WO2007108524A1 - 電気二重層キャパシタ用電極および電気二重層キャパシタ - Google Patents

電気二重層キャパシタ用電極および電気二重層キャパシタ Download PDF

Info

Publication number
WO2007108524A1
WO2007108524A1 PCT/JP2007/055927 JP2007055927W WO2007108524A1 WO 2007108524 A1 WO2007108524 A1 WO 2007108524A1 JP 2007055927 W JP2007055927 W JP 2007055927W WO 2007108524 A1 WO2007108524 A1 WO 2007108524A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric double
electrode
double layer
current collector
layer capacitor
Prior art date
Application number
PCT/JP2007/055927
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Norieda
Kotaro Kobayashi
Original Assignee
Japan Gore-Tex Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Gore-Tex Inc. filed Critical Japan Gore-Tex Inc.
Priority to EP07739369A priority Critical patent/EP1998346A1/en
Priority to US12/225,284 priority patent/US20100226069A1/en
Publication of WO2007108524A1 publication Critical patent/WO2007108524A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrode for an electric double layer capacitor and an electric double layer capacitor.
  • electric double layer capacity capable of charging and discharging with a large current has been regarded as promising as a power storage device with high charging / discharging frequency, such as an auxiliary power source for electric vehicles, an auxiliary power source for solar cells, and an auxiliary power source for wind power generation. . Therefore, an electric double layer capacity with high energy density, rapid charge / discharge, and excellent durability is desired.
  • the electric double layer capacitor has a structure in which a pair of polarizable electrode layers are opposed to each other through a separator and serve as a positive electrode and a negative electrode.
  • Each polarizable electrode layer is impregnated with an aqueous electrolyte solution or a non-aqueous electrolyte solution, and each polarizable electrode layer is bonded to a current collector.
  • a water-based electrolyte solution can increase the capacitance density and reduce the resistance value, but the working voltage must be less than the voltage at which water electrolysis occurs, so the energy density is increased.
  • a non-aqueous electrolyte is used for.
  • graphite-like carbon material As a polarizable electrode material used in an electric double layer capacitor, a carbon material having graphite-like microcrystalline carbon (hereinafter referred to as “graphite-like carbon material”) is known. 1 7 3 3 3, JP 2 0 0 0 — 0 7 7 2 7 3, JP 2 0 0 0 — 0 6 8 1 6 4, JP 2 0 0 0 — 0 6 No. 8 1 6 5 and JP 2 0 0 0— 1 0 0 6 No. 6 8 and Japanese Unexamined Patent Publication No. 2 0 0 4-2 8 9 1 3 0).
  • This carbon material has a crystallite-like microcrystalline carbon crystallite interlayer distance (d.
  • microcrystalline carbon having such a specific interlayer distance is brought into contact with the electrolyte solution and a voltage higher than the voltage normally used (rated voltage) is applied, an electrolyte ion is inserted between the carbon crystal layers to electrically Activation (electric field activation) occurs, and as a result, a high capacitance is exhibited (electric field activation type capacitance).
  • a graphite-like carbon material maintains a high capacitance even after repeated use at a rated voltage once ions are inserted and pores are formed.
  • Graphite-like charcoal material has a higher withstand voltage and can significantly increase energy density compared to activated carbon, which is generally used as a carbon material for electric double layer capacitors. Collecting.
  • Graphite-like carbon material expands due to the insertion of electrolyte ions during charging. Therefore, the capacitance per unit volume (capacitance density) is offset by expansion even for black lead-like carbon materials that exhibit high capacitance by electric field activation.
  • a cell structure capable of suppressing electrode expansion is used in the electric field activation type capacitor (Japanese Patent Laid-Open No. 2000-066). No. Gazette, JP 2 0 0 0-0 6 8 1 6 5).
  • a current collector is bonded to the polarizable electrode layer used in the electric double layer capacity.
  • a current collector in addition to a general non-hole current collector, a current collector having a through-hole to improve adhesion to the activated carbon electrode (Japanese Patent Laid-Open No. 2000-125).
  • a porous body having a three-dimensional network structure Japanese Patent Laid-Open No. 6-2 3 6 8 2 9)
  • mesh-like ones having a large number of pores Japanese Patent Application Laid-Open No.
  • any current collector having such a hole is used in combination with an activated carbon electrode, and there is no example in combination with the above-described black lead-like carbon material. This is because, in the case of a graphite-like carbon material having a large expansion / contraction during charging / discharging, there is a concern that the structure of the current collector having pores may be deformed or the mesh may be broken. When a large pressure is applied to the electrode from the outside by means of suppressing expansion, it is not necessary to provide a through-hole in the current collector or to make it a porous body in order to improve adhesion and contact with the electrode Because.
  • Capacitors using activated carbon electrodes have almost no deterioration in performance during cycle operation as described later, so current collectors with through-holes with high manufacturing costs and porous materials are used. There wasn't. Therefore, in an electric double layer capacitor using a graphite-like carbon material as a polarizable electrode material, an aluminum plate, an aluminum foil, or the like, generally having no holes or a foil, is used as a current collector. Disclosure of the invention
  • an object of the present invention is to provide an electric double layer capacitor electrode and an electric double layer capacitor which can sufficiently bring out the electrode performance of the graphite-like carbon material by preventing the deterioration of the cycle characteristics described above.
  • An electric double layer capacitor electrode comprising a polarizable electrode layer containing a carbon material having microcrystalline carbon similar to graphite and laminated on at least one surface of a sheet-like current collector,
  • the carbon material has a BET specific surface area of not more than 800 m 2 by a nitrogen adsorption method
  • the sheet-like current collector has a void on the surface in contact with the polarizable electrode layer.
  • An electrode for an electric double layer capacitor is provided.
  • the volume of the gap is 0 per unit area of the sheet-like current collector.
  • an electric double layer capacitor electrode as described in (1) in the range of 0 0 0 2 to 0.0 0 8 cm 3 / cm 2 .
  • the openings are a plurality of through holes arranged substantially evenly.
  • An electrode for an electric double layer capacitor described in (3) or (4) is provided.
  • the carbon material having microcrystalline carbon similar to graphite is obtained by X-ray diffraction method. Interlayer distance when not charged by d.
  • An electric double layer capacity including the electrode according to any one of (1) to (6) and a means for suppressing expansion of the electrode during charging is provided.
  • FIG. 1 is a schematic top view showing a method for punching a polarizable electrode produced in the example.
  • An electrode for an electric double layer capacitor comprises a polarizable electrode layer containing a carbon material having a microcrystalline carbon similar to graphite as a sheet-like current collector having a gap on a surface in contact with the polarizable electrode layer. It is characterized by being laminated.
  • the present inventors have found that the cycle characteristics of the electric double layer capacity can be improved by providing a gap on the surface of the sheet-like current collector that is in contact with the polarizable electrode layer. This is because the electrolyte stored in the voids of the sheet-shaped current collector makes it easier to supply the electrolyte to the pores of carbon formed during electroactivation, and is similar to graphite during charging even after electroactivation.
  • the space containing the electrolytic solution inside the polarizable electrode layer is reduced, so that the electrolytic solution is pushed out of the polarizable electrode layer, and the electrolytic solution is stored in the gap.
  • this stored electrolyte is re-supplied into the polarizable electrode layer.
  • a plate-shaped or foil-shaped current collector that has not been used in the past is difficult to supply an electrolytic solution to the pores of carbon formed at the time of electrolytic activation, and is also charged after electrolytic activation.
  • electrolyte ions are inserted between the carbon crystal layers of the graphite-like carbon material to cause expansion, so that the space containing the electrolyte inside the polarizable electrode layer is reduced, and as a result, is contained in the space.
  • the electrolyte solution was pushed out of the polar electrode layer and oozed out from the periphery of the plate-like or foil-like current collector. During the subsequent discharge, the current collector hinders the polarizable electrode layer. Electrolyte is not sufficiently supplied to the inside, and as a result, the electrolyte is locally insufficient. Therefore, when charging and discharging are repeated as an electric double layer capacitor, the capacitance decreases and the internal resistance increases (cycle) Phenomenon). Is assumed that Tsu.
  • the electrolyte is sufficiently supplied to the polarizable electrode layer. It is thought that the amount is maintained and the rise in internal resistance is suppressed.
  • the sheet-like current collector according to the present invention has a gap on the surface in contact with the polarizable electrode layer that can store the electrolyte solution extruded from the polarizable electrode layer during charging of the electric double layer capacitor. Is. In light of this onset bright object, the volume of such void portions, per unit area of the sheet-like current collector, typically 0. 0 0 0 2 ⁇ 0. 0 0 8 cm 3 / cm 2, rather preferably 0.
  • the void portion according to the present invention can be provided by providing a concave or convex portion on the surface of the sheet-like current collector or by forming an opening in the sheet-like current collector.
  • the shape of the gap can be any shape, such as a circle, an oval, a rectangle, a polygon, a diamond, a cross, a groove, and a slit, regardless of the unevenness or opening.
  • the opening ratio is 10 to 80%, preferably 15 to 70%, more preferably 1 regardless of the shape. It is in the range of 5 to 50%. If the opening ratio of the opening is less than 10%, the electrolyte pushed out from the polarizable electrode layer during charging cannot be sufficiently stored. On the other hand, if the aperture ratio is greater than 80%, the mechanical strength of the current collector becomes insufficient, the conductivity decreases, and the internal resistance increases.
  • the openings formed in the sheet-shaped current collector are preferably a plurality of through-holes arranged substantially evenly.
  • the diameter of the through hole is preferably in the range of 0.3 to 10 mm, more preferably 0.5 to 5 mm, and still more preferably 0.5 to 3 mm. If the diameter of the through hole is smaller than 0.3 mm, the electrolyte extruded from the polarizable electrode layer during charging cannot be sufficiently stored. On the other hand, if the through hole is larger than 10 mm, the mechanical strength of the current collector becomes insufficient, the conductivity decreases, and the internal resistance increases.
  • the pitch of the plurality of through holes arranged approximately evenly is preferably 1.05 to 5 times, more preferably 1.1 to 3 times the hole diameter. Is in. If the pitch is shorter than 1.05 times, the mechanical strength of the current collector becomes insufficient, the conductivity decreases, and the internal resistance increases. On the other hand, when the pitch is longer than 5 times, the electrolyte pushed out from the polarizable electrode layer during charging cannot be sufficiently stored.
  • any metal having high conductivity that does not cause dissolution / deposition in the operating voltage range can be used as appropriate.
  • Various sheet materials including non-metal such as metal such as copper, conductive polymer film, and plastic film containing conductive filler can be used.
  • mechanical processing such as punching press processing, embossing processing, laser one processing, expansion processing, mesh processing, etc. can be appropriately selected.
  • the thickness of the sheet-like current collector is preferably in the range of 15 to 100 m, more preferably 20 to 70 m.
  • the thickness is less than 15, the mechanical strength of the current collector becomes insufficient and the internal resistance increases, resulting in increased heat generation during discharge at high current. In addition, the manufacturing cost of the current collector is high, which is not practical. Opposite On the other hand, if the thickness is greater than 100, the volume of the current collector increases and the energy density of the electric double layer capacity decreases.
  • the specific surface area of the graphite-like carbon material is preferably not more than 800 m 2 / g, more preferably not more than 500 m 2 / g, particularly preferably not more than 300 m 2 / g.
  • this specific surface area exceeds 80 O m 2 / g, the amount of functional groups present on the surface of the graphite-like carbon material increases, and these functional groups cause an electrochemical reaction when a voltage is applied.
  • the performance of multi-layer capacity is significantly reduced.
  • impurities such as chemical substances used for activation and cleaning remain in the pores, leading to deterioration of durability.
  • the ratio area is measured by adsorption isotherm by nitrogen adsorption method using “ASAP 20 100” manufactured by Shimadzu Corporation (Pretreatment temperature: 200, Drying time: 4 hours) It is the value analyzed by the BET method.
  • the electrode is fired at about 400 ° C for about 2 hours, the current collector is peeled off, and the binder is decomposed. Isolate. Then, the obtained graphite-like carbon material is washed with ethanol and dried before measurement.
  • a conductive auxiliary material is included as an electrode material, the specific surface area of the conductive auxiliary material must be subtracted from the measurement result.
  • the graphite-like carbon material used as the polarizable electrode layer in the electric double layer capacitor electrode according to the present invention has microcrystalline carbon.
  • Graphite-like carbon materials have a microcrystalline carbon interlayer distance d QQ 2 (according to X-ray diffraction method) in a specific range, that is, 0.35 0 to 0.385 nm, exceeding the rated voltage.
  • electrolyte ions are inserted between microcrystalline carbon crystal layers, and show high capacitance as a polarizable electrode.
  • the interlayer distance d Q () 2 is in the range of 0.35 5 to 0.37 0 nm, the electrostatic capacity is clearly manifested by the insertion of electrolyte ions between the crystal layers.
  • This interlayer distance d Q () 2 is 0.3 5 0 Below the nm, electrolyte ions are less likely to be inserted between crystal layers, so the rate of increase in capacitance is low. Conversely, when this interlayer distance d 002 exceeds 0.385 nm, it is difficult for electrolyte ions to enter the crystal layer, and the amount of functional groups present on the surface of the graphite-like carbon material increases. It is not preferable because the performance of the electric double layer capacity is remarkably deteriorated due to the decomposition of these functional groups when a voltage is applied.
  • the graphite-like carbon material can be a low-temperature calcined carbon material that has not been activated.
  • Plant-based wood, coconut husk, pulp waste liquor, fossil fuel-based coal, heavy petroleum oil It can be produced using various materials such as coal, petroleum-based pitch, cox, synthetic resin such as phenol resin, furan resin, polyvinyl chloride resin, and polyvinyl chloride resin.
  • synthetic resin such as phenol resin, furan resin, polyvinyl chloride resin, and polyvinyl chloride resin.
  • two or more types of carbon materials with different raw materials and manufacturing methods can be mixed and used.
  • heat treatment can be performed in an inert atmosphere before activation to prevent the activation from proceeding significantly, or treatment such as shortening the activation operation can be performed.
  • the heat treatment temperature is preferably that which has been fired at a relatively low temperature of about 600 to 100 ° C.
  • Other graphite-like carbon materials suitably used in the present invention and methods for producing the same are disclosed in Japanese Patent Application Laid-Open Nos. 11-1 3 1 7 3 3 and 2 0 0 0 — 0 7 7 2 7 3, JP 2 0 0 0 — 0 6 8 1 6 4, JP 2 0 0 0 — 0 6 8 1 6 5, JP 2 0 0 Reference should be made to Japanese Patent Application Publication Nos.
  • the graphite-like carbon material is a polarizable electrode within a range of 50 to 99% by mass, preferably 65 to 95% by mass, based on the total mass of the conductive auxiliary material and the binder that will be described later. Included in the layer. If the content of graphite-like carbon material is less than 50% by mass, the energy density of the electric double layer capacitor will be low. On the other hand, if the content exceeds 99 mass%, the binder will be insufficient and it will be difficult to hold the carbon material in the electrode layer.
  • the polarizable electrode layer according to the present invention generally contains a conductive auxiliary material for imparting conductivity to the graphite-like carbon material.
  • a conductive auxiliary material carbon black such as ketjen black and acetylene black, gas-grown carbon fiber, fullerene, bonbon nanotube, nanocarbon such as carbon nanohorn, powdery or granular graphite, etc. should be used. Can do.
  • the conductive auxiliary material may be added in an amount of preferably 1 to 40% by mass, more preferably 3 to 20% by mass, based on the total mass of the graphite-like carbon material and the binder. . When the amount of the conductive auxiliary material added is less than 1% by mass, the internal resistance of the electric double layer capacitor increases. On the other hand, when the added amount exceeds 40% by mass, the energy density of the electric double layer capacitor decreases.
  • the polarizable electrode layer according to the present invention generally contains a binder for binding the graphite-like carbon material and the conductive auxiliary material. Binders include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene (PE), polypropylene (PP), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), etc. Can be used.
  • the binder is preferable to the total mass of the graphite-like carbon material and the conductive auxiliary material. Preferably, an amount of 1 to 30% by mass, more preferably 3 to 20% by mass may be added.
  • the amount of binder added is less than 1% by mass, it will be difficult to hold the carbonaceous material in the electrode layer. On the other hand, if the added amount exceeds 30% by mass, the energy density of the electric double layer capacitor is lowered and the internal resistance is increased.
  • the polarizable electrode layer according to the present invention can be produced by the same sheet forming method and coating method (coating method) as in the case of using conventional activated carbon.
  • the graphite-like carbon material obtained by the above-described method is adjusted in particle size so that the average particle size D 50 is about 5 to 200 m, and then added to the conductive auxiliary material.
  • a binder can be added and mixed, and the sheet can be formed by rolling.
  • liquid auxiliary agents such as water, ethanol, and acetonitrile may be used alone or in combination as appropriate.
  • the thickness of the polarizable electrode layer is preferably from 50 to 100 m, and more preferably from 60 to 500 m.
  • the thickness of the electrode layer is a value measured using a dial thickness gauge “SM-528” manufactured by Teclock Co., Ltd. without applying any load other than the main body spring load.
  • the polarizable electrode layer and the sheet-like current collector When the polarizable electrode layer and the sheet-like current collector are integrated, they can function by simply pressing them together, but in order to reduce the contact resistance between them, a conductive paint is used as an adhesive. After joining the polar electrode layer and the sheet-like current collector, or applying a conductive paint to the polarizable electrode layer or the sheet-like current collector and drying, the polarizable electrode layer and the sheet-like current collector are bonded to each other. It may be crimped. However, when the polarizable electrode layer and the sheet-like current collector are bonded or pressure-bonded, the surface of the sheet-like current collector that contacts the polarizable electrode layer is provided. The essential voids must be formed.
  • the opening of the sheet-shaped current collector must not be substantially filled with the conductive paint and / or the carbon material of the polarizable electrode layer by bonding or crimping.
  • a required gap may be formed only on the surface of the sheet-like current collector that is in contact with the polarizable electrode having a large expansion and contraction.
  • the negative electrode has a larger electrode expansion due to the difference in the ionic diameter of the electrolyte, so the sheet-shaped current collector in contact with the polarizable electrode of the negative electrode A required gap may be formed only on the surface.
  • the electric double layer capacitor has a structure in which a pair of electrodes each formed by integrating a polarizable electrode layer and a sheet-like current collector are opposed to each other via a separator, and used as a positive electrode and a negative electrode.
  • insulating materials such as microporous paper, glass, and plastic porous films such as polyethylene, polypropylene, polyimide, and polytetrafluoroethylene can be used.
  • the thickness of a separate evening is generally about 10 to 100 m. Two or more sheets may be stacked for a separate evening.
  • the pressure applied to the polarizable electrode layer during charging is preferably set within the range of 0.2 to 30 MPa, more preferably 0.3 to 20 MPa. Can be determined. If the set pressure is less than 0.2 MPa, expansion of the graphite-like carbon material during charging cannot be sufficiently suppressed, resulting in insufficient capacitance density and expansion / contraction width. If the electric material is deformed or the polarizable electrode layer is peeled off, the internal resistance increases and the durability may be insufficient. On the other hand, if the set pressure is greater than 30 MPa, the gap inside the electrode may be crushed and the diffusion resistance of the electrolyte may be increased, the separator may be crushed and the internal resistance may be increased, or a short circuit may occur.
  • the void formed on the surface of the sheet-like current collector in contact with the polarizable electrode layer should not be substantially crushed by the pressurization for suppressing the expansion of the graphite-like carbon material.
  • the expansion of the electrode is completely suppressed, the insertion of electrolyte ions between the crystal layers of the graphite-like carbon material becomes insufficient, and the effect of improving the electrostatic capacity becomes small, so the expansion of about 3 to 60% It is preferable to set the external pressure to occur.
  • electrolyte of the electrolytic solution conventionally used quaternary ammonium salts, quaternary imidazolium salts, quaternary pyridinium salts, quaternary pyrrolidinium salts, quaternary phosphonium salts, etc., alone or in a mixture of two or more.
  • BF 4 —, PF 6 _, A s F 6 —, C l o 4 —, CF 3 S o 3 —, from the viewpoint of electrochemical stability and molecular ion diameter (CF 3 S 0 2 ) 2 N—, A 1 C 1 4 ′′, S b F 6 — and the like are preferable, and BF 4 _ is particularly preferable.
  • the electrolyte When the electrolyte is liquid at room temperature, it may be used without being diluted as it is, but in general, it is preferably used as an electrolytic solution dissolved in an organic solvent.
  • an organic solvent can reduce the viscosity of the electrolyte and suppress the increase in the internal resistance of the electrode.
  • electrolyte It is selected depending on the solubility of the resin and the reactivity with the electrode, but carbonates such as ethylene carbonate, propylene carbonate, jetyl carbonate, butylene carbonate, dimethyl carbonate, vinylene carbonate, and lactols such as aptilolactone.
  • dialkyl ketones such as methyl ethyl ketone and methyl isoptyl ketone
  • organic solvents such as N-methylpyrrolidone and nitromethane.
  • the organic solvent may be used alone or as a mixed solvent in which two or more kinds are combined. Since the electrolyte ion inserted between the crystal layers of the graphite-like carbon material during electric field activation is considered to be solvated with the surrounding solvent, it is preferable to use a solvent having a small molecular volume.
  • the concentration of the electrolyte in the electrolytic solution is preferably 0.5 mol ZL or more, and more preferably 1.0 mol ZL or more.
  • the upper limit of the electrolyte concentration is the solubility determined by the combination of the specific electrolyte and organic solvent.
  • Electric field activation can be performed by applying a voltage higher than the rated voltage with a relatively small current value.
  • the method of activating the electric field refer to the conventional method (Japanese Patent Laid-Open No. 2 0 00-1 0 0 6 6 8).
  • a petroleum pitch-based carbon material (500 g) was pulverized with a pulverizer to produce a powder with D 50 of 20 and calcined by carbonizing it in an inert atmosphere at a temperature of 800 ° C. Obtained.
  • This carbonized material was mixed with potassium hydroxide in an amount twice as large as the mass ratio, and activated in an inert atmosphere at 700. Thereafter, it was cooled to room temperature, washed with water, alkali content was removed and dried.
  • the obtained graphite-like carbon material had a BET specific surface area of 100 m 2 g, and an interlayer distance d 0 02 of microcrystalline carbon by an X-ray diffraction method of 0.365 nm.
  • Ketjen black powder (“Ketjen Blackine Yuna National Co., Ltd.“ EC 600 JD ”) as a conductive auxiliary material
  • polytetraflur as a binder Polyethylene powder (“Teflon (registered trademark) 6 J” manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) 10% by mass was added to ethanol and mixed, and then extruded into a tape shape. Thereafter, the obtained tape-like product was rolled and rolled three times to form a sheet, and further dried at 1550 ° C.
  • Punched aluminum foil with a width of 160 mm and a thickness of 50 Punched aluminum foil (A 1 N 3 0 H—H 1 8) manufactured by Showa Denko KK) (hole diameter: 1 mm, pitch) 2 mm, open area 23%, void volume 0.0 0 1 2 cm 3 / cm 2 , 60 ° staggered arrangement, lead part 60 mm is not punched)) on one side
  • Apply the conductive adhesive liquid (“GA-3 7” manufactured by Hitachi Powdered Metals Co., Ltd.) with a brush so that the hole is not completely filled.
  • the size of the carbon electrode part of this polarizable electrode is 2 cm square, and the lead part (the part where the polarizable electrode layer is not laminated on the current collector) is 1 X 5
  • a square-polarized polar electrode was formed by punching to a cm shape.
  • Stretched porous polytetrafluoroethylene sheet manufactured by Japan Gore-Tex Co., Ltd.
  • two polarizable electrode bodies as a positive electrode and a negative electrode
  • a hydrophilization treatment with a thickness of 80 m and 3 cm square between them as a separator.
  • This aluminum pack cell is vacuum-dried at 160 ° C for 48 hours, then brought into a glove box with a dew point of 60 ° C or less in an argon atmosphere, and 1.5 mol / L as an electrolyte.
  • a punching Arumini ⁇ beam foil (pore size 1 mm, pitch 1. 5 mm, opening ratio 4 0% void volume 0. 0 0 2 cm 3 / cm 2, 6 0. Staggered lead portion Punching A capacitor was assembled in the same manner as in Example 1 except that no processing was used.
  • a capacitor assembly was assembled in the same manner as in Example 1 except that a 50 m thick etched aluminum foil (“K 5 1 2” manufactured by KD K Corporation) was used as the current collector.
  • Example 1 and Example 1 were used except that a 5 Om thick etched aluminum foil (“C 5 1 2” manufactured by KD K Corporation) was used as the current collector and the applied pressure was 0.4 MPa. In the same way, Capashi Yu was assembled.
  • C 5 1 2 manufactured by KD K Corporation
  • a capacitor assembly was assembled in the same manner as in Example 1 except that the applied pressure was set to 0.05 MPa.
  • a 30 m thick punched aluminum foil (pore diameter 0.1 mm, pitch 0.4 mm, aperture ratio 4.8%, void volume 0.0 0 0 0 1 cm 3 / cm 2 , 6 0 ° Staggered arrangement and the lead part without punching) was used in the same way as in Example 1. I made it.
  • Capillaries were assembled in the same manner as in Example 1 except that steam-activated activated carbon (specific surface area 1700 m 2 / g) using coconut shell as a raw material was used as the carbon material.
  • steam-activated activated carbon specific surface area 1700 m 2 / g
  • Capacitors were assembled in the same manner as in Comparative Example 1 except that steam activated carbon (specific surface area 1700 m 2 / g) using coconut shell as a raw material was used as the carbon material.
  • the capacitance at the 100th cycle was determined by an energy conversion method, and calculated by dividing the capacitance by the volume of the positive and negative electrode carbon electrodes not including the current collector after expansion. (Internal resistance)
  • the cell was disassembled and observed for changes in the electrode / current collector interface.
  • the capacitors including the electric double layer capacitor according to the present invention are high even if strong pressure is applied to suppress electrode expansion during charging.
  • the capacitance density and low internal resistance were maintained, and the cycle characteristics were found to be excellent.
  • Comparative Examples 1 and 2 although the expansion coefficient was the same as in Examples 1 and 2, respectively, the current collector had no voids, so the capacitance density decreased and the internal resistance increased.
  • Comparative Example 3 although there was a gap in the current collector, the pressurization was insufficient and the expansion rate increased, thereby decreasing the capacitance density and increasing the expansion / contraction width. The part has peeled off.
  • Comparative Example 4 although the electrode expansion was suppressed, the gap portion was insufficient, so that the capacitance density and the internal resistance were inferior to those of Examples 1 to 4.
  • Comparative Example 5 is an example in which a perforated current collector is combined with an activated carbon electrode.
  • the activated carbon is inherently deteriorated in cycle characteristics due to expansion / contraction during charging / discharging ( Since there is no problem of decrease in capacitance maintenance rate and increase in internal resistance, “improvement of cycle characteristics” is not recognized as the purpose of use of the perforated current collector.
  • Capacitance density By comparing Examples 1 to 4 (2 3. 3. to 2 et al. 6 F / cm 3 ) with Comparative Examples 1 to 4 (1 5.3 to 20 F / cm 3 ), It can be seen that the inherently high capacitance of the material has been sufficiently extracted by the present invention.
  • the cycle characteristics of the electric double layer capacity are improved.
  • the electrode performance of graphite-like carbon material can be further enhanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

サイクル特性の低下を防止することにより、黒鉛類似炭素材の電極性能を十分に引き出せる電気二重層キャパシタ用電極を提供する。本発明の電気二重層キャパシタ用電極は、黒鉛類似の微結晶性炭素を有する炭素材を含む分極性電極層をシート状集電体の少なくとも片面上に積層してなる電気二重層キャパシタ用電極であって、該炭素材は、窒素吸着法によるBET比表面積が800m2/g以下であり、該シート状集電体は、該分極性電極層と接する面に空隙部を有することを特徴とする。

Description

電気二重層キャパシ夕用電極および電気二重層キャパシ夕
技術分野
本発明は、 電気二重層キャパシタ用電極および電気二重層キャパ シタに関する。
明 背景技術 田
近年、 大電流で充放電できる電気二書重層キャパシ夕が、 電気自動 車用補助電源、 太陽電池用補助電源、 風力発電用補助電源等の充放 電頻度の高い蓄電デバイスとして有望視されている。 そのため、 ェ ネルギー密度が高く、 急速充放電が可能で、 耐久性に優れた電気二 重層キャパシ夕が望まれている。
電気二重層キャパシ夕は、 1対の分極性電極層を、 セパレー夕を 介して対向させて正極および負極とする構造を有している。 各分極 性電極層には、 水系電解質溶液または非水系電解質溶液が含浸させ られ、 各分極性電極層はそれぞれ集電体と接合させられる。 水系電 解質溶液は、 静電容量密度を上げ抵抗値を小さくすることが可能で あるが、 使用電圧を水の電気分解が起こる電圧以下にする必要があ るため、 エネルギー密度を大きくするためには非水系電解液が使用 される。
電気二重層キャパシ夕に用いられる分極性電極材料として、 黒鉛 類似の微結晶性炭素を有する炭素材 (以下、 「黒鉛類似炭素材」 と いう。 ) が知られている (特開平 1 1 一 3 1 7 3 3 3号公報、 特開 2 0 0 0— 0 7 7 2 7 3号公報、 特開 2 0 0 0 — 0 6 8 1 6 4号公 報、 特開 2 0 0 0 — 0 6 8 1 6 5号公報、 特開 2 0 0 0— 1 0 0 6 6 8号公報、 特開 2 0 0 4— 2 8 9 1 3 0号公報) 。 この炭素材は 、 原料の賦活処理を制御することにより黒鉛類似の微結晶性炭素の 結晶子の層間距離 ( d。。2) が 0. 3 5 0〜 0. .3 8 5 n mの範囲 内になるように調製されたものである。 このような特定の層間距離 を有する微結晶性炭素は、 電解質溶液と接触させて通常使用する電 圧 (定格電圧) 以上の電圧を印加すると、 炭素結晶層間に電解質ィ オンが挿入されて電気的な賦活 (電界賦活) が起こり、 その結果高 い静電容量を示すようになる (電界賦活型キャパシ夕) 。 黒鉛類似 炭素材は、 一度イオンが挿入されて細孔が形成されると、 その後定 格電圧で繰り返し使用しても高い静電容量を維持する。 黒鉛類似炭 素材は、 電気二重層キャパシタ用の炭素材として一般的に用いられ ている活性炭と比較して、 耐電圧が高く、 エネルギー密度を格段に 高くできることから、 活性炭に代わる炭素材として注目を集めてい る。
黒鉛類似炭素材は、 充電時に電解質イオンが挿入されることによ り膨張する。 したがって、 電界賦活によって高い静電容量を示す黒 鉛類似炭素材であっても、 単位体積当たりの静電容量 (静電容量密 度) は膨張により相殺される。 かかる静電容量密度の減少を防止す るため、 電界賦活型キャパシ夕では、 電極の膨張を抑制することが できるセル構造が用いられている (特開 2 0 0 0 — 0 6 8 1 6 4号 公報、 特開 2 0 0 0 — 0 6 8 1 6 5号公報) 。
一方、 上述したように、 電気二重層キャパシ夕に用いられる分極 性電極層には集電体が接合される。 かかる集電体としては、 一般的 な孔のない集電体の他に、 活性炭電極との密着性を改善するために 貫通孔を有するもの (特開 2 0 0 5— 1 2 9 9 2 4号公報) 、 カー ボン電極との接触を良くすることで集電効率を高めるために 3次元 網目構造を有する多孔体としたもの (特開平 6 — 2 3 6 8 2 9号公 報) 、 活性炭電極に電解液を効率よく しみ込ませるために多数の小 孔が形成されたメッシュ状のもの (特開平 9 — 2 5 1 9 2 6号公報 ) 等が知られている。 しかしながら、 このような孔を有する集電体 は、 いずれも活性炭電極と組み合わせて用いられており、 上述の黒 鉛類似炭素材と組み合わされた例はない。 これは、 充放電時の膨張 収縮が大きな黒鉛類似炭素材の場合、 孔を有する集電体ではその構 造が変形し、 あるいはメッシュが破断する等の問題が懸念され、 さ らに上述のように膨張を抑える手段によって外部から電極に大きな 圧力がかかる場合には、 電極との密着性や接触性を改善するために 集電体に貫通孔を設け、 あるいはこれを多孔体にする必要もないか らである。 また、 活性炭電極を使用したキャパシタでは、 後述する ようなサイクル運転時の性能低下もほとんどないため、 わざわざ、 製造コス トの高い貫通孔を設けた集電体や、 多孔体が用いられるこ とはなかった。 したがって、 黒鉛類似炭素材を分極性電極材料とす る電気二重層キャパシ夕においては、 集電体として、 アルミニウム 板、 アルミニウム箔等、 一般に孔のない板状または箔状のものが用 いられる。 発明の開示
しかしながら、 充電時の黒鉛類似炭素材の膨張を抑えるため外部 から大きな圧力をかけた分極性電極材料を含む電気二重層キャパシ 夕では、 電気二重層キャパシ夕として充放電を繰り返すと静電容量 が低下し、 内部抵抗が上昇するという、 黒鉛類似炭素材に固有の問 題 (サイクル特性の低下) があることがわかった。
そこで、 本発明は、 上述のサイクル特性の低下を防止することに より、 黒鉛類似炭素材の電極性能を十分に引き出せる電気二重層キ ャパシ夕用電極および電気二重層キャパシ夕を提供することを目的 とする。
本発明によると、
( 1 ) 黒鉛類似の微結晶性炭素を有する炭素材を含む分極性電極 層をシ一卜状集電体の少なく とも片面上に積層してなる電気二重層 キャパシ夕用電極であって、
該炭素材は、 窒素吸着法による B E T比表面積が 8 0 0 m2 以下であり、
該シー卜状集電体は、 該分極性電極層と接する面に空隙部を有す る
ことを特徴とする電気二重層キャパシ夕用電極が提供される。
さらに本発明によると、
( 2 ) 該空隙部の容積が、 該シート状集電体の単位面積当り、 0
. 0 0 0 2〜 0. 0 0 8 c m3/ c m2の範囲内にある、 ( 1 ) に記 載の電気二重層キャパシ夕用電極が提供される。
さらに本発明によると、
( 3 ) 該空隙部が、 該シート状集電体に形成された開口部である 、 ( 1 ) または ( 2 ) に記載の電気二重層キャパシタ用電極が提供 される。
さらに本発明によると、
( 4 ) 該開口部の開口率が 1 0〜 8 0 %の範囲内にある、 ( 3 ) に記載の電気二重層キャパシタ用電極が提供される。
さらに本発明によると、
( 5 ) 該開口部が、 ほぼ均等に配列された複数の貫通孔である、
( 3 ) または ( 4 ) に記載の電気二重層キャパシタ用電極が提供さ れる。
さらに本発明によると、
( 6 ) 該黒鉛類似の微結晶性炭素を有する炭素材は、 X線回折法 による未充電時の層間距離 d。Q 2が 0. 3 5 0〜 0. 3 8 5 nmの 範囲内にある、 ( 1 ) 〜 ( 5 ) のいずれか 1項に記載の電気二重層 キャパシタ用電極が提供される。
さらに本発明によると、
( 7 ) ( 1 ) 〜 ( 6 ) のいずれかに記載の電極と、 該電極の充電 時の膨張を抑制するための手段とを含む電気二重層キャパシ夕が提 供される。
さらに本発明によると、
( 8 ) 充電時に該電極にかかる圧力が 0. 2 M P a以上である、 ( 7 ) に記載の電気二重層キャパシ夕が提供される。
さらに本発明によると、
( 9 ) 下記測定条件のサイクル試験を 1 0 0回施した時点におい て、 エネルギー換算法による分極性電極部に基づく静電容量密度が 2 0 F/ c m3より高く、 かつ当該 1サイクル目の静電容量密度の 9 5 %以上を維持する、 ( 7 ) または ( 8 ) に記載の電気二重層キ ャパシ夕が提供される。
充電条件 : 定電流定電圧法
放電条件 : 定電流法
充放電電流 : 5 mA/ c m2
充電電圧 : 定格電圧
充電時間 : 定格電圧に到達する時間以上
放電電圧 : 0 V
温度 : 2 5 °C 図面の簡単な説明
図 1は、 実施例において作製した分極性電極の打ち抜き方法を示 す略上面図である。 発明を実施するための最良の形態
本発明による電気二重層キャパシタ用電極は、 黒鉛類似の微結晶 性炭素を有する炭素材を含む分極性電極層を、 該分極性電極層と接 する面に空隙部を有するシート状集電体に積層してなることを特徴 とするものである。 本発明者等は、 シート状集電体の分極性電極層 と接する面に空隙部を設けることにより、 電気二重層キャパシ夕の サイクル特性が改善されることを見出した。 これは、 シート状集電 体の空隙部に貯留された電解液により、 電解賦活時に形成される炭 素の細孔に電解液が供給されやすくなること、 電解賦活後も、 充電 時における黒鉛類似炭素材の膨張に伴って、 分極性電極層内部の電 解液が含まれるスペースが縮小するため、 電解液が該分極性電極層 の外部へ押し出されて電解液が該空隙部に貯留され、 続く放電時に は、 この貯留された電解液が該分極性電極層の内部へ再供給される という現象によるものと考えられる。 つまり、 従来使用されていた 孔のない板状または箔状の集電体では、 電解賦活時に形成される炭 素の細孔に電解液が供給され難いために、 また、 電解賦活後も、 充 電時に黒鉛類似炭素材の炭素結晶層間に電解質イオンが挿入されて 膨張が起こるため、 該分極性電極層の内部の電解液が含まれるスぺ ースが縮小し、 その結果そのスペースに含まれていた電解液が該分 極性電極層の外部へ押し出されて板状または箔状の集電体の周辺部 から滲み出し、 続く放電時には、 この集電体が妨げとなり、 該分極 性電極層の内部へ電解液が十分供給されず、 その結果、 電解液が局 部的に不足するために、 電気二重層キャパシタとして充放電を繰り 返すと静電容量が低下し、 内部抵抗が上昇する (サイクル特性が低 下する) という現象が起こっているものと推測される。
本発明によれば、 電気二重層キャパシタとして充放電を繰り返し ても、 該分極性電極層へ電解液が十分に供給されるために、 静電容 量が維.持され、 内部抵抗の上昇も抑えられるものと考えられる。 本発明におけるシー卜状集電体は、 電気二重層キャパシ夕の充電 時に分極性電極層から押し出されてくる電解液を貯留することがで きる空隙部を、 分極性電極層と接する面に有するものである。 本発 明の目的に照らし、 かかる空隙部の容積は、 シート状集電体の単位 面積当り、 一般に 0. 0 0 0 2〜 0. 0 0 8 c m3/ c m2、 好まし くは 0. 0 0 0 3〜 0. 0 0 6 c m3/ c m2、 より好ましくは 0. 0 0 0 5〜 0. 0 0 4 c m3/ c m2の範囲内にある。 空隙部の容積 が 0. 0 0 0 2 c m 3 / c m 2より小さいと、 充電時に分極性電極層 から押し出されてくる電解液を十分に貯留することができない。 反 対に空隙部の容積が 0. 0 0 8 c m3 / c m2より大きいと、 集電体 の機械的強度が不十分になると共に、 導電性が低下し、 内部抵抗が 増大してしまう。
本発明による空隙部は、 シート状集電体の表面に凹部もしくは凸 部を設けることにより、 あるいはシート状集電体に開口部を形成す ることにより、 設けることができる。 空隙部の形状は、 凹凸部また は開口部に関係なく、 円形、 長円形、 方形、 多角形、 菱形、 十字形 、 溝形、 スリ ッ ト形等、 任意の形状をとることができる。
空隙部が、 シート状集電体に形成された開口部である場合、 その 開口率は、 上記形状に関係なく、 1 0〜 8 0 %、 好ましくは 1 5〜 7 0 %、 より好ましくは 1 5〜 5 0 %の範囲内にある。 開口部の開 口率が 1 0 %より小さいと、 充電時に分極性電極層から押し出され てくる電解液を十分に貯留することができない。 反対に開口率が 8 0 %より大きいと、 集電体の機械的強度が不十分になると共に、 導 電性が低下し、 内部抵抗が増大してしまう。
シー卜状集電体に形成された開口部は、 ほぼ均等に配列された複 数の貫通孔であることが好ましい。 貫通孔の配列型に特に制限はな く、 千鳥型、 並列型、 ランダム型等を適宜選択すればよい。 貫通孔 の孔径は、 好ましくは 0. 3〜 1 0 mm、 より好ましくは 0. 5〜 5 mm、 さらに好ましくは 0. 5〜 3 mmの範囲内にある。 貫通孔 の孔径が 0. 3 mmより小さいと、 充電時に分極性電極層から押し 出されてくる電解液を十分に貯留することができない。 反対に貫通 孔が 1 0 mmより大きいと、 集電体の機械的強度が不十分になると 共に、 導電性が低下し、 内部抵抗が増大してしまう。 また、 ほぼ均 等に配列された複数の貫通孔のピッチ (貫通孔の中心間距離) は、 当該孔径の、 好ましくは 1. 0 5〜 5倍、 より好ましくは 1. 1〜 3倍の範囲内にある。 該ピッチが 1. 0 5倍より短いと、 集電体の 機械的強度が不十分になると共に、 導電性が低下し、 内部抵抗が増 大してしまう。 反対に該ピッチが 5倍より長いと、 充電時に分極性 電極層から押し出されてくる電解液を十分に貯留することができな い。
シート状集電体の材質としては、 使用電圧範囲において溶解 · 析 出を起こさず、 導電性の高い金属であれば適宜使用することができ るが、 例えば、 アルミニウム、 チタン、 ニッケル、 ステンレススチ ール等の金属、 導電性高分子フィルム、 導電性フィ ラー含有プラス チックフィルム等の非金属をはじめとする種々のシート材料を用い ることができる。 シート状集電体に空隙部を設ける手段としては、 設ける空隙部の形態に応じて、 パンチングプレス加工、 エンボス加 ェ等の機械加工、 レーザ一処理、 エキスパンド処理、 メッシュ加工 等を適宜選択すればよい。 シート状集電体の厚さは、 好ましくは 1 5〜 1 0 0 m、 より好ましくは 2 0〜 7 0 mの範囲内にある。 厚さが 1 5 より小さいと、 集電体の機械的強度が不十分になる と共に、 内部抵抗の増大により、 大電流での放電時に発熱が大きく なる。 また、 集電体の製造コス トが高くなり、 実用的でない。 反対 に厚さが 1 0 0 より大きいと、 集電体の容積が大きくなり電気 二重層キャパシ夕としてのエネルギー密度が低下してしまう。
この黒鉛類似炭素材の比表面積は、 好ましくは 8 0 0 m2 / g以 下、 より好ましくは 5 0 0 m2/ g以下、 特に好ましくは 3 0 0 m2 / g以下である。 この比表面積が 8 0 O m2/ gを超えると、 黒鉛 類似炭素材の表面に存在する官能基量が増え、 電圧印加時にこれら の官能基が電気化学反応を起こすことに起因して電気二重層キャパ シ夕の性能が著しく低下する。 また、 賦活、 洗浄に使用した化学物 質等の不純物が細孔内に残存し、 耐久性の悪化を招く。 なお、 比表 面積は、 株式会社島津製作所製 「A S A P 2 0 1 0」 を用いて、 窒 素吸着法により吸着等温線を測定 (前処理温度 : 2 0 0で、 乾燥時 間 : 4時間) し、 B E T法にて解析した値である。 なお、 電極形成 後に黒鉛類似炭素材の比表面積を測定する場合は、 約 4 0 0 °Cで 2 時間程度電極を焼成し、 集電体の剥離とバインダ一の分解を行って 黒鉛類似炭素材を分離する。 そして、 得られた黒鉛類似炭素材をェ 夕ノールで洗浄後、 乾燥してから測定する。 また、 電極材料として 導電補助材が含まれる場合には、 測定結果から添加量分の導電補助 材の比表面積を引かなければならない。
本発明による電気二重層キャパシ夕用電極における分極性電極層 として用いられる黒鉛類似炭素材は、 微結晶炭素を有する。 黒鉛類 似炭素材は、 その微結晶炭素の層間距離 dQ Q 2 (X線回折法による ) が特定の範囲、 すなわち 0. 3 5 0〜 0. 3 8 5 nmにある場合 、 定格電圧以上の電圧を印加することにより電解質イオンが微結晶 炭素の結晶層間に挿入されて、 分極性電極として高い静電容量を示 す。 この層間距離 dQ () 2が 0. 3 5 5〜 0. 3 7 0 nmの範囲にあ ると、 電解質イオンの結晶層間への挿入による静電容量の発現が顕 著に表れるため、 より好ましい。 この層間距離 dQ () 2が 0. 3 5 0 nmを下回ると、 電解質イオンの結晶層間への挿入が起こり難くな るため、 静電容量の増加率が低くなる。 反対にこの層間距離 d002 が 0. 3 8 5 nmを超える場合も、 電解質イオンの結晶層内への揷 入が起こり難くなる上、 黒鉛類似炭素材の表面に存在する官能基量 が増え、 電圧印加時にこれらの官能基が分解することに起因して電 気二重層キャパシ夕の性能が著しく低下するので、 好ましくない。 層間距離 dQ () 2は、 株式会社リガク製の X線回折装置 「R I NT 2 5 0 0 V」 を用いて、 粉末試料を空気中 (X線 : C u K 線、 ター ゲッ ト : C u、 X線出力 : 5 0 k V、 スキャン範囲 : 2 0 = 2〜 7
0 ° ) で測定した値である。 なお、 層間距離 d。 Q 2の値は、 2 d s
1 の B r a g gの式により算出した。 電極成形後に黒鉛類 似炭素材の層間距離 da Q 2を測定する場合は、 前段落で説明したよ うに黒鉛類似炭素材を分離して測定する。
黒鉛類似炭素材は、 賦活が進んでいない低温焼成した炭素材料を 用いることができ、 活性炭原料として用いられる植物系の木材、 椰 子殻、 パルプ廃液、 化石燃料系の石炭、 石油重質油、 それらを熱分 解した石炭、 石油系ピッチ、 コ一クス、 合成樹脂であるフエノール 樹脂、 フラン樹脂、 ポリ塩化ビニル樹脂、 ポリ塩化ビニルビニリデ ン樹脂等の種々の材料を用いて製造することができる。 また性能を 調節させるために原料、 製法の異なる 2種類以上の炭素材を混合し て使用することもできる。
黒鉛類似炭素材の製造時には、 賦活前に不活性雰囲気中において 熱処理して、 賦活が大きく進行しないようにしたり、 あるいは賦活 操作を短時間とする等の処理を施すことができる。 熱処理温度とし ては、 6 0 0〜 1 0 0 0 °C程度の比較的低温で焼成を行ったものが 好ましい。 本発明に好適に用いられるその他の黒鉛類似炭素材およ びその製法については、 特開平 1 1 — 3 1 7 3 3 3号公報、 特開 2 0 0 0 — 0 7 7 2 7 3号公報、 特開 2 0 0 0 — 0 6 8 1 6 4号公報 、 特開 2 0 0 0— 0 6 8 1 6 5号公報、 特開 2 0 0 0 — 1 0 0 6 6 8号公報、 特開 2 0 0 4— 2 8 9 1 3 0号公報を参照されたい。 黒鉛類似炭素材は、 これに後述する導電補助材とバインダ一とを 合わせた合計質量に対して、 5 0〜 9 9質量%、 好ましくは 6 5〜 9 5 量%の範囲内で分極性電極層中に含まれる。 黒鉛類似炭素材 の含有量が 5 0質量%より少ないと、 電気二重層キャパシ夕のエネ ルギ一密度が低くなる。 反対に含有量が 9 9質量%を超えるとバイ ンダ一が不足し、 電極層中への炭素材の保持が困難になる。
本発明による分極性電極層は、 一般に、 黒鉛類似炭素材に導電性 を付与するための導電補助材を含有する。 導電補助材としては、 ケ ッチェンブラック、 アセチレンブラック等のカーボンブラック、 気 相成長炭素繊維、 フラーレン、 力一ボンナノチューブ、 カーボンナ ノホーン等のナノカーボン、 粉状または粒状グラフアイ ト等を用い ることができる。 導電補助材は、 これに黒鉛類似炭素材とバインダ —とを合わせた合計質量に対して、 好ましくは 1〜 4 0質量%、 よ り好ましくは 3〜 2 0質量%の量を添加すればよい。 この導電補助 材の添加量が 1質量%より少ないと電気二重層キャパシ夕の内部抵 抗が高くなる。 反対に添加量が 4 0質量%を超えると電気二重層キ ャパシ夕のエネルギー密度が低くなる。
本発明による分極性電極層は、 一般に、 黒鉛類似炭素材と導電補 助材とを結着するためのバインダーを含有する。 バインダーとして は、 ポリテトラフルォロエチレン ( P T F E ) 、 ポリフッ化ビニリ デン (P VD F) 、 ポリエチレン (P E) 、 ポリプロピレン (P P ) 、 スチレンブタジエンゴム ( S B R ) 、 アクリロニトリルブ夕ジ ェンゴム (N B R) 等を用いることができる。 バインダーは、 これ に黒鉛類似炭素材と導電補助材とを合わせた合計質量に対して、 好 ましくは 1〜 3 0質量%、 より好ましくは 3〜 2 0質量%の量を添 加すればよい。 このバインダーの添加量が 1質量%より少ないと炭 素材を電極層に保持することが困難になる。 反対に添加量が 3 0質 量%を超えると電気二重層キャパシ夕のエネルギー密度が低くなり 、 また内部抵抗が高くなる。
本発明による分極性電極層は、 従来の活性炭を用いた場合と同様 のシート成形法、 塗工法 (コーティ ング法) により製造することが できる。 例えばシート成形法の場合、 上述の方法で得られた黒鉛類 似炭素材を平均粒径 D 5 0が 5〜 2 0 0 m程度になるように粒度 を整えた後、 これに導電補助材と、 バインダーとを添加して混鍊し 、 圧延処理してシート状に成形することができる。 混鍊に際して、 水、 エタノール、 ァセトニトリル等の液体助剤を単独または混合し て適宜使用してもよい。 分極性電極層の厚さは 5 0〜 1 0 0 0 m が好ましく、 6 0〜 5 0 0 mがより好ましい。 この厚さが 5 0 mを下回ると電気二重層キャパシ夕内で集電体の占める体積が多く なり、 エネルギー密度が低くなる。 反対に 1 0 0 0 mを超えると 、 電気二重層キャパシ夕の内部抵抗が高くなる。 なお、 電極層の厚 さは、 株式会社テクロック社製ダイヤルシックネスゲージ 「 S M— 5 2 8」 を用いて、 本体バネ荷重以外の荷重をかけない状態で測定 した値である。
分極性電極層とシー卜状集電体を一体化する際は、 両者を単に圧 着するだけでも機能するが、 これらの間の接触抵抗を下げるため、 導電性塗料を接着剤として用いて分極性電極層とシ一ト状集電体と を接合したり、 導電性塗料を分極性電極層またはシート状集電体に 塗布して乾燥した後に分極性電極層とシート状集電体を互いに圧着 してもよい。 ただし、 分極性電極層とシート状集電体とを接合また は圧着するに際し、 シート状集電体の分極性電極層と接する面に所 要の空隙部が形成されなければならない。 例えば、 接合または圧着 によりシー卜状集電体の開口部が導電性塗料および/または分極性 電極層の炭素材で実質的に充填されることがないようにしなければ ならない。 なお、 正負極で電極膨張率が異なる場合には、 膨張収縮 の大きな極の分極性電極と接するシート状集電体の面のみに、 所要 の空隙部を形成してもよい。 例えば、 一般的な四級アンモニゥム塩 の電解液を使用した場合には、 電解質のイオン径の違いから、 負極 の方が電極膨張が大きいため、 負極の分極性電極と接するシート状 集電体の面のみに、 所要の空隙部を形成してもよい。
電気二重層キャパシ夕は、 それぞれ分極性電極層とシート状集電 体を一体化してなる 1対の電極を、 セパレ一夕を介して対向させて 正極および負極とする構造を有している。 セパレ一夕としては、 微 多孔性の紙、 ガラスや、 ポリエチレン、 ボリプロピレン、 ポリイミ ド、 ポリテトラフルォロエチレン等のプラスチック製多孔質フィル ム等の絶縁材料を用いることができる。 セパレー夕の厚さは、 一般 に 1 0〜 1 0 0 m程度である。 セパレ一夕は、 2枚以上重ねて用 いてもよい。
上述したように、 黒鉛類似炭素材は充電時に膨張するので、 静電 容量密度の減少を防止するため、 膨張を抑制するための手段によつ て分極性電極層に対して外部から圧力がかかる構造とする。 充電時 の膨張を抑制するための手段としては、 積層型セル、 コイン型セル 等を外部から平板等で加圧する方法、 積層型セル、 または捲回型セ ル用の電極捲回群を堅固な筐体に挿入する方法等から適宜選択する ことができる。 この加圧は充電時に行われればよいため、 充電前に は電極と膨張規制体 (平板や筐体など) との間に隙間があってもよ い。 充電時に分極性電極層に加わる圧力としては、 好ましくは 0 . 2〜 3 0 M P a、 より好ましくは 0 . 3〜 2 0 M P aの範囲内に設 定することができる。 設定圧力が 0. 2 M P aより小さいと、 充電 時の黒鉛類似炭素材の膨張を十分に抑制することができないため静 電容量密度が不十分となる上、 膨張収縮幅が大きくなるため、 集電 体が変形したり分極性電極層が剥離することにより、 内部抵抗が上 昇し、 耐久性が不十分となるおそれがある。 反対に設定圧力が 3 0 MP aより大きいと、 電極内部の空隙が潰れて電解液の拡散抵抗が 上昇したり、 セパレー夕が潰れて内部抵抗が上昇し、 あるいは短絡 を起こすおそれがある。 また、 黒鉛類似炭素材の膨張抑制のための 加圧により、 シート状集電体の分極性電極層と接する面に形成され た空隙部が実質的に潰されてもいけない。 例えば、 膨張抑制のため の加圧によりシート状集電体の開口部が導電性塗料および または 分極性電極層の炭素材で実質的に充填されることがないようにしな ければならない。 一方、 電極の膨張を完全に抑制すると、 黒鉛類似 炭素材の結晶層間への電解質イオンの挿入が不十分になり、 静電容 量向上の効果が小さくなるので、 3〜 6 0 %程度の膨張が起こるよ うに外部圧力を設定することが好ましい。
電解液の電解質としては、 従来用いられている 4級アンモニゥム 塩、 4級イミダゾリウム塩、 4級ピリジニゥム塩、 4級ピロリジニ ゥム塩、 4級ホスホニゥム塩等を、 単独でまたは 2種以上の混合物 として用いることができる。 電解質の対ァニオンとしては、 電気化 学的な安定性と分子のイオン径の観点から、 B F4—、 P F6_、 A s F6—、 C l 〇4—、 C F3 S〇3—、 (C F3 S〇2) 2 N―、 A 1 C 14" 、 S b F6—等が好ましく、 特に B F4_が好ましい。
電解質は、 常温で液状である場合にはそのまま希釈せずに用いて もよいが、 一般には有機溶媒に溶解した電解液として用いることが 好ましい。 有機溶媒の使用により、 電解液の粘度を低く し、 電極の 内部抵抗の増大を抑えることができる。 有機溶媒としては、 電解質 の溶解性や電極との反応性等により選択されるが、 エチレンカーボ ネート、 プロピレンカーボネート、 ジェチルカーポネート、 ブチレ ンカーボネート、 ジメチルカーポネート、 ビニレンカーボネート等 のカーボネート類、 ァ一プチロラク トン等のラク トン類、 ァセトニ 卜リル、 ベンゾニトリル、 プロピオ二トリル等の二トリル類、 1, 2—ジメ 卜キシェタン、 ジエチレングリコールジメチルエーテル、 エチレンォキシド、 プロピレンォキシド、 テトラヒ ドロフラン、 1 , 2—ジメ トキシェタン、 1, 3 —ジォキソラン等のエーテル類、 ジメチルスルホキシド、 スルホラン等の含硫黄化合物、 ホルムアミ ド、 N —メチルホルムアミ ド、 N , N —ジメチルホルムアミ ド、 N , N —ジェチルホルムアミ ド、 N —メチルァセトアミ ド等のアミ ド 類、 メチルェチルケトン、 メチルイソプチルケトン等のジアルキル ケトン、 N —メチルピロリ ドン、 ニトロメタン等の有機溶媒が挙げ られる。 有機溶媒は、 単独で使用してもよいし、 2種以上を組み合 わせた混合溶媒として使用してもよい。 電界賦活時に黒鉛類似炭素 材の結晶層間に挿入される電解質ィオンは周囲の溶媒と溶媒和して いると考えられるため、 分子容が小さい溶媒を用いることが好まし い。 電解液中の電解質の濃度は、 0 . 5モル Z L以上であることが 好ましく、 さらに 1 . 0モル Z L以上であることがより好ましい。 なお、 電解質の濃度上限は、 個別具体的な電解質と有機溶媒の組み 合わせで決まる溶解度となる。
電界賦活は、 比較的小さな電流値で定格電圧以上の電圧を印加す ることによって行う ことができる。 電界賦活の方法については、 従 来の方法を参照されたい (特開 2 0 0 0— 1 0 0 6 6 8号公報) 。 実施例
以下、 本発明を実施例により具体的に説明する。 実施例 1
石油ピッチ系炭素材料 5 0 0 gを粉砕機で粉砕し、 D 5 0が 2 0 の粉末を作製し、 これを不活性雰囲気中で 8 0 0 °Cの温度で焼 成し炭化した材料を得た。 この炭化した材料に質量比で 2倍量の水 酸化カリウムを混合し、 不活性雰囲気中 7 0 0でにおいて賦活処理 を行った。 その後室温まで冷却して水洗し、 アルカリ分を除去して 乾燥させた。 得られた黒鉛類似炭素材は、 B E T比表面積が 1 0 0 m 2 gであり、 また微結晶性炭素の X線回折法による層間距離 d 0 02が 0. 3 6 5 nmであった。 この黒鉛類似炭素材 8 5質量%と、 導電補助材としてケッチェンブラック粉末 (ケッチェンブラックィ ン夕ーナショナル株式会社製 「E C 6 0 0 J D」 ) 5質量%と、 バ インダ一としてポリテトラフルォロエチレン粉末 (三井デュポンフ ロロケミカル株式会社製 「テフロン (登録商標) 6 J」 ) 1 0質量 %とからなる混合物にエタノールを加えて混鍊後、 テープ状にぺ一 ス ト押出しした。 その後、 得られたテープ状物にロール圧延を 3回 実施してシート化し、 さらに 1 5 0 °Cで 1時間乾燥させてエタノー ルを除去することにより、 幅 1 0 0 mm、 厚さ 2 0 0 mの分極性 シートを得た。 幅 1 6 0 mm、 厚さ 5 0 のプレーンアルミ箔 ( 昭和電工株式会社製 「A 1 N 3 0 H— H 1 8」 ) にパンチング加工 を施したパンチングアルミニゥム箔 (孔径 1 m m、 ピッチ 2 m m、 開口率 2 3 %、 空隙容積 0. 0 0 1 2 c m3/c m2、 6 0 ° 千鳥配列 、 リード部分 6 0 mmにはパンチング加工なし) を集電体とし、 そ の片面に、 導電性接着剤液 (日立粉末冶金株式会社製 「GA— 3 7 」 ) を孔が完全には埋まらないように刷毛で塗布 (接着剤塗布量 1 . 0 g /m2 : 電極なしで分散媒乾燥時) して分極性シートとアル ミ箔の一方の端部が重なるように重ね、 これを圧縮ロールに通して 圧着し、 接触界面同士を貼り合わせたアルミ一体化電極を得た。 こ のアルミ一体化電極を、 温度 1 5 0 °Cに設定したオーブンに入れて 1 0分間保持し、 導電性接着剤液層から分散媒を蒸発除去すること により分極性電極を得た。
次いで、 図 1 に示したように、 この分極性電極の炭素電極部の寸 法が 2 c m角で、 リード部 (集電体上に分極性電極層が積層されて いない部分) が 1 X 5 c mの形状になるように打ち抜いて方形状の 分極性電極とした。 二枚の分極性電極体を正極、 負極とし、 その間 にセパレー夕として厚さ 8 0 m、 3 c m角の親水化処理した延伸 多孔質ポリテトラフルォロエチレンシート (ジャパンゴァテックス 株式会社製 「B S P 0 7 0 8 0 7 0 — 2」 ) を 1枚挿入して、 5 X 1 0 c mの二枚のアルミラミネート材 (昭和電工パッケージング株 式会社製 「P E T 1 2 /AL 2 0 /P E T 1 2 /C P P 3 0 ドライ ラミネート品」 ) で電極およびセパレー夕部を覆い、 リード部を含 む 3辺を熱融着によりシーリングしてアルミパックセルを作成した 。 このアルミパックセルを 1 6 0 °Cで 4 8時間真空乾燥した後、 ァ ルゴン雰囲気で一 6 0 °C以下の露点を保ったグローブボックス内に 持ち込み、 電解液として 1. 5モル/ Lのトリェチルメチルアンモ 二ゥムテトラフルォロボレートのプロピレン力一ポネート溶液 4 m Lをアルミパックセルに注入し、 ― 0. 0 5 M P aの減圧下に 1 0 分間静置して、 電極内部のガスを電解液で置換した。 最後にアルミ パックセルの開口部を融着密封することにより、 単積層型の電気二 重層キャパシ夕を作製した。 この電気二重層キャパシ夕を 4 0 °Cに おいて 2 4時間保存し、 電極内部まで電解液をエージングした。 そ の後キャパシタを 5 X 5 c m、 厚さ 5 mmの S U S板で挟み、 面方 向から 2 M P aで加圧し、 このキャパシ夕を実施例 1 とした。
実施例 2
S U S板による加圧力を 0. 4 M P aにしたことを除き、 実施例 1 と同様にキャパシ夕を組み立てた。
実施例 3
集電体として、 パンチングアルミニゥム箔 (孔径 5 mm、 ピッチ 1 0 mm, 開口率 2 3 %、 空隙容積 0. 0 0 1 2 c m3/c m2、 6 0 。 千鳥配列、 リード部分はパンチング加工なし) を使用したことを 除き、 実施例 1 と同様にキャパシ夕を組み立てた。
実施例 4
集電体として、 パンチングアルミニゥム箔 (孔径 1 m m、 ピッチ 1. 5 mm, 開口率 4 0 %、 空隙容積 0. 0 0 2 c m3 / c m2、 6 0 。 千鳥配列、 リード部分はパンチング加工なし) を使用したことを 除き、 実施例 1 と同様にキャパシタを組み立てた。
比較例 1
集電体として、 厚さ 5 0 mのエッチドアルミニウム箔 (KD K 株式会社製 「C 5 1 2」 ) を使用したことを除き、 実施例 1 と同様 にキャパシ夕を組み立てた。
比較例 2
集電体として、 厚さ 5 O mのエッチドアルミニウム箔 (KD K 株式会社製 「C 5 1 2」 ) を使用し、 加圧力を 0. 4 M P aにした ことを除き、 実施例 1 と同様にキャパシ夕を組み立てた。
比較例 3
加圧力を 0. 0 5 MP aにしたことを除き、 実施例 1 と同様にキ ャパシ夕を組み立てた。
比較例 4
集電体として、 厚さ 3 0 mのパンチングアルミニゥム箔 (孔径 0. 1 mm、 ピッチ 0. 4mm、 開口率 4. 8 %、 空隙容積 0. 0 0 0 1 c m3/c m2、 6 0 ° 千鳥配列、 リード部分はパンチング加 ェなし) を使用したことを除き、 実施例 1 と同様にキャパシ夕を組 み立てた。
比較例 5
炭素材として、 椰子殻を原料にした水蒸気賦活活性炭 (比表面積 1 7 0 0 m2/ g) を使用したことを除き、 実施例 1 と同様にキヤ パシ夕を組み立てた。
比較例 6
炭素材として、 椰子殻を原料にした水蒸気賦活活性炭 (比表面積 1 7 0 0 m2/ g ) を使用したことを除き、 比較例 1 と同様にキヤ パシタを組み立てた。
上記のように作製した実施例 1〜 4および比較例 1〜 6のキャパ シタセルについて、 以下の条件で試験を行い、 1 0 0サイクル目の 静電容量密度、 内部抵抗、 静電容量維持率および膨張率を測定し、 さらに試験終了後の電極の観察を行った。 なお、 比較例 5、 6 にお いては、 炭素材が活性炭であるため、 電界賦活は行わなかった。 1サイクル目の電界賦活およびサイクル試験条件
(電界賦活)
充電 : 1 m A / c m 2、 3. 5 V、 2 1 6 0 0秒
放電 : l mA/ c m2、 0 V
温度 : 2 5 °C
(サイクル試験)
充電 : 5 mA/ c m2、 3. 0 V、 1 0 0 0秒
放電 : 5 m A/ c m2、 0 V
温度 : 2 5 °C
(静電容量密度)
1 0 0サイクル目の静電容量をエネルギー換算法により求め、 そ れを膨張後における集電体を含まない正負極の炭素電極部の体積で 除して算出した。 (内部抵抗)
1 0 0サイクル目の放電曲線において、 放電開始から放電終了ま での時間に対して 1 0 %の範囲を直線近似することにより算出した
(静電容量維持率)
1 0 0サイクル目の静電容量密度が電界賦活後 1サイクル目の静 電容量密度の何%を維持しているか算出した。
(膨張率)
試験終了後、 加圧を開放してアルミパックの外部厚を測定し、 試 験前の外部厚と比較することで算出した。
(試験終了後の電極観察)
試験終了後、 セルを解体し、 電極/集電体界面に変化がないか観 察した。
(装置)
充放電試験装置 株式会社パワーシステム社製 「C D T 5 R 2— 4」
解析用ソフ トウェア 株式会社パワーシステム製 「C D T U t i l i t y V e r . 2. 0 2」
表 1
Figure imgf000023_0001
表 1の結果からわかるように、 本発明による電気二重層キャパシ 夕用電極を含むキャパシタ (実施例 1〜4 ) は、 充電時の電極膨張 を抑制するために強い加圧を行っても、 高い静電容量密度および低 い内部抵抗を維持しており、 サイクル特性に優れることがわかった 。 比較例 1および 2は、 膨張率がそれぞれ実施例 1および 2 と同等 であるにも関わらず、 集電体に空隙部がないため、 静電容量密度が 低下し、 内部抵抗が上昇した。 比較例 3は、 集電体に空隙部がある にも関わらず、 加圧が足りないため膨張率が増加し、 よって静電容 量密度が低下すると共に、 膨張収縮幅が大きくなったため電極の一 部が剥離してしまった。 比較例 4は、 電極膨張は抑制されているが 、 空隙部が不十分であるため、 静電容量密度および内部抵抗が実施 例 1〜 4より劣る結果となった。
比較例 5は、 活性炭電極に孔あき集電体を組み合わせた例である が、 本来的に活性炭には、 比較例 6に示されるように、 充放電時の 膨張収縮に伴うサイクル特性の低下 (静電容量維持率の低下、 内部 抵抗の上昇) の問題がないため、 孔あき集電体の使用目的として 「 サイクル特性の向上」 が認識されることはない。 静電容量密度に関 して実施例 1〜 4 ( 2 3. Ί〜 2 ら . 6 F / c m3) と比較例 1〜 4 ( 1 5. 3〜 2 0 F/ c m3) を対比することにより、 黒鉛類似 炭素材の本来高い静電容量が本発明によつて十分に引き出されたこ とがわかる。 産業上の利用可能性
本発明によると、 黒鉛類似炭素材を含む分極性電極層に、 これと 接する面に空隙部を有するシート状集電体を組み合わせたことによ り、 電気二重層キャパシ夕のサイクル特性が向上し、 黒鉛類似炭素 材の電極性能を一段と引き出すことができる。

Claims

請 求 の 範 囲
1. 黒鉛類似の微結晶性炭素を有する炭素材を含む分極性電極層 をシート状集電体の少なく とも片面上に積層してなる電気二重層キ ャパシ夕用電極であって、
該炭素材は、 窒素吸着法による B E T比表面積が 8 0 0 m2/ g 以下であり、
該シー卜状集電体は、 該分極性電極層と接する面に空隙部を有す る
ことを特徴とする電気二重層キャパシ夕用電極。
2. 該空隙部の容積が、 該シート状集電体の単位面積当り、 0. 0 0 0 2〜 0. 0 0 8 c m3/ c m2の範囲内にある、 請求項 1 に記 載の電気二重層キャパシ夕用電極。
3. 該空隙部が、 該シート状集電体に形成された開口部である、 請求項 1 または 2に記載の電気二重層キャパシ夕用電極。
4. 該開口部の開口率が 1 0〜 8 0 %の範囲内にある、 請求項 3 に記載の電気二重層キャパシ夕用電極。
5. 該開口部が、 ほぼ均等に配列された複数の貫通孔である、 請 求項 3または 4に記載の電気二重層キャパシ夕用電極。
6. 該黒鉛類似の微結晶性炭素を有する炭素材は、 X線回折法に よる未充電時の層間距離 d M 2が 0. 3 5 0〜 0. 3 8 5 nmの範 囲内にある、 請求項 1〜 5のいずれか 1項に記載の電気二重層キヤ パシ夕用電極。
7. 請求項 1〜 6のいずれか 1項に記載の電極と、 該電極の充電 時の膨張を抑制するための手段とを含む電気二重層キャパシ夕。
8. 充電時に該電極にかかる圧力が 0. 2 M P a以上である、 請 求項 7に記載の電気二重層キャパシ夕。
9. 下記測定条件のサイクル試験を 1 0 0回施した時点において 、 エネルギー換算法による分極性電極部に基づく静電容量密度が 2 O FZc m3より高く、 かつ当該 1サイクル目の静電容量密度の 9 5 %以上を維持する、 請求項 7または 8に記載の電気二重層キャパ シ夕。
充電条件 : 定電流定電圧法
放電条件 : 定電流法
充放電電流 : 5 m A / c m 2
充電電圧 : 定格電圧
充電時間 : 定格電圧に到達する時間以上
放電電圧 : 0 V
温度 : 2 5 °C
PCT/JP2007/055927 2006-03-17 2007-03-15 電気二重層キャパシタ用電極および電気二重層キャパシタ WO2007108524A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07739369A EP1998346A1 (en) 2006-03-17 2007-03-15 Electrode for electric double layer capacitor and electric double layer capacitor
US12/225,284 US20100226069A1 (en) 2006-03-17 2007-03-15 Electrode for Electric Double Layer Capacitor and Electric Double Layer Capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006075063A JP4878881B2 (ja) 2006-03-17 2006-03-17 電気二重層キャパシタ用電極および電気二重層キャパシタ
JP2006-075063 2006-03-17

Publications (1)

Publication Number Publication Date
WO2007108524A1 true WO2007108524A1 (ja) 2007-09-27

Family

ID=38522550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055927 WO2007108524A1 (ja) 2006-03-17 2007-03-15 電気二重層キャパシタ用電極および電気二重層キャパシタ

Country Status (7)

Country Link
US (1) US20100226069A1 (ja)
EP (1) EP1998346A1 (ja)
JP (1) JP4878881B2 (ja)
KR (1) KR20090009809A (ja)
CN (1) CN101443864A (ja)
TW (1) TW200746202A (ja)
WO (1) WO2007108524A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098485A2 (en) * 2008-03-07 2009-09-09 Samsung Electronics Co.,Ltd. Electrode module and deionization apparatus using the same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163216B2 (ja) * 2008-03-25 2013-03-13 日本ゼオン株式会社 ハイブリッドキャパシタ用電極およびハイブリッドキャパシタ
JP2009246136A (ja) * 2008-03-31 2009-10-22 Jm Energy Corp 有機電解質キャパシタ
JP2011119290A (ja) * 2008-04-01 2011-06-16 Nippon Zeon Co Ltd 電気化学素子用電極の製造方法
JP5163293B2 (ja) * 2008-06-03 2013-03-13 日本ゼオン株式会社 電気化学素子用電極、その製造方法および該電気化学素子用電極を用いた電気二重層キャパシタ
JP2010073793A (ja) * 2008-09-17 2010-04-02 Japan Gore Tex Inc 電気二重層キャパシタ用電極および電気二重層キャパシタ
JP5287317B2 (ja) * 2009-02-10 2013-09-11 新神戸電機株式会社 リチウムイオンキャパシタ
JP2010186780A (ja) * 2009-02-10 2010-08-26 Shin Kobe Electric Mach Co Ltd リチウムイオンキャパシタの製造方法
JP5345207B2 (ja) * 2009-04-10 2013-11-20 三菱電機株式会社 蓄電デバイス用電極およびその製造方法
JP5687620B2 (ja) * 2009-06-23 2015-03-18 クラレケミカル株式会社 通液型キャパシタ、脱イオン水の製造方法、及び脱イオン水製造装置
CN102576611B (zh) * 2009-09-30 2016-01-13 日本贵弥功株式会社 双电层电容器及双电层电容器用集电体
JP5589602B2 (ja) * 2010-06-24 2014-09-17 新神戸電機株式会社 リチウムイオンキャパシタおよびリチウムイオンキャパシタの製造方法
US8647768B2 (en) 2010-09-15 2014-02-11 Samsung Sdi Co., Ltd. Positive active material composition and positive electrode for electrochemical device, and electrochemical device including the same
WO2014038494A1 (ja) * 2012-09-06 2014-03-13 株式会社クレハ 非水電解質二次電池負極用材料
KR101973407B1 (ko) * 2012-12-27 2019-04-29 삼성전기주식회사 전기 에너지 저장장치 및 이의 제조방법
EP2884509B1 (en) * 2013-12-16 2019-08-28 Siemens Aktiengesellschaft Removing faults from a self-healing film capacitor
US10269504B2 (en) * 2014-07-10 2019-04-23 The United States Of America As Represented By The Secretary Of The Army Supercapacitor having holes formed in carbonaceous electrodes for increasing the frequency of operation
EP3026023B1 (en) * 2014-11-25 2017-05-24 Idropan Dell'orto Depuratori S.r.l. Apparatus for treating a fluid
KR20190069892A (ko) * 2017-12-12 2019-06-20 한국제이씨씨(주) 전기 이중층 커패시터
DE102018203633A1 (de) * 2018-03-09 2019-09-12 Kautex Textron Gmbh & Co. Kg Betriebsflüssigkeitsbehälter mit kapazitiver Erfassung von Füllständen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068164A (ja) * 1998-08-20 2000-03-03 Okamura Kenkyusho:Kk 電気二重層コンデンサおよびその製造方法
WO2005001861A1 (ja) * 2003-06-30 2005-01-06 Zeon Corporation 電気二重層キャパシタ用電極の製造方法
JP2005129924A (ja) * 2003-10-02 2005-05-19 Showa Denko Kk 電気二重層コンデンサ用金属製集電体およびそれを用いた分極性電極並びに電気二重層コンデンサ

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4327400A (en) * 1979-01-10 1982-04-27 Matsushita Electric Industrial Co., Ltd. Electric double layer capacitor
DE3576878D1 (de) * 1984-07-17 1990-05-03 Matsushita Electric Ind Co Ltd Polarisierbarer elektrodenkoerper, verfahren zu seiner herstellung und elektrischer doppelschichtkondensator mit dem polarisierbaren elektrodenkoerper.
JPH07105316B2 (ja) * 1985-08-13 1995-11-13 旭硝子株式会社 電気二重層コンデンサ用分極性電極及びその製造方法
EP0449145B1 (en) * 1990-03-29 1998-01-28 Matsushita Electric Industrial Co., Ltd. Electric double layer capacitor and method for producing the same
JPH07161589A (ja) * 1993-12-06 1995-06-23 Nisshinbo Ind Inc 電気二重層キャパシタ
JPH08138978A (ja) * 1994-11-02 1996-05-31 Japan Gore Tex Inc 電気二重層コンデンサとその電極の製造方法
US5953204A (en) * 1994-12-27 1999-09-14 Asahi Glass Company Ltd. Electric double layer capacitor
RU2084036C1 (ru) * 1995-11-30 1997-07-10 Альфар Интернешнл Лтд. Конденсатор с двойным электрическим слоем
JP3642623B2 (ja) * 1996-03-14 2005-04-27 株式会社パワーシステム 電気二重層コンデンサ
JPH10275748A (ja) * 1997-03-31 1998-10-13 Nec Corp 電気二重層コンデンサ
DE69833149T2 (de) * 1997-06-20 2006-09-07 Matsushita Electric Industrial Co., Ltd., Kadoma Elektrolytkondensator und dessen Herstellungsverfahren
US6094338A (en) * 1997-07-09 2000-07-25 Mitsubishi Chemical Corporation Electric double-layer capacitor
EP0917166B1 (en) * 1997-09-22 2007-08-01 Japan Gore-Tex, Inc. Electric double layer capacitor and process for manufacturing the same
US6349027B1 (en) * 1997-10-29 2002-02-19 Asahi Glass Company, Ltd. Electric double layer capacitor
US6310762B1 (en) * 1998-03-03 2001-10-30 Jeol Ltd. Carbon material for electric double layer capacitor, method of producing same, electric double layer capacitor and method of fabricating same
JPH11288723A (ja) * 1998-03-31 1999-10-19 Tdk Corp 電気化学素子用集電体
JP2000077273A (ja) * 1998-09-03 2000-03-14 Ngk Insulators Ltd 電気二重層コンデンサ及びその製造方法
US6327136B1 (en) * 1999-02-05 2001-12-04 Kureha Kagaku Kogyo Kabushiki Kaisha Electrode-forming composition, activated carbon electrode and electric double layer capacitor
US6704192B2 (en) * 1999-02-19 2004-03-09 Amtek Research International Llc Electrically conductive, freestanding microporous sheet for use in an ultracapacitor
US6865068B1 (en) * 1999-04-30 2005-03-08 Asahi Glass Company, Limited Carbonaceous material, its production process and electric double layer capacitor employing it
US6449139B1 (en) * 1999-08-18 2002-09-10 Maxwell Electronic Components Group, Inc. Multi-electrode double layer capacitor having hermetic electrolyte seal
US6627252B1 (en) * 2000-05-12 2003-09-30 Maxwell Electronic Components, Inc. Electrochemical double layer capacitor having carbon powder electrodes
US6631074B2 (en) * 2000-05-12 2003-10-07 Maxwell Technologies, Inc. Electrochemical double layer capacitor having carbon powder electrodes
JP2002025867A (ja) * 2000-07-04 2002-01-25 Jeol Ltd 電気二重層キャパシタおよび電気二重層キャパシタ用炭素材料
JP2002083747A (ja) * 2000-09-08 2002-03-22 Honda Motor Co Ltd 電気二重層コンデンサの電極用活性炭
JP3715251B2 (ja) * 2001-05-24 2005-11-09 本田技研工業株式会社 電気二重層キャパシタの電極用活性炭の製造方法および炭素原料
JP4294246B2 (ja) * 2001-05-31 2009-07-08 新日本石油精製株式会社 電気二重層キャパシタ電極用炭素材料及びその製造方法並びに電気二重層キャパシタ及びその製造方法
US6643119B2 (en) * 2001-11-02 2003-11-04 Maxwell Technologies, Inc. Electrochemical double layer capacitor having carbon powder electrodes
JP3873844B2 (ja) * 2002-08-06 2007-01-31 松下電器産業株式会社 電気二重層コンデンサ用電解液の評価方法
US6917094B2 (en) * 2002-11-29 2005-07-12 Honda Motor Co., Ltd Electrode for electric double layer capacitor
JP3974508B2 (ja) * 2002-11-29 2007-09-12 本田技研工業株式会社 電気二重層キャパシタ
US7154738B2 (en) * 2002-11-29 2006-12-26 Honda Motor Co., Ltd. Polarizing electrode for electric double layer capacitor and electric double layer capacitor therewith
EP1612819B1 (en) * 2003-03-31 2019-06-12 Subaru Corporation Organic electrolyte capacitor
JP4751199B2 (ja) * 2003-09-30 2011-08-17 富士重工業株式会社 有機電解質キャパシタ
JP2005166975A (ja) * 2003-12-03 2005-06-23 Sanyo Electric Co Ltd 電気二重層コンデンサ、電解質電池及びこれらの製造方法
US7626804B2 (en) * 2004-03-10 2009-12-01 Masaki Yoshio Power storage element and electric double layer capacitor
JP2006004978A (ja) * 2004-06-15 2006-01-05 Honda Motor Co Ltd 電気二重層キャパシタ
JP2006024611A (ja) * 2004-07-06 2006-01-26 Nisshinbo Ind Inc 電気二重層キャパシタ
US7864508B2 (en) * 2005-03-30 2011-01-04 Zeon Corporation Electrode material for electric double layer capacitor, method for producing the same, electrode for electric double layer capacitor and electric double layer capacitor
EP1768141B1 (en) * 2005-09-26 2009-09-02 Nisshinbo Industries, Inc. Polarizable electrode for electric double layer capacitor
CN101283420B (zh) * 2005-10-11 2012-12-26 昭和电工株式会社 双电层电容器用集电体、双电层电容器用电极、以及双电层电容器及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068164A (ja) * 1998-08-20 2000-03-03 Okamura Kenkyusho:Kk 電気二重層コンデンサおよびその製造方法
WO2005001861A1 (ja) * 2003-06-30 2005-01-06 Zeon Corporation 電気二重層キャパシタ用電極の製造方法
JP2005129924A (ja) * 2003-10-02 2005-05-19 Showa Denko Kk 電気二重層コンデンサ用金属製集電体およびそれを用いた分極性電極並びに電気二重層コンデンサ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098485A2 (en) * 2008-03-07 2009-09-09 Samsung Electronics Co.,Ltd. Electrode module and deionization apparatus using the same
EP2347999A3 (en) * 2008-03-07 2013-06-26 Samsung Electronics Co., Ltd. Electrode module and deionization apparatus using the same
EP2098485B1 (en) * 2008-03-07 2016-08-10 Samsung Electronics Co., Ltd. Electrode module and deionization apparatus using the same

Also Published As

Publication number Publication date
US20100226069A1 (en) 2010-09-09
CN101443864A (zh) 2009-05-27
EP1998346A1 (en) 2008-12-03
JP4878881B2 (ja) 2012-02-15
JP2007251025A (ja) 2007-09-27
TW200746202A (en) 2007-12-16
KR20090009809A (ko) 2009-01-23

Similar Documents

Publication Publication Date Title
JP4878881B2 (ja) 電気二重層キャパシタ用電極および電気二重層キャパシタ
JP4731967B2 (ja) リチウムイオンキャパシタ
JP5236765B2 (ja) 有機電解質キャパシタ
JP4705566B2 (ja) 電極材及びその製造方法
KR100816404B1 (ko) 유기전해질 커패시터
KR101289521B1 (ko) 전기 이중층 캐패시터의 제조 방법
US8593787B2 (en) Electrochemical capacitor having lithium containing electrolyte
JP5322435B2 (ja) 蓄電デバイス用負極活物質
WO2006132444A1 (ja) 電気二重層キャパシタ用電極および電気二重層キャパシタ
KR101833081B1 (ko) 내전압성을 향상시킨 전기 이중층 캐패시터용의 분극성 전극재 및 이를 이용한 전기 이중층 캐패시터
JP2012004491A (ja) 蓄電デバイス
JP2006338963A (ja) リチウムイオンキャパシタ
JP2005129924A (ja) 電気二重層コンデンサ用金属製集電体およびそれを用いた分極性電極並びに電気二重層コンデンサ
EP2879143B1 (en) Polarizable electrode material and electric double layer capacitor using same
JP4731974B2 (ja) リチウムイオンキャパシタ
WO2020080520A1 (ja) キャパシタ及びキャパシタ用電極
JP2013143422A (ja) リチウムイオンキャパシタ
JP2008166309A (ja) リチウムイオンキャパシタ
JP2013065851A (ja) 電極活物質、その製造方法及びそれを含む電気化学キャパシタ
JP2007180434A (ja) リチウムイオンキャパシタ
KR20240017620A (ko) 폐슈퍼커패시터로부터 다공성 재생 탄소를 제조하는 방법, 상기 방법으로 제조된 다공성 재생 탄소, 상기 다공성 재생 탄소를 포함하는 재생 슈퍼커패시터 및 이의 제조방법
JP2008060479A (ja) リチウムイオンキャパシタ
KR101416813B1 (ko) 전해액 함침장치, 이를 이용한 슈퍼 커패시터 제조시스템 및 제조방법
JP2007019491A (ja) 電気二重層キャパシタ用電極および電気二重層キャパシタ
Patel Investigation on Intercalation Behavior of BCN Compound for Multivalent-Ions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007739369

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087025313

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12225284

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780017002.X

Country of ref document: CN