WO2008003261A1 - Procédé et système de synchronisation de symboles de transmission ofdm - Google Patents

Procédé et système de synchronisation de symboles de transmission ofdm Download PDF

Info

Publication number
WO2008003261A1
WO2008003261A1 PCT/CN2007/070192 CN2007070192W WO2008003261A1 WO 2008003261 A1 WO2008003261 A1 WO 2008003261A1 CN 2007070192 W CN2007070192 W CN 2007070192W WO 2008003261 A1 WO2008003261 A1 WO 2008003261A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
ofdm
dslam
synchronization
transmission module
Prior art date
Application number
PCT/CN2007/070192
Other languages
English (en)
French (fr)
Inventor
Liming Fang
Jun Zhou
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP07721803.0A priority Critical patent/EP2037619B1/en
Publication of WO2008003261A1 publication Critical patent/WO2008003261A1/zh
Priority to US12/273,964 priority patent/US8165234B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • DSL technology is a high-speed transmission technology for data transmission over a telephone twisted pair, Unshielded Twist Pair (UTP), including Asymmetrical Digital Subscriber Line (ADSL), very high speed digital Very-high-bit-rate Digital Subscriber Line (VDSL), Integrated Services Digital Network (ISDN)-based Digital Subscriber Line (IDSL) and single-pair high-speed digital subscriber line ( Single-pair High-bit-rate Digital Subscriber Line, SHDSL), etc.
  • ADSL Asymmetrical Digital Subscriber Line
  • VDSL Very high speed digital Very-high-bit-rate Digital Subscriber Line
  • ISDN Integrated Services Digital Network
  • IDSL Integrated Services Digital Network
  • SHDSL Single-pair High-bit-rate Digital Subscriber Line
  • xDSL digital subscriber line technologies
  • xDSL using passband transmission utilizes frequency division multiplexing technology and traditional telephone service (POTS).
  • POTS traditional telephone service
  • the passband transmission xDSL is modulated and demodulated using Discrete Multi-Tone Modulation (DMT) technology.
  • DMT Discrete Multi-Tone Modulation
  • a system that provides multiple DSL access is called a DSL access multiplexer.
  • the DSLAM 120 includes a client transceiver unit 121 and a split/integrator 122.
  • the client transceiver unit 121 receives the DSL signal from the computer 110 and amplifies the received signal. Processing, the processed DSL signal is sent to the separation/consolidator 122; the separation/consolidator 122 integrates the DSL signal from the client transceiver unit 121 and the POTS signal of the telephone terminal 130; the integrated signal passes through multiple channels.
  • the UTP 140 transmission is received by the split/integrator 151 in the DSLAM 150 of the opposite end; the split/conformer 151 separates the received signals and transmits the POTS signals to the Public Switched Telephone Network (PSTN).
  • PSTN Public Switched Telephone Network
  • the DSL signal is sent to the central office transceiver unit 152 of the DSLAM 150.
  • the central office transceiver unit 152 then amplifies the received signal and sends it to the network management system (NMS) 170.
  • NMS network management system
  • the signals are transmitted in the reverse order of the above.
  • FIG. 2A and Figure B are schematic diagrams of near-end crosstalk and far-end crosstalk in xDSL.
  • port 1 and port 2 of the DSLAM 210 are respectively connected to a remote terminal unit (RTU) 211 through a cable.
  • RTU remote terminal unit
  • Bonding technology To meet the needs of higher speeds or longer service radii, the prior art uses Bonding technology.
  • the main feature of Bonding is the simultaneous use of multiple pairs of subscriber lines as physical transmission media.
  • the overall performance of this technology In the low frequency band (the frequency band where the far-end crosstalk is relatively small), the overall performance of this technology is basically a linear superposition of the performance of each user line.
  • the comprehensive performance of this technology In the high frequency band (the far-end crosstalk is relatively large), the comprehensive performance of this technology is much smaller than the linear superposition of the performance of each line, mainly due to the influence of far-end crosstalk.
  • Technically Bonding simply treats these crosstalks as noise and does not take full advantage of the information transmitted by crosstalk.
  • DSM Dynamic Spectral Management
  • MIMO technology uses OFDM.
  • OFDM the main idea of OFDM is to divide the entire transmission frequency band into a number of narrow frequency sub-bands, each of which is used to carry a certain number of bits. Since the frequency width of each sub-band is relatively narrow, it can be approximated that the transmission function of the channel in this frequency band is a constant, which is close to the distortion-free transmission for the receiving end processing. On the other hand, since each subcarrier is completely orthogonal, no influence occurs between the subcarriers.
  • the optimization of DSM technology and the crosstalk cancellation of MIMO technology are based on the above-mentioned orthogonality.
  • the receiving end of each xDSL modem treats the interference of other modems as noise, and the nth user
  • the data rate achievable on k tones ( b ) can be calculated using the Shannon channel capacity formula: Wherein the transmission function of the nth line on the kth subcarrier; the crosstalk function of the mth line on the kth subcarrier to the nth line; the noise power of the nth line on the kth subcarrier ; indicates the transmit power of the nth line on the kth subcarrier.
  • the rate calculation formula of the entire DSM is based on each subcarrier, which is mainly due to the orthogonality of the subcarriers. If the orthogonality of each subcarrier is corrupted, all DSM algorithms will change, so none of the above enumerated algorithms can be used in this case.
  • Embodiments of the present invention provide a method and system for OFDM transmission symbol synchronization, which are capable of synchronizing OFDM symbols so as not to impair orthogonality of OFDM subcarriers.
  • a method for symbol synchronization of OFDM transmission may be provided, and the method includes the following steps:
  • Orthogonal Frequency Division Multiplexing (OFDM) OFDM transmission module receives a synchronization signal
  • the OFDM transmission module adjusts the OFDM symbols transmitted by the respective lines to be synchronized and then sends out according to the synchronization signal.
  • a system for symbol synchronization of OFDM transmission comprising:
  • a sync signal generator for generating a sync signal and transmitting the sync signal
  • an OFDM transmission module configured to receive a synchronization signal transmitted by the synchronization signal generator, and adjust the OFDM symbols sent by each line to be synchronized according to the synchronization signal, and then send out.
  • the synchronization signal is generated by the synchronization signal generator and then transmitted to the OFDM transmission module, and the OFDM transmission module adjusts the OFDM symbol transmitted by each line according to the synchronization signal into a synchronous backward transmission scheme, and solves the OFDM problem.
  • the problem of symbol synchronization makes DSM performance the best.
  • Figure 1 is a model diagram of an xDSL system
  • 2A and B are schematic diagrams of crosstalk in xDSL
  • 3 is a schematic diagram of an OFDM subcarrier
  • 4 is a schematic diagram of orthogonal destruction of subcarriers caused by OFDM symbol out of synchronization
  • FIG. 5 is a schematic diagram of timing relationship of a synchronization signal according to an embodiment of the present invention.
  • 6 is a circuit diagram of a synchronization signal generator according to an embodiment of the present invention
  • 7 is a circuit diagram of an interface of a synchronization signal transmitting end according to an embodiment of the present invention
  • FIG. 8 is a circuit diagram of an interface of a synchronization signal receiving end according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a manner of using a synchronization signal according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a clock board corresponding to a usage mode of a synchronization signal according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a second manner of using a synchronization signal according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a clock board corresponding to the second mode of the synchronization signal according to the embodiment of the present invention.
  • FIG. 13 is a schematic diagram of synchronization signal transmission when there is a remote DSLAM according to an embodiment of the present invention. detailed description
  • the synchronization signal is generated by the synchronization signal generator and then transmitted to the OFDM transmission module, and the OFDM transmission module adjusts the OFDM symbols transmitted by each line to be synchronized according to the synchronization signal, and then sends out to avoid the OFDM symbol being out of synchronization. This results in the destruction of the orthogonality of the OFDM subcarriers.
  • a square wave signal with a period twice the length of the OFDM symbol is first provided.
  • the period of the square wave signal may be N times the base of the OFDM symbol twice or 1/N times, N is a natural number.
  • N is a natural number.
  • the square wave signal may be generated by a separate device placed in the central office, or may be generated by the central office DSLAM.
  • the resulting circuit is shown in Figure 6:
  • the synchronizing signal generating circuit 609 includes two major modules, namely a clock source or a high precision crystal oscillator 601 and a digital logic circuit 608.
  • the clock source or high precision crystal oscillator 601 generates a clock signal for counting by the counter 602, in which the length of the OFDM symbol is stored.
  • the comparator 604 When the counter 602 counts with the register 603 When the lengths of the OFDM symbols stored therein are equal, the comparator 604 generates a pulse which is divided into two paths, one for generating a synchronization signal for the T flip-flop 605 and the other for clearing the counter 602.
  • the counter 602 also includes a clear interface for connecting the power-on reset signal to enable the digital logic circuit 608 to be reset upon power-on.
  • the clock source or high-precision crystal oscillator 601 requires high precision, such as constant temperature crystal oscillator.
  • the value in the register 603 is based on the clock frequency of the clock source or the high-precision crystal oscillator 601
  • the period of the OFDM symbol is determined, for example, when the clock source or the high-precision crystal oscillator 601 has a clock frequency of
  • the synchronizing signals generated by the synchronizing signal generating circuit 609 are respectively sent to the input terminal of the double-ended driver 703 via the in-phase amplifier 701 and the inverting amplifier 702, and the signals driven by the double-ended driver 703 are respectively sent to the coupler 704 through the matching resistor 706. And finally coupled to the twisted pair 705. At the output of the coupler 704, some protection devices should be properly connected, depending on the environment in which the twisted pairs are located.
  • the interface circuit of the receiving end is as shown in FIG. 8.
  • the signal is transmitted through the twisted pair 705 and sent to the double-ended amplifier 801 via the coupler 804.
  • the matching resistor 806 needs to be connected at the receiving end to prevent the signal from being reflected and the signal quality is deteriorated.
  • the signal outputted by the double-ended amplifier 801 is outputted by the hysteresis comparator 802 of the double-ended input, and then the synchronization signal is output.
  • some protection devices should be properly connected to the input side of the line, depending on the environment in which the twisted pair is located.
  • the synchronizing signal generator 901 generates a multi-path driving signal to directly drive a plurality of DSLAMs 902 through twisted pairs, wherein the synchronizing signal generator 901 is provided by the functional circuit shown in FIG.
  • the circuit composition may include the functional circuit (receiving circuit) shown in FIG. 8 and the corresponding servo circuit in the DSLAM 902.
  • the receiving circuit can be used as the DSLAM 902.
  • a separate board for convenience of description, hereinafter referred to as the clock board
  • the clock board has a synchronization signal physical interface 9021 for connecting the twisted pair transmitting the synchronization signal; the receiving circuit can also be integrated on the DSLAM motherboard A functional circuit.
  • the second method of using the sync signal is shown in Fig. 11.
  • the sync signal generator 901 outputs only one signal, and the DSLAM 902 itself has a cascade function.
  • the synchronizing signal generator 901 is composed of a functional circuit shown in FIG. 7 and other servo circuits such as a power supply.
  • the DSLAM 902 includes not only the receiving circuit shown in FIG. 8, but also the transmitting circuit and its power supply shown in FIG. Other servo circuits.
  • the clock board contains two physical interfaces, one of which is a synchronous signal input physical interface 1201, the other is a synchronous signal output physical interface 1202, and the synchronous signal output physical interface 1202 To connect to another DSLAM's sync signal input physical interface.
  • the received synchronization signals can be distributed to different boards through the backplane routing, and then distributed to different chips on the board.
  • the distribution through the backplane can be divided into two modes: bus mode and distribution mode.
  • the phase-locked loop circuit can be used to solve this problem.
  • the loop circuit not only recovers the high-quality sync signal, but also generates a synchronous working clock, so that the DSLAM DSL line can use this clock, thereby further improving the orthogonality of the line.
  • the synchronization information is obtained by detecting the zero-crossing point of the synchronization signal, and the start time of the OFDM symbol is matched with the zero-crossing point of the synchronization signal to implement the delay of the OFDM symbol, as long as the OFDM symbol can be implemented.
  • Just sync Of course, it is not limited to just zero-crossing.
  • synchronization information can be obtained by detecting other points of the synchronization signal, as long as the synchronization of the OFDM symbols can be realized.
  • the sync signal generator 901 generates a sync signal. Due to the transmission delay, the central end DSLAM 1302 and the remote DSLAM 1303 use the same synchronization signal, but the remote DSLAM 1303 receives the synchronization signal due to the length of the transmission length 1 , will be later than the synchronization signal received by the central office DSLAM 1302. On the other hand, the length 2 delay of the OFDM symbol transmitted by the central office DSLAM 1302 may be just synchronized with the OFDM symbol sent by the remote DSLAM 1303 when it reaches the location of the remote DSLAM 1303.
  • an additional timing adjustment function unit may be added to the synchronization signal generator 901 to adjust the synchronization signal sent to the remote DSLAM 1303 to ensure that the OFDM symbol transmitted by the central office DSLAM 1302 arrives at the remote DSLAM 1303. It is just synchronized with the OFDM symbol sent by the remote DSLAM 1303.
  • central office DSLAM mentioned in the foregoing embodiment of the present invention or the central office DSLAM and the remote DSLAM, are OFDM transmission modules.
  • the embodiment of the present invention may also use other signals, such as a sine wave signal, a triangular wave signal, a pulse signal, and the like, which carry periodic information, as long as the period of the periodic signals is greater than or equal to the OFDM symbol.
  • the period is an integer multiple of the OFDM symbol period.
  • a sine wave signal as an example, after the sine wave synchronization signal is generated, it is amplified, filtered, driven, and transmitted to a DSLAM or other DSLAM-enabled device through a transmission line, and the sine wave signal is converted into a square wave at the receiving end.
  • the subsequent processing after the signal is converted into a square wave signal is consistent with the square wave synchronization signal.
  • converting a sine wave synchronizing signal into a square wave synchronizing signal is a well-known technique, and will not be described herein.
  • the synchronization signal is generated by the synchronization signal generator and then transmitted to the OFDM transmission module, and the OFDM transmission module adjusts the OFDM symbol transmitted by each line according to the synchronization signal into a synchronous backward transmission scheme, and solves the OFDM problem.
  • the problem of symbol synchronization makes DSM performance the best.
  • the technical solution of the present invention can be used not only on the DSLAM, but also other OFDM transmission equipment such as a wimax base station, and some devices that transmit OFDM on the coaxial and power lines can also use the present invention. Ming's plan.
  • the storage medium is, for example, a ROM/RAM, a magnetic disk, an optical disk, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

一种 OFDM传输符号同步的方法及其*** 本申请要求于 2006 年 6 月 30 日提交中国专利局、 申请号为 200610061476.1、发明名称为 "一种 OFDM传输符号同步的方法及其***,,的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及数字用户线 (Digital Subscriber Line, DSL )技术领域, 具体 来说 , 涉及到正交频分多路复用 ( Orthogonal Frequency Division Multiplexing , OFDM )技术, 尤其涉及一种 OFDM传输符号同步的方法及***。
背景技术
DSL技术是一种通过电话双绞线,即无屏蔽双绞线( Unshielded Twist Pair, UTP )进行数据传输的高速传输技术, 包括非对称数字用户线(Asymmetrical Digital Subscriber Line, ADSL ), 甚高速数字用户线 ( Very-high-bit-rate Digital Subscriber Line, VDSL )、 基于综合业务数字网 (Integrated Services Digital Network, ISDN )的数字用户线( ISDN Digital Subscriber Line, IDSL )和单线 对高速数字用户线( Single-pair High-bit-rate Digital Subscriber Line , SHDSL ) 等。
在各种数字用户线的技术 ( xDSL ) 中, 除了 IDSL和 SHDSL等基带传输 的 xDSL夕卜, 釆用通带传输的 xDSL利用频分复用技术与传统电话业务(Plain Old Telephone Service, POTS )共存于同一对双绞线上, 其中 xDSL占据高频 段, POTS占用 4KHz以下基带部分, POTS信号与 xDSL信号通过分离 /整合 器(Splitter )进行分离或合并。
通带传输的 xDSL釆用离散多音频调制 ( Discrete Multi-Tone modulation, DMT )技术进行调制和解调。提供多路 DSL接入的***叫做 DSL接入复用器
( DSL Access Multiplexer, DSLAM ), 其***连接关系示意图如图 1所示。 DSLAM 120包括用户端收发单元 121和分离 /整合器 122, 在上行方向, 用户 端收发单元 121接收来自计算机 110的 DSL信号并对所收到的信号进行放大 处理, 将处理后的 DSL信号发送至分离 /整合器 122; 分离 /整合器 122将来自 用户端收发单元 121的 DSL信号和电话终端 130的 POTS信号进行整合处理; 整合后的信号通过多路的 UTP 140传输, 由对端的 DSLAM 150中的分离 /整 合器 151接收; 分离 /整合器 151将所接收的信号进行分离, 将其中的 POTS 信号发送至公用电话交换网(Public Switched Telephone Network, PSTN ) 160, 将其中的 DSL信号发送至 DSLAM 150的局端收发单元 152, 局端收发单元 152 再将所收到的信号进行放大处理后发送至网络管理*** (Network Management System, NMS ) 170。 在信号的下行方向, 则信号按照与上述相反 的顺序进行传输。
随着 xDSL技术使用频带的提高, 串扰( crosstalk )尤其是高频段的串扰 问题表现得日益突出。 如图 2A、 B所示, 分别为 xDSL中近端串扰和远端串 尤示意图。 其中, 如图 2Α所示, DSLAM 210的端口 1和端口 2分别与远程 测控终端 ( Remote Terminal Unit, RTU ) 211通过电缆相连, 由于 xDSL上下 行信道釆用频分复用, 近端串扰(NEXT )对***的性能不产生太大的危害; 如图 2B所示, DSLAM 220的端口 1和端口 2分别与 RTU 221通过电缆相连, 由于 xDSL上下行信道釆用频分复用, 远端串扰(FEXT )会严重影响线路的 传输性能。 当一捆电缆内有多路用户都要求开通 xDSL业务时, 会因为 FEXT 使一些线路速率低、 性能不稳定、 甚至不能开通等, 最终导致 DSLAM的出线 率比较低。
为满足更高的速率或是更远的服务半径的需求,现有技术釆用 Bonding (捆 绑)技术。 Bonding主要特征是同时使用多对用户线作为物理传输媒介。 在低 频段(远端串扰比较小的频段)这种技术的综合性能基本是各条用户线路性能 的线性叠加。 但在高频段(远端串扰比较大)这种技术的综合性能就远比各条 线路性能的线性叠加小, 主要原因是远端串扰产生的影响。 在技术上 Bonding 只是简单的把这些串扰当作噪声来看待, 不能充分利用串扰所传输的信息。
为解决上述 Bonding技术方案中远端串扰的问题,近期出现了动态频谱管 理( Dynamic Spectral Management, DSM )技术, 这种技术方案解决远端串扰 问题主要在于信号层面多入多出 (Multi-Input and Multi-Output, MIMO )、 矢量 DSL ( Vectored DSL )等技术。
从调制方式上, MIMO技术使用 OFDM。 如图 3所示, OFDM的主要思 想是把整个传输频段分成许多频率比较窄的子频带 (tone ), 每个子频带用来 承载一定的比特数。 由于每个子频带的频率宽度比较窄, 那么可以近似认为信 道在这个频带内的传输函数是一个常量, 接近于无失真传输便于接收端处理。 另一方面, 由于每个子载波完全正交, 各个子载波之间不会发生影响。
DSM技术的优化和 MIMO技术的串扰抵消均是基于上述的正交性这个特 点 , 在通常情况下 , 每个 xDSL modem的接收端将其它 modem对自身的干扰 当作噪声, 则第 n个用户第 k个 tone上可达到的数据速率 ( b )可用香农信 道容量公式计算:
Figure imgf000005_0001
其中 表示第 n条线路在第 k个子载波上的传输函数; 表示第 m条 线路在第 k个子载波上对第 n条线路的串扰函数; 表示第 n条线路在第 k 个子载波上的噪声功率; 表示第 n条线路在第 k个子载波上的发送功率。
由上面的公式可以看出整个 DSM 的速率计算公式都是基于各个子载波 的, 这主要是由于子载波的正交性。 如果各个子载波的正交性被破坏, 那么所 有 DSM的算法均会发生改变, 因此, 上述所列举的算法均不能用在这种情况 下。
当各条线路的符号(帧)不同步时, 就会破坏上述子载波的正交性, 如图 4所示: 当第 1条线路受到第 2条线路的干扰, 第 2条线路与第 1条线路符号 不同步。 当第 1条线路进行 OFDM解调时, 就会处理第 2条线路中符号 1和 符号 2的部分信号, 相当于在第 2条线路上分别加了一个窗 2和窗 3。 显然, 窗 2和窗 3都比正常的 OFDM信号窗短(如窗 1所示 ), 这样窗 1和窗 2、 窗 3产生的频谱宽度不同, 破坏了频率的正交性, 也就是说不同频率间的信号也 会互相干扰。 发明内容
本发明实施例提供一种 OFDM传输符号同步的方法及***, 能够同步 OFDM符号以免破坏 OFDM子载波的正交性。
在本发明的一个实施例中, 可以提供一种 OFDM传输符号同步的方法, 所述方法包括如下步骤:
正交频分多路复用 OFDM传输模块接收同步信号;
所述的 OFDM传输模块根据所述的同步信号将各个线路发送的 OFDM符 号调整为同步后发送出去。
在本发明的另一个实施例中,可以提供一种 OFDM传输符号同步的***, 所述的***包括:
同步信号发生器, 用来产生同步信号并将该同步信号传输出去;
OFDM传输模块, 用来接收所述同步信号发生器传输的同步信号, 根据 所述的同步信号将各个线路发送的 OFDM符号调整为同步后发送出去。
本发明实施例釆用由同步信号发生器产生同步信号后传输给 OFDM传输 模块, OFDM传输模块根据该同步信号将其各个线路发送的 OFDM符号调整 为同步后向发送出去的技术方案,解决了 OFDM符号同步的问题,使 DSM的 性能发挥到最佳的效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描 述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲, 在不 付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为 xDSL***模型图;
图 2A、 B为 xDSL中串扰示意图;
图 3为 OFDM子载波示意图;
图 4为 OFDM符号不同步导致子载波正交破坏示意图;
图 5为本发明实施例所述的同步信号时序关系示意图;
图 6为本发明实施例所述的同步信号发生器电路图; 图 7为本发明实施例所述的同步信号发送端接口电路图;
图 8为本发明实施例所述的同步信号接收端接口电路图;
图 9为本发明实施例所述的同步信号使用方式一示意图;
图 10 为本发明实施例所述的同步信号使用方式一对应的时钟板卡示意 图;
图 11为本发明实施例所述的同步信号使用方式二示意图;
图 12 为本发明实施例所述的同步信号使用方式二对应的时钟板卡示意 图;
图 13为本发明实施例所述的存在远端 DSLAM时同步信号传递示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例中, 由同步信号发生器产生同步信号后传输给 OFDM传输 模块, OFDM传输模块根据该同步信号将其各个线路发送的 OFDM符号调整 为同步后发送出去, 以避免由于 OFDM符号不同步导致对 OFDM子载波正交 性的破坏。
以下结合附图和具体实施例进行详细说明。
如图 5所示, 本发明实施例中首先提供一个周期为 OFDM符号长度两倍 的方波信号, 当然, 所述方波信号的周期也可以是以 OFDM符号长度两倍为 基数的 N倍或 1/N倍, N为自然数, 为了方便起见, 以下均以周期为 OFDM 符号长度两倍的方波信号为例进行说明。该方波信号的产生方式可以是由放置 于局端机房的一个单独的设备产生,也可以是由局端 DSLAM产生。其产生电 路如图 6所示:
同步信号产生电路 609共包括两大模块,即时钟源或高精度晶振 601和数 字逻辑电路 608。 时钟源或高精度晶振 601产生时钟信号给计数器 602计数, 在寄存器 603中存放了 OFDM符号的长度。当计数器 602的计数与寄存器 603 中存储的 OFDM符号的长度相等时, 比较器 604产生一个脉冲, 这个脉冲分 成两路, 一路用来给 T触发器 605产生同步信号, 另一路用来给计数器 602 清零。 其中, 计数器 602还包含一个清零接口, 用来连接上电复位信号, 使数 字逻辑电路 608在上电的时候能被复位。
其中时钟源或高精度晶振 601要求精度比较高, 比如恒温晶振等。
其中, 寄存器 603 中的值根据时钟源或高精度晶振 601 的时钟频率和
OFDM符号的周期决定, 例如, 当时钟源或高精度晶振 601 的时钟频率为
35.328MHz, OFDM符号的周期为 250ms 时, 寄存器 603 中的值应该为: 35.328 X l06 x250 xl0- 3 = 8832000 。
如果将所述的同步信号产生电路放置于局端机房的一个单独的设备中,那 么需要提供一个模拟电路接口, 用来传输同步信号至 DSLAM。 其中, 发送端 的接口电路如图 7所示:
由同步信号产生电路 609产生的同步信号分别经同相放大器 701 , 反相放 大器 702后送到双端驱动器 703的输入端,经双端驱动器 703驱动的信号分别 经过匹配电阻 706后送到耦合器 704并最终耦合到双绞线 705上。 在耦合器 704 的输出端应该适当的连接上一些保护器件, 具体视双绞线所处的环境确 定。
接收端的接口电路如图 8所示,信号经双绞线 705传输后经耦合器 804送 到双端放大器 801 , 在接收端需要连接匹配电阻 806, 以防止信号发生反射现 象导致信号质量变差,经双端放大器 801输出的信号经双端输入的迟滞比较器 802后输出同步信号。 同样, 在线路的输入侧应该适当的连接一些保护器件, 具体视双绞线所处的环境确定。
在实际使用中, 对于上述产生的同步信号可以有如下两种基本的使用方 法:
第一种如图 9所示, 同步信号发生器 901产生多路驱动信号, 直接通过双 绞线驱动多个 DSLAM 902, 其中同步信号发生器 901由图 7所示的功能电路 和电源等其他伺服电路组成, 在 DSLAM 902中可以包含图 8所示的功能电路 (接收电路)和相应的伺服电路。如图 10所示,接收电路可以作为 DSLAM 902 的单独一块板卡(为说明方便, 以下称时钟板卡), 时钟板卡上有一个同步信 号物理接口 9021 , 用来连接传输同步信号的双绞线; 接收电路也可以集成在 DSLAM主板上的一个功能电路。
对于同步信号的第二种使用方法如图 11所示, 同步信号发生器 901只输 出一路信号, 而 DSLAM 902本身具有级连功能。 其中同步信号发生器 901由 图 7所示的功能电路和电源等其他伺服电路组成, 在 DSLAM 902中不仅包含 图 8所示的接收电路,也同时包含图 7所示的发送电路及其电源等其他伺服电 路。
在 DSLAM 902中, 上述的电路可以放在一块单独的板卡上, 也可以集成 在主板上。放在单独的板卡上如图 12所示: 其中时钟板卡包含两个物理接口, 其中一个为同步信号输入物理接口 1201 , 另外一个为同步信号输出物理接口 1202, 同步信号输出物理接口 1202用来连接另一个 DSLAM的同步信号输入 物理接口。
上述接收到的同步信号可以通过背板走线分发到不同的板卡上,在板卡上 再继续分发到不同的芯片上,通过背板分发分为两种方式: 总线方式和分发方 式。
当 DSLAM中接收电路接收到的信号质量比较差时,尤其是使用上述的总 线方式时, 由于存在许多阻抗间断点, 信号质量可能比较差, 可以通过锁相环 电路来解决这个问题, 使用锁相环电路不但可以恢复出质量比较高的同步信 号, 而且可以产生同步的工作时钟, 这样 DSLAM的 DSL线路都可以使用这 个时钟, 从而进一步提高线路的正交性。
当 DSLAM接收到同步信号后, 通过检测同步信号的过零点来获取同步信 息, 让 OFDM符号的起始时刻与同步信号的过零点相对应即可实现 OFDM符号 定的延时, 只要能实现 OFDM符号的同步即可。 当然更不局限于只是过零点对 应, 类似的, 还可以通过检测同步信号的其他点来获取同步信息, 只要能实现 OFDM符号的同步即可。
如果存在远端 DSLAM的话, 那么如图 13所示: 同步信号发生器 901产生同步信号, 由于传输延时的关系, 局端 DSLAM 1302与远端 DSLAM 1303虽然使用相同的同步信号,但是远端 DSLAM 1303 收到的同步信号由于要多传输长度 1的长度, 会比局端 DSLAM 1302接收到 的同步信号迟。 但在另一方面, 局端 DSLAM 1302发送的 OFDM符号经过 长度 2的延迟有可能在到达远端 DSLAM 1303的位置时刚好与远端 DSLAM 1303发出的 OFDM符号同步。 实际上这取决于长度 1和长度 2的长度, 同 时取决于这两个长度的传输介质,还取决于 DSLAM对同步信号的处理延时。 因此在同步信号发生器 901中也可以加入一个额外的时序调节功能单元, 对 发送给远端 DSLAM 1303的同步信号进行调节, 以保证局端 DSLAM 1302 发送的 OFDM符号在到达远端 DSLAM 1303的位置时刚好与远端 DSLAM 1303发出的 OFDM符号同步。
需要说明的是, 上述本发明实施例中提及的局端 DSLAM, 或局端 DSLAM 和远端 DSLAM, 即为 OFDM传输模块。
本发明实施例除了可以使用前述的方波信号之外, 还可以使用其他信号, 例如, 正弦波信号、 三角波信号、 脉冲信号等一些携带周期信息的信号, 只要 这些周期信号的周期大于等于 OFDM符号周期且是 OFDM符号周期的整数倍 即可。
以正弦波信号为例, 正弦波同步信号产生后, 经过放大、 滤波、 驱动, 再 通过传输线路传输到 DSLAM或是其他具有 DSLAM功能的设备上,在接收端 将该正弦波信号转换成方波信号,转换成方波信号后的后续处理与方波同步信 号一致, 具体可以参见前面的说明。 其中, 将正弦波同步信号转换成方波同步 信号为公知技术, 这里不再赘述。
本发明实施例釆用由同步信号发生器产生同步信号后传输给 OFDM传输 模块, OFDM传输模块根据该同步信号将其各个线路发送的 OFDM符号调整 为同步后向发送出去的技术方案,解决了 OFDM符号同步的问题,使 DSM的 性能发挥到最佳的效果。
本发明技术方案不仅仅可以使用在 DSLAM上, 其他的 OFDM传输设备 如 wimax基站, 在同轴、 电力线上传输 OFDM的一些设备同样可以釆用本发 明的方案。
此外需要说明的是,本领域普通技术人员可以理解实现上述实施例方法中 的全部或部分步骤是可以通过程序指令相关的硬件来完成,所述的程序可以存 储于一计算机可读取的存储介质中, 所述的存储介质,如: ROM/RAM、磁碟、 光盘等。
虽然上面描述的仅仅是实施例,但并不意味着本发明的保护范围仅限于所 述的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造性 劳动前提下通过修改、 等同、 替代所获得的所有其他实施例, 都属于本发明保 护的范围。

Claims

权 利 要 求
1、 一种 OFDM传输符号同步的方法, 其特征在于, 包括:
正交频分多路复用 OFDM传输模块接收同步信号;
所述的 OFDM传输模块根据所述的同步信号将各个线路发送的 OFDM符 号调整为同步后发送出去。
2、 根据权利要求 1所述的方法, 其特征在于, 所述同步信号由同步信号 发生器产生、 周期为 OFDM符号长度两倍。
3、 根据权利要求 1所述的方法, 其特征在于, 所述同步信号由同步信号 发生器产生、 周期为以 OFDM符号长度两倍为基数的 N倍或 1/N倍, N为自 然数。
4、 根据权利要求 2或 3所述的方法, 其特征在于, 所述的 OFDM传输模 块根据所述的同步信号发送 OFDM符号的过程具体包括:
所述的 OFDM传输模块收到所述同步信号后控制各个线路的 OFDM符号 的起始时刻与所述同步信号的过零点对应, 使得所述的各个线路的 OFDM符 号同步后向用户端 DSLAM发送。
5、 根据权利要求 4所述的方法, 其特征在于, 所述同步信号为方波信号。
6、 根据权利要求 1所述的方法, 其特征在于, 所述 OFDM传输模块接收 同步信号的过程具体包括: 所述的 OFDM传输模块通过同步信号接收端口收 到同步信号后, 釆用锁相环电路对所述的同步信号进行处理。
7、 根据权利要求 1所述的方法, 其特征在于, 所述的 OFDM传输模块为 局端数字用户线接入复用器 DSLAM。
8、 根据权利要求 1所述方法, 其特征在于, 所述的 OFDM传输模块为远 端 DSLAM和局端 DSLAM。
9、 根据权利要求 8所述的方法, 其特征在于, 所述的同步信号为同步信 号发生器中釆用时序调节电路进行调节, 使得所述的远端 DSLAM 和局端 DSLAM同步接收到所述的同步信号。
10、 一种 OFDM传输符号同步的***, 其特征在于, 包括:
同步信号发生器, 用来产生同步信号并将该同步信号传输出去; OFDM传输模块, 用来接收所述同步信号发生器传输的同步信号, 根据 所述的同步信号将各个线路发送的 OFDM符号调整为同步后发送出去。
11、 根据权利要求 10所述的***, 其特征在于, 所述同步信号发生器产 生的同步信号的周期为 OFDM符号长度两倍。
12、 根据权利要求 10所述的***, 其特征在于, 所述同步信号发生器产 生的同步信号的周期为以 OFDM符号长度两倍为基数的 N倍或 1/N倍, N为 自然数。
13、 根据权利要求 11或 12所述的***, 其特征在于, 还包括控制模块, 用于控制各个线路的 OFDM符号的起始时刻与所述的同步信号过零点对应, 使得所述的各个线路的 OFDM符号实现同步。
14、 根据权利要求 13所述的***, 其特征在于, 所述同步信号为方波信 号。
15、 根据权利要求 10所述的***, 其特征在于, 所述的 OFDM传输模块 为局端 DSLAM。
16、 根据权利要求 10所述的***, 其特征在于, 所述的 OFDM传输模块 为远端 DSLAM和局端 DSLAM。
17、 根据权利要求 16所述的***, 其特征在于, 所述的同步信号发生器 包括时序调节电路, 用于对同步信号进行调节,使得所述的远端 DSLAM和局 端 DSLAM同步接收到所述的同步信号。
18、 根据权利要求 15所述的***, 其特征在于, 所述的同步信号发生器 与多个所述的局端 DSLAM分别连接。
19、 根据权利要求 18所述的***, 其特征在于, 所述的同步信号发生器 产生一路同步信号, 输出至某一局端 DSLAM, 所述的局端 DSLAM与其他的 局端 DSLAM级连后传递所述的同步信号。
20、 根据权利要求 18所述的***, 其特征在于, 所述的同步信号发生器 产生多路同步信号, 分别输出至多个所述的局端 DSLAM。
21、 根据权利要求 10所述的***, 其特征在于, 所述的同步信号发生器 包括同步信号产生电路,该同步信号产生电路包括时钟源和由计数器、寄存器、 比较器及 T触发器构成的数字逻辑电路; 其中:
所述时钟源, 用于产生时钟信号;
所述计数器, 用于根据所述时钟源提供的时钟信号计数;
所述寄存器, 用于存储 OFDM符号的长度;
所述比较器, 用于当所述计数器的计数与寄存器中存储的 OFDM符号的 长度相等时产生脉冲,该脉冲分成两路分别用于给 T触发器产生同步信号及给 计数器清零。
22、 根据权利要求 21 所述的***, 其特征在于, 所述寄存器中存储的 OFDM符号的长度为时钟源的时钟频率和 OFDM符号的周期之积。
PCT/CN2007/070192 2006-06-30 2007-06-27 Procédé et système de synchronisation de symboles de transmission ofdm WO2008003261A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07721803.0A EP2037619B1 (en) 2006-06-30 2007-06-27 An ofdm transmission symbol synchronization method and the system thereof
US12/273,964 US8165234B2 (en) 2006-06-30 2008-11-19 Method and system for synchronizing OFDM transmission symbols

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2006100614761A CN101060512B (zh) 2006-06-30 2006-06-30 一种ofdm传输符号同步的方法及其***
CN200610061476.1 2006-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/273,964 Continuation US8165234B2 (en) 2006-06-30 2008-11-19 Method and system for synchronizing OFDM transmission symbols

Publications (1)

Publication Number Publication Date
WO2008003261A1 true WO2008003261A1 (fr) 2008-01-10

Family

ID=38866402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/070192 WO2008003261A1 (fr) 2006-06-30 2007-06-27 Procédé et système de synchronisation de symboles de transmission ofdm

Country Status (4)

Country Link
US (1) US8165234B2 (zh)
EP (1) EP2037619B1 (zh)
CN (1) CN101060512B (zh)
WO (1) WO2008003261A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588336B (zh) * 2008-05-19 2012-12-19 华为技术有限公司 一种实现符号同步的方法、***及装置
US9148477B2 (en) * 2009-01-29 2015-09-29 Qualcomm Incorporated Methods and apparatus for communicating in a wireless system
CN101808055B (zh) * 2010-03-31 2012-12-26 北京交通大学 一种mb-ofdm uwb***符号精同步方法和装置
CN102137314B (zh) * 2010-07-28 2015-07-08 华为技术有限公司 数字用户线***中的信号发送方法、装置和***
US8867404B2 (en) * 2012-02-03 2014-10-21 Futurewei Technologies, Inc. Node level vectoring synchronization
CN105827277A (zh) * 2016-03-07 2016-08-03 北京国网盛源智能终端科技有限公司 宽带电力线通信跨层动态频谱分配方法
US20180270773A1 (en) * 2017-03-16 2018-09-20 Electronics And Telecommunications Research Institute Operation method of communication node in communication network
CN108092648A (zh) * 2017-12-12 2018-05-29 天津瑞发科半导体技术有限公司 片内基准时钟自动选择电路
CN111682772B (zh) * 2020-04-02 2023-06-30 上海航天控制技术研究所 高压伺服控制器的多路输出开关电源装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0812679A2 (de) 1991-05-06 1997-12-17 Hat Entwicklungsgesellschaft M.B.H. Mehrlagiger Bauteil
US5864592A (en) 1992-11-03 1999-01-26 Pairgain Technologies, Inc. Timing recovery system for digital subscriber line transceivers
CN1226108A (zh) * 1998-02-13 1999-08-18 日本胜利株式会社 用于接收正交频分多路复用信号的方法与装置
US20020126706A1 (en) 2001-03-09 2002-09-12 Rajiv Laroia Method of symbol timing synchronization in communication systems
CN1466293A (zh) * 2002-06-07 2004-01-07 ���ǵ�����ʽ���� 改进接收性能的正交频分复用发射机和处理其信号的方法
US6950475B1 (en) * 2000-12-11 2005-09-27 Cisco Technology, Inc. OFDM receiver clock synchronization system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725839A (en) * 1984-12-21 1988-02-16 Ferranti Subsea Systems, Ltd. Remote, inductively coupled, transducer interface
JPH10215289A (ja) * 1996-06-04 1998-08-11 Matsushita Electric Ind Co Ltd 同期装置
JP3420902B2 (ja) * 1996-11-08 2003-06-30 三菱電機株式会社 フレーム同期方法およびフレーム同期装置
JP3094977B2 (ja) * 1997-11-28 2000-10-03 日本電気株式会社 Pll回路
US6327666B1 (en) * 1998-01-27 2001-12-04 Globespan, Inc. System and method for external timing using a complex rotator
US6985548B1 (en) * 1999-02-03 2006-01-10 Conexant Systems, Inc. System and method for timing recovery in a discrete multi-tone system
US6937613B1 (en) * 1999-06-14 2005-08-30 Lucent Technologies Inc. Method and apparatus for synchronization of high-bit-rate digital subscriber line signals
US6976202B1 (en) * 2001-03-09 2005-12-13 Ikanos Communication Inc. Method and apparatus for time-frequency domain forward error correction for digital communication systems
US7254196B2 (en) * 2002-11-26 2007-08-07 Agere Systems Inc. Symbol timing for MIMO OFDM and other wireless communication systems
US8724659B2 (en) * 2005-05-11 2014-05-13 Telefonaktiebolaget L M Ericsson (Publ) Synchronization of VoDSL of DSLAM connected only to ethernet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0812679A2 (de) 1991-05-06 1997-12-17 Hat Entwicklungsgesellschaft M.B.H. Mehrlagiger Bauteil
US5864592A (en) 1992-11-03 1999-01-26 Pairgain Technologies, Inc. Timing recovery system for digital subscriber line transceivers
CN1226108A (zh) * 1998-02-13 1999-08-18 日本胜利株式会社 用于接收正交频分多路复用信号的方法与装置
US6950475B1 (en) * 2000-12-11 2005-09-27 Cisco Technology, Inc. OFDM receiver clock synchronization system
US20020126706A1 (en) 2001-03-09 2002-09-12 Rajiv Laroia Method of symbol timing synchronization in communication systems
CN1466293A (zh) * 2002-06-07 2004-01-07 ���ǵ�����ʽ���� 改进接收性能的正交频分复用发射机和处理其信号的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2037619A4
SONG T.: "the OFDM technology in the next generation mobile communication system", MOBILE COMMUNICATION, no. 11, November 2001 (2001-11-01), pages 20 - 23 *

Also Published As

Publication number Publication date
EP2037619B1 (en) 2013-04-24
EP2037619A4 (en) 2009-06-17
CN101060512A (zh) 2007-10-24
EP2037619A1 (en) 2009-03-18
US8165234B2 (en) 2012-04-24
CN101060512B (zh) 2010-12-08
US20090141822A1 (en) 2009-06-04

Similar Documents

Publication Publication Date Title
WO2008003261A1 (fr) Procédé et système de synchronisation de symboles de transmission ofdm
US6389062B1 (en) Adaptive frequency domain equalizer circuits, systems, and methods for discrete multitone based digital subscriber line modem
US10148415B2 (en) Aligning the upstream DMT symbols of multiple lines in a TDD DSL system
JP3604937B2 (ja) ディスクリート・マルチトーン(dmt)をベースとする通信システムの干渉の低減
US20110019725A1 (en) Dsl method having variable upload/download bit rate and application-specific dynamic profile switching
US9584670B2 (en) Method and apparatus for providing data and telephony services
WO2012126411A2 (zh) 数字用户线的信号处理方法、装置及数字用户线***
US20080260011A1 (en) Fast Modem Reconfiguration
JP2001285269A (ja) Tcm−isdn漏話のもとでadsl受信機におけるタイミング回復のための方法および装置
JP3097677B2 (ja) 通信装置および通信方法
US20050286620A1 (en) Synchronous transmission in DSL communications systems
CN102104572B (zh) 传输***中的时间同步方法、设备及***
WO2008011816A1 (fr) Procédé de support multiservice et dispositif de réseau basé sur des chemins de latence multiples xdsl
WO2011035736A1 (zh) 实现时间同步的方法、装置及网络***
KR100465640B1 (ko) 원단 누화 신호를 제거하기 위한 디엠티 시스템
CN101588336B (zh) 一种实现符号同步的方法、***及装置
US6947372B2 (en) Multi-carrier communication system with sample rate pilot carrier and time division duplexing frame rate pilot carrier
JP2000138729A (ja) 通信装置および通信方法
Spruyt et al. VDSL, from concept to chips
JP2000307677A (ja) 通信装置および通信方法
JP2001024729A (ja) 通信装置および通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07721803

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007721803

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU