WO2007129703A1 - 耐食性に優れたステンレス鋼、耐すきま腐食性、成形性に優れたフェライト系ステンレス鋼、および耐すきま腐食性に優れたフェライト系ステンレス鋼 - Google Patents

耐食性に優れたステンレス鋼、耐すきま腐食性、成形性に優れたフェライト系ステンレス鋼、および耐すきま腐食性に優れたフェライト系ステンレス鋼 Download PDF

Info

Publication number
WO2007129703A1
WO2007129703A1 PCT/JP2007/059501 JP2007059501W WO2007129703A1 WO 2007129703 A1 WO2007129703 A1 WO 2007129703A1 JP 2007059501 W JP2007059501 W JP 2007059501W WO 2007129703 A1 WO2007129703 A1 WO 2007129703A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
corrosion resistance
stainless steel
crevice corrosion
crevice
Prior art date
Application number
PCT/JP2007/059501
Other languages
English (en)
French (fr)
Inventor
Nobuhiko Hiraide
Haruhiko Kajimura
Ken Kimura
Original Assignee
Nippon Steel & Sumikin Stainless Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38667811&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007129703(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2006212115A external-priority patent/JP5042553B2/ja
Priority claimed from JP2006215737A external-priority patent/JP5089103B2/ja
Priority claimed from JP2007026328A external-priority patent/JP4727601B2/ja
Application filed by Nippon Steel & Sumikin Stainless Steel Corporation filed Critical Nippon Steel & Sumikin Stainless Steel Corporation
Priority to CN200780016464XA priority Critical patent/CN101437974B/zh
Priority to KR1020117000666A priority patent/KR101179408B1/ko
Priority to KR1020127010106A priority patent/KR101261192B1/ko
Priority to US12/226,592 priority patent/US8470237B2/en
Priority to KR1020117000667A priority patent/KR101120764B1/ko
Priority to CA2650469A priority patent/CA2650469C/en
Publication of WO2007129703A1 publication Critical patent/WO2007129703A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the first aspect of the present invention relates to stainless steel used in a salt damage environment where excellent corrosion resistance is required, for example, building materials and outdoor equipment in a beach environment with a high amount of incoming salt, or in winter.
  • the present invention relates to stainless steel used for fuel tanks, fuel pipes and other parts of automobiles and motorcycles that run in cold regions where snow melting salt is sprayed.
  • the second aspect of the present invention requires excellent crevice corrosion resistance and formability in automobiles, motorcycle exhaust systems, fuel systems, hot water supply equipment, etc., equipment and pipes that have structural gaps.
  • the present invention relates to a ferritic stainless steel used for a member to be manufactured.
  • the present invention relates to a ferritic stainless steel used for a required member.
  • Chlorides contained in sea water include sodium chloride and magnesium chloride, which are concentrated chloride solutions when adhering as incoming salt and becoming wet. Easy to form.
  • snowmelt salt is composed of calcium chloride and sodium chloride, it is usually sprayed in a solid state, so that a concentrated chloride solution is easily formed.
  • sodium chloride can dry at a relative humidity of 75% or less.
  • Magnesium chloride and calcium chloride do not dry unless the relative humidity is 40% or less, so a concentrated chloride solution in a wider humidity range. Form. This also shows the degree of deliquescence, indicating that magnesium chloride and calcium chloride absorb moisture at a lower humidity than salt nitrite to form a concentrated chloride solution. It is important to have excellent corrosion resistance in concentrated magnesium chloride or concentrated salty calcium since there is generally a range of 40-75% relative humidity in the atmospheric environment.
  • Patent Document 1 discloses a ferritic stainless steel having improved crevice corrosion resistance.
  • Patent Document 1 It is characterized by excellent crevice corrosion resistance without requiring a large amount of Cr and Mo addition by adding more than 16% Cr and about 1% Ni.
  • Patent Document 1 it is evaluated by a dry and wet repeated test in a sodium chloride environment. By using a dry and wet repeated test, the corrosion characteristics of concentrated sodium chloride solution can be grasped, but the corrosion characteristics of concentrated magnesium chloride or concentrated salty calcium solution are taken into account.
  • Patent Document 2 discloses a ferritic stainless steel that contains a large amount of Cr and Mo and can be used in a marine environment by adding an appropriate amount of Co. Co and Mo are expensive and are inferior in manufacturability because they contain a large amount of Cr, Mo and Co.
  • Patent Document 3 states that by adding P, corrosion resistance is improved, so that a large amount of Cr and Mo is not essential, and C, Mn, Mo, Ni, Ti, Nb, Cu, and N are made appropriate. Ferritic stainless steels that ensure the properties are disclosed. However, since P deteriorates weldability, it becomes a hindrance when manufacturing welded structures.
  • Patent Document 3 the most severe corrosion resistance test described in Patent Document 3 is CASS test (saline spray), and no consideration is given to concentrated magnesium chloride or concentrated calcium chloride environment.
  • Patent Document 4 discloses a ferritic stainless steel aiming at improving the cleanliness and controlling the form of inclusions by increasing the corrosion resistance by adding P-added iron and adding appropriate amounts of Ca and A1. The selective addition of Mo, Cu, Ni, Co, etc. is also described.
  • the most severe corrosion test here is 10% secondary chloride This is a crevice corrosion test in 3% iron salt solution, and no consideration is given to the concentration of concentrated magnesium chloride.
  • austenitic stainless steel represented by SUS304 and SUS316L has good perforation resistance starting from pitting corrosion and crevice corrosion, but there is a concern about stress corrosion cracking resistance. Therefore, by applying high Cr, high Ni, high Mo to suppress the occurrence of pitting crevice corrosion, which is the starting point of stress corrosion cracking, so-called super austenitic stainless steel is applied, or Si and Cu are added in combination. SUS315J1 and 315J2 steels with improved stress corrosion cracking can be used, but both are expensive.
  • ferritic stainless steel has been used for various applications by utilizing the corrosion resistance, workability, and cost performance of ferritic stainless steel.
  • local corrosion such as pitting corrosion, crevice corrosion, and stress corrosion cracking is particularly important.
  • pitting corrosion and crevice corrosion are important.
  • Crevice corrosion is especially important for members that have structural gaps such as welds and flange joints, and internal fluid leaks due to perforations caused by crevice corrosion.
  • the local corrosion is also important for the durability of stainless steel equipment and piping members used in a salty environment.
  • Patent Document 5 and Patent Document 6 present measures for painting and sacrificial corrosion prevention. Yes.
  • Patent Document 7 discloses a ferritic stainless steel aiming at improving the cleanliness and controlling the form of inclusions by increasing the corrosion resistance by adding P and adding an appropriate amount of Ca and A1.
  • P is a hindrance when manufacturing welded structures because it degrades weldability, and costs increase because productivity decreases.
  • the appropriate range is narrow and the steelmaking cost increases, making it an expensive material and the advantage of using ferritic stainless steel is diminished. .
  • Patent Document 1 described above discloses a ferrite stainless steel having improved crevice corrosion resistance by using Ni-added iron, which is intended to further improve crevice corrosion resistance.
  • the selective addition of Cu is also described. Since Ni deteriorates formability, there is a problem that it is difficult to form parts that require high formability, such as automobile exhaust systems and fuel system parts.
  • Patent Document 8 discloses a ferritic stainless steel sheet having excellent high-temperature strength
  • Patent Document 9 and Patent Document 10 disclose ferritic stainless steel having excellent surface characteristics and corrosion resistance. Steel and its manufacturing method are disclosed.
  • Patent Document 8 as an effect of Sn, improvement of high temperature strength, particularly prevention of lowering of high temperature strength after long-term aging is mentioned, and Sb is also described in the same manner as Sn.
  • the effect of the present invention is an effect on crevice corrosion resistance, which is different from the effects of Sn and Sb in Patent Document 8.
  • the latter patent document 9 and patent document 10 are based on Mg and Ca, and Ti, C, N, P, S, and O are added to this to control the content of these elements to control ridging characteristics and corrosion resistance.
  • Sn is described as a selective additive element. Improvement of corrosion resistance is cited as an effect of Sn.
  • corrosion resistance is evaluated by pitting potential.
  • the pitting corrosion potential is an electrochemical evaluation of the resistance to the occurrence of pitting corrosion, whereas the present invention targets crevice corrosion.
  • the effect of Sn is found as a growth suppression effect after crevice corrosion occurrence, and the resistance improvement effect against pitting corrosion occurrence described in Patent Document 9 and Patent Document 10 Is different.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-89828
  • Patent Document 2 Japanese Patent Laid-Open No. 55-138058
  • Patent Document 3 JP-A-6-172935
  • Patent Document 4 JP-A-7-34205
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2003-277992
  • Patent Document 6 Japanese Patent No. 3545759
  • Patent Document 7 Japanese Patent No. 2880906
  • Patent Document 8 Japanese Unexamined Patent Publication No. 2000-169943
  • Patent Document 9 Japanese Patent Laid-Open No. 2001-288543
  • Patent Document 10 Japanese Patent Laid-Open No. 2001-288544
  • the first object of the present invention is to create a coastal environment where a large amount of expensive Ni and Mo are added, and to salt damage environments such as cold road environments where snowmelt salt is sprayed.
  • salt damage environment represented by concentrated salty magnesium or concentrated calcium chloride, which is more severe than the corrosive environment caused by salty sodium, it has excellent resistance to crevice due to crevice corrosion and pitting corrosion. It is to obtain stainless steel with excellent stress corrosion cracking resistance (stress corrosion cracking resistance).
  • the second object of the present invention is to provide a ferritic stainless steel having excellent pore resistance (crevice corrosion resistance) and formability of the gap.
  • the third object of the present invention is to provide a ferrite stainless steel having excellent crevice corrosion resistance, particularly excellent resistance to pores in the crevice portion.
  • the stainless steel having excellent corrosion resistance according to the first aspect of the present invention is, in mass%, C: 0.001-0.02%, N: 0.001-0.02%, Si: 0.01-0.5%, Mn: 0.05- 0.5%, P: 0.04% or less, S: 0.01. /.
  • Mo 3.0% or less
  • Cu 1.0% or less
  • V 3.0% or less
  • W 5.0 % Or less
  • Zr In the range of 0.5% or less, one or more of Mo, Cu, V, W, and Zr may be included.
  • Al not more than 1%
  • Ca not more than 0.002%
  • Mg not more than 0.002%
  • B not more than 0.005%, including one or more.
  • the ratio of the austenite phase to the martensite phase is 15. / 0 or less, the remainder may be composed of a ferrite phase, and the grain size number of the ferrite phase may be No. 4 or more.
  • the crevice corrosion resistance is improved by Ni, while the moldability reduced by Ni is improved by ensuring the addition of an appropriate amount of A1 and the Al / Nb ratio.
  • the ferritic stainless steel having excellent crevice corrosion resistance and formability according to the second aspect of the present invention has a mass of 0 , C: 0.001 to 0.02%, ⁇ : 0.001 to 0.02%, Si: 0.01 to l% , ⁇ : 0 ⁇ 05 to 1%, ⁇ : 0.04% or less, S: 0.01% or less, Ni: 0.15 to 3%, Cr: ll to 22%, ⁇ : 0 ⁇ 5 to 3%, Ti: 0.0 1 to 0.5%, Nb: less than 0.08%, Al: more than 0.1%, 1% or less, Cr, Ni, Mo, A1 included within the range that satisfies the following formulas (A) and (B), the balance being Fe And inevitable impurities.
  • One or two of Cu: 0.1 to 1.5% and V: 0.02 to 3.0% may be included within a range satisfying the following formula (A ').
  • Ca 0.0002-0.002%
  • Mg 0.0002-0.002%
  • 0.0002-0.005%, or one or more of them may be included.
  • Sn and Sb are added in appropriate amounts to improve crevice corrosion resistance, and to improve the life to crevice due to crevice corrosion, Sn, Based on the effect of Sb on crevice corrosion resistance, especially on the pore resistance of crevice parts, we provide ferritic stainless steel with excellent crevice corrosion resistance.
  • the ferritic stainless steel having excellent crevice corrosion resistance according to the third aspect of the present invention is, by mass%, C: 0.001 to 0.02%, ⁇ : 0 001 to 0.02%, Si: 0.01 to 0.5%, Mn: 0.05 to l%, P: 0.04% or less, S: 0.01% or less, Cr: 12 to 25%, Ti or Nb 1 or 2 Ti: 0.02 to 0.5%, Nb: It is included in the range of 0.02 to 1%, and one or two of Sn and Sb are included in the range of Sn: 0.005 to 2% and Sb: 0.005 to 1%, with the balance being Fe and inevitable impurities.
  • Ni 5% or less, Mo: 3% or less 1 or 2 types may be included.
  • V 3% or less and W: 5% or less may be included.
  • Al 1% or less, Ca: 0.002% or less, Mg: 0.002% or less, and B: 0.005% or less may be included.
  • the first aspect of the present invention is excellent in the resistance to crevice due to crevice corrosion and the resistance to stress corrosion cracking in a salt damage environment. It is effective for extending the life of parts such as fuel tanks and fuel pipes for automobiles and motorcycles that run in cold regions where snowmelt salt is sprayed in winter.
  • the second aspect of the present invention it is possible to provide a ferritic stainless steel that achieves both excellent pore resistance (crevice corrosion resistance) of the gap portion and high formability. For this reason, the crevice corrosion resistance of the second aspect of the present invention is excellent for parts that have crevice corrosion due to structural differences such as the exhaust system, fuel system, and hot water supply equipment of automobiles and motorcycles. Using ferritic stainless steel improves the perforation resistance and is effective in extending the service life of members.
  • the material is suitable as a material for important parts such as automobile fuel tanks and fuel supply pipes that require a long service life.
  • it because it has good formability, it can be easily processed into members, and is also suitable as a material when the product is a steel pipe.
  • the third aspect of the present invention it is possible to provide a ferritic stainless steel having excellent crevice corrosion resistance, particularly excellent resistance to pores in the crevice portion. For this reason, of the parts used in automobile parts, water supply, hot water supply facilities, and building equipment, there are gaps in the structure, and they are used in chloride environments and have excellent crevice corrosion resistance.
  • the ferritic stainless steel having excellent crevice corrosion resistance according to the third aspect of the present invention the pore resistance of the crevice is reduced. Improved. Therefore, it is effective for extending the life of the member.
  • there are an exhaust system member and a fuel system member as automobile parts and there are an exhaust pipe, a silencer, a fuel tank, a tank fixing band, a fuel supply pipe, and the like.
  • FIG. 1 is a diagram showing the shape of a test piece.
  • FIG. 2 is a diagram showing the wet and dry repeated test conditions of Example 1.
  • FIG. 3 is a view showing the wet and dry repeated test conditions of Example 2.
  • FIG. 4 is a diagram showing the relationship between equation (A) and the maximum erosion depth.
  • FIG. 5 is a diagram showing the evaluation results of moldability and ridging resistance.
  • FIG. 6 is a schematic diagram showing the effects of Sn and Sb.
  • FIG. 7 is a view showing the wet and dry repeated test conditions of Example 3.
  • FIG. 8 shows the results of repeated wet and dry tests.
  • FIG. 9 is a graph showing the relationship between the passivating current density and the maximum erosion depth of the crevice in the repeated wet and dry test.
  • Magnesium chloride and calcium chloride can exist as an aqueous solution even at a lower relative humidity than the sodium chloride, as described in the background art above. High saturation concentration. Therefore, since it exists as a higher concentration chloride solution in a wider humidity range, it is more corrosive than sodium chloride, increasing the active dissolution rate at the site where crevice corrosion and pitting corrosion occurred, and stress corrosion. Cracking is also promoted.
  • An element useful for pitting corrosion resistance and crevice corrosion resistance, but reduces intergranular corrosion resistance and workability. Moreover, excessively lowering the scouring cost. Therefore, it was set to 0.001-0.02%. Desirably 0.002 to 0.015%, more desirably 0.002 to 0.01%.
  • Si An element that is useful as a deoxidizing element and effective in corrosion resistance, but its content was set to 0.01 to 0.5% in order to reduce workability. Desirably 0.03 to 0.3%
  • Mn Force S that is useful as a deoxidizing element. If excessively contained, MnS is formed, resulting in poor corrosion resistance. Therefore, the content was set to 0.05 to 0.5%.
  • P Since weldability and workability are lowered, it is necessary to keep the content low. Therefore, the P content is set to 0.04% or less.
  • S When S is present as an easily soluble sulfide such as CaS or MnS, it becomes a starting point of pitting corrosion resistance or crevice corrosion, which deteriorates pitting corrosion resistance and crevice corrosion resistance. Therefore, it was made 0.01% or less. Desirably, it is 0.002% or less.
  • Cr At least 11% or more is necessary because it is a basic element for securing the most important corrosion resistance in stainless steel and stabilizes the ferrite structure. Strength increases as corrosion resistance increases. Processability and manufacturability decrease, so the upper limit was set at 26%. 16 to 25% is desirable.
  • Ni In a corrosive environment more severe than sodium chloride such as salty calcium and salty magnesium, the active dissolution rate is suppressed at the site where crevice corrosion and pitting corrosion occurred, and the passive state It is the most effective element for crystallization, and the most important element in the present invention. To achieve this effect, a Ni content of at least 3% is required. If it is contained excessively, the workability is lowered and the cost is increased, so the upper limit was made 5%. Desirably, it is more than 3% and 4% or less, more desirably more than 3% and 3.5% or less.
  • Ti and Nb are elements useful for fixing C and N and improving workability and intergranular corrosion resistance of welds.
  • one or two of Ti and Nb are used. Contains seeds.
  • Ti An element useful for fixing C and N and improving workability and intergranular corrosion resistance of welds, and at least 0.01% or more is necessary.
  • Ti should be contained at least four times the sum of (C + N).
  • the upper limit was made 0.5%. Desirably, it is 0.03-0.3%.
  • Nb An element useful for fixing C and N and improving workability and intergranular corrosion resistance of welds, and is required to be at least 0.02% or more.
  • Nb At least eight times the sum of (C + N).
  • the upper limit was set to 0.6% because excessive addition of Nb reduces workability. Desirably, it is 0.05 to 0.5%.
  • Mo Can be contained as necessary to ensure corrosion resistance. Mo, in combination with Ni, suppresses the rate of active dissolution at sites where crevice corrosion and pitting corrosion have occurred. At the same time, the effect on passivation is enhanced to improve the corrosion resistance. Also, like Cr, it contributes to stabilization of the ferrite phase. Therefore, when contained, it is desirable to contain 0.5% or more. However, excessive addition degrades processability and increases costs because it is expensive. Therefore, when included, 0.5 to 3.0. Desirable to be / o. More desirably, it is 0.5 to 2.5%.
  • V, W, Zr In order to ensure corrosion resistance, V, W, Zr can be contained as necessary. In any case, the combination with Ni suppresses the active dissolution rate at the site where crevice corrosion and pitting corrosion occurred, and enhances the effect on passivation to improve the corrosion resistance. It also contributes to stabilization of the ferrite phase. Therefore, when contained, V is 0.02% or more, W is 0.5% or more, and Zr is 0.02. / Addition of more than 0 is desirable, but excessive addition reduces workability and increases costs, so the upper limit is 3.0% for V, 5.0% for W, and 0.5% for Zr. did.
  • Cu In order to ensure corrosion resistance, Cu can be contained if necessary. In combination with Ni, it suppresses the active dissolution rate at the site where crevice corrosion and pitting corrosion occurred and enhances the effect on passivation to improve the corrosion resistance. Therefore, when it is contained, it is desirable to contain 0.1% or more. However, excessive addition degrades processability. In addition, since it is an austenite-forming element, it is necessary to increase the Cr and Mo contents in order to stabilize the ferrite structure, leading to an increase in cost. Therefore, when it is contained, it is desirable that the content is 0 ⁇ 1 to: L 0%. More desirably, it is 0.2 to 0.6%.
  • Al, Ca, Mg Al, Ca, Mg are elements that have a deoxidizing effect and the like and are useful for scouring, and can be contained as necessary. In addition, it is useful for improving the formability and toughness by refining the structure, so that one or more of Al, Ca and Mg are contained in Al: 1% or less, Ca: 0.002% or less, Mg : 0.0. 002% or less is desirable.
  • A1 is a ferrite-forming element and has the effect of suppressing the formation of the austenite phase at high temperatures. As a result, it is thought that forming a ferrite phase texture that is advantageous for formability contributes to improvement of formability.
  • A1 when A1 is contained, it is desirable that the content be 0.002% or more and 0.5% or less.
  • each content should be 0.0002% or more. Is desirable.
  • B is an element useful for improving secondary workability, and is desirably contained in an amount of 0.002% or more as required. However, if excessively contained, the primary workability is lowered, so the upper limit was made 0.005%.
  • the ratio of the austenite phase to the martensite phase is 15% or less, the balance is a ferrite phase, and the ferrite phase grain size number is No. 4 or more:
  • the Ni amount increases.
  • Second phases such as austenite phase and martensite phase are likely to exist.
  • the room temperature elongation decreases, so the upper limit is preferably 15%.
  • the finish annealing temperature is increased to suppress the formation of the second phase, the ferrite phase becomes coarser and the grain size number becomes less than No.
  • the ratio of the second phase is 15% or less and the grain size number of the ferrite phase is No. 4 or more, the ferrite content of Cr, Mo, etc. This is achieved by balancing the amount of the forming element added and setting the final annealing temperature, for example, by the method shown in the examples.
  • Perforations due to crevice corrosion are an important factor in determining the life of components in automobiles and motorcycles, such as exhaust systems, fuel systems, hot water supply equipment, etc. .
  • the inventors of the present invention diligently researched the process until crevice corrosion leads to perforation into two periods, the induction period until crevice corrosion occurs and the growth period after crevice corrosion occurs.
  • A1 is a ferrite-forming element, it suppresses the formation of austenite phase at high temperature, and as a result, aggregates of ferrite phases that are advantageous for formability It is thought to form an organization.
  • the moldability and ridging resistance are improved by controlling Al / Nb, but the effect of Nb and A1 on the solid solution strengthening power, carbonitride formation ability, and recrystallization speed It is thought that such differences are involved.
  • Si An element that is useful as a deoxidizing element and effective in corrosion resistance, but its content was set to 0.01 to 1% in order to reduce workability. Desirably, it is 0.03 to 0.3%.
  • Mn Useful as a deoxidizing element, but if contained excessively, corrosion resistance deteriorates.
  • S When S is present as an easily soluble sulfide such as CaS or MnS, it can be a starting point of pitting corrosion or crevice corrosion. Therefore, it was made 0.01% or less.
  • Cr Element that is fundamental for ensuring crevice corrosion resistance, and at least 11% is required. As the content is increased, crevice corrosion resistance is improved. However, in the pore resistance particularly required in the present invention, the effect of reducing the progress rate after crevice corrosion occurrence is not great. In addition, the upper limit was made 22% in order to reduce workability and manufacturability. Desirably, it is 15-22%.
  • M It is the most effective element in reducing the rate of progress after crevice corrosion in terms of pore resistance (crevice corrosion resistance) of the crevice. At least 0.15% is required to achieve this effect. Especially when combined with Mo, the effect is further enhanced. The effect increases as the content increases. However, when the content is excessive, the sensitivity to stress corrosion cracking increases and the formability decreases. In addition, the upper limit was set at 3% because it would increase costs. Desirably 0.4 to 3%.
  • Mo is particularly effective for the occurrence of crevice corrosion.
  • Ni By combining with Ni, the effect of suppressing the growth rate after crevice corrosion is further increased, so that It can improve the cracking resistance (crevice corrosion resistance). Therefore, it is necessary to contain 0.5% or more. However, excessive addition degrades processability and is expensive. This leads to an increase in cost. Therefore, it was set to 0.5 to 3%. Desirably, it is 0.5 to 2.5%.
  • C and N are fixed elements, and are useful elements for improving the intergranular corrosion resistance and workability of the welded portion. At least 0.01% or more is necessary. Here, it is desirable to contain Ti at least four times the sum of (C + N). However, excessive addition causes surface flaws during production and deteriorates manufacturability, so the upper limit was made 0.5%. Desirably, it is 0.03 to 0.3%.
  • Nb Usually, C and N are often treated in the same manner as Ti as an element for fixing N. In the present invention, a large amount of additive deteriorates moldability and ridging resistance. As will be described later, it is extremely important to define the ratio of A1 / Nb. Adding a large amount of Nb leads to an increase in the amount of A1 added, so the upper limit was set to 0.08%. In order to produce without significantly increasing the raw material cost, it is desirable to make it 0.01% or less. In general mass production processes, it is often included as an inevitable impurity of about 0.001 to 0.005%.
  • A1 is known to have a deoxidizing effect and the like and is useful for scouring, and may be contained in the order of several tens of ppm.
  • the formability of the cold-rolled steel sheet is remarkably improved when the A1 additional strength is further increased, and the effect is confirmed when the content exceeds 0.1%.
  • excessive addition on the other hand, lowers the formability and toughness. Desirably, it exceeds 0.1% and is 0.5% or less.
  • A1 is a ferrite-forming element, so it suppresses the formation of the austenite phase at high temperatures, resulting in a ferrite phase texture that is advantageous for formability. It is thought to form.
  • Al / Nb This is an index that has been clarified for the first time by the present inventors. When this value is 10 or more, good moldability and ridging resistance can be obtained. This value is extremely large when Nb is not added, so the upper limit is not specified. The reason why the moldability and ridging resistance are improved by controlling Al / Nb is not clear, but the solution strength of Nb and A1, the ability to form carbonitride, and the recrystallization rate. It is thought that the difference such as the influence of
  • Cu In order to ensure crevice corrosion resistance, it can be contained if necessary. Cu, in combination with Ni, has a greater effect of suppressing the growth rate after crevice corrosion has occurred. As a result, the perforation resistance (crevice corrosion resistance) of the clearance can be improved. Therefore, when it is contained, it is desirable to contain 0.1% or more. However, excessive addition degrades processability and increases the cost because it is expensive. Therefore, when it is contained, the content is preferably 0.1 to 1.5%.
  • V For the purpose of further improving the crevice corrosion resistance, it can be contained if necessary. V is particularly effective for crevice corrosion, as is Mo, but the excess force is a cost-up factor, so it was set to 0.02 to 3.0%.
  • one or two of Cu and V may be used.
  • a ' It is preferable to include within the range that satisfies the formula.
  • Ca Like A1, Ca is an element that has a deoxidizing effect and the like and is useful for scouring.
  • this element has a deoxidizing effect and is useful for scouring. It is also useful for refining the structure and improving workability and toughness.
  • Mg 0.0002 to 0.002
  • B is an element useful for improving secondary workability, and can be contained as required. However, if it is contained excessively, it will reduce the primary strength.
  • Addition of Sn and Sb has the same effect as addition of Ni to the reduction of the maximum erosion depth.
  • Mo has the same effect as Ni, and Sn and Sb are effective in improving the pore resistance of the gap, and it is understood that the effect is further enhanced when combined with Ni and Mo. .
  • N force that is an element useful for pitting corrosion resistance
  • the content thereof must be kept low.
  • excessively lowering the strength increases the scouring cost, so 0.001 to 0.02% was set.
  • Si An element useful as a deoxidizing element and effective in corrosion resistance, but its content was set to 0.01 to 0.5% in order to reduce workability. Desirably, it is 0.05 to 0.4%.
  • Mn Useful as a deoxidizing element, but if contained excessively, corrosion resistance deteriorates.
  • P Since weldability and workability are deteriorated, it is necessary to keep the content low. However, excessive reduction increases raw material costs and scouring costs. Therefore, the P content is 0.04% or less.
  • S When S is present as an easily soluble sulfide such as CaS and MnS, it can be a starting point for pitting corrosion or crevice corrosion. Therefore, it was made 0.01% or less.
  • Cr Element that is fundamental to ensuring crevice corrosion resistance, and at least 12% is required. As the content is increased, crevice corrosion resistance is improved. However, in the pore resistance particularly required in the present invention, the effect of reducing the progress rate after crevice corrosion occurrence is not great. In addition, the upper limit was made 25% in order to reduce workability and manufacturability. Desirably, it is 15-22%.
  • Ti, Nb An element useful for fixing C and N and improving the intergranular corrosion resistance and workability of welds.
  • Ti and Nb are used as Ti and Nb. Both should be contained at least 0.02%.
  • (Ti + Nb) / (C + N) is preferably 6 times or more.
  • the upper limit of Ti is 0.5% and the upper limit of Nb is 1%. Desirably, Ti is 0.03 to 0.3% and Nb is 0.05 to 0.6%.
  • Sn, Sb These elements are extremely effective in reducing crevice corrosion resistance, particularly in the crevice resistance of the crevice, and reducing the rate of progress after crevice corrosion occurs.
  • the effect is enhanced by inclusion with Ni and also with Mo.
  • Ni and Mo are included with Ni and also with Mo.
  • Sn is set to 0.005 to 2%
  • Sb is set to 0.005 to 1%.
  • Sn is 0.01 to 1% and Sb is 0.005 to 0.5%
  • Ni In order to improve crevice corrosion resistance, it can be contained if necessary. It is an extremely effective element in reducing the rate of progress after crevice corrosion in terms of pore resistance (crevice corrosion resistance) in the gap. Even if used alone, it has the same effect as Sn and Sb, and when Sn and Sb are added together, the effect is further enhanced. The effect stabilizes from 0.2%, and the effect increases as the content increases. However, when it is contained excessively, the susceptibility to stress corrosion cracking increases and the formability decreases. Moreover, it becomes a cost increase factor. Therefore, it is desirable to contain in the range of 0.2-5%.
  • Mo Can be contained as necessary to improve crevice corrosion resistance. In addition to being particularly effective for crevice corrosion, Mo is more effective in suppressing the growth rate after crevice corrosion by combining Sn, Sb, and M together. Can improve the perforation resistance (crevice corrosion resistance) of parts. The effect stabilizes from 0.3%, and the effect increases as the content increases. However, excessive addition degrades processability and increases costs because it is expensive. Therefore, it is desirable to contain in the range of 0.3 to 3%.
  • Cu In order to ensure crevice corrosion resistance, Cu can be contained as required. Clearance Effective in reducing the rate of progress after corrosion occurs, and it is desirable to contain 0.1% or more. However, excessive addition degrades workability. Therefore, it is desirable to contain in the range of 0.1-1.5%.
  • V For the purpose of further improving crevice corrosion resistance, it can be contained if necessary.
  • V like Mo, is particularly effective in reducing the occurrence of crevice corrosion and the rate of progress after crevice corrosion. The effect stabilizes from 0.02%, and the effect increases as the content increases, but excessive addition causes a cost increase. Therefore, it is desirable to contain in the range of 0.02 to 3.0%.
  • W For the purpose of further improving crevice corrosion resistance, it can be contained as necessary.
  • the W like Mo and V, is particularly effective in reducing crevice corrosion and the rate of progress after crevice corrosion. The effect stabilizes from 0.3%, and the effect increases as the content increases, but excessive addition increases the cost. Therefore, it is desirable to contain in the range of 0.3-5%.
  • A1 is an element useful for scouring and having a deoxidizing effect, etc., and has an effect of improving moldability, and is desirably contained in a range of 0.003 to 1%.
  • Ca is an element useful for scouring and having a deoxidizing effect and the like, similar to A1, 0.0002 to 0.002
  • this element has a deoxidizing effect and is useful for scouring. It is also useful for refining the structure and improving workability and toughness. Mg: 0.0002 It is desirable to make it contain in the range of ⁇ 002%.
  • B is an element useful for improving secondary workability, and is desirably contained in a range of 0.0002 to 0.005%.
  • a test piece having a width of 60 mm, a length of 130 mm, a width of 30 mm, and a length of 60 mm was cut out from the cold-rolled steel sheet, and wet-polished to # 320 with emery paper. After that, these two large and small specimens were overlapped and spot-welded at two points as shown in Fig. 1 (the part marked with a circle in Fig. 1 (spot welded part 1)), with a width of 60mm and a length of 130mm. Cover end and back with sealing tape
  • the maximum value was determined from the erosion depths measured at 10 or more points, and those whose maximum value was below 400 ⁇ m were judged as good (Good), and those over 400 ⁇ m were judged as bad.
  • the thickness of stainless steel used in the salt damage environment as a target in the present invention is mainly 0.8 to 2 mm, and the standard is 400 ⁇ m as a half of the thinnest thickness.
  • a specimen with a width of 15 mm and a length of 75 mm was cut out from the cold-rolled steel sheet in parallel with the rolling direction, bent at 8R, and constrained in parallel to produce a U-bend specimen.
  • U-bend specimen Two artificial seawater droplets 10 ⁇ 1 were dropped on the outer surface of the R part. Specimen Place in a constant temperature and humidity tester with the R part facing up, 80 ° C, 40 ° C. /. Hold for 672h under RH conditions. Under these conditions, the sodium chloride salt contained in the artificial seawater is completely dry and becomes a concentrated magnesium chloride environment. After the test was completed, the outer surface and cross section of the R part of the test piece were observed to determine the presence or absence of stress corrosion cracking.
  • the second phase ratio consisting of martensite phase or austenite phase is It was determined by image analysis based on black tissue photographs. The crystal grain size of the ferrite phase was measured in accordance with JISG 0552.
  • a JIS13B tensile test piece was taken from the above test material in parallel with the rolling direction and subjected to a room temperature tensile test to measure the total elongation.
  • 20% is the target for the total elongation that is desirable for the molding of parts that are the subject of the present invention.
  • the underlined portion indicates that the ratio of the second phase exceeds 15% or the grain size number of the Ferai phase is less than No. 4.
  • the steels of No. Al to No. A13 within the scope of the present invention have a maximum erosion depth of 400 ⁇ m or less in the crevice part, show no corrosion even in the stress corrosion cracking test, exhibit good corrosion resistance, and have a normal temperature elongation. The processability is good with 20% or more.
  • the steel of No. A14 whose Ni range deviates from the scope of the present invention is inferior in crevice corrosion resistance although it has good resistance to stress corrosion cracking and room temperature elongation. The Ni range and the second phase ratio deviate from the scope of the present invention No.
  • A15 steel has good crevice corrosion resistance and stress corrosion cracking resistance, but its room temperature elongation is less than 20%, which is inferior in workability.
  • Steel No. A16 with a grain size number less than No. 4 is inferior in workability with a room temperature elongation of less than 20%.
  • No. A17 and No. A18 are SUS304, SUS315J:! Equivalent steel, force S, and crevice corrosion resistance is good, but cracking occurs in the stress corrosion cracking test and is inferior in stress corrosion cracking resistance.
  • a test piece having a width of 60 mm, a length of 130 mm, a width of 30 mm, and a length of 60 mm was cut out from the cold-rolled steel sheet, and wet-polished to # 320 with emery paper. After that, spot welding was applied to the shape shown in Fig. 1, and the end and back surfaces of 60mm width and 130mm length were covered with sealing tape. Using this test piece, the wet and dry repeated test was conducted under the conditions shown in FIG. After completing 180 cycles, the large and small test pieces were separated. Thereafter, the corrosion products were removed, and the erosion depth of the spot weld gap was measured by the optical microscope depth of focus method. Except for the test conditions specified here, the conditions were stipulated in JASO M609-91, which is the automotive material corrosion test method of the Automotive Engineers Association standard.
  • the thickness of the stainless steel is mainly 0.8 to 2.0 mm, and the thinnest thickness is used as a reference.
  • Formability was evaluated by a cylindrical deep drawing test.
  • the molding conditions were punch diameter: ⁇ 50 ⁇ , punch shoulder R: 5 mm, die shoulder R: 5 mm, blank diameter: ⁇ 100 mm, wrinkle holding force: 1 ton, friction coefficient: 0.11-0.13.
  • This coefficient of friction is a level obtained by applying a lubricating oil having a kinematic viscosity of 1200 mm 2 / sec at 40 ° C to the front and back surfaces of the steel sheet.
  • Formability was evaluated based on whether or not deep drawing with a molding limit drawing ratio of 2.20 was possible under the above conditions. In other words, it was judged good (Good) if it could be molded, and bad (Bad) if a molding crack occurred in the middle.
  • ridging resistance For ridging resistance, a tensile specimen was taken from a cold-rolled steel sheet in a direction parallel to the rolling direction, and after surface tension of 15%, surface irregularities (waviness) in the direction perpendicular to the rolling direction were measured with a two-dimensional roughness meter. The maximum height of the irregularities was defined as the ridging height. When the ridging height was less than 15 zm, it was judged as “Good”, and when it was above 15 ⁇ m, it was judged as “bad”.
  • No. B16 in which the A1 range and the range of the formula (B) are out of the present invention is inferior in ridging resistance.
  • No. Bl 7 in which the Nb range and the range of the formula (B) deviate from the present invention is inferior in both moldability and ridging resistance.
  • a test piece having a width of 60 mm, a length of 130 mm, a width of 30 mm, and a length of 60 mm was cut out from the cold-rolled steel sheet, and wet-polished to # 320 with emery paper. Then, spot the shape as shown in Figure 1. The end and back surfaces of 60mm width and 130mm length were covered with sealing tape.
  • test piece Using this test piece, a wet and dry repeated test was performed under the conditions shown in FIG. After completing 120 cycles, the large and small test pieces were separated. Thereafter, the corrosion products were removed, and the erosion depth of the spot weld gap was measured by the optical microscope depth of focus method. The medium force maximum value of the erosion depth measured from more than 10 points was determined.
  • the test conditions other than those specified here were in accordance with the conditions specified in JASO M609-91, which is the automotive material corrosion test method of the Automotive Engineers Association.
  • Example C16 925 [0114] Steels No. Cl to No. C13 within the scope of the present invention have a maximum crevice depth of 600 / im or less and good crevice corrosion resistance.
  • the first aspect of the present invention is suitable for building materials, outdoor equipment, or automobile parts or motorcycle parts that run in cold regions where snowmelt salt is sprayed in winter, in a beach environment with a lot of incoming salt.
  • the ferritic stainless steel having excellent pore resistance (crevice corrosion resistance) and formability of the gap portion according to the second aspect of the present invention is a structural element for automobiles, motorcycle exhaust systems, fuel systems, hot water supply facilities, etc. It is useful as a member that has an upper clearance and requires excellent crevice corrosion resistance and formability. It is particularly suitable for important parts that require a long life, such as fuel tanks for automobiles and fuel supply pipes.
  • the ferritic stainless steel of the third aspect of the present invention which is excellent in crevice corrosion resistance, particularly in the crevice resistance of the crevice part, has a crevice part in the structure such as automobile parts, water supply, hot water supply equipment, and building equipment. It is useful as a member used in parts that require excellent crevice corrosion resistance in equipment and piping used in chloride environments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

明 細 書
耐食性に優れたステンレス鋼、耐すきま腐食性、成形性に優れたフェライ ト系ステンレス鋼、および耐すきま腐食性に優れたフェライト系ステンレス鋼 技術分野
[0001] 本発明の第 1の態様は、優れた耐食性が要求される塩害環境で使用されるステン レス鋼に関し、たとえば、飛来塩分の多い海浜環境における建材や屋外機器類、あ るいは冬季に融雪塩を散布する寒冷地を走行する自動車や二輪車の燃料タンク、 燃料パイプなどの部材に使用されるステンレス鋼に関する。
本発明の第 2の態様は、 自動車、二輪車の排気系、燃料系や、給湯設備等、構造 上すきま部が存在する機器、配管等において、優れた耐すきま腐食性と成形性が必 要とされる部材に使用されるフェライト系ステンレス鋼に関する。
本発明の第 3の態様は、 自動車部品、給水、給湯設備、建築設備等、構造上すき ま部が存在し、塩化物環境で使用される機器、配管等において、優れた耐すきま腐 食性が必要とされる部材に使用されるフェライト系ステンレス鋼に関する。
本願は、 2006年 5月 9日に出願された日本国特許出願第 2006— 130172号、 20 06年 8月 3曰に出願された曰本国特許出願第 2006— 212115号、 2006年 8月 8曰 に出願された日本国特許出願第 2006— 215737号、および 2007年 2月 6日に出願 された日本国特許出願第 2007— 26328号に対し優先権を主張し、その内容をここ に援用する。
背景技術
[0002] 近年、ステンレス鋼の優れた耐食性を利用して、さまざまな用途へ使用されるように なってきている。ステンレス鋼製の機器や配管等の部材の耐食性において、特に重 要なのは、孔食、すきま腐食、応力腐食割れといった局部腐食であり、これらを起因 とした孔あきによって、内部流体等が漏洩することが問題となる。
[0003] 海浜環境では海水成分を多く含む飛来塩分が、寒冷地では冬季に散布する融雪 塩中の塩ィ匕物が腐食因子となる。海水中に含まれる塩化物としては、塩化ナトリウム 、塩化マグネシウムがあり、飛来塩分として付着し湿潤状態になると濃厚塩化物溶液 を形成しやすい。一方、融雪塩は塩化カルシウム、塩化ナトリウムから構成されるが、 通常固体の状態で散布されるため、やはり容易に濃厚塩化物溶液が形成される。塩 化物の種類のなかでは、塩化ナトリウムは相対湿度 75%以下で乾燥する力 塩化マ グネシゥム及び塩ィ匕カルシウムは相対湿度 40%以下にならないと乾燥しないため、 より広い湿度範囲で濃厚塩化物溶液を形成する。これは、潮解性の大小も示してお り、塩化マグネシウム及び塩化カルシウムは、塩ィ匕ナトリムに比べ低い湿度で吸湿し て濃厚塩化物溶液を形成することを示してレ、る。大気環境にぉレ、ては相対湿度 40 〜75%の範囲は一般的に存在するため、濃厚塩化マグネシウムあるいは濃厚塩ィ匕 カルシウム中で優れた耐食性を有することは重要である。
[0004] 特許文献 1に耐隙間腐食性を改善したフェライト系ステンレス鋼が開示されている。
16%以上の Crと 1%程度の Niを複合添加させることで、多量の Cr、 Mo添加を必要 とすることなぐ優れた耐すきま腐食性が得られることを特徴としている。特許文献 1で は、塩ィヒナトリウム環境における乾湿繰り返し試験により評価されている。乾湿繰り返 し試験を用いることで、濃厚塩ナトリウム物溶液での腐食特性を把握できるが、濃厚 塩化マグネシウムあるいは濃厚塩ィヒカルシウム溶液での腐食特性は考慮されてレ、な レ、。
[0005] 特許文献 2には、 Cr、 Moを多く含みかつ適量の Coを添加することで海洋環境で 使用可能なフェライト系ステンレス鋼が開示されている。 Co、 Moは高価であると共に 、 Cr、 Mo、 Coを多量に含むために製造性に劣る。また、特許文献 3には、 P添加に より耐食性を改善することで多量の Cr、 Moを必須とせず、 C、 Mn、 Mo、 Ni、 Ti、 Nb 、 Cu、 Nを適正化することで製造性を確保したフェライト系ステンレス鋼が開示されて いる。し力、しながら、 Pは溶接性を劣化させるため、溶接構造物を製造するときの阻害 要因となる。また、特許文献 3に記載された中で最も過酷な耐食性試験は CASS試 験 (食塩水噴霧)であり、濃厚塩化マグネシウムあるいは濃厚塩化カルシウム環境に 関する考慮はなされていない。更にまた、特許文献 4には、やはり P添カ卩により耐食 性を高め、 Caおよび A1を適正量添加することにより清浄度向上及び介在物形態等 の制御を狙ったフェライト系ステンレス鋼が開示されており、 Mo、 Cu、 Ni、 Coなどの 選択添加が併せて記載されている。ここでの最も過酷な腐食試験は、 10%塩化第二 鉄 3 %食塩水中における隙間腐食発生試験であり、濃厚塩化マグネシウムあるレ、 は濃厚塩ィヒカルシウム環境に関する考慮はなされていない。
[0006] 一方、 SUS304、 SUS316Lに代表されるオーステナイト系ステンレス鋼は、孔食 やすきま腐食を起点とした耐孔あき性は良好であるが、耐応力腐食割れ性が懸念さ れる。そこで、高 Cr、高 Ni、高 Moを含有させて、応力腐食割れの起点となる孔食ゃ すきま腐食の発生を抑える、いわゆるスーパーオーステナイトステンレス鋼を適用し たり、 Si、 Cuを複合添加して応力腐食割れ性を向上させた SUS315J1、 315J2系の 鋼の適用が考えられるが、いずれも高価である。
[0007] また、近年、フェライト系ステンレス鋼のもつ耐食性、加工性、コストパフォーマンス を利用して、さまざまな用途へ使用されるようになってきている。ステンレス鋼製の機 器や配管部材の耐久性において、特に重要なのは、孔食、すきま腐食、応力腐食割 れといった局部腐食であり、フェライト系ステンレス鋼においては、孔食、すきま腐食 が重要である。溶接部、フランジ取り合い部など構造上すきまが存在する部材におい ては、特にすきま腐食が重要であり、すきま腐食に起因する孔あきにより、内部流体 が漏洩することが問題となる。たとえば自動車の場合、燃料タンク、燃料給油管など の重要な部品に関して 10年から 15年に保証期間を延長する動きにあり、長期間に わたって信頼性を担保する必要が生じてレ、る。
また塩ィヒ物環境で使用されるステンレス鋼製の機器や配管部材の耐久性において も前記局部腐食が重要である。
[0008] こうしたすきま腐食により孔あきや、すきま腐食を起点とした応力腐食割れによる損 傷を防止するために、特許文献 5および特許文献 6には、塗装や犠牲防食による対 策が提示されている。
[0009] 塗装の場合には、その前処理工程で溶剤等を使用するため環境対応への負荷が 大きぐまた、犠牲防食の場合にはメンテナンスコストがかかるという問題点があった。 そのため、塗装や犠牲防食に頼らずに無垢の材料で耐すきま腐食を担保することが 望ましレ、。その一つとして、 Cr、 Moを多量に添カ卩することで耐食性を向上させたフエ ライト系ステンレス鋼の適用が考えられるが、高 Cr、高 Moを含有する鋼種は成形性に 劣る問題があるとともに、高価である。そのため、 Moのように高価な元素を多量に添 加することなぐ耐食性と成形性が両立できるような材料が望まれていた。
[0010] 特許文献 7には、 P添カ卩によって耐食性を高め、 Caおよび A1を適正量添加すること により清浄度向上および介在物形態等の制御を狙ったフェライト系ステンレス鋼が開 示されており、 Mo、 Cu、 Ni、 Coなどの選択添加が併せて記載されている。し力、し、 Pは 溶接性を劣化させるため溶接構造物を製造するときの阻害要因になると共に、製造 性を低下させるためコストが上昇する。また、 Pによる加工性低下を補うために適量の Caおよび A1を添カ卩している力 適正範囲が狭く製鋼コストが増大するため、かえって 高価な材料となりフェライト系ステンレス鋼を使用するメリットが薄れる。
[0011] また前述した特許文献 1には、 Ni添カ卩によって耐すきま腐食性を向上させたフェラ イト系ステンレス鋼が開示されており、耐すきま腐食性をさらに向上させることを目的 とした Mo、 Cuの選択添加が併せて記載されている。 Niは成形性を低下させるため、 自動車の排気系、燃料系部品など高度な成形性が要求される部材に対しては成形 が困難となる問題があった。
[0012] Sn、 Sbを含むフェライト系ステンレス鋼については、特許文献 8に高温強度に優れ たフェライト系ステンレス鋼板が開示され、特許文献 9および特許文献 10に表面特性 及び耐食性に優れたフェライト系ステンレス鋼及びその製造方法が開示されている。 前者の特許文献 8では、 Snの効果として高温強度の改善、特に長時間時効後の高 温強度低下防止を挙げており、 Sbも Snと同様に記載されている。本発明での効果は 耐すきま腐食性に対する効果であり、特許文献 8における Sn、 Sbの効果とは異なる。 一方、後者の特許文献 9及び特許文献 10は、 Mgと Caを基本として、これに Ti、 C、 N 、 P、 S、 Oを加えて、これら元素の含有量をコントロールしてリジング特性と耐食性を 改善させたことを特徴としており、 Snは選択添加元素として記載されている。 Snの効 果として耐食性改善を挙げており、実施例では孔食電位で耐食性を評価している。 孔食電位は孔食の発生に対する抵抗性を電気化学的に評価するものであるが、そ れに対し本発明ではすきま腐食を対象としている。後述するが、本発明の一態様で は、 Snの効果をすきま腐食発生後の成長抑制効果として見出しており、特許文献 9 及び特許文献 10に記載されている孔食発生に対する抵抗性向上効果とは異なる。
[0013] 特許文献 1 :特開 2005— 89828号公報 特許文献 2:特開昭 55— 138058号公報
特許文献 3:特開平 6— 172935号公報
特許文献 4:特開平 7— 34205号公報
特許文献 5:特開 2003— 277992号公報
特許文献 6:特許 3545759号公報
特許文献 7:特許 2880906号公報
特許文献 8:特開 2000— 169943号公報
特許文献 9:特開 2001— 288543号公報
特許文献 10:特開 2001— 288544号公報
発明の開示
発明が解決しょうとする課題
[0014] 本発明の第 1の目的は、高価な Ni、 Moを多量に添加することなぐ海浜環境ゃ融 雪塩を散布する寒冷地道路環境などの塩害環境、中でも、先行文献が技術課題と する塩ィ匕ナトリウムによる腐食環境より一層過酷な腐食環境である濃厚塩ィ匕マグネシ ゥムあるいは濃厚塩化カルシウムに代表される塩害環境においても、すきま腐食や 孔食による耐孔あき性に優れると共に、応力腐食割れ性 (耐応力腐食割れ)にも優れ たステンレス鋼を得ることである。
本発明の第 2の目的は、すきま部の耐孔あき性(耐すきま腐食性)と成形性に優れ たフェライト系ステンレス鋼を提供することである。
本発明の第 3の目的は、耐すきま腐食性、とくにすきま部の耐孔あき性に優れたフ エライト系ステンレス鋼を提供することである。
課題を解決するための手段
[0015] 本発明の第 1の態様の耐食性に優れたステンレス鋼は、質量%で、 C:0.001-0 .02%、 N:0.001〜0.02%、 Si:0.01〜0.5%、 Mn:0.05〜0.5%、 P:0.04 %以下、 S:0.01。 /。以下、 Ni:3%超え〜 5%、 Cr:ll〜26%を含み、更に Ti:0.0 :!〜 0.5%及び Nb:0.02〜0.6%のうちの一種又は二種を含み、残部が Fe及び不 可避不純物からなる。
[0016] Feの一部にかえて、 Mo: 3.0%以下、 Cu:l.0%以下、 V:3.0%以下、 W:5.0 %以下、 Zr:0.5%以下の範囲で、 Mo、 Cu、 V、 W、 Zrのうち 1種または 2種以上を 含んでもよい。
Al:l%以下、 Ca:0.002%以下、 Mg:0.002%以下、 B:0.005%以下のいず れカ、 1種または 2種以上を含んでもょレ、。
また、上記を満足するステンレス鋼において、オーステナイト相とマルテンサイト相 をあわせた比率が 15。/0以下で、残部がフェライト相からなり、かつフェライト相の結晶 粒度番号が No.4以上であってもよい。
[0017] 本発明の第 2の態様では、 Niによって耐すきま腐食性を向上させつつ、 Niによって 低下する成形性を、 A1の適正量添加と Al/Nb比を確保することによって優れたすきま 部の耐孔あき性 (耐すきま腐食性)と高度な成形性とを両立させたフェライト系ステン レス鋼を提供する。
本発明の第 2の態様の耐すきま腐食性、成形性に優れたフェライト系ステンレス鋼 は、質量0 で、 C:0.001〜 0.02%、 Ν:0.001〜0·02%、 Si:0.01〜l%、 Μη:0·05〜1% 、 Ρ:0.04%以下、 S:0.01%以下、 Ni:0.15〜3%、 Cr:ll〜22%、 Μο:0·5〜3%、 Ti:0.0 1〜0.5%、 Nb:0.08%未満、 Al:0.1%を超え 1%以下を含み、かつ、 Cr、 Ni、 Mo、 A1を 下記 (A)式および (B)式を満たす範囲で含み、残部が Feおよび不可避不純物からな る。
Cr+3Mo + 6Ni≥23 ·'·(Α)
Al/Nb≥ 10 ·'·(Β)
[0018] Cu: 0.1〜 1.5 %、 V: 0.02〜 3.0 %の 1種または 2種を下記(A ' )式を満たす範囲で含 んでもよい。
Cr + 3Mo + 6(Ni + Cu+V)≥23 ··· (Α')
Ca: 0.0002〜0·002%、 Mg: 0·0002〜0·002%、 Β: 0.0002〜0.005%のレ、ずれかを 1 種または 2種以上含んでもよい。
[0019] 本発明の第 3の態様では、 Sn、 Sbを適正量添加することで、耐すきま腐食性が向上 し、すきま腐食によって孔あきにいたるまでの寿命が向上することに基づき、 Sn、 Sbの 耐すきま腐食性に対する効果、特にすきま部の耐孔あき性に対する効果を基に、耐 すきま腐食性に優れたフェライト系ステンレス鋼を提供する。 本発明の第 3の態様の耐すきま腐食性に優れたフェライト系ステンレス鋼は、質量 %で、 C:0.001〜 0.02%, Ν:0·001〜0.02%、 Si:0.01〜0.5%、 Mn:0.05〜l%、 P:0. 04%以下、 S:0.01%以下、 Cr:12〜25%を含有し、 Ti、 Nbの 1種または 2種を Ti: 0.02 〜0·5%、 Nb:0.02〜l%の範囲で含み、かつ、 Sn、 Sbの 1種または 2種を Sn:0.005〜2 %、 Sb:0.005〜l%の範囲で含み、残部が Feおよび不可避不純物からなる。
[0020] Ni:5%以下、 Mo :3%以下の 1種または 2種を含んでもよレ、。
Cu:1.5。 /。以下、 V:3%以下、 W: 5%以下の 1種または 2種以上を含んでもよい。
Al:l%以下、 Ca:0.002%以下、 Mg:0.002%以下、 B:0.005%以下の 1種または 2種 以上を含んでもよい。
発明の効果
[0021] 本発明の第 1の態様は、塩害環境において、すきま腐食ゃ孔食による耐孔あき性 に優れると共に、耐応力腐食割れ性にも優れるため、飛来塩分の多い海浜環境にお ける建材、屋外機器類あるいは冬季に融雪塩を散布する寒冷地を走行する自動車 や二輪車の燃料タンク、燃料パイプ等の部品の寿命延長に有効である。
[0022] 本発明の第 2の態様によれば、優れたすきま部の耐孔あき性 (耐すきま腐食性)と 高度な成形性とを両立させたフェライト系ステンレス鋼を提供できる。このため、 自動 車、二輪車の排気系、燃料系や、給湯設備等、構造上すきま部が存在しすきま腐食 が問題となる部材に対し、本発明の第 2の態様の耐すきま腐食性に優れたフェライト 系ステンレス鋼を適用することで、耐孔あき性が向上するため部材の寿命延長に有 効である。
特に、 自動車の燃料タンク、燃料給油管などの長寿命を要求される重要部品の素 材として適している。また、成形性も良好であるため、部材への加工が容易であると 共に、製品が鋼管である場合の素材としても適している。
[0023] 本発明の第 3の態様によれば、耐すきま腐食性、特にすきま部の耐孔あき性に優 れたフェライト系ステンレス鋼を提供できる。このため、 自動車部品、給水、給湯設備 、建築設備に使用される部材のうち、構造上すきま部が存在し、塩化物環境で使用 され、優れた耐すきま腐食性が必要とされる部材に対して、本発明の第 3の態様の耐 すきま腐食性に優れたフェライト系ステンレス鋼を適用することで、すきま部の耐孔ぁ き性が向上する。このため部材の寿命延長に有効である。ここで、自動車部品として は排気系部材、燃料系部材があり、排気管、サイレンサー、燃料タンク、タンク固定用 バンド、給油管等がある。
図面の簡単な説明
[0024] [図 1]図 1は、試験片形状を示した図である。
[図 2]図 2は、実施例 1の乾湿繰り返し試験条件を示した図である。
[図 3]図 3は、実施例 2の乾湿繰り返し試験条件を示した図である。
[図 4]図 4は、(A)式と最大侵食深さの関係を示した図である。
[図 5]図 5は、成形性と耐リジング性の評価結果を示した図である。
[図 6]図 6は、 Sn、 Sbの効果を示した模式図である。
[図 7]図 7は、実施例 3の乾湿繰り返し試験条件を示した図である。
[図 8]図 8は、乾湿繰り返し試験結果を示した図である。
[図 9]図 9は、不動態化電流密度と乾湿繰り返し試験におけるすきま部の最大侵食深 さとの関係を示す図である。
符号の説明
[0025] 1 :スポット溶接部
発明を実施するための最良の形態
[0026] (第 1の実施形態)
すきま腐食ゃ孔食といった局部腐食を発生している部位では活性溶解により腐食 が進行していくが、オーステナイト系ステンレス鋼はその溶解速度が小さいため腐食 した部位の溶解によって孔あきに至るまでには多くの時間を必要とするが、溶解を停 止させるような不動態化という意味ではフェライト系ステンレス鋼に劣るため、ゆっくり した速度で活性溶解が持続して、応力腐食割れ感受性が高くなる。一方フヱライト系 ステンレス鋼は、すきま腐食や孔食を発生した部位での活性溶解速度が大きレ、ため 、腐食した部位の溶解によって孔あきにいたるまでの時間が短い反面、応力腐食割 れ感受性が低い。
[0027] 塩化マグネシウム、塩化カルシウムは、塩化ナトリウムに比べて、上記背景技術に おいて述べたようにより低い相対湿度でも水溶液として存在することが可能であり、か つ飽和濃度が高い。そのため、より広い湿度範囲でより高濃度の塩化物溶液として 存在するので、塩化ナトリウムよりも腐食性が強くなるため、すきま腐食や孔食を発生 した部位での活性溶解速度を高めるとともに、応力腐食割れも促進することとなる。
[0028] そこで、すきま腐食や孔食を発生した部位での活性溶解速度を低め、かつ応力腐 食割れ感受性を改善するために不動態化を促進する有効な合金元素についてフエ ライトステンレス鋼をベースに鋭意研究を進めた。その結果、不動態化能を劣化させ ることなぐ活性状態での溶解速度を低める最も効果的な元素が Niであり、かつ濃厚 塩化マグネシウム或いは濃厚塩化カルシウムに代表される塩害環境においてオース テナイト系ステンレス鋼なみの溶解速度とするには 3%を超える Ni量が必要であるこ とが判明した。更に、 Ni量増加とともに、第 2相としてマルテンサイト相やオーステナイ ト相が生じて、不動態化能が劣化すること、また、第 2相比率が多いと高強度、低延 性となり加工性の劣化が顕著となるが、 Ni含有量が 5%までは活性溶解速度の減少 を享受しつつ不動態化能の劣化およびカ卩ェ性の劣化を許容できることを見出して、 本発明に至った。
[0029] 本発明の第 1の実施形態は、このような知見に基づいてなされたものである。以下 に本発明で規定される化学組成についてさらに詳しく説明する。
[0030] C :耐粒界腐食性、加工性を低下させるため、その含有量を低く抑える必要がある。
し力 ながら、過度に低めることは精練コストを上昇させるため、 0. 001-0. 02%と した。望ましく ίま 0. 002〜0. 015%,より望ましく ίま 0. 002〜0· 01ο/οである。
[0031] Ν :耐孔食性、耐すきま腐食性に有用な元素であるが、耐粒界腐食性、加工性を低 下させる。また、過度に低めることは精練コストを上昇させる。そのため、 0. 001-0. 02%とした。望ましくは 0. 002〜0. 015%、より望ましくは 0. 002〜0. 01%である
[0032] Si :脱酸元素として有用であると共に、耐食性に有効な元素であるが、加工性を低 下させるため、その含有量を 0. 01-0. 5%とした。望ましくは 0. 03〜0. 3%である
[0033] Mn:脱酸元素として有用である力 S、過剰に含有させると MnSを形成して耐食性を 劣ィ匕させるので、 0. 05〜0. 5%とした。 [0034] P:溶接性、加工性を低下させるので、その含有量を低く抑える必要がある。そのた め、 Pの含有量は 0. 04%以下とした。
[0035] S : Sが、 CaS、 MnSといった溶解しやすい硫化物として存在すると、孔食あるいは すきま腐食の起点となり耐孔食性、耐すきま腐食性を劣化させる。そのため、 0. 01 %以下とした。望ましくは 0. 002%以下である。
[0036] Cr :ステンレス鋼において最も重要な耐食性を確保する上で、基本となる元素であ ると共に、フェライト組織を安定にするので、少なくとも 11 %以上必要である。増加さ せるほど耐食性は向上する力 加工性、製造性を低下させるため、上限を 26%とし た。望ましくは 16〜25%である。
[0037] Ni:塩ィ匕カルシウムや塩ィ匕マグネシウムといった塩化ナトリウムよりも厳しい腐食環 境にぉレ、て、すきま腐食や孔食を発生した部位での活性溶解速度を抑制すると共に 、不動態化に対して最も効果的な元素であり、本発明で最も重要な元素である。その 効果を発現させるには少なくとも 3%を超える Ni量が必要である。過剰に含有させる と、加工性を低下させと共にコストアップ要因にもなるので上限を 5%とした。望ましく は、 3%を超え 4%以下、より望ましくは 3%を超え 3. 5%以下である。
[0038] Tiと Nbは、いずれも C、 Nを固定し、加工性や溶接部の耐粒界腐食性を向上させ る上で有用な元素であり、本発明では Tiと Nbの一種または二種を含有する。
[0039] Ti: C、 Nを固定し、加工性や溶接部の耐粒界腐食性を向上させる上で有用な元素 であり、少なくとも 0. 01 %以上必要である。ここで、 Tiは(C + N)の和の 4倍以上含 有させることが望ましい。し力 ながら過剰の添加は、製造時の表面疵の原因となり、 製造性を劣化させるため、上限を 0. 5%とした。望ましくは 0. 03-0. 3%である。
[0040] Nb: C、 Nを固定し、加工性や溶接部の耐粒界腐食性を向上させる上で有用な元 素であり、少なくとも 0. 02%以上必要である。ここで、 Nbは(C + N)の和の 8倍以上 含有させることが望ましい。 Tiと Nbの 2種とも含有させる場合には、(Ti + Nb) / (C + N)を 6倍以上とすることが望ましい。し力、しながら、 Nbの過剰添カ卩は加工性を低下 させるため、上限を 0. 6%とした。望ましくは 0. 05〜0. 5%である。
[0041] Mo:耐食性を確保する上で、必要に応じて含有させることができる。 Moは、 Niとの 組み合わせにより、すきま腐食や孔食を発生した部位での活性溶解速度を抑制する と共に、不動態化に対する効果を高めて、耐食性を向上させる。また、 Crと同様、フ エライト相の安定化に寄与する。そのため、含有させる場合には 0. 5%以上含有させ ることが望ましい。し力 ながら、過剰の添加は、加工性を劣化させると共に、高価で あるためコストアップにつながる。したがって、含有させる場合には 0. 5〜3. 0。/oとす るのが望ましレ、。より望ましくは 0. 5〜2. 5%である。
[0042] V、 W、 Zr:耐食性を確保する上で、必要に応じて含有させることができる。いずれ も、 Niとの組み合わせにより、すきま腐食や孔食を発生した部位での活性溶解速度 を抑制すると共に、不動態化に対する効果を高めて、耐食性を向上させる。また、フ エライト相の安定化に寄与する。そのため、含有させる場合には、 Vは 0. 02%以上、 Wは 0. 5%以上、 Zrは 0. 02。/0以上の添加が望ましいが、過剰の添加は加工性を低 下させ、コストアップ要因となるので、上限を Vは 3. 0%、 Wは 5. 0%、 Zrは 0. 5%と した。
[0043] Cu :耐食性を確保する上で、必要に応じて含有させることができる。 Niとの組み合 わせにより、すきま腐食や孔食を発生した部位での活性溶解速度を抑制すると共に 、不動態化に対する効果を高めて、耐食性を向上させる。そのため、含有させる場合 には 0. 1 %以上含有させることが望ましい。し力 ながら、過剰の添加は、加工性を 劣化させる。また、オーステナイト形成元素であるため、フェライト組織を安定にする ために Crや Mo含有量を増加させる必要があり、コストアップにつながる。したがって 、含有させる場合には 0· 1〜: L 0%とするのが望ましい。より望ましくは 0. 2〜0· 6 %である。
[0044] Al、 Ca、 Mg :Al、 Ca、 Mgは脱酸効果等を有し精練上有用な元素であり、必要に 応じて含有させることができる。また、組織を微細化し、成形性、靭性の向上にも有用 であることから、 Al、 Ca、 Mgの 1種もしくは 2種以上を Al : l %以下、 Ca : 0. 002%以 下、 Mg : 0. 002%以下の範囲で含有させることが望ましレ、。このうち、 A1はフェライト 生成元素であり、高温でのオーステナイト相の生成を抑制する効果を有する。その結 果、成形性に有利なフェライト相の集合組織を形成することで成形性向上に寄与して レ、ると考えられる。なお、 A1を含有させる場合には、 0. 002%以上 0. 5%以下とする のが望ましぐまた Ca、 Mgを含有させる場合にはそれぞれ 0. 0002%以上とするの が望ましい。
[0045] B : Bは 2次加工性を向上させるのに有用な元素であり、必要に応じて 0· 0002%以 上含有させることが望ましい。し力 ながら過剰に含有させると、 1次加工性を低下さ せるので、上限を 0. 005%とした。
[0046] オーステナイト相とマルテンサイト相をあわせた比率が 15%以下で、残部がフェライ ト相からなり、かつフェライト相の結晶粒度番号が No. 4以上: Ni量増加とともに、フエ ライト相に加え、オーステナイト相やマルテンサイト相といった第 2相が存在しやすくな る。本発明の場合には多量の Cr、 Ni、 Moを添加していないのでどちらかというとマ ルテンサイト相を生成しやすい。こうした第 2相が存在すると常温伸びが低下するた め上限を 15%とするのが望ましい。また、第 2相の生成を抑えるために仕上焼鈍温 度を高温化するとフェライト相が粗大化して結晶粒度番号が No. 4未満になると常温 伸びの低下が顕著となるため、 No. 4以上とするのが望ましい。第 2相の比率を 15% 以下かつフェライト相の結晶粒度番号を No. 4以上であることは、本願発明の Ni含 有量が 3%超〜 5%の範囲において、 Cr、 Moなどのフェライト形成元素の添加量と のバランスをとると共に、最終焼鈍温度を設定することや、例えば実施例に示した方 法により達成される。
[0047] (第 2の実施形態)
自動車、二輪車の排気系、燃料系や、給湯設備等、構造上すきま部が存在する機 器、配管においては、すきま腐食に起因する孔あきがその部材の寿命を決定する重 要な因子となる。本発明者らは、すきま腐食により孔あきに至るまでの過程を、すきま 腐食が発生するまでの誘導期間と、すきま腐食発生後の成長の期間の 2つに分けて 、鋭意研究を進めた。
[0048] その結果、フェライト系ステンレス鋼は、特に後者の腐食成長の期間が短いことが、 孔あきまでの期間を短くする大きな要因であり、すきま腐食の成長速度を抑制するこ とが耐孔あき寿命を向上させる重要な因子であることが判明した。
その中で、種々の合金元素の影響を評価したところ、 Niがすきま腐食の成長速度 抑制に最も有効であり、 Cr + 3Mo + 6Niの値を 23以上とすることで耐すきま腐食性が 向上することを見出した。 [0049] 図 1に示す大小二枚の試験片を重ねて二点(図 1中で〇で示す部位)でスポット溶 接した試験片を用いて、図 3に示す試験条件で試験を行い、すきま部の最大侵食深 さを求めた。結果を図 4に示す力 Cr+ 3Mo + 6Niの値を 23以上とすることで最大す きま腐食深さが明確に低下していることがわかる。
[0050] 一方、種々のフェライト系ステンレス鋼を溶製し、成形性に及ぼす成分の影響を検 討した。その結果、 A1を適量添加した場合に成形性が良好である場合があり、また A1 と Nbの比がある値を満足するときに成形性と耐リジング性の両方が優れた特性を示 すことが判明した。
(16〜19%) 0"_ (0.8〜2.8%) ^_ 1.0。/^0_ 0.2%1鋼を基本成分として八1ぉょび Nb量を変化させた鋼種を熱延、焼鈍、冷延、焼鈍により 0.8mm厚みの鋼板を作製し、 成形性および耐リジング性を評価した結果を図 5に示す。なお成形性は後述する円 筒深絞り成形試験における成形可否で良不良を判断した。耐リジング性は円筒深絞 り後の縦壁部に凹凸 5 μ m以上の凹凸が存在するか否かで良不良を判断した。
[0051] 図より太い実線で囲んだ領域、すなわち A1量力 .1%〜1.0%であり、かつ Al/Nbの 値が 10以上である場合に良好な成形性ならびに耐リジング性が得られることがわかる 。このように成形性および耐リジング性の点から、 A1量は最適な範囲があり、多すぎて も少なすぎても両特性のどちらかが不良となること、またこれまでに着目されたこと力 S 無かった Nbと A1の比が重要な指標であることをはじめて明らかにした。
A1適量添カ卩による成形性向上効果のメカニズムは明確ではないが、 A1はフェライト 生成元素であるため、高温でのオーステナイト相の生成を抑制し、その結果、成形性 に有利なフェライト相の集合組織を形成するためと考えられる。また、 Al/Nbを制御す ることで成形性ならびに耐リジング性が良好となる原因についても明確ではないが、 Nbと A1の固溶強化力、炭窒化物生成能、再結晶速度への影響などの差が関与して レ、ると考えられる。
[0052] 本発明の第 2の実施形態は、このような知見に基づいてなされたものである。以下 に本発明で規定される化学組成についてさらに詳しく説明する。
C :耐粒界腐食性、加工性を低下させるため、その含有量を低く抑える必要がある。 し力、しながら、過度に低めることは精練コストを上昇させるため、 0.001〜0.02%とした [0053] N :耐孔食性に有用な元素である力 耐粒界腐食性、加工性を低下させるため、そ の含有量を低く抑える必要がある。し力しながら、過度に低めることは精練コストを上 昇させるため、 0.001〜0.02%とした。
[0054] Si :脱酸元素として有用であると共に、耐食性に有効な元素であるが、加工性を低 下させるため、その含有量を 0.01〜1%とした。望ましくは 0.03〜0.3%である。
[0055] Mn :脱酸元素として有用であるが、過剰に含有させると耐食性を劣化させるので、 0
.05〜1 %とした。望ましくは 0.05〜0.5%である。
[0056] P :溶接性、加工性を低下させるので、その含有量を低く抑える必要がある。しかし、 過度に低めることは、原料コスト、精練コストを高める。そのため、 Pの含有量は 0.001
〜0.04%が好ましい。
[0057] S : Sは、 CaS、 MnSといった溶解しやすい硫化物として存在すると、孔食あるいはす きま腐食の起点となりうる。そのため、 0.01 %以下とした。
[0058] Cr :耐すきま腐食性を確保する上で基本となる元素であり、少なくとも 11 %以上必 要である。含有量を増加させるほど耐すきま腐食性は向上するが、本発明で特に必 要としている耐孔あき性において、すきま腐食発生後の進展速度を低減させる効果 が大きくない。また、加工性、製造性を低下させるため、上限を 22%とした。望ましく は 15〜22%である。
[0059] M :すきま部の耐孔あき性 (耐すきま腐食性)において、すきま腐食発生後の進展速 度を低減させるうえで、最も効果的な元素である。その効果を発現させるには少なくと も 0.15%必要である。特に Moと複合させるとさらにその効果が高まる。含有量を増加 させるほどその効果は高まるが、過剰に含有させると、応力腐食割れの感受性が増 加すると共に、成形性を低下させる。また、コストアップ要因にもなるので上限を 3%と した。望ましくは 0.4〜3%である。
[0060] Mo : Moは特にすきま腐食の発生に対して効果的であること、 Niとの組み合わせによ り、すきま腐食発生後の進展速度抑制効果がより大きくなることで、すきま部の耐孔ぁ き性(耐すきま腐食性)を向上させることができる。そのため、 0.5%以上含有させるこ とが必要となる。し力 ながら、過剰の添加は、加工性を劣化させると共に、高価であ るためコストアップにつながる。したがって、 0.5〜3%とした。望ましくは 0.5〜2.5%で ある。
[0061] Ti : C、 Nを固定し、溶接部の耐粒界腐食性、加工性を向上させる上で有用な元素 であり、少なくとも 0.01%以上必要である。ここで、 Tiは (C + N)の和の 4倍以上含有さ せることが望ましい。し力 ながら過剰の添加は、製造時の表面疵の原因となり、製造 性を劣化させるため、上限を 0.5%とした。望ましくは 0.03〜0.3%である。
[0062] Nb:通常は C、 Nを固定する元素として Tiと同様に扱われることが多レ、。本発明にお いては多量の添カ卩は成形性並びに耐リジング性を劣化させる。また後述のごとく A1/ Nbの比を規定することが極めて重要であり、多量の Nbを添加することは A1添加量の 増加を招くため、上限を 0.08%とした。原料コストの大幅な増加をもたらさずに製造す るためには 0.01%以下とすることが望ましい。なお、通常の量産製造工程においては 、不可避不純物として 0.001〜0.005%程度含まれることが多い。
[0063] A1 : A1は脱酸効果等を有し精練上有用な元素であることは知られており、数十 ppm 程度含有させることがある。本発明においては、さらに A1添力卩量を増加させたときに 冷延鋼板の成形性が顕著に向上し、 0.1%を超えて含有させた場合にその効果が認 められた。し力 ながら過剰の添加は、逆に成形性を低下させるとともに、靭性を低下 させるとので 1%以下とした。望ましくは 0.1 %を超え 0.5%以下である。 A1添加による成 形性向上効果のメカニズムは明確ではないが、 A1はフェライト生成元素であるため、 高温でのオーステナイト相の生成を抑制し、その結果、成形性に有利なフェライト相 の集合組織を形成するためと考えられる。
[0064] Al/Nb :本発明者によってはじめて明らかになった指標であり、この値が 10以上であ る場合に良好な成形性ならびに耐リジング性が得られる。この値は Nb無添加の場合 に極めて大きくなるので、上限は特に規定しなレ、。 Al/Nbを制御することで成形性な らびに耐リジング性が良好となる原因については明確ではなレ、が、 Nbと A1の固溶強 化力、炭窒化物生成能、再結晶速度への影響などの差が関与していると考えられる
[0065] Cu :耐すきま腐食性を確保する上で、必要に応じて含有させることができる。 Cuは、 Niとの組み合わせにより、すきま腐食発生後の進展速度抑制効果がより大きくなるこ とで、すきま部の耐孔あき性 (耐すきま腐食性)を向上させることができる。そのため、 含有させる場合には 0.1 %以上含有させることが望ましい。し力 ながら、過剰の添加 は、加工性を劣化させると共に、高価であるためコストアップにつながる。したがって、 含有させる場合には 0.1〜1.5%とするのが望ましい。
[0066] V:耐すきま腐食性をさらに向上させる目的で、必要に応じて含有させることができ る。 Vは、 Moと同様特にすきま腐食の発生に対して効果的であるが、過剰の添力卩はコ ストアップ要因となるので、 0.02〜3.0%とした。
[0067] また、耐すきま腐食性をさらに向上させるためには、 Cu、 Vの 1種または 2種を下記(
A' )式を満たす範囲で含むことが好ましレ、。
Cr + 3Mo + 6(Ni+Cu + V)≥ 23 · · · (Α' )
[0068] Ca : Caは、 A1と同様、脱酸効果等を有し精練上有用な元素であり、必要に応じて 0.
0002〜0.002%の範囲で含有させることが望ましい。
[0069] Mg : Al、 Caと同様、脱酸効果等を有し精練上有用な元素であり、また、組織を微細 化し、加工性、靭性の向上にも有用であることから、必要に応じて Mg : 0.0002〜0.002
%の範囲で含有させることが望ましい。
[0070] B : Bは 2次加工性を向上させるのに有用な元素であり、必要に応じて含有させること ができる。し力しながら過剰に含有させると、 1次力卩ェ性を低下させるので、 0.0002〜
0.005%とした。
[0071] (第 3の実施形態)
自動車部品、給水、給湯設備、建築設備等、構造上すきま部が存在し、塩化物環 境で使用される機器、配管等においては、すきま腐食に起因する孔あきがその部材 の寿命を決定する重要な因子となる。本発明者らは、すきま腐食により孔あきに至る までの過程を、すきま腐食が発生するまでの誘導期間と、すきま腐食発生後の成長 の期間の 2つに分けて、鋭意研究を進めた。
[0072] その結果、フェライト系ステンレス鋼は、特に後者の腐食成長の期間が短いことが、 孔あきまでの期間を短くする大きな要因であり、すきま腐食の成長速度を抑制するこ とが耐孔あき寿命を向上させる重要な因子であることが判明した。
その中で、種々の合金元素の影響を評価したところ、本発明者らが特開 2006— 2 57544号公報で示した Niと同様、 Sn、 Sbはすきま腐食の成長速度抑制に対し有効で あり、 Mや Moを複合した場合にさらに効果が高まり、すきま部の耐孔あき性が向上す ることを見出した。図 6に模式図を示すように、腐食発生までの誘導期間を経過した 後の腐食成長期間における侵食深さの成長速度は、 Sn,Sb,Niを添加した場合に著し く低減する。
[0073] 0.005C— O. ISi— O. IMn— 0.025P— 0.001S— 18Cr— 0.15Ti— 0.01Nをベース成分と して、 Sn、 Sb、 Mo、 Ni、 Nb、 Cuを単独または複合添加した冷延鋼板を作成した。なお 、このうち Mo以外の元素の添加量は、いずれも 0.4%とした。これらを素材として、図 1 に示すスポット溶接試験片を用いて、図 7に示す条件にて乾湿繰り返し試験を行い、 スポット溶接すきまの最大侵食深さを実施例と同様の方法で評価した。結果を図 8に 示す。
最大侵食深さの低減に対して、 Sn、 Sb添加は Ni添加と同様な効果があり、複合添加 するとさらに効果が高まる。また、 Moと複合添加した場合でも、 Niと同様な効果があり 、 Sn、 Sbはすきま部の耐孔あき性向上に有効であり、 Niや Moを複合した場合にさらに 効果が高まることがわかる。
[0074] 次に、乾湿繰り返し試験結果とすきま腐食成長挙動との関係を電気化学的に検討 した。乾湿繰り返し試験に用いた材料のうち IMo系の材料を用いて、 pHl.5の 20%Na C1溶液中でアノード分極曲線を測定した。この溶液は、すきま腐食発生後のすきま内 模擬溶液と設定したものである。アノード分極曲線より求められる不動態化電流密度 (活性態のピーク電流密度)と、乾湿繰り返し試験におけるすきま部の最大侵食深さ との関係を、図 9に示す。
両者にはよい対応関係が認められ、このことより、 Sn、 Sb添カ卩は Ni添加と同様、すき ま腐食の成長速度を抑制する上で効果があることを知見した。
[0075] 本発明の第 3の実施形態は、このような知見に基づいてなされたものである。以下 に本発明で規定される化学組成についてさらに詳しく説明する。
C :耐粒界腐食性、加工性を低下させるため、その含有量を低く抑える必要がある。 し力、しながら、過度に低めることは精練コストを上昇させるため、 0.001〜0.02%とした [0076] N :耐孔食性に有用な元素である力 耐粒界腐食性、加工性を低下させるため、そ の含有量を低く抑える必要がある。し力しながら、過度に低めることは精練コストを上 昇させるため、 0.001〜0.02%とした。
[0077] Si :脱酸元素として有用であると共に、耐食性に有効な元素であるが、加工性を低 下させるため、その含有量を 0.01〜0.5%とした。望ましくは 0.05〜0.4%である。
[0078] Mn :脱酸元素として有用であるが、過剰に含有させると耐食性を劣化させるので、 0
.05〜1 %とした。望ましくは 0.05〜0.5%である。
[0079] P :溶接性、加工性を低下させるので、その含有量を低く抑える必要がある。しかし、 過度に低めることは、原料コスト、精練コストを高める。そのため、 Pの含有量は 0.04% 以下とした。
[0080] S : Sは、 CaS、 MnSといった溶解しやすい硫化物として存在すると、孔食あるいはす きま腐食の起点となりうる。そのため、 0.01 %以下とした。
[0081] Cr :耐すきま腐食性を確保する上で基本となる元素であり、少なくとも 12%以上必 要である。含有量を増加させるほど耐すきま腐食性は向上するが、本発明で特に必 要としている耐孔あき性において、すきま腐食発生後の進展速度を低減させる効果 が大きくない。また、加工性、製造性を低下させるため、上限を 25%とした。望ましく は 15〜22%である。
[0082] Ti、 Nb: C、 Nを固定し、溶接部の耐粒界腐食性、加工性を向上させる上で有用な 元素であり、 Ti、 Nbの 1種または 2種を、 Ti、 Nb共に少なくとも 0.02%以上含有させる 必要がある。ここで、 Tiと Nbのうち 1種のみ含有させる場合には、 Tiは (C + N)の和の 4 倍以上、 Nbは(C + N)の和の 8倍以上含有させることが望ましい。 Tiと Nbを複合して 含有させる場合には (Ti + Nb) / (C + N)を 6倍以上とすることが望ましい。しかしなが ら、 Tiを過剰に添加すると、製造時の表面疵の原因となって製造性を劣化させる。一 方、 Nbを過剰に添加すると、成形性を劣化させる。そのため、 Tiの上限を 0.5%、 Nb の上限を 1 %とした。望ましくは、 Tiは 0.03〜0.3%、 Nbは 0.05〜0.6%である。
[0083] Sn、 Sb:耐すきま腐食性、特にすきま部の耐孔あき性にぉレ、て、すきま腐食発生後 の進展速度を低減させるうえで、非常に有効な元素である。特に、 Niとの複合、さらに は Moと複合させて含有させることで、その効果が高まる。その効果を発現させるには 少なくともおのおの 0.005%必要である。含有量を増加させるほどその効果は高まる 力 過剰に含有させると、成形性、熱間加工性を低下させる。したがって、 Snは 0.005 〜2%、 Sbは 0.005〜1 %とした。望ましくは Snが 0.01〜1 %、 Sbが 0·005〜0·5%である
[0084] Ni :耐すきま腐食性を向上させる上で、必要に応じて含有させることができる。すき ま部の耐孔あき性 (耐すきま腐食性)において、すきま腐食発生後の進展速度を低減 させるうえで、非常に有効な元素である。単独でも Sn、 Sbと同様な効果があり、 Sn、 Sb と複合添加すると、さらに効果が高まる。その効果は 0.2%から安定し、含有量の増加 に伴いその効果は高まるが、過剰に含有させると、応力腐食割れの感受性が増加す ると共に、成形性を低下させる。また、コストアップ要因にもなる。したがって、 0.2-5 %の範囲で含有させるのが望ましレ、。
[0085] Mo:耐すきま腐食性を向上させる上で、必要に応じて含有させることができる。 Mo は特にすきま腐食の発生に対して効果的であることに加え、 Sn、 Sbとの複合、さらに は Mと複合させることで、すきま腐食発生後の進展速度抑制効果がより大きくなり、す きま部の耐孔あき性 (耐すきま腐食性)を向上させること力 Sできる。その効果は 0.3%か ら安定し、含有量の増加に伴いその効果は高まるが、過剰の添加は、加工性を劣化 させると共に、高価であるためコストアップにつながる。したがって、 0·3〜3%の範囲 で含有させるのが望ましい。
[0086] Cu :耐すきま腐食性を確保する上で、必要に応じて含有させることができる。すきま 腐食発生後の進展速度を低減させるうえで有効であり、0.1 %以上含有させることが 望ましレ、。し力 ながら、過剰の添加は、加工性を劣化させる。したがって、 0.1〜1.5 %の範囲で含有させるのが望ましレ、。
[0087] V:耐すきま腐食性をさらに向上させる目的で、必要に応じて含有させることができ る。 Vは、 Moと同様特にすきま腐食の発生ならびにすきま腐食発生後の進展速度を 低減させるうえで有効である。その効果は 0.02%から安定し、含有量の増加に伴いそ の効果は高まるが、過剰の添加はコストアップ要因となる。したがって、 0.02〜3.0% の範囲で含有させるのが望ましレ、。
[0088] W :耐すきま腐食性をさらに向上させる目的で、必要に応じて含有させることができ る。 Wは、 Mo、 Vと同様特にすきま腐食の発生ならびにすきま腐食発生後の進展速 度を低減させるうえで有効である。その効果は 0.3%から安定し、含有量の増加に伴 いその効果は高まるが、過剰の添加はコストアップ要因となる。したがって、 0.3〜5% の範囲で含有させるのが望ましレ、。
[0089] A1 : A1は脱酸効果等を有し精練上有用な元素であり、成形性を向上させる効果があ り、 0.003〜1 %の範囲で含有させることが望ましい。
[0090] Ca : Caは、 A1と同様、脱酸効果等を有し精練上有用な元素であり、 0.0002〜0.002
%の範囲で含有させることが望ましい。
[0091] Mg : Al、 Caと同様、脱酸効果等を有し精練上有用な元素であり、また、組織を微細 化し、加工性、靭性の向上にも有用であることから、 Mg : 0.0002〜 002%の範囲で 含有させることが望ましい。
[0092] B : Bは 2次加工性を向上させるのに有用な元素であり、 0.0002〜0.005%の範囲で 含有させることが望ましい。
実施例
[0093] (実施例 1 )
表 1 , 2に示す化学組成を有する鋼を溶製し、熱延、熱延板焼鈍、冷延、仕上焼鈍 工程を経て、板厚 1. Ommの鋼板を製造した。この冷延鋼板を用いて耐食性と常温 延性を評価した。
[0094] [表 1]
Figure imgf000023_0001
2]
Figure imgf000024_0001
[0096] (耐すきま腐食性)
冷延鋼板より、幅 60mm、長さ 130mmと幅 30mm、長さ 60mmの試験片を切り出 した後、エメリー紙にて # 320まで湿式研磨を施した。その後、これらの大小二枚の 試験片を重ねて図 1に示すような二点(図 1中で〇で示す部位 (スポット溶接部 1) )で スポット溶接を施し、幅 60mm、長さ 130mmの端面と裏面をシールテープにより被
[0097] この試験片を用いて、図 2に示す条件にて乾湿繰り返し試験を行った。噴霧溶液は 5。/0塩化カルシウム水溶液とした。試験サイクルのなかで、濃厚塩化カルシウム環境 となるのは、噴霧から乾燥過程に切り替わったときにすきま内が完全に乾燥するまで の時間である。また、サイクルの進行に伴いすきま内に塩ィ匕物イオンが蓄積されるこ とでも濃厚塩化カルシウム環境となりうる。 300サイクル完了後、大小試験片を分離し た。その後、腐食生成物を除去して、スポット溶接すきま部の侵食深さを焦点深度法 により測定した。なお、ここに定めた条件以外については、 自動車技術者協会規格 の自動車用材料腐食試験法である JASO M609— 91に規定される条件に準じた。
10点以上測定した侵食深さの中から最大値を求め、その最大値が 400 μ mを下回 るものを良(Good)、 400 μ mを超えるものを不良(bad)とした。本発明で対象としてレヽ る塩害環境で使用されるステンレス鋼の板厚は 0. 8〜2mmが主体であり、最も薄い 板厚の半分として 400 μ mを基準とした。
[0098] (耐応力腐食割れ性)
冷延鋼板より、幅 15mm、長さ 75mmの試験片を圧延方向と平行に切り出し、 8R で曲げて、平行に拘束して Uベンド試験片を作製した。 Uベンド試験片 R部外表面に 人工海水の液滴 10 μ 1を 2ケ所滴下した。試験片 R部が上になるように恒温恒湿試験 器にいれ、 80°C、 40。/。RHの条件下で、 672h保持した。本条件下では、人工海水 中に含まれる塩ィ匕ナトリウムは完全に乾燥しており、濃厚塩化マグネシウム環境とな る。試験完了後、試験片 R部外表面ならびに断面を観察して、応力腐食割れの有無 を判定した。
[0099] (ミクロ組織、常温延性)
マルテンサイト相もしくはオーステナイト相からなる第二相比率は、 500倍の断面ミ クロ組織写真をもとに画像解析により求めた。また、フェライト相の結晶粒度は、 JISG 0552に準拠して測定した。
常温延性は、上記の試験材から圧延方向と平行に JIS13B号引張試験片を採取し て常温引張試験を行い、全伸びを測定した。建材、屋外機器類あるいは自動車や二 輪車の燃料タンク、燃料パイプ等、本発明で対象としている部材成形に望ましい全伸 びの値として 20%を目安とした。
これらの試験結果を表 3に示す。
[表 3]
Figure imgf000026_0001
(注)下線部は、 第二相の比率が 15%を超えるか又はフェライ卜相の 結晶粒度番号が N o. 4未満であることを示す。 本発明範囲内にある No. Al〜No. A13の鋼は、すきま部の最大侵食深さ力 400 μ m以下であり、応力腐食割れ試験でも割れ発生がなく良好な耐食性を示すと共に 、常温伸びが 20%以上あり加工性が良好である。 Ni範囲が本発明範囲から外れる No. A14の鋼は、耐応力腐食割れ性、常温伸び は良好であるものの耐すきま腐食性に劣る。 Ni範囲と第二相比率が本発明範囲から 外れる No. A15の鋼は耐すきま腐食性、耐応力腐食割れ性は良好であるものの、 常温伸びが 20%未満と加工性に劣る。結晶粒度番号が No. 4未満の No. A16の鋼 は、常温伸びが 20%未満と加工性に劣る。 No. A17、 No. A18はそれぞれ SUS3 04、 SUS315J:!相当鋼である力 S、耐すきま腐食性は良好であるものの、応力腐食割 れ試験で割れ発生し耐応力腐食割れ性に劣る。
[0102] (実施例 2)
表 4に示す化学組成を有する鋼を溶製し、熱延、冷延、焼鈍工程を経て、板厚 1.0m mの鋼板を製造した。この冷延鋼板を用いて耐すきま腐食性、成形性、耐リジング性 を評価した。
[0103] [表 4]
1。、
115 «ϋ JO IJ
3 IS P
Θ
†6
V-
Figure imgf000028_0001
[0104] (耐すきま腐食性)
冷延鋼板より、幅 60mm、長さ 130mmと幅 30mm、長さ 60mmの試験片を切り出した後 、エメリー紙にて # 320まで湿式研磨を施した。その後、図 1に示すような形状にスポ ット溶接を施し、幅 60mm、長さ 130mmの端面と裏面をシールテープにより被覆した。 この試験片を用いて、図 3に示す条件にて乾湿繰り返し試験を行った。 180サイクル 完了後、大小試験片を分離した。その後、腐食生成物を除去して、スポット溶接隙間 部の侵食深さを光学顕微鏡焦点深度法により測定した。なお、ここに定めた試験条 件以外にっレ、ては、 自動車技術者協会規格の自動車用材料腐食試験方法である J ASO M609-91に規定される条件に準じた。
10点以上測定した侵食深さの中から最大値を求め、その最大値が 800 μ πιを下回る ものを良(Good)、 800 μ m以下を超えるものを不良(Bad)とした。本発明で対象として レ、るステンレス鋼の板厚は 0.8〜2.0mmが主体であり、最も薄い板厚を基準とした。
[0105] (成形性)
成形性については円筒深絞り試験で評価した。成形条件は、ポンチ径: Φ 50πιπι、 ポンチ肩 R: 5mm、ダイス肩 R : 5mm、ブランク径: Φ 100mm、しわ押さえ力: 1トン、 摩擦係数: 0. 11-0. 13とした。なお、この摩擦係数は、 40°Cで動粘度 1200mm2/ secの潤滑油を鋼板の表裏面に塗布することで得られるレベルである。上記条件で 成形限界絞り比: 2. 20の深絞り成形ができるかどうかをもって成形性を評価した。す なわち成形できれば良(Good)、途中で成形割れが生じた場合は不良(Bad)とした。
[0106] (耐リジング性)
耐リジング性については、冷延鋼板より圧延方向と平行方向に引張試験片を採取 し、 15%引張後に圧延方向と垂直方向の表面凹凸 (うねり)を 2次元粗度計にて測定 した。凹凸の最大高さを持ってリジング高さと定義した。リジング高さが 15 z m未満で ある場合には良(Good)とし、 15 μ m以上である場合は不良(Bad)とした。
これらの試験結果を表 5に示す。
[0107] [表 5] 耐すきま
No. (A)式の值 (B)式の鐘 成形性 耐リジング性 備考 腐食性
B1 26.2 18 良 良 良 発明例
B2 25.9 1 13 良 良 良 発明例
B3 28.8 340 良 良 良 発明例
B4 31.7 445 良 良 良 発明例
B5 25.3 44 良 良 良 発明例
B6 38.5 120 良 良 良 発明例
B了 24.3 53 良 良 良 発明例
B8 47.4 13 良 良 良 発明例
B9 38.2 15 良 良 良 発明例
B10 37.3 28 良 良 良 発明例
B1 1 43.9 13 良 良 良 発明例
B12 43.5 14 良 良 良 発明例
B13 38.6 450 良 良 良 発明例
B14 21.1 15 不良 良 良 比較例
B15 21.5 75 不良 良 良 比較例
B16 30 1 良 不良 不良 比較例
B17 38.7 2 良 不良 不良 比較例
(注)下線部は、 本発明の範囲外であることを示す。
[0108] 本発明範囲内にある Νο.Β1〜Νο.Β13の鋼は、耐すきま腐食性が良好であると共に 、成形性、耐リジング性が良好である。
Ni範囲と (A)式の値が本発明範囲から外れる No.B14、および Mo範囲と (A)式の範 囲が本発明範囲から外れる No.Bl 5は耐すきま腐食性に劣る。また、 A1範囲と(B)式 の範囲が本発明から外れる No.B16は、耐リジング性に劣る。 Nb範囲と(B)式の範囲 が本発明から外れる No.Bl 7は、成形性、耐リジング性共に劣る。
以上の実施例により、本発明の効果が確認された。
[0109] (実施例 3)
表 6に示す化学組成を有する鋼を溶製し、熱延、冷延、焼鈍工程を経て、板厚 1.0m mの鋼板を製造した。この冷延鋼板を用いて耐すきま腐食性を評価した。
[0110] [表 6]
Figure imgf000031_0001
冷延鋼板より、幅 60mm、長さ 130mmと幅 30mm、長さ 60mmの試験片を切り出した後 エメリー紙にて # 320まで湿式研磨を施した。その後、図 1に示すような形状にスポッ ト溶接を施し、幅 60mm、長さ 130mmの端面と裏面をシールテープにより被覆した。
[0112] この試験片を用いて、図 7に示す条件にて乾湿繰り返し試験を行った。 120サイクル 完了後、大小試験片を分離した。その後、腐食生成物を除去して、スポット溶接隙間 部の侵食深さを光学顕微鏡焦点深度法により測定した。深そうなところから 10点以上 測定した侵食深さの中力 最大値を求めた。なお、ここに定めた試験条件以外につ いては、自動車技術者協会規格の自動車用材料腐食試験方法である JASO M609- 91に規定される条件に準じた。
試験結果を表 7に示す。
[0113] [表 7]
No.
深さ( m)
C 1 516
C2 534
C3 487
C4 402
C5 376
C6 39了
C7 213
C8
例 205
C9 188
C 10 168
C 1 1 336
C 12 138
C 13 356
比 C 14 846
較 C 15 875
例 C16 925 [0114] 本発明範囲内にある No.Cl〜No.C13の鋼は、最大侵食深さが 600 /i m以下と、 耐すきま腐食性が良好である。 Snの範囲が本発明から外れる No.C14、 Sbの範囲が 本発明から外れる No.C15、 Crの範囲が本発明から外れる N0.CI6は、最大侵食深 さが 800 μ m以上と耐すきま腐食性に劣る。以上の実施例により本発明の効果が確認 された。
産業上の利用可能性
[0115] 本発明の第 1の態様は、飛来塩分の多い海浜環境における建材、屋外機器類、あ るいは冬季に融雪塩を散布する寒冷地において走行する自動車部品、二輪車部品 等に適する。
本発明の第 2の態様のすきま部の耐孔あき性 (耐すきま腐食性)と成形性に優れた フェライト系ステンレス鋼は、自動車、二輪車の排気系、燃料系や、給湯設備等、構 造上すきま部が存在し優れた耐すきま腐食性と成形性が要求される部材として有用 である。特に、 自動車用の燃料タンク、燃料給油管などの長寿命を要求される重要 部品に適している。
本発明の第 3の態様の耐すきま腐食性、特にすきま部の耐孔あき性に優れたフェラ イト系ステンレス鋼は、 自動車部品、給水、給湯設備、建築設備等、構造上すきま部 が存在し、塩化物環境で使用される機器、配管等において、優れた耐すきま腐食性 が必要とされる部材に使用される部材として有用である。

Claims

請求の範囲
[1] 質量0 /oで、 C:0. 001〜0. 02%、 N:0. 001〜0. 02%、 Si:0. 01〜0. 5%、 Mn
:0. 05〜0. 5%、P:0. 04%以下、 S:0. 01%以下、 Ni: 3%超え〜 5%、 Cr: 11〜 26%を含み、更に Ti:0. 01〜0. 5%及び Nb:0. 02〜0. 6%のうちの一種または 二種を含み、残部が Fe及び不可避不純物からなることを特徴とする耐食性に優れた ステンレス鋼。
[2] Mo :3. 0%以下、 Cu:l. 0%以下、 V:3. 0%以下、 W:5. 0%以下、 Zr:0. 5% 以下の範囲で、 Mo、 Cu、 V、 W、 Zrのうち 1種または 2種以上を含むことを特徴とす る請求項 1に記載の耐食性に優れたステンレス鋼。
[3] 八1:1%以下、〇&:0. 002%以下、 Mg:0. 002%以下、 B:0. 005%以下のいず れカ 1種または 2種以上を含むことを特徴とする請求項 1又は 2に記載の耐食性に優 れたステンレスま岡。
[4] オーステナイト相とマルテンサイト相をあわせた比率が 15%以下で、残部がフェライ ト相からなり、かつフェライト相の結晶粒度番号が No. 4以上であることを特徴とする 請求項 3に記載の耐食性に優れたステンレス鋼。
[5] オーステナイト相とマルテンサイト相をあわせた比率が 15%以下で、残部がフェライ ト相からなり、かつフヱライト相の結晶粒度番号が No. 4以上であることを特徴とする 請求項 1又は 2に記載の耐食性に優れたステンレス鋼。
[6] 質量0 /0で、 C:0.001〜0.02%、 Ν:0.001〜0·02%、 Si:0.01〜l%、 Μη:0·05〜1%、 Ρ
:0.04%以下、 S:0.01%以下、 Ni:0.15〜3%、 Cr:ll〜22%、 Mo:0.5〜3%、 Ti:0.01
〜0.5%、 Nb:0.08%未満、 Al:0.1%を超え 1%以下を含み、かつ、
Cr、 Ni、 Mo、 A1を下記 (A)式および(B)式を満たす範囲で含み、残部が Feおよび不 可避不純物からなることを特徴とする耐すきま腐食性、成形性に優れたフェライト系ス テンレス鋼。
Cr+3Mo + 6Ni≥23 ·'·(Α)
Al/Nb≥10 ·'·(Β)
[7] Cu: 0.1〜 1.5 %、 V: 0.02〜 3.0 %の 1種または 2種を下記(A ' )式を満たす範囲で含 むことを特徴とする請求項 6に記載の耐すきま腐食性、成形性に優れたフェライト系 ステンレス鋼。
Cr+3Mo + 6(Ni + Cu+V)≥23 ··· (Α')
[8] Ca:0.0002〜0.002%、 Mg: 0.0002〜0.002%、 8:0.0002〜0.005%のぃずれかを1 種または 2種以上含むことを特徴とする請求項 6又は 7に記載の耐すきま腐食性、成 形性に優れたフヱライト系ステンレス鋼。
[9] 質量0 /0で、 C:0.001〜0.02%、 Ν:0.001〜0·02%、 Si:0.01〜0.5%、 Μη:0·05〜1%
、 Ρ: 0.04%以下、 S: 0.01%以下、 Cr:12〜25%を含有し、
Ti、 ^^の1種または2種を1 :0.02〜0.5%、 Nb:0.02〜l%の範囲で含み、かつ、 Sn、 Sbの 1種または 2種を Sn:0.005〜2%、 Sb: 0.005〜1%の範囲で含み、残部が Fe および不可避不純物からなることを特徴とする耐すきま腐食性に優れたフェライト系 ステンレス鋼。
[10] Ni:5%以下、 Mo :3%以下の 1種または 2種を含むことを特徴とする請求項 9に記載 の耐すきま腐食性に優れたフェライト系ステンレス鋼。
[11] Cu:1.5%以下、 V:3%以下、 W: 5%以下の 1種または 2種以上を含むことを特徴と する請求項 9又は 10に記載の耐すきま腐食性に優れたフェライト系ステンレス鋼。
[12] Al:l%以下、 Ca:0.002%以下、 Mg:0.002%以下、 B:0.005%以下の 1種または 2種 以上を含むことを特徴とする請求項 11に記載の耐すきま腐食性に優れたフェライト 系ステンレス 岡。
[13] Al:l%以下、 Ca:0.002%以下、 Mg:0.002%以下、 B:0.005%以下の 1種または 2種 以上を含むことを特徴とする請求項 9又は 10に記載の耐すきま腐食性に優れたフエ ライト系ステンレス鋼。
PCT/JP2007/059501 2006-05-09 2007-05-08 耐食性に優れたステンレス鋼、耐すきま腐食性、成形性に優れたフェライト系ステンレス鋼、および耐すきま腐食性に優れたフェライト系ステンレス鋼 WO2007129703A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN200780016464XA CN101437974B (zh) 2006-05-09 2007-05-08 耐腐蚀性优良的不锈钢、耐间隙腐蚀性和成形性优良的铁素体系不锈钢、以及耐间隙腐蚀性优良的铁素体系不锈钢
KR1020117000666A KR101179408B1 (ko) 2006-05-09 2007-05-08 내간극 부식성이 우수한 페라이트계 스테인리스 강
KR1020127010106A KR101261192B1 (ko) 2006-05-09 2007-05-08 내간극 부식성이 우수한 페라이트계 스테인리스 강
US12/226,592 US8470237B2 (en) 2006-05-09 2007-05-08 Stainless steel excellent in corrosion resistance, ferritic stainless steel excellent in resistance to crevice corrosion and formability, and ferritic stainless steel excellent in resistance to crevice corrosion
KR1020117000667A KR101120764B1 (ko) 2006-05-09 2007-05-08 내식성이 우수한 스테인리스 강
CA2650469A CA2650469C (en) 2006-05-09 2007-05-08 Stainless steel excellent in corrosion resistance, ferritic stainless steel excellent in resistance to crevice corrosion and formability, and ferritic stainless steel excellent in resistance to crevice corrosion

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006-130172 2006-05-09
JP2006130172 2006-05-09
JP2006212115A JP5042553B2 (ja) 2006-08-03 2006-08-03 耐すきま腐食性、成形性に優れたフェライト系ステンレス鋼
JP2006-212115 2006-08-03
JP2006215737A JP5089103B2 (ja) 2006-05-09 2006-08-08 耐食性に優れたステンレス鋼
JP2006-215737 2006-08-08
JP2007026328A JP4727601B2 (ja) 2007-02-06 2007-02-06 耐すきま腐食性に優れたフェライト系ステンレス鋼
JP2007-026328 2007-02-06

Publications (1)

Publication Number Publication Date
WO2007129703A1 true WO2007129703A1 (ja) 2007-11-15

Family

ID=38667811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059501 WO2007129703A1 (ja) 2006-05-09 2007-05-08 耐食性に優れたステンレス鋼、耐すきま腐食性、成形性に優れたフェライト系ステンレス鋼、および耐すきま腐食性に優れたフェライト系ステンレス鋼

Country Status (5)

Country Link
US (1) US8470237B2 (ja)
KR (4) KR101179408B1 (ja)
CN (1) CN101437974B (ja)
CA (3) CA2777715C (ja)
WO (1) WO2007129703A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096244A1 (ja) 2008-01-28 2009-08-06 Nippon Steel & Sumikin Stainless Steel Corporation 耐食性と加工性に優れた高純度フェライト系ステンレス鋼およびその製造方法
JP2010031315A (ja) * 2008-07-28 2010-02-12 Nippon Steel & Sumikin Stainless Steel Corp 加熱後耐食性に優れた自動車排気系部材用省合金型フェライト系ステンレス鋼
WO2010067878A1 (ja) 2008-12-09 2010-06-17 新日鐵住金ステンレス株式会社 耐銹性に優れた高純度フェライト系ステンレス鋼およびその製造方法
CN102725432A (zh) * 2010-01-28 2012-10-10 杰富意钢铁株式会社 韧性优异的高耐腐蚀性铁素体系不锈钢热轧钢板
US20130011294A1 (en) * 2010-03-08 2013-01-10 Matsuhashi Tooru Ferritic stainless steel excellent in corrosion resistance in environment of condensed water from hydrocarbon combustion gas
EP2554701A1 (en) * 2010-03-29 2013-02-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet superior in surface glossiness and corrosion resistance and method for producing same
US20130149187A1 (en) * 2010-09-16 2013-06-13 Nippon Steel & Sumikin Stainless Steel Sheet Corporation Heat-resistant ferritic stainless steel sheet having excellent oxidation resistance
US20130319583A1 (en) * 2011-02-17 2013-12-05 Nippon Steel & Sumikin Stainless Steel Corporation High-purity ferritic stainless steel sheet with excellent oxidation resistance and high-temperature strength, and process for producing the same
CN103667892A (zh) * 2013-11-29 2014-03-26 国网河南省电力公司平顶山供电公司 一种耐酸性土壤腐蚀耐磨的接地网合金材料
WO2014050011A1 (ja) * 2012-09-25 2014-04-03 Jfeスチール株式会社 フェライト系ステンレス鋼
JP2017129164A (ja) * 2016-01-18 2017-07-27 三菱重工業株式会社 配管支持構造及びその形成方法
TWI715754B (zh) * 2016-03-30 2021-01-11 日商日鐵不銹鋼股份有限公司 含有Nb之肥粒鐵系不銹鋼板及其製造方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5586279B2 (ja) 2010-03-15 2014-09-10 新日鐵住金ステンレス株式会社 自動車排気系部材用フェライト系ステンレス鋼
JP5744575B2 (ja) * 2010-03-29 2015-07-08 新日鐵住金ステンレス株式会社 複相組織ステンレス鋼鋼板および鋼帯、製造方法
JP2012012005A (ja) 2010-06-03 2012-01-19 Nippon Steel & Sumikin Stainless Steel Corp 給油管およびその製造方法
JP5891892B2 (ja) * 2011-03-29 2016-03-23 Jfeスチール株式会社 高塩分環境下で耐候性に優れたさび層付き鋼材
CN103608479B (zh) * 2011-06-16 2016-09-07 新日铁住金不锈钢株式会社 抗皱性优良的铁素体系不锈钢板及其制造方法
CN102312166B (zh) * 2011-07-01 2013-04-03 山西太钢不锈钢股份有限公司 一种含锡铁素体不锈钢及其冶炼方法
CN102277538B (zh) * 2011-07-27 2013-02-27 山西太钢不锈钢股份有限公司 一种含锡铁素体不锈钢板及其制造方法
WO2013035775A1 (ja) * 2011-09-06 2013-03-14 新日鐵住金ステンレス株式会社 耐食性及び加工性に優れるフェライト系ステンレス鋼
ES2602800T3 (es) * 2011-11-30 2017-02-22 Jfe Steel Corporation Acero inoxidable ferrítico
JP5435179B2 (ja) * 2011-12-27 2014-03-05 Jfeスチール株式会社 フェライト系ステンレス鋼
US20150023832A1 (en) * 2012-03-13 2015-01-22 Jfe Steel Corporation Ferritic stainless steel
WO2014104424A1 (ko) * 2012-12-24 2014-07-03 주식회사 포스코 내응축수 부식특성, 성형성 및 고온 내산화 특성이 우수한 자동차 배기계용 페라이트계 스테인리스강 및 그 제조방법
CN103451539A (zh) * 2013-01-10 2013-12-18 上海大学 节铬型含铝铁素体不锈钢及其制备方法
JP5843982B2 (ja) 2013-02-04 2016-01-13 新日鐵住金ステンレス株式会社 加工性に優れたフェライト系ステンレス鋼板およびその製造方法
TWI548757B (zh) * 2013-03-14 2016-09-11 新日鐵住金不銹鋼股份有限公司 時效熱處理後之強度增加小的肥粒鐵系不鏽鋼板及其製造方法
MY160981A (en) * 2013-07-29 2017-03-31 Jfe Steel Corp Ferritic stainless steel having excellent corrosion resistance of weld zone
CN103741075B (zh) * 2013-12-23 2016-01-13 马鞍山市盈天钢业有限公司 一种高压锅炉用耐腐蚀钢管材料及其制备方法
KR101623243B1 (ko) * 2013-12-24 2016-05-20 주식회사 포스코 성형성 및 광택이 우수한 페라이트계 스테인리스강 및 그 제조 방법
US9499889B2 (en) 2014-02-24 2016-11-22 Honeywell International Inc. Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
JP6671996B2 (ja) * 2015-02-27 2020-03-25 キヤノン株式会社 導電性ローラ、プロセスカートリッジ及び電子写真装置
EP3112492A1 (en) * 2015-06-29 2017-01-04 Vallourec Oil And Gas France Corrosion resistant steel, method for producing said steel and its use thereof
WO2017056452A1 (ja) 2015-09-29 2017-04-06 Jfeスチール株式会社 フェライト系ステンレス鋼
KR102047401B1 (ko) * 2015-12-21 2019-11-25 주식회사 포스코 내공식성 및 내응축수 부식성이 개선된 자동차 배기계용 페라이트계 스테인리스강 및 이의 제조 방법
CN106167880A (zh) * 2016-07-14 2016-11-30 龙泉市卓越刀剑有限公司 一种宝剑外置安全锁扣制作方法
CN106223190A (zh) * 2016-08-31 2016-12-14 中铁第四勘察设计院集团有限公司 一种无涂装耐海洋大气腐蚀的桥梁钢支座
KR101844577B1 (ko) 2016-12-13 2018-04-03 주식회사 포스코 내열성 및 내응축수 부식성이 개선된 자동차 배기계용 페라이트계 스테인리스강 및 이의 제조 방법
KR101903180B1 (ko) * 2016-12-22 2018-10-01 주식회사 포스코 접촉저항이 우수한 고분자 연료전지 분리판용 스테인리스강 및 이의 제조 방법
KR102508125B1 (ko) * 2018-01-31 2023-03-08 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스강
CN109518087B (zh) * 2018-12-17 2021-06-25 苏州孚杰机械有限公司 用于低温低合金高强度耐腐蚀的油田阀体及其锻造工艺
CN112522641B (zh) * 2019-09-19 2022-08-16 宝山钢铁股份有限公司 一种高强薄规格高耐蚀钢及其制造方法
US11492690B2 (en) 2020-07-01 2022-11-08 Garrett Transportation I Inc Ferritic stainless steel alloys and turbocharger kinematic components formed from stainless steel alloys
TWI796838B (zh) * 2021-11-17 2023-03-21 日商日鐵不銹鋼股份有限公司 肥粒鐵系不鏽鋼板
CN115354243A (zh) * 2022-08-30 2022-11-18 浙江青山钢铁有限公司 一种含铌双相不锈螺纹钢筋及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285300A (ja) * 2001-01-18 2002-10-03 Kawasaki Steel Corp フェライト系ステンレス鋼板およびその製造方法
JP2005146345A (ja) * 2003-11-14 2005-06-09 Nippon Steel & Sumikin Stainless Steel Corp 耐酸化性に優れたフェライト系ステンレス鋼
JP2005220429A (ja) * 2004-02-09 2005-08-18 Nippon Steel & Sumikin Stainless Steel Corp 耐食性と加工性に優れたフェライト系ステンレス鋼板
JP2005336599A (ja) * 2003-10-31 2005-12-08 Jfe Steel Kk 耐食性に優れたラインパイプ用高強度ステンレス鋼管およびその製造方法
JP2006274391A (ja) * 2005-03-30 2006-10-12 Nisshin Steel Co Ltd ひずみ検出センサー基板用ステンレス鋼

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2616599B2 (de) 1976-04-13 1981-03-26 Mannesmann AG, 40213 Düsseldorf Verwendung eines hochlegierten Stahles zum Herstelen von hochfesten, gegen Sauergaskorrosion beständigen Gegenständen
DE2701329C2 (de) 1977-01-14 1983-03-24 Thyssen Edelstahlwerke AG, 4000 Düsseldorf Korrosionsbeständiger ferritischer Chrom-Molybdän-Nickelstahl
JPS55138058A (en) 1979-04-12 1980-10-28 Daido Steel Co Ltd High chromium ferrite stainless steel
ZA814922B (en) 1980-08-08 1982-07-28 Allegheny Ludlum Steel Stabilised ferritic stainless steel with improved brazeability
US4461811A (en) 1980-08-08 1984-07-24 Allegheny Ludlum Steel Corporation Stabilized ferritic stainless steel with improved brazeability
JPH01249294A (ja) 1988-03-29 1989-10-04 Nippon Stainless Steel Co Ltd プレコートろう材被覆金属板材とその製法とその利用法
DE69317990T2 (de) 1992-02-25 1998-08-06 Kawasaki Steel Co Korrosions- und wetterbeständiger ferribischer stahl mit hohem chrom- und phosphorgehalt
JP2675957B2 (ja) 1992-02-25 1997-11-12 川崎製鉄株式会社 耐候性、耐銹性に優れた高Cr,P添加フェライト系ステンレス鋼
JP3067892B2 (ja) * 1992-06-19 2000-07-24 新日本製鐵株式会社 表面性状と深絞り性の優れたフェライト系ステンレス鋼薄板の製造方法
JP2880906B2 (ja) 1993-05-19 1999-04-12 川崎製鉄株式会社 耐候性、耐隙間腐食性に優れたフェライト系ステンレス鋼
CA2123470C (en) 1993-05-19 2001-07-03 Yoshihiro Yazawa Ferritic stainless steel exhibiting excellent atmospheric corrosion resistance and crevice corrosion resistance
JP2642056B2 (ja) 1994-04-22 1997-08-20 日本冶金工業株式会社 熱交換器用フェライト系ステンレス鋼
IT1275287B (it) * 1995-05-31 1997-08-05 Dalmine Spa Acciaio inossidabile supermartensitico avente elevata resistenza meccanica ed alla corrosione e relativi manufatti
JP3359471B2 (ja) * 1995-07-28 2002-12-24 新日本製鐵株式会社 耐ローピング性に優れたフェライト系ステンレス鋼板
JP3518117B2 (ja) 1995-12-27 2004-04-12 Jfeスチール株式会社 表面が滑らかな高Crフェライト系ステンレス熱延薄鋼板の製造方法
JP3904683B2 (ja) * 1997-09-12 2007-04-11 新日鐵住金ステンレス株式会社 表面性状に優れたフェライト系ステンレス鋼及びその製造方法
JPH11236654A (ja) 1998-02-25 1999-08-31 Nippon Steel Corp ロウ接性に優れたアンモニア−水系吸収式サイクル熱交換器用ステンレス鋼
JP3546714B2 (ja) 1998-08-27 2004-07-28 Jfeスチール株式会社 高温強度、加工性および表面性状に優れたCr含有鋼
JP2000169943A (ja) 1998-12-04 2000-06-20 Nippon Steel Corp 高温強度に優れたフェライト系ステンレス鋼及びその製造方法
JP4252145B2 (ja) 1999-02-18 2009-04-08 新日鐵住金ステンレス株式会社 耐遅れ破壊性に優れた高強度・高靭性ステンレス鋼
JP3468156B2 (ja) 1999-04-13 2003-11-17 住友金属工業株式会社 自動車排気系部品用フェライト系ステンレス鋼
JP2001026855A (ja) 1999-07-14 2001-01-30 Nisshin Steel Co Ltd 自己ろう付け性に優れたニッケルろう被覆ステンレス鋼板の製造方法
JP4390961B2 (ja) 2000-04-04 2009-12-24 新日鐵住金ステンレス株式会社 表面特性及び耐食性に優れたフェライト系ステンレス鋼
JP4390962B2 (ja) * 2000-04-04 2009-12-24 新日鐵住金ステンレス株式会社 表面特性及び耐食性に優れた高純度フェライト系ステンレス鋼
JP3448542B2 (ja) * 2000-04-13 2003-09-22 新日本製鐵株式会社 成形性とリジング特性に優れたフェライト系ステンレス鋼板及びその製造方法
JP4390169B2 (ja) 2000-06-23 2009-12-24 日新製鋼株式会社 ガスタービンの排気ガス経路部材用フェライト系ステンレス鋼
CA2354665C (en) * 2000-08-09 2006-10-31 Nippon Steel Corporation Soluble lubricating surface-treated stainless steel sheet with excellent shapability for fuel tank and method for manufacturing fuel tank
ES2230227T3 (es) 2000-12-25 2005-05-01 Nisshin Steel Co., Ltd. Lamina de acero inoxidable ferritico con buena trabajabilidad y metodo para su fabricacion.
EP1225242B1 (en) 2001-01-18 2004-04-07 JFE Steel Corporation Ferritic stainless steel sheet with excellent workability and method for making the same
JP3545759B2 (ja) 2001-06-01 2004-07-21 新日本製鐵株式会社 耐食性に優れた燃料タンクもしくは燃料パイプとその製造方法
DE60204323T2 (de) 2001-07-05 2006-01-26 Nisshin Steel Co., Ltd. Ferritischer nichtrostender stahl für ein element einer abgasstrompassage
JP4144283B2 (ja) * 2001-10-18 2008-09-03 住友金属工業株式会社 マルテンサイト系ステンレス鋼
JP4042102B2 (ja) 2001-10-18 2008-02-06 日立金属株式会社 排気ガス再循環系部品
KR100762151B1 (ko) * 2001-10-31 2007-10-01 제이에프이 스틸 가부시키가이샤 딥드로잉성 및 내이차가공취성이 우수한 페라이트계스테인리스강판 및 그 제조방법
JP3750596B2 (ja) 2001-12-12 2006-03-01 住友金属工業株式会社 マルテンサイト系ステンレス鋼
JP4014907B2 (ja) 2002-03-27 2007-11-28 日新製鋼株式会社 耐食性に優れたステンレス鋼製の自動車用燃料タンクおよび給油管
JP3995978B2 (ja) 2002-05-13 2007-10-24 日新製鋼株式会社 熱交換器用フェライト系ステンレス鋼材
JP2004277663A (ja) 2003-03-18 2004-10-07 National Institute For Materials Science サイアロン蛍光体とその製造方法
JP3886933B2 (ja) 2003-06-04 2007-02-28 日新製鋼株式会社 プレス成形性,二次加工性に優れたフェライト系ステンレス鋼板及びその製造方法
JP2005055153A (ja) 2003-08-07 2005-03-03 Toyota Motor Corp 熱交換器
JP4190993B2 (ja) 2003-09-17 2008-12-03 日新製鋼株式会社 耐隙間腐食性を改善したフェライト系ステンレス鋼板
JP2005089850A (ja) 2003-09-19 2005-04-07 Nisshin Steel Co Ltd 高強度フェライト系ステンレス鋼
BRPI0416001B1 (pt) 2003-10-31 2017-04-11 Jfe Steel Corp tubo de aço inoxidável sem costura para tubulações de condução
JP4325421B2 (ja) 2004-02-04 2009-09-02 住友金属工業株式会社 耐海水鋼
JP4519505B2 (ja) 2004-04-07 2010-08-04 新日鐵住金ステンレス株式会社 成形性に優れるフェライト系ステンレス鋼板およびその製造方法
JP4519543B2 (ja) 2004-07-01 2010-08-04 新日鐵住金ステンレス株式会社 耐食性,冷間加工性および靱性に優れる磁性を有する安価ステンレス鋼線及びその製造方法
US7476337B2 (en) 2004-07-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
JP4572368B2 (ja) 2004-08-12 2010-11-04 株式会社フジクラ サイアロン蛍光体の製造方法
US7732733B2 (en) * 2005-01-26 2010-06-08 Nippon Welding Rod Co., Ltd. Ferritic stainless steel welding wire and manufacturing method thereof
RU2693990C1 (ru) 2005-02-01 2019-07-08 Акционерное общество "Ижевский опытно-механический завод" Сталь, изделие из стали и способ его изготовления
JP4749881B2 (ja) 2005-02-15 2011-08-17 新日鐵住金ステンレス株式会社 耐すきま腐食性に優れたフェライト系ステンレス鋼
JP2007064515A (ja) 2005-08-29 2007-03-15 Usui Kokusai Sangyo Kaisha Ltd 熱交換器用偏平伝熱管およびその製造方法
JP2007224786A (ja) 2006-02-22 2007-09-06 Komatsu Ltd 排気ガス再循環装置
JP2008096048A (ja) 2006-10-13 2008-04-24 Tokyo Radiator Mfg Co Ltd 排気ガス用熱交換器のインナーフィン
JP4915923B2 (ja) 2007-02-09 2012-04-11 日立金属株式会社 耐酸性に優れたフェライト系ステンレス鋳鋼および鋳造部材
JP5196807B2 (ja) 2007-02-26 2013-05-15 新日鐵住金ステンレス株式会社 加工肌荒れの小さい成形性に優れたフェライト系ステンレス鋼板およびその製造方法
JP5178156B2 (ja) 2007-11-13 2013-04-10 日新製鋼株式会社 自動車排ガス経路部材用フェライト系ステンレス鋼材
JP5178157B2 (ja) 2007-11-13 2013-04-10 日新製鋼株式会社 自動車排ガス経路部材用フェライト系ステンレス鋼材
JP5390175B2 (ja) 2007-12-28 2014-01-15 新日鐵住金ステンレス株式会社 ろう付け性に優れたフェライト系ステンレス鋼
JP5264199B2 (ja) 2008-01-28 2013-08-14 日新製鋼株式会社 フェライト系ステンレス鋼を用いたegrクーラー

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285300A (ja) * 2001-01-18 2002-10-03 Kawasaki Steel Corp フェライト系ステンレス鋼板およびその製造方法
JP2005336599A (ja) * 2003-10-31 2005-12-08 Jfe Steel Kk 耐食性に優れたラインパイプ用高強度ステンレス鋼管およびその製造方法
JP2005146345A (ja) * 2003-11-14 2005-06-09 Nippon Steel & Sumikin Stainless Steel Corp 耐酸化性に優れたフェライト系ステンレス鋼
JP2005220429A (ja) * 2004-02-09 2005-08-18 Nippon Steel & Sumikin Stainless Steel Corp 耐食性と加工性に優れたフェライト系ステンレス鋼板
JP2006274391A (ja) * 2005-03-30 2006-10-12 Nisshin Steel Co Ltd ひずみ検出センサー基板用ステンレス鋼

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174036A (ja) * 2008-01-28 2009-08-06 Nippon Steel & Sumikin Stainless Steel Corp 耐食性と加工性に優れた高純度フェライト系ステンレス鋼およびその製造方法
US8262815B2 (en) 2008-01-28 2012-09-11 Nippon Steel & Sumikin Stainless Steel Corporation High-purity ferritic stainless steel with excellent corrosion resistance and workability and method of production of same
CN101903553B (zh) * 2008-01-28 2015-09-09 新日铁住金不锈钢株式会社 耐腐蚀性和加工性优异的高纯度铁素体系不锈钢及其制造方法
WO2009096244A1 (ja) 2008-01-28 2009-08-06 Nippon Steel & Sumikin Stainless Steel Corporation 耐食性と加工性に優れた高純度フェライト系ステンレス鋼およびその製造方法
JP2010031315A (ja) * 2008-07-28 2010-02-12 Nippon Steel & Sumikin Stainless Steel Corp 加熱後耐食性に優れた自動車排気系部材用省合金型フェライト系ステンレス鋼
US8721960B2 (en) 2008-12-09 2014-05-13 Nippon Steel & Sumikin Stainless Steel Corporation High-purity ferritic stainless steels excellent in corrosion resistance and method of production of same
WO2010067878A1 (ja) 2008-12-09 2010-06-17 新日鐵住金ステンレス株式会社 耐銹性に優れた高純度フェライト系ステンレス鋼およびその製造方法
CN102725432A (zh) * 2010-01-28 2012-10-10 杰富意钢铁株式会社 韧性优异的高耐腐蚀性铁素体系不锈钢热轧钢板
CN102725432B (zh) * 2010-01-28 2015-04-15 杰富意钢铁株式会社 韧性优异的高耐腐蚀性铁素体系不锈钢热轧钢板
US20130011294A1 (en) * 2010-03-08 2013-01-10 Matsuhashi Tooru Ferritic stainless steel excellent in corrosion resistance in environment of condensed water from hydrocarbon combustion gas
EP2554701A4 (en) * 2010-03-29 2015-04-29 Nippon Steel & Sumikin Sst FERRITIC STAINLESS STEEL PLATE WITH EXCELLENT SURFACE GLOSS AND EXCELLENT CORROSION STRENGTH AND MANUFACTURING METHOD THEREFOR
EP2554701A1 (en) * 2010-03-29 2013-02-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet superior in surface glossiness and corrosion resistance and method for producing same
US20130149187A1 (en) * 2010-09-16 2013-06-13 Nippon Steel & Sumikin Stainless Steel Sheet Corporation Heat-resistant ferritic stainless steel sheet having excellent oxidation resistance
US20130319583A1 (en) * 2011-02-17 2013-12-05 Nippon Steel & Sumikin Stainless Steel Corporation High-purity ferritic stainless steel sheet with excellent oxidation resistance and high-temperature strength, and process for producing the same
US9938598B2 (en) * 2011-02-17 2018-04-10 Nippon Steel & Sumikin Stainless Steel Corporation High-purity ferritic stainless steel sheet with excellent oxidation resistance and high-temperature strength, and process for producing the same
WO2014050011A1 (ja) * 2012-09-25 2014-04-03 Jfeスチール株式会社 フェライト系ステンレス鋼
JP5534119B1 (ja) * 2012-09-25 2014-06-25 Jfeスチール株式会社 フェライト系ステンレス鋼
CN103667892A (zh) * 2013-11-29 2014-03-26 国网河南省电力公司平顶山供电公司 一种耐酸性土壤腐蚀耐磨的接地网合金材料
CN103667892B (zh) * 2013-11-29 2016-04-13 国家电网公司 一种耐酸性土壤腐蚀耐磨的接地网合金材料
JP2017129164A (ja) * 2016-01-18 2017-07-27 三菱重工業株式会社 配管支持構造及びその形成方法
TWI715754B (zh) * 2016-03-30 2021-01-11 日商日鐵不銹鋼股份有限公司 含有Nb之肥粒鐵系不銹鋼板及其製造方法

Also Published As

Publication number Publication date
KR20110009268A (ko) 2011-01-27
US8470237B2 (en) 2013-06-25
KR20120049410A (ko) 2012-05-16
CA2777715C (en) 2014-06-03
KR20110006740A (ko) 2011-01-20
CN101437974B (zh) 2011-07-13
US20100150770A1 (en) 2010-06-17
CA2650469A1 (en) 2007-11-15
KR20080110662A (ko) 2008-12-18
CA2776892C (en) 2014-12-09
CA2777715A1 (en) 2007-11-15
CN101437974A (zh) 2009-05-20
CA2650469C (en) 2014-02-11
KR101179408B1 (ko) 2012-09-04
KR101261192B1 (ko) 2013-05-09
KR101120764B1 (ko) 2012-03-22
CA2776892A1 (en) 2007-11-15

Similar Documents

Publication Publication Date Title
WO2007129703A1 (ja) 耐食性に優れたステンレス鋼、耐すきま腐食性、成形性に優れたフェライト系ステンレス鋼、および耐すきま腐食性に優れたフェライト系ステンレス鋼
JP4727601B2 (ja) 耐すきま腐食性に優れたフェライト系ステンレス鋼
JP6338031B1 (ja) 耐硫酸露点腐食鋼
US9238855B2 (en) Ferrite-based stainless steel for use in components of automobile exhaust system
KR101690441B1 (ko) 내열성이 우수한 페라이트계 스테인리스 강판
JP6338032B1 (ja) 耐硫酸露点腐食鋼
JP6056132B2 (ja) 燃料タンク用オーステナイト・フェライト系二相ステンレス鋼
WO1996018751A1 (fr) Acier inoxydable duplex presentant une remarquable resistance a la corrosion
JP4749881B2 (ja) 耐すきま腐食性に優れたフェライト系ステンレス鋼
JP6332575B1 (ja) 耐硫酸露点腐食鋼
JPWO2018038196A1 (ja) 耐硫酸露点腐食鋼
JP5042553B2 (ja) 耐すきま腐食性、成形性に優れたフェライト系ステンレス鋼
JPH08144021A (ja) フェライトステンレス鋼およびその冷延鋼板の製造方法
JP5089103B2 (ja) 耐食性に優れたステンレス鋼
CN102762756B (zh) 焊接变形小且耐腐蚀性优异的钢板
JP2022151087A (ja) フェライト系ステンレス鋼板
JP2010126780A (ja) 燃焼排ガス流路構成部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742936

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12226592

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2650469

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020087027083

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780016464.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07742936

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020117000666

Country of ref document: KR

Ref document number: 1020117000667

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020127010106

Country of ref document: KR