WO2007086491A1 - セルロース繊維混用布帛 - Google Patents

セルロース繊維混用布帛 Download PDF

Info

Publication number
WO2007086491A1
WO2007086491A1 PCT/JP2007/051227 JP2007051227W WO2007086491A1 WO 2007086491 A1 WO2007086491 A1 WO 2007086491A1 JP 2007051227 W JP2007051227 W JP 2007051227W WO 2007086491 A1 WO2007086491 A1 WO 2007086491A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
fibers
fabric
fiber
cellulose
Prior art date
Application number
PCT/JP2007/051227
Other languages
English (en)
French (fr)
Inventor
Yuji Yoshida
Shoichi Akita
Original Assignee
Asahi Kasei Fibers Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corporation filed Critical Asahi Kasei Fibers Corporation
Priority to CN2007800036247A priority Critical patent/CN101374991B/zh
Priority to JP2007556006A priority patent/JP5102045B2/ja
Priority to KR1020087017762A priority patent/KR101061144B1/ko
Priority to EP07707459.9A priority patent/EP1978150B1/en
Priority to US12/086,753 priority patent/US20090117799A1/en
Publication of WO2007086491A1 publication Critical patent/WO2007086491A1/ja
Priority to HK09103434A priority patent/HK1125423A1/xx

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/14Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
    • D04B21/16Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating synthetic threads
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic Table
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • D10B2403/023Fabric with at least two, predominantly unlinked, knitted or woven plies interlaced with each other at spaced locations or linked to a common internal co-extensive yarn system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3008Woven fabric has an elastic quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3976Including strand which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous composition, water solubility, heat shrinkability, etc.]

Definitions

  • the present invention relates to a fabric in which fibers that change in size upon special water absorption are mixed. More specifically, the present invention provides a fabric that is comfortable when sweating while wearing a cellulosic fiber that undergoes a dimensional change (water absorption self-extension or water absorption self-shrinkage) upon water absorption.
  • the garments proposed in these patent documents are more comfortable when sweating than garments that do not use water-absorbing self-extending yarns.
  • the fibers used in these clothes do not absorb moisture from the body's insensitive digestion, which has almost no hygroscopicity or water absorption. For this reason, there is a feeling of discomfort even when worn in a non-sweat state, and furthermore, since it does not absorb sweat even when sweating, it becomes a garment with a feeling of stuffiness.
  • ordinary cellulose fibers are used, they are comfortable when worn due to their good hygroscopicity.
  • a high-functional fabric is desired, for example, since it feels sticky when sweating due to exercise or the like, and feels stuffy when breathing water, improving air permeability. As mentioned above, there are currently no fibers that are comfortable when worn and when sweating.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-163225
  • Patent Document 2 JP-A-2005-36374
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-23431
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-146496
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2006-112009
  • An object of the present invention is to provide a fabric that is comfortable when worn and does not feel damp when it feels sticky when sweating.
  • the object of the present invention is achieved by the following cellulose fiber mixed fabric.
  • a cellulose fiber-mixed fabric characterized by containing cellulose fibers having a dimensional change rate of 2% or more upon water absorption.
  • the outer layer and Z or intermediate layer contain water-absorbing self-shrinking cellulose fibers with a water absorption elongation rate of 2% or less, and the other outer layer is composed of non-water-absorbing shrink fibers, and the non-separating part in the course direction is not contracted.
  • a three-dimensionally structured fabric in which a separation part and a non-separation part are formed repeatedly, and one outer layer (C) constituting the separation part has a water-absorption self-shrinking cell having a water absorption elongation rate of 2% or less.
  • Cellulose fiber according to (7) characterized in that it contains roulose fibers, the other outer layer (D) contains non-water-absorbing shrink fibers, and the number of courses of both outer layers is (C)> (D) Mixed fabric.
  • the fiber of the present invention By using the fiber of the present invention, it is possible to produce a fabric that is comfortable when worn and does not feel stuffy when sweating. In particular, this fabric can exert a significant moisture absorption / release effect during exercise, and there is a large difference in clothes and wearing comfort as shown in Patent Documents 1 to 5 proposed so far.
  • the size of the cellulose fibers changes during water absorption (when sweating in clothes), and the moisture absorption and release characteristics can be improved.
  • the effect of changing the water absorption dimension of cellulose fibers can be obtained. For this reason, if the fiber of the present invention is used, it is possible to produce a garment that is comfortable when worn and has no stuffiness if it feels sticky when sweating. When the fabric produced using the fiber of the present invention is applied to sportswear, inner, outer, etc., a comfortable wearing feeling can be obtained.
  • FIG. 1 is a diagram showing an example of a knitted structure in the cellulose-mixed fabric of the present invention.
  • FIG. 2 is a diagram showing an example of a knitted structure in the cellulose-mixed fabric of the present invention.
  • FIG. 3 is a diagram showing an example of a knitted structure in the cellulose-mixed fabric of the present invention.
  • FIG. 4 is a diagram showing an example of a knitted structure in the cellulose-mixed fabric of the present invention.
  • FIG. 5 is a diagram showing an example of a knitted structure in the cellulose-mixed fabric of the present invention.
  • FIG. 6 is a diagram showing an example of a knitted structure in the cellulose-mixed fabric of the present invention.
  • FIG. 7 is a diagram showing an example of a knitted structure in the cellulose-mixed fabric of the present invention.
  • FIG. 8 is a diagram showing an example of a knitted structure in the cellulose-mixed fabric of the present invention.
  • FIG. 10 is a diagram showing an example of a knitted structure in the cellulose mixed fabric of the present invention.
  • FIG. 11 is a diagram showing an example of a knitted structure in the cellulose mixed fabric of the present invention.
  • FIG. 13 is a diagram showing an example of the knitted structure in the cellulose-mixed fabric of the present invention.
  • FIG. 14 is a diagram showing an example of the knitted structure in the cellulose-mixed fabric of the present invention.
  • FIG. 16 is a diagram showing an example of a knitted structure in a cellulose mixed fabric of the present invention.
  • FIG. 16 is a diagram showing an example of a knitted structure in a cellulose mixed fabric of the present invention.
  • the cellulose fiber in the present invention includes cupra, rayon, purified cellulose fiber, bamboo fiber, cotton and the like, and regenerated cellulose such as cuvula and rayon is preferably used.
  • these long fibers and short fibers are used.
  • l ldt decitex: the same symbol is used
  • 160 S cotton count: the same symbol is used
  • it can be configured by twisting long fibers and short fibers, twin yarn, triple-filament, or long fibers and short fibers, and each can be used as a thickness suitable for the structure.
  • 40dt to 170dt is preferred, and for short fibers, about 30S to 120S is easy to handle.
  • the fabric of the present invention is a fabric in which cellulose fibers having a dimensional change rate of 2% or more upon water absorption are mixed.
  • cellulose fibers having a dimensional change rate of 2% or more upon water absorption There are two types of cellulose fibers having a dimensional change rate of 2% or more upon water absorption: water-absorbing self-extending cellulose fibers and water-absorbing self-shrinking cellulose fibers.
  • the inventors of the present invention have found a method for suitably obtaining water-absorbing self-extending cellulose fibers and water-absorbing self-shrinking cellulose fibers, and studied fabric configurations for making the best use of the respective performances, and reached the present invention.
  • the water-absorbing self-extending cellulose fiber is a cellulose fiber having a water absorption elongation rate of + 2% or more, preferably a water absorption elongation rate of + 3% or more.
  • the water-absorbing self-shrinking cellulose fiber refers to a cellulose fiber having a water absorption elongation rate of 2% or less.
  • a fiber having a dimensional change rate of less than 2% at the time of water absorption is referred to as a normal fiber.
  • Common fibers include polyester fibers such as polyester and polytrimethylene terephthalate, polyamide fibers, polyurethane fibers, cellulose fibers that are not given the ability to change water absorption due to alkali treatment or twisted yarn, which will be described later, acetate, wool, etc. And long fibers or short fibers of any fiber.
  • These cross-sectional shapes are arbitrary, and may be irregular yarns such as round cross-sections and W-shaped cross sections.
  • the dimensional change rate during water absorption is determined by the following method. Measure the fiber length (A) under a load of 0.05 g / dt (decitex) in an environment of 20 ° C and 65% RH, and then immerse the fiber in water for 30 seconds. Next, the fiber is taken out from the water, and the fiber length (B) after 30 seconds is measured under a load of 0.05 gZdt.
  • the water absorption elongation rate is obtained by the following formula (1). And below As shown in formula (2), the absolute value of the water absorption elongation obtained is the dimensional change rate during water absorption.
  • the measurement of the dimensional change rate during absorption of fibers in the fabric is carried out under the same conditions by extracting the fibers from the fabric.
  • the fiber length to be measured is 30 cm.
  • the length is measured.
  • the number of measurement samples should be increased as appropriate.
  • the fiber is extracted from the fabric, Measure the rate of dimensional change at the time of water absorption under the same conditions in the state of blended yarn and twisted yarn.
  • the water-absorbing self-extending cellulose fiber of the present invention has a water absorption elongation rate of + 2% or more, preferably + 3% or more.
  • ordinary cellulose fibers should be treated in an alkaline aqueous solution. It has been conventionally known that a cellulose fiber is alkali-treated. For example, mercerization is the most common treatment method.
  • the present inventors succeeded in producing a cellulose fiber that stretches by 2% or more, preferably 3% or more upon water absorption.
  • cellulose fibers can be obtained by immersing cellulose fibers in an aqueous solution containing, for example, 20 gZL (liter) or more of sodium hydroxide at 20 ° C or more for 5 minutes or more.
  • the water absorption elongation rate can be controlled by controlling these conditions. For example, it is possible to obtain a cellulose fiber having a water absorption elongation rate of 20% or more, for example, 20% or more, even if the treatment conditions are too strict. Have difficulty.
  • Known alkali treatment agents can be used.
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide can be used.
  • the alkali concentration is more preferably 20 to 200 g ZL aqueous solution. More preferably, the treatment temperature and time are 20 to 110 ° C for 5 to 120 minutes. This processing temperature is the highest temperature during processing, and the processing time exceeds 20 ° C after the addition of alkali. These times should be 5 minutes or more, including the time to reach the temperature and cool to less than 20 ° C after processing at the maximum temperature. In addition, it is desirable to quickly wash and neutralize the cooling water after draining it.
  • the alkali treatment method is performed in the state of cellulose fibers, and the dyeing strength is evaluated after knitting, or the alkali treatment is performed after the production of the fabric using the cellulose fibers before the alkali treatment, and the dyeing process is subsequently performed. Any method may be used, but a method performed after the production of the fabric is easy.
  • the use of cellulose fibers particularly excellent in moisture absorption / release properties greatly contributes to wearing comfort, and the fabrics as shown in Patent Documents 1 to 5 proposed so far. And a great difference in wearing comfort. That is, by using the cellulose fibers that are self-extending water absorption, which is a major feature of the cellulose fiber-mixed fabric of the present invention, the cellulose fibers are elongated at the time of water absorption (at the time of sweat absorption when wearing clothes), thereby improving moisture release. The effect of using cellulose fibers can be further enhanced.
  • the method of mixing the water-absorbing self-extending cellulose fiber and the ordinary fiber is a method of knitting or weaving the ordinary fiber and the water-absorbing self-extending cellulose fiber by aligning them on a knitting machine or a loom.
  • they can be mixed by producing a fabric using water-absorbing self-extending cellulose fibers and ordinary fibers as composite yarns such as cross-twisted, composite false twist, and interlace.
  • the feed rate should be set so that the water-absorbing self-extending cellulose fiber is 0 to 9% shorter than the water-absorbing self-extending cellulose fiber.
  • the composite yarn has insufficient strength, and sufficient fabric strength cannot be obtained.
  • the fiber becomes apparently thick and the moisture absorption / release property is lowered, and the object of the present invention may not be achieved.
  • the blending ratio of the cellulose fibers that self-elongate in the composite yarn is determined by the design of the fabric. It can be arbitrarily set taking into account the effects obtained. Desirably, the water-absorbing self-elongating cellulose fiber should have a mixing ratio of 20-80%! /.
  • fabrics such as knitted fabrics and woven fabrics are produced using the water-absorbing self-extending cellulose fibers of the present invention
  • various functions that are comfortable when sweating can be imparted by knitted fabric designs and fabric designs.
  • a double circular knitting machine is used as an example of a structure in which cellulosic fibers that absorb water during sweating stretch and fibers on the surface of the fabric emerge on the fabric surface to form convex portions.
  • the separation part in which one outer layer containing water-absorbing self-extending cellulose fibers and the other outer layer containing ordinary fibers are partially separated and the non-separation part are regular or irregular. If the structure is repeated repeatedly, the water-absorbing self-extending cellulose fiber stretches during sweat-absorbing and the knitted fabric has irregularities, so that the feeling of stickiness can be suppressed.
  • the structure of non-water-absorbing stretched fibers and cellulosic fibers can be produced by design such as alternating one or three water-absorbing self-stretching cellulose fibers in three.
  • the present invention by effectively designing the water-absorbing self-extending cellulose fiber with a single circular knitting machine, a double circular knitting machine, a single warp knitting machine, a double warp knitting machine, a loom, etc. It becomes possible to absorb sweat during sweating to form irregularities on the fabric, and to reduce the density of the stitches and yarns that make up the fabric of the water absorbing portion.
  • a long sinker loop is formed, such as cord (2 stitch swing) from Denbi (1 stitch swing) and satin (3 stitch swing) than the cord.
  • the effects of the present invention can be suitably achieved by arranging stretched cellulose fibers and selecting a warp knitting structure having these as one ridge.
  • a warp yarn such as twill and satin or a structure with a long float of weft yarn, or a surface layer and a back layer are woven as a double weave, and the warp direction and weft are partially woven.
  • Connecting portions may be provided for every several tens of fibers in the direction, and the water-absorbing self-extending cellulose fibers may be designed to form irregularities on the fabric or to reduce the density of the sweat-absorbing portions by stretching during sweat absorption. This In these fabrics, the water-absorbing self-extending cellulose fibers need not necessarily be exposed on the surface.
  • the water-absorbing self-extending cellulose fibers are arranged in the intermediate layer as a three-layer structure, It is also possible to design the fabric so that the outer layer of ordinary fibers is extruded to extrude the fabric to reduce the unevenness and density.
  • the cellulose fiber-mixed fabric according to the present invention has a water absorption elongation of + 2% or more, preferably
  • the water-absorbing self-stretching cellulose fiber content is less than 10%, the effect of suppressing the stuffiness is not exhibited effectively even if the cellulose fiber stretches during water absorption.
  • a more preferable mixing ratio is 15 to: LO 0%, and a knitted fabric with 100% water-absorbing self-extending cellulose fibers can exert the effect of the present invention most.
  • an arbitrary force can be obtained by mixing water-absorbing self-extending cellulose fibers and ordinary fibers, and it is effective if the cellulose fibers are arranged so as to be configured independently in the course direction or the wale direction.
  • water-absorbing self-extending cellulose fibers are used continuously for 2 courses, all the loops in the course direction are water-absorbing self-extending cellulose fibers, and adjacent courses are using ordinary fibers such as cotton and acrylic.
  • ordinary fibers such as cotton and acrylic.
  • the cellulose fiber-mixed fabric of the present invention may have, in the knitted fabric, a welt loop made of water-absorbing self-extending cellulose fiber and a portion in which at least two loops of Z or tack loop are formed continuously.
  • the welt loop made of the cellulose fiber, and the Z or tack loop are one needle It is better to have at least two loops in the course direction (knitting fabric warp direction), tool direction (knitting fabric weft direction), or diagonal direction on the floor. !
  • the tack loop and the welt loop are loops included in the knit loop, the tack loop, and the welt loop, which are three elements of the loop constituting the knitted fabric.
  • the tuck loop refers to the structure that does not knock over the force that supplies the thread to the needle
  • the welt loop refers to the structure that does not supply the thread to the needle.
  • the tuck loop and the welt loop exist almost linearly or slightly bent in the knitted fabric. Compared to a loop structure that is greatly curved like a knit loop and has a large bending point at the lower part of the knit loop, when water-absorbing and stretching cellulose fibers absorbs and stretches, there is little bending and there is no bending point. It becomes a structure.
  • these tuck loops or welt loops constitute the structure of the knitted fabric, so that the knitted fabric density or the filling rate at the time of water absorption can be reduced and a knitted fabric having no stuffiness can be obtained.
  • the welt loop and the Z or tack loop have at least two loops formed continuously in the course direction, the roll direction, or the diagonal direction on one needle bed.
  • the double circular knitting machine has two needle beds, dial and cylinder, but only one needle bed structure on the dial side or only on the cylinder side can be used in the course direction or the roll direction.
  • the combination of the tack loop and the welt loop can be arbitrary, and can be a continuous loop of the tack loop, a continuous loop of the welt loop, or a continuous loop of a combination of the tack loop and the welt loop.
  • welt loop and tack loop in the course direction, weal loop, welt loop and 2 wales continue in the wale direction, and weal loops are made 2 wales in the wale direction and the course direction
  • the tent part is divided into two yarns and knitted in two courses to complete one course more than twice. By doing so, two loops are continuously formed in an oblique direction, and the effect of the invention can be exhibited.
  • FIGs. 1 to 6 These are illustrated in Figs. 1 to 6.
  • [1], [2], and [3] represent the knitting order and the course direction. Organize.
  • the latitude column represents the wale direction. In the figure, only four whales are shown. Actually, this organization is repeated.
  • K represents a knit structure
  • T represents a tack structure
  • W represents a welt structure.
  • Figures 1 and 2 are examples of knitting a welt loop or a tuck loop in two courses continuously
  • Figures 3, 4, and 5 are examples of a welt loop or a tuck loop continuing in an oblique direction
  • Figure 6 is a welt loop and a tuck loop.
  • the cellulose-mixed fabric of the present invention is a warp knitted fabric
  • the present inventors have found that a comfortable warp knitted fabric can be produced by the warp knitted fabric design method. That is, in the knitted fabric containing cellulose fibers that absorb water and self-extend, the cellulose fibers are rubbed and the swing structure of 1 to 4 needles makes it possible to achieve the object of the present invention. .
  • the rubbing referred to here is a structure in which a needle loop (knitted loop) is formed.
  • An insertion tissue that does not form a needle loop is not preferable because the deformation at the time of wearing the knitted fabric does not return, and a so-called Warai phenomenon occurs.
  • the insertion is continuous only in one course, it is regarded as a looping structure in the present invention, and no wrinkle phenomenon occurs.
  • the insertion continues for two or more courses, it is not preferable because the wrinkle is likely to occur.
  • the effect of the invention cannot be obtained when knitting within the same wale found in chain knitting such as 10Z01 without using a swing structure. If such a chain knitting is used, the design should be designed so that the chain knitting does not continue for two or more courses, as in 10Z01Z12Z21.
  • the second loop is also rubbing.
  • the swing of the warp knitted structure by the water-absorbing self-extending cellulose fiber may be 1 to 4 needles. is necessary.
  • the force with which moisture absorption of cellulose fibers becomes more likely to occur as the number of swings increases
  • the vibration density of the cellulose fibers in the warp knitted fabric becomes too high when the swing exceeds 5 stitches, and the moisture release effect decreases when water is absorbed. Phenomenon occurs. Therefore, it is necessary to design the warp knitted cellulose fiber so that it will have 1 to 4 needles.
  • warp knitting design is a two-piece tricot, cellulose fibers that absorb water self-elongate at the knock, normal fibers at the front, and the back structure, 10Z12, 10/23, 10/34, 10/45 etc.
  • 10Z12Z10Z34Z32Z34 etc. change depending on the course, but all the courses are remapped, like ⁇ 12, 00, 12/10/22/10/12/00 ⁇
  • it is possible to make the organization such as a method of discontinuous insertion and insertion by repeating rubbing and insertion.
  • the present invention contains a water-absorbing self-extending cellulose fiber! /
  • the cellulose fiber is also extracted from the warp knitted fabric, and the water absorption elongation rate (the dimensional change rate at the time of water absorption) of the cellulose fiber is measured using the back 10Z12 structure fiber like a half. It is often difficult except for the organization that can be extracted. For this reason, as a result of studying a scale instead of the water absorption self-elongation rate, the present inventor has found that the comfort of the wearing place can be obtained by keeping the knitted fabric density reduction rate within a predetermined value.
  • the knitted fabric density reduction rate is 5 to 40%.
  • the rate of decrease in knitted fabric density at the time of water absorption of the warp knitted fabric of the present invention is 5 to 40%, preferably 10 to 30%.
  • the knitted fabric density reduction rate is less than 5%, it is not preferable because it feels stuffy when sweating and is uncomfortable. If the knitted fabric density reduction rate is greater than 40%, the shape of the clothes will change so much that the feeling of wearing will be impaired, and the appearance will also be unfavorable.
  • the warp knitted fabric which is the cellulose-mixed fabric of the present invention preferably contains 10% or more of water-absorbing self-extending cellulose fibers.
  • the method of mixing the water-absorbing self-extending cellulose fiber and the ordinary fiber the method of warping and knitting the ordinary fiber and the water-absorbing self-extending cellulose fiber into separate beams, or the water-absorbing self-extending cellulose fiber and the ordinary fiber. And twisted
  • warping a composite yarn into a beam as a composite yarn such as composite false twist or interlace.
  • warp knitting machines such as single or double tricot machines and Russell machines.
  • the structure can be made of any structure such as Denbi, half, satin, mesh, and three-dimensional knitted fabric with connecting yarn inside the warp knitted fabric.
  • the dyeing method for a fabric containing the water-absorbing self-stretching cellulose fiber of the present invention can use a normal dyeing finishing process.
  • the dyeing machine used is a cheese dyeing machine or total dyeing machine when cellulose fibers are alkali-treated in the fiber state, and any dyeing machine such as a liquid dyeing machine or a wins dyeing machine is used for processing the alkali treatment into a fabric state. can do.
  • a continuous alkaline processing machine such as a mercerized machine that can process the fabric continuously instead of in a batch.
  • the processing conditions may be set to the conditions of the present invention.
  • the fabric after the alkali treatment is preferably dyed under dyeing conditions corresponding to the fiber material.
  • the raw machine For processing in the knitted fabric state, the raw machine is pre-set at 150 to 190 ° C with a pinter, etc., and then the process of scouring, alkali treatment, dyeing and finishing is set, and the raw machine is scoured and 150 to 190 It can be carried out in any process, such as a process of pre-setting at ° C with a pin tenter, etc., and dyeing the force and performing a finishing set.
  • the finishing set is carried out at 150 to 190 ° C. At this time, it is sufficient to finish so that the cellulose fibers that absorb and elongate after finishing are not wrinkled or stretched. Further, it is preferable to set the finishing density by drying the fabric before finishing setting.
  • a softening agent or a water absorbing agent as a finishing agent, and the application of the water absorbing agent is preferable because it improves sweat absorption. It is also possible to apply fiber grease such as a water-absorbing agent during dyeing.
  • the water-absorbing self-shrinking cellulose fiber according to the present invention has a water absorption elongation rate of 2% or less.
  • the cellulose fiber In order to make the cellulose fiber have a water absorption elongation rate of ⁇ 2% or less, it is obtained by making a twisted yarn having a twist coefficient of 8200 to 35000.
  • the fabric was made into a circular knitted fabric of 2 to 3 layers, and 2 to 3 layers circular knitted fabric If one outer layer or middle layer of the ground uses a fiber that absorbs and contracts when sweating due to exercise, etc., and the other outer layer uses a fiber that has low shrinkage when absorbing sweat, it is flat when dry, but one when absorbing sweat
  • the outer layer fibers shrink, and the other outer layer parts are fibers with small shrinkage, so that they protrude to form a convex part, and return to a flat state when dried after sweat absorption. It was concluded that if clothing was sewn with the side facing the skin, it would be comfortable even when sweating. As a result of various studies to achieve this function, it was found that this function can be achieved by specifying the knitted fabric structure and material.
  • one outer layer contains water-absorbing self-shrinking cellulose fibers
  • the other A two-layer circular knitted fabric in which the outer layer is composed of non-water-absorbing shrink fibers and the non-separating portion in the course direction is composed of non-water-absorbing shrink fibers is preferable.
  • the non-water-absorbing shrinkable fiber is a fiber having a water absorption elongation rate of more than 2%, and examples thereof include the above-mentioned normal fibers and water-absorbing self-extending fibers. Sectional views of such circular knitted fabrics are shown in Figs.
  • FIG. 7 is a schematic cross-sectional view of the circular knitted fabric at the time of drying and FIG. 8 at the time of sweat absorption.
  • a separation part 21 and a non-separation part 22 are repeatedly formed, one outer layer (A) contains water-absorbing self-shrinking cellulose fibers, and the other outer layer (B) is composed of non-water-absorbing shrink fibers. ing. Force when the fabric surface is flat when dried (Fig. 7) When absorbing water (Fig. 8), the water-absorbing self-shrinking cell mouth fibers constituting (A) contract and the other outer layer (B) in the separation part 21 The fibers that make up the bulge and form the convex part.
  • the separation part and the non-separation part can be selected from various structures and structures that can be manufactured by a circular knitting machine as long as they are repeated regularly or irregularly.
  • a three-layer circular knitted fabric that can exhibit the effects of the present invention
  • one outer layer and Z or an intermediate layer absorb.
  • a three-layer circular knitted fabric containing water self-shrinking cellulose fibers, the other outer layer being composed of non-water-absorbing shrink fibers, and the non-separating portion in the course direction being composed of non-water-absorbing shrink fibers is preferable.
  • the two- to three-layer multilayer circular knitted fabric according to the present invention is partially separated, and the shape of the separation part is, for example, round, oval, rectangular, rhombus, star-shaped, etc. Arbitrary dots, etc.
  • the arrangement can be arbitrary, such as a checkered pattern, a rising shoulder, or an irregular shape. If the separation portion is too small or too large, the fabric unevenness effect during sweating is reduced.
  • the major axis and the minor axis are both preferably 2 to 15 mm, particularly preferably 3 to 12 mm.
  • the width is preferably 2 to 15 mm, particularly preferably 3 to 12 mm.
  • the total area of the separation part where the convex part is formed during sweat absorption is 20 to 90% of the fabric surface during drying. More preferably 30 to 80%, particularly preferably 35 to 75%, the feeling of stickiness is lost even when sweating! 1 ⁇ Appropriate clothing.
  • the separation part in the 2- to 3-layer circular knitted fabric of the present invention has an arbitrary shape as described above.
  • the non-separation part is formed so as to surround the separation part, and the separation part and the non-separation part must be formed repeatedly.
  • FIG. 9 shows a configuration example of the separation part and the non-separation part of the circular knitted fabric.
  • the non-separated part in the tool direction (circular knitted fabric warp direction) does not need to be continuous in a straight line, but the non-separated part in the course direction (circular knitted fabric weft direction) continues linearly and Designed to be composed of shrinkable fibers. That is, the non-separation part in the tool direction may contain water-absorbing self-shrinking cellulose fibers, but the non-separation part in the course direction is composed only of non-water-absorbing shrink fibers.
  • the width of the non-separating part in the wale direction is not particularly limited.
  • the width of the non-separating part in the course direction is too narrow or too wide, the effect of reducing stickiness at the time of sweating is reduced. More preferably, 2 to 12 mm, and particularly preferably 3 to: LO mm, the objective of the present invention can be sufficiently achieved, the stickiness at the time of sweat absorption is suppressed, and the high cost twist coefficient is 8200. It is possible to reduce the mixing ratio of cellulose fiber, which is ⁇ 35000, and to reduce the cost of circular knitted fabric. Note that the width of the non-separation part is the smallest in the course direction, and the width of the non-separation part is measured.
  • a double circular knitting machine is used as an example of a specific method for producing a two-layer circular knitted fabric according to the present invention.
  • one outer layer is a knitted knitted fabric
  • the other outer layer is a knitted knitted fabric having two layers of front and back connecting portions every several whales
  • the connecting portion is a knit or tack structure.
  • one outer layer has a structure containing water-absorbing self-shrinking cellulose fibers.
  • non-water-absorbing shrinkage fibers are used every few courses, and in the case of a double circular knitting machine, both the dial and cylinder are knit and connected.
  • the separation part and the non-separation part are repeatedly formed in the course direction and the tool direction, and it becomes possible to form a dot-like convex part having an area such as a round shape or a square shape during sweat absorption.
  • the top layer and the back layer are knitted with a tentacle, the intermediate layer is a welt, and every few tools.
  • One of the fibers that knitted the three layers, or the method of knitting or tucking together the dials and cylinders with all the yarns, or connecting the outer layer and the intermediate layer by plating knitting of the outer layer of one of the layers There is a method in which the other outer layer is made into a knitted fabric and connected by knit or tuck with an arbitrary fiber constituting them.
  • the intermediate layer is plated with a welt and water-absorbing self-shrinking cellulose fibers are disposed on one outer layer and the intermediate layer.
  • these circular knittings if several courses, dials, and cylinders are knit together with a non-water-absorbing shrinkable fiber every few courses, a non-separating part is formed in the course direction and the tool direction, and the round shape during sweat absorption It becomes possible to form a dot-like convex part having a square shape or the like.
  • the water-absorbing self-shrinking cellulose fiber according to the present invention is twisted so as to have a twist coefficient of 8200 to 35000.
  • the cellulose fiber is twisted with a twist coefficient of 8200 to 35000, so that the function of contracting during sweat absorption can be exhibited.
  • a twist coefficient of less than 8200 is not preferable because the intended function of the present invention cannot be exhibited. If the twisting coefficient is larger than 35000, circular knitted fabric production becomes difficult and high cost is not preferable. Therefore, the twist coefficient is 8200 ⁇ 35 000, preferably ⁇ or 11000 ⁇ 30000.
  • the water-absorbing self-shrinking cellulose fibers are preferably mixed in an amount of 5% by weight or more of the entire multilayer circular knitted fabric. If the amount is less than 5% by weight, the formation of convex portions of the circular knitted fabric is slight at the time of sweat absorption according to the present invention, and it is difficult to achieve the object. Also, more than 50% by weight The rate is also unfavorable because the overall shrinkage of the entire circular knitted fabric is increased during sweat absorption and the clothes size changes.
  • the mixing method of the water-absorbing self-shrinking cellulose fiber is arbitrary, and a method of arranging the fiber, a method of making a twisted yarn with a normal fiber, and the like can be performed.
  • the total area of the portions where the protrusions are formed during sweat absorption is too small or too much, there is a sticky feeling during sweating.
  • the total area of the combined areas is preferably 20 to 90% of the fabric surface when dried. More preferably 30 to 80%, particularly preferably 35 to 75%, a comfortable garment without a sticky feeling when sweating is obtained.
  • the knitted fabric density of the 2-3 circular knitted fabric of the present invention can be arbitrarily set.
  • the dyeing and finishing method for the two- to three-layer circular knitted fabric of the present invention can use a normal dyeing finishing process, and the dyeing conditions are set according to the fiber material to be used.
  • the dyeing machine used is a liquid dyeing machine or a wine dyeing.
  • the machine is arbitrary.
  • a dyeing and finishing process in which it is preferable to add a water-absorbing agent to improve water absorption the raw machine is put into a dyeing machine, and after scouring and dyeing, it also serves as a finishing process such as a water absorption process. This can be done by any dyeing finishing process, such as a method of performing a finishing set, or a method of performing a wet relaxation process, dyeing after pre-setting, and performing a final set also serving as a finishing process.
  • FIG. 10 is a schematic cross-sectional view of the three-dimensional structure knitted fabric during drying and FIG. 11 during sweat absorption.
  • a separation part 21 and a non-separation part 22 are repeatedly formed, one outer layer (C) contains water-absorbing self-shrinking cellulose fibers, and the other outer layer (D) is composed of non-water-absorbing shrinkage fibers.
  • the surface of the weft fabric has a convex part when it is dried (FIG. 10). This is achieved by knitting so that the number of courses in both outer layers is (C)> (D).
  • the fabric surface has a convex portion at the time of drying, the thickness of the fabric is increased, and the water-absorbing self-shrinking cellulose fibers constituting (C) contract during warm sweat perspiration due to the presence of an air layer (FIG. 11) Since the convex part in the separation part 21 is reduced and the thickness of the fabric and the air layer are reduced, the heat release property is increased. If it dries after sweat absorption, the convex part is restored again and returns to its original thickness. [0042] That is, in a state where sweat is not applied, heat dissipation proceeds during warm sweating, and excess sweat is not applied, so that the exercise function is lowered and a comfortable fabric is obtained.
  • the separation part and the non-separation part are repeatedly formed!
  • one outer layer (C) constituting the separation part contains water-absorbing self-shrinking cellulose fibers
  • the other outer layer (D) contains non-water-absorbing shrinking fibers.
  • the object of the present invention can be achieved by a three-dimensionally structured circular knitted fabric characterized in that the number of courses of (C)> (D).
  • the three-dimensionally structured fabric of the present invention has a structure in which one outer layer (C) constituting the separating portion is raised to form a convex portion, and the separating portion and both outer layers are further formed.
  • a connected non-separating part is a structure that is repeated regularly or irregularly.
  • These structures can be selected from various structures and structural strengths that can be produced by a circular knitting machine.
  • the outer layer containing the water-absorbing self-shrinking cell mouth fibers contracts to reduce the density and reduce the convexity (fabric). If the organization is such that the thickness of the
  • the shape of the separation portion that is partially separated is not limited to a round shape, but also a dot shape having an area such as an elliptical shape, a rectangular shape, a diamond shape, or a star shape.
  • Arbitrary placement is optional, such as checkered pattern, rising to the right, irregular shape. If the size of the separation portion is too small or too large, the convex portion reducing effect during sweat absorption is reduced.
  • the major axis and the minor axis are both 2 to 15 mm, and particularly preferably 3 to 12 mm.
  • the width is preferably 2 to 15 mm, particularly preferably 3 to 12 mm.
  • the total area of the separating portions in the three-dimensional fabric is preferably 20% or more of the surface of the circular knitted fabric because if the amount is too small, the effect of reducing the thickness during sweating is small. If it is more preferably 30% or more, and particularly preferably 40% or more, the amount of heat release increases greatly when the sweating is reduced, and the amount of heat release increases, and a comfortable garment that can be expected to have a sweating suppression effect is obtained.
  • the separation part in the three-dimensionally structured fabric of the present invention has an arbitrary shape as described above.
  • a non-separation part is formed so as to surround the separation part, and the separation part and the non-separation part must be repeatedly formed.
  • the non-separation part may be composed of any one of the fibers contained in the separation part, or may be composed of a yarn different from the separation part that may be knitted.
  • the non-separated part in the tool direction contains water-absorbing self-shrinking cellulose fibers
  • the non-separating part in the course direction can be constituted only by non-water-absorbing shrinkable fibers.
  • any organization can be used as long as the organization is knitted using both the cylinder and dial needle beds of a circular knitting machine, such as smooth and milling.
  • containing more non-water-absorbing / contracting fibers can reduce the mixing ratio of cellulose fibers as a three-dimensionally structured fabric, which makes the knitted fabric superior in cost and fastness.
  • the ratio of the number of courses of (C) and (D) is preferably (C) Z (D) force 1.1 to 5.0, more preferably. 2.0 to 4.0. If the ratio of the number of courses is 1.1 or more, the convex part appears in a normal state where no sweat is absorbed, and the effect of reducing the thickness of the convex part immediately after perspiration can be sufficiently exerted. Further, if the ratio of the course is 5.0 or less, the normal convex portions are formed beautifully, and the convex portion reducing effect at the time of sweat absorption is also clear, which is also preferable in terms of productivity.
  • the whale with the largest number of courses is taken as the number of courses. Furthermore, the number of courses is measured only for knit loops, and tack loops and welt loops are not counted as courses. However, these are applied when the size of the knit loops of both outer layers is approximately the same.
  • the calculation is performed by converting both outer layers to the same knit loop size. For example, if the size of the knit loop of one outer layer (C) is half the size of the other outer layer (D), (C) X 2 is treated as (C) in the calculation.
  • the size of the knit loop is determined by the knitting length constituting the separation part.
  • one outer layer (C) constituting the separating portion may contain water-absorbing self-shrinking cellulose fibers, and may be knitted with non-water-absorbing shrink fibers.
  • the knitting method a method of alternately knitting water-absorbing self-shrinking cellulose fibers and non-water-absorbing shrink fibers or a method of knitting with non-water-absorbing shrink fibers can be used.
  • the mixing ratio is preferably at least wt%. If it is less than 15% by weight, the thickness phenomenon of the convex portion is less preferred at the time of sweat absorption. Particularly preferably, the mixing ratio is 20% by weight or more.
  • the other outer layer (D) constituting the separation part can contain a small amount of force-absorbing self-shrinking cellulose fibers mainly composed of non-water-absorbing shrinkable fibers.
  • the mixing ratio of water-absorbing self-shrinking cellulose fibers is preferably less than 5% by weight. If the mixing ratio is above, it is preferable because the effect of reducing the convex portion is reduced during sweat absorption. It is preferable that it is composed entirely of non-water-absorbing shrinkable fibers.
  • the mixing ratio of cellulose fibers having a twist coefficient of 8200 to 35000 in the entire three-dimensional structure fabric is preferably 5 to 50% by weight, more preferably 10 to 30% by weight. . If the amount is less than 5% by weight, the decrease of the convex portion of the circular knitted fabric is slight when sweating according to the present invention. If the amount exceeds 50% by weight, the shrinkage of the whole three-dimensional structure fabric upon sweating increases and the clothing size changes. A good habit.
  • a method for mixing cellulose fibers having a twist coefficient of 8200 to 35000 is arbitrary, and a method based on fiber arrangement, a method for forming a composite yarn with a non-shrinkable yarn, and the like can be performed.
  • the three-dimensionally structured fabric can be manufactured by a circular knitting machine, and the density of the circular knitted fabric can be arbitrarily set.
  • a double circular knitting machine is used, and water-absorbing self-shrinking cellulose fibers are partially used in the top of the cylinder.
  • the number of courses in the separation section will be larger than the number of dial courses.
  • water-absorbing self-shrinking cellulose fibers can be used alone, or knitting yarns with ordinary fibers such as polyester and nylon can be used.
  • a non-separation part is required between the separation part and the separation part.
  • the separating part and the non-separating part are repeatedly formed in the course direction and the tool direction, and it becomes possible to form a dot-like convex part having an area on the three-dimensionally structured fabric.
  • the thickness of the convex portion can be reduced and the heat dissipation effect can be enhanced.
  • a normal dyeing finishing process can be used for the dyeing finish of the three-dimensionally structured fabric of the present invention.
  • the dyeing conditions are set according to the fiber material to be used, and the dyeing machine to be used is optional, such as a liquid dyeing machine or a wins dyeing machine.
  • the dyeing finishing process include putting the raw machine into the dyeing machine, performing scouring and dyeing, and then performing a finishing set that also serves as a finishing treatment such as water absorption treatment, or wet relaxation treatment and dyeing after presetting.
  • An exercise shirt was sewn with the fabric according to the example and exercised until sweating, and the wearing comfort was sensorially evaluated by 10 subjects, and the average value was taken as the wearing comfort.
  • the twist coefficient of the cellulose fiber was calculated
  • Twist factor (Fineness) ° ⁇ 5 ⁇ Number of twists (Unit: Number of twists Zm)
  • the number of routes that can be produced is 3 or more, and the higher the number, the better.
  • Rate of decrease in knitted fabric density ((F-E) / E) X 100 (2)
  • the three-dimensional fabric obtained in the example was absorbed by 100% by weight, and the appearance reduction of the thickness reduction of the convex portion of the outer layer upon water absorption was evaluated.
  • the thickness reduction property of the convex portion is recognized, and the numerical value increases as the value increases, and the effect of the present invention is recognized.
  • the knitted raw machine was put into a liquid flow dyeing machine, scoured at 80 ° C for 20 minutes, drained, and then alkali-treated at a concentration of 60 gZL of sodium hydroxide at 30 ° C for 20 minutes. Next, only the ester side was stained at 130 ° C.
  • the dyed knitted fabric is uneven, so after drying using a short loop dryer, it was stretched to the extent that wrinkles of the knitted fabric could be removed with a pin tenter and finished at 170 ° C for 60 seconds. .
  • a water absorbing agent was added in the bath for dyeing.
  • Example 1 the alkali treatment conditions and the type of cellulosic fiber were changed to produce cellulosic fibers having different water absorption elongation rates. The wearing comfort of the knitted fabric using this fiber was evaluated, and the results are shown in Table 1.
  • a normal polyester fiber 56dt / 24f yarn was used as the warp yarn, and a normal polyester fiber 56dtZ24f yarn and two rayon fibers 67dtZ24f were alternately driven into the weft yarn to weave a 3/1 satin structure.
  • the weaving machine was put into a liquid dyeing machine, scoured at 80 ° C for 20 minutes, drained, and then treated with alkali at a concentration of 50 gZL of hydroxylated lithium for 50 minutes at 50 ° C. Subsequently, only the ester side was stained at 130 ° C. Since the dyed woven fabric is uneven, it was dried using a short loop dryer, then stretched to the extent that wrinkles of the knitted fabric could be removed with a pin tenter, and finished at 180 ° C for 60 seconds. In addition, the water absorbing agent was given at the time of this finishing set. When the rayon fiber of the resulting woven fabric was extracted and the water absorption elongation was measured, it was + 9.3%.
  • Example 10 Using a 22 gauge circular knitting machine, smooth fabric was knitted using cubra spun yarn l / 64Nm (hair count).
  • the cubra spun yarn used is a normal cubra spun yarn that has not been treated with alkali.
  • the knitted raw machine is put into a liquid dyeing machine, scoured at 80 ° C for 20 minutes, drained, and 30 ° C in sodium hydroxide at a concentration of 60gZL. C20 alkali treatment.
  • the Cubra spun yarn was dyed with a reactive dye. After drying using a short loop dryer, the knitted fabric was stretched to the extent that wrinkles could be removed with a pin tenter and finished at 170 ° C for 60 seconds.
  • the water absorbing agent was given at the time of this finishing set.
  • the knitted braided yarn of the resulting knitted fabric was taken out and the water absorption elongation rate was measured to be + 4.7%.
  • Cupra fiber 56dtZ30f and polyester W-shaped cross section yarn 56dtZ30f are interlaced with Awa Spindle interlace nozzle MK-2 prior to false twisting.
  • a composite yarn was prototyped by 1 heater false twist under the conditions of 300 mZ processing speed, first heater temperature 200 ° C, twister belt angle 95 °, draw ratio 0.998 times. The crimp elongation of this composite yarn was 12.1%.
  • a milled knitted fabric in which this composite yarn and 2-fiber false twisted caloette yarn of ordinary fiber 84dtZ36f polyester fiber are alternately arranged using a 28 gauge circular knitting machine is dyed and finished under the following conditions. went. The composite yarn was extracted from the fabric and the water absorption elongation was measured to be + 5.3%.
  • the knitted raw machine was put into a liquid flow dyeing machine, scoured at 80 ° C for 20 minutes, drained, and then alkali-treated at a concentration of 60 gZL of sodium hydroxide at 30 ° C for 20 minutes. Subsequently, only the ester side was stained at 130 ° C. Since the dyed knitted fabric is uneven, after drying using a short loop dryer, it was stretched to the extent that wrinkles of the knitted fabric could be removed with a pin tenter, and a finishing set was performed at 170 ° C for 60 seconds.
  • the knitted raw machine was put into a liquid flow dyeing machine, refined at 80 ° C for 20 minutes, drained, and then alkali-treated at a concentration of sodium hydroxide of 50 gZL for 40 minutes at 40 ° C. Next, only the nylon side was dyed at 98 ° C. The dyed knitted fabric is uneven, so after drying using a short loop dryer, the knitted fabric was stretched to the extent that wrinkles could be removed with a pin tenter and finished at 170 ° C for 60 seconds. .
  • the knitted raw machine was put into a liquid flow dyeing machine, scoured at 80 ° C for 20 minutes, drained, and then alkali-treated at a concentration of sodium hydroxide of 50 gZL at 30 ° C for 20 minutes. Next, only the ester side was stained at 130 ° C. Since the dyed knitted fabric is uneven, after drying using a short loop dryer, the knitted fabric is stretched to the extent that wrinkles of the knitted fabric can be removed with a pin tenter, and finish setting is performed at 170 ° C for 60 seconds. It was. In addition, the water-absorbing agent is used at the same time as dyeing in the liquid flow dyeing. Granted. The resulting knitted fabric had a structure in which a welt loop was formed continuously in the course direction.
  • Example 13 a knitted fabric was produced by changing the thickness of the polyester yarn or the yarn arrangement during knitting to change the mixing ratio of cellulose fibers, and further changing the number of continuous welt loops of cellulose fibers. The wearing comfort of the obtained knitted fabric was evaluated, and the results are shown in Table 2.
  • the yarns are arranged so that they become composite yarns containing ordinary fibers in 1 and cellulose fibers in 2 and 3, and 1 to 2 are knitted repeatedly 4 times. After the formation, 1 and 3 were knitted four times, and this was repeated to make a knitted fabric.
  • 84dtZ72f polyester fiber two-heater false twisted yarn is used as normal fiber
  • normal untreated alkali cupra fiber 56dt / 30f as a composite yarn containing cellulose fiber
  • polyester W type cross section yarn 56dtZ30f The raw machine was knitted using the composite yarn that was simultaneously false twisted at 180 ° C.
  • the knitted raw machine was put into a liquid dyeing machine, scoured at 80 ° C for 20 minutes, drained, and alkali-treated at a concentration of 50 gZL of sodium hydroxide for 30 minutes at 30 ° C. Subsequently, only the ester side was dyed at 130 ° C. Since the dyed knitted fabric is uneven, after drying using a short loop dryer, the knitted fabric was stretched to the extent that wrinkles of the knitted fabric could be removed, and the finish was set at 170 ° C for 60 seconds. . A water-absorbing agent was applied simultaneously with the dyeing in the liquid dyeing. The obtained knitted fabric had a structure in which tack loops were continuously formed in the course direction.
  • a W-shaped cross-section yarn of polyester 56dtZ30f is used as the normal fiber at the front, and cupra fiber 56dtZ30f is used as the cellulose fiber at the back. Knit by threading aU-in array.
  • the used cuvula fiber is a normal cupra fiber not treated with alkali.
  • the knitted raw machine was put into a liquid flow dyeing machine, scoured at 80 ° C for 20 minutes, drained, and then alkali-treated in an aqueous solution of sodium hydroxide and sodium hydroxide at a concentration of 50gZ L at 30 ° C for 20 minutes. Subsequently, the polyester fiber and the cubra fiber were dyed. Since the dyed knitted fabric is uneven, after drying using a short loop dryer, the knitted fabric is stretched to the extent that wrinkles of the knitted fabric can be removed with a pin tenter and the finish set is set at 170 ° C for 60 seconds. went. A water-absorbing agent was added simultaneously with dyeing during liquid flow dyeing.
  • the obtained knitted fabric was used to sew a T-shirt to conduct a wearing test.
  • Table 3 shows the wearing results.
  • Example 19 a warp knitted fabric was produced by changing the structure and changing the amount of shaking, mixing ratio, and rubbing of cellulose fibers. The wearing comfort of the knitted fabric using these was evaluated. The results are shown in Table 3.
  • Fig. 14 The organization of Fig. 14 was knitted using a 28 gauge circular knitting machine. For 1, 2 heater false twisted yarn of 84 dt / 36 f polyester fiber as normal fiber was used, and for 2, Cubular fiber 84dtZ45f with 18000 twist coefficient was used. After repeating 1 to 2 10 times, the non-separating part of R in Fig. 9 is made of 2 heater false twisted yarn of 56dtZ24f polyester fiber, which is non-shrinkable yarn, so that the finished width is 4 mm. Organized.
  • the knitted raw machine was put into a liquid flow dyeing machine, scoured at 80 ° C for 20 minutes, and then dyed only at the ester side at 130 ° C.
  • the dyed fabric has a width and the knitted fabric is uneven. Therefore, a tentering set was performed at 170 ° C for 60 seconds until the convex portion was extended by a pin tenter.
  • a T-shirt type was sewn on the resulting knitted fabric, and a wearing test for comfort during exercise sweating was conducted.
  • Table 4 shows the results of the wearing test.
  • Example 23 a knitted fabric was produced using cellulose fibers having different twisting coefficients shown in Table 4, and the width of the non-separation part was changed, and these were evaluated. The results are shown in Table 4.
  • Fig. 15 The organization shown in Fig. 15 was knitted using a 28 gauge circular knitting machine.
  • 1 cocoon is a 2-fiber heater twisted yarn of 84dt Z36f polyester fiber used as ordinary fiber, and is mainly connected to the cylinder side and tack structure, which is the main part of the tengu structure.
  • a two-heater false twisted yarn of 56dtZ24f polyester fiber as ordinary fiber and spliced yarn of cupra fiber 84dt Z45f with a twist factor of 18000.
  • the knitted raw machine was put into a liquid flow dyeing machine, refined at 80 ° C for 20 minutes, and then dyed only at the ester side at 130 ° C. Since the fabric after dyeing has a width and the knitted fabric has an uneven shape, the setter was set at 170 ° C for 60 seconds until the unevenness was extended by a pin tenter.
  • a T-shirt type was sewn on the resulting knitted fabric, and a wearing test for comfort during exercise sweating was conducted.
  • Table 4 shows the results of the wearing test.
  • Fig. 16 The structure shown in Fig. 16 was knitted using a 28-gauge circular knitting machine.
  • [1] [2] [4] [5] [6] [8] 84dtZ36f polyester fiber as a normal fiber 2 heater false twist
  • 2 heater false twisted yarns of cupra fiber 56dtZ30f with a twist factor of 25000 and polyester fiber of 56dtZ24f, which is a normal fiber were used. Adjust these so that the surface of the knitted fabric becomes 56dtZ24f polyester yarn with spliced yarn. After repeating [1] to [4] four times, [5] to [8] were repeated 4 times.
  • the convex part of part (C) is formed by [3] [4] [7] [8] that constitutes the separation part, and the outer layer (D) part by [1] [2] [5] [6] Formed and knitted so that the course number ratio (C) Z (D) is 2.0 times.
  • the knitted raw machine was put into a liquid flow dyeing machine, refined at 80 ° C for 20 minutes, and then dyed only at the ester side at 130 ° C.
  • a water-absorbing agent was also added, and dyeing proceeded while imparting water absorption to the knitted fabric. Since the fabric after dyeing has a width and the knitted fabric is uneven, it is dried with a short loop dryer, 10% wider than the dried width with a pin tenter, and set at 170 ° C for 60 seconds. It was.
  • the obtained knitted fabric was a three-dimensional circular knitted fabric in which convex portions were developed in the outer layer portion (C) knitted on the cylinder side and the thickness of the convex portions was reduced by perspiration.
  • Table 5 shows the performance test results of the three-dimensional structure circular knitted fabric.
  • Example 29 the ratio of the number of courses of both outer layers (C) Z (D) was changed according to the number of knitting of [3] [4] [7] [8], and these were evaluated. The results are shown in Table 5.
  • Example 13 Cubula 5. 7 33 3 5
  • Example 14 Cubra 5. 7 10 3 3
  • Example 15 Cubra 5. 7 15 3 4
  • Example 1 7 Cubur 5. 7 100 3 5
  • Example 23 18000 -3. 0 4 5 5
  • Example 24 8200 -2. 1 4 5 3
  • Example 25 1 1000 -2. 5 4 5 4
  • Example 26 24000 -3. 6
  • Example 27 35000- 4.4 4 3 5
  • Example 28 18000 -3. 0 5 5 5 Comparative Example 2 5500-0. 9 4 5 1 [Table 5]
  • the fabric according to the present invention is used to produce a fabric, it is possible to produce clothing that is comfortable when worn and that does not feel damp when sweating, such as sportswear, innerwear, outerwear, etc. A comfortable wearing feeling can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Knitting Of Fabric (AREA)
  • Woven Fabrics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

 本発明は衣服着用時快適で、かつ、発汗時にもべとつき感や蒸れ感のない布帛を提供するものである。  本発明は、吸水時寸法変化率が2%以上である、セルロース繊維が含有されていることを特徴とするセルロース繊維混用布帛によって達成することができる。本発明の布帛は、スポーツウェア、インナー、アウターなどに適用すると、快適な着用感が得られる。

Description

セルロース繊維混用布帛
技術分野
[0001] 本発明は特殊な吸水時に寸法変化する繊維が混用された布帛に関する。より詳細 には、吸水時に寸法変化(吸水自己伸長または吸水自己収縮)するセルロース系繊 維が混用された、着用発汗時に快適な布帛を提供するものである。
背景技術
[0002] 従来の衣服は、スポーツなどの運動により発汗した際には布帛が吸汗し、肌と布帛 が密着して、いわゆるべとっき感ゃ蒸れ感がある。これを防止するために種々の布帛 が開発されている力 布帛構造のみでは吸汗時の快適性に限界がある。このべとつ き感ゃ蒸れ感を解消するために吸汗時 (吸水時)に自己伸長する繊維を使用した布 帛、衣服が提案されている。例えば、吸水時に自己伸長する繊維を使用して、吸水 時に通気性を向上させる衣服 (特許文献 1、 2、 3参照)や、吸汗時に凹凸を発現させ る (特許文献 4、 5参照)衣服などが提案されている。
確かにこれらの特許文献で提案されている衣服は、吸水自己伸長糸を使用してい ない衣服より発汗時快適である。しかし、これらの衣服に使用されている繊維は吸湿 性や吸水性がほとんどなぐ身体の不感蒸泄による水分は吸収しない。このため、発 汗状態ではない着用時においても不快感が有り、さらに、発汗時にも吸汗性が無い ためべとっき感ゃ蒸れ感が残る衣服となる。また、通常のセルロース繊維を使用すれ ば吸湿性がよぐ着用時では快適であることが知られている。しかし、運動などによる 発汗時にはべとっき感ゃ蒸れ感を覚えるため、吸水時には通気性が向上するなど、 さらに、高機能布帛が望まれている。上述のように、着用時、発汗時共に快適となる 繊維は現在見当たらない。
特許文献 1 :特開 2005— 163225号公報
特許文献 2:特開 2005 - 36374号公報
特許文献 3:特開 2005 - 23431号公報
特許文献 4:特開 2005 - 146496号公報 特許文献 5:特開 2006 - 112009号公報
発明の開示
発明が解決しょうとする課題
[0003] 本発明は、着用時快適で、かつ、発汗時にもべとっき感ゃ蒸れ感のない布帛を提 供する事を目的とする。
課題を解決するための手段
[0004] 本発明者は、目的を達成するため着用テストなどを含み鋭意検討した結果、吸水 時に寸法変化を生じる画期的なセルロース繊維を使用した布帛により、課題が達成 される事を見出した。
[0005] すなわち本発明の目的は、下記のセルロース繊維混用布帛により達成される。
(1)吸水時寸法変化率が 2%以上である、セルロース繊維が含有されていることを 特徴とするセルロース繊維混用布帛。
(2)吸水伸長率が + 3%以上の吸水自己伸長セルロース繊維が含有されているこ とを特徴とする(1)記載のセルロース繊維混用布帛。
(3)該セルロース繊維の含有率が 10wt%以上である(2)記載のセルロース繊維混 用布帛。
(4)吸水伸長率が + 3%以上である吸水自己伸長セルロース繊維によるウェルトル ープ、および Zまたはタックループが 2ループ以上連続して形成されて 、る部分を有 する丸編構造である(3)記載のセルロース繊維混用布帛。
(5)吸水伸長率が + 3%以上である吸水自己伸長セルロース繊維はルービングさ れ、かつ、 1〜4針の振り組織であり、さらに吸水時の編地密度低下率が 5〜40%で あることを特徴とする経編構造である(3)記載のセルロース繊維混用布帛
(6)吸水自己伸長セルロース繊維力 アルカリ水溶液 20gZL以上、 20°C以上、 5 分以上浸漬処理されたことを特徴とする (4)または (5)記載のセルロース繊維混用布 帛。
(7)吸水伸長率が 2%以下の吸水自己収縮セルロース繊維が含有されているこ とを特徴とする(1)記載のセルロース繊維混用布帛。
(8)分離部と非分離部とが繰り返し形成されている多層構造布帛であって、一方の 外層、および Zまたは、中間層には吸水伸長率が 2%以下である吸水自己収縮セ ルロース繊維が含有され、他方の外層は非吸水収縮繊維で構成され、コース方向の 非分離部は非収縮繊維で構成されて ヽる (7)記載のセルロース繊維混用布帛。
(9)分離部と非分離部とが繰り返し形成されている立体構造布帛であって、該分離 部を構成する一方の外層 (C)には吸水伸長率が 2%以下である吸水自己収縮セ ルロース繊維が含有され、他方の外層 (D)には非吸水収縮繊維が含有され、両外 層のコース数が(C) > (D)である事を特徴とする(7)記載のセルロース繊維混用布 帛。
(10)吸水自己収縮セルロース繊維の撚り係数が 8200〜35000である事を特徴と する(7)記載のセルロース繊維混用布帛。
発明の効果
[0006] 本発明の繊維を使用すれば、着用時快適で発汗時にもべとっき感ゃ蒸れ感のな い布帛が製造可能である。特にこの布帛は、運動時に吸放湿性効果が大きく発揮で き、これまで提案されている特許文献 1〜5に示されるような衣服と着用快適性に大き な差が生じる。さらに、吸水時 (衣服着用場面においては吸汗時)にセルロース繊維 が寸法変化し、特に吸放湿性を向上させることができるので、セルロース繊維使用の 効果をより高めることができ、特に少量の水分量でもセルロース繊維の吸水寸法変化 効果が得られる。このため、本発明の繊維を使用すれば着用時快適で発汗時にもべ とっき感ゃ蒸れ感のない衣服製造が可能である。本発明の繊維を使用して製造され た布帛をスポーツウエア、インナー、アウターなどに適用すると、快適な着用感が得ら れる。
図面の簡単な説明
[0007] [図 1]本発明のセルロース混用布帛における編成組織の例を示す図
[図 2]本発明のセルロース混用布帛における編成組織の例を示す図
[図 3]本発明のセルロース混用布帛における編成組織の例を示す図
[図 4]本発明のセルロース混用布帛における編成組織の例を示す図
[図 5]本発明のセルロース混用布帛における編成組織の例を示す図
[図 6]本発明のセルロース混用布帛における編成組織の例を示す図 [図 7]本発明のセルロース混用布帛における編成組織の例を示す図 [図 8]本発明のセルロース混用布帛における編成組織の例を示す図 [図 9]本発明のセルロース混用布帛における編成組織の例を示す図 [図 10]本発明のセルロース混用布帛における編成組織の例を示す図 [図 11]本発明のセルロース混用布帛における編成組織の例を示す図 [図 12]本発明のセルロース混用布帛における編成組織の例を示す図 [図 13]本発明のセルロース混用布帛における編成組織の例を示す図 [図 14]本発明のセルロース混用布帛における編成組織の例を示す図 [図 15]本発明のセルロース混用布帛における編成組織の例を示す図 [図 16]本発明のセルロース混用布帛における編成組織の例を示す図 符号の説明
[0008] [1]〜[8] 編成順
[R] 部分的に設ける非分離部の糸且織
11 ダイアル針
12 シリンダー針
13 普通繊維
14 吸水時寸法変化率が 2%以上であるセルロース繊維 21 分離部
22 非分離部
A 分離部を構成する一方の外層
B 分離部を構成する他方の外層
C 分離部を構成する一方の外層
D 分離部を構成する他方の外層
K ニットループ
T タックループ
W ウェルトループ
発明を実施するための最良の形態
[0009] 以下、本発明について詳細に説明する。 本発明におけるセルロース繊維とは、キュプラ、レーヨン、精製セルロース繊維、竹 繊維、綿などであり、キュブラ、レーヨン等の再生セルロースが好適に使用される。ま た、編地とするためには、これらの長繊維、短繊維 (紡績糸)を使用する。長繊維では l ldt (デシテックス:以下同じ記号を使用)〜400dt、短繊維では 160S (綿番手:以 下同じ記号)〜 10Sが使用される。また長繊維と短繊維を撚糸した双糸、 3子糸、ま たは長繊維と短繊維を引き揃えて構成することができ、それぞれ組織にあった太さと して使用できる。長繊維では 40dtから 170dt、短繊維では 30S〜120S程度が扱い やすく好ましい。
[0010] 本発明の布帛は、吸水時寸法変化率が 2%以上のセルロース繊維が混用された布 帛である。吸水時寸法変化率が 2%以上のセルロース繊維としては、吸水自己伸長 セルロース繊維と、吸水自己収縮セルロース繊維の 2通り有る。本発明者等は、吸水 自己伸長セルロース繊維および、吸水自己収縮セルロース繊維を好適に得る方法を 見出し、それぞれの性能を最大限活用するための布帛構成を検討し、本発明に到達 した。
吸水自己伸長セルロース繊維とは、吸水伸長率が + 2%以上となるセルロース繊 維であり、好ましくは、吸水伸長率 + 3%以上である。
吸水自己収縮セルロース繊維とは、吸水伸長率が 2%以下となるセルロース繊 維を示す。
[0011] なお、本発明において、吸水時寸法変化率が 2%未満の繊維を普通繊維という。
普通繊維としては、ポリエステル、ポリトリメチレンテレフタレート等のポリエステル系繊 維、ポリアミド系繊維、ポリウレタン系繊維、後述するアルカリ処理や撚糸による吸水 寸法変化性能が付与されていないセルロース系繊維、アセテート、ウールなど、任意 の繊維の長繊維、あるいは短繊維が挙げられる。これらの断面形状は任意で、丸断 面や W型断面などの異型糸であってもよ 、。
本発明において、吸水時寸法変化率は、以下の方法により求める。 20°C、 65%R Hの環境で、 0. 05g/dt (デシテックス)の荷重下で繊維長 (A)を測定し、次、で、 繊維を水中に 30秒浸す。次 、で繊維を水中から取り出し、 30秒後の繊維長(B)を 0 . 05gZdtの荷重下で測定する。下記式(1)により吸水伸長率を求める。そして、下 記式(2)の通り、得られた吸水伸長率の絶対値を吸水時寸法変化率とする。
[0012] なお、布帛中の繊維の吸水時寸法変化率測定は、布帛中より繊維を抜き出して同 条件で行う。この際、測定する繊維長は 30cmとする力 布帛中から 30cmの繊維を 抜き出せない場合は抜き出した長さで測定する。この場合、正確な値を求めるため、 測定試料数を適宜多くして測定する。さらに、吸水時寸法変化率が異なる複数の繊 維をインターレースなどの流体混繊加工や撚糸等により複合した複合糸や、混紡糸 、交撚糸の場合でも、布帛中より繊維を抜き出し、複合糸、混紡糸、交撚糸の状態で 同条件にて吸水時寸法変化率を測定する。
吸水伸長率 (%) = ( (B-A) /A) X 100 (1)
吸水時寸法変化率 (%) =吸水伸長率の絶対値 (2)
以下、吸水自己伸長セルロース繊維と、該繊維を用いた本発明の布帛の構成につ いて説明する。
[0013] 本発明の吸水自己伸長セルロース繊維は、吸水伸長率が + 2%以上であり、好ま しくは + 3%以上である。セルロース繊維を吸水自己伸長糸とするには、通常のセル ロース繊維をアルカリ水溶液中で処理すればょ 、。セルロース繊維をアルカリ処理す ることは従来より知られており、例えばシルケット加工が最も一般的な処理方法である 。しかし、本発明では、従来の常識を打ち破り、過酷なアルカリ処理を行うことにより 吸水時に 2%以上、好ましくは 3%以上伸長するセルロース繊維の製造に成功した。 具体的には、セルロース繊維を、例えば水酸ィ匕ナトリウムを 20gZL (リットル)以上 含む水溶液中に 20°C以上で、 5分間以上浸漬処理することにより得られる。吸水伸 長率の制御はこれら条件のコントロールにより可能である。例えばアルカリ濃度、温度 、時間など、処理条件がゆるやかなほど吸水伸長率は小さくなる力 処理条件を厳し くしすぎてもある限度以上、例えば 20%の吸水伸長率を有するセルロース繊維を得 ることは困難である。アルカリ処理剤としては公知のものが使用でき、例えば、水酸ィ匕 ナトリウム、水酸ィ匕カリウムなどのアルカリ金属水酸ィ匕物の使用が可能である。
[0014] アルカリ濃度としては 20〜200gZL水溶液相当がより好ましい。処理温度、時間は それぞれ 20〜110°Cで、 5〜 120分間処理することがより好ましい。この処理温度は 処理時最高の温度であり、処理時間はアルカリ投入後、 20°Cを超えてから、最高温 度に達し、最高温度で処理後 20°C未満まで冷却するまでの時間を含んだ総時間で 、これらの時間が 5分以上あればよい。また、冷却水を排液後は、速やかに水洗、中 和を行うのが望ましい。アルカリ処理の方法は、セルロース繊維の状態で行い、製編 後に染色力卩ェを行う方法、あるいは、アルカリ処理前のセルロース繊維を使用して布 帛製造後にアルカリ処理を行い、引き続き染色加工を行う方法など任意であるが、布 帛製造後に行う方法が容易である。
[0015] また、酢酸、りんご酸などの強酸液中で浸漬処理を行っても、吸水自己伸長セル口 ース繊維が得られる力 前記条件のアルカリ処理に比べ吸水自己伸長セルロース繊 維となる効果は若干小さくなる。
本発明のセルロース繊維混用布帛では、吸放湿性に特に優れたセルロース繊維を 使用していることが着用快適性に大きく寄与し、これまで提案されている特許文献 1 〜5に示されるような布帛と、着用快適性に大きな差を生じる。すなわち、本発明のセ ルロース繊維混用布帛の大きな特徴である吸水自己伸長するセルロース繊維を用い ることにより、吸水時 (衣服着用場面においては吸汗時)にセルロース繊維が伸長し、 放湿性を向上させることが可能で、セルロース繊維使用の効果をより高めることがで きる。
[0016] 吸水自己伸長セルロース繊維と、普通繊維とを混合する方法については、普通繊 維と吸水自己伸長セルロース繊維とを編機、あるいは織機上で引き揃え等により交 編、あるいは交織する方法、または、吸水自己伸長セルロース繊維と普通繊維とを交 撚、複合仮撚、インターレースなどの複合糸として使用して布帛製造することで混合 可能である。なお、複合糸とする場合には複合方法によっては吸水時に複合糸の伸 長が顕著に得られない場合がある。これを避けるため、吸水自己伸長セルロース繊 維より普通繊維との糸長差は、布帛を仕上げた状態で吸水自己伸長セルロース繊維 の方を、 0〜9%短くなるよう送り量 (フィード率)を設計する。糸長差が 9%より大きい 場合には複合糸の強力が不足し、十分な布帛強度が得られない。また、吸水自己伸 長セルロース繊維の方が長い場合は、見掛け上繊維が太くなり、吸放湿性が低下し て本発明の目的が達成されなくなる事がある。
[0017] さらに、複合糸において吸水自己伸長するセルロース繊維の混率は、布帛設計に より得られる効果を加味して任意に設定可能である。吸水自己伸長するセルロース 繊維を 20〜80%の混率とするのが望まし!/、。
本発明の吸水自己伸長セルロース繊維を使用して編地、織布などの布帛を製造す れば、編物設計、織物設計により発汗時に快適である各種の機能を付与する事が可 能である。例えば、発汗時に吸水した部分のセルロース系繊維が伸長して、布帛表 面に布帛を構成する表面の繊維が浮き出てきて凸部を形成させる場合の組織の例と して、ダブル丸編機を使用して、吸水自己伸長セルロース繊維を含有する一方の外 層と普通繊維を含有する他方の外層とが部分的に分離している分離部と、非分離部 とが、規則的、あるいは不規則的に繰り返されている構造とすれば、吸水自己伸長セ ルロース繊維が吸汗時に伸長して編地に凹凸が発現し、ベとつき感が抑えられる衣 服となる。
[0018] また、吸水自己伸長セルロース繊維が吸汗し、布帛を構成する編目や織糸が伸び て大きくなり、吸汗部分の密度が下がるように設計すれば、運動などの発汗時に蒸れ 感を覚えな ヽ衣服製造が可能となる。この蒸れ感を覚えな ヽ衣服を製造する場合は 、織物よりも編物の方が効果の高い衣服が得られる。例えば、フライス組織で、非吸 水伸長繊維とセルロース系の繊維との構成を、 1本交互や 3本中に 1本吸水自己伸 長セルロース繊維を配置するなどの設計により製造可能である。これらのように、本 発明において、吸水自己伸長セルロース繊維をシングル丸編機、ダブル丸編機、シ ングル経編機、ダブル経編機、織機などで効果的に設計することにより、運動などの 発汗時に吸汗して布帛に凹凸を形成したり、吸水部分の布帛を構成する編目や織 糸の密度を下げたりする事が可能となる。また、経編の場合、デンビ一(1針振り)より コード(2針振り)、コードよりもサテン(3針振り)など、シンカーループの浮きの長い部 分を形成し、この部分に吸水自己伸長セルロース繊維を配置し、これらを 1つの箴と する経編組織を選定すれば本発明の効果が好適に達成される。
[0019] さらに、織物で製造する場合は、ツイル、サテンなど経糸、あるいは緯糸の浮きが長 い組織や、 2重織として表層、裏層を織布し、部分的にこれらの経方向、緯方向に数 10本毎に連結部を設けて、吸水自己伸長セルロース繊維が吸汗時に伸長すること により布帛に凹凸を形成したり、吸汗部の密度が下がるように設計すればよい。これ らの布帛において、吸水自己伸長率セルロース繊維が必ずしも表面に露出している 必要はなぐ例えば 3層構造として中間層に吸水自己伸長セルロース繊維を配置し て、吸汗時に中間層の吸水自己伸長セルロース繊維が伸長して外層の普通繊維を 押し出して布帛に凹凸や、密度を下がるよう設計する事も可能である。
[0020] このように、吸水自己伸長セルロース繊維を使用すれば、特に運動などの発汗時 に快適な衣服製造が可能である。しかし吸水伸長率が + 2%未満のセルロース繊維 では布帛構造の変化が小さぐ運動などの発汗時にも快適である衣服製造は出来な い。
[0021] 本発明によるセルロース繊維混用布帛では、吸水伸長率が + 2%以上、好ましくは
+ 3%以上の吸水自己伸長セルロース繊維を 10%以上含有することが好ましい。吸 水自己伸長セルロース繊維の混率が 10%未満の場合、吸水時にセルロース繊維が 伸長しても蒸れ感を抑える効果は有効に発揮されない。より好ましい混率は 15〜: LO 0%であり、吸水自己伸長セルロース繊維 100%の編地が本発明の効果を最も発揮 することができる。
しかし、綿、アクリル、ポリエステル、ナイロンなどの普通繊維と混合すれば風合い、強 度面等の懸念が解消され、各種衣料に展開可能となる。
[0022] また、吸水自己伸長セルロース繊維と、普通繊維との混合法にっ 、ては任意であ る力 該セルロース繊維がコース方向、あるいはゥエール方向に単独に構成されてい る様に配置すると効果が発揮できる。例えば、ニットのスムース組織の場合、 2コース 連続に吸水自己伸長セルロース繊維使いとし、コース方向のループは全て吸水自己 伸長セルロース繊維として、隣接するコースは綿、アクリルなどの普通繊維使いとす るなどにより本発明の効果がより発揮できる。フライス組織の様に、 1コースでコース 全てが 1種の繊維使いとなるような組織の場合には、吸水自己伸長セルロース繊維 を 10%以上の混率となるよう任意に配置すれば本発明の効果は発揮できる。
[0023] また、本発明のセルロース繊維混用布帛は、編地では吸水自己伸長セルロース繊 維によるウェルトループ、および Zまたはタックループが、すくなくとも 2ループ連続し て形成されている部分を有していれば、特に高い効果を得ることができる。すなわち 、該セルロース繊維によるウェルトループ、および Zまたはタックループが、一方の針 床でコース方向(編地経方向)、もしくはゥ ール方向(編地緯方向)、または斜め方 向に、少なくとも 2ループ連続して形成されて 、る部分を有して 、る方が良!、。
ここで、タックループ、ウェルトループとは、編地を構成するループの 3要素である、 ニットループ、タックループ、ウェルトループに含まれるループである。タックループと は針に糸は供給する力 ノックオーバーしない組織のことをいい、ウェルトループとは 、針に糸を供給しない組織のことをいう。このタックループ、ウェルトループは編地中 をほぼ直線状、または若干屈曲して存在している。ニットループのように大きく湾曲し 、ニットループ下部に大きな屈曲点を持っているループ構造に比べ、吸水自己伸長 セルロース繊維が吸水伸長した場合、湾曲が少なく屈曲点も無 、ことから伸び易 、 ループ構造となって 、る。
[0024] 従って、これらタックループ、またはウェルトループが編地の組織を構成されることに より、吸水時には編地密度、または充填率が低下して蒸れ感の無い編地とすることが 可能となる。特に、ウェルトループ、および Zまたはタックループが、一方の針床でコ ース方向、もしくはゥ ール方向、または斜め方向に、少なくとも 2ループ連続して形 成されている部分を有していることにより、発汗時の蒸れ感減少効果が一層大きくな る。なお、ダブル丸編機の場合はダイアル、シリンダーの 2つの針床を有しているが、 ダイアル側のみ、あるいはシリンダー側のみの一方の針床組織について、コース方 向、もしくはゥ ール方向、斜め方向に、少なくとも 2ループ連続して形成されている 部分を有している様設計すればよぐ一方の針床のみの設計を考慮すればよい。シ ングル丸編機の場合は、シリンダーのみであるためダブル丸編機のような組織設計 上の考慮は不要で、吸水自己伸長セルロース繊維によるウェルトループ、および Zま たはタックループが、すくなくとも 2ループ連続して形成されて 、る部分を有して!/ヽれ ばよい。
[0025] また、タックループとウェルトループの組み合わせは任意とすることが出来、タツクル ープの連続、もしくはウェルトループの連続、または、タックループとウェルトループの 組み合わさった連続ループとすることができる。例えば、コース方向にウェルトループ 、タックループとすることや、ゥエール方向に、ウェルトループ、ウェルトループと 2ゥェ ール続ける、また、ゥエール方向にウェルトループを 2ゥエール作り、そのコース方向 にタックループを 2ゥエール続けるなど、任意な方法を行うことができる。また、ゥエー ル方向にある長さニットループが連続する、いわゆる天竺組織の場合、天竺部分を 2 給糸に分けて編成し、 2給糸で 1コース完成する組織として、これを 2回以上連続して 行うことにより斜め方向に 2ループが連続して形成され、発明の効果が発揮できる。
[0026] これらについて図 1〜6に例示するが、図 1〜6に於いて、 [1]、 [2]、 [3]は編み順 及びコース方向を表し、実際はこの編み順を繰り返して布帛を編成する。緯列はゥェ ール方向を表している。図では 4ゥエールのみ表示している力 実際はこの組織の繰 り返しとなる。また、 Kはニット組織、 Tはタック組織、 Wはウェルト組織を表す。
図 1、 2は 2コース連続してウェルトループ、またはタックループを編成する例、図 3、 4、 5は斜め方向にウェルトループ、またはタックループが連続する例、図 6はウェルト ループとタックループが組み合わさった例を示す。なお、タックループ、あるいはゥェ ルトループが連続していない場合は、本発明の効果は小さくなる。
[0027] 本発明のセルロース混用布帛が経編地の場合、組織によっては吸水自己伸長繊 維の特徴を生かすことが困難な場合がある。本発明者らはこの現象を防止するため に鋭意検討した結果、経編地設計方法により快適な経編地が製造可能な事を見出 した。すなわち、吸水自己伸長するセルロース繊維を含有する編地において、該セ ルロース繊維がルービングされ、かつ、 1〜4針の振り組織である事により、本発明の 目的を達成する事が可能になった。
ここでいうルービングとは、ニードルループ(ニットループ)が形成されている構造で ある。ニードルループを形成しない挿入組織では、編地着用時の変型が戻らず、い わゆるワラィ現象が生じ好ましくない。また、ルービングと挿入を繰り返す構造の場合 、挿入が 1コースのみで連続して ヽな 、場合は本発明ではルーピング組織としてみな し、ヮライ現象は生じない。しかし、挿入が 2コース以上連続する場合はヮライが生じ 易く好ましくない。また、振り組織とせず、 10Z01のような鎖編みに見られる同一ゥェ ール内で編成する場合は、発明の効果は得られない。このような鎖編とする場合は、 10Z01Z12Z21の様に 2コースに 1回は振り組織を入れ、鎖編みが 2コース以上 連続しないように設計する。無論、 2目編によるループもルービングである。
[0028] さらに、吸水自己伸長セルロース繊維による経編組織の振りは、 1〜4針である事が 必要である。振りが多くなるほどセルロース繊維の吸水伸長による放湿性の効果が出 やすくなる力 振りが 5針以上になると経編地内のセルロース繊維の充填密度が高く なり過ぎ、吸水時に放湿性の効果が逆に低下する現象が生じる。従って、吸水伸長 セルロース繊維の振りは、 1〜4針となるよう経編設計する事が必要である。経編設計 を例示すると、 2枚箴のトリコットにて、ノ ックには吸水自己伸長するセルロース繊維、 フロントには普通繊維として、バックの組織を、 10Z12や、 10/23, 10/34, 10/ 45等、また、 10Z12Z10Z34Z32Z34等振りがコースにより変化しているが全コ ースノレーピングして 、る ^去、ある \ ま、 12/00、 12/10/22/10/12/00^ のように、ルービングと挿入の繰り返しで、かつ、挿入は不連続とする方法等の組織と する事ができる。
[0029] また、本発明にお 、て吸水自己伸長セルロース繊維を含有して!/、る経編地の場合 、経編地中力もセルロース繊維を抜き出して、セルロース繊維の吸水伸長率(吸水時 寸法変化率)を測定するのは、ハーフのようにバックの 10Z12組織の繊維を抜き出 せる組織以外は困難な場合が多い。このため、本発明者は、吸水自己伸長率に替 わる尺度を検討した結果、編地密度低下率を所定値内にする事により、着用地の快 適性が得られることを見出した。
特に、少量の水分下による編地密度低下率と着用快適性に相関性が有り、編地重 量の 50%の水分量を編地に付与した場合、編地密度低下率を 5〜40%とすることに より、衣服内外へ空気の移動が生じ易くなり、さらに、空気が移動することによりセル ロース繊維の吸放湿性が十分に発揮され、衣服内は高湿度とならないことが分った。 本発明の経編地の吸水時の編地密度低下率は 5〜40%、好ましくは 10〜30%であ る。編地密度低下率が 5%未満の場合には、着用発汗時に蒸れ感等を感じ、不快な ものとなり好ましくない。編地密度低下率が 40%より大きい場合は、衣服形状が大き く変化し過ぎ着用感を損ね、さらに、見映えも悪くなり好ましくない。
[0030] 本発明のセルロース混用布帛である経編地は、吸水自己伸長セルロース繊維を、 好ましくは 10%以上含有する。吸水自己伸長セルロース繊維と、普通繊維とを混合 する方法については、普通繊維と吸水自己伸長セルロース繊維とを別々のビームに 整経して交編する方法、あるいは、吸水自己伸長セルロース繊維と普通繊維と交撚 、複合仮撚、インターレースなどの複合糸として複合糸をビームに整経する方法があ る。さら〖こ、経編地の製造は、シングル、あるいはダブルのトリコット機、ラッセル機な どの経編機により可能である。組織は 1枚箴以上で製造される、デンビ一、ハーフ、 サテン、メッシュ調、経編地内部に連結糸を有する立体調編地など、任意の組織で 行える。
[0031] 本発明の吸水自己伸張セルロース繊維を含有する布帛の染色加工方法は、通常 の染色仕上げ工程が使用できる。使用する染色機としては、セルロース繊維を繊維 状態でアルカリ処理する場合はチーズ染色機や総染色機、アルカリ処理を布帛状態 としての加工は液流染色機、ゥインス染色機など任意の染色機を使用することができ る。また、布帛をバッチ状でなく連続に処理することが可能な、例えばシルケットマシ ンなどの連続アルカリ処理機の使用も可能である。この場合は、処理条件を本発明 の条件に設定すればよい。アルカリ処理後の布帛は、繊維素材に応じた染色条件に よる染色を行うのが好ましい。また、編地状態での加工は、生機を 150〜190°Cでピ ンテンター等によりプレセットを行い、その後精鍊、アルカリ処理、染色、仕上げセット を行う工程や、生機を精練し、 150〜190°Cでピンテンター等によりプレセットを行つ て力も染色し、仕上げセットを行う工程など、任意の工程で行える。仕上げセットは 15 0〜190°Cで行うが、この際、仕上げセット後に吸水伸長するセルロース繊維が皺に なったり、突っ張ったりしないように仕上げればよい。また、仕上げセット前に布帛を 乾燥して仕上げ密度を設定する方法が好ましい。さらに、仕上げ剤として、柔軟剤や 吸水剤の付与を行う事も可能で、吸水剤の付与はより吸汗性が向上し好ましい。な お、吸水剤等の繊維榭脂付与は、染色中に付与することも可能である。
[0032] 以下、吸水自己収縮セルロース繊維と、該繊維を用いた本発明の布帛の構成につ いて説明する。
本発明による吸水自己収縮セルロース繊維は、吸水伸長率が 2%以下である。 セルロース繊維を吸水伸長率ー2%以下とするには、撚り係数を8200〜35000の 撚糸とすることにより得られる。
該セルロース繊維を使用して、本発明の目的を達成するための布帛構造について 着用テストなどを含み鋭意検討した結果、布帛を 2〜3層の丸編地とし、 2〜3層丸編 地の一方の外層、あるいは中間層に運動等による発汗時に吸汗して収縮する繊維を 用い、他方の外層に吸汗時収縮の小さい繊維を使用すれば、乾燥時は平坦である が吸汗時は一方の外層の繊維が収縮し、他の外層部は収縮の小さい繊維であるた め浮き出て凸部を形成し、吸汗後乾燥した際には平坦状態に戻るような構造となり、 この凸部ができる側を肌側として衣服を縫製すれば発汗時にも快適であるとの結論 が得られた。この機能を達成するために種々検討した結果、編地構造と素材の特定 によりこの機能を達成できる事を見出した。
[0033] すなわち本発明の効果を発現するために、分離部と非分離部とが繰り返し形成さ れている 2層丸編地において、一方の外層は吸水自己収縮セルロース繊維を含有し 、他方の外層は非吸水収縮繊維で構成され、コース方向の非分離部は非吸水収縮 繊維で構成されている 2層丸編地が好ましい。ここで、非吸水収縮繊維とは、吸水伸 長率が 2%より大きい繊維のことであり、前述の普通繊維、吸水自己伸長繊維が挙 げられる。このような丸編地の断面図を図 7、図 8に示す。
図 7は乾燥時、図 8は吸汗時の該丸編地断面模式図である。丸編地は分離部 21と 非分離部 22とが繰り返し形成され、一方の外層 (A)には吸水自己収縮セルロース繊 維が含有され、他方の外層 (B)は非吸水収縮繊維で構成されている。乾燥時 (図 7) は布帛表面は平坦である力 吸汗時(図 8)には (A)を構成する吸水自己収縮セル口 ース繊維が収縮し、分離部 21における他方の外層(B)を構成する繊維が浮き出て 凸部を構成する。
[0034] 分離部と非分離部は、規則的、あるいは不規則的に繰り返されていれば良ぐ丸編 機により製造できる種々の組織、構造が選択できる。なお、本構造の丸編地では、後 述する別構造の立体構造編地とは異なり、両外層のコース比 (A) / (B)の範囲は特 に限定されないが、乾燥時に布帛表面を平坦に保っために、おおよそ (A)Z(B) = 1であることが好ましい。
さらに、本発明の効果を発現できる 3層丸編地としては、分離部と非分離部とが繰り 返し形成されている 3層丸編地において、一方の外層、および Zまたは、中間層に吸 水自己収縮セルロース繊維を含有し、他方の外層は非吸水収縮繊維で構成され、コ ース方向の非分離部が非吸水収縮繊維で構成されている 3層丸編地が好ましい。 [0035] 本発明による 2〜3層の多層丸編地の部分的に分離して 、る分離部の形状にっ 、 ては丸状、楕円状、方形状、菱形状、星型状などの面積をもった点状など任意で、配 置についても市松状、右肩上がり、不規則状など任意である。分離部の大きさについ ては、小さ過ぎても、大き過ぎても発汗時の布帛凹凸効果が少なくなる。丸状、方形 状などの面積をもった点状の場合は、長径、短径ともに 2〜15mmとするのが好まし ぐ特に好ましくは 3〜 12mmである。ある巾を持った連続状の場合は、巾 2〜15mm とするのが好ましく、特に好ましくは 3〜 12mmである。
吸汗時凸部が形成される分離部の総面積は、少なすぎても多すぎても発汗時にベ とっき感がある。この為、吸汗時に凸部が形成される側の凸部個々の面積を足し合 わせた総面積は、乾燥時に布帛表面の 20〜90%とすることが好ましい。より好ましく は 30〜80%、特に好ましくは 35〜75%とすれば、発汗時にもべとっき感がなぐ!1夬適 な衣服となる。
[0036] 本発明の 2〜3層丸編地における分離部は上記のような任意の形状である。分離部 を囲むように非分離部が形成され、分離部と非分離部とが繰り返し形成されて!ヽる必 要がある。
該丸編地の分離部と非分離部の構成例を図 9に示す。ゥ ール方向(丸編地経方 向)の非分離部は直線状に連続している必要は無いが、コース方向(丸編地緯方向) の非分離部は直線的に連続し、非収縮繊維で構成されているよう設計する。すなわ ち、ゥ ール方向の非分離部は吸水自己収縮セルロース繊維を含有しても良いが、 コース方向の非分離部は非吸水収縮繊維のみで構成されて 、る。ゥエール方向の 非分離部の巾につ ヽては特に限定されな 、。コース方向の非分離部の巾につ 、て は、狭すぎても、広すぎても発汗時のベとつき低減効果が小さくなるため、 l〜15m mが好ましい。より好ましくは、 2〜12mm、特に好ましくは、 3〜: LOmmとすれば本発 明の目的が十分達成でき、吸汗時のベとつきを抑えるとともに、さらに、高コストであ る撚り係数が 8200〜35000であるセルロース繊維の混率を減らす事が可能で、丸 編地のコストダウンも計れるようになる。なお、非分離部の巾は、コース方向で最小と なって 、る非分離部の巾を測定する。
[0037] 本発明による 2層丸編地の具体的な製造法の例として、ダブル丸編機を使用する 場合、一方の外層は天竺編み、他方の外層は数ゥエール毎に表裏 2層の連結部を 有する天竺編みの編成とし、連結部はニット、あるいはタック組織とする方法がある。 編成時に一方の外層に吸水自己収縮セルロース繊維を含有する構造とする。これら の組織中に部分的に両外層の連結部となる非分離部を設けるため、数コース毎に非 吸水収縮繊維を使用してダブル丸編機の場合はダイアル、シリンダー共にニットして 連結し非分離部とする必要がある。これにより、コース方向、ゥ ール方向に分離部と 非分離部が繰り返し形成され、吸汗時に丸状、方形状などの面積をもった点状の凸 部を形成する事が可能となる。
[0038] 本発明による 3層丸編地の具体的な製造法の例として、ダブル丸編機を使用する 場合、表層と裏層は天竺編み、中間層はウェルトとし、数ゥ ール毎に 3層を編成し ているどれかの繊維、あるいは、全部の糸でダイアル、シリンダー共にニット、または タックして連結する方法や、一方の外層の天竺編みをプレーティング編みにより外層 と中間層を一体化し、もう一方の外層を天竺編みとし、これらを構成する任意の繊維 によりニット、あるいはタックにて連結する方法等がある。また、中間層をウェルトとして プレーティング編みとし、一方の外層と中間層に吸水自己収縮セルロース繊維を配 置する方法もある。これらの丸編の場合、数コース毎に非吸水収縮繊維で数コース、 ダイアル、シリンダー共にニットして連結すれば、コース方向、ゥ ール方向に非分離 部が形成され、吸汗時に丸状、方形状などの面積をもった点状の凸部を形成する事 が可能となる。
[0039] 本発明による吸水自己収縮セルロース繊維は、撚り係数 8200〜35000となるよう 撚糸されている。セルロース繊維が撚り係数 8200〜35000で撚糸されていることに より、吸汗時に収縮する機能が発揮できる。撚り係数が 8200未満では本発明の目的 とする機能が発揮できず好ましくない。撚り係数が 35000より大きくなると、丸編地製 造が困難になり、また高コストともなるため好ましくない。従って撚り係数は 8200〜35 000、好まし < ίま 11000〜30000【こ設定すれ ί よ!ヽ。
本発明において、吸水自己収縮セルロース繊維は、多層丸編地全体の 5重量%以 上混用されていることが好ましい。 5重量%未満では本発明の吸汗時に丸編地の凸 部形成が僅かであり目的が達成されにくく好ましくない。また、 50重量%より多い混 率である場合も、丸編地全体の吸汗時収縮が大きくなり衣服サイズが変化してしまう ため好ましくない。吸水自己収縮セルロース繊維の混合方法については任意であり 、繊維の配置による方法、普通繊維との交撚糸とする方法などが行える。
[0040] 吸汗時凸部が形成される部分の総面積は、少なすぎても多すぎても発汗時べとつ き感がある為、吸汗時に凸部が形成される側の凸部個々の面積を足し合わせた総面 積は、乾燥時に布帛表面の 20〜90%とすることが好ましい。より好ましくは 30〜80 %、特に好ましくは 35〜75%とすれば、発汗時にもべとっき感がなく快適な衣服とな る。
本発明における 2〜3層の多層丸編地の編地密度は任意に設定できる。 本発明の 2〜3層の丸編地の染色仕上げ方法は、通常の染色仕上げ工程が使用 でき、使用する繊維素材に応じた染色条件とし、使用する染色機も液流染色機、ウイ ンス染色機など任意である。また、吸水性を向上させるため吸水剤を付与するのが好 ましぐ染色仕上げ工程の例としては、生機を染色機に投入し、精練、染色を行った 後、吸水処理等の仕上げ処理を兼ねて仕上げセットを行う方法、あるいは、ウエットリ ラックス処理、プレセット後染色を行い、仕上げ処理を兼ねたファイナルセットを行う 方法など、任意の染色仕上げ工程で行うことができる。
[0041] 上述の態様以外に、吸水自己収縮セルロース繊維を使用して、布帛を部分的に分 離させて両外層間に空気層を有する立体構造布帛とする他の好ま Uヽ態様を、図 1 0, 11に示す。
図 10は乾燥時、図 11は吸汗時の該立体構造編地断面模式図である。編地は分離 部 21と非分離部 22とが繰り返し形成され、一方の外層 (C)には吸水自己収縮セル ロース繊維が含有され、他方の外層 (D)は非吸水収縮繊維で構成されている。前述 の構成と異なるのは、乾燥時(図 10)〖こ布帛表面が凸部を有することである。これは、 両外層のコース数が(C) > (D)であるように編成することによって得られる。乾燥時に 布帛表面が凸部を有することにより、布帛の厚みが増し、空気層が存在するために 暖かぐ吸汗時(図 11)には (C)を構成する吸水自己収縮セルロース繊維が収縮し、 分離部 21における凸部が小さくなり、布帛の厚みおよび空気層が減少するために放 熱性が増す。吸汗後乾燥すれば再度凸部が復元して元の厚みに戻る。 [0042] すなわち、汗をかかない状態では暖かぐ発汗時には放熱が進み、余分な汗をか 力ないので運動機能が低下しに《快適な布帛が得られる。
具体的には、分離部と非分離部が繰り返し形成されて!ヽる立体構造布帛にお ヽて 、該分離部を構成する一方の外層 (C)が吸水自己収縮セルロース繊維を含有し、他 方の外層(D)が非吸水収縮繊維を含有し、両外層のコース数が(C) >(D)であること を特徴とする立体構造丸編地により、本発明の目的は達成可能である。さらに、本発 明の立体構造布帛は、見力ゝけ上分離部を構成する一方の外層 (C)が浮き出て凸部 を形成している構造であり、さらに、該分離部と両外層が連結された非分離部とが、 規則的、あるいは不規則的に繰り返されている構造である。これらの構造は、丸編機 により製造できる種々の組織、構造力も選択でき、吸汗時には吸水自己収縮セル口 ース繊維を含有する外層が収縮して密度が少なくなり、凸部が小さくなる (布帛の厚 みが薄くなる)ような組織とすればょ 、。
[0043] このような立体構造布帛において、部分的に分離している分離部の形状について は丸状以外に、楕円状、方形状、菱形状、星型状などの面積をもった点状など任意 で、配置についても市松状、右肩上がり、不規則状など任意である。分離部の大きさ については、小さ過ぎても、大き過ぎても吸汗時の凸部減少効果が少なくなる。丸状 、方形状などの面積をもった点状の場合は、長径、短径ともに 2〜15mmとするのが 好ましぐ特に好ましくは 3〜 12mmである。ある巾を持った連続状の場合は、巾 2〜 15mmとするのが好ましぐ特に好ましくは 3〜 12mmである。
また、立体構造布帛中に占める分離部の総面積は、少なすぎれば発汗時厚み減 少効果が少ないため、丸編地表面の 20%以上とすることが好ましい。より好ましくは 3 0%以上、特に好ましくは 40%以上とすれば、発汗時の厚み減少効果が大きぐ放 熱量が増えて発汗抑制効果が期待できる快適な衣服となる。
[0044] 本発明の立体構造布帛における分離部は、上記のような任意の形状である。分離 部を囲むように非分離部が形成され、分離部と非分離部とが繰り返し形成されて ヽる 必要がある。この非分離部については、分離部に含まれるいずれかの繊維単独で構 成されるか、またはこれらの交編しても良ぐ分離部とは異なる糸で構成されていても 良い。例えば、ゥ ール方向の非分離部が吸水自己収縮セルロース繊維を含有し、 コース方向の非分離部は非吸水収縮繊維のみで構成することができる。編成組織は 、スムース、フライスなど、丸編機のシリンダーとダイアルの両針床を使用して編成さ れる組織であれば任意の組織が使用できる。また、非分離部については、非吸水収 縮繊維を多く含有するほうが、立体構造布帛としてセルロース繊維の混率が減らせ、 コスト面や堅牢度面で優位な編地となる。
[0045] 本発明の立体構造布帛において、(C)と(D)のコース数の比については、(C) Z ( D)力 1. 1〜5. 0であれば好ましぐより好ましくは、 2. 0〜4. 0である。コース数の 比が 1. 1以上であれば、吸汗しない通常時の状態で凸部が発現しやすぐまた吸汗 時凸部の厚み減少による効果が十分発揮できる。また、コースの比が 5. 0以下であ れば通常時の凸部が美しく形成されやすぐまた、吸汗時の凸部減少効果も明瞭で あり、さらに、生産性の面でも好ましい。なお、分離部の外層のコース数がゥ ール間 で一定ではない場合は、コース数が最も多いゥエールをコース数とする。さらに、コー ス数は、ニットループのみを測定し、タックループや、ウェルトループはコース数として カウントしない。ただしこれらは両外層のニットループの大きさがほぼ同じ場合に適用 され、両外層のニットループの大きさが異なる場合には、両外層とも同じニットループ の大きさに換算して計算する。例えば、一方の外層(C)のニットループの大きさが他 方の外層 (D)の半分の大きさであった場合、 (C) X 2を計算上の (C)として扱う。な お、ニットループの大きさは、分離部を構成する編み込み長により求める。
[0046] 本発明の立体構造布帛において、分離部を構成する一方の外層 (C)には吸水自 己収縮セルロース繊維を含有して 、ればよぐ非吸水収縮繊維と交編としても良 、。 交編方法としては、吸水自己収縮セルロース繊維と非吸水収縮繊維とを交互に編成 する方法や、非吸水収縮繊維との添え糸編みとする方法などが使用でき、吸水自己 収縮セルロース繊維は、 15重量%以上の混率とすることが好ましい。 15重量%未満 では、吸汗時に凸部の厚み現象が少なく好ましくない。特に好ましくは 20重量%以 上の混率とする。
また、分離部を構成するもう一方の外層 (D)には、主として非吸水収縮繊維から構 成されている力 吸水自己収縮セルロース繊維を少量含有することも可能である。吸 水自己収縮セルロース繊維の混率は 5重量%未満とするのが好ましぐ 5重量%以 上の混率である場合は吸汗時に凸部減少効果が小さくなり好ましくな 、。全て非吸 水収縮繊維のみで構成されることが好まし 、。
[0047] さらに、撚り係数 8200〜35000のセルロース繊維の立体構造布帛全体に占める 混率については、 5〜50重量%であることが好ましぐ 10〜30重量%の混率とする のがより好ま 、。 5重量%未満では本発明の吸汗時に丸編地の凸部減少が僅かで あり、 50重量%より多くなると、立体構造布帛全体の吸汗時収縮が大きくなり衣服サ ィズが変化してしまうため好ましくな ヽ。撚り係数 8200〜35000のセルロース繊維の 混合方法については任意であり、繊維の配置による方法、非収縮糸との複合糸とす る方法などが行える。
本発明において立体構造布帛の製造は、丸編機にて製造可能であり、丸編地密 度につ 、ても任意に設定できる。
[0048] 本発明による立体構造布帛の具体的な製造法の例として、ダブル丸編機を使用し 、部分的にシリンダーの天竺部に吸水自己収縮セルロース繊維を使用し、また、シリ ンダ一の分離部のコース数はダイアルのコース数より多くなる組織とする。この際、吸 水自己収縮セルロース繊維を単独で使用する事や、ポリエステル、ナイロン等の普通 繊維との添え糸編も可能である。さらに、分離部と分離部の間には非分離部が必要 である。非分離部を設けることにより、コース方向、ゥ ール方向に分離部と非分離部 が繰り返し形成され、立体構造布帛に面積をもった点状の凸部を形成する事が可能 となり、吸汗時には凸部の厚みが減少して放熱効果を高めることができる。
[0049] 本発明の立体構造布帛の染色仕上げには、通常の染色仕上げ工程が使用できる 。使用する繊維素材に応じた染色条件とし、使用する染色機も液流染色機、ゥインス 染色機など任意である。また、吸水性を向上させるために吸水剤を付与するのが好 ましい。染色仕上げ工程の例としては、生機を染色機に投入し、精練、染色を行った 後、吸水処理等の仕上げ処理を兼ねて仕上げセットを行う方法、あるいは、ウエットリ ラックス処理、プレセット後染色を行い、仕上げ処理を兼ねた仕上げセットを行う方法 など、任意の染色仕上げ工程を行うことができるが、仕上げセットで巾や長さの設定 に注意が必要で、吸水自己収縮セルロース繊維を含有する外層が形成している凸 部を維持するように仕上げる必要がある。 実施例
[0050] 以下、実施例により本発明を詳述する。無論、本発明はこれに限定されるものでは ない。
なお、実施例における評価は以下の方法により測定した。
(1)着用快適性
実施例による布帛で運動シャツを縫製し、発汗するまで運動して、着用快適性を 10 名の被験者で官能評価し、その平均値を着用快適性とした。
実際に問題ないのは下記 2以上である。
5 : 発汗しても衣服のベとつき感ゃ、蒸れ感がなく極めて快適
4 : 発汗時、ベとつき感、蒸れ感を覚えない
3 : 発汗時、僅かに衣服がややべとつくが快適である
2 : 発汗時、ベとつき感、蒸れ感を若干覚える
1 : 発汗時、かなりべとっき、蒸れ感も甚だしく不快である
(2)撚り係数
セルロース繊維の撚り係数を下記により求めた。
撚り係数 = (繊度) °· 5 Χ撚り数 (単位:撚り数 Zm)
[0051] (3)丸編地製造性
丸編地製造時、撚糸したセルロース繊維の製編性を評価した。
ルート生産可能なのは下記 3以上であり、数値が高いほど好ましい。
5 : 問題なく丸編地が製造できる。
4 : ピリなどがやや発生するが、合格反が製造できる。
3 : 僅かに糸切れ等の問題発生したが、合格反が製造できる。
2 : 糸切れ等発生、丸編地が製造できるが不合格反となる。
1 : ピリ発生、糸切れ等により丸編地製造困難。
(4)編地密度低下率
20°C、 65%RHの環境下で、サンプルの乾燥時の密度(コース Zインチ Xゥエール Zインチ)(E)を測定する。次いで、経編地重量の 50%の水分をサンプルに吸水さ せて吸水時の密度 (コース Zインチ Xゥ ール Zインチ)(F)を測定し、下記(2)式に より編地密度低下率を求める。また、(F) < (E)で密度が増加する場合は、―(マイ ナス)で示す。
編地密度低下率 (%) = ( (F-E) /E) X 100 (2)
(5)乾燥時凸部形成性
実施例で得られた立体構造布帛で、乾燥状態における外層の凸部形成性を外観 評価した。
下記 2以上であれば凸部が形成されており、数値が高!、ほど厚い凸部となって!/、る
5 凸部がくっきり飛び出して 、る。
4 力なりはっきり凸部が形成されて 、る
3 凸部形成がすぐ判別できる
2 凸部がやや形成されている
1 凸部形成されず、ほとんど平坦
(6)吸汗時凸部の厚み減少性
実施例で得られた立体構造布帛を 100重量%吸水させ、吸水時の外層の凸部の 厚み減少性を外観評価した。
下記 2以上であれば凸部の厚み減少性が認められ、数値が高!、ほど大きく減少し ており本発明の効果が認められる。
5 : 編地はほぼ平坦状になっている
4 : 凸部の厚み減少が大きぐ僅かに凸部が残っている程度である
3 : 凸部の厚みが減少しているのが判別できる
2 : 凸部の厚みはやや減少するが、はっきり判らない
1 : 凸部の厚み減少がほとんど判らない
[実施例 1]
28ゲージの丸編機を使用してフライス組織を編成するに際し、普通繊維とセルロー ス繊維とが交互になるよう配置して編成した。この編成において、普通繊維として 84d tZ36fのポリエステル繊維の 2ヒーター仮撚り加工糸を、セルロース繊維としてキュプ ラ繊維 84dtZ45fを用いた。この場合、使用したキュプラ繊維はアルカリ未処理の通 常のキュプラ繊維である。
[0054] 編成した生機を液流染色機に投入し、 80°C20分間精練し、排水後、水酸化ナトリ ゥム 60gZLの濃度で 30°C20分間アルカリ処理した。次いで、 130°Cでエステル側 のみ染色を行った。染色上がりの編地は凹凸状となっているため、ショートループドラ ィヤーを使用して乾燥後、ピンテンターにて編地のしわが取れる程度に伸長して 170 °C60秒にて仕上げセットを行った。なお、この染色時、浴中に吸水剤を付与して染 色した。
得られた編地のキュブラ繊維を抜き出し、吸水伸長率を測定したところ + 5. 8%で あった。また、得られた編地の運動発汗時の快適性着用試験を行った。着用試験の 結果を表 1に示す。
[0055] [実施例 2〜8]
実施例 1において、アルカリ処理条件、及び、セルロース系繊維の種類を変更し、 吸水伸長率の異なるセルロース系の繊維を製造した。この繊維を使用した編地の着 用快適性を評価し、結果を表 1に示す。
[0056] [実施例 9]
経糸に普通繊維のポリエステル繊維 56dt/24f原糸を、緯糸に普通繊維のポリエ ステル繊維 56dtZ24f原糸とレーヨン繊維 67dtZ24fとを 2本交互に打ち込んで 3 / 1のサテン組織を織布した。
製織した生機を液流染色機に投入し、 80°C20分間精練し、排水後、水酸化力リウ ム 50gZLの濃度で 50°C25分間アルカリ処理した。次いで、 130°Cでエステル側の み染色を行った。染色上がりの織地は凹凸状となっているため、ショートループドライ ヤーを使用して乾燥後、ピンテンターにて編地のしわが取れる程度に伸長して 180 °C60秒にて仕上げセットを行った。なお、この仕上げセット時に吸水剤を付与した。 得られた織地のレーヨン繊維を抜き出し、吸水伸長率を測定したところ + 9. 3%で めつに。
また、得られた織地の運動発汗時の快適性着用試験を行った。着用試験の結果を 表 1に示す。
[0057] [実施例 10] 22ゲージの丸編機によりキュブラ紡績糸 l/64Nm (毛番手)を使用してスムース組 織を編成した。使用したキュブラ紡績糸はアルカリ未処理の通常のキュブラ紡績糸で 、編成した生機を液流染色機に投入し、 80°C20分間精練し、排水後、水酸化ナトリ ゥム 60gZLの濃度で 30°C20分間アルカリ処理した。次いで、キュブラ紡績糸を反 応染料により染色を行った。ショートループドライヤーを使用して乾燥後、ピンテンタ 一にて編地のしわが取れる程度に伸長して 170°C60秒にて仕上げセットを行った。 なお、この仕上げセット時に吸水剤を付与した。
得られた編地のキュブラ紡績糸を抜き出し、吸水伸長率を測定したところ +4. 7% であった。
また、得られた編地の運動発汗時の快適性着用試験を行った。着用試験の結果を 表 1に示す。
[0058] [実施例 11]
キュプラ繊維 56dtZ30fとポリエステル W型断面糸 56dtZ30fとを、仮撚り加工前 に阿波スピンドル社製インターレースノズル MK— 2にて 80個 Zmの交絡を入れた後 に、 TMTマシナリー社製マッハ 33H-ップベルトタイプ仮撚り機にて加工速度 300 mZ分、第 1ヒーター温度 200°C、ツイスターベルト角 95° 、延伸倍率 0. 984倍の条 件で 1ヒーター仮撚にて複合糸を試作した。この複合糸の捲縮伸長率は 12. 1%で あった。この複合糸と普通繊維 84dtZ36fのポリエステル繊維の 2ヒーター仮撚りカロ ェ糸を 28ゲージの丸編機を使用して交互になるよう配置して編成したフライス編地を 下記条件にて染色仕上げ加工を行った。その布帛から複合糸を抜き出し吸水伸長 率を測定したところ + 5. 3%であった。
[0059] 編成した生機を液流染色機に投入し、 80°C20分間精練し、排水後、水酸化ナトリ ゥム 60gZLの濃度で 30°C X 20分間アルカリ処理した。次いで、 130°Cでエステル 側のみ染色を行った。染色上がりの編地は凹凸状となっているため、ショートループ ドライヤーを使用して乾燥後、ピンテンターにて編地のしわが取れる程度に伸長して 170°C60秒にて仕上げセットを行つた。
得られた編地の運動発汗時の快適性着用試験を行った。着用試験の結果を表 1に 示す。 [実施例 12]
ナイロン 66高配向未延伸糸 70dtZ34fを、 TMTマシナリー社製 ATF—21デイス クフリクションタイプ仮撚り機にてカ卩ェ速度 400mZ分、第 1ヒーター温度 200°C、ウレ タンディスク枚数 5枚、延伸倍率 1. 260倍の条件で仮撚り加工した。得られた 1ヒータ 一仮撚糸とキュブラ繊維 56dt/30fとを仮撚り後、へバライン社製インターレースノズ ル P— 142にて 80個 Zmの交絡を入れて複合糸とした。この複合糸の捲縮伸長率は 71. 8%であった。この複合糸と普通繊維 84dtZ36fのポリエステル繊維の 2ヒータ 一仮撚り加工糸を 28ゲージの丸編機を使用して交互になるよう配置して編成したフ ライス編地を下記条件にて染色仕上げ加工を行った得られた布帛から複合糸を抜き 出し吸水伸長率を測定したところ、 +4. 6%であった。
[0060] 編成した生機を液流染色機に投入し、 80°C20分間精練し、排水後、水酸化ナトリ ゥム 50gZLの濃度で 40°C20分間アルカリ処理した。次いで、 98°Cでナイロン側の み染色を行った。染色上がりの編地は凹凸状となっているため、ショートループドライ ヤーを使用して乾燥後、ピンテンターにて編地のしわが取れる程度に伸長して 170 °C60秒にて仕上げセットを行った。
得られた編地の運動発汗時の快適性着用試験を行った。着用試験の結果を表 1に 示す。
[実施例 13]
28ゲージのシングル丸編機を使用して図 12の組織を編成するに際し、 1に普通繊 維、 2にセルロース繊維となるよう配置し、 1を 3コース編成後、 2を 3コース編成した。 この編成において、普通繊維として 167dtZfポリエステル繊維の 2ヒーター仮撚りカロ ェ糸を、セルロース繊維としてキュブラ繊維 84dtZ45fを用いた。この場合、使用し たキュプラ繊維はアルカリ未処理の通常のキュプラ繊維である。
[0061] 編成した生機を液流染色機に投入し、 80°C20分間精練し、排水後、水酸化ナトリ ゥム 50gZLの濃度で 30°C20分間アルカリ処理した。次いで、 130°Cでエステル側 のみ染色を行った。染色上がりの編地は凹凸状となっているため、ショートループドラ ィヤーを使用して乾燥後、ピンテンターにて編地のしわが取れる程度に伸長して 170 °C60秒の条件で仕上げセットを行った。なお、液流染色内で染色と同時に吸水剤を 付与した。得られた編地はウェルトループがコース方向に連続して形成された構造で あった。
得られた編地のキュブラ繊維を抜き出し、吸水伸長率を測定したところ + 5. 7%で めつに。
得られた編地を使用して Tシャツを縫製して着用試験を行った。着用結果を表 2〖こ 示す。
[実施例 14〜17]
実施例 13において、ポリエステルカ卩ェ糸の太さ、あるいは、編成時の糸配列を変え てセルロース繊維の混率を変え、さらに、セルロース繊維のウェルトループ連続数を 変更して編地を試作した。得られた編地の着用快適性を評価し、結果を表 2に示す。
[実施例 18]
22ゲージのダブル丸編機を使用して図 13の組織を編成するに際し、 1に普通繊維 、 2、 3にセルロース繊維を含有する複合糸となるよう配置し、 1〜2を 4回繰り返し編 成後、 1、 3を 4回繰り返し編成し、これを繰り返す方法で編地とした。この編成におい て、普通繊維として 84dtZ72fのポリエステル繊維の 2ヒーター仮撚り加工糸を、セ ルロース繊維を含有する複合糸としてアルカリ未処理の通常のキュプラ繊維 56dt/ 30fと、ポリエステル W型断面糸 56dtZ30fを用いて 180°Cの条件で同時に仮撚りし た複合糸とを使用して生機を編成した。編成した生機を液流染色機に投入し、 80°C 20分間精練し、排水後、水酸ィ匕ナトリウム 50gZLの濃度で 30°C20分間アルカリ処 理した。次いで、 130°Cでエステル側のみ染色を行った。染色上がりの編地は凹凸 状となっているため、ショートループドライヤーを使用して乾燥後、ピンテンターにて 編地のしわが取れる程度に伸長して 170°C60秒の条件で仕上げセットを行った。な お、液流染色内で染色と同時に吸水剤を付与した。得られた編地はタックループが コース方向に連続して形成された構造であった。
得られた編地のキュブラ繊維を抜き出し、吸水伸長率を測定したところ + 5. 7%で めつに。
得られた編地を使用して Tシャツを縫製して着用試験を行 ゝ、着用結果を表 2に示 す。 [0063] [実施例 19]
28ゲージのシングルトリコット編機を使用してハーフ組織を編成するに際し、フロン トに普通繊維としてポリエステル 56dtZ30fの W型断面糸、バックにセルロース繊維 としてキュプラ繊維 56dtZ30fを配置し、全ての針に糸を配列する aU-inの糸通しに て編成した。この場合、使用したキュブラ繊維はアルカリ未処理の通常のキュプラ繊 維である。
[0064] 編成した生機を液流染色機に投入し、 80°C、 20分間精練し、排水後、濃度 50gZ Lの水酸ィ匕ナトリウム水溶液中で 30°C、 20分間アルカリ処理した。次いで、ポリエス テル繊維、およびキュブラ繊維の染色を行った。染色上がりの編地は凹凸状となって いるため、ショートループドライヤーを使用して乾燥後、ピンテンターにて編地のしわ が取れる程度に伸長して 170°C、 60秒の条件で仕上げセットを行った。なお、液流 染色中に染色と同時に吸水剤を付与した。
得られた経編地の編地密度低下率を測定したところ、 17. 8%であり、得られた編 地のキュブラ繊維を抜き出し、吸水伸長率を測定したところ + 5. 8%であった。
また、得られた編地を使用して Tシャツを縫製して着用試験を行った。着用結果を 表 3に示す。
[0065] [実施例 20〜22]
実施例 19において、組織を変更してセルロース繊維の振り量、混率、ルービングの 変更を行い、経編地を製造した。これらを使用した編地の着用快適性を評価した。結 果を表 3に示す。
[実施例 23]
28ゲージの丸編機を使用して図 14の組織を編成した。 1には普通繊維として 84dt /36fのポリエステル繊維の 2ヒーター仮撚り加工糸を、 2には撚り係数 18000のキュ ブラ繊維 84dtZ45fを用いた。 1〜2を 10回繰り返した後、図 9、 Rの非分離部の組 織を非収縮糸である 56dtZ24fのポリエステル繊維の 2ヒーター仮撚り加工糸を用い て、仕上がり巾で 4mmとなるように編成した。
[0066] 編成した生機を液流染色機に投入し、 80°C20分間精練し、その後 130°Cでエステ ル側のみ染色を行った。染色上がりの生地は巾が入り編地は凹凸状となっているた め、ピンテンターにて凸部が伸びるまで 170°C60秒にて巾出しセットを行った。
得られた編地にて Tシャツタイプを縫製し、運動発汗時の快適性の着用試験を行つ た。
着用試験の結果を表 4に示す。
[実施例 24〜27、比較例 2]
実施例 23において、表 4に示す撚り係数を変えたセルロース繊維を用いて編地製 造を行い、また、非分離部の巾を変えて製造し、これらの評価を行った。結果を表 4 に示す。
[0067] [実施例 28]
28ゲージの丸編機により図 15に示す組織を編成した。 1〖こは普通繊維として 84dt Z36fのポリエステル繊維の 2ヒーター仮撚り加工糸を用い、天竺組織の主とし、部 分的にシリンダー側とタック組織で連結させた。 2には普通繊維として 56dtZ24fの ポリエステル繊維の 2ヒーター仮撚り加工糸と、撚り係数 18000のキュプラ繊維 84dt Z45fとの添え糸編みを用いた。 1〜2を 10回繰り返した後、図 10、非分離部 Rを、 普通繊維として 56dt/24fのポリエステル繊維の 2ヒーター仮撚り加工糸を使用しフ ライス組織にて仕上げ巾で 5mmとなるように編成した。
[0068] 編成した生機を液流染色機に投入し、 80°C20分間精練し、その後 130°Cでエステ ル側のみ染色を行った。染色上がりの生地は巾が入り編地は凹凸状となっているた め、ピンテンターにて凹凸が伸びるまで 170°C60秒にて巾出しセットを行つた。
得られた編地にて Tシャツタイプを縫製し、運動発汗時の快適性の着用試験を行つ た。
着用試験の結果を表 4に示す。
[実施例 29]
28ゲージの丸編機を使用して図 16の組織を編成し、 [1]、 [2] [4] [5] [6] [8]に は普通繊維として 84dtZ36fのポリエステル繊維 2ヒーター仮撚り加工糸を、 [3]、 [ 7]には撚り係数 25000のキュプラ繊維 56dtZ30fと、普通繊維である 56dtZ24fの ポリエステル繊維の 2ヒーター仮撚り加工糸を用いた。これらを添え糸編みで編地表 面が 56dtZ24fのポリエステル繊維となるよう調整し、 [1]〜[4]を 4回繰り返した後、 [5]〜 [8]を 4回繰り返し編成した。分離部を構成する [3] [4] [7] [8]により(C)部の 凸部を形成し、一方の外層(D)部は [1] [2] [5] [6]により形成し、コース数比 (C)Z (D)が 2. 0倍になるよう編成した。
[0069] 編成した生機を液流染色機に投入し、 80°C20分間精練し、その後 130°Cでエステ ル側のみ染色を行った。また、染色時に同時に吸水加工剤も投入し、編地に吸水性 付与を行いつつ染色を進めた。染色上がりの生地は巾が入り、編地は凹凸状となつ ているため、ショートループドライヤーで乾燥し、ピンテンターにて乾燥時の巾より 10 %巾出しして 170°C60秒にてセットを行った。
得られた編地は、シリンダー側で編成した外層部(C)に凸部が発現し、吸汗により 凸部の厚みが減少する立体構造丸編地が得られた。
立体構造丸編地の性能試験結果を表 5に示す。
[0070] [実施例 30〜34]
実施例 29において、 [3] [4] [7] [8]の編成数によって両外層のコース数の比(C) Z(D)を変えて製造し、これらの評価を行った。結果を表 5に示す。
[0071] [表 1]
Figure imgf000031_0001
[0072] [表 2] サンプノレ -ス繊維 吸水伸長率 セルロース タック フ'、 着用 適性
(%) 繊維の混率 ゥ ιΛ フ,の
(%) 連続数
実施例 13 キュブラ 5. 7 33 3 5 実施例 14 キュブラ 5. 7 10 3 3 実施例 15 キュブラ 5. 7 15 3 4 実施例 16 キュブラ 5. 7 66 3 5 実施例 1 7 キュブラ 5. 7 100 3 5 実施例 18 キュブラ 5. 7 33 4 4
[0073] [表 3]
Figure imgf000032_0001
[0074] [表 4]
サンプル セルロース繊維 コース方向 編地 着用感 撚り係数 吸水伸長率 の非分離部 製造性
(¾) の巾(讓)
実施例 23 18000 -3. 0 4 5 5 実施例 24 8200 -2. 1 4 5 3 実施例 25 1 1000 -2. 5 4 5 4 実施例 26 24000 -3. 6 4 5 5 実施例 27 35000 -4. 4 4 3 5 実施例 28 18000 -3. 0 5 5 5 比較例 2 5500 - 0. 9 4 5 1 [表 5]
Figure imgf000033_0001
産業上の利用可能性
本発明による繊維を使用して布帛を製造すれば、着用時快適で、かつ、発汗時に もべとっき感ゃ蒸れ感のない衣服の製造が可能であり、スポーツウエア、インナー、 アウターなどの衣服において快適な着用感が得られる。

Claims

請求の範囲
[1] 吸水時寸法変化率が 2%以上である、セルロース繊維が含有されていることを特徴 とするセルロース繊維混用布帛。
[2] 吸水伸長率が + 3%以上の吸水自己伸長セルロース繊維が含有されていることを 特徴とする請求項 1記載のセルロース繊維混用布帛。
[3] 該セルロース繊維の含有率が 10wt%以上である請求項 2に記載のセルロース繊 維混用布帛。
[4] 吸水伸長率が + 3%以上である吸水自己伸長セルロース繊維によるウェルトルー プ、および Zまたはタックループが 2ループ以上連続して形成されて ヽる部分を有す る丸編構造である請求項 3記載のセルロース繊維混用布帛。
[5] 吸水伸長率が + 3%以上である吸水自己伸長セルロース繊維はルービングされ、 かつ、 1〜4針の振り組織であり、さらに吸水時の編地密度低下率が 5〜40%である ことを特徴とする経編構造である請求項 3記載のセルロース繊維混用布帛。
[6] 吸水自己伸長セルロース繊維力 アルカリ水溶液 20gZL以上、 20°C以上、 5分以 上浸漬処理されたことを特徴とする請求項 4または 5記載のセルロース繊維混用布帛
[7] 吸水伸長率が— 2%以下の吸水自己収縮セルロース繊維が含有されていることを 特徴とする請求項 1記載のセルロース繊維混用布帛。
[8] 分離部と非分離部とが繰り返し形成されている多層構造布帛であって、一方の外 層、および Zまたは、中間層には吸水伸長率が 2%以下である吸水自己収縮セル ロース繊維が含有され、他方の外層は非吸水収縮繊維で構成され、コース方向の非 分離部は非収縮繊維で構成されている事を特徴とする請求項 7記載のセルロース繊 維混用布帛。
[9] 分離部と非分離部とが繰り返し形成されている立体構造布帛であって、該分離部を 構成する一方の外層 (C)には吸水伸長率が 2%以下である吸水自己収縮セル口 ース繊維が含有され、他方の外層 (D)には非吸水収縮繊維が含有され、両外層のコ ース数が(C) > (D)である事を特徴とする請求項 7記載のセルロース繊維混用布帛 [10] 吸水自己収縮セルロース繊維の撚り係数が 8200〜35000である事を特徴とする 請求項 7記載のセルロース繊維混用布帛。
PCT/JP2007/051227 2006-01-26 2007-01-26 セルロース繊維混用布帛 WO2007086491A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2007800036247A CN101374991B (zh) 2006-01-26 2007-01-26 纤维素纤维混用布帛
JP2007556006A JP5102045B2 (ja) 2006-01-26 2007-01-26 セルロース繊維混用布帛
KR1020087017762A KR101061144B1 (ko) 2006-01-26 2007-01-26 셀룰로오스 섬유 혼용 직물
EP07707459.9A EP1978150B1 (en) 2006-01-26 2007-01-26 Cellulose fiber blended fabric
US12/086,753 US20090117799A1 (en) 2006-01-26 2007-01-26 Cellulose Fiber Blended Fabric
HK09103434A HK1125423A1 (en) 2006-01-26 2009-04-14 Cellulose fiber blended fabric

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006017415 2006-01-26
JP2006-017415 2006-01-26
JP2006025531 2006-02-02
JP2006-025531 2006-02-02
JP2006-025532 2006-02-02
JP2006025532 2006-02-02
JP2006-133736 2006-05-12
JP2006133736 2006-05-12

Publications (1)

Publication Number Publication Date
WO2007086491A1 true WO2007086491A1 (ja) 2007-08-02

Family

ID=38309277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051227 WO2007086491A1 (ja) 2006-01-26 2007-01-26 セルロース繊維混用布帛

Country Status (7)

Country Link
US (1) US20090117799A1 (ja)
EP (1) EP1978150B1 (ja)
JP (1) JP5102045B2 (ja)
KR (1) KR101061144B1 (ja)
CN (1) CN101374991B (ja)
HK (1) HK1125423A1 (ja)
WO (1) WO2007086491A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075187A (ja) * 2006-09-19 2008-04-03 Asahi Kasei Fibers Corp 立体構造丸編地
JP2008138318A (ja) * 2006-12-01 2008-06-19 Asahi Kasei Fibers Corp 経編地
JP2008138319A (ja) * 2006-12-01 2008-06-19 Asahi Kasei Fibers Corp 編地
JP2009035846A (ja) * 2007-08-03 2009-02-19 Asahi Kasei Fibers Corp 丸編地
JP2013116625A (ja) * 2011-11-01 2013-06-13 Mitsukawa Kk 積層体布帛

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8277837B2 (en) 2006-01-11 2012-10-02 Entegrion, Inc. Hemostatic textile
EP3283676B1 (en) * 2015-04-16 2021-12-01 NIKE Innovate C.V. Article of footwear incorporating a knitted component having floated yarn portions and a method of making same
JP6144794B2 (ja) * 2015-05-25 2017-06-07 株式会社東和コーポレーション 手袋用基体および手袋
KR102004666B1 (ko) * 2015-09-28 2019-07-26 아사히 가세이 가부시키가이샤 다층 구조 환편지
US10973268B2 (en) * 2016-08-25 2021-04-13 Nike, Inc. Garment with zoned insulation and variable air permeability
CN107604510A (zh) * 2017-10-13 2018-01-19 江苏美恒纺织实业有限公司 一种透气且抗紫外线面料及其制造方法
CN107541845A (zh) * 2017-10-13 2018-01-05 江苏美恒纺织实业有限公司 一种面料及其制造方法
CN107557960A (zh) * 2017-10-13 2018-01-09 江苏美恒纺织实业有限公司 一种透气排汗面料及其制造方法
CN107740217A (zh) * 2017-10-13 2018-02-27 江苏美恒纺织实业有限公司 一种多功能面料及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183429A (en) * 1981-04-27 1982-11-11 Kao Corp Twisted yarn
JP2005163225A (ja) * 2003-12-03 2005-06-23 Teijin Fibers Ltd 湿潤時に通気性が向上する編地および繊維製品
JP2006009204A (ja) * 2004-06-28 2006-01-12 Toho Tenax Co Ltd セルロース系繊維布帛の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4418524A (en) * 1980-06-19 1983-12-06 Kao Soap Co., Ltd. Twisted yarn and twisted bundle of yarns
JPH05247852A (ja) * 1991-02-21 1993-09-24 Soko Seiren Kk セルロース系繊維織物の薄起毛調仕上加工方法
FI924408A0 (fi) * 1992-09-30 1992-09-30 Novasso Oy Modifierade viskosfibrer och foerfarande foer dess framstaellning.
JPH08291461A (ja) * 1995-02-23 1996-11-05 Asahi Chem Ind Co Ltd セルロース繊維及びそれからなる布帛のアルカリ処理方法
JP2822174B2 (ja) * 1996-03-01 1998-11-11 オーミケンシ株式会社 キチンキトサン繊維及び構造体の製造法
JPH1025643A (ja) * 1996-07-09 1998-01-27 Asahi Chem Ind Co Ltd 多層構造布帛
ATE298814T1 (de) * 1998-01-08 2005-07-15 Asahi Chemical Ind Verfahren zur behandlung von kulierware
JP2000045155A (ja) * 1998-05-27 2000-02-15 Asahi Chem Ind Co Ltd 編 地
JPH11350358A (ja) * 1998-06-12 1999-12-21 Asahi Chem Ind Co Ltd 人造セルロース繊維の加工法
JP2004036012A (ja) * 2002-07-01 2004-02-05 Toray Ind Inc 吸水性編地
JP4193064B2 (ja) * 2002-12-12 2008-12-10 日清紡績株式会社 ポリウレタン弾性繊維混用織編物及びその製造方法
US7842628B2 (en) * 2003-06-23 2010-11-30 Teijin Fibers Limited Woven or knitted fabric containing two different yarns and clothing comprising the same
JP3834018B2 (ja) * 2003-06-30 2006-10-18 三菱レイヨン株式会社 可逆通気性布帛
KR20060089225A (ko) * 2003-10-22 2006-08-08 데이진 화이바 가부시키가이샤 신축성 복합 포백 및 그 의류제품
JP2005154949A (ja) * 2003-11-26 2005-06-16 Toray Ind Inc 機能性編地およびそれを用いた編地製品
JP2006112009A (ja) * 2004-10-15 2006-04-27 Teijin Fibers Ltd 湿潤により凹凸が発現する織編物およびその製造方法および繊維製品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183429A (en) * 1981-04-27 1982-11-11 Kao Corp Twisted yarn
JP2005163225A (ja) * 2003-12-03 2005-06-23 Teijin Fibers Ltd 湿潤時に通気性が向上する編地および繊維製品
JP2006009204A (ja) * 2004-06-28 2006-01-12 Toho Tenax Co Ltd セルロース系繊維布帛の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1978150A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075187A (ja) * 2006-09-19 2008-04-03 Asahi Kasei Fibers Corp 立体構造丸編地
JP2008138318A (ja) * 2006-12-01 2008-06-19 Asahi Kasei Fibers Corp 経編地
JP2008138319A (ja) * 2006-12-01 2008-06-19 Asahi Kasei Fibers Corp 編地
JP2009035846A (ja) * 2007-08-03 2009-02-19 Asahi Kasei Fibers Corp 丸編地
JP2013116625A (ja) * 2011-11-01 2013-06-13 Mitsukawa Kk 積層体布帛

Also Published As

Publication number Publication date
JPWO2007086491A1 (ja) 2009-06-25
CN101374991A (zh) 2009-02-25
HK1125423A1 (en) 2009-08-07
US20090117799A1 (en) 2009-05-07
EP1978150B1 (en) 2017-06-21
EP1978150A4 (en) 2011-05-04
CN101374991B (zh) 2013-04-03
JP5102045B2 (ja) 2012-12-19
KR101061144B1 (ko) 2011-08-31
KR20080078730A (ko) 2008-08-27
EP1978150A1 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
WO2007086491A1 (ja) セルロース繊維混用布帛
TWI475137B (zh) Multi-layer structure woven fabric and its containing fiber products
JP7324343B2 (ja) 緯編地
AU2014244921A1 (en) Elastic knitted fabric and clothing item
CN109790661B (zh) 经编织物
TW201512484A (zh) 彈性圓形編織物
JP5101871B2 (ja) 編地
JP2010285705A (ja) 2層構造丸編地
JP5030720B2 (ja) 衣料用布帛
JP4581324B2 (ja) 抗ピリング性編地
JP4997016B2 (ja) 丸編地
JP4799999B2 (ja) 3層構造布帛
JP4800043B2 (ja) 立体編地
JP5214132B2 (ja) 複合糸および布帛
JP4842065B2 (ja) 立体構造丸編地
JP5101870B2 (ja) 経編地
JP6946559B2 (ja) 経編地
JP4799998B2 (ja) 2層構造布帛

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12086753

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2007707459

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007707459

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007556006

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200780003624.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE