WO2007113981A1 - 触媒組成物 - Google Patents

触媒組成物 Download PDF

Info

Publication number
WO2007113981A1
WO2007113981A1 PCT/JP2007/054565 JP2007054565W WO2007113981A1 WO 2007113981 A1 WO2007113981 A1 WO 2007113981A1 JP 2007054565 W JP2007054565 W JP 2007054565W WO 2007113981 A1 WO2007113981 A1 WO 2007113981A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst composition
general formula
noble metal
composite oxide
solution
Prior art date
Application number
PCT/JP2007/054565
Other languages
English (en)
French (fr)
Inventor
Hirohisa Tanaka
Isao Tan
Mari Uenishi
Masashi Taniguchi
Mareo Kimura
Satoshi Matsueda
Original Assignee
Daihatsu Motor Co., Ltd.
Cataler Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co., Ltd., Cataler Corporation filed Critical Daihatsu Motor Co., Ltd.
Priority to EP07738055A priority Critical patent/EP2000201A4/en
Priority to JP2008508472A priority patent/JP5166245B2/ja
Priority to US12/225,418 priority patent/US20100227759A1/en
Priority to CN2007800114890A priority patent/CN101410180B/zh
Publication of WO2007113981A1 publication Critical patent/WO2007113981A1/ja
Priority to US14/284,878 priority patent/US20140271431A1/en
Priority to US14/733,306 priority patent/US20150265968A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2047Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a catalyst composition used as a reaction catalyst in a gas phase or a liquid phase.
  • Exhaust gas emitted from internal combustion engines such as automobiles contains hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx), etc., and these are purified.
  • HC hydrocarbons
  • CO carbon monoxide
  • NOx nitrogen oxides
  • Three-way catalysts are known.
  • a three-way catalyst for exhaust gas purification comprising a noble metal component particle having a particle size of 1 to 20 nm and a cocatalyst component film that coats / sinters the noble metal component particle,
  • a compound having a spinel structure and a complex acidity has been proposed (for example, see Patent Document 1 below).
  • Patent Document 1 JP 2006-51431 A
  • the composite oxide having a spinel structure only covers the noble metal component particles, and the high temperature or acid ⁇ ⁇ Under reduced fluctuations and even during long-term use, the noble metal component particles move and coalesce on the surface of the composite oxide having a spinel structure, resulting in grain growth, reducing the effective surface area of the noble metal component particles. As a result, there is a problem that the catalytic activity is lowered.
  • An object of the present invention is to prevent a decrease in catalytic activity due to noble metal grain growth under high temperature or oxidation-reduction fluctuations, and also during long-term use, and to realize excellent catalytic activity over a long period of time. It is to provide a catalyst composition.
  • the catalyst composition of the present invention is characterized by containing a complex acid salt represented by the following general formula (1).
  • represents a monovalent element, divalent element and lanthanoid force
  • B represents a trivalent element
  • C represents a noble metal
  • X represents an integer from 1 to 6
  • y indicates the atomic ratio of 0 ⁇ y ⁇ 2
  • a indicates the oxygen atom deficiency ratio.
  • At least a group force consisting of Li, Na, K, Mg, Ca, Sr, Ba, Fe, La, Pr, and Nd is selected in the general formula (1).
  • One element is preferred.
  • At least one element selected from the group force consisting of B force Al, Ti, Mn, Fe, Co, Ni, and Mo is selected. Is preferred.
  • C is preferably at least one noble metal selected from the group force consisting of Rh, Pd, and Pt.
  • X is preferably 1 and Z or 6.
  • the composite oxide is at least one selected from the group force of spinel type crystal phase, hexaluminate type crystal phase, magnetoplumbite type crystal phase and beta alumina type crystal phase. It preferably contains a seed crystal phase.
  • the catalyst composition of the present invention can be widely used as a gas phase or liquid phase reaction catalyst containing a noble metal as an active component.
  • the catalyst composition of the present invention contains a complex acid salt represented by the following general formula (1). ⁇ ⁇ ⁇ ( ⁇ CO) (1)
  • A represents a monovalent element, divalent element and lanthanoid force
  • B represents a trivalent element
  • C represents a noble metal
  • X represents an integer from 1 to 6
  • y indicates the atomic ratio of 0 ⁇ y ⁇ 2
  • a indicates the oxygen atom deficiency ratio.
  • examples of the monovalent element represented by A include Li (lithium), Na (sodium), K (potassium), Rb (rubidium), Cs (cesium), and Fr (francium). Examples include alkali metals.
  • examples of the divalent element represented by A include alkalis such as Be (beryllium), Mg (magnesium), Ca (calcium), Sr (strontium), Ba (barium), and Ra (radium).
  • Earth metals such as Fe (+2) (iron (divalent)), Co (+2) (cobalt (divalent)), Ni (+2) (nickel (divalent)), Cu (+2) ) (Copper (divalent)), Zn (+2) (zinc (divalent)), and other divalent transition metals.
  • the lanthanoid represented by A includes, for example, La (lanthanum), Ce (cerium), Pr (praseodymium), Nd (neodymium), Pm (promethium), Sm (samarium), Eu (europium) ), Gd (gadolinium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Yb (ytterbium), and Lu (lutetium).
  • the element represented by A is preferably Li, Na, K, Mg, Ca, Sr, Ba, Fe (+2), La, Pr, or Nd. More preferably, K, Mg, Ca, Sr, Fe (+2), La, Pr, and Nd are mentioned.
  • the trivalent element represented by B is, for example, Al (+3) (aluminum (trivalent)), for example, Ti (+3) (titanium (trivalent) )), Cr (+3) (chromium (trivalent)), Mn (+3) (manganese (trivalent)), Fe (+3) (iron (trivalent)), Co (+3) (cobalt ( Trivalent)), Ni (+3) (nickel (trivalent)), Mo (+3) (molybdenum (trivalent)), such as Ga (+3) (gallium (trivalent) )).
  • Al (+3) (aluminum (trivalent) for example, Ti (+3) (titanium (trivalent) )), Cr (+3) (chromium (trivalent)), Mn (+3) (manganese (trivalent)), Fe (+3) (iron (trivalent)), Co (+3) (cobalt ( Trivalent)), Ni (+3) (nickel (trivalent)), Mo (+3) (molybdenum (trivalent)), such as Ga (+3) (gallium (trivalent) )
  • the element represented by B is preferably A1 (+3), Ti (+3), Mn (+3), Fe (+3), C o (+ 3), Ni (+ 3), Mo (+ 3). More preferably, Al (+3), Ti (+3), Fe (+3), and Ni (+3) are mentioned.
  • examples of the noble metal represented by C include Ru (ruthenium), Rh (rhodium), Pd (palladium), Ag (silver), Os (osmium), Ir (iridium) Pt (white gold).
  • Rh, Pd, and Pt are mentioned. More preferably, Rh and Pt are mentioned.
  • These noble metals represented by C may be used alone or in combination of two or more.
  • X represents an integer of 1 to 6.
  • the complex oxide represented by the general formula (1) has 1 mol of oxide represented by BCO for 1 mol of oxide represented by AO.
  • the spinel crystal phase is coordinated as the crystal phase
  • the composite oxide represented by the general formula (1) is an oxide represented by BCO with respect to 1 mol of the oxide represented by AO. (Precious metal is solid solution
  • Y represents the atomic ratio of C with 0 ⁇ y ⁇ 2. That is, C is an essential component, and preferably y represents an atomic ratio of C of 0.001 ⁇ y ⁇ 0.1.
  • the atomic ratio of B is 2—y, that is, the residual atomic ratio obtained by subtracting the atomic ratio of C from 2.
  • oc represents an oxygen atom deficiency ratio and is represented by 0 or a positive integer. More specifically, the theoretical composition ratio of the oxide represented by B C O (B
  • a represents the amount of oxygen defects and the ratio of vacancies generated in the crystal structure of the composite oxide represented by the general formula (1).
  • Such a composite oxide represented by the general formula (1) includes CaAl 2 O 3, BaAl 2 O 3, and BaF.
  • MgAl Fe RhO MgTiRhO, PrAl RhO and the like.
  • the composite oxide represented by the general formula (1) is not particularly limited, and may be any suitable method for preparing a composite oxide such as a coprecipitation method, a taenoic acid complex method, an alkoxide method. It can manufacture by.
  • a mixed salt aqueous solution containing a salt of each element described above (excluding noble metal salts) in a predetermined stoichiometric ratio is prepared, and a neutralizing agent is added to the mixed salt aqueous solution to perform coprecipitation. Thereafter, the obtained coprecipitate is dried and then heat-treated.
  • Examples of the salt of each element include inorganic salts such as sulfate, nitrate, chloride, and phosphate, and organic acid salts such as acetate and oxalate.
  • the mixed salt aqueous solution can be prepared, for example, by adding the salt of each element to water at a ratio that gives a predetermined stoichiometric ratio and stirring and mixing.
  • a neutralizing agent is added to the mixed salt aqueous solution to cause coprecipitation.
  • the neutralizing agent include ammonia, organic bases such as amines such as triethylamine, pyridine, and the like, such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, and ammonium carbonate. An inorganic base is mentioned. Add the neutralizing agent so that the pH of the solution after adding the neutralizing agent is about 6-10.
  • the obtained coprecipitate is washed with water as necessary, and dried by, for example, vacuum drying or ventilation drying, and then heat-treated at, for example, 500 to 1000 ° C, preferably 600 to 950 ( A primary composite oxide is obtained by performing primary firing.
  • a precursor composition is prepared by adding an aqueous noble metal salt solution to the obtained primary composite oxide, and the obtained precursor composition is dried by, for example, vacuum drying or ventilation drying,
  • the composite oxide represented by the general formula (1) is obtained by heat treatment (secondary firing) at 500 to 1400 ° C, preferably 800 to 1200 ° C.
  • Examples of the noble metal salt include salts similar to those described above, and can be prepared in the same manner as described above. Practically, nitrate aqueous solution, dinitrodiammine nitric acid solution, chloride aqueous solution and the like can be mentioned. More specifically, as the rhodium salt solution, for example, rhodium nitrate solution, salt Examples thereof include a rhodium iodide solution.
  • Examples of the palladium salt solution include a palladium nitrate aqueous solution, a dinitrodiammine palladium nitric acid solution, and a tetravalent palladium ammine nitric acid solution.
  • Examples of the platinum salt solution include dinitrodiammine platinum nitrate solution, chloroplatinic acid solution, and tetravalent platinum ammine solution.
  • an aqueous solution including noble metals
  • a co-precipitated product is added to this by adding a neutralizing agent, and then the obtained co-product is obtained. After drying the sediment, heat treatment is required.
  • citrate and salts of each of the above elements are slightly more than the stoichiometric ratio of the above elements (excluding noble metal salts).
  • Aqueous acid mixed salt aqueous solution was prepared by adding an aqueous acid solution, and this aqueous citrate mixed salt solution was dried to form a taenoic acid complex of each of the above elements (excluding noble metal salts).
  • the taenoic acid complex is calcined and then heat treated.
  • Examples of the salt of each element include the same salts as described above, and the citrate mixed salt aqueous solution is prepared by, for example, preparing a mixed salt aqueous solution in the same manner as described above. Can be prepared by caloring an aqueous solution of
  • the aqueous citrate mixed salt solution is dried to form a taenoic acid complex of each element described above. Drying removes moisture at a temperature at which the formed taenoic acid complex does not decompose, for example, from room temperature to 150 ° C. Thereby, a taenoic acid complex of each element described above (excluding noble metal salts) can be formed.
  • the formed taenoic acid complex is subjected to a heat treatment after calcination.
  • a heat treatment for example, heating is performed at 250 to 350 ° C. in a vacuum or an inert atmosphere.
  • a primary composite oxide is obtained by heat treatment (primary firing) at 500 to 1200 ° C., preferably 600 to 1000 ° C.
  • a precursor composition is prepared by adding a noble metal salt aqueous solution to the obtained primary composite oxide, and the obtained precursor composition is subjected to, for example, vacuum drying or ventilation drying. After drying with a throat, for example, 500-1400. C, preferably 800-1200. By heat treatment with C (secondary firing), a composite oxide represented by the above general formula (1) is obtained.
  • the alkoxide of each of the above elements is used. Is mixed in the above stoichiometric ratio, and the mixed alkoxide solution is hydrolyzed by adding water to obtain a precipitate.
  • alkoxide of each element for example, (modified, tri) alcohol formed from each element and alkoxy such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, etc., is represented by the following general formula (2). (Modified, tri) alkoxy alcoholate of each element shown.
  • E represents each element, R1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R2 represents an alkyl group having 1 to 4 carbon atoms, and i represents 1 to 3 , J represents an integer from 2 to 4.
  • the alkoxy alcoholate includes, for example, methoxyethylate, methoxypropylate, methoxybutyrate, ethoxychelate, ethoxypropylate, propoxyethylate, butoxychelate and the like.
  • the mixed alkoxide solution can be prepared, for example, by adding the alkoxide of each element to the organic solvent so as to have the above stoichiometric ratio, and stirring and mixing.
  • the element is not particularly limited as long as the alkoxide of the element can be dissolved, and examples thereof include aromatic hydrocarbons, aliphatic hydrocarbons, alcohols, ketones, and esters.
  • aromatic hydrocarbons such as benzene, toluene and xylene are used.
  • the obtained precipitate is evaporated to dryness, and then dried by, for example, vacuum drying or ventilation drying, for example, 500 to 1000.
  • C preferably 600-950.
  • a primary composite oxide is obtained by heat treatment (primary firing) with C.
  • a precursor composition is prepared by adding a noble metal salt aqueous solution to the obtained primary composite oxide, and the obtained precursor composition is subjected to, for example, vacuum drying or ventilation drying. After drying with a throat, for example, 500-1400. C, preferably 800-1200. By heat treatment with C (secondary firing), a composite oxide represented by the above general formula (1) is obtained.
  • the thus obtained complex oxide represented by the above general formula (1) is used as it is. Although it can be used as a composition, it is usually prepared as a catalyst composition by a known method such as loading on a catalyst carrier.
  • the catalyst carrier is not particularly limited, and examples thereof include a known catalyst carrier such as a powerful hard-like monolith carrier such as cordierite.
  • the noble metal is coordinated in the crystal structure of the complex oxide represented by the general formula (1), and the coordinated noble metal is reduced.
  • the crystal structure strength also precipitates and dissolves in the crystal structure in the acid atmosphere.
  • the catalyst yarn and composite of the present invention can be used for a long period of time by such a self-regeneration function that repeats the dissolution of the noble metal in an acidic / oxidized atmosphere and the precipitation in a reducing atmosphere. Even in this case, the grain growth of the noble metal is effectively suppressed, and the dispersion state of the noble metal in the composite oxide is well maintained. As a result, even if the amount of noble metal used is significantly reduced, high catalytic activity can be realized over a long period of time.
  • the catalyst composition of the present invention can be widely used as a gas phase or liquid phase reaction catalyst.
  • an exhaust gas purification system for purifying exhaust gas exhausted from an internal combustion engine such as a gasoline engine or a diesel engine or a boiler. It can be suitably used as a catalyst for catalyst.
  • an aqueous rhodium nitrate solution (corresponding to an Rh content of 0.0007 mol) was prepared, and stirred for 1 hour to be impregnated to obtain a precursor composition.
  • This precursor composition was dried at 100 ° C. for 2 hours and then heat-treated at 1000 ° C. for 1 hour (secondary firing) to obtain a heat-resistant oxide powder composed of MgAl Rh 2 O.
  • a mixed alkoxide solution was prepared by adding the above components to a 500 mL round-bottom flask and adding 200 mL of toluene with stirring and dissolving. This mixed alkoxide solution was then hydrolyzed dropwise over 600 minutes in 600 mL of deionized water. Toluene and deionized water were distilled off from the hydrolyzed solution and evaporated to dryness. This was air-dried at 60 ° C. for 24 hours and then heat-treated at 800 ° C. for 1 hour (primary firing) to obtain a primary composite oxide.
  • an aqueous rhodium nitrate solution (corresponding to 0.005 mol Rh content) was added and stirred for 1 hour to be impregnated to obtain a precursor composition.
  • This precursor composition was dried at 100 ° C. for 2 hours, and then heat-treated at 1000 ° C. for 2 hours (secondary firing) to obtain a heat-resistant oxide powder composed of SrAl Fe Rh 2 O 3.
  • This primary composite oxide was calcined with an aqueous rhodium nitrate solution (corresponding to Rh content 0.0007 mol), stirred and mixed for 1 hour, and impregnated to obtain a precursor composition.
  • This precursor composition was dried at 100 ° C. for 2 hours and then heat-treated at 1000 ° C. for 1 hour (secondary firing) to obtain a heat-resistant oxide powder composed of MgAl Fe Rh 2 O.
  • the above components were added to a 500 mL round bottom flask, and lOOmL of deionized water was added and dissolved by stirring to prepare a mixed salt aqueous solution. Subsequently, the above mixed aqueous solution was gradually dropped into an alkaline aqueous solution (neutralizing agent) prepared by dissolving 25. Og of sodium carbonate in 200 g of deionized water to obtain a coprecipitate. The coprecipitate was washed with water, filtered, and vacuum dried at 80 ° C. Next, heat treatment (primary firing) was performed at 800 ° C. for 1 hour to obtain a primary composite oxide.
  • an aqueous rhodium nitrate solution (corresponding to Rh content 0.0007 mol) was prepared, and stirred for 1 hour to be impregnated to obtain a precursor composition.
  • This precursor composition was dried at 100 ° C. for 2 hours and then heat-treated at 1000 ° C. for 1 hour (secondary firing) to obtain a heat-resistant oxide powder composed of MgAl Fe Rh 2 O.
  • Rh-supported ⁇ -Al 2 O 3 (Rh / Al 2 O 3) powder was obtained.
  • the Rh loading of a—Al O is 2.0
  • the powders (acids) obtained in each Example and Comparative Example were oxidized (in the atmosphere, 1 hour, 800 ° C), and then reduced (CO: 7.5%, H: 2. 5%, N: Balance, 1 hour
  • Rh dissolved in the filtrate was quantitatively analyzed by ICP (high frequency inductively coupled plasma) emission spectrometry. From the result, the solid solution ratio of Rh to the acid oxide was calculated. Also, the precipitation amount of Rh was calculated from the difference between the Rh solid solution amount after the acid treatment and the Rh solid solution amount after the reduction treatment. The results are shown in Table 1.
  • the powder obtained in 1 was alternately exposed to an oxidizing atmosphere and a reducing atmosphere, and then cooled to room temperature in the reducing atmosphere.
  • the inert atmosphere, the oxidizing atmosphere, and the reducing atmosphere respectively correspond to exhaust gas atmospheres that are exhausted when the stoichiometric, lean, and rich gas mixtures are burned.
  • Each atmosphere is composed of 300 x 10 " 3 m 3 of gas containing the composition shown in Table 2 including high-temperature steam. Prepared by feeding at Zhr flow rate. The ambient temperature was maintained at about 1000 ° C.
  • Test Example 3 (430 ° C purification rate)
  • Example 1 after reduction treatment (CO: 7.5%, H: 2.5%, N: balance, 1 hour, 800 ° C),
  • the catalyst composition of the present invention can be widely used as a gas phase or liquid phase reaction catalyst.
  • an internal combustion engine such as a gasoline engine, a diesel engine, or a boiler purifies exhaust gas from which power is also exhausted. It can be suitably used as an exhaust gas purification catalyst for soot

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

 高温下または酸化還元変動下、さらには、長期使用時において、貴金属の粒成長による触媒活性低下を防ぎ、優れた触媒活性を長期にわたって実現することのできる、触媒組成物を提供する。  下記一般式(1)で示される複合酸化物を含む触媒組成物を調製する。        AO・x(B2-yCyO3-α)     (1) (式中、Aは1価の元素、2価の元素およびランタノイドから選択される元素を示し、Bは3価の元素を示し、Cは貴金属を示す。xは1~6の整数を示し、yは0<y<2の原子割合を示し、αは酸素原子の不足割合を示す。)

Description

触媒組成物
技術分野
[0001] 本発明は、気相や液相の反応触媒として用いられる触媒組成物に関する。
背景技術
[0002] 自動車などの内燃機関から排出される排気ガスには、炭化水素 (HC)、一酸化炭 素 (CO)、窒素酸ィ匕物 (NOx)などが含まれており、これらを浄化する三元触媒が知 られている。
このような排気ガス浄ィ匕触媒として、例えば、活性成分である貴金属と、担持成分で あるセリウム酸化物、ジルコニウム酸ィ匕物またはべロプスカイト複合酸ィ匕物と力もなる 触媒組成物が各種提案されて!ヽる。
[0003] 例えば、粒径 l〜20nmの貴金属成分粒子と、貴金属成分粒子を被覆して!/ヽる助 触媒成分被膜とからなる排気ガス浄化用三元触媒であって、助触媒成分が、スピネ ル型構造の複合酸ィ匕物力もなるものが提案されている (例えば、下記特許文献 1参。
) o
特許文献 1 :特開 2006— 51431号公報
発明の開示
発明が解決しょうとする課題
[0004] しかし、上記特許文献 1に記載される排気ガス浄ィ匕用三元触媒では、スピネル型構 造の複合酸化物が、貴金属成分粒子を被覆しているのみであり、高温下または酸ィ匕 還元変動下、さらには、長期使用時において、貴金属成分粒子が、スピネル型構造 の複合酸化物の表面を移動、合体することにより粒成長を生じ、貴金属成分粒子の 有効表面積が減少して、その結果、触媒活性が低下するという不具合がある。
[0005] 本発明の目的は、高温下または酸化還元変動下、さらには、長期使用時において 、貴金属の粒成長による触媒活性低下を防ぎ、優れた触媒活性を長期にわたって実 現することのできる、触媒組成物を提供することにある。
課題を解決するための手段 [0006] 上記目的を達成するため、本発明の触媒組成物は、下記一般式(1)で示される複 合酸ィ匕物を含んで 、ることを特徴として 、る。
ΑΟ ·χ (Β C O ) (1)
2-y y 3- α
(式中、 Αは 1価の元素、 2価の元素およびランタノイド力 選択される元素を示し、 B は 3価の元素を示し、 Cは貴金属を示す。 Xは 1〜6の整数を示し、 yは 0< y< 2の原 子割合を示し、 aは酸素原子の不足割合を示す。 )
また、本発明の触媒組成物では、上記一般式(1)中、 Aが、 Li、 Na、 K、 Mg、 Ca、 Sr、 Ba、 Fe、 La、 Pr、 Ndからなる群力も選択される少なくとも 1種の元素であることが 好適である。
[0007] また、本発明の触媒組成物では、上記一般式(1)中、 B力 Al、 Ti、 Mn、 Fe、 Co、 Ni、 Moからなる群力 選択される少なくとも 1種の元素であることが好適である。 また、本発明の触媒組成物では、上記一般式(1)中、 Cが、 Rh、 Pd、 Ptからなる群 力 選択される少なくとも 1種の貴金属であることが好適である。
[0008] また、本発明の触媒組成物では、上記一般式(1)中、 Xが、 1および Zまたは 6であ ることが好適である。
また、本発明の触媒組成物では、上記複合酸化物が、スピネル型結晶相、へキサ アルミネート型結晶相、マグネトプランバイト型結晶相およびベータアルミナ型結晶相 力 なる群力 選択される少なくとも 1種の結晶相を含んでいることが好適である。 発明の効果
[0009] 本発明の触媒組成物によれば、貴金属が、上記式(1)で示される複合酸化物に対 して、酸化雰囲気下で固溶し、還元雰囲気下で析出する固溶再生(自己再生)を、 効率的に繰り返すので、貴金属の複合酸化物に対する分散状態が、良好に保持さ れる。
そのため、長期にわたって、貴金属の粒成長による触媒活性低下を防止することが でき、高い触媒活性を保持することができる。その結果、本発明の触媒組成物は、貴 金属を活性成分とする気相や液相の反応触媒として広く用いることができる。
発明の実施形態
[0010] 本発明の触媒組成物は、下記一般式(1)で示される複合酸ィ匕物を含んでいる。 ΑΟ ·χ (Β C O ) (1)
2-y y 3-
(式中、 Aは 1価の元素、 2価の元素およびランタノイド力 選択される元素を示し、 B は 3価の元素を示し、 Cは貴金属を示す。 Xは 1〜6の整数を示し、 yは 0<y< 2の原 子割合を示し、 aは酸素原子の不足割合を示す。 )
上記一般式(1)において、 Aで示される 1価の元素としては、例えば、 Li (リチウム) 、 Na (ナトリウム)、 K (カリウム)、 Rb (ルビジウム)、 Cs (セシウム)、 Fr (フランシウム)な どのアルカリ金属が挙げられる。
[0011] また、 Aで示される 2価の元素としては、例えば、 Be (ベリリウム)、 Mg (マグネシウム )、 Ca (カルシウム)、 Sr (ストロンチウム)、 Ba (バリウム)、 Ra (ラジウム)などのアルカリ 土類金属、例えば、 Fe ( + 2) (鉄(2価))、 Co ( + 2) (コバルト (2価))、 Ni ( + 2) (ニッ ケル(2価))、 Cu ( + 2) (銅(2価))、 Zn ( + 2) (亜鉛(2価))などの 2価の遷移金属な どが挙げられる。
[0012] また、 Aで示されるランタノイドとしては、例えば、 La (ランタン)、 Ce (セリウム)、 Pr ( プラセオジム)、 Nd (ネオジム)、 Pm (プロメチウム)、 Sm (サマリウム)、 Eu (ユーロピ ゥム)、 Gd (ガドリニウム)、 Tb (テルビウム)、 Dy (ジスプロシウム)、 Ho (ホルミウム)、 Er (エルビウム)、 Tm (ツリウム)、 Yb (イッテルビウム)、 Lu (ルテチウム)などが挙げら れる。
[0013] Aで示される元素として、好ましくは、 Li、 Na、 K、 Mg、 Ca、 Sr、 Ba、 Fe ( + 2)、 La 、 Pr、 Ndが挙げられる。さらに好ましくは、 K、 Mg、 Ca、 Sr、 Fe ( + 2)、 La、 Pr、 Nd が挙げられる。
これら Aで示される元素は、単独で用いてもよぐまた、 2種以上併用することもでき る。
[0014] 上記一般式(1)において、 Bで示される 3価の元素としては、例えば、 Al ( + 3) (ァ ルミニゥム(3価))、例えば、 Ti ( + 3) (チタン(3価))、 Cr ( + 3) (クロム(3価))、 Mn ( + 3) (マンガン (3価))、 Fe ( + 3) (鉄(3価))、 Co ( + 3) (コバルト (3価))、 Ni ( + 3) ( ニッケル(3価))、 Mo ( + 3) (モリブデン(3価))などの 3価の遷移金属、例えば、 Ga ( + 3) (ガリウム(3価))などが挙げられる。
[0015] Bで示される元素として、好ましくは、 A1 ( + 3)、 Ti ( + 3)、 Mn ( + 3)、 Fe ( + 3)、 C o ( + 3)、 Ni ( + 3)、 Mo ( + 3)が挙げられる。さらに好ましくは、 Al ( + 3)、 Ti ( + 3)、 Fe ( + 3)、 Ni ( + 3)が挙げられる。
これら Bで示される元素は、単独で用いてもよぐまた、 2種以上併用することもでき る。
[0016] 上記一般式(1)において、 Cで示される貴金属としては、例えば、 Ru (ルテニウム) 、 Rh (ロジウム)、 Pd (パラジウム)、 Ag (銀)、 Os (オスミウム)、 Ir (イリジウム)、 Pt (白 金)などが挙げられる。
好ましくは、 Rh、 Pd、 Ptが挙げられる。さらに好ましくは、 Rh、 Ptが挙げられる。
[0017] これら Cで示される貴金属は、単独で用いてもよぐまた、 2種以上併用することもで きる。
上記一般式(1)において、 Xは、 1〜6の整数を示す。例えば、 Xが 1である場合には 、上記一般式(1)で示される複合酸ィ匕物は、 AOで示される酸化物 1モルに対して、 B C O で示される酸ィ匕物 1モルが配位する、結晶相としてスピネル型結晶相を
2-y y 3- α
有する複合酸化物となる。
[0018] また、例えば、 Xが 6である場合には、上記一般式(1)で示される複合酸ィ匕物は、 A Oで示される酸化物 1モルに対して、 B C O で示される酸化物(貴金属が固溶
2-y y 3- α
する酸ィ匕物) 6モルが配位する、結晶相としてへキサアルミネート型結晶相、マグネト プランバイト型結晶相またはベータアルミナ型結晶相を有する複合酸ィ匕物となる。 また、 yは 0 < y< 2の Cの原子割合を示す。つまり、 Cは、必須成分であり、好ましく は、 yは 0. 001≤y≤0. 1の Cの原子割合を示す。そして、 Bの原子割合は、 2— y、 つまり、 2から Cの原子割合を差し引いた残余の原子割合となる。
[0019] また、上記一般式(1)において、 ocは、酸素原子の不足割合を示し、 0または正の 整数で表される。より具体的には、 B C O で示される酸化物の理論構成比(B
2-y y 3- α
+ C) : 0 = 2 : 3に対して、(B + C)サイトの構成原子が不足したことに起因する酸素 原子の不足割合を示す。換言すると、 aは、酸素欠陥量を示し、上記一般式(1)で 示される複合酸化物の結晶構造に生じる空孔の割合を示す。
[0020] このような上記一般式(1)で示される複合酸化物は、 CaAl O 、 BaAl O 、 BaF
12 19 12 19 e O 、SrFe O 、 KA1 O , LaFe(2 +)Fe(3 +) O 、 MgTi O、 MgFe O、 FeAl O、 MnAl O、 MnFe O、 MgAl Oなどに貴金属を複合した組成、例えば
2 4 2 4 2 4 2 4
、 MgAl Rh O、 SrAl Fe Rh O 、 MgAl Fe Rh O、
1. 993 0. 007 4 11. 00 0. 95 0. 05 19 1. 593 0. 400 0. 007 4
MgAl Fe Rh O、 MgTiRhO、 PrAl RhO などが挙げられる。
1. 953 0. 040 0. 007 4 4 11 18
[0021] そして、上記一般式(1)に示される複合酸化物は、特に制限されることなぐ複合酸 化物を調製するための適宜の方法、例えば、共沈法、タエン酸錯体法、アルコキシド 法などによって、製造することができる。
共沈法では、例えば、上記した各元素の塩 (貴金属塩を除く)を所定の化学量論比 で含む混合塩水溶液を調製し、この混合塩水溶液に中和剤を加えて共沈させた後、 得られた共沈物を乾燥後、熱処理する。
[0022] 各元素の塩としては、例えば、硫酸塩、硝酸塩、塩化物、りん酸塩などの無機塩、 例えば、酢酸塩、しゅう酸塩などの有機酸塩などが挙げられる。また、混合塩水溶液 は、例えば、各元素の塩を、所定の化学量論比となるような割合で水に加えて、攪拌 混合すること〖こより調製することができる。
その後、この混合塩水溶液に、中和剤を加えて共沈させる。中和剤としては、例え ば、アンモニア、例えば、トリェチルァミン、ピリジンなどのアミン類などの有機塩基、 例えば、水酸化ナトリウム、水酸ィ匕カリウム、炭酸ナトリウム、炭酸カリウム、炭酸アンモ -ゥムなどの無機塩基が挙げられる。なお、中和剤は、その中和剤を加えた後の溶 液の pHが 6〜 10程度となるように加える。
[0023] そして、得られた共沈物を、必要により水洗し、例えば、真空乾燥や通風乾燥など により乾燥させた後、例えば、 500〜1000°C、好ましくは、 600〜950でで熱処理(1 次焼成)することにより、 1次複合酸化物を得る。
次いで、得られた 1次複合酸化物に、貴金属塩水溶液を加えて前駆体組成物を調 製し、得られた前駆体組成物を、例えば、真空乾燥や通風乾燥などにより乾燥させた 後、例えば、 500〜1400°C、好ましくは、 800〜1200°Cで熱処理(2次焼成)するこ とにより、上記一般式(1)で示される複合酸化物を得る。
[0024] 貴金属塩は、上記と同様の塩が挙げられ、上記と同様に調製することができる。ま た、実用的には、硝酸塩水溶液、ジニトロジアンミン硝酸溶液、塩化物水溶液などが 挙げられる。より具体的には、ロジウム塩溶液として、例えば、硝酸ロジウム溶液、塩 化ロジウム溶液などが挙げられる。また、パラジウム塩溶液として、例えば、硝酸パラ ジゥム水溶液、ジニトロジアンミンパラジウム硝酸溶液、 4価パラジウムアンミン硝酸溶 液などが挙げられる。また、白金塩溶液として、例えば、ジニトロジアンミン白金硝酸 溶液、塩化白金酸溶液、 4価白金アンミン溶液などが挙げられる。
[0025] また、上記の方法にぉ ヽては、構成する元素全ての水溶液 (貴金属を含む。 )を調 製して、これに中和剤を加えて共沈させた後、得られた共沈物を乾燥後、熱処理す ることちでさる。
また、タエン酸錯体法では、例えば、クェン酸と上記した各元素の塩 (貴金属塩を 除く)とを、上記した各元素 (貴金属塩を除く)に対し化学量論比よりやや過剰のタエ ン酸水溶液を加えてクェン酸混合塩水溶液を調製し、このクェン酸混合塩水溶液を 乾固させて、上記した各元素 (貴金属塩を除く)のタエン酸錯体を形成させた後、得ら れたタエン酸錯体を仮焼成後、熱処理する。
[0026] 各元素の塩としては、上記と同様の塩が挙げられ、また、クェン酸混合塩水溶液は 、例えば、上記と同様に混合塩水溶液を調製して、その混合塩水溶液に、クェン酸 の水溶液をカロえることにより、調製することができる。
その後、このクェン酸混合塩水溶液を乾固させて、上記した各元素のタエン酸錯体 を形成させる。乾固は、形成されるタエン酸錯体が分解しない温度、例えば、室温〜 150°C程度で、水分を除去する。これによつて、上記した各元素(貴金属塩を除く)の タエン酸錯体を形成させることができる。
[0027] そして、形成されたタエン酸錯体を仮焼成後、熱処理する。仮焼成は、例えば、真 空または不活性雰囲気下において、 250〜350°Cで加熱する。その後、例えば、 50 0〜1200°C、好ましくは、 600〜1000°Cで熱処理(1次焼成)することにより、 1次複 合酸化物を得る。
次いで、得られた 1次複合酸化物に、共沈法と同様に、貴金属塩水溶液を加えて 前駆体組成物を調製し、得られた前駆体組成物を、例えば、真空乾燥や通風乾燥な どにより乾燥させた後、例えば、 500〜1400。C、好ましくは、 800〜1200。Cで熱処 理 (2次焼成)することにより、上記一般式(1)に示される複合酸化物を得る。
[0028] また、アルコキシド法では、例えば、上記した各元素(貴金属を除く)のアルコキシド を、上記した化学量論比で含む混合アルコキシド溶液を調製し、この混合アルコキシ ド溶液に、水を加えて加水分解することにより、沈殿物を得る。
各元素のアルコキシドとしては、例えば、各元素と、メトキシ、エトキシ、プロボキシ、 イソプロポキシ、ブトキシなどのアルコキシとから形成される(モ入ジ、トリ)アルコラ一 トゃ、下記一般式(2)で示される各元素の(モ入ジ、トリ)アルコキシアルコラートなど が挙げられる。
[0029] E[OCH (R ) (CH )—OR ] (2)
1 2 i 2 j
(式中、 Eは、各元素を示し、 R1は、水素原子または炭素数 1〜4のアルキル基を示 し、 R2は、炭素数 1〜4のアルキル基を示し、 iは、 1〜3の整数、 jは、 2〜4の整数を 示す。)
アルコキシアルコラートは、より具体的には、例えば、メトキシェチレート、メトキシプ ロピレート、メトキシブチレート、ェトキシェチレート、エトキシプロピレート、プロポキシ ェチレート、ブトキシェチレートなどが挙げられる。
[0030] そして、混合アルコキシド溶液は、例えば、各元素のアルコキシドを、上記した化学 量論比となるように有機溶媒に加えて、攪拌混合することにより調製することができる 有機溶媒としては、各元素のアルコキシドを溶解できれば、特に制限されないが、 例えば、芳香族炭化水素類、脂肪族炭化水素類、アルコール類、ケトン類、エステル 類などが挙げられる。好ましくは、ベンゼン、トルエン、キシレンなどの芳香族炭化水 素類が挙げられる。
[0031] そして、得られた沈殿物を、蒸発乾固し、その後、例えば、真空乾燥や通風乾燥な どにより乾燥させた後、例えば、 500〜1000。C、好ましくは、 600〜950。Cで熱処理 (1次焼成)することにより、 1次複合酸化物を得る。
次いで、得られた 1次複合酸化物に、共沈法と同様に、貴金属塩水溶液を加えて 前駆体組成物を調製し、得られた前駆体組成物を、例えば、真空乾燥や通風乾燥な どにより乾燥させた後、例えば、 500〜1400。C、好ましくは、 800〜1200。Cで熱処 理 (2次焼成)することにより、上記一般式(1)に示される複合酸化物を得る。
[0032] このようにして得られる上記一般式(1)で示される複合酸ィ匕物は、そのまま、触媒組 成物として用いることもできるが、通常、触媒担体上に担持させるなど、公知の方法に より、触媒組成物として調製される。
触媒担体としては、特に限定されず、例えば、コージエライトなど力 なるハ-カム 状のモノリス担体など、公知の触媒担体が挙げられる。
[0033] 触媒担体上に担持させるには、例えば、まず、上記一般式(1)で示される複合酸化 物に、水を加えてスラリーとした後、これを触媒担体上にコーティングし、乾燥させ、そ の後、 300〜800。C、好ましくは、 300〜600。Cで熱処理する。
そして、このようにして得られる本発明の触媒組成物では、上記一般式(1)で示さ れる複合酸ィ匕物の結晶構造中において、貴金属が配位し、その配位した貴金属が、 還元雰囲気下において、結晶構造力も析出し、酸ィ匕雰囲気下において、結晶構造 中に固溶する。
[0034] これによつて、本発明の触媒糸且成物は、このような貴金属の酸ィ匕雰囲気下での固 溶および還元雰囲気下での析出を繰り返す自己再生機能によって、長期使用にお いても、貴金属の粒成長が効果的に抑制され、貴金属の複合酸化物に対する分散 状態が、良好に保持される。その結果、貴金属の使用量を大幅に低減しても、高い 触媒活性を長期にわたつて実現することができる。
[0035] そのため、本発明の触媒組成物は、気相や液相の反応触媒として広く用いることが できる。とりわけ、優れた排ガス浄ィ匕性能を長期にわたって実現することができるので 、例えば、ガソリンエンジン、ディーゼルエンジンなどの内燃機関ゃボイラなどカも排 出される排気ガスを浄ィ匕するための排気ガス浄ィ匕用触媒として、好適に用いることが できる。
実施例
[0036] 以下に、実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発 明は、これら実施例および比較例に何ら限定されるものではない。
実施例 1
硝酸マグネシウム Mg換算で 0. 1000モル
硝酸アルミニウム A1換算で 0. 1993モル
上記の成分を、 500mL容量の丸底フラスコに加え、脱イオン水 lOOmLをカ卩えて攪 拌溶解させることにより、混合塩水溶液を調製した。次いで、炭酸ナトリウム 25. Ogを 脱イオン水 200gに溶解して調製したアルカリ性水溶液(中和剤)に、上記した混合 水溶液を、徐々に滴下して共沈物を得た。この共沈物を水洗して、濾過した後、 80 °Cで真空乾燥させた。次いで、 800°Cで、 1時間熱処理(1次焼成)し、 1次複合酸ィ匕 物を得た。
[0037] この 1次複合酸化物に、硝酸ロジウム水溶液 (Rh分 0. 0007モルに相当。 )をカロえ て、 1時間攪拌混合して含浸させて、前駆体組成物を得た。
この前駆体組成物を、 100°Cで 2時間乾燥させ、次いで、 1000°Cで 1時間熱処理( 2次焼成)して、 MgAl Rh Oからなる耐熱性酸化物の粉末を得た。
1. 993 0. 007 4
[0038] 実施例 2
ジメトキシストロンチウム Sr換算で 0. 100モノレ
トリメトキシアルミニウム A1換算で 1. 100モル
トリメトキシ鉄 Fe換算で 0. 095モル
上記の成分を、 500mL容量の丸底フラスコに加え、トルエン 200mLをカ卩えて攪拌 溶解させることにより、混合アルコキシド溶液を調製した。次いで、この混合アルコキ シド溶液を、脱イオン水 600mL中に約 10分間かけて滴下して加水分解した。加水 分解された溶液から、トルエンおよび脱イオン水を留去 '蒸発乾固した。これを、 60°C で 24時間通風乾燥した後、 800°Cで 1時間熱処理(1次焼成)して、 1次複合酸化物 を得た。
[0039] この 1次複合酸化物に、硝酸ロジウム水溶液 (Rh分 0. 005モル〖こ相当。)を加えて 、 1時間攪拌混合して含浸させて、前駆体組成物を得た。
この前駆体組成物を、 100°Cで 2時間乾燥させ、次いで、 1000°Cで 2時間熱処理( 2次焼成)して、 SrAl Fe Rh O からなる耐熱性酸化物の粉末を得た。
11. 00 0. 95 0. 05 19
[0040] 実施例 3
硝酸マグネシウム Mg換算で 0. 1000モル
硝酸アルミニウム A1換算で 0. 1593モル
硝酸鉄 Fe換算で 0. 0400モノレ
上記の成分を、 500mL容量の丸底フラスコに加え、脱イオン水 lOOmLをカ卩えて攪 拌溶解させることにより、混合塩水溶液を調製した。次いで、炭酸ナトリウム 25. Ogを 脱イオン水 200gに溶解して調製したアルカリ性水溶液(中和剤)に、上記した混合 水溶液を、徐々に滴下して共沈物を得た。この共沈物を水洗して、濾過した後、 80 °Cで真空乾燥させた。次いで、 800°Cで、 1時間熱処理(1次焼成)し、 1次複合酸ィ匕 物を得た。
[0041] この 1次複合酸化物に、硝酸ロジウム水溶液 (Rh分 0. 0007モルに相当。 )をカロえ て、 1時間攪拌混合して含浸させて、前駆体組成物を得た。
この前駆体組成物を、 100°Cで 2時間乾燥させ、次いで、 1000°Cで 1時間熱処理( 2次焼成)して、 MgAl Fe Rh Oからなる耐熱性酸化物の粉末を得た。
1. 593 0. 400 0. 007 4
[0042] 実施例 4
硝酸マグネシウム Mg換算で 0. 1000モル
硝酸アルミニウム A1換算で 0. 1953モル
硝酸鉄 Fe換算で 0. 0040モノレ
上記の成分を、 500mL容量の丸底フラスコに加え、脱イオン水 lOOmLをカ卩えて攪 拌溶解させることにより、混合塩水溶液を調製した。次いで、炭酸ナトリウム 25. Ogを 脱イオン水 200gに溶解して調製したアルカリ性水溶液(中和剤)に、上記した混合 水溶液を、徐々に滴下して共沈物を得た。この共沈物を水洗して、濾過した後、 80 °Cで真空乾燥させた。次いで、 800°Cで、 1時間熱処理(1次焼成)し、 1次複合酸ィ匕 物を得た。
[0043] この 1次複合酸化物に、硝酸ロジウム水溶液 (Rh分 0. 0007モルに相当。 )をカロえ て、 1時間攪拌混合して含浸させて、前駆体組成物を得た。
この前駆体組成物を、 100°Cで 2時間乾燥させ、次いで、 1000°Cで 1時間熱処理( 2次焼成)して、 MgAl Fe Rh Oからなる耐熱性酸化物の粉末を得た。
1. 953 0. 040 0. 007 4
[0044] 比較例 1
市販の α— Al Ο (比表面積 13. 2m2/g) 150gに、硝酸ロジウム水溶液 (Rh分 4
2 3
. 48重量0 /0) 9. lg (Rh換算で 0. 41g)を用いて、 Rhを含浸した後、 60°Cにて 24時 間通風乾燥後、大気中、電気炉を用いて 500°Cで 1時間熱処理することにより、 Rh 担持 α—Al O (Rh/Al O ) )の粉末を得た。 a—Al Oの Rh担持量は、 2. 0
2 3 2 3 2 3 0重量%であった。
[0045] 試験例 1 (固溶率測定)
各実施例および比較例において得られた粉末 (酸ィ匕物)を、酸化処理 (大気中、 1 時間、 800°C)し、次いで、還元処理(CO : 7. 5%、 H : 2. 5%、 N:バランス、 1時間
2 2
、 800°C)し、さらに、再酸化処理 (大気中、 1時間、 800°C :但し、実施例 2は不実施) した。
[0046] 各処理後において、 7重量%フッ酸水溶液に溶解し、室温にて 20時間放置後、各 溶液を、 0. 1 μ ιη φのフィルタ一により濾過した。
濾液に溶解して ヽる Rh量を、 ICP (高周波誘導結合プラズマ)発光分析法により定 量分析した。その結果から、 Rhの酸ィ匕物に対する固溶率を算出した。また、酸ィ匕処 理後における Rh固溶量と還元処理後における Rh固溶量との差から、 Rhの析出量を 算出した。その結果を表 1に示す。
[0047] なお、上記の方法にぉ 、ては、 7重量%フッ酸水溶液への粉末の溶解時にぉ 、て
、フッ化物の残渣が生成したが、酸ィ匕物の結晶構造中に固溶していた Rhは、溶解し たため、溶液中の Rhの濃度を測定することにより、酸ィ匕物の結晶構造中に固溶して
V、る Rhの比率を求めることができた。
表 1から、各実施例により得られた粉末が酸化雰囲気下で固溶および還元雰囲気 下で析出していることが、確認できた。
[0048] 試験例 2 (NO30%浄ィ匕温度)
1)耐久試験
不活性雰囲気 5分、酸化雰囲気 10分、不活性雰囲気 5分および還元雰囲気 10分 の計 30分を 1サイクルとし、このサイクルを 20サイクル、合計 10時間繰り返して、実施 例 1、 2および比較例 1で得られた粉末を、酸化雰囲気と還元雰囲気とに交互に暴露 した後、還元雰囲気のまま室温まで冷却した。
[0049] 不活性雰囲気、酸化雰囲気および還元雰囲気は、ストィキ状態、リーン状態および リッチ状態の混合気を燃焼させた場合に排出される排気ガス雰囲気に、それぞれ相 当する。
なお、各雰囲気は、高温水蒸気を含む表 2に示した組成のガスを、 300 X 10"3m3 Zhrの流量で供給することによって調製した。また、雰囲気温度は、約 1000°Cに維 持した。
2) NO30%浄化温度
4%NOおよび 6%Hを含むガス(Heバランス)を、合計 50mLZ分流通させながら
2
、上記の耐久試験に供した各粉末 40mgを、室温力も 400°Cまで、 3°CZ分にて昇温 した。この間に、質量分析計にて、 NO (質量 30)の信号を観測し、そのカウント数が 室温に比べて 30%減少した温度を、 NO30%浄ィ匕温度とした。その結果を表 1に示 す。
[0050] 試験例 3 (430°C浄化率)
還元処理(CO : 7. 5%、H : 2. 5%、N :バランス、 1時間、 800°C)後の実施例 1、
2 2
3、 4および比較例 1の各粉末を、 0. 5〜1. Ommサイズのペレットに成型して試験片 を調製した。
表 3に示すモデルガス組成を用いて、 430°Cにおける CO、 HC、 NOxのそれぞれ の浄ィ匕率を測定した。なお、測定において、サンプル重量は 0. 5g、流速は 2. 25L Z分とした。その結果を表 1に示す。
[0051] [表 1]
Figure imgf000014_0001
[0052] [表 2]
【表 2】
Figure imgf000015_0001
[0053] [表 3]
【表 3】
Figure imgf000015_0002
[0054] なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示 にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな 本発明の変形例は、後記特許請求の範囲に含まれるものである。
産業上の利用可能性
[0055] 本発明の触媒組成物は、気相や液相の反応触媒として広く用いることができ、例え ば、ガソリンエンジン、ディーゼルエンジンなどの内燃機関ゃボイラなど力も排出され る排気ガスを浄ィ匕するための排気ガス浄ィ匕用触媒として、好適に用いることができる

Claims

請求の範囲
[1] 下記一般式(1)で示される複合酸ィ匕物を含んでいることを特徴とする、触媒組成物 ΑΟ ·χ (Β C O ) (1)
2-y y 3- α
(式中、 Αは 1価の元素、 2価の元素およびランタノイド力 選択される元素を示し、 B は 3価の元素を示し、 Cは貴金属を示す。 Xは 1〜6の整数を示し、 yは 0< y< 2の原 子割合を示し、 aは酸素原子の不足割合を示す。 )
[2] 上記一般式(1)中、 Aが、 Li、 Na、 K、 Mg、 Ca、 Sr、 Ba、 Fe、 La、 Pr、 Ndからなる 群力も選択される少なくとも 1種の元素であることを特徴とする、請求項 1に記載の触 媒組成物。
[3] 上記一般式(1)中、 B力 Al、 Ti、 Mn、 Fe、 Co、 Ni、 Moからなる群から選択される 少なくとも 1種の元素であることを特徴とする、請求項 1または 2に記載の触媒組成物
[4] 上記一般式(1)中、 Cが、 Rh、 Pd、 Ptからなる群力も選択される少なくとも 1種の貴 金属であることを特徴とする、請求項 1〜3のいずれかに記載の触媒組成物。
[5] 上記一般式(1)中、 Xが、 1および Zまたは 6であることを特徴とする、請求項 1〜4 の!、ずれかに記載の触媒組成物。
[6] 上記複合酸化物が、スピネル型結晶相、へキサアルミネート型結晶相、マグネトプ ランバイト型結晶相およびベータアルミナ型結晶相からなる群力 選択される少なくと も 1種の結晶相を含んでいることを特徴とする、請求項 1〜5のいずれかに記載の触 媒組成物。
PCT/JP2007/054565 2006-03-30 2007-03-08 触媒組成物 WO2007113981A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP07738055A EP2000201A4 (en) 2006-03-30 2007-03-08 CATALYST COMPOSITION
JP2008508472A JP5166245B2 (ja) 2006-03-30 2007-03-08 触媒組成物
US12/225,418 US20100227759A1 (en) 2006-03-30 2007-03-08 Catalyst Composition
CN2007800114890A CN101410180B (zh) 2006-03-30 2007-03-08 催化剂组合物
US14/284,878 US20140271431A1 (en) 2006-03-30 2014-05-22 Method for purifying exhaust gas
US14/733,306 US20150265968A1 (en) 2006-03-30 2015-06-08 Method for purifying exhaust gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006095173 2006-03-30
JP2006-095173 2006-03-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/225,418 A-371-Of-International US20100227759A1 (en) 2006-03-30 2007-03-08 Catalyst Composition
US14/284,878 Continuation US20140271431A1 (en) 2006-03-30 2014-05-22 Method for purifying exhaust gas

Publications (1)

Publication Number Publication Date
WO2007113981A1 true WO2007113981A1 (ja) 2007-10-11

Family

ID=38563253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054565 WO2007113981A1 (ja) 2006-03-30 2007-03-08 触媒組成物

Country Status (6)

Country Link
US (3) US20100227759A1 (ja)
EP (1) EP2000201A4 (ja)
JP (1) JP5166245B2 (ja)
CN (1) CN101410180B (ja)
WO (1) WO2007113981A1 (ja)
ZA (1) ZA200807960B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054315A1 (ja) * 2007-10-23 2009-04-30 Cataler Corporation 排ガス浄化用触媒
JP2011131142A (ja) * 2009-12-24 2011-07-07 Cataler Corp 排ガス浄化用触媒
JP2012239942A (ja) * 2011-05-16 2012-12-10 Toyota Motor Corp 排ガス浄化用触媒
EP2127745A4 (en) * 2007-02-08 2014-05-21 Daihatsu Motor Co Ltd CATALYST COMPOSITION
US11866342B2 (en) 2017-09-25 2024-01-09 Japan Science And Technology Agency Composite oxide, metal-supported material, and ammonia synthesis catalyst
JP7420087B2 (ja) 2021-01-19 2024-01-23 トヨタ自動車株式会社 排ガス浄化システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI377090B (en) * 2008-12-09 2012-11-21 Univ Nat Chiao Tung Synthesis for a catalysis of novel perovskite compound
US10265684B2 (en) * 2017-05-04 2019-04-23 Cdti Advanced Materials, Inc. Highly active and thermally stable coated gasoline particulate filters
TWI717113B (zh) * 2019-11-20 2021-01-21 郭浩正 用於減少氮氧化物及硫氧化物的複合燃料及其製造方法
CN111530474A (zh) * 2020-06-23 2020-08-14 中国科学院长春应用化学研究所 一种贵金属单原子调控尖晶石阵列催化剂及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262945A (ja) * 1988-04-13 1989-10-19 Toyo C C I Kk 耐熱性貴金属触媒及びその製造方法
JPH02126939A (ja) * 1988-11-07 1990-05-15 Babcock Hitachi Kk 接触燃焼用耐熱性触媒およびその担体
JP2002052342A (ja) * 2000-08-10 2002-02-19 Toyota Motor Corp 排気ガス浄化用触媒
EP1186335A1 (en) 2000-09-08 2002-03-13 Showa Denko Kabushiki Kaisha Catalyst and method for decomposing nitrous oxide and process for producing the catalyst
WO2002066403A1 (en) 2001-02-16 2002-08-29 Conoco Inc. Supported rhodium-spinel catalysts and process for producing synthesis gas
US6444178B1 (en) 1995-12-13 2002-09-03 Daimlerchrysler Ag Purification device for gases
EP1317953A1 (en) 2001-11-30 2003-06-11 OMG AG & Co. KG Catalyst for lowering the amount of nitrogen oxides in the exhaust gas from lean burn engines
FR2857003A1 (fr) 2003-07-02 2005-01-07 Inst Francais Du Petrole Nouveau catalyseur pour le vaporeformage de l'ethanol
JP2006051431A (ja) 2004-08-11 2006-02-23 Mitsui Mining & Smelting Co Ltd 排気ガス浄化用三元触媒及びその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982000820A1 (en) * 1980-09-04 1982-03-18 Chemical Co Dow Magnesium aluminum spinels
US4480050A (en) * 1982-08-02 1984-10-30 Uop Inc. Exhaust gas oxidation catalyst
DE3318327A1 (de) * 1983-05-19 1984-12-13 Krupp Polysius Ag, 4720 Beckum Boeschungsraeumgeraet
FR2595265B1 (fr) * 1986-03-07 1992-10-09 Pro Catalyse Catalyseur et procede pour le traitement des gaz d'echappement des moteurs a combustion interne
US6696389B1 (en) * 1996-02-23 2004-02-24 Daimlerchrysler Ag Process and apparatus for cleaning a gas flow
JPH11156196A (ja) * 1997-11-27 1999-06-15 Kyocera Corp 窒素酸化物分解用酸化物触媒材料並びに窒素酸化物分解除去方法
US6093670A (en) * 1998-12-11 2000-07-25 Phillips Petroleum Company Carbon monoxide oxidation catalyst and process therefor
JP3575307B2 (ja) * 1998-12-28 2004-10-13 トヨタ自動車株式会社 排ガス浄化用触媒及びその製造方法
JP3934885B2 (ja) * 2000-09-27 2007-06-20 昭和電工株式会社 余剰麻酔ガスの処理装置
US7722854B2 (en) * 2003-06-25 2010-05-25 Velocy's Steam reforming methods and catalysts
EP1695761A4 (en) * 2003-12-17 2012-04-04 Daihatsu Motor Co Ltd CATALYTIC COMPOSITION
WO2005090238A1 (ja) * 2004-03-22 2005-09-29 Daihatsu Motor Co., Ltd. ペロブスカイト型複合酸化物、触媒組成物およびペロブスカイト型複合酸化物の製造方法
US7625836B2 (en) * 2005-12-13 2009-12-01 Cataler Corporation Heat-resistant oxide
EP2218501A4 (en) * 2007-10-23 2014-01-29 Cataler Corp CATALYST FOR PURIFYING EXHAUST GASES

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262945A (ja) * 1988-04-13 1989-10-19 Toyo C C I Kk 耐熱性貴金属触媒及びその製造方法
JPH02126939A (ja) * 1988-11-07 1990-05-15 Babcock Hitachi Kk 接触燃焼用耐熱性触媒およびその担体
US6444178B1 (en) 1995-12-13 2002-09-03 Daimlerchrysler Ag Purification device for gases
JP2002052342A (ja) * 2000-08-10 2002-02-19 Toyota Motor Corp 排気ガス浄化用触媒
EP1186335A1 (en) 2000-09-08 2002-03-13 Showa Denko Kabushiki Kaisha Catalyst and method for decomposing nitrous oxide and process for producing the catalyst
WO2002066403A1 (en) 2001-02-16 2002-08-29 Conoco Inc. Supported rhodium-spinel catalysts and process for producing synthesis gas
EP1317953A1 (en) 2001-11-30 2003-06-11 OMG AG & Co. KG Catalyst for lowering the amount of nitrogen oxides in the exhaust gas from lean burn engines
FR2857003A1 (fr) 2003-07-02 2005-01-07 Inst Francais Du Petrole Nouveau catalyseur pour le vaporeformage de l'ethanol
JP2006051431A (ja) 2004-08-11 2006-02-23 Mitsui Mining & Smelting Co Ltd 排気ガス浄化用三元触媒及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2000201A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2127745A4 (en) * 2007-02-08 2014-05-21 Daihatsu Motor Co Ltd CATALYST COMPOSITION
WO2009054315A1 (ja) * 2007-10-23 2009-04-30 Cataler Corporation 排ガス浄化用触媒
EP2218501A1 (en) * 2007-10-23 2010-08-18 Cataler Corporation Exhaust gas purification catalyst
US8361925B2 (en) 2007-10-23 2013-01-29 Cataler Corporation Exhaust gas-purifying catalyst
EP2218501A4 (en) * 2007-10-23 2014-01-29 Cataler Corp CATALYST FOR PURIFYING EXHAUST GASES
JP5698908B2 (ja) * 2007-10-23 2015-04-08 株式会社キャタラー 排ガス浄化用触媒
JP2011131142A (ja) * 2009-12-24 2011-07-07 Cataler Corp 排ガス浄化用触媒
JP2012239942A (ja) * 2011-05-16 2012-12-10 Toyota Motor Corp 排ガス浄化用触媒
US11866342B2 (en) 2017-09-25 2024-01-09 Japan Science And Technology Agency Composite oxide, metal-supported material, and ammonia synthesis catalyst
JP7420087B2 (ja) 2021-01-19 2024-01-23 トヨタ自動車株式会社 排ガス浄化システム

Also Published As

Publication number Publication date
US20150265968A1 (en) 2015-09-24
CN101410180B (zh) 2012-07-25
JP5166245B2 (ja) 2013-03-21
ZA200807960B (en) 2010-02-24
JPWO2007113981A1 (ja) 2009-08-13
US20100227759A1 (en) 2010-09-09
CN101410180A (zh) 2009-04-15
EP2000201A9 (en) 2009-03-18
EP2000201A2 (en) 2008-12-10
EP2000201A4 (en) 2009-11-11
US20140271431A1 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
JP5166245B2 (ja) 触媒組成物
JP2004041868A (ja) 排ガス浄化用触媒
JP5698908B2 (ja) 排ガス浄化用触媒
WO2006134786A1 (ja) 触媒組成物
JP4916173B2 (ja) 排ガス浄化用触媒組成物
JPH10216509A (ja) 酸素吸蔵性セリウム系複合酸化物
WO2006064809A1 (ja) 耐熱性酸化物
JP2004041867A (ja) 排ガス浄化用触媒
JP5235686B2 (ja) 排ガス浄化用触媒
JP2004041866A (ja) 排ガス浄化用触媒
WO2006049137A1 (ja) 貴金属含有耐熱性酸化物の製造方法
JP4647406B2 (ja) 排ガス浄化用触媒
JP3956733B2 (ja) 排ガス浄化触媒用セリウム−ジルコニウム複合金属酸化物
JP4263470B2 (ja) 排ガス浄化用触媒およびその製造方法
JP5449924B2 (ja) 酸素吸蔵放出材
JP5506286B2 (ja) 排ガス浄化用触媒
JP2011036740A (ja) 排ガス浄化用触媒
JP2012035182A (ja) 触媒組成物
JP2011131142A (ja) 排ガス浄化用触媒
JP2017131828A (ja) 排ガス浄化用触媒
JP2014028352A (ja) 排ガス浄化用触媒
JP2013128897A (ja) 合金触媒の製造方法
JP2017029914A (ja) 排ガス浄化用触媒
JP2013111526A (ja) 排ガス浄化用触媒
JP2014079749A (ja) 排ガス浄化用触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738055

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007738055

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008508472

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12225418

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780011489.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE