but an epoxy resin is suitable when adhesive strength is required. When producing a conductive paste having no solvent or a low solvent content, it is liquid at room temperature and has a viscosity. Low molecular weight epoxy resins such as bisphenol A type, bisphenol F type, bisphenol AD type and the like are used together with the curing agent.

また、エポキシ基を分子中に1個しか持たず、架橋反応はできないが、粘度の低いモノエポキサイドもバインダ組成物の粘度を低下させるために併用できる。さらにエポキシ樹脂やフェノール樹脂のような熱硬化性樹脂ばかりでなく、フェノキシ樹脂のような熱可塑型樹脂も溶剤に溶解してバインダ組成物として使用できる。バインダ組成物はこれらの他に、カップリング剤、消泡剤等の添加物や必要に応じて溶剤を含有していても差し支えない。   Moreover, although it has only one epoxy group in the molecule and cannot perform a crosslinking reaction, monoepoxide having a low viscosity can be used in combination to reduce the viscosity of the binder composition. Furthermore, not only thermosetting resins such as epoxy resins and phenol resins, but also thermoplastic resins such as phenoxy resins can be dissolved in a solvent and used as a binder composition. In addition to these, the binder composition may contain additives such as a coupling agent and an antifoaming agent and, if necessary, a solvent.

導電粒子とバインダ組成物を混合し、導電ペーストを作製する方法は、予め導電粒子の相対充填密度を所望の高い状態にしておき、これを所定のバインダ組成物と混合する方法が、均一分散が容易であり、かつ高含有率で導電ペースト固化物粒子を含有する導電ペーストを製造するに適した方法である。このバインダ組成物と相対充填密度を高くした導電粒子を混合、分散する方法は特に制限するものではなく、例えば、らいかい機、自働乳鉢、さらにはプラネタリーミキサー、3本ロールミル等のような分散混合機を使用してもよい。   The method of mixing the conductive particles and the binder composition to prepare the conductive paste is that the relative packing density of the conductive particles is set to a desired high state in advance, and the method of mixing this with a predetermined binder composition is uniform dispersion. This is an easy and suitable method for producing a conductive paste containing conductive paste solidified particles at a high content. The method of mixing and dispersing the binder composition and the conductive particles having a high relative packing density is not particularly limited. For example, a raking machine, an automatic mortar, a planetary mixer, a three-roll mill, etc. A dispersion mixer may be used.

本発明に用いられる導電組成物又は熱伝導組成物中の導電粒子は、概略単分散された鱗片状粒子及び略球状粒子を含み、その相対充填密度は68〜90%、好ましくは70〜90%の範囲とされ、相対充填密度が68%未満であると導電粒子の配合割合を多くすると導電ペーストの粘度が高くなり、充填や塗布などの作業性が悪くなる。一方、導電粒子の配合割合を少なくすると十分な導電性及び信頼性が得られなくなる場合がある。なお、相対充填密度が90%を超える導電粒子を作製することは極めて困難である。
本発明において、概略単分散されたとは、粒子の凝集の大部分が解粒されている状態を指し、全ての粒子が完全に解粒されていなくても差し支えない。
The conductive particles in the conductive composition or the heat conductive composition used in the present invention include approximately monodispersed scale-like particles and substantially spherical particles, and the relative packing density thereof is 68 to 90%, preferably 70 to 90%. When the relative filling density is less than 68%, increasing the blending ratio of the conductive particles increases the viscosity of the conductive paste, resulting in poor workability such as filling and coating. On the other hand, if the blending ratio of the conductive particles is reduced, sufficient conductivity and reliability may not be obtained. It is extremely difficult to produce conductive particles having a relative packing density exceeding 90%.
In the present invention, substantially monodispersed refers to a state in which most of the agglomeration of particles is pulverized, and all the particles may not be completely pulverized.

本発明における相対充填密度(%)とは、充填密度をその粒子の真密度で除した値を%で表示したものである。なお、本発明で粒子の相対充填密度を求める方法は、25mmのストロークでタッピングを1,000回行い、その体積と質量から算出したタップ密度を充填密度とし、その粒子の真密度又は理論密度で除することで算出した。   The relative packing density (%) in the present invention is a value obtained by dividing the packing density by the true density of the particles in%. The method for obtaining the relative packing density of particles in the present invention is that tapping is performed 1,000 times with a stroke of 25 mm, the tap density calculated from the volume and mass is taken as the packing density, and the true density or theoretical density of the particles is used. It was calculated by dividing.

本発明において、略球状粒子とは、その形状が概略球状と見なせる粒子で塊状粒子を含み、その長径と短径の比は、1〜1.5の範囲が好ましく、1〜1.3の範囲がより好ましく、1〜1.1の範囲がさらに好ましい。   In the present invention, the substantially spherical particle is a particle whose shape can be regarded as substantially spherical, includes agglomerated particles, and the ratio of the major axis to the minor axis is preferably in the range of 1 to 1.5, and in the range of 1 to 1.3. Is more preferable, and the range of 1 to 1.1 is more preferable.

本発明で用いられる略球状粒子の平均粒径は、銀微粉の平均粒径の5〜25倍が好ましく、10〜25倍であればさらに好ましい。この倍率が小さいと高充填化が困難になる傾向があり、またこの倍率が大きすぎると、鱗片状粒子の粒径が大きくなりすぎて、ペースト化した場合、粘度が高く、流動性を損ねたり、接着剤として使用する場合、作業性が悪くなる傾向がある。   The average particle size of the substantially spherical particles used in the present invention is preferably 5 to 25 times, more preferably 10 to 25 times the average particle size of the silver fine powder. If this magnification is small, high filling tends to be difficult, and if this magnification is too large, the particle size of the scaly particles becomes too large, and when pasted, the viscosity is high and fluidity is impaired. When used as an adhesive, workability tends to deteriorate.

また、略球状粒子の平均粒径は、1.5〜45μmの範囲が上記の倍率から計算した下限値及び上限値であるが、コスト、取扱性等を考慮すると2.5〜20μmの範囲が好ましく、2.5〜15μmの範囲であればさらに好ましい。
なお、本発明における平均粒径は、レーザー散乱型粒度分布測定装置により測定することができる。本発明においては、測定装置としてマスターサイザー(マルバン社製)を使用した。
Further, the average particle diameter of the substantially spherical particles is a lower limit value and an upper limit value calculated from the above magnification in the range of 1.5 to 45 μm, but in the range of 2.5 to 20 μm in consideration of cost, handling property, etc. The range of 2.5 to 15 μm is more preferable.
In addition, the average particle diameter in this invention can be measured with a laser scattering type particle size distribution measuring apparatus. In the present invention, a master sizer (manufactured by Malvern) was used as a measuring device.

一方、銀微粉の粒径は、0.3〜2.5μmの範囲が好ましく、0.5〜1.8μmの範囲がより好ましく、0.8〜1.5μmの範囲がさらに好ましい。銀微粉の粒径が0.3μm未満であると粒子同士の凝集が強く解粒不足を起こす場合があり、2.5μmを超えると高充填化することが難しくなる傾向があり、またビアホールへの充填性や、シリンジからの吐出性が悪くなる傾向がある。   On the other hand, the particle size of the silver fine powder is preferably in the range of 0.3 to 2.5 μm, more preferably in the range of 0.5 to 1.8 μm, and still more preferably in the range of 0.8 to 1.5 μm. If the particle size of the silver fine powder is less than 0.3 μm, the particles are strongly aggregated and may cause insufficient deflation. If the particle size exceeds 2.5 μm, it tends to be difficult to achieve high filling, There is a tendency that the filling property and the discharging property from the syringe are deteriorated.

本発明で使用される導電組成物又は熱伝導組成物中の略球状粒子と銀微粉の配合割合は、体積比で略球状粒子:銀微粉が95:5〜55:45が好ましく、95:20〜60:40がさらに好ましい。この範囲以外では高充填化することが困難となる傾向があり、上記の範囲にすることにより、相対充填密度が68%以上のものを得ることができる。しかし、相対充填密度を90%以上にすることは極めて困難である。   The blending ratio of the substantially spherical particles and the silver fine powder in the conductive composition or the heat conductive composition used in the present invention is preferably 95: 5 to 55:45 in a substantially spherical particle: silver fine powder by volume ratio, and 95:20. ~ 60: 40 is more preferred. Outside this range, it tends to be difficult to achieve high filling, and by making it in the above range, a material with a relative filling density of 68% or more can be obtained. However, it is extremely difficult to make the relative packing density 90% or more.

本発明において使用される導電組成物中の略球状粒子と銀微粉は、概略単分散されていればよい。特に、銀微粉の凝集が完全に解粒されるまで単分散を行うことは多大な労力を必要とするばかりでなく、極めて困難である。従って、本発明においては、概略単分散された鱗片状粒子及び略球状粒子を混合しながら、凝集した略球状粒子を解粒することが好ましい。   The substantially spherical particles and silver fine powder in the conductive composition used in the present invention need only be approximately monodispersed. In particular, it is extremely difficult to perform monodispersion until the aggregation of silver fine powder is completely pulverized, as well as requiring a lot of labor. Therefore, in the present invention, it is preferable to pulverize the aggregated substantially spherical particles while mixing the substantially monodispersed scale-like particles and substantially spherical particles.

本発明において、導電組成物又は熱伝導組成物中の導電粒子を接触させて相互に向かい合う端子間又は接続を必要とする部品間を接続する方法は、相互に向かい合う端子間又は接続を必要とする部品間に導電ペーストを塗布し、両接続を必要とする部品を押しつぶすことにより達成できる。このとき、導電ペーストの粘度が低い場合で、導電ペーストが溶剤を含有している場合には、低粘度の状態で押しつぶしてもよく、溶剤を乾燥した後に押しつぶしてもよい。また溶剤を含まない導電ペーストの場合、必要に応じて加熱し、導電ペーストの粘度を低くしてから押しつぶせば効果的に接触させ接続することができる。これらのように導電ペーストを増粘させてから押しつぶし、略球状粒子と銀微粉とを一体化してかしめるように加工すれば、接触の割合が低くても電導性及び熱伝導性が良好になる。   In the present invention, the method of connecting the conductive particles in the conductive composition or the heat conductive composition to connect between the terminals facing each other or between the parts requiring the connection requires between the terminals facing each other or the connection. This can be achieved by applying a conductive paste between the parts and crushing the parts that require both connections. At this time, when the viscosity of the conductive paste is low and the conductive paste contains a solvent, the conductive paste may be crushed in a low-viscosity state or may be crushed after the solvent is dried. In the case of a conductive paste that does not contain a solvent, it can be effectively contacted and connected by heating as necessary to reduce the viscosity of the conductive paste and then crushing it. If the conductive paste is thickened and then crushed and processed so that substantially spherical particles and silver fine powder are integrated and caulked, the electrical conductivity and thermal conductivity are improved even if the contact ratio is low. .

本発明において、概略単分散された略球状粒子が、鱗片状銅粉に対して3〜30重量%の銀で略球状銅粉の一部及び銀との合金部分を露出させて表面を被覆した略球状銀被覆銅粉であって、かつ被覆された銀が平滑化処理された略球状銀被覆銅粉を使用すると、銀微粉と混合した場合でも銀微粉との混合割合が、略球状銀被覆銅粉:銀微粉が100:0〜30:70の範囲であれば、耐銀マイグレーション性が良好であり、100:0〜55:45の範囲であればその耐銀マイグレーション性はさらに優れ、銅とほぼ同等の耐マイグレーション特性を示す。   In the present invention, approximately monodispersed substantially spherical particles are coated with 3 to 30% by weight of silver with respect to the scale-like copper powder to expose a part of the substantially spherical copper powder and an alloy part with silver. When using a substantially spherical silver-coated copper powder, which is a substantially spherical silver-coated copper powder and the coated silver is smoothed, the mixing ratio with the silver fine powder is almost spherical silver coated even when mixed with the silver fine powder. If the copper powder: silver fine powder is in the range of 100: 0 to 30:70, the silver migration resistance is good, and if it is in the range of 100: 0 to 55:45, the silver migration resistance is further excellent, and the copper Shows almost the same migration resistance.

上記の略球状銀被覆銅粉を作製するには、例えばめっき法などで略球状銅粉の表面に銀を被覆させ、ついでこれをボールミル、ロッキングミル、振動ミル、アトライタ、プラネタリーミキサー等で、ジルコニアビーズ、アルミナビーズ、金属製ビーズ等の微小なビーズと共にゆるやかに撹拌し、凝集を解砕すると共に該球状の粒子を偏平化することなく微小なビーズで表面を弱くたたき、表面に被覆した銀層を平滑化させてやればよい。この平滑化処理で、表面に被覆された銀めっき層は平滑化されると同時にコア材の銅粉表面部分では一部が合金層を形成し、銅の一部が表面に露出する。色調は銀に近い金属色で、やや赤褐色を帯びるが、銅の露出は肉眼では判別できない、   In order to produce the above substantially spherical silver-coated copper powder, for example, the surface of the substantially spherical copper powder is coated with silver by a plating method or the like, and then this is ball mill, rocking mill, vibration mill, attritor, planetary mixer, etc. Aggregate gently with fine beads such as zirconia beads, alumina beads, metal beads, etc. to break up the agglomerates and tap the surface weakly with fine beads without flattening the spherical particles. The layer may be smoothed. By this smoothing treatment, the silver plating layer coated on the surface is smoothed, and at the same time, a part of the copper powder surface portion of the core material forms an alloy layer, and a part of copper is exposed on the surface. The color tone is a metallic color close to silver and has a slightly reddish brown color, but the exposure of copper cannot be discerned with the naked eye,

しかし、平滑化処理された略球状銀被覆銅粉は塩水に接触させると緑青色に変化するので、表面に銅が露出していることを確認できる。銀を被覆させる方法は特に制限ないが、例えば置換めっき、電気めっき、無電解めっき等の方法があり、略球状銅粉と銀の付着力が高いこと及びランニングコストが安価であることから、置換めっきで被覆することが好ましい。   However, the smoothed substantially spherical silver-coated copper powder changes to greenish blue when brought into contact with salt water, so that it can be confirmed that copper is exposed on the surface. The method for coating silver is not particularly limited. For example, there are methods such as displacement plating, electroplating, and electroless plating. Since the adhesion between the substantially spherical copper powder and silver is high and the running cost is low, replacement is possible. It is preferable to coat with plating.

本発明においては、概略単分散された略球状粒子の表面は必要に応じて脂肪酸で被覆させてもよい。本発明で用いることのできる脂肪酸としては、ステアリン酸、ラウリン酸、カプリン酸、パルミチン酸等の飽和脂肪酸又はオレイン酸、リノール酸、リノレン酸、ソルビン酸などの不飽和脂肪酸等が挙げられる。   In the present invention, the surface of the substantially monodispersed substantially spherical particles may be coated with a fatty acid as necessary. Examples of fatty acids that can be used in the present invention include saturated fatty acids such as stearic acid, lauric acid, capric acid, and palmitic acid, and unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid, and sorbic acid.

これら粒子の表面への脂肪酸の被覆量は、粒子に対して0.02〜1.0重量%の範囲が好ましく、0.02〜0.5重量%の範囲がより好ましく、0.02〜0.3重量%の範囲がさらに好ましい。脂肪酸の被覆量が0.02重量%未満であると被覆した効果がなく、また1.0重量%を超えると、粒子同士が脂肪酸によって凝集し易くなる場合があり、あまり好ましくない。   The coating amount of the fatty acid on the surface of these particles is preferably in the range of 0.02 to 1.0% by weight, more preferably in the range of 0.02 to 0.5% by weight, and 0.02 to 0%. More preferred is a range of 3% by weight. If the coating amount of the fatty acid is less than 0.02% by weight, there is no effect of coating, and if it exceeds 1.0% by weight, the particles may easily aggregate with the fatty acid, which is not preferable.

本発明では、相互に向かい合う端子間又は接続を必要とする部品間を導電組成物又は熱伝導組成物で接続する構造のものであり、該導電組成物又は熱伝導組成物中の導電粒子の割合が、90〜99重量%の範囲が好ましいが、所望の端子間に導電ペーストを塗布し、これを加熱して硬化させる場合にバインダ組成物の一部が流れ落ちて導電粒子の含有率が高くなった場合も本発明に該当する。   The present invention has a structure in which terminals facing each other or parts requiring connection are connected with a conductive composition or a heat conductive composition, and the ratio of conductive particles in the conductive composition or the heat conductive composition However, the range of 90 to 99% by weight is preferable, but when a conductive paste is applied between desired terminals and is cured by heating, a part of the binder composition flows down and the content of conductive particles increases. The case corresponds to the present invention.

以下、本発明を実施例により説明する。
実施例1
ビスフェノールAD型エポキシ樹脂(三井化学(株)製、商品名エポミックR710)50重量部、ビスフェノールF型エポキシ樹脂(大日本インキ化学工業(株)製、商品名エピクロンEXA830CRP)50重量部、モノエポキサイド(旭電化工業(株)製、商品名グリシロールED―509)50重量部、2−フェニル−4−メチル−イミダゾール(四国化成(株)製、商品名キュアゾール2P4MZ)20重量部とチタネート系カップリング剤0.2重量部を均一に混合してバインダ組成物とした。
Hereinafter, the present invention will be described with reference to examples.
Example 1
50 parts by weight of bisphenol AD type epoxy resin (Mitsui Chemicals Co., Ltd., trade name Epomic R710), 50 parts by weight of bisphenol F type epoxy resin (Dainippon Ink Chemical Co., Ltd., trade name Epicron EXA830CRP), monoepoxide ( Asahi Denka Kogyo Co., Ltd., trade name: Glycilol ED-509, 50 parts by weight, 2-phenyl-4-methyl-imidazole (Shikoku Kasei Co., Ltd., trade name: Curesol 2P4MZ), 20 parts by weight and titanate coupling agent 0.2 part by weight was uniformly mixed to obtain a binder composition.

一方、導電粒子として、平均粒径が10μm及び長径と短径の比が1.0の略球状銀被覆銅粉70重量%と平均粒径が1.1μmの銀微粉30重量%の混合粉からなる相対充填密度が75%の高充填導電粉を使用した。
上記で得たバインダ組成物6重量部に、上記の高充填導電粉94重量部を除々に加えながら撹拌らいかい機で5分間均一に混合、分散して、導電ペーストを得た。
On the other hand, as the conductive particles, from a mixed powder of 70% by weight of a substantially spherical silver-coated copper powder having an average particle diameter of 10 μm and a ratio of the long diameter to the short diameter of 1.0 and 30% by weight of silver fine powder having an average particle diameter of 1.1 μm A highly filled conductive powder having a relative packing density of 75% was used.
While gradually adding 94 parts by weight of the highly filled conductive powder to 6 parts by weight of the binder composition obtained above, the mixture was uniformly mixed and dispersed for 5 minutes with a stirrer to obtain a conductive paste.

次に、図1に示すパッケージ1及び配線板2を各々100個準備すると共に、上記で得た導電ペーストをシリンジに充填し、次いでパッケージの銅箔ランド4と対向する直径0.2mmの配線板の銅箔ランド3上に、シリンジに充填した導電ペーストを直径が0.2mmで高さが0.12mm(約26μg/個)になるように供給した。その後、前記のパッケージの銅箔ランド4を有するパッケージ1を、前記の配線板2の導電ペーストを供給した配線板の銅箔ランド3上に導電ペーストを介して載置した。   Next, while preparing 100 each of the package 1 and the wiring board 2 shown in FIG. 1, filling the syringe with the conductive paste obtained above, then the wiring board having a diameter of 0.2 mm facing the copper foil land 4 of the package The conductive paste filled in the syringe was supplied onto the copper foil land 3 so that the diameter was 0.2 mm and the height was 0.12 mm (about 26 μg / piece). Thereafter, the package 1 having the copper foil land 4 of the package was placed on the copper foil land 3 of the wiring board supplied with the conductive paste of the wiring board 2 via the conductive paste.

次いで、両者(パッケージ1と配線板2)の間隔を100μmになるまで押しつぶし、その後170℃まで13分間で昇温し、170℃で1時間加熱処理して、パッケージ1と配線板2とを導電組成物5を介して接続させて電子部品を得た。
上記で得た電子部品を樹脂で埋めた後、パッケージ1と配線板2との接続部分を切断し、その切断面を観察した結果、略球状銀被覆銅粉同士に挟まれた銀微粉はやや変形して、略球状銀被覆銅粉と強く接合しており、その一部は粒子同士が強く接触していると見なせた。なお、電子部品の導電粒子は96重量%であり、銀微粉の粒径は1μmで、略球状粒子の粒径の1/10であった。
Next, the distance between the two (package 1 and wiring board 2) is crushed to 100 μm, and then the temperature is raised to 170 ° C. over 13 minutes, followed by heat treatment at 170 ° C. for 1 hour to make the package 1 and wiring board 2 conductive. An electronic component was obtained by connecting through the composition 5.
After filling the electronic component obtained above with resin, the connection part between the package 1 and the wiring board 2 was cut, and as a result of observing the cut surface, the silver fine powder sandwiched between the substantially spherical silver-coated copper powders was somewhat It was deformed and strongly bonded to the substantially spherical silver-coated copper powder, and a part of the particles was considered to be in strong contact with each other. The conductive particles of the electronic component were 96% by weight, and the particle size of the silver fine powder was 1 μm, which was 1/10 of the particle size of the substantially spherical particles.

また、上記で得た導電ペーストを用いて、図2に示すポリイミドフィルム6上にテストパターン7を印刷し、乾燥機に入れた後185℃まで13分間で昇温し、その温度で1時間加熱処理し、テスト基板を得た。テスト基板のシート抵抗を測定した結果、26mΩ/□であった。   Further, using the conductive paste obtained above, a test pattern 7 is printed on the polyimide film 6 shown in FIG. 2, and after being put in a dryer, the temperature is raised to 185 ° C. over 13 minutes and heated at that temperature for 1 hour. Processed to obtain a test substrate. As a result of measuring the sheet resistance of the test substrate, it was 26 mΩ / □.

さらに、上記で得た導電ペーストを、バーコータを使用して離型フィルム上に厚さ120μmで15mm角に印刷形成した。その後、印刷した導電ペーストの上に他の離型フィルムを置き、両者を厚さが20mmのステンレス板で挟み、圧力を掛けたままで100℃まで30分間で昇温し、次いで170℃まで15分間で昇温し、厚さ100μm導電組成物を作製した。該導電組成物の導電性は16μΩcmであり、熱伝導率は45w/mKであった。   Furthermore, the conductive paste obtained above was printed and formed in a 15 mm square with a thickness of 120 μm on a release film using a bar coater. Thereafter, another release film is placed on the printed conductive paste, both are sandwiched between 20 mm thick stainless steel plates, heated to 100 ° C. over 30 minutes with pressure, and then to 170 ° C. for 15 minutes. The temperature was raised at a temperature of 100 μm to prepare a conductive composition having a thickness of 100 μm. The conductivity of the conductive composition was 16 μΩcm, and the thermal conductivity was 45 w / mK.

実施例2
導電粒子として、平均粒径が11μm及び長径と短径の比が1.0の略球状銀被覆銅粉65重量%と平均粒径が1.0μmの銀微粉35重量%の混合粉からなる相対充填密度が75%の高充填導電粉を使用した。
実施例1で得たバインダ組成物5重量部に、上記の高充填導電粉95重量部を除々に加えながら撹拌らいかい機で5分間均一に混合、分散して、導電ペーストを得た。
上記で得た導電ペーストを用いて、実施例1と同様の工程を経てテスト基板を得た。得られたテスト基板についてのシート抵抗を測定した結果、24mΩ/□であった。
Example 2
Relative conductive powder composed of 65% by weight of an approximately spherical silver-coated copper powder having an average particle diameter of 11 μm and a ratio of major axis to minor axis of 1.0 and 35% by weight of silver fine powder having an average particle diameter of 1.0 μm. A highly filled conductive powder having a packing density of 75% was used.
While gradually adding 95 parts by weight of the above-mentioned highly filled conductive powder to 5 parts by weight of the binder composition obtained in Example 1, the mixture was uniformly mixed and dispersed for 5 minutes with a stirrer to obtain a conductive paste.
A test substrate was obtained through the same steps as in Example 1 using the conductive paste obtained above. The sheet resistance of the obtained test substrate was measured and found to be 24 mΩ / □.

次に、実施例1と同様に、パッケージ及び配線板を各々100個準備すると共に、上記で得た導電ペーストをシリンジに充填し、次いでパッケージの銅箔ランドと対向する直径0.2mmの配線板の銅箔ランドに、シリンジに充填した導電ペーストを直径が0.2mmで高さが0.12mm(約27μg/個)になるように供給した。その後、前記のパッケージの銅箔ランドを有するパッケージを、前記の配線板の導電ペーストを供給した配線板の銅箔ランド上に導電ペーストを介して載置した。   Next, as in Example 1, 100 packages and 100 wiring boards were prepared, and the conductive paste obtained above was filled in a syringe, and then the 0.2 mm diameter wiring board facing the copper foil land of the package The conductive paste filled in the syringe was supplied to the copper foil land so that the diameter was 0.2 mm and the height was 0.12 mm (about 27 μg / piece). Thereafter, the package having the copper foil land of the package was placed on the copper foil land of the wiring board supplied with the conductive paste of the wiring board via the conductive paste.

次いで、両者(パッケージと配線板)の間隔を100μmになるまで押しつぶし、その後170℃まで13分間で昇温し、170℃で1時間加熱処理して、パッケージと配線板とを導電組成物を介して接続させて電子部品を得た。
上記で得た電子部品を樹脂で埋めた後、パッケージと配線板との接続部分を切断し、その切断面を観察した結果、略球状銀被覆銅粉同士に挟まれた銀微粉はやや変形して、略球状銀被覆銅粉と強く接合しており、その一部は粒子同士が強く接触していると見なせた。なお、電子部品の導電粒子は96重量%であり、銀微粉の粒径は1μmで、略球状粒子の粒径の1/10であった。
Next, the distance between the two (package and wiring board) is crushed until it becomes 100 μm, and then the temperature is raised to 170 ° C. over 13 minutes, followed by heat treatment at 170 ° C. for 1 hour, and the package and wiring board are interposed via the conductive composition. And connected to obtain an electronic component.
After filling the electronic parts obtained above with resin, the connection part between the package and the wiring board was cut, and as a result of observing the cut surface, the silver fine powder sandwiched between the substantially spherical silver-coated copper powders was slightly deformed. Thus, it was strongly bonded to the substantially spherical silver-coated copper powder, and some of the particles were considered to be in strong contact with each other. The conductive particles of the electronic component were 96% by weight, and the particle size of the silver fine powder was 1 μm, which was 1/10 of the particle size of the substantially spherical particles.

次に、上記で得た導電ペーストを、バーコータを使用して離型フィルム上に厚さ120μmで15mm角に印刷形成した。その後、印刷した導電ペーストの上に他の離型フィルムを置き、両者を厚さが20mmのステンレス板で挟み、圧力を掛けたままで100℃まで30分間で昇温し、次いで170℃まで15分間で昇温し、厚さ100μm導電組成物を作製した。該導電組成物の導電性は14μΩcmであり、熱伝導率は58w/mKであった。   Next, the conductive paste obtained above was printed and formed in a 15 mm square with a thickness of 120 μm on a release film using a bar coater. Thereafter, another release film is placed on the printed conductive paste, both are sandwiched between 20 mm thick stainless steel plates, heated to 100 ° C. over 30 minutes with pressure, and then to 170 ° C. for 15 minutes. The temperature was raised at a temperature of 100 μm to prepare a conductive composition having a thickness of 100 μm. The conductivity of the conductive composition was 14 μΩcm, and the thermal conductivity was 58 w / mK.

実施例3
導電粒子として、平均粒径が12μm及び長径と短径の比が1.0の略球状銀被覆銅粉75重量%と平均粒径が0.9μmの銀微粉25重量%の混合粉からなる相対充填密度が75%の高充填導電粉を使用した。
実施例1で得たバインダ組成物6重量部に、上記の高充填導電粉94重量部を除々に加えながら撹拌らいかい機で5分間均一に混合、分散して、導電ペーストを得た。
上記で得た導電ペーストを用いて、実施例1と同様の工程を経てテスト基板を得た。得られたテスト基板についてのシート抵抗を測定した結果、25mΩ/□であった。
Example 3
Relatively composed of a mixed powder of 75% by weight of a substantially spherical silver-coated copper powder having an average particle diameter of 12 μm and a ratio of major axis to minor axis of 1.0 and 25% by weight of silver fine powder having an average particle diameter of 0.9 μm. A highly filled conductive powder having a packing density of 75% was used.
To 6 parts by weight of the binder composition obtained in Example 1, 94 parts by weight of the highly filled conductive powder was gradually mixed and dispersed for 5 minutes with a stirrer to obtain a conductive paste.
A test substrate was obtained through the same steps as in Example 1 using the conductive paste obtained above. As a result of measuring the sheet resistance of the obtained test substrate, it was 25 mΩ / □.

次に、実施例1と同様に、パッケージ及び配線板を各々100個準備すると共に、上記で得た導電ペーストをシリンジに充填し、次いでパッケージの銅箔ランドと対向する直径0.2mmの配線板の銅箔ランドに、シリンジに充填した導電ペーストを直径が0.2mmで高さが0.12mm(約27μg/個)になるように供給した。その後、前記のパッケージの銅箔ランドを有するパッケージを、前記の配線板の導電ペーストを供給した配線板の銅箔ランド上に導電ペーストを介して載置した。   Next, as in Example 1, 100 packages and 100 wiring boards were prepared, and the conductive paste obtained above was filled in a syringe, and then the 0.2 mm diameter wiring board facing the copper foil land of the package The conductive paste filled in the syringe was supplied to the copper foil land so that the diameter was 0.2 mm and the height was 0.12 mm (about 27 μg / piece). Thereafter, the package having the copper foil land of the package was placed on the copper foil land of the wiring board supplied with the conductive paste of the wiring board via the conductive paste.

次いで、両者(パッケージと配線板)の間隔を100μmになるまで押しつぶし、その後170℃まで13分間で昇温し、170℃で1時間加熱処理して、パッケージと配線板とを導電組成物を介して接続させて電子部品を得た。
上記で得た電子部品を樹脂で埋めた後、パッケージと配線板との接続部分を切断し、その切断面を観察した結果、略球状銀被覆銅粉同士に挟まれた銀微粉はやや変形して、略球状銀被覆銅粉と強く接合しており、その一部は粒子同士が強く接触していると見なせた。なお、電子部品の導電粒子は96重量%であり、銀微粉の粒径は0.8μmで、略球状粒子の粒径の1/13.8であった。
Next, the distance between the two (package and wiring board) is crushed until it becomes 100 μm, and then the temperature is raised to 170 ° C. over 13 minutes, followed by heat treatment at 170 ° C. for 1 hour, and the package and wiring board are interposed via the conductive composition. And connected to obtain an electronic component.
After filling the electronic parts obtained above with resin, the connection part between the package and the wiring board was cut, and as a result of observing the cut surface, the silver fine powder sandwiched between the substantially spherical silver-coated copper powders was slightly deformed. Thus, it was strongly bonded to the substantially spherical silver-coated copper powder, and some of the particles were considered to be in strong contact with each other. The conductive particles of the electronic component were 96% by weight, the particle size of the silver fine powder was 0.8 μm, and 1 / 13.8 of the particle size of the substantially spherical particles.

次に、上記で得た導電ペーストを、バーコータを使用して離型フィルム上に厚さ120μmで15mm角に印刷形成した。その後、印刷した導電ペーストの上に他の離型フィルムを置き、両者を厚さが20mmのステンレス板で挟み、圧力を掛けたままで100℃まで30分間で昇温し、次いで170℃まで15分間で昇温し、厚さ100μm導電組成物を作製した。該導電組成物の導電性は13μΩcmであり、熱伝導率は52w/mKであった。   Next, the conductive paste obtained above was printed and formed in a 15 mm square with a thickness of 120 μm on a release film using a bar coater. Thereafter, another release film is placed on the printed conductive paste, both are sandwiched between 20 mm thick stainless steel plates, heated to 100 ° C. over 30 minutes with pressure, and then to 170 ° C. for 15 minutes. The temperature was raised at a temperature of 100 μm to prepare a conductive composition having a thickness of 100 μm. The conductivity of the conductive composition was 13 μΩcm, and the thermal conductivity was 52 w / mK.

実施例4
導電粒子として、平均粒径が5.8μm及び長径と短径の比が1.0の略球状銀被覆銅粉70重量%と平均粒径が0.9μmの銀微粉20重量%の混合粉からなる相対充填密度が70%の高充填導電粉を使用した。
実施例1で得たバインダ組成物6重量部に、上記の高充填導電粉94重量部を除々に加えながら撹拌らいかい機で5分間均一に混合、分散して、導電ペーストを得た。
上記で得た導電ペーストを用いて、実施例1と同様の工程を経てテスト基板を得た。得られたテスト基板についてのシート抵抗を測定した結果、37mΩ/□であった。
Example 4
As the conductive particles, a mixed powder composed of 70% by weight of a substantially spherical silver-coated copper powder having an average particle diameter of 5.8 μm and a ratio of major axis to minor axis of 1.0 and 20% by weight of silver fine powder having an average particle diameter of 0.9 μm. A highly filled conductive powder having a relative packing density of 70% was used.
To 6 parts by weight of the binder composition obtained in Example 1, 94 parts by weight of the highly filled conductive powder was gradually mixed and dispersed for 5 minutes with a stirrer to obtain a conductive paste.
A test substrate was obtained through the same steps as in Example 1 using the conductive paste obtained above. The sheet resistance of the obtained test substrate was measured and found to be 37 mΩ / □.

次に、実施例1と同様に、パッケージ及び配線板を各々100個準備すると共に、上記で得た導電ペーストをシリンジに充填し、次いでパッケージの銅箔ランドと対向する直径0.2mmの配線板の銅箔ランドに、シリンジに充填した導電ペーストを直径が0.2mmで高さが0.12mm(約24μg/個)になるように供給した。その後、前記のパッケージの銅箔ランドを有するパッケージを、前記の配線板の導電ペーストを供給した配線板の銅箔ランド上に導電ペーストを介して載置した。   Next, as in Example 1, 100 packages and 100 wiring boards were prepared, and the conductive paste obtained above was filled in a syringe, and then the 0.2 mm diameter wiring board facing the copper foil land of the package The conductive paste filled in the syringe was supplied to the copper foil land so that the diameter was 0.2 mm and the height was 0.12 mm (about 24 μg / piece). Thereafter, the package having the copper foil land of the package was placed on the copper foil land of the wiring board supplied with the conductive paste of the wiring board via the conductive paste.

次いで、両者(パッケージと配線板)の間隔を100μmになるまで押しつぶし、その後170℃まで13分間で昇温し、170℃で1時間加熱処理して、パッケージと配線板とを導電組成物を介して接続させて電子部品を得た。
上記で得た電子部品を樹脂で埋めた後、パッケージと配線板との接続部分を切断し、その切断面を観察した結果、略球状銀被覆銅粉同士に挟まれた銀微粉はやや変形して、略球状銀被覆銅粉と強く接合しており、その一部は粒子同士が強く接触していると見なせた。なお、電子部品の導電粒子は93重量%であり、銀微粉の粒径は1.0μmで、略球状粒子の粒径の1/6であった。
Next, the distance between the two (package and wiring board) is crushed until it becomes 100 μm, and then the temperature is raised to 170 ° C. over 13 minutes, followed by heat treatment at 170 ° C. for 1 hour, and the package and wiring board are interposed via the conductive composition. And connected to obtain an electronic component.
After filling the electronic parts obtained above with resin, the connection part between the package and the wiring board was cut, and as a result of observing the cut surface, the silver fine powder sandwiched between the substantially spherical silver-coated copper powders was slightly deformed. Thus, it was strongly bonded to the substantially spherical silver-coated copper powder, and some of the particles were considered to be in strong contact with each other. In addition, the conductive particles of the electronic component were 93% by weight, and the particle size of the silver fine powder was 1.0 μm, which was 1/6 of the particle size of the substantially spherical particles.

次に、上記で得た導電ペーストを、バーコータを使用して離型フィルム上に厚さ120μmで15mm角に印刷形成した。その後、印刷した導電ペーストの上に他の離型フィルムを置き、両者を厚さが20mmのステンレス板で挟み、圧力を掛けたままで100℃まで30分間で昇温し、次いで170℃まで15分間で昇温し、厚さ100μm導電組成物を作製した。該導電組成物の導電性は23μΩcmであり、熱伝導率は35w/mKであった。   Next, the conductive paste obtained above was printed and formed in a 15 mm square with a thickness of 120 μm on a release film using a bar coater. Thereafter, another release film is placed on the printed conductive paste, both are sandwiched between 20 mm thick stainless steel plates, heated to 100 ° C. over 30 minutes with pressure, and then to 170 ° C. for 15 minutes. The temperature was raised at a temperature of 100 μm to prepare a conductive composition having a thickness of 100 μm. The conductivity of the conductive composition was 23 μΩcm, and the thermal conductivity was 35 w / mK.

比較例1
導電粒子として、平均粒径が11μm及び長径と短径の比が1.0の略球状銀被覆銅粉25重量%と平均粒径が1.1μmの銀微粉75重量%の混合粉からなる相対充填密度が63%の導電粉を使用した。
実施例1で得たバインダ組成物6重量部に、上記の導電粉94重量部を除々に加えながら撹拌らいかい機で3分間混合したが、ぼさぼさの状態でペーストにならなかった。
Comparative Example 1
Relatively composed of a mixed powder of 25% by weight of a substantially spherical silver-coated copper powder having an average particle diameter of 11 μm and a ratio of major axis to minor axis of 1.0 and 75% by weight of silver fine powder having an average particle diameter of 1.1 μm as the conductive particles. A conductive powder having a packing density of 63% was used.
While 6 parts by weight of the binder composition obtained in Example 1 was gradually added with 94 parts by weight of the above conductive powder, the mixture was mixed for 3 minutes with a stirrer, but it did not become a paste in a rugged state.

比較例2
実施例1で得たバインダ組成物16重量部に、比較例1で得た導電粉84重量部を除々に加えながら撹拌らいかい機で5分間均一に混合、分散して導電ペーストを得た。
上記で得た導電ペーストを用いて、実施例1と同様の工程を経てテスト基板を得た。得られたテスト基板についてシート抵抗を測定した結果、268mΩ/□であった。
Comparative Example 2
While gradually adding 84 parts by weight of the conductive powder obtained in Comparative Example 1 to 16 parts by weight of the binder composition obtained in Example 1, the mixture was uniformly mixed and dispersed for 5 minutes with a stirrer to obtain a conductive paste.
A test substrate was obtained through the same steps as in Example 1 using the conductive paste obtained above. The sheet resistance of the obtained test substrate was measured and found to be 268 mΩ / □.

次に、実施例1と同様に、パッケージ及び配線板を各々100個準備すると共に、上記で得た導電ペーストをシリンジに充填し、次いでパッケージの銅箔ランドと対向する直径が0.2mmの配線板の銅箔ランド上に、シリンジに充填した導電ペーストを直径が0.2mm及び高さが0.12mm(約20μg/個)になるように供給した。その後、前記のパッケージの銅箔ランドを有するパッケージを、前記の配線板の導電ペーストを供給した配線板の銅箔ランド上に導電ペーストを介して載置した。   Next, in the same manner as in Example 1, 100 packages and wiring boards were prepared, the syringe was filled with the conductive paste obtained above, and then the wiring with a diameter of 0.2 mm facing the copper foil land of the package was used. The conductive paste filled in the syringe was supplied onto the copper foil land of the plate so that the diameter was 0.2 mm and the height was 0.12 mm (about 20 μg / piece). Thereafter, the package having the copper foil land of the package was placed on the copper foil land of the wiring board supplied with the conductive paste of the wiring board via the conductive paste.

次いで、両者(パッケージと配線板)間隔を100μmになるまで押しつぶし、その後170℃まで13分間で昇温し、170℃で1時間加熱処理して、パッケージと配線板とを導電組成物を介して接続させて電子部品を得た。
上記で得た電子部品を樹脂で埋めた後、パッケージと配線板との接続部分を切断し、その切断面を観察した結果、略球状銀被覆銅粉同士に挟まれた銀微粉の変形は小さく、略球状銀被覆銅粉と弱く接触しており、金属結合しているとは見なせなかった。なお、電子部品の導電粒子の割合は、導電組成物に対して84重量%であり、銀微粉の平均粒径は1.1μmで、略球状粒子の粒径の1/10であった。
Next, the distance between the two (package and wiring board) is crushed to 100 μm, and then the temperature is raised to 170 ° C. over 13 minutes, followed by heat treatment at 170 ° C. for 1 hour. The electronic parts were obtained by connecting them.
After filling the electronic component obtained above with resin, the connection part between the package and the wiring board was cut, and as a result of observing the cut surface, the deformation of the silver fine powder sandwiched between the substantially spherical silver-coated copper powders was small It was in weak contact with the substantially spherical silver-coated copper powder and could not be considered to be metal bonded. In addition, the ratio of the electrically-conductive particle of an electronic component was 84 weight% with respect to the electrically conductive composition, the average particle diameter of silver fine powder was 1.1 micrometer, and was 1/10 of the particle diameter of substantially spherical particle | grains.

次に、上記で得た導電ペーストを、バーコータを使用して離型フィルム上に厚さ120μmで15mm角に印刷した。その後、印刷した導電ペーストの上に離型フィルムを置き、両者を厚さが20mmのステンレス板で挟み、圧力を掛けたままで100℃まで30分間で昇温し、次いで170℃まで15分間で昇温し、厚さが100μm導電組成物を作製した。該導電組成物の厚さ方向の導電性は146mΩcmであり、熱伝導率は2.5w/mKであった。   Next, the conductive paste obtained above was printed on a release film with a thickness of 120 μm in a 15 mm square using a bar coater. Thereafter, a release film is placed on the printed conductive paste, both are sandwiched between stainless steel plates with a thickness of 20 mm, the temperature is raised to 100 ° C. over 30 minutes while pressure is applied, and then the temperature is raised to 170 ° C. over 15 minutes. A conductive composition having a thickness of 100 μm was prepared by heating. The conductivity in the thickness direction of the conductive composition was 146 mΩcm, and the thermal conductivity was 2.5 w / mK.

比較例3
導電粒子として、平均粒径が10μm及び長径と短径の比が1.0の略球状銀被覆銅粉35重量%と平均粒径が1.0μmの銀微粉65重量%の混合粉からなる相対充填密度が61%の導電粉を使用した。
実施例1で得たバインダ組成物6重量部に、上記の導電粉94重量部を除々に加えながら撹拌らいかい機で3分間混合したが、ぼさぼさの状態でペーストにならなかった。
Comparative Example 3
Relatively composed of a mixed powder of 35% by weight of a substantially spherical silver-coated copper powder having an average particle diameter of 10 μm and a ratio of major axis to minor axis of 1.0 and 65% by weight of silver fine powder having an average particle diameter of 1.0 μm as the conductive particles. A conductive powder having a packing density of 61% was used.
While 6 parts by weight of the binder composition obtained in Example 1 was gradually added with 94 parts by weight of the above conductive powder, the mixture was mixed for 3 minutes with a stirrer, but it did not become a paste in a rugged state.

比較例4
実施例1で得たバインダ組成物15重量部に、比較例3で得た導電粉85重量部を除々に加えながら撹拌らいかい機で5分間均一に混合、分散して導電ペーストを得た。
上記で得たペーストを用いて、実施例1と同様の工程を経てテスト基板を得た。得られたテスト基板についてシート抵抗を測定した結果、195mΩ/□であった。
Comparative Example 4
While gradually adding 85 parts by weight of the conductive powder obtained in Comparative Example 3 to 15 parts by weight of the binder composition obtained in Example 1, the mixture was uniformly mixed and dispersed for 5 minutes with a stirrer to obtain a conductive paste.
A test substrate was obtained through the same steps as in Example 1 using the paste obtained above. The sheet resistance of the obtained test substrate was measured and found to be 195 mΩ / □.

次に、実施例1と同様に、パッケージ及び配線板を各々100個準備すると共に、上記で得た導電ペーストをシリンジに充填し、次いでパッケージの銅箔ランドと対向する直径が0.2mmの配線板の銅箔ランド上に、シリンジに充填した導電ペーストを直径が0.2mm及び高さが0.12mm(約20μg/個)になるように供給した。その後、前記のパッケージの銅箔ランドを有するパッケージを、前記の配線板の導電ペーストを供給した配線板の銅箔ランド上に導電ペーストを介して載置した。   Next, in the same manner as in Example 1, 100 packages and wiring boards were prepared, the syringe was filled with the conductive paste obtained above, and then the wiring with a diameter of 0.2 mm facing the copper foil land of the package was used. The conductive paste filled in the syringe was supplied onto the copper foil land of the plate so that the diameter was 0.2 mm and the height was 0.12 mm (about 20 μg / piece). Thereafter, the package having the copper foil land of the package was placed on the copper foil land of the wiring board supplied with the conductive paste of the wiring board via the conductive paste.

次いで、両者(パッケージと配線板)間隔を100μmになるまで押しつぶし、その後170℃まで13分間で昇温し、170℃で1時間加熱処理して、パッケージと配線板とを導電組成物を介して接続させて電子部品を得た。
上記で得た電子部品を樹脂で埋めた後、パッケージと配線板との接続部分を切断し、その切断面を観察した結果、略球状銀被覆銅粉同士に挟まれた銀微粉の変形は小さく、略球状銀被覆銅粉と弱く接触しており、金属結合しているとは見なせなかった。なお、電子部品の導電粒子の割合は、導電組成物に対して85重量%であり、銀微粉の平均粒径は1μmで、略球状粒子の粒径の1/10であった。
Next, the distance between the two (package and wiring board) is crushed to 100 μm, and then the temperature is raised to 170 ° C. over 13 minutes, followed by heat treatment at 170 ° C. for 1 hour. The electronic parts were obtained by connecting them.
After filling the electronic component obtained above with resin, the connection part between the package and the wiring board was cut, and as a result of observing the cut surface, the deformation of the silver fine powder sandwiched between the substantially spherical silver-coated copper powders was small It was in weak contact with the substantially spherical silver-coated copper powder and could not be considered to be metal bonded. In addition, the ratio of the electrically-conductive particle of an electronic component was 85 weight% with respect to the electrically conductive composition, the average particle diameter of silver fine powder was 1 micrometer, and was 1/10 of the particle size of substantially spherical particle | grains.

次に、上記で得た導電ペーストを、バーコータを使用して離型フィルム上に厚さ120μmで15mm角に印刷した。その後、印刷した導電ペーストの上に離型フィルムを置き、両者を厚さが20mmのステンレス板で挟み、圧力を掛けたままで100℃まで30分間で昇温し、次いで170℃まで15分間で昇温し、厚さが100μm導電組成物を作製した。該導電組成物の厚さ方向の導電性は139mΩcmであり、熱伝導率は3.4w/mKであった。   Next, the conductive paste obtained above was printed on a release film with a thickness of 120 μm in a 15 mm square using a bar coater. Thereafter, a release film is placed on the printed conductive paste, both are sandwiched between stainless steel plates with a thickness of 20 mm, the temperature is raised to 100 ° C. over 30 minutes while pressure is applied, and then the temperature is raised to 170 ° C. over 15 minutes. A conductive composition having a thickness of 100 μm was prepared by heating. The conductivity in the thickness direction of the conductive composition was 139 mΩcm, and the thermal conductivity was 3.4 w / mK.

本発明の電子部品の断面図である。It is sectional drawing of the electronic component of this invention. ポリイミトフィルム上にテストパターンを形成した状態を示す平面図である。It is a top view which shows the state which formed the test pattern on the polyimito film.

符号の説明Explanation of symbols

1 パッケージ
2 配線板
3 配線板の銅箔ランド
4 パッケージの銅箔ランド
5 導電組成物
6 ポリイミドフィルム
7 テストパターン
DESCRIPTION OF SYMBOLS 1 Package 2 Wiring board 3 Copper foil land of a wiring board 4 Copper foil land of a package 5 Conductive composition 6 Polyimide film 7 Test pattern

Claims (8)

相互に向かい合う端子間又は接続を必要とする部品間をそれぞれ導電粒子及びバインダを含む導電組成物又は熱伝導組成物で接続する電子部品において、該導電組成物又は熱伝導組成物中の導電粒子の相対充填密度が68〜90%であり、かつ主として導電粒子中に含まれる銀微粉を介して相互に向かい合う端子間又は接続を必要とする部品間を接触させるようにした電子部品。   In an electronic component in which terminals facing each other or components requiring connection are connected with a conductive composition or a heat conductive composition containing conductive particles and a binder, respectively, the conductive particles in the conductive composition or the heat conductive composition An electronic component having a relative packing density of 68 to 90% and a contact between terminals facing each other or between components requiring connection via silver fine powder mainly contained in conductive particles. 導電組成物又は熱伝導組成物中の導電粒子の割合が、導電組成物又は熱伝導組成物に対して90〜99重量%である、請求項1記載の電子部品。   The electronic component of Claim 1 whose ratio of the electrically-conductive particle in an electrically conductive composition or a heat conductive composition is 90 to 99 weight% with respect to a conductive composition or a heat conductive composition. 導電組成物又は熱伝導組成物中の導電粒子が、略球状粒子及び銀微粉を含み、かつ略球状粒子の平均粒径が銀微粉の平均粒径の5〜25倍である請求項1又は2記載の電子部品。   The conductive particles in the conductive composition or the heat conductive composition include substantially spherical particles and silver fine powder, and the average particle diameter of the substantially spherical particles is 5 to 25 times the average particle diameter of the silver fine powder. The electronic component described. 銀微粉の平均粒径が、0.3〜2.5μmである請求項3記載の電子部品。   The electronic component according to claim 3, wherein the average particle diameter of the silver fine powder is 0.3 to 2.5 μm. 略球状粒子が、略球状銀粉又は略球状銅粉に対して3〜30重量%の銀で略球状銅粉の一部及び銀との合金部分を露出させて表面を被覆した略球状銀被覆銅粉であって、かつ被覆された銀が平滑化処理された略球状銀被覆銅粉である請求項3又は4記載の電子部品。   Substantially spherical silver-coated copper in which approximately spherical particles are covered with 3 to 30% by weight of silver with respect to approximately spherical silver powder or approximately spherical copper powder to expose a part of the approximately spherical copper powder and an alloy portion with silver. 5. The electronic component according to claim 3, wherein the electronic component is a substantially spherical silver-coated copper powder which is a powder and the coated silver is smoothed. 6. 相互に向かい合う端子間又は接続を必要とする部品間をそれぞれ導電粒子及びバインダを含む導電組成物又は熱伝導組成物で接続する電子部品の製造法において、導電組成物又は熱伝導組成物をペースト化した導電ペーストを接続する側の一方の端子に塗布した後、この端子に該導電ペーストを介して他の一方の端子を合わせて相互に向かい合う端子間又は接続を必要とする部品間を接触させることを特徴とする電子部品の製造法。   In a method for manufacturing an electronic component in which terminals facing each other or components requiring connection are connected with a conductive composition or a heat conductive composition containing conductive particles and a binder, respectively, the conductive composition or the heat conductive composition is made into a paste. After the applied conductive paste is applied to one terminal on the connection side, the other terminal is combined with the terminal via the conductive paste, and the terminals facing each other or the parts requiring connection are brought into contact with each other. An electronic component manufacturing method characterized by the above. 相互に向かい合う端子間又は接続を必要とする部品間をそれぞれ導電粒子及びバインダを含む導電組成物又は熱伝導組成物で接続する電子部品の製造法において、導電組成物又は熱伝導組成物をペースト化した導電ペーストを接続する側の一方の端子に塗布した後、この端子に該導電ペーストを介して他の一方の端子を合わせて相互に接続し、次いでこれを圧縮して導電ペースト中の金属粒子同士を圧接し、相互に向かい合う端子間又は接続を必要とする部品間を接触させることを特徴とする電子部品の製造法。   In a method for manufacturing an electronic component in which terminals facing each other or components requiring connection are connected with a conductive composition or a heat conductive composition containing conductive particles and a binder, respectively, the conductive composition or the heat conductive composition is made into a paste. After the applied conductive paste is applied to one terminal on the connecting side, the other terminal is aligned with this terminal through the conductive paste and then connected to each other, and then compressed to form metal particles in the conductive paste. A method of manufacturing an electronic component, characterized in that the components are pressed against each other and the terminals facing each other or the components requiring connection are brought into contact with each other. 導電組成物又は熱伝導組成物中の導電粒子の割合が、90〜99重量%である請求項7又は8記載の電子部品の製造法。
The method for producing an electronic component according to claim 7 or 8, wherein a ratio of the conductive particles in the conductive composition or the heat conductive composition is 90 to 99% by weight.
JP2004302767A 2004-10-18 2004-10-18 Electronic part and method for producing the same Pending JP2006111807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004302767A JP2006111807A (en) 2004-10-18 2004-10-18 Electronic part and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004302767A JP2006111807A (en) 2004-10-18 2004-10-18 Electronic part and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010216039A Division JP5609492B2 (en) 2010-09-27 2010-09-27 Electronic component and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006111807A true JP2006111807A (en) 2006-04-27

Family

ID=36380595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004302767A Pending JP2006111807A (en) 2004-10-18 2004-10-18 Electronic part and method for producing the same

Country Status (1)

Country Link
JP (1) JP2006111807A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235198A (en) * 2007-03-23 2008-10-02 Alpha Scientific Kk Conductive powder, conductive paste, conductive sheet, circuit board, and electronic component mounting circuit board
JP2010138267A (en) * 2008-12-11 2010-06-24 Cluster Technology Co Ltd Thermoconductive resin composition
WO2021039874A1 (en) * 2019-08-31 2021-03-04 株式会社ダイセル Low temperature sinterable bonding paste and bonded structure
WO2023027158A1 (en) * 2021-08-25 2023-03-02 タツタ電線株式会社 Thermally conductive composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162646A (en) * 1996-11-28 1998-06-19 Asahi Chem Ind Co Ltd Conductive resin composition
JP2001297627A (en) * 2000-04-12 2001-10-26 Hitachi Chem Co Ltd Conductive material
JP2004039379A (en) * 2002-07-02 2004-02-05 Sumitomo Electric Ind Ltd Conductive paste, conductive membrane, and manufacturing method of conductive membrane
JP2004047418A (en) * 2002-05-15 2004-02-12 Hitachi Chem Co Ltd Conductive paste
JP2004063446A (en) * 2002-06-07 2004-02-26 Hitachi Chem Co Ltd Conductive paste
JP2004063445A (en) * 2002-06-07 2004-02-26 Hitachi Chem Co Ltd Conductive paste
JP2004165357A (en) * 2002-11-12 2004-06-10 Hitachi Chem Co Ltd Film-laced heat-conducting sheet
JP2005310538A (en) * 2004-04-21 2005-11-04 Hitachi Chem Co Ltd Electronic component and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162646A (en) * 1996-11-28 1998-06-19 Asahi Chem Ind Co Ltd Conductive resin composition
JP2001297627A (en) * 2000-04-12 2001-10-26 Hitachi Chem Co Ltd Conductive material
JP2004047418A (en) * 2002-05-15 2004-02-12 Hitachi Chem Co Ltd Conductive paste
JP2004063446A (en) * 2002-06-07 2004-02-26 Hitachi Chem Co Ltd Conductive paste
JP2004063445A (en) * 2002-06-07 2004-02-26 Hitachi Chem Co Ltd Conductive paste
JP2004039379A (en) * 2002-07-02 2004-02-05 Sumitomo Electric Ind Ltd Conductive paste, conductive membrane, and manufacturing method of conductive membrane
JP2004165357A (en) * 2002-11-12 2004-06-10 Hitachi Chem Co Ltd Film-laced heat-conducting sheet
JP2005310538A (en) * 2004-04-21 2005-11-04 Hitachi Chem Co Ltd Electronic component and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235198A (en) * 2007-03-23 2008-10-02 Alpha Scientific Kk Conductive powder, conductive paste, conductive sheet, circuit board, and electronic component mounting circuit board
JP2010138267A (en) * 2008-12-11 2010-06-24 Cluster Technology Co Ltd Thermoconductive resin composition
WO2021039874A1 (en) * 2019-08-31 2021-03-04 株式会社ダイセル Low temperature sinterable bonding paste and bonded structure
WO2023027158A1 (en) * 2021-08-25 2023-03-02 タツタ電線株式会社 Thermally conductive composition

Similar Documents

Publication Publication Date Title
JP4954885B2 (en) Conductive powder and method for producing the same, conductive powder paste, and method for producing conductive powder paste
JP4677900B2 (en) Mixed conductive powder and its use
JP4247801B2 (en) Paste-like metal particle composition and joining method
JP3964868B2 (en) Thermosetting conductive paste for conductive bumps
JP6099472B2 (en) Metal nanoparticle dispersion, method for producing metal nanoparticle dispersion, and bonding method
TW201011088A (en) Conductive adhesive and LED substrate using it
KR100678533B1 (en) Conductive powder and method for preparing the same
JP4922793B2 (en) Mixed conductive powder and method for producing the same, conductive paste and method for producing the same
WO2019189512A1 (en) Electroconductive adhesive composition
JP5609492B2 (en) Electronic component and manufacturing method thereof
JP5614135B2 (en) Anisotropic conductive adhesive, manufacturing method thereof, connection structure and manufacturing method thereof
JP2009105117A (en) Anisotropic conductive adhesive
JP5059458B2 (en) Conductive powder, conductive paste, conductive sheet, circuit board and electronic component mounting circuit board
JP3879749B2 (en) Conductive powder and method for producing the same
JP2001297627A (en) Conductive material
JP2008004429A (en) Conductive paste, anisotropic conductive film, and manufacturing method of electronic equipment using these
JP2006111807A (en) Electronic part and method for producing the same
JP2005310538A (en) Electronic component and its manufacturing method
JP2004165357A (en) Film-laced heat-conducting sheet
JP3513636B2 (en) Composite conductive powder, conductive paste, electric circuit and method for producing electric circuit
JP2000133043A (en) Conductive composition for improving contact resistance
CN115053640A (en) Method for producing connected body, and connected body
WO2019142633A1 (en) Composition for bonding
JP2001266642A (en) Heat conductive paste
JP5527148B2 (en) Conductive paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101202