WO2007052555A1 - Cerium polishing agent - Google Patents

Cerium polishing agent Download PDF

Info

Publication number
WO2007052555A1
WO2007052555A1 PCT/JP2006/321508 JP2006321508W WO2007052555A1 WO 2007052555 A1 WO2007052555 A1 WO 2007052555A1 JP 2006321508 W JP2006321508 W JP 2006321508W WO 2007052555 A1 WO2007052555 A1 WO 2007052555A1
Authority
WO
WIPO (PCT)
Prior art keywords
abrasive
cerium
polishing
mass
raw material
Prior art date
Application number
PCT/JP2006/321508
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromi Uryu
Yoshitsugu Uchino
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Priority to CN2006800403082A priority Critical patent/CN101321841B/en
Publication of WO2007052555A1 publication Critical patent/WO2007052555A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se

Definitions

  • the present invention relates to a cerium-based abrasive.
  • the present invention relates to a high-purity cerium-based abrasive having a high content of cerium oxide and having an improved polishing speed.
  • Cerium-based abrasives (hereinafter sometimes simply referred to as abrasives) are cerium oxide (CeO
  • rare earth metal oxides As an essential component, and other rare earth metal oxides, as well as rare earth metal oxyfluorides and rare earth metal trifluorides, may be used to polish various glass materials. ing. Recently, the field of application has expanded, such as glass for magnetic recording media such as hard disks, glass substrates for liquid crystal displays (LCD), glass materials used in electrical and electronic equipment such as glass for photomasks, and semiconductor substrates. It is also used for polishing inorganic insulating film layers. In addition, as the use expands, cerium-based abrasives with a high content of cerium oxide (CeO)
  • TR 2 Z total rare earth oxide
  • Patent Document 1 presents a cerium-based abrasive whose content of impurities such as Na is regulated to a predetermined amount or less. According to the polishing material described in the cited document 1, it can be polished without causing scratches on the polished surface of the SiO insulating film of the semiconductor substrate.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-181403
  • the above-described cerium-based abrasive does not require a polishing rate as much as a glass substrate for polishing a semiconductor substrate and can be used sufficiently.
  • a polishing rate as much as a glass substrate for polishing a semiconductor substrate and can be used sufficiently.
  • the polishing speed is very small and the practicality is poor.
  • the polishing material that almost eliminates the above-mentioned impurities shows some improvement in the polishing speed by adjusting the production conditions such as making the roasting temperature high, this time, the polishing scratches are Improvement is also difficult because it tends to occur.
  • the present invention is a high-purity cerium-based abrasive, which has a high polishing speed even when polishing glass substrates for liquid crystal displays, hard disks, and photomasks. It aims at providing a thing with little generation
  • the present invention relates to a cerium-based abrasive having a cerium oxide content of 90 mass% or more with respect to total rare earth oxide (TREO). It is a cerium-based abrasive characterized by containing 0.01 to 2.0 mass% of at least one selected specific element. This specific element concentration is based on the total amount of abrasive.
  • the total amount of abrasive in the present invention means the total amount of solid abrasive. Therefore, in the case of slurry-like abrasives, the solid content excluding the dispersion medium is used as a standard.
  • additive elements for improving the polishing characteristics are Ti and Group 5 to 12 elements having an atomic number of 80 or less. According to the present inventor, the effect of improving the polishing characteristics can be seen limited to these elements.
  • group that defines the range of specific elements is a “group” according to the IUPAC inorganic chemical nomenclature (1990 recommendation), and includes groups 1 to 18.
  • the range of specific elements includes the following elements as Group 5 elements to Group 12 elements in addition to Ti (Group 4 elements).
  • elements having an atomic number of 22 to 30, that is, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn. This is because it is relatively inexpensive and can suppress the cost increase of abrasives. Further, Fe or Zn is more preferable in terms of cost and effect.
  • the content of the specific element is preferably 0.01 to 2.0 mass% with respect to the total amount of the abrasive. If the amount is less than 0.01% by mass, the polishing rate is low. However, if the amount exceeds 2.0% by mass, there is no difference in the effect of increasing the polishing rate, and there is a tendency for abrasion to occur. is there. And this viewpoint power About content of a specific element, 0.05-: L 0 mass% is more preferable, and 0.10-0.5 mass% is especially preferable.
  • the cerium-based abrasive according to the present invention preferably has a fluorine content of 0.5% by mass or less.
  • the fluorine content is more preferably 0.2% by mass or less, and particularly preferably 0.1% by mass or less.
  • the cerium-based abrasive according to the present invention has a specific surface area by BET method is 0.1 6: preferably in the L0m 2 Z g.
  • the specific surface area is related to the polishing speed of the abrasive and the presence or absence of polishing scratches.
  • the specific surface area is less than 0.6 m 2 Zg, many abrasive scratches tend to occur, whereas when it exceeds 10 m 2 Zg, the polishing speed decreases.
  • 0.8 to 8 m 2 Zg is more preferable, and 1 to 6 m 2 Zg is particularly preferable.
  • the cerium-based abrasive according to the present invention has a maximum CeO measured by X-ray diffraction using Cu- ⁇ ⁇ -ray or Cu- ⁇ ⁇ -ray (preferably Cu-K o; ray). Peak half width 2
  • the full width at half maximum of 20 is more preferably 0.12 to 0.6 °, and particularly preferably 0.15 to 0.5 °.
  • the maximum peak of CeO obtained by X-ray diffraction with Cu- ⁇ ⁇ -ray or Cu- ⁇ ⁇ -ray appears at 28.5 ⁇ 0.3 ° at 2 ⁇ .
  • the TREO of the cerium-based abrasive according to the present invention is preferably 90% by mass or more, more preferably 95% by mass or more, and even more preferably 97% by mass or more.
  • carbonate radicals, oxalate radicals, hydroxides, water, etc. remain in large amounts and the polishing rate is low, or they contain a large amount of impurities that do not contribute to polishing and many scratches occur. Because it does.
  • the present invention also provides a cerium-based laboratory having a cerium oxide content (CeO ZTREO) of 90% by mass or more.
  • the content of cerium oxide is preferably 95% by mass or more, more preferably 99% by mass or more from the viewpoint of polishing speed.
  • the upper limit is not limited from the viewpoint of polishing characteristics, but is preferably 99.999% by mass or less from the viewpoint of cost.
  • the present invention is characterized by containing a predetermined specific element.
  • a specific element compound of a specific element
  • the production process of a general cerium-based abrasive includes a raw material grinding process of an abrasive material, a roasting process for roasting it, and then a grinding process and a classification process performed as necessary.
  • the manufacturing process of the abrasive according to the present invention basically follows this flow, but the stage where the object to be treated is in the state of the raw material (that is, the stage of manufacturing the raw material, before the raw material grinding process).
  • the specific element is contained, and the subsequent roasting step is used to make the abrasive according to the present invention. be able to.
  • the production process of the cerium-based abrasive according to the present invention will be described in more detail.
  • ZTREO is preferably 95% by mass or more, more preferably 99% by mass or more. This is because the polishing speed of the abrasive material to be manufactured is taken into consideration.
  • the upper limit is not limited from the viewpoint of polishing characteristics, but is preferably 99.999 mass% or less from the viewpoint of cost.
  • the form of the abrasive raw material is selected from the group consisting of rare earth carbonates, monooxy carbonates, hydroxide carbonates, hydroxides, oxalates, and oxides containing cerium at the above concentrations.
  • One with at least one kind of power selected can be applied.
  • a group power that is also an acid salt and a hydroxya carbonate power is at least one kind of power that is selected. Note that it is not preferable to use only an acid salt as a raw material because many scratches are generated.
  • calcined rare earth carbonates monooxy carbonates, hydroxide carbonates, hydroxides, group strength of oxalate power, at least one kind of power selected Is also applicable.
  • the calcination is preferably performed at 150 to 700 ° C. and at a temperature lower than the subsequent roasting temperature.
  • the calcination time is preferably 0.1 to 72 hours depending on the calcination temperature and the intended loss on ignition (described later).
  • the calcination may be performed before pulverizing the raw material or after pulverizing the raw material.
  • the calcined abrasive raw material is preferably calcined carbonate, monooxy carbonate and hydroxide carbonate, and reduced to ignition on the basis of the mass after drying (dry weight).
  • dry weight the mass reduction rate when the object is sufficiently dried at 105 ° C and heated at 1000 ° C for 2 hours based on the dry weight.
  • It is 0% by mass or more, preferably 2.0% by mass or more, more preferably 5.0% by mass or more. If the loss on ignition is too low, it will be almost the same as that of acid soda, and if an abrasive made from this material is used, many scratches are likely to occur.
  • carbonate is composed of a rare earth compound aqueous solution and a carbonate type. It can be obtained by mixing with a precipitation agent (ammonium hydrogen carbonate, ammonium carbonate, sodium, urea, guanidine carbonate, etc.). Depending on the production conditions, some monooxy carbonates and hydroxide carbonates may be contained. Monooxy carbonate is obtained by mixing carbonate and water and heating at 60-: LO 0 ° C.
  • Hydroxic carbonate is mixed with an aqueous rare earth compound solution and an excess of a carbonic acid precipitating agent (ammonium hydrogen carbonate, ammonium carbonate, sodium carbonate, urea, guanidine carbonate, etc.). Obtained by heating to LOO ° C. In this case, if the amount of the carbonic acid precipitant is small, monooxy carbonate is likely to be formed.
  • the hydroxide can be obtained by mixing a rare earth compound aqueous solution and an alkaline precipitant (ammonia, sodium hydroxide, sodium hydroxide, etc.).
  • the oxalate can be obtained by mixing a rare earth compound aqueous solution and an oxalic acid-based precipitant (such as oxalic acid, ammonium oxalate, sodium oxalate, etc.).
  • an oxalic acid-based precipitant such as oxalic acid, ammonium oxalate, sodium oxalate, etc.
  • the acid raw material can be obtained by firing carbonate, monooxy carbonate, hydroxide carbonate, hydroxide, or oxalate at high temperature for a long time (eg, 900 ° C. for 12 hours).
  • the method for producing an abrasive according to the present invention, and the object to be treated must include a specific element at a stage where it is in the state of a raw material. Therefore, first, the specific elements may be mixed during the manufacturing process of the abrasive raw material so that the specific elements are included when the abrasive raw material is manufactured.
  • a raw material containing a specific element can be prepared by coexisting a compound containing a specific element in a rare earth compound aqueous solution and mixing it with a precipitant.
  • a raw material containing a specific element can be prepared by coexisting a compound containing the specific element during heating.
  • a compound containing a specific element may be mixed before or after calcining!
  • the specific element to be added may be in the form of various compounds such as oxides, hydroxides, oxalates, chlorides, nitrates, sulfates, etc., in addition to those in the metallic state. it can.
  • compounds containing no chlorine, nitrogen, sulfur, or phosphorus such as metals, oxides, hydroxides, carbonates, and oxalates, are preferred. . If chlorine, nitrogen, sulfur, and phosphorus are contained, the progress of sintering during roasting becomes uneven, and coarse particles are likely to be generated, and abrasive scratches are likely to occur.
  • a compound of a specific element When a compound of a specific element is mixed, it may be added in the form of an aqueous solution or a solid one.
  • the form of the specific element to be mixed can be the same even when the material is pulverized or added before or after the raw material.
  • This raw material pulverization may be dry pulverization, but wet pulverization is preferred.
  • the particle diameter after pulverization is 0.5 to 5 m in terms of D value by laser-diffraction 'scattering method. It is more preferable to set it to ⁇ 4 / ⁇ ⁇ .
  • wet pulverizing the raw material it is preferable to use a wet medium mill. As the pulverizing medium at this time, it is preferable to use a ceramic ball that does not contain a specific element.
  • the specific element is mixed from the grinding medium, and it becomes difficult to control the content of the specific element.
  • high-purity cerium-based abrasives are not pulverized by a media mill using a pulverizing medium containing a specific element.
  • the specific element can be contained by grinding using a grinding medium containing the specific element.
  • the abrasive material it is possible to make the abrasive material contain iron by pulverizing it with a wet medium mill using steel balls.
  • D force ⁇ m or less may be obtained even without pulverization by a pulverizer, and mechanical pulverization is not essential. Absent
  • the addition of the specific element is performed at a stage where the object to be treated is in a raw material state. Therefore, if the specific element is not mixed at the stage of raw material production, the raw material is ground. Specific elements can be mixed at or before or after. At this time, the raw material and the specific element compound may be mixed and pulverized, or the rare earth raw material and the substance containing the specific element may be separately pulverized and then both may be mixed. In the case where the immersion heat treatment and the pulverization by the pulverization apparatus are used in combination, first, the specific element may be added after the immersion heat treatment, and the pulverization by the apparatus may be performed.
  • the abrasive raw material after pulverization of the raw material is roasted in the roasting step when the mixing of the specific elements is completed. On the other hand, if the specific elements are not mixed before the roasting process, the specific elements are mixed at this time and then roasted. If the abrasive raw material to be mixed with the specific elements before roasting is in the form of a slurry, it is mixed, filtered, dried and then subjected to roasting It is preferable.
  • the specific element-containing material When the specific element is mixed in an aqueous solution, the specific element-containing material is water-soluble, and if it has not been subjected to insoluble soot treatment such as the addition of a precipitant after mixing, the entire amount must be dried ( In this regard, for example, when an aqueous solution of iron chloride is added to a mixed slurry of carbonate and water and subjected to immersion heating treatment, depending on the conditions, most of the iron hydroxide may become iron hydroxide and become insoluble. Moreover, it is preferable that the dried product is crushed and roasted.
  • the roasting temperature is preferably 400 to 1150 ° C force S, and more preferably 700 to: L 100 ° C force S, more preferably 800 to 1050 ° C. If the temperature is too low, the polishing speed will be low, and if it is too high, many scratches will occur. However, roasted at less than 400 ° C is sufficiently preferable in that the polishing rate is low, but there are few abrasive scratches.
  • the roasting time is preferably 0.5 to 48 hours. When a specific element such as Fe is contained, sintering is promoted, and D is a specific element.
  • an abrasive can be obtained by dry classification. Moreover, it can also be set as a slurry-like abrasive by wet-baking a roasted product. In this case, it is preferable to perform wet classification after pulverization.
  • FIG. 1 is a diagram showing an outline of a manufacturing process of a cerium-based abrasive in the present embodiment.
  • FIG. 1 is a force schematically showing a manufacturing process of a cerium-based abrasive according to this embodiment.
  • cerium carbonate was dissolved in hydrochloric acid, filtered, and diluted with pure water to obtain a rare earth compound solution of TREO50gZL. To this, 50gZL of ammonium bicarbonate aqueous solution as a precipitant was added 1.1 times the stoichiometric composition to form a precipitate.
  • Examples 27 and 28 must be immersed and heat-treated, and thus are not monooxycerium carbonate, but mainly cerium carbonate (Example 27 is before calcination).
  • Example 26 the slurry containing cerium monooxy carbonate after immersion heat treatment was filtered, and in Example 27, calcination was performed at 500 ° C. for 2 hours without immersion heat treatment of cerium carbonate. It was.
  • the compound containing the specific element was mixed with the abrasive raw material, and the raw material was pulverized. However, in Comparative Examples 1 to 3, 8, and 10, no specific element was added. Further, in Example 32, a specific element was contained at the time of raw material production, so it was not added here.
  • the specific element-containing compound is a monooxycerium cerium carbonate calcined product, a cerium carbonate calcined product, or a slurry in which cerium carbonate and pure water are mixed at a mass ratio of 1: 2. Added. For other cases, it was added to the slurry after the immersion heat treatment except when it was not added.
  • the ground abrasive material after pulverization was filtered and dried (48 hours at 120 ° C) and then crushed by a roll crusher (using ceramic roll).
  • the raw material (slurry) after pulverization is fluorine-added by adding ImolZL hydrofluoric acid in some Examples (Examples 36 and 37, Comparative Example 11).
  • Example 34 and 35 the whole raw material slurry after the pulverization treatment was dried without filtration.
  • Example 33 and the examples in which fluorine was added Examples 36 and 37, Comparative Example 11
  • washing with water was also performed after filtration.
  • the obtained pulverized product was heated at various temperatures of 400 to 1200 ° C. for 12 hours.
  • the roasted product after roasting was pulverized by a sample mill (Fuji Baudal Co., Ltd.) and further classified by Elbow Jet (Matsubo Co., Ltd.).
  • Carbonate is produced, filtered, washed with water, slurried and pulverized
  • the D of the abrasive particles is replaced by the laser diffraction / scattering method particles.
  • the particle size distribution was measured using a diameter distribution measuring device (Horiba, Ltd .: LA-920) to obtain a 50 mass% diameter in the volume-based integrated fraction.
  • a diameter distribution measuring device Horiba, Ltd .: LA-920
  • the half-value width 2 ⁇ of the maximum peak of CeO was obtained.
  • the content of coarse particles was also measured. This measurement is performed by first placing 200 g of a powdery measurement object in a measurement container. Then, add 0.1 mass% sodium hexametaphosphate aqueous solution to the upper stray line of the container and mix well. Next, let it settle for a specified time. After the specified time has elapsed, the slurry between the upper and lower benchmarks is extracted.
  • the designated time is the time required for the particles with a Stokes diameter of 5 ⁇ m at the position of the upper marked line (the upper surface of the slurry) to settle to the lower marked line. This is calculated by dividing the distance by the settling velocity calculated by the stochastic force. If the series of operations described above is performed only once, many particles with a Stokes diameter of 5 m or less will be mixed in the portion below the lower marked line, but the amount of contamination will decrease if repeated many times. These operations were carried out in a room at a room temperature of about 25 ° C. using a 0.1% by mass hexametaphosphoric acid aqueous solution at about 25 ° C.
  • a polishing test for actually polishing the glass substrate was performed.
  • a polishing tester HSP-21 type, manufactured by Taito Seiki Co., Ltd.
  • This polishing tester polishes the polishing target surface with a polishing pad while supplying slurry-like polishing material to the polishing target surface.
  • 20 liters of TREOlOOgZL slurry was prepared by mixing abrasive and pure water.
  • slurry-like abrasive was supplied at a rate of 5 liters Z, and the abrasive was recycled.
  • the object to be polished was a flat panel glass with a diameter of 65 mm.
  • the polishing pad was made of polyurethane.
  • the pressure of the polishing pad against the polishing surface was 9.8 kPa (lOOg / cm 2 ), the rotation speed of the polishing tester was set to lOO rpm, and polishing was performed for 30 minutes.
  • polishing characteristics For evaluation of the polishing characteristics, first, the glass weight before and after polishing was measured to determine the amount of glass weight reduction by polishing, and the polishing value was determined based on this value. In this polishing test, this The polishing rate was evaluated using the polishing value.
  • the polishing value of the polishing material obtained in Comparative Example 1 was used as the reference (100).
  • the polished surface of the glass obtained by polishing was washed with pure water and dried in a dust-free state, and then the polishing accuracy (whether or not scratches were generated) was evaluated.
  • This evaluation was made by observing the glass surface after polishing, counting the size and number of scratches, and evaluating by a deduction method from a maximum of 100 points. At this time, a large wound increased the deduction.
  • a score of 95 or more and 100 or less is “ ⁇ ” (very suitable as an abrasive)
  • a score of 90 or more and less than 95 is “ ⁇ ” (suitable as an abrasive)
  • 85 or more and less than 90 points are 85 or more and less than 90 points. “ ⁇ ” (can be used as an abrasive) and “X” (cannot be used as an abrasive) below 85 points.
  • Tables 4 to 6 show the physical properties and polishing characteristics of the various abrasives produced.
  • Comparative Example 1 99.5 6.7 0.71 0.52 5800 100 ⁇ Comparative Example 2 XX 87.5 99.9 ⁇ 0. 1 27. 2 0.54 1.45 1500 25 ⁇ Comparative Example 3 99.7 2.4 1.50 0. 12 16000 185 X Comparative Example 1 XX 99.5 6.7 0.71 0.52 5800 100 ⁇ Comparative example 4 0.005 99.5 6.5 0.72 0.50 5300 105 ⁇ Example 1 0.01 99.5 6.0 0.78 0.45 4700 158 O Example 2 0.02 99.5 5.4 0.81 0.41 3800 187 O Example 3 0.03 99.4 4.9 0.86 0.37 3100 214 O Example 4 0.05 99. 5 4.5 0.90 0.34 2000 252 ⁇ Example 5 0. 10 99.4 4.2 0.94 0.30 1300 278
  • Example 6 Fe 0.20 99.3 3.8 1.01 0.28 730 286 ⁇
  • Example 7 0.30 99.2 3.4 1. 11 0.26 750 296 ⁇
  • Example 8 0.40 99.0 3. 1 1.24 0.24 1700 314 ⁇
  • Example 9 0.49 98.9 2.8 1.35 0.23 2800 320 ⁇
  • Example 10 0.98 98.2 2.4 1.47 0.20 3700 325 ⁇
  • Example 11 1.9 96.8 2.2 1.57 0. 15 4800 329 o
  • Comparative Example 5 2.4 96.2 1.9 1.69 0. 11 11000 331
  • Comparative Example 6 0. 17 86. 1 13.7 0.60 1.07 ⁇ 100 98 ⁇
  • Example 12 0. 18 91.3 9.8 0.65 0.80 170 151 ⁇
  • Example 13 0.
  • Example 14 0.20 97.7 6.7 0.80 0.58 470 215 ⁇ Example 15 0. 19 98.8 5.6 0.86 0.50 550 233 ⁇ Example 16 0.20 99. 1 4.7 0.93 0.40 630 258
  • Example 6 0.20 99.3 3.8 1.01 0.28 730 286 ⁇
  • Example 17 0.20 99.4 2.5 1.
  • Example 18 0.20 99. 5 1. 1 1.
  • Example 19 0. 19 99.5 0.88 2.
  • Example 20 0.20 99.6 0.63 2.76 0. 10 5000 340 ⁇ Comparative Example 7 0. 19 99.7 0. 50 3.52 0.06 9600 352 ⁇ Comparative Example 8 99.4 6.5 0.73 0.52 6300 96 ⁇
  • Comparative Example 1 99.5 99. ⁇ ⁇ 0. 1 6.7 0.71 0.52 5800 100 ⁇
  • Example 6 Fe 0. 20 99.3 3.8 1.01 0.28 730 286 ⁇
  • Example 27 0. 19 99. 4 3. 5 1. 12 0. 24 3800 309 O
  • Example 28 0. 20 99. 3 3. 8 1. 08 0. 29 4700 279 o
  • Example 6 0. 20 99. 3 3. 8 1. 01 0. 28 730 286 ⁇
  • Comparative Example 10 0. 20 gg. 3 4. 0 0. 30 5800 105 X
  • Example 30 0. 19 99. 2 3. 8 1. 02 0. 28 670 301 ⁇
  • Example 31 Fe 0. 20 gg. 3 99. 9 ⁇ 0. 1 3 7 0. 98 0. 28 850 292
  • Example 32 0. 20 gg. 3 3. 7 1. 04 0. 27 ⁇ 100 296 p ⁇
  • Example 33 0. 18 99. 3 3. 9 0. 99 0.
  • Example 34 0. 19 99. 2 3. 5 1. 0 008 0. 27 3300 258 o
  • Example 35 0. 19 99. 2 3. 6 1. 06 0. 29 3500 249 o
  • Example 21 0. 20 99. 3 + 0. 1 4. 7 0. 88 0. 45 2400 195 ⁇
  • Example 36 0. 20 99. 1 0. 18 4. 5 0. 92 0. 42 3000 210
  • Comparative Examples 1 to 3 in Table 4 show the results of high-purity cerium-based abrasives that do not contain a specific element. When this result is compared with each example (for example, Examples 1 to 11), it can be seen that the presence or absence of a specific element affects the polishing rate, and that the addition of the specific element exerts the effect of improving the polishing rate.
  • Comparative Example 3 is a certain abrasive material containing a specific element manufactured at a high roasting temperature. Although this polishing material improves the polishing speed, it causes a noticeable occurrence of abrasive scratches. It turns out that it is scarce.
  • Examples 1 to 11 and Comparative Examples 1, 4, and 5 in Table 4 are for examining the influence of the content of the specific element (Fe) on the polishing characteristics. From these contrasts, the polishing speed is low if the specific element is not included as described above. In contrast, the specific element is only included. If the amount is too small (less than 0.01% by mass with respect to the total amount of abrasive), no improvement in the polishing rate is seen, and if too much (over 2.0%), polishing It can be seen that many scratches occur. That is, it was confirmed that the content of the specific element has an appropriate range (0.01 to 2.0% by mass).
  • Examples 6, 12 to 20 and Comparative Examples 6 and 7 in Table 4 show the polishing characteristics of the abrasives produced by changing the roasting temperature while keeping the specific element (Fe) content constant. . From this comparison, the polishing power and the viewpoint power of polishing scratches
  • the preferred roasting temperature is 400 to 1150 ° C, more preferably, the roasting temperature is 700 to: L 100 ° C, and 800 to 1050 ° C. It is even better!
  • Comparative Example 6 which was roasted at less than 400 ° C (350 ° C), the polishing speed was almost the same as that of the conventional product, but it was possible to use it from the viewpoint of no scratches. It ’s a thing.
  • Comparative Example 8 differs from the other Examples and Comparative Examples in that it is an abrasive produced by directly using Chinese starting cerium carbonate as an abrasive raw material.
  • Table 4 when compared with Comparative Example 1 in which domestic cerium carbonate was dissolved and reprecipitated and used as an abrasive material, there was no significant difference in the polishing characteristics, and there was also a low scratching rate. Many occur. From the comparison with Example 6 that includes the specific element and has the same manufacturing conditions, it can be seen that the improvement of the polishing characteristics is based on the presence or absence of the specific element regardless of the history of the raw material of the abrasive.
  • Spray 5 Influence of cerium oxide content in raw materials
  • Examples 6, 21 to 25 and Comparative Example 9 in Table 5 show the polishing characteristics of abrasives produced using abrasive raw materials having different cerium oxide contents (Ce02ZTREO). From this comparison, if the content of cerium oxide in the polishing material is preferably 90% by mass or more (Comparative Example 9: 85% by mass), both the polishing rate and the scratches will be obtained. Inferiority was confirmed. It can also be seen that when the cerium oxide content exceeds 99 mass%, there is no significant difference in the polishing characteristics depending on the concentration level.
  • Examples 6 and 26 to 28 in Table 5 show the abrasive characteristics of the abrasive produced by immersion heat treatment and Z or calcination in the abrasive production process, and the V and the polished abrasive with no deviation. Is shown. Comparing with the polishing rate and the scratch evaluation of Example 28 in which neither treatment is performed, it is understood that immersion heating treatment is effective in improving the polished surface accuracy, and calcination is effective in improving the polishing rate. However, it is not always good if both are implemented (see Example 26), and V and deviation processing are also indispensable (see Example 28).
  • Comparative Example 10 uses various iron compounds with respect to the addition of Fe, which is a specific element, in the abrasive production process. Further, Comparative Example 10 was prepared by mixing an iron compound (Fe 2 O 3) with the conventional high-purity cerium-based abrasive of Comparative Example 1.
  • the content of the specific element is 0.20% by mass based on the total amount of the abrasive. From these results, it can be seen that the type of specific element compound does not affect the characteristics of the abrasive.
  • the specific element is not effective in improving the polishing rate simply by mixing it with the polishing material. That is, it was confirmed that the specific element needs to be calcined in the state of the raw material, and subsequent roasting makes it an abrasive with good characteristics.
  • Example 33 As shown in Example 33, it should be fixed with ammonia water added. Therefore, in order to prevent the loss of Fe, the entire slurry after pulverizing the raw material was dried. As a result, the raw material used for roasting contains a large amount of chlorine. In addition, due to the inclusion of chlorine, sintering during roasting proceeds slightly non-uniformly to produce coarse particles, which can easily cause abrasive scratches! RU
  • Examples 21, 36, and 37 and Comparative Example 11 show the polishing characteristics of abrasives having different fluorine contents. From this result, there is a tendency that many abrasive scratches occur when the fluorine content is high. It was confirmed that the fluorine content is preferably 0.5% by mass or less. In Comparative Example 11, the evaluation of polishing scratches is similar to that in Comparative Example 1, but the polishing rate is much higher. This is due to the inclusion of a specific element.
  • Judgment 9 The influence of certain urban streets Examples 6, 38 to 50 and Comparative Examples 12 to 16 relate to abrasives to which various specific element oxides and oxides of elements that are not specific elements are added (contents are almost the same). did). From these results, Ti (Group 4 element), V, Nb, Ta (Group 5 element), Cr, Mo, W (Group 6 element), Mn ( Group 7 element), Fe (Group 8 element), Co (Group 9 element), Ni (Group 10 element), Cu, Ag (Group 11 element), Zn (Group 12 element) are all effective in improving polishing characteristics. I understand that there is. In addition, as can be seen from Comparative Examples 12 to 16, it was confirmed that if any additive element was added, it was not so.
  • the content of coarse particles in the abrasive material affects the presence or absence of the occurrence of polishing flaws.
  • the content of coarse particles having a Stokes diameter of 5 m or more is preferably 5000 ppm or less, more preferably 3000 mass ppm, and even more preferably 1 000 mass ppm or less. This is because if the content of coarse particles exceeds the reference value, many abrasive scratches occur.
  • the Fe O used in this embodiment has a Stokes diameter of 5
  • the high-purity cerium-based abrasive according to the present invention is an abrasive capable of forming a highly accurate polished surface with a high polishing speed and few polishing flaws.
  • the present invention is particularly useful when polishing glass substrates for liquid crystal displays, hard disks, and photomasks. Further, the present invention can be used not only for polishing the glass material but also for polishing a semiconductor substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

Disclosed is a high-purity cerium polishing agent having a high cerium oxide content, which is improved in polishing rate. Specifically disclosed is a cerium polishing agent wherein the cerium oxide content relative to the total rare earth oxide (TREO) is not less than 90% by mass. This cerium polishing agent is characterized in that at least one specific element selected from the group consisting of Ti and group 5-12 elements having an atomic number of 80 or less is contained in an amount of 0.01-2.0% by mass relative to the total mass of the polishing agent.

Description

明 細 書  Specification
セリウム系研摩材  Cerium-based abrasive
技術分野  Technical field
[0001] 本発明は、セリウム系研摩材に関する。特に、酸ィ匕セリウム含有量が高い高純度セ リウム系研摩材であって、研摩速度の改善がなされたものに関する。  [0001] The present invention relates to a cerium-based abrasive. In particular, the present invention relates to a high-purity cerium-based abrasive having a high content of cerium oxide and having an improved polishing speed.
背景技術  Background art
[0002] セリウム系研摩材 (以下、単に研摩材と称するときがある。 )は、酸化セリウム (CeO  [0002] Cerium-based abrasives (hereinafter sometimes simply referred to as abrasives) are cerium oxide (CeO
2 2
)を必須成分とし、その他の希土類金属酸化物、さらには希土類金属ォキシフッ化物 や希土類金属三フッ化物を含む場合もある研摩材粒子カゝらなり、従来から種々のガ ラス材料の研摩に用いられている。最近では、その応用分野が広がっており、ハード ディスク等の磁気記録媒体用ガラス、液晶ディスプレイ (LCD)のガラス基板、フォトマ スク用ガラスと ヽつた電気 ·電子機器で用いられるガラス材料や、半導体基板の無機 絶縁膜層の研摩にも用いられている。また、用途の拡大に応じて、セリウム系研摩材 の種類としても酸ィ匕セリウム含有量が高いもの(CeO ) As an essential component, and other rare earth metal oxides, as well as rare earth metal oxyfluorides and rare earth metal trifluorides, may be used to polish various glass materials. ing. Recently, the field of application has expanded, such as glass for magnetic recording media such as hard disks, glass substrates for liquid crystal displays (LCD), glass materials used in electrical and electronic equipment such as glass for photomasks, and semiconductor substrates. It is also used for polishing inorganic insulating film layers. In addition, as the use expands, cerium-based abrasives with a high content of cerium oxide (CeO
2 Z全希土類酸化物(以下、 TR 2 Z total rare earth oxide (hereinafter referred to as TR
EOと略すときがある。 )≥ 90質量%以上)が用いられる機会が増えている。 Sometimes abbreviated EO. ) ≥90% by mass) is being used more frequently.
[0003] ここで、研摩材と 、う機能材料にとって要求される特性の一つとして、傷のな 、高精 度の研摩面を形成できることが挙げられる。この点、上記した電気'電子機器用のガ ラス材料及び半導体装置での研摩面においては、その平滑性について非常に高い 精度が要求されており、セリウム系研摩材には、より厳しい基準が要求される。 [0003] Here, as one of the characteristics required for the abrasive and the functional material, it is possible to form a highly accurate polished surface without scratches. In this respect, the glass material for electrical and electronic equipment described above and the polished surface of semiconductor devices are required to have extremely high smoothness, and cerium-based abrasives require stricter standards. Is done.
[0004] ところで、高純度セリウム系研摩材においては、上記要求を満たすため希土類元素 以外の不純物を含有しないようにすることが好ましぐこれは従来力 の常識とされて きた。例えば、特許文献 1では、 Na等の不純物含有量が所定量以下に規制されたセ リウム系研摩材を提示している。この引用文献 1記載の研摩材によれば、半導体基板 の SiO絶縁膜の被研摩面に傷を生じさせず研摩することができるとされて 、る。 [0004] By the way, in high-purity cerium-based abrasives, it is preferable not to contain impurities other than rare earth elements in order to satisfy the above requirements. For example, Patent Document 1 presents a cerium-based abrasive whose content of impurities such as Na is regulated to a predetermined amount or less. According to the polishing material described in the cited document 1, it can be polished without causing scratches on the polished surface of the SiO insulating film of the semiconductor substrate.
2  2
特許文献 1:特開平 11― 181403号公報  Patent Document 1: Japanese Patent Laid-Open No. 11-181403
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0005] 上記したセリウム系研摩材は、半導体基板の研摩についてはガラス基板の場合ほ どの研摩速度は要求されておらず、十分使用可能である。しカゝしながら、被研摩材料 をガラスとした場合には、研摩速度が非常に小さく実用性に乏しいという問題があつ た。また、本発明者によれば、上記不純物をほとんど排除する研摩材は、焙焼温度を 高温とする等製造条件を調整することで研摩速度に多少の改善はみられるものの、 今度は研摩傷が生じやすくなるため改良も困難である。 Problems to be solved by the invention [0005] The above-described cerium-based abrasive does not require a polishing rate as much as a glass substrate for polishing a semiconductor substrate and can be used sufficiently. However, when glass is used as the material to be polished, there is a problem that the polishing speed is very small and the practicality is poor. Further, according to the present inventor, although the polishing material that almost eliminates the above-mentioned impurities shows some improvement in the polishing speed by adjusting the production conditions such as making the roasting temperature high, this time, the polishing scratches are Improvement is also difficult because it tends to occur.
[0006] そこで、本発明は、高純度のセリウム系研摩材であって、液晶ディスプレイ用、ハー ドディスク用、フォトマスク用のガラス基板を研摩する場合においても研摩速度が大き ぐかつ、研摩傷の発生の少ないものを提供することを目的とする。  [0006] Therefore, the present invention is a high-purity cerium-based abrasive, which has a high polishing speed even when polishing glass substrates for liquid crystal displays, hard disks, and photomasks. It aims at providing a thing with little generation | occurrence | production of.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題を解決するため、本発明者等は鋭意検討を行い、高純度セリウム系研摩 材に特定の元素を含有させることとした。このような、高純度セリウム系研摩材に希土 類元素以外の元素を添加するという思想は、上記したように従来の技術常識と反す るものであるが、これにより十分な研摩速度の向上がみられ、本発明者はこれにより 本発明に想到した。 [0007] In order to solve the above problems, the present inventors have intensively studied and decided to make a high-purity cerium-based abrasive contain a specific element. The idea of adding elements other than rare earth elements to such a high-purity cerium-based abrasive is contrary to the conventional common knowledge as described above, but this sufficiently improves the polishing speed. Thus, the present inventor has conceived the present invention.
[0008] 即ち、本発明は、全希土類酸化物 (TREO)に対する酸化セリウム含有量が 90質 量%以上であるセリウム系研摩材において、 Ti及び原子番号 80以下の 5族〜 12族 の元素力 選択される少なくとも 1種の特定元素を 0. 01〜2. 0質量%含有すること を特徴とするセリウム系研摩材である。尚、この特定元素濃度は、研摩材全量を基準 とする。ただし、本発明で研摩材全量とは固形の研摩材全量を意味する。従って、ス ラリー状の研摩材の場合は分散媒を除いた固形分を基準とする。  [0008] That is, the present invention relates to a cerium-based abrasive having a cerium oxide content of 90 mass% or more with respect to total rare earth oxide (TREO). It is a cerium-based abrasive characterized by containing 0.01 to 2.0 mass% of at least one selected specific element. This specific element concentration is based on the total amount of abrasive. However, the total amount of abrasive in the present invention means the total amount of solid abrasive. Therefore, in the case of slurry-like abrasives, the solid content excluding the dispersion medium is used as a standard.
[0009] 本発明において、研摩特性改善のための添加元素(以下、特定元素と称する)は、 Ti及び原子番号 80以下の 5族〜 12族の元素である。本発明者によれば、これらの 元素に限定して研摩特性改善の効果がみられる。ここで、特定元素の範囲を規定す る「族」とは、 IUPAC無機化学命名法(1990年勧告)による「族」であり、 1族〜 18族 がある。そして、特定元素の範囲は、 Ti (4族元素)に加え、 5族元素〜 12族元素とし て以下の元素が含まれる。 5族元素では V、 Nb、 Taが、 6族元素では Cr、 Mo、 Wが 、 7族元素では Mn、 Tc、 Reが、 8族元素では Fe、 Ru、 Osが、 9族元素では Co、 Rh 、 Irが、 10族元素では Ni、 Pd、 Ptが、 11族元素では Cu、 Ag、 Auが、そして、 12族 元素では Zn、 Cd、 Hgが含まれる。 In the present invention, additive elements for improving the polishing characteristics (hereinafter referred to as “specific elements”) are Ti and Group 5 to 12 elements having an atomic number of 80 or less. According to the present inventor, the effect of improving the polishing characteristics can be seen limited to these elements. Here, the “group” that defines the range of specific elements is a “group” according to the IUPAC inorganic chemical nomenclature (1990 recommendation), and includes groups 1 to 18. The range of specific elements includes the following elements as Group 5 elements to Group 12 elements in addition to Ti (Group 4 elements). V, Nb, Ta for Group 5 elements, Cr, Mo, W for Group 6 elements, Mn, Tc, Re for Group 7 elements, Fe, Ru, Os for Group 8 elements, Co, for Group 9 elements, Co, Rh Ir, Ni, Pd, Pt for Group 10 elements, Cu, Ag, Au for Group 11 elements, and Zn, Cd, Hg for Group 12 elements.
[0010] そして、これらの特定元素の中で、好ましいものは、原子番号が 22〜30の元素、即 ち、 Ti、 V、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Znである。比較的安価であり研摩材のコスト 上昇を押えることができるからである。また、コスト及び効果の面力もより好ましいのは 、 Fe又は Znである。 [0010] Among these specific elements, preferred are elements having an atomic number of 22 to 30, that is, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn. This is because it is relatively inexpensive and can suppress the cost increase of abrasives. Further, Fe or Zn is more preferable in terms of cost and effect.
[0011] この特定元素の含有量は、研摩材全量に対して 0. 01〜2. 0質量%が好ましい。 0 . 01質量%未満では研摩速度が低い一方、 2. 0質量%を超えて添加しても研摩速 度上昇の効果に差がないことに加え、研摩傷が発生する傾向がみられるからである。 そして、この観点力 特定元素の含有量については、 0. 05〜: L 0質量%がより好ま しく、 0. 10〜0. 5質量%が特に好ましい。  [0011] The content of the specific element is preferably 0.01 to 2.0 mass% with respect to the total amount of the abrasive. If the amount is less than 0.01% by mass, the polishing rate is low. However, if the amount exceeds 2.0% by mass, there is no difference in the effect of increasing the polishing rate, and there is a tendency for abrasion to occur. is there. And this viewpoint power About content of a specific element, 0.05-: L 0 mass% is more preferable, and 0.10-0.5 mass% is especially preferable.
[0012] 本発明に係るセリウム系研摩材は、フッ素含有量が 0. 5質量%以下であるのが好 ましい。フッ素含有量が高くなると研摩傷が生じやすくなる力もである。このフッ素含 有量は、 0. 2質量%以下がより好ましぐ 0. 1質量%以下が特に好ましい。  [0012] The cerium-based abrasive according to the present invention preferably has a fluorine content of 0.5% by mass or less. The higher the fluorine content, the more likely it is to cause abrasive scratches. The fluorine content is more preferably 0.2% by mass or less, and particularly preferably 0.1% by mass or less.
[0013] また、本発明に係るセリウム系研摩材は、 BET法による比表面積が 0. 6〜: L0m2Z gとするのが好ましい。比表面積は、研摩材の研摩速度及び研摩傷発生の有無に関 連し、 0. 6m2Zg未満であると研摩傷が多く発生する傾向がある一方、 10m2Zgを 超えると研摩速度が低くなる。この比表面積については、 0. 8〜8m2Zgがより好まし く、 l〜6m2Zgが特に好ましい。 [0013] In addition, the cerium-based abrasive according to the present invention has a specific surface area by BET method is 0.1 6: preferably in the L0m 2 Z g. The specific surface area is related to the polishing speed of the abrasive and the presence or absence of polishing scratches. When the specific surface area is less than 0.6 m 2 Zg, many abrasive scratches tend to occur, whereas when it exceeds 10 m 2 Zg, the polishing speed decreases. Become. As for this specific surface area, 0.8 to 8 m 2 Zg is more preferable, and 1 to 6 m 2 Zg is particularly preferable.
[0014] 更に、本発明に係るセリウム系研摩材は、 Cu— Κ α線又は Cu— Κ α線 (好ましく は、 Cu—K o;線)を用いた X線回折により測定される CeOの最大ピークの半値幅 2  [0014] Further, the cerium-based abrasive according to the present invention has a maximum CeO measured by X-ray diffraction using Cu-Κ α-ray or Cu-Κ α-ray (preferably Cu-K o; ray). Peak half width 2
1 2  1 2
0力 0. 1〜0. 8° となるものが好ましい。 0. 1° 未満であると研摩傷が多く発生し、 0. 8° を超えると研摩速度が低くなる力 である。半値幅 2 0は、 0. 12-0. 6° 力 り好ましく、 0. 15〜0. 5° が特に好ましい。 Cu— Κ α線又は Cu— Κ α ΐ線による X 線回折で得られる CeOの最大ピークは 2 Θで 28. 5±0. 3° に出現する。尚、 Cu—  Those having a 0 force of 0.1 to 0.8 ° are preferred. When the angle is less than 0.1 °, many abrasive scratches occur. When the angle exceeds 0.8 °, the polishing speed decreases. The full width at half maximum of 20 is more preferably 0.12 to 0.6 °, and particularly preferably 0.15 to 0.5 °. The maximum peak of CeO obtained by X-ray diffraction with Cu- Κ α-ray or Cu- Κ α-ray appears at 28.5 ± 0.3 ° at 2 Θ. Cu—
2  2
Κ α線を用いた X線回折には、 CuK o;線を試料に照射し得られた回折 X線を Cu— Κ α線によるものと、 Cu— Κ α線によるものとに分離し、 Cu— Κ α線によるものに X For X-ray diffraction using α-rays, the diffraction X-rays obtained by irradiating the sample with CuK o; rays are separated into Cu-Κ α-rays and Cu-Κ α-rays. — Κ By alpha rays
1 2 1 1 2 1
っ 、て解析する場合を含む。 [0015] 本発明に係るセリウム系研摩材の TREOは、 90質量%以上が好ましぐ 95質量% 以上がより好ましぐ 97質量%以上がさらに好ましい。下限値未満のものは、炭酸根 、シユウ酸根、水酸化物、水等が多量に残留しており研摩速度が低い、又は、研摩に 寄与しない不純物を多量に含有しており研摩傷が多く発生するからである。また、本 発明は、酸化セリウム含有量 (CeO ZTREO)が 90質量%以上であるセリウム系研 Including the case of analysis. [0015] The TREO of the cerium-based abrasive according to the present invention is preferably 90% by mass or more, more preferably 95% by mass or more, and even more preferably 97% by mass or more. For those below the lower limit, carbonate radicals, oxalate radicals, hydroxides, water, etc. remain in large amounts and the polishing rate is low, or they contain a large amount of impurities that do not contribute to polishing and many scratches occur. Because it does. The present invention also provides a cerium-based laboratory having a cerium oxide content (CeO ZTREO) of 90% by mass or more.
2  2
摩材であるが、酸化セリウム含有量は、研摩速度の観点から、 95質量%以上が好ま しぐ 99質量%以上がさらに好ましい。上限については、研摩特性の観点からは上 限はないが、コストの面から 99. 999質量%以下であるものが好ましい。  Although it is an abrasive, the content of cerium oxide is preferably 95% by mass or more, more preferably 99% by mass or more from the viewpoint of polishing speed. The upper limit is not limited from the viewpoint of polishing characteristics, but is preferably 99.999% by mass or less from the viewpoint of cost.
[0016] 次に、本発明に係るセリウム系研摩材の製造方法について説明する。これまで説明 したように、本発明においては、所定の特定元素を含有することを特徴とする。但し、 注意すべきは、製造済みのセリウム系研摩材に単に特定元素 (特定元素の化合物) を添加'混合するのでは、本発明における研摩速度が向上した研摩材を得ることは できない。ここで、一般的なセリウム系研摩材の製造工程とは、研摩材原料の原料粉 砕工程、これを焙焼する焙焼工程、その後必要に応じて行う粉砕工程及び分級工程 を含む。本発明者によれば、本発明に係る研摩材の製造工程も基本的にこの流れに 沿うが、処理対象物が原料の状態である段階 (即ち、原料を製造する段階、原料粉 砕工程前、原料粉砕中、及び、原料粉砕後の焙焼工程の直前までの間の段階)に おいて特定元素が含有され、その後の焙焼工程で焙焼することにより本発明に係る 研摩材とすることができる。以下、本発明に係るセリウム系研摩材の製造工程につい て、より詳細に説明する。  Next, a method for producing a cerium-based abrasive according to the present invention will be described. As described above, the present invention is characterized by containing a predetermined specific element. However, it should be noted that it is not possible to obtain an abrasive with an improved polishing speed in the present invention by simply adding and mixing a specific element (compound of a specific element) with a manufactured cerium-based abrasive. Here, the production process of a general cerium-based abrasive includes a raw material grinding process of an abrasive material, a roasting process for roasting it, and then a grinding process and a classification process performed as necessary. According to the present inventor, the manufacturing process of the abrasive according to the present invention basically follows this flow, but the stage where the object to be treated is in the state of the raw material (that is, the stage of manufacturing the raw material, before the raw material grinding process). In particular, during the raw material pulverization and immediately before the roasting step after the raw material pulverization), the specific element is contained, and the subsequent roasting step is used to make the abrasive according to the present invention. be able to. Hereinafter, the production process of the cerium-based abrasive according to the present invention will be described in more detail.
[0017] 本発明に係るセリウム系研摩材の原料としては、まず、酸化セリウム含有量 (CeO  [0017] As a raw material of the cerium-based abrasive according to the present invention, first, the cerium oxide content (CeO
2 2
ZTREO)が、 95質量%以上のものが好ましぐ 99質量%以上のものがより好ましい 。製造される研摩材の研摩速度を考慮するためである。上限については、研摩特性 の観点からは上限はないが、コストの面から 99. 999質量%以下であるものが好まし い。 ZTREO) is preferably 95% by mass or more, more preferably 99% by mass or more. This is because the polishing speed of the abrasive material to be manufactured is taken into consideration. The upper limit is not limited from the viewpoint of polishing characteristics, but is preferably 99.999 mass% or less from the viewpoint of cost.
[0018] 研摩材原料の形態としては、上記の濃度でセリウムを含む希土類の、炭酸塩、モノ ォキシ炭酸塩、水酸化炭酸塩、水酸化物、蓚酸塩、及び、酸化物からなる群から選 択される少なくとも 1種力もなるものが適用できる。好ましくは、炭酸塩、モノォキシ炭 酸塩及び水酸ィ匕炭酸塩力もなる群力も選択される少なくとも 1種力もなるものである。 尚、酸ィ匕物のみを原料とすると傷が多く発生するためあまり好ましくはない。 [0018] The form of the abrasive raw material is selected from the group consisting of rare earth carbonates, monooxy carbonates, hydroxide carbonates, hydroxides, oxalates, and oxides containing cerium at the above concentrations. One with at least one kind of power selected can be applied. Preferably, carbonate, monooxy charcoal A group power that is also an acid salt and a hydroxya carbonate power is at least one kind of power that is selected. Note that it is not preferable to use only an acid salt as a raw material because many scratches are generated.
[0019] また、研摩材原料として、希土類の炭酸塩、モノォキシ炭酸塩、水酸化炭酸塩、水 酸ィ匕物、蓚酸塩力 なる群力 選択されるすくなくとも 1種力 なるものを仮焼したもの も適用できる。仮焼は、 150〜700°Cで、且つ、後の焙焼温度より低い温度で実施す るのが好ましい。仮焼時間は仮焼温度と目的とする強熱減量 (後述する)により異なる 力 0. 1〜72時間が好ましい。尚、仮焼は、原料粉砕前に行っても、原料粉砕後に 行ってもよい。仮焼した研摩材原料として好ましいのは、炭酸塩、モノォキシ炭酸塩 及び水酸化炭酸塩を仮焼して、乾燥後の質量 (乾量)基準の強熱減量 (乾燥後の対 象物を強熱した際の質量減少率をいう。本発明では、対象物を 105°Cで十分乾燥後 、乾量を基準として、 1000°Cで 2時間加熱した場合の質量減少率を示す。)を 1. 0 質量%以上、好ましくは 2. 0質量%以上、さらに好ましくは 5. 0質量%以上にしたも のである。尚、強熱減量があまりに低いと酸ィ匕物とほとんど同じとなり、これを原料とし て製造される研摩材を使用すると傷が多く発生しやすい。  [0019] Also, as a raw material for the abrasive, calcined rare earth carbonates, monooxy carbonates, hydroxide carbonates, hydroxides, group strength of oxalate power, at least one kind of power selected Is also applicable. The calcination is preferably performed at 150 to 700 ° C. and at a temperature lower than the subsequent roasting temperature. The calcination time is preferably 0.1 to 72 hours depending on the calcination temperature and the intended loss on ignition (described later). The calcination may be performed before pulverizing the raw material or after pulverizing the raw material. The calcined abrasive raw material is preferably calcined carbonate, monooxy carbonate and hydroxide carbonate, and reduced to ignition on the basis of the mass after drying (dry weight). (In the present invention, the mass reduction rate when the object is sufficiently dried at 105 ° C and heated at 1000 ° C for 2 hours based on the dry weight.) It is 0% by mass or more, preferably 2.0% by mass or more, more preferably 5.0% by mass or more. If the loss on ignition is too low, it will be almost the same as that of acid soda, and if an abrasive made from this material is used, many scratches are likely to occur.
[0020] 上記した、研摩材原料である、炭酸塩、モノォキシ炭酸塩、水酸化炭酸塩、水酸ィ匕 物、及び、蓚酸塩の製造方法としては、炭酸塩は、希土類化合物水溶液と炭酸系沈 殿剤 (炭酸水素アンモ-ゥム、炭酸アンモ-ゥム、ナトリウム、尿素、炭酸グァ-ジン 等)とを混合することにより得られる。製造条件により、モノォキシ炭酸塩、水酸化炭酸 塩を一部含有する場合もある。モノォキシ炭酸塩は、炭酸塩と水とを混合し、 60〜: LO 0°Cで加熱することにより得られる。水酸化炭酸塩は、希土類化合物水溶液と過剰な 炭酸系沈殿剤 (炭酸水素アンモ-ゥム、炭酸アンモ-ゥム、炭酸ナトリウム、尿素、炭 酸グァ-ジン等)とを混合後、 60〜: LOO°Cに加熱することにより得られる。この場合、 炭酸系沈殿剤の量が少ないとモノォキシ炭酸塩が生成しやすい。水酸化物は、希土 類化合物水溶液とアルカリ系沈殿剤 (アンモニア、水酸ィ匕ナトリウム等)とを混合する こと〖こより得られる。蓚酸塩は、希土類化合物水溶液と蓚酸系沈殿剤 (蓚酸、蓚酸ァ ンモ-ゥム、蓚酸ナトリウム等)とを混合することにより得られる。これらの各種化合物 の製造において希土類ィ匕合物水溶液を用いる場合、セリウム濃度 (CeO /TREO)  [0020] As a method for producing the above-described abrasive raw materials, carbonate, monooxy carbonate, hydroxide carbonate, hydroxide, and oxalate, carbonate is composed of a rare earth compound aqueous solution and a carbonate type. It can be obtained by mixing with a precipitation agent (ammonium hydrogen carbonate, ammonium carbonate, sodium, urea, guanidine carbonate, etc.). Depending on the production conditions, some monooxy carbonates and hydroxide carbonates may be contained. Monooxy carbonate is obtained by mixing carbonate and water and heating at 60-: LO 0 ° C. Hydroxic carbonate is mixed with an aqueous rare earth compound solution and an excess of a carbonic acid precipitating agent (ammonium hydrogen carbonate, ammonium carbonate, sodium carbonate, urea, guanidine carbonate, etc.). Obtained by heating to LOO ° C. In this case, if the amount of the carbonic acid precipitant is small, monooxy carbonate is likely to be formed. The hydroxide can be obtained by mixing a rare earth compound aqueous solution and an alkaline precipitant (ammonia, sodium hydroxide, sodium hydroxide, etc.). The oxalate can be obtained by mixing a rare earth compound aqueous solution and an oxalic acid-based precipitant (such as oxalic acid, ammonium oxalate, sodium oxalate, etc.). When using rare earth compound aqueous solutions in the production of these various compounds, the cerium concentration (CeO / TREO)
2 は、 90質量%以上が必要であり、 95質量%以上が好ましぐ 99質量%以上が好まし い。また、各種の沈殿剤を用いる場合は、水溶液として使用するのが均一な沈殿が 得られる点で好ましい。そして、生成した沈殿は、水洗して付着する塩等を低減する のが好ましい。酸ィ匕物原料については、炭酸塩、モノォキシ炭酸塩、水酸化炭酸塩、 水酸化物、蓚酸塩を、高温で長時間(例えば、 900°Cで 12時間)焼成することにより 得られる。 2 requires 90% by mass or more, preferably 95% by mass or more, and more preferably 99% by mass or more. Yes. Moreover, when using various precipitating agents, it is preferable to use it as an aqueous solution because a uniform precipitate can be obtained. The produced precipitate is preferably washed with water to reduce the attached salt and the like. The acid raw material can be obtained by firing carbonate, monooxy carbonate, hydroxide carbonate, hydroxide, or oxalate at high temperature for a long time (eg, 900 ° C. for 12 hours).
[0021] そして、上述のとおり、本発明に係る研摩材の製造方法、処理対象物が原料の状 態にある段階で特定元素を含むことを要する。従って、まず、研摩材原料の製造ェ 程中に特定元素の混合を行 ヽ、研摩材原料が製造された段階で特定元素を含むよ うにしても良い。研摩材原料製造工程中での添加の方法としては、希土類化合物水 溶液に各種炭酸系沈殿剤を混合して研摩材原料を製造する場合 (炭酸塩、水酸ィ匕 炭酸塩、水酸化物、及び、蓚酸塩を製造する場合)には、希土類化合物水溶液に特 定元素を含む化合物を共存させ、これに沈澱剤と混合することで特定元素を含有す る原料を調製できる。また、炭酸塩と水を混合して加熱するモノォキシ炭酸塩の製造 についても、加熱時に特定元素を含む化合物を共存させることにより特定元素を含 有する原料を調製できる。更に、研摩材原料について仮焼を行う場合は、特定元素 を含む化合物を仮焼前又は仮焼後に混合すればよ!、。  [0021] Then, as described above, the method for producing an abrasive according to the present invention, and the object to be treated must include a specific element at a stage where it is in the state of a raw material. Therefore, first, the specific elements may be mixed during the manufacturing process of the abrasive raw material so that the specific elements are included when the abrasive raw material is manufactured. As a method of addition in the abrasive raw material manufacturing process, when preparing an abrasive raw material by mixing various carbonate-based precipitants with a rare earth compound aqueous solution (carbonate, hydroxide, carbonate, hydroxide, In the case of producing oxalate), a raw material containing a specific element can be prepared by coexisting a compound containing a specific element in a rare earth compound aqueous solution and mixing it with a precipitant. In addition, regarding the production of monooxy carbonate in which carbonate and water are mixed and heated, a raw material containing a specific element can be prepared by coexisting a compound containing the specific element during heating. Furthermore, when calcining the abrasive raw material, a compound containing a specific element may be mixed before or after calcining!
[0022] 添加する特定元素の形態としては、金属状態のものの他、特定元素の酸化物、水 酸化物、蓚酸塩、塩化物、硝酸塩、硫酸塩等、種々の化合物の形態で添加すること 力できる。但し、完成された研摩材原料 (固形状)に混合する場合は、金属、酸化物、 水酸化物、炭酸塩、蓚酸塩等のように、塩素、窒素、硫黄、リンを含有しない化合物 が好ましい。塩素、窒素、硫黄、リンを含有していると、焙焼時の焼結の進行が不均 一となり粗大粒子が生成しやすくなり、研摩傷が発生しやすくなるためである。尚、特 定元素の化合物を混合する場合、水溶液状態で添加しても固体状のものを添加して も良い。尚、この混合する特定元素の形態については、以下の原料粉砕時又はその 前後での添加にお 、ても同様とすることができる。  [0022] The specific element to be added may be in the form of various compounds such as oxides, hydroxides, oxalates, chlorides, nitrates, sulfates, etc., in addition to those in the metallic state. it can. However, when mixed with the finished abrasive raw material (solid form), compounds containing no chlorine, nitrogen, sulfur, or phosphorus, such as metals, oxides, hydroxides, carbonates, and oxalates, are preferred. . If chlorine, nitrogen, sulfur, and phosphorus are contained, the progress of sintering during roasting becomes uneven, and coarse particles are likely to be generated, and abrasive scratches are likely to occur. When a compound of a specific element is mixed, it may be added in the form of an aqueous solution or a solid one. The form of the specific element to be mixed can be the same even when the material is pulverized or added before or after the raw material.
[0023] そして、調整後の研摩材原料は粉砕することが好ま 、 (原料粉砕工程)。この原 料粉砕は、乾式粉砕でもよいが、湿式粉砕が好ましい。粉砕は、粉砕後の粒径が、レ 一ザ一回折'散乱法による D 値で 0. 5〜5 mとなるようにするのが好ましぐ 0. 8 〜4 /ζ πιとなるようにすることがより好ましい。また、原料を湿式粉砕する場合、湿式媒 体ミルを使用することが好ましぐこのときの粉砕媒体としては特定元素を含有しな ヽ セラミックスボールを使用するのが好ま 、。特定元素を含有する粉砕媒体を使用す ると粉砕媒体からも特定元素が混入し、特定元素の含有量の制御が困難になるから である。尚、通常は高純度セリウム系研摩材の原料粉砕で特定元素を含む粉砕媒体 を使用した媒体ミルでの粉砕を行なうことはない。但し、本発明の場合は、特定元素 を含む粉砕媒体を使用して粉砕することによって特定元素を含有させることも可能で ある。例えば、スチールボールを用いた湿式媒体ミルにより粉砕することにより、研摩 材原料に鉄を含有させることも可能である。もっとも、この場合、特定元素の含有量を 制御し難 ヽと 、う問題がある。 [0023] Then, it is preferable to grind the adjusted abrasive raw material (raw material grinding step). This raw material pulverization may be dry pulverization, but wet pulverization is preferred. For pulverization, it is preferable that the particle diameter after pulverization is 0.5 to 5 m in terms of D value by laser-diffraction 'scattering method. It is more preferable to set it to ˜4 / ζ πι. In addition, when wet pulverizing the raw material, it is preferable to use a wet medium mill. As the pulverizing medium at this time, it is preferable to use a ceramic ball that does not contain a specific element. This is because if a grinding medium containing a specific element is used, the specific element is mixed from the grinding medium, and it becomes difficult to control the content of the specific element. Usually, high-purity cerium-based abrasives are not pulverized by a media mill using a pulverizing medium containing a specific element. However, in the case of the present invention, the specific element can be contained by grinding using a grinding medium containing the specific element. For example, it is possible to make the abrasive material contain iron by pulverizing it with a wet medium mill using steel balls. However, in this case, there is a problem that it is difficult to control the content of the specific element.
[0024] 原料が、モノォキシ炭酸塩又は水酸ィ匕炭酸塩の場合は、粉砕装置による粉砕を行 わなくても、 D 力 μ m以下になっている場合があり、機械的粉砕は必須ではない [0024] In the case where the raw material is monooxy carbonate or hydroxyaluminum carbonate, D force μm or less may be obtained even without pulverization by a pulverizer, and mechanical pulverization is not essential. Absent
50  50
力 目的とする D  Force Target D
50力 、さい場合には機械的粉砕を行うこともできる。但し、モノォキシ 炭酸塩又は水酸化炭酸塩は、製造時に、希土類化合物水溶液と炭酸系沈殿剤を混 合して炭酸塩を生成したスラリー又はそのスラリーをろ過した炭酸塩と水とを混合した スラリーを 60〜100°Cに加熱する処理 (浸漬加熱処理)を行っており、この処理により 粉砕されているとも言える。  In the case of 50 forces, mechanical grinding can also be performed. However, for the production of monooxy carbonate or hydroxide carbonate, a slurry in which an aqueous rare earth compound solution and a carbonate-based precipitant are mixed to produce carbonate, or a slurry in which carbonate and water obtained by filtering the slurry are mixed is used. It can be said that it is pulverized by this treatment (immersion heat treatment) that is heated to 60-100 ° C.
[0025] そして、上述のとおり、特定元素の添加は、処理対象物が原料の状態にある段階で 行うものであるから、原料製造の段階で特定元素を混合していなければ、この原料粉 砕時又はその前後において特定元素を混合することができる。このとき、原料と特定 元素化合物とを混合して粉砕しても良いし、また、希土類原料と特定元素を含む物 質と別々に粉砕してから、両者を混合しても良い。尚、浸漬加熱処理と粉砕装置によ る粉砕と併用する場合において、まず、浸漬加熱処理を行った後特定元素を添加し 、これについて装置による粉砕を行っても良い。  [0025] As described above, the addition of the specific element is performed at a stage where the object to be treated is in a raw material state. Therefore, if the specific element is not mixed at the stage of raw material production, the raw material is ground. Specific elements can be mixed at or before or after. At this time, the raw material and the specific element compound may be mixed and pulverized, or the rare earth raw material and the substance containing the specific element may be separately pulverized and then both may be mixed. In the case where the immersion heat treatment and the pulverization by the pulverization apparatus are used in combination, first, the specific element may be added after the immersion heat treatment, and the pulverization by the apparatus may be performed.
[0026] 原料粉砕後の研摩材原料については、特定元素の混合が完了している場合には 焙焼工程にて焙焼する。一方、焙焼工程前まで特定元素を混合していなければ、こ の際に特定元素を混合し、その後に焙焼する。焙焼前の特定元素を混合する研摩 材原料がスラリー状である場合には、これを混合後、ろ過、乾燥してから焙焼に供す るのが好ましい。尚、特定元素を水溶液で混合する場合であって、特定元素含有物 質が水溶性であり、混合後に沈澱剤の添加等の不溶ィ匕処理をしていない場合、全量 乾燥が必要である(この点、例えば、炭酸塩と水との混合スラリーに塩化鉄水溶液を 加えて浸漬加熱処理した場合には、条件によっては、大部分が水酸化鉄となり不溶 化する場合もある)。また、乾燥品は解砕して力も焙焼を行うのが好ましい。 [0026] The abrasive raw material after pulverization of the raw material is roasted in the roasting step when the mixing of the specific elements is completed. On the other hand, if the specific elements are not mixed before the roasting process, the specific elements are mixed at this time and then roasted. If the abrasive raw material to be mixed with the specific elements before roasting is in the form of a slurry, it is mixed, filtered, dried and then subjected to roasting It is preferable. When the specific element is mixed in an aqueous solution, the specific element-containing material is water-soluble, and if it has not been subjected to insoluble soot treatment such as the addition of a precipitant after mixing, the entire amount must be dried ( In this regard, for example, when an aqueous solution of iron chloride is added to a mixed slurry of carbonate and water and subjected to immersion heating treatment, depending on the conditions, most of the iron hydroxide may become iron hydroxide and become insoluble. Moreover, it is preferable that the dried product is crushed and roasted.
[0027] 焙焼工程の条件は、焙焼温度は、 400〜1150°C力 S好ましく、 700〜: L 100°C力 Sより 好ましぐ 800〜1050°Cが特に好ましい。低温すぎると研摩速度が低くなり、高温す ぎると研摩傷が多く発生する。但し、 400°C未満で焙焼したものは、研摩速度は低い ものの、研摩傷が少ないという点では十分好ましいものである。焙焼時間は、 0. 5〜 48時間が好ましい。 Fe等の特定元素を含有すると、焼結が促進され、 D は特定元  [0027] As the conditions for the roasting step, the roasting temperature is preferably 400 to 1150 ° C force S, and more preferably 700 to: L 100 ° C force S, more preferably 800 to 1050 ° C. If the temperature is too low, the polishing speed will be low, and if it is too high, many scratches will occur. However, roasted at less than 400 ° C is sufficiently preferable in that the polishing rate is low, but there are few abrasive scratches. The roasting time is preferably 0.5 to 48 hours. When a specific element such as Fe is contained, sintering is promoted, and D is a specific element.
50 素を含有しない研摩材よりも大きくなり研摩速度が大きくなるが、焼結が非常に均一 に進行するため粗大粒子の生成が抑制さ; W摩傷の発生が抑制されるものと考えら れる。  It is larger than the abrasive containing no elemental silicon and the polishing speed is increased, but the sintering progresses very uniformly, so the generation of coarse particles is suppressed; the generation of W abrasion is considered to be suppressed. .
[0028] そして、焙焼工程後、好ましくは粉砕後、乾式分級することにより研摩材を得ること ができる。また、焙焼品を湿式することでスラリー状の研摩材とすることもできる。この 場合、粉砕後に湿式分級することが好ましい。  [0028] Then, after the roasting step, preferably after grinding, an abrasive can be obtained by dry classification. Moreover, it can also be set as a slurry-like abrasive by wet-baking a roasted product. In this case, it is preferable to perform wet classification after pulverization.
図面の簡単な説明  Brief Description of Drawings
[0029] [図 1]本実施形態におけるセリウム系研摩材の製造工程の概略を示す図。  FIG. 1 is a diagram showing an outline of a manufacturing process of a cerium-based abrasive in the present embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 以下、本発明の好適な実施形態を説明する。本実施形態では、炭酸セリウムを出 発原料として研摩材原料を調整し、これを浸漬加熱処理及び湿式粉砕した後、焙焼 して適宜の後処理を行いセリウム系研摩材を製造した。本実施形態では、各工程に おける条件を種々変更しつつ複数の研摩材を製造している。図 1は、本実施形態に けるセリウム系研摩材の製造工程を概略示すものである力 以下、図 1を参照しつつ 説明する。 [0030] Hereinafter, preferred embodiments of the present invention will be described. In this embodiment, an abrasive raw material was prepared using cerium carbonate as a starting raw material, and this was subjected to immersion heating treatment and wet pulverization, followed by roasting and appropriate post-treatment to produce a cerium-based abrasive. In this embodiment, a plurality of abrasives are manufactured while variously changing the conditions in each step. FIG. 1 is a force schematically showing a manufacturing process of a cerium-based abrasive according to this embodiment. Hereinafter, description will be given with reference to FIG.
[0031] 研摩材原料製诰工程 [0031] Abrasive raw material making process
出発原料として、セリウム濃度 (CeO ZTREO)の異なる種々の中国産炭酸セリウ  Various Chinese cerium carbonates with different cerium concentrations (CeO ZTREO) as starting materials
2  2
ムを用いた。セリウム含有量は、比較例 9で 85質量%、実施例 21で 90質量%、実施 例 22では 95質量%、実施例 23では 99質量%、実施例 24では 99. 99質量%、実 施例 25では 99. 999質量0 /0、その他では 99. 9質量0 /。であった。まず、炭酸セリウム を塩酸で溶解してろ過し、純水で希釈して TREO50gZLの希土類ィ匕合物溶液とし た。そして、これに沈澱剤として 50gZLの炭酸水素アンモ-ゥム水溶液をィ匕学量論 組成の 1. 1倍量添加し、沈澱を生成した。そして、沈澱生成後の溶液をフィルタープ レスでろ過し、通水洗浄して炭酸セリウムを得た。尚、この研摩材原料製造において 、後述の実施例 32でのみ、沈澱剤添加前に特定元素化合物として塩ィ匕鉄 (FeCl ) Was used. The cerium content was 85% by mass in Comparative Example 9 and 90% by mass in Example 21. Example 95 wt% in 22, 99 wt% in Example 23, Example 24 In 99. 99 wt%, actual施例25, 99.999 mass 0/0, 99. Elsewhere 9 mass 0 /. Met. First, cerium carbonate was dissolved in hydrochloric acid, filtered, and diluted with pure water to obtain a rare earth compound solution of TREO50gZL. To this, 50gZL of ammonium bicarbonate aqueous solution as a precipitant was added 1.1 times the stoichiometric composition to form a precipitate. The solution after precipitation was filtered with a filter press and washed with water to obtain cerium carbonate. In addition, in the production of this abrasive material, only in Example 32, which will be described later, before the addition of the precipitating agent, salted pig iron (FeCl 3)
3 水溶液を FeZTREOで 0. 20質量%となるように添加して炭酸セリウムを得た。また 、比較例 8では、出発原料である中国産炭酸セリウム (CeO /TREO = 99. 9質量  3 Aqueous solution was added with FeZTREO to 0.20% by mass to obtain cerium carbonate. Further, in Comparative Example 8, the starting raw material is Chinese cerium carbonate (CeO / TREO = 99.9 mass)
2  2
%)をそのまま浸漬加熱処理に供した。  %) Was subjected to immersion heat treatment as it was.
[0032] 次に、浸漬加熱処理を行!ヽ、研摩材原料であるモノォキシ炭酸セリウムを含むスラ リーを得た。具体的には、炭酸セリウムと純粋とを質量比 1 : 2で混合してスラリーとし、 これを 90°Cで 5時間加熱処理することによりモノォキシ炭酸セリウムを含むスラリーを 得た。  [0032] Next, immersion heat treatment was performed to obtain a slurry containing cerium monooxycarbonate, which is an abrasive material. Specifically, cerium carbonate and pure were mixed at a mass ratio of 1: 2 to obtain a slurry, which was heat-treated at 90 ° C. for 5 hours to obtain a slurry containing cerium monooxycarbonate.
[0033] 但し、実施例 27、 28は浸漬加熱処理を行って ヽな 、ためモノォキシ炭酸セリウム にはなっておらず、主に炭酸セリウムである(実施例 27は仮焼前)。尚、実施例 26は 浸漬加熱処理後のモノォキシ炭酸セリウムを含むスラリーをろ過後、又、実施例 27は 炭酸セリウムを浸漬加熱処理しな 、で、 500°Cにて 2時間の仮焼を行った。  [0033] However, Examples 27 and 28 must be immersed and heat-treated, and thus are not monooxycerium carbonate, but mainly cerium carbonate (Example 27 is before calcination). In Example 26, the slurry containing cerium monooxy carbonate after immersion heat treatment was filtered, and in Example 27, calcination was performed at 500 ° C. for 2 hours without immersion heat treatment of cerium carbonate. It was.
[0034] 特定 ^素添加及び原料粉砕!程  [0034] Specific ^ element addition and raw material grinding!
研摩材原料に特定元素含有化合物を混合し、原料粉砕を行った。但し、比較例 1 〜3、 8、 10では特定元素の添カ卩は行っていない。また、実施例 32では原料製造時 に特定元素を含有させたのでここでは添加していない。特定元素含有化合物は、実 施例 26、 27、 28では、各々原料であるモノォキシ炭酸セリウム仮焼品、炭酸セリウム 仮焼品、炭酸セリウムと純水とを質量比 1 : 2で混合したスラリーに、添加した。それ以 外に関しては、添加しなカゝつた場合を除いて、浸漬加熱処理後のスラリーに添加した  The compound containing the specific element was mixed with the abrasive raw material, and the raw material was pulverized. However, in Comparative Examples 1 to 3, 8, and 10, no specific element was added. Further, in Example 32, a specific element was contained at the time of raw material production, so it was not added here. In Examples 26, 27, and 28, the specific element-containing compound is a monooxycerium cerium carbonate calcined product, a cerium carbonate calcined product, or a slurry in which cerium carbonate and pure water are mixed at a mass ratio of 1: 2. Added. For other cases, it was added to the slurry after the immersion heat treatment except when it was not added.
[0035] 特定元素は鉄を中心に種々のものを添カ卩した。また、鉄の添カ卩に関しては、 Fe O [0035] Various specific elements, mainly iron, were added. In addition, regarding iron additives, Fe O
2 3 twenty three
、 Fe O、 FeO (OH)ゝ FeC O、 FeCl、 FeCl +アンモニア水、 FeClの各種化合 物を添加した。また、添加濃度も種々変更した。 , Fe O, FeO (OH) ゝ FeC O, FeCl, FeCl + ammonia water, various combinations of FeCl The thing was added. Various addition concentrations were also changed.
[0036] 原料粉砕工程では、研摩材原料スラリー (原料:水 = 1 : 2)を湿式粉砕ミル中で、特 定元素を含まないセラミックスボールを用いて粉砕した。粉砕後の研摩材原料は、ろ 過及び乾燥(120°Cにて 48時間)した後、ロールクラッシャー(セラミックスロール使用 )にて解砕した。尚、粉砕後の原料 (スラリー)について、一部の実施例(実施例 36、 3 7、比較例 11)で、 ImolZLのフッ化水素酸を添加することでフッ素添加を行なって いる。更に、実施例 34及び 35では、粉砕処理後の原料スラリーをろ過せずに全量乾 燥した。尚、実施例 33及びフッ素添加を行った実施例(実施例 36、 37、比較例 11) では、ろ過後に水洗も行った。  In the raw material pulverization step, the abrasive raw material slurry (raw material: water = 1: 2) was pulverized in a wet pulverization mill using ceramic balls containing no specific element. The ground abrasive material after pulverization was filtered and dried (48 hours at 120 ° C) and then crushed by a roll crusher (using ceramic roll). The raw material (slurry) after pulverization is fluorine-added by adding ImolZL hydrofluoric acid in some Examples (Examples 36 and 37, Comparative Example 11). Furthermore, in Examples 34 and 35, the whole raw material slurry after the pulverization treatment was dried without filtration. In Example 33 and the examples in which fluorine was added (Examples 36 and 37, Comparative Example 11), washing with water was also performed after filtration.
[0037] 焙焼工程  [0037] Roasting process
焙焼工程では、得られた粉砕品を 400〜1200°Cの各種温度で、 12時間加熱した 。焙焼後の焙焼品は、サンプルミル (不二バウダル株式会社製)にて粉砕し、更に、 エルボージェット (株式会社マツボー製)で分級処理した。  In the roasting process, the obtained pulverized product was heated at various temperatures of 400 to 1200 ° C. for 12 hours. The roasted product after roasting was pulverized by a sample mill (Fuji Baudal Co., Ltd.) and further classified by Elbow Jet (Matsubo Co., Ltd.).
[0038] 以上の工程によりセリウム系研摩材を製造した。この工程で製造した各種研摩材の 内容について、表 1〜表 3にまとめた。  [0038] A cerium-based abrasive was produced by the above process. Tables 1 to 3 summarize the contents of the various abrasives produced in this process.
[0039] [表 1] [0039] [Table 1]
特定元素 Specific elements
浸漬 F添加 焙焼 添 添加 添加量 仮 種 加熱 F/TREO  Immersion F addition Roasting Addition Addition amount Temporary seed heating F / TREO
加 方法 元素/ TREO 焼 類 * 1 処理 (質量 W (°C) 種 (質量%)  Method Element / TREO calcination * 1 Treatment (mass W (° C) seed (mass%)
比較例 1 950 比較例 2 X X X X 〇 X X 400 比較例 3 1050 比較例 1 X X X X Comparative Example 1 950 Comparative Example 2 X X X X ○ X X 400 Comparative Example 3 1050 Comparative Example 1 X X X X
比較例 4 0.005 Comparative Example 4 0.005
実施例 1 0.01 Example 1 0.01
実施例 2 0.02 Example 2 0.02
実施例 3 0.03 Example 3 0.03
実施例 4 0.05  Example 4 0.05
実施例 5 0. 10  Example 5 0. 10
O X X 950 実施例 6 Fe Fe203 S 0.20 OXX 950 Example 6 Fe Fe 2 0 3 S 0.20
実施例 7 0.30  Example 7 0.30
実施例 8 0.40  Example 8 0.40
実施例 9 0.50  Example 9 0.50
実施例 10 1.0 Example 10 1.0
実施例 11 2.0 Example 11 2.0
比較例 5 2.5  Comparative Example 5 2.5
比較例 6 350 実施例 12 400 実施例 13 550 実施例 14 700 実施例 15 800 実施例 16 900  Comparative Example 6 350 Example 12 400 Example 13 550 Example 14 700 Example 15 800 Example 16 900
Fe Fe203 S 0. 20 〇 X X 実施例 6 950 実施例 17 1000 実施例 18 1050 実施例 19 1100 実施例 20 1150 比較例 7 1200 比較例 8 中国産炭酸セリウム * 2 Fe Fe 2 0 3 S 0. 20 ○ XX Example 6 950 Example 17 1000 Example 18 1050 Example 19 1100 Example 20 1150 Comparative Example 7 1200 Comparative Example 8 Cerium carbonate from China * 2
比較例 1 X X X X O X X 950 実施例 6 Fe Fe203 S 0.20 s:原料スラリーと特定元素含有物質 (固形)を混合して粉砕 Comparative Example 1 XXXXOXX 950 Example 6 Fe Fe 2 0 3 S 0.20 s: Mixing and grinding raw material slurry and specific element-containing substance (solid)
X :添加せず  X: Not added
中国産炭酸セリウムを溶解 ·沈澱生成処理せずそのまま使用。 2] 特定元素 Dissolve cerium carbonate from China. 2] Specific elements
F添加 焙焼 添 添カロ 添加置 浸漬加熱  F addition Roasting Addition Caro addition Addition Immersion heating
仮 焼 F/TREO  Calcination F / TREO
種 類 加 方法 元素/ TREO 処理  Type Addition Method Element / TREO treatment
* 1 (質 ¾%) (°C) 種 (質量 %)  * 1 (Quality ¾%) (° C) Species (mass%)
比較例 9 Comparative Example 9
実施例 21 Example 21
実施例 22 Example 22
実施例 23 Fe Fe203 S 0. 20 o X X 950 実施例 6 Example 23 Fe Fe 2 0 3 S 0. 20 o XX 950 Example 6
実施例 24 Example 24
実施例 25 Example 25
実施例 26 o 〇 Example 26 o
実施例 6  Example 6
Fe Fe203 S 0. 20 o X Fe Fe 2 0 3 S 0. 20 o X
X 950 実施例 27 X O  X 950 Example 27 X O
実施例 28 X X Example 28 X X
実施例 6  Example 6
Fe203 s Fe 2 0 3 s
比較例 1 0 M Comparative Example 1 0 M
実施例 29 Fe304 s Example 29 Fe 3 0 4 s
実施例 30 FeO(OH) s Example 30 FeO (OH) s
実施例 31 Fe FeC204 s 0. 20 〇* 3 Example 31 Fe FeC 2 0 4 s 0. 20 ○ * 3
X * 3 X * 3 950*3 実施例 32 c X * 3 X * 3 950 * 3 Example 32 c
実施例 33 FeCI3 s, Example 33 FeCI 3 s
実施例 34 し Example 34
実施例 35 FeCI2Example 35 FeCI 2
実施例 21 X Example 21 X
実施例 36 0. 4 Example 36 0.4
Fe Fe203 s 0. 20 O 950 実施例 37 1 . 0 Fe Fe 2 0 3 s 0. 20 O 950 Example 37 1.0
比較例" 2. 0 Comparative example "2.0
* 1 S:原料スラリーと特定元素含有物質 (固形)を混合して粉砕  * 1 S: Mixing and grinding raw material slurry and specific element-containing substance (solid)
:比較例 1の研摩材と Fe203を混合して製造。 : Prepared by mixing abrasive and Fe 2 0 3 in Comparative Example 1.
C:原料液に FeCI3を加えた液に炭酸水素アンモニゥムを加え C: Ammonium hydrogen carbonate is added to the solution obtained by adding FeCI 3 to the raw material solution
炭酸塩を生成し、ろ過 ·水洗後、スラリー化して粉砕  Carbonate is produced, filtered, washed with water, slurried and pulverized
S' :原料スラリーと FeCI3とアンモニア水を混合して粉砕 S ': Mix raw material slurry, FeCI 3 and ammonia water and grind
L:原料スラリーと FeCI3を混合して粉砕、粉砕後全量乾燥 L: Mix and pulverize the raw material slurry and FeCI 3
* 3 比較例 1 0は(比較例 1の研磨材と Fe203を混合)は、 * 3 Comparative Example 10 (mixing abrasive of Comparative Example 1 and Fe 2 0 3 ) is
比較例 1製造時の条件で、混合後は実施せず。  Comparative Example 1 Not manufactured after mixing under the conditions of manufacturing.
3] 特定元素 3] Specific elements
;受漬 F添加 培焼  : Received pickled F added
添 添加 添加量 仮  Addition Addition Amount Temporary
種 加熱 F/TRE0 '皿  Seed heating F / TRE0 'dish
加 方法 元素/ TREO 焼  Adding method Element / TREO firing
類 * 1 処理 (質量 %) (°C)  * 1 Treatment (mass%) (° C)
種 (質量 %)  Species (mass%)
比較例 1 X X X X  Comparative Example 1 X X X X
実施例 38 Ti Ti02 Example 38 Ti Ti0 2
実施例 39 V v2o5 Example 39 V v 2 o 5
実施例 40 Cr Cr203 Example 40 Cr Cr 2 0 3
実施例 41 Mn Mn02 Example 41 Mn Mn0 2
実施例 6 Fe Fe203 Example 6 Fe Fe 2 0 3
実施例 42 Co Co304 Example 42 Co Co 3 0 4
実施例 43 Ni NiO  Example 43 Ni NiO
実施例 44 Cu CuO  Example 44 Cu CuO
実施例 45 Zn ZnO  Example 45 Zn ZnO
〇 X X 950 実施例 46 Nb Nb205 S 0. 20 〇 XX 950 Example 46 Nb Nb 2 0 5 S 0. 20
実施例 47 Mo M0O3  Example 47 Mo M0O3
実施例 48 Ag Ag20 Example 48 Ag Ag 2 0
実施例 49 Ta Ta2Os Example 49 Ta Ta 2 O s
実施例 50 W W03 Example 50 W W0 3
比較例 1 2 Al Al203 Comparative Example 1 2 Al Al 2 0 3
比較例 1 3 Ga Ga203 Comparative Example 1 3 Ga Ga 2 0 3
比較例 1 4 Ge Ge02 Comparative Example 1 4 Ge Ge0 2
比較例 1 5 In ln203 Comparative Example 1 5 In ln 2 0 3
比較例 1 6 Sn Sn02 Comparative Example 1 6 Sn Sn0 2
* 1 S:原料スラリーと特定元素含有物質 (固形)を混合して粉砕 * 1 S: Mixing and grinding raw material slurry and specific element-containing substance (solid)
[0042] 製造した各種研摩材については、研摩粒子の D を、レーザー回折 ·散乱法粒子 [0042] For the various abrasives produced, the D of the abrasive particles is replaced by the laser diffraction / scattering method particles.
50  50
径分布測定装置( (株)堀場製作所製: LA- 920)を使用して粒度分布を測定するこ とにより、体積基準の積算分率における 50質量%径を求めることにより行った。また、 X線回折分析 (Cu— Κ α線)にて分析して、 CeOの最大ピークの半値幅 2 Θを求め  The particle size distribution was measured using a diameter distribution measuring device (Horiba, Ltd .: LA-920) to obtain a 50 mass% diameter in the volume-based integrated fraction. In addition, by analyzing by X-ray diffraction analysis (Cu- Κ α-ray), the half-value width 2 Θ of the maximum peak of CeO was obtained.
1 2  1 2
た。更に、 BET法比表面積の測定を、 JIS R 1626— 1996 (ファインセラミックス粉 体の気体吸着 BET法による比表面積の測定方法)の「6. 2 流動法 の(3. 5)—点 法」に準拠して測定を行った。このとき、キャリアガスであるヘリウムと、吸着質ガスで ある窒素の混合ガスを使用した。  It was. Furthermore, the measurement of the specific surface area of the BET method has been changed to “6.2 (3.5) -point method of the flow method” in JIS R 1626-1996 (Method of measuring the specific surface area of fine ceramic powders by the gas adsorption BET method). Measurements were performed in compliance. At this time, a mixed gas of helium as a carrier gas and nitrogen as an adsorbate gas was used.
[0043] また、本実施形態では、粗大粒子 (ストークス径 5 μ m以上の粒子)の含有量も測定 した。この測定は、まず、測定用の容器に、粉末状の測定対象物 200gを入れると共 に、 0. 1質量%へキサメタリン酸ナトリウム水溶液を容器の上部漂線まで入れて十分 に混合する。次に指定時間静置 '沈降させる。指定時間経過後、上部標線から下部 標線の間のスラリーを抜き出す。スラリーを抜き出し終えると、また新たな 0. 1質量0 /0 へキサメタリン酸ナトリウム水溶液を容器の上部標線まで注ぎ足して十分混合し、指 定時間、静置 '沈降させた後、上部標線力 下部標線の間のスラリーを抜き出す。こ のように、一連の操作 (具体的には、へキサメタリン酸ナトリウム水溶液の注液、混合、 静置'沈降、スラリー抜き出しカゝらなる一連の操作)を繰り返した (本実施形態では更 に 6回 (都合 8回)繰り返した)後、最終的に、容器の下部標線以下に残留した粒子を 105°Cにて十分乾燥する。このようにして得られた乾燥残留分の質量 A (g)を精密天 秤にて測定した。そして、ストークス径 5 μ m以上の粗大粒子の含有量 S (質量 ppm) を、算出式 (S = (A/200) X 1000000)を用いて算出した。指定時間 (静置'沈降 時間)は、上部標線 (スラリー上面)の位置にあるストークス径 5 μ mの粒子が下部標 線まで沈降するのに要する時間であり、上部標線と下部標線の距離をスト一タスの式 力 算出される沈降速度で割ることにより算出される。上記一連の操作を 1回だけし か行わないとすると、下部標線以下の部分にストークス径 5 m以下の粒子が多く混 入してしまうが、多数回繰り返すと混入量が少なくなる。これらの操作は室温約 25°C の部屋にて、約 25°Cの 0. 1質量%へキサメタリン酸水溶液を使用して実施した。 [0043] In this embodiment, the content of coarse particles (particles having a Stokes diameter of 5 µm or more) was also measured. This measurement is performed by first placing 200 g of a powdery measurement object in a measurement container. Then, add 0.1 mass% sodium hexametaphosphate aqueous solution to the upper stray line of the container and mix well. Next, let it settle for a specified time. After the specified time has elapsed, the slurry between the upper and lower benchmarks is extracted. After finishing withdrawn slurry and thoroughly mixed by adding poured Kisametarin aqueous solution of sodium to a new 0.1 mass 0/0 to the upper marked line of the container, specified time, allowed to stand 'After settling, the upper marked line Force Pull the slurry between the bottom marks. In this way, a series of operations (specifically, a series of operations including injection, mixing, standing, settling, and slurry extraction) of sodium hexametaphosphate aqueous solution was repeated (in this embodiment, further (Repeat 6 times (for convenience 8 times)), and finally dry the particles remaining below the lower marked line of the container at 105 ° C. The mass A (g) of the dry residue thus obtained was measured with a precision balance. Then, the content S (mass ppm) of coarse particles having a Stokes diameter of 5 μm or more was calculated using a calculation formula (S = (A / 200) × 1000000). The designated time (stationary 'sedimentation time) is the time required for the particles with a Stokes diameter of 5 μm at the position of the upper marked line (the upper surface of the slurry) to settle to the lower marked line. This is calculated by dividing the distance by the settling velocity calculated by the stochastic force. If the series of operations described above is performed only once, many particles with a Stokes diameter of 5 m or less will be mixed in the portion below the lower marked line, but the amount of contamination will decrease if repeated many times. These operations were carried out in a room at a room temperature of about 25 ° C. using a 0.1% by mass hexametaphosphoric acid aqueous solution at about 25 ° C.
[0044] 以上、研摩材の各物性を測定した後、ガラス基板を実際に研摩する研摩試験を行 つた。研摩試験については、研摩試験機 (HSP— 21型、台東精機 (株)製)を用意し た。この研摩試験機は、スラリー状の研摩材を研摩対象面に供給しながら、当該研摩 対象面を研摩パッドで研摩するものである。研摩試験に当たっては、研摩材と純水と を混合して TREOlOOgZLのスラリー状の研摩材を 20L調製した。そして、研摩試 験では、スラリー状の研摩材を 5リットル Z分の割合で供給することとし、研摩材を循 環使用した。尚、研摩対象物は 65mm φの平面パネル用ガラスとした。また、研摩パ ッドはポリウレタン製のものを使用した。研摩面に対する研摩パッドの圧力は 9. 8kPa (lOOg/cm2)とし、研摩試験機の回転速度は lOOrpmに設定し、 30分間研摩した。 [0044] As described above, after each physical property of the abrasive was measured, a polishing test for actually polishing the glass substrate was performed. For the polishing test, a polishing tester (HSP-21 type, manufactured by Taito Seiki Co., Ltd.) was prepared. This polishing tester polishes the polishing target surface with a polishing pad while supplying slurry-like polishing material to the polishing target surface. In the polishing test, 20 liters of TREOlOOgZL slurry was prepared by mixing abrasive and pure water. In the polishing test, slurry-like abrasive was supplied at a rate of 5 liters Z, and the abrasive was recycled. The object to be polished was a flat panel glass with a diameter of 65 mm. The polishing pad was made of polyurethane. The pressure of the polishing pad against the polishing surface was 9.8 kPa (lOOg / cm 2 ), the rotation speed of the polishing tester was set to lOO rpm, and polishing was performed for 30 minutes.
[0045] そして、研摩特性の評価は、まず、研摩前後のガラス重量を測定して研摩によるガ ラス重量の減少量を求め、この値に基づき研摩値を求めた。本研摩試験では、この 研摩値を用いて研摩速度を評価した。尚、ここでは、比較例 1によって得られた研摩 材の研摩値を基準(100)とした。 [0045] For evaluation of the polishing characteristics, first, the glass weight before and after polishing was measured to determine the amount of glass weight reduction by polishing, and the polishing value was determined based on this value. In this polishing test, this The polishing rate was evaluated using the polishing value. Here, the polishing value of the polishing material obtained in Comparative Example 1 was used as the reference (100).
[0046] そして、研摩により得られたガラスの被研摩面を純水で洗浄し、無塵状態で乾燥さ せた後、研摩精度 (傷発生の有無)の評価を行った。この評価は、研摩後のガラス表 面を観察し、傷の大きさと数を数え、 100点満点からの減点法にて評価した。このとき 、大きい傷は減点を大きくした。評価結果に関しては、 95点以上 100点以下を「◎」 ( 研摩材として非常に好適)とし、 90点以上 95点未満を「〇」(研摩材として好適)とし、 85点以上 90点未満を「△」(研摩材として使用可)とし、更に、 85点未満を「X」(研 摩材として使用不可)とした。  [0046] Then, the polished surface of the glass obtained by polishing was washed with pure water and dried in a dust-free state, and then the polishing accuracy (whether or not scratches were generated) was evaluated. This evaluation was made by observing the glass surface after polishing, counting the size and number of scratches, and evaluating by a deduction method from a maximum of 100 points. At this time, a large wound increased the deduction. Regarding the evaluation results, a score of 95 or more and 100 or less is “◎” (very suitable as an abrasive), a score of 90 or more and less than 95 is “◯” (suitable as an abrasive), and 85 or more and less than 90 points. “△” (can be used as an abrasive) and “X” (cannot be used as an abrasive) below 85 points.
[0047] 製造した各種研摩材の物性、及び、研摩特性につ!、て、表 4〜表 6にその結果を 示す。  [0047] Tables 4 to 6 show the physical properties and polishing characteristics of the various abrasives produced.
[0048] [表 4] [0048] [Table 4]
組 成 物'生等 研庫評価 特定元素 CeOz BET法 XRD 粗大粒子 Composition 'raw, etc.Laboratory evaluation Specified element CeO z BET method XRD Coarse particles
TREO F D50 TREO FD 50
比表面積 半値幅 含有量 研庫 研摩 含有量"  Specific surface area Half-width content Kengo polishing content
種類 (質量 %) /TREO (質量 W (/im) (2Θ) (質量 虔 傷 Type (mass%) / TREO (mass W (/ im) (2Θ) (mass 虔 scratch
(質量 %) (KS%) (mVg) C ) ppm) (Mass%) (KS%) (mVg) C) ppm)
比較例 1 99.5 6.7 0.71 0.52 5800 100 厶 比較例 2 X X 87.5 99.9 <0. 1 27. 2 0.54 1.45 1500 25 厶 比較例 3 99.7 2.4 1.50 0. 12 16000 185 X 比較例 1 X X 99.5 6.7 0.71 0.52 5800 100 厶 比較例 4 0.005 99.5 6.5 0.72 0.50 5300 105 Δ 実施例 1 0.01 99.5 6.0 0.78 0.45 4700 158 O 実施例 2 0.02 99. 5 5.4 0.81 0.41 3800 187 O 実施例 3 0.03 99.4 4.9 0.86 0.37 3100 214 O 実施例 4 0.05 99. 5 4.5 0.90 0.34 2000 252 ◎ 実施例 5 0. 10 99.4 4.2 0.94 0.30 1300 278 Comparative Example 1 99.5 6.7 0.71 0.52 5800 100 厶 Comparative Example 2 XX 87.5 99.9 <0. 1 27. 2 0.54 1.45 1500 25 厶 Comparative Example 3 99.7 2.4 1.50 0. 12 16000 185 X Comparative Example 1 XX 99.5 6.7 0.71 0.52 5800 100厶 Comparative example 4 0.005 99.5 6.5 0.72 0.50 5300 105 Δ Example 1 0.01 99.5 6.0 0.78 0.45 4700 158 O Example 2 0.02 99.5 5.4 0.81 0.41 3800 187 O Example 3 0.03 99.4 4.9 0.86 0.37 3100 214 O Example 4 0.05 99. 5 4.5 0.90 0.34 2000 252 ◎ Example 5 0. 10 99.4 4.2 0.94 0.30 1300 278
99.9 <0. 1 ◎ 実施例 6 Fe 0.20 99.3 3.8 1.01 0.28 730 286 ◎ 実施例 7 0.30 99.2 3.4 1. 11 0.26 750 296 ◎ 実施例 8 0.40 99.0 3. 1 1.24 0.24 1700 314 © 実施例 9 0.49 98.9 2.8 1.35 0.23 2800 320 ◎ 実施例 10 0.98 98.2 2.4 1.47 0.20 3700 325 〇 実施例 11 1.9 96.8 2.2 1.57 0. 15 4800 329 o 比較例 5 2.4 96.2 1.9 1.69 0. 11 11000 331 X 比較例 6 0. 17 86. 1 13.7 0.60 1.07 <100 98 ◎ 実施例 12 0. 18 91.3 9.8 0.65 0.80 170 151 ◎ 実施例 13 0. 19 96.5 7.9 0.73 0.67 290 182 ◎ 実施例 14 0.20 97.7 6.7 0.80 0.58 470 215 ◎ 実施例 15 0. 19 98.8 5.6 0.86 0.50 550 233 © 実施例 16 0.20 99. 1 4.7 0.93 0.40 630 258  99.9 <0. 1 ◎ Example 6 Fe 0.20 99.3 3.8 1.01 0.28 730 286 ◎ Example 7 0.30 99.2 3.4 1. 11 0.26 750 296 ◎ Example 8 0.40 99.0 3. 1 1.24 0.24 1700 314 © Example 9 0.49 98.9 2.8 1.35 0.23 2800 320 ◎ Example 10 0.98 98.2 2.4 1.47 0.20 3700 325 〇 Example 11 1.9 96.8 2.2 1.57 0. 15 4800 329 o Comparative Example 5 2.4 96.2 1.9 1.69 0. 11 11000 331 X Comparative Example 6 0. 17 86. 1 13.7 0.60 1.07 <100 98 ◎ Example 12 0. 18 91.3 9.8 0.65 0.80 170 151 ◎ Example 13 0. 19 96.5 7.9 0.73 0.67 290 182 ◎ Example 14 0.20 97.7 6.7 0.80 0.58 470 215 ◎ Example 15 0. 19 98.8 5.6 0.86 0.50 550 233 © Example 16 0.20 99. 1 4.7 0.93 0.40 630 258
Fe 99.9 <0. 1 ◎ 実施例 6 0.20 99.3 3.8 1.01 0.28 730 286 ◎ 実施例 17 0.20 99.4 2.5 1. 38 0.21 1600 305 ◎ 実施例 18 0.20 99. 5 1. 1 1. 82 0. 12 3500 322 ◎ 実施例 19 0. 19 99.5 0.88 2. 38 0. 11 4200 334 o 実施例 20 0.20 99.6 0.63 2.76 0. 10 5000 340 〇 比較例 7 0. 19 99.7 0. 50 3.52 0.06 9600 352 厶 比較例 8 99.4 6.5 0.73 0.52 6300 96 Δ  Fe 99.9 <0. 1 ◎ Example 6 0.20 99.3 3.8 1.01 0.28 730 286 ◎ Example 17 0.20 99.4 2.5 1. 38 0.21 1600 305 ◎ Example 18 0.20 99. 5 1. 1 1. 82 0. 12 3500 322 ◎ Example 19 0. 19 99.5 0.88 2. 38 0. 11 4200 334 o Example 20 0.20 99.6 0.63 2.76 0. 10 5000 340 ○ Comparative Example 7 0. 19 99.7 0. 50 3.52 0.06 9600 352 厶 Comparative Example 8 99.4 6.5 0.73 0.52 6300 96 Δ
X X  X X
比較例 1 99.5 99. θ <0. 1 6.7 0.71 0.52 5800 100 厶 実施例 6 Fe 0. 20 99.3 3.8 1.01 0.28 730 286 ◎ Comparative Example 1 99.5 99. θ <0. 1 6.7 0.71 0.52 5800 100 厶 Example 6 Fe 0. 20 99.3 3.8 1.01 0.28 730 286 ◎
* 1 :特定元素を添加せず 5] ί 成 物'生等 研庫評価 特定元 CeOz XRD * 1: No specific elements added 5] ί 成 物 ′ 生 等 Laboratory Evaluation Specified Source CeO z XRD
BET法 粗大粒子  BET method Coarse particles
I kEO F D50 半値幅 含有量 研庫 研摩 種 含有量 /TREO 比表面積 I kEO FD 50 Half width Content Kengo Abrasive Species Content / TREO Specific surface area
(質量 %) (質置 %) (2θ) (質量 速度 傷 類 (質量 %) (質量 %) (mVg) ( m)  (Mass%) (storage%) (2θ) (mass velocity wounds (mass%) (mass%) (mVg) (m)
(° ) ppm)  (°) ppm)
比較例 9 0. 20 99. 2 85 5. 5 0. 82 0. 53 3200 121 〇 実施例 21 0. 20 99. 3 90 4. 7 0. 88 0. 45 2400 195 ◎ 実施例 22 0. 19 99. 2 95 4. 3 0. 92 0. 37 1500 242 © 実施例 23 Fe 0. 20 99. 4 99 <0. 1 4. 0 0. 97 0. 30 1100 280 ◎ 実施例 6 0. 20 gg. 3 99. 9 3. 8 1. 01 0. 28 730 286 ◎ 実施例 24 0. 19 gg. 4 99.99 3. 9 0. 99 0. 29 750 291 © 実施例 25 0. 20 99. 3 99.999 3. 7 1. 05 0. 28 730 288 ◎ 実施例 26 0. 20 99. 3 3. 4 1. 15 0. 25 3500 325 〇 実施例 6 0. 20 gg. 3 3. 8 1. 01 0. 28 730 286 Comparative Example 9 0. 20 99. 2 85 5.5 5 0. 82 0. 53 3200 121 ○ Example 21 0. 20 99. 3 90 4. 7 0. 88 0. 45 2400 195 ◎ Example 22 0. 19 99. 2 95 4. 3 0. 92 0. 37 1500 242 © Example 23 Fe 0. 20 99. 4 99 <0. 1 4. 0 0. 97 0. 30 1100 280 ◎ Example 6 0. 20 gg 3 99. 9 3. 8 1. 01 0. 28 730 286 ◎ Example 24 0. 19 gg. 4 99.99 3. 9 0. 99 0. 29 750 291 © Example 25 0. 20 99. 3 99.999 3 7 1. 05 0. 28 730 288 ◎ Example 26 0. 20 99. 3 3. 4 1. 15 0. 25 3500 325 〇 Example 6 0. 20 gg. 3 3. 8 1. 01 0. 28 730 286
Fe 99. 9 <0. 1 © 実施例 27 0. 19 99. 4 3. 5 1. 12 0. 24 3800 309 O 実施例 28 0. 20 99. 3 3. 8 1. 08 0. 29 4700 279 o 実施例 6 0. 20 99. 3 3. 8 1. 01 0. 28 730 286 © 比較例 10 0. 20 gg. 3 4. 0 0. 30 5800 105 X 実施例 29 0. 20 99. 3 3. 9 1. 00 0. 29 810 295 © 実施例 30 0. 19 99. 2 3. 8 1. 02 0. 28 670 301 © 実施例 31 Fe 0. 20 gg. 3 99. 9 <0. 1 3. 7 0. 98 0. 28 850 292 実施例 32 0. 20 gg. 3 3. 7 1. 04 0. 27 <100 296 p ◎ 実施例 33 0. 18 99. 3 3. 9 0. 99 0. 29 520 300 ◎ 実施例 34 0. 19 99. 2 3. 5 1. 0 008 0. 27 3300 258 o 実施例 35 0. 19 99. 2 3. 6 1. 06 0. 29 3500 249 o 実施例 21 0. 20 99. 3 ぐ 0. 1 4. 7 0. 88 0. 45 2400 195 © 実施例 36 0. 20 99. 1 0. 18 4. 5 0. 92 0. 42 3000 210  Fe 99. 9 <0. 1 © Example 27 0. 19 99. 4 3. 5 1. 12 0. 24 3800 309 O Example 28 0. 20 99. 3 3. 8 1. 08 0. 29 4700 279 o Example 6 0. 20 99. 3 3. 8 1. 01 0. 28 730 286 © Comparative Example 10 0. 20 gg. 3 4. 0 0. 30 5800 105 X Example 29 0. 20 99. 3 3 9 1. 00 0. 29 810 295 © Example 30 0. 19 99. 2 3. 8 1. 02 0. 28 670 301 © Example 31 Fe 0. 20 gg. 3 99. 9 <0. 1 3 7 0. 98 0. 28 850 292 Example 32 0. 20 gg. 3 3. 7 1. 04 0. 27 <100 296 p ◎ Example 33 0. 18 99. 3 3. 9 0. 99 0. 29 520 300 ◎ Example 34 0. 19 99. 2 3. 5 1. 0 008 0. 27 3300 258 o Example 35 0. 19 99. 2 3. 6 1. 06 0. 29 3500 249 o Example 21 0. 20 99. 3 + 0. 1 4. 7 0. 88 0. 45 2400 195 © Example 36 0. 20 99. 1 0. 18 4. 5 0. 92 0. 42 3000 210
Fe 90 ◎ 実施例 37 0. 20 98. 9 0. 45 4. 4 0. 95 0. 40 4900 245 o 比較例 11 0. 19 98. 6 0. 79 4. 1 0. 98 0. 35 8300 269 Δ 6] Fe 90 ◎ Example 37 0. 20 98. 9 0. 45 4. 4 0. 95 0. 40 4900 245 o Comparative example 11 0. 19 98. 6 0. 79 4. 1 0. 98 0. 35 8300 269 Δ 6]
組 成 物 1生等 研摩評価 特定元素 Ce02 BET法 XRD 粗大粒子 Composition 1 Life etc.Abrasive evaluation Specified element Ce0 2 BET method XRD Coarse particles
TREO F 比表面積 D50 半値幅 含有量 研摩 研庫 種 含有量'1 /TREO TREO F Specific surface area D 50 Half width Content Abrasive Research Species Content ' 1 / TREO
(質量 %) (質量 %) 0) (質量 速度 傷 類 (質量 W (質量 %) (mVg) (jum) (2  (Mass%) (mass%) 0) (mass velocity wounds (mass W (mass%) (mVg) (jum) (2
Γ ) ppm)  (Γ) ppm)
比較例 1 X X 99. 5 6.7 0.71 θ.52 5800 100 厶 実施例 38 Ti 0.20 99.2 3.9 0.98 0.30 870 275 ◎ 実施例 39 V 0. 19 99.2 2.3 1. 14 0.29 1200 268 ◎ 実施例 40 Cr 0.20 99.3 4.2 0.95 0.35 1800 231 実施例 41 Mn 0.20 99.3 4.2 0.97 0.32 990 243 ◎ 実施例 6 Fe 0.20 99.3 3.8 1.01 0.28 730 286 ◎ 実施例 42 Co 0. 19 99.4 4.0 0.99 0.30 1200 258 ◎ 実施例 43 Ni 0.20 99.3 4.3 0.97 0.33 950 241 ◎ 実施例 44 Cu 0. 19 99.4 4.9 0.98 0.31 1300 207 ◎ 実施例 45 Zn 0.20 99.4 3.7 1.05 0.27 750 295  Comparative Example 1 XX 99.5 5 6.7 0.71 θ.52 5800 100 厶 Example 38 Ti 0.20 99.2 3.9 0.98 0.30 870 275 ◎ Example 39 V 0. 19 99.2 2.3 1. 14 0.29 1200 268 ◎ Example 40 Cr 0.20 99.3 4.2 0.95 0.35 1800 231 Example 41 Mn 0.20 99.3 4.2 0.97 0.32 990 243 ◎ Example 6 Fe 0.20 99.3 3.8 1.01 0.28 730 286 ◎ Example 42 Co 0. 19 99.4 4.0 0.99 0.30 1200 258 ◎ Example 43 Ni 0.20 99.3 4.3 0.97 0.33 950 241 ◎ Example 44 Cu 0. 19 99.4 4.9 0.98 0.31 1300 207 ◎ Example 45 Zn 0.20 99.4 3.7 1.05 0.27 750 295
99.9 <0. 1 ◎ 実施例 46 Nb 0.20 99.3 3.8 1.04 0.27 850 290 ◎ 実施例 47 Mo 0.20 99.2 4.2 0.94 0.38 1400 237 ◎ 実施例 48 Ag 0.20 99.3 4.6 0.87 0.45 1600 225 ◎ 実施例 49 Ta 0.20 99.3 3.9 1.00 0.28 770 284 ◎ 実施例 50 W 0.20 99.2 4. 1 0.97 0.34 1400 251 ◎ 比較例 12 Al 0. 19 99. 1 6.2 0.80 0.48 7300 112 Δ 比較例 13 Ga 0.20 99.3 6.9 0.72 0.52 8500 98 △ 比較例 14 Ge 0.20 99.2 6.3 0.78 0.49 6600 95 厶 比較例 15 In 0.20 99.3 6.8 0.74 0.52 9200 107 Δ 比較例 16 Sn 0. 19 99.3 6.4 0.78 0.48 7600 105 △ 99.9 <0. 1 ◎ Example 46 Nb 0.20 99.3 3.8 1.04 0.27 850 290 ◎ Example 47 Mo 0.20 99.2 4.2 0.94 0.38 1400 237 ◎ Example 48 Ag 0.20 99.3 4.6 0.87 0.45 1600 225 ◎ Example 49 Ta 0.20 99.3 3.9 1.00 0.28 770 284 ◎ Example 50 W 0.20 99.2 4. 1 0.97 0.34 1400 251 ◎ Comparative example 12 Al 0. 19 99. 1 6.2 0.80 0.48 7300 112 Δ Comparative example 13 Ga 0.20 99.3 6.9 0.72 0.52 8500 98 △ Comparative example 14 Ge 0.20 99.2 6.3 0.78 0.49 6600 95 厶 Comparative example 15 In 0.20 99.3 6.8 0.74 0.52 9200 107 Δ Comparative example 16 Sn 0. 19 99.3 6.4 0.78 0.48 7600 105 △
* 1 X :特定元素を添加せず * 1 X: No specific element added
[0051] そして、表 1〜3と、表 4〜6とを参照しつつ、各研摩材について対比、検討すると、 以下のように考察される。 [0051] When each abrasive is compared and examined with reference to Tables 1 to 3 and Tables 4 to 6, it is considered as follows.
[0052] 枪討 1:特定 素の影響  [0052] Review 1: Influence of specific elements
表 4の比較例 1〜3は、いずれも特定元素を含まない高純度セリウム系研摩材の結 果を示すものである。この結果と各実施例(例えば、実施例 1〜11)とを対比すると、 特定元素の有無が研摩速度に影響を及ぼし、特定元素の添加により研摩速度向上 の効果が発揮されることがわかる。また、比較例 3は、焙焼温度を高温にして製造し た特定元素を含まな ヽ研摩材であるが、この研摩材では研摩速度が改善されるもの の、研摩傷の発生が顕著となり実用性に乏しいことがわかる。  Comparative Examples 1 to 3 in Table 4 show the results of high-purity cerium-based abrasives that do not contain a specific element. When this result is compared with each example (for example, Examples 1 to 11), it can be seen that the presence or absence of a specific element affects the polishing rate, and that the addition of the specific element exerts the effect of improving the polishing rate. Comparative Example 3 is a certain abrasive material containing a specific element manufactured at a high roasting temperature. Although this polishing material improves the polishing speed, it causes a noticeable occurrence of abrasive scratches. It turns out that it is scarce.
[0053] 檢討 2:特定 泰含有量の影響  [0053] Review 2: Effect of specific Thai content
表 4の実施例 1〜 11と比較例 1、 4、 5は、特定元素 (Fe)の含有量による研摩特性 への影響を検討するためのものである。これらの対比から、特定元素を含まないと研 摩速度が低くなるのは上述のとおりである力 これにカ卩えて、特定元素がただ含まれ ていればよいというものではなぐ少なすぎると (研摩材全量に対して 0. 01質量%未 満)研摩速度の改善は見られず、また、多すぎると (2. 0質慮%超)研摩傷が多く発 生することがわかる。即ち、特定元素の含有量には適正範囲(0. 01〜2. 0質量%) があることが確認された。 Examples 1 to 11 and Comparative Examples 1, 4, and 5 in Table 4 are for examining the influence of the content of the specific element (Fe) on the polishing characteristics. From these contrasts, the polishing speed is low if the specific element is not included as described above. In contrast, the specific element is only included. If the amount is too small (less than 0.01% by mass with respect to the total amount of abrasive), no improvement in the polishing rate is seen, and if too much (over 2.0%), polishing It can be seen that many scratches occur. That is, it was confirmed that the content of the specific element has an appropriate range (0.01 to 2.0% by mass).
[0054] 枪討 3:焙焼温度の影響  [0054] Judgment 3: Effect of roasting temperature
表 4の実施例 6、 12〜20及び比較例 6、 7は、特定元素 (Fe)含有量を一定としつ つ、焙焼温度を変化させて製造した研摩材の研摩特性を示すものである。この対比 から、研摩速度及び研摩傷の観点力 好ましい焙焼温度は、 400〜1150°Cであり、 より好まし 、焙焼温度は 700〜: L 100°Cであり、 800〜1050°Cが更に好まし 、と!/、え る。尚、 400°C未満(350°C)で焙焼した比較例 6は、研摩速度は従来品とほぼ同じ であるが、傷の発生がな 、と 、う観点から使用すること自体は可能なものと 、える。  Examples 6, 12 to 20 and Comparative Examples 6 and 7 in Table 4 show the polishing characteristics of the abrasives produced by changing the roasting temperature while keeping the specific element (Fe) content constant. . From this comparison, the polishing power and the viewpoint power of polishing scratches The preferred roasting temperature is 400 to 1150 ° C, more preferably, the roasting temperature is 700 to: L 100 ° C, and 800 to 1050 ° C. It is even better! In Comparative Example 6, which was roasted at less than 400 ° C (350 ° C), the polishing speed was almost the same as that of the conventional product, but it was possible to use it from the viewpoint of no scratches. It ’s a thing.
[0055] 檢討 4 : Iff塵材原料の影響  [0055] Review 4: Effects of Iff dust material
比較例 8は、他の実施例、比較例と異なり、出発原料である中国産炭酸セリウムを そのまま研摩材原料として製造した研摩材である。表 4からわ力るように、国産炭酸セ リウム溶解して再沈澱させて研摩材原料とした比較例 1と対比すると研摩特性におい てさほどの相違は見られず、研摩速度は低ぐ研摩傷も多く発生する。そして、特定 元素を含み製造条件を同じくする実施例 6との対比から、研摩特性の改善は研摩材 原料の履歴によらず、特定元素の有無に基づくことがわかる。  Comparative Example 8 differs from the other Examples and Comparative Examples in that it is an abrasive produced by directly using Chinese starting cerium carbonate as an abrasive raw material. As can be seen from Table 4, when compared with Comparative Example 1 in which domestic cerium carbonate was dissolved and reprecipitated and used as an abrasive material, there was no significant difference in the polishing characteristics, and there was also a low scratching rate. Many occur. From the comparison with Example 6 that includes the specific element and has the same manufacturing conditions, it can be seen that the improvement of the polishing characteristics is based on the presence or absence of the specific element regardless of the history of the raw material of the abrasive.
[0056] 檢射 5 :原料中の酸化セリウム含有量の影響  [0056] Spray 5: Influence of cerium oxide content in raw materials
表 5の実施例 6、 21〜25及び比較例 9は、酸化セリウム含有量(Ce02ZTREO) の異なる研摩材原料を用いて製造した研摩材の研摩特性を示す。この対比から、研 摩材原料中の酸ィ匕セリウム含有量は、 90質量%以上とするのが好ましぐそれ以下( 比較例 9: 85質量%)とすると研摩速度及び研摩傷の双方に関して劣ることが確認さ れた。また、酸化セリウム含有量 99質量%を超える場合、その濃度の高低による研摩 特性に大きな差異は見られな 、ことがわかる。  Examples 6, 21 to 25 and Comparative Example 9 in Table 5 show the polishing characteristics of abrasives produced using abrasive raw materials having different cerium oxide contents (Ce02ZTREO). From this comparison, if the content of cerium oxide in the polishing material is preferably 90% by mass or more (Comparative Example 9: 85% by mass), both the polishing rate and the scratches will be obtained. Inferiority was confirmed. It can also be seen that when the cerium oxide content exceeds 99 mass%, there is no significant difference in the polishing characteristics depending on the concentration level.
[0057] 検討 6:浸清加熱処理と仮焼処理の有無の影響  [0057] Study 6: Effect of the presence or absence of soaking heat treatment and calcination treatment
表 5の実施例 6、 26〜28は、研摩材の製造工程において浸漬加熱処理及び Z又 は仮焼を行って製造した研摩材と、 V、ずれも行わなカゝつた研摩材に関する研摩特性 を示すものである。いずれの処理も行なっていない実施例 28の研摩速度、研摩傷評 価と対比すると、浸漬加熱処理は研摩面精度の改善に、仮焼は研摩速度の向上に おいて効果があることがわかる。但し、双方を実施すれば必ずしも良いとは限らない し (実施例 26参照)、 V、ずれの処理も必須のものとは 、えな ヽ(実施例 28参照)。 Examples 6 and 26 to 28 in Table 5 show the abrasive characteristics of the abrasive produced by immersion heat treatment and Z or calcination in the abrasive production process, and the V and the polished abrasive with no deviation. Is shown. Comparing with the polishing rate and the scratch evaluation of Example 28 in which neither treatment is performed, it is understood that immersion heating treatment is effective in improving the polished surface accuracy, and calcination is effective in improving the polishing rate. However, it is not always good if both are implemented (see Example 26), and V and deviation processing are also indispensable (see Example 28).
[0058] 檢討 7:特定 素化合物の形 及び添加 ¾の影響 [0058] Review 7: Effect of specific elemental compound form and addition ¾
表 5の実施例 6、 29〜35、比較例 10は、研摩材の製造工程において、特定元素 である Feの添加に関して種々の鉄化合物を使用したものである。また、比較例 10は 、比較例 1の従来の高純度セリウム系研摩材に鉄化合物 (Fe O )を混合して研摩材  Examples 6 and 29 to 35 in Table 5 and Comparative Example 10 use various iron compounds with respect to the addition of Fe, which is a specific element, in the abrasive production process. Further, Comparative Example 10 was prepared by mixing an iron compound (Fe 2 O 3) with the conventional high-purity cerium-based abrasive of Comparative Example 1.
2 3  twenty three
としたものである。いずれも特定元素の含有量は研摩材全量に対して 0. 20質量% である。これらの結果から、まず、特定元素化合物の種類は、研摩材の特性には影 響を及ぼさな 、ことがわかる。  It is what. In both cases, the content of the specific element is 0.20% by mass based on the total amount of the abrasive. From these results, it can be seen that the type of specific element compound does not affect the characteristics of the abrasive.
[0059] そして、比較例 10の結果をみるとわ力るように、特定元素は、研摩材に単純に混合 するのみでは研摩速度向上の効果はない。即ち、特定元素は、原料の状態で添カロ することが必要であり、その後の焙焼により良好な特性の研摩材となることが確認され た。 [0059] As can be seen from the results of Comparative Example 10, the specific element is not effective in improving the polishing rate simply by mixing it with the polishing material. That is, it was confirmed that the specific element needs to be calcined in the state of the raw material, and subsequent roasting makes it an abrasive with good characteristics.
[0060] 尚、添加態様に関し実施例 34及び 35では、水溶性の FeCl又は FeClを添加す  [0060] Regarding Examples of addition, in Examples 34 and 35, water-soluble FeCl or FeCl was added.
3 2 るものであり、実施例 33のようにアンモニア水を添カ卩しての固定ィ匕を行って ヽな 、。 そのため、 Feの損失を防ぐため原料粉砕後のスラリーを全量乾燥した。これにより、 焙焼に供した原料には塩素が多量に含有されている。そして、塩素が含有されてい ることにより焙焼時の焼結が若干不均一に進行して粗大粒子が生成し、わず力に研 摩傷が発生しやす!/、ものとなって!/、る。  3 2 As shown in Example 33, it should be fixed with ammonia water added. Therefore, in order to prevent the loss of Fe, the entire slurry after pulverizing the raw material was dried. As a result, the raw material used for roasting contains a large amount of chlorine. In addition, due to the inclusion of chlorine, sintering during roasting proceeds slightly non-uniformly to produce coarse particles, which can easily cause abrasive scratches! RU
[0061] 檢討 8 :フッ素含有量の影響  [0061] Review 8: Effect of fluorine content
実施例 21、 36、 37、比較例 11は、フッ素含有量の異なる研摩材に関する研摩特 性を示すものである。この結果から、フッ素含有量が高いと研摩傷が多く発生する傾 向にある。そして、フッ素含有量が 0. 5質量%以下とすることが好ましいことが確認さ れた。尚、比較例 11は、研摩傷評価は比較例 1と同程度であるが、研摩速度はこれ よりかなり大きい。これは、特定元素を含むことによるものである。  Examples 21, 36, and 37 and Comparative Example 11 show the polishing characteristics of abrasives having different fluorine contents. From this result, there is a tendency that many abrasive scratches occur when the fluorine content is high. It was confirmed that the fluorine content is preferably 0.5% by mass or less. In Comparative Example 11, the evaluation of polishing scratches is similar to that in Comparative Example 1, but the polishing rate is much higher. This is due to the inclusion of a specific element.
[0062] 檢討 9 :特定 素糠街の影響 実施例 6、 38〜50、比較例 12〜16は、種々の特定元素酸化物、及び、特定元素 ではない元素の酸ィ匕物を添加した研摩材に関するものである (含有量はほぼ同じと した)。この結果から、本発明において研摩特性向上の効果がある特定元素とした、 Ti (4族元素)、 V、 Nb、 Ta (5族元素)、 Cr、 Mo、 W (6族元素)、 Mn (7族元素)、 Fe (8族元素)、 Co (9族元素)、 Ni(10族元素)、 Cu、 Ag (11族元素)、 Zn(12族元素) は、いずれも研摩特性向上の効果があることがわかる。また、比較例 12〜16からわ かるように、添加元素は何でも添加すれば ヽと 、うものではな 、ことが確認された。 [0062] Judgment 9: The influence of certain urban streets Examples 6, 38 to 50 and Comparative Examples 12 to 16 relate to abrasives to which various specific element oxides and oxides of elements that are not specific elements are added (contents are almost the same). did). From these results, Ti (Group 4 element), V, Nb, Ta (Group 5 element), Cr, Mo, W (Group 6 element), Mn ( Group 7 element), Fe (Group 8 element), Co (Group 9 element), Ni (Group 10 element), Cu, Ag (Group 11 element), Zn (Group 12 element) are all effective in improving polishing characteristics. I understand that there is. In addition, as can be seen from Comparative Examples 12 to 16, it was confirmed that if any additive element was added, it was not so.
[0063] 枪討 10 : ffi大粒子含有量の影響 [0063] Review 10: Effect of ffi large particle content
各実施例及び比較例の研摩試験の結果みるとわかるように、研摩材中の粗大粒子 の含有量は、研摩傷発生の有無に影響する。具体的には、ストークス径 5 m以上の 粗大粒子の含有率は、 5000ppm以下が好ましぐ 3000質量 ppmがより好ましぐ 1 000質量 ppm以下がさらに好ましい。粗大粒子の含有率が基準値を超えると、研摩 傷が多く発生するからである。尚、本実施形態で使用した Fe Oは、ストークス径 5  As can be seen from the results of the polishing test of each example and comparative example, the content of coarse particles in the abrasive material affects the presence or absence of the occurrence of polishing flaws. Specifically, the content of coarse particles having a Stokes diameter of 5 m or more is preferably 5000 ppm or less, more preferably 3000 mass ppm, and even more preferably 1 000 mass ppm or less. This is because if the content of coarse particles exceeds the reference value, many abrasive scratches occur. The Fe O used in this embodiment has a Stokes diameter of 5
2 3  twenty three
m以上の粗大粒子含有量が lOOppm以下である(D は 0. 30 mである)。即ち、 F  The content of coarse particles above m is below lOOppm (D is 0.30 m). That is, F
50  50
e Oの存在が粗大粒子の含有量に直接影響を及ぼしたものではない。  The presence of e 2 O does not directly affect the coarse particle content.
2 3  twenty three
産業上の利用可能性  Industrial applicability
[0064] 以上説明したように、本発明に係る高純度セリウム系研摩材は、研摩速度が高ぐ 研摩傷の少ない高精度の研摩面を形成することができる研摩材である。本発明は、 液晶ディスプレイ用、ハードディスク用、フォトマスク用のガラス基板を研摩する場合 において特に有用である。また、本発明は、上記ガラス材料の研摩に限らず、半導体 用基板の研摩にも使用可能である。 [0064] As described above, the high-purity cerium-based abrasive according to the present invention is an abrasive capable of forming a highly accurate polished surface with a high polishing speed and few polishing flaws. The present invention is particularly useful when polishing glass substrates for liquid crystal displays, hard disks, and photomasks. Further, the present invention can be used not only for polishing the glass material but also for polishing a semiconductor substrate.

Claims

請求の範囲 The scope of the claims
[1] 全希土類酸化物 (TREO)に対する酸ィ匕セリウム含有量が 90質量%以上であるセリ ゥム系研摩材において、  [1] In a cerium-based abrasive with an cerium oxide content of 90% by mass or more based on total rare earth oxide (TREO),
Ti及び原子番号 80以下の 5族〜 12族の元素から選択される少なくとも 1種の特定 元素を研摩材全量に対して 0. 01〜2. 0質量%含有することを特徴とするセリウム系 研摩材。  Cerium-based polishing characterized by containing at least one specific element selected from Ti and elements of group 5 to group 12 having an atomic number of 80 or less with respect to the polishing material in an amount of 0.01 to 2.0% by mass Wood.
[2] 特定元素は、原子番号が 22〜30の元素力も選択される少なくとも 1の元素からなる 請求項 1記載のセリウム系研摩材。  [2] The cerium-based abrasive according to claim 1, wherein the specific element comprises at least one element having an atomic number of 22-30.
[3] 特定元素は、 Fe又は Znの少なくともいずれかである請求項 1記載のセリウム系研摩 材。 [3] The cerium-based abrasive according to claim 1, wherein the specific element is at least one of Fe and Zn.
[4] フッ素含有量が 0. 5質量%以下である請求項 1〜請求項 3のいずれか 1項記載のセ リウム系研摩材。  [4] The cerium-based abrasive according to any one of claims 1 to 3, wherein the fluorine content is 0.5% by mass or less.
[5] BET法による比表面積が 0. 6〜: L0m2Zgである請求項 1〜請求項 4のいずれか 1項 記載のセリウム系研摩材。 [5] The cerium-based abrasive according to any one of claims 1 to 4, wherein the BET method has a specific surface area of 0.6 to L0m 2 Zg.
PCT/JP2006/321508 2005-11-02 2006-10-27 Cerium polishing agent WO2007052555A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006800403082A CN101321841B (en) 2005-11-02 2006-10-27 Cerium polishing agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005318988A JP4756996B2 (en) 2005-11-02 2005-11-02 Cerium-based abrasive
JP2005-318988 2005-11-02

Publications (1)

Publication Number Publication Date
WO2007052555A1 true WO2007052555A1 (en) 2007-05-10

Family

ID=38005707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321508 WO2007052555A1 (en) 2005-11-02 2006-10-27 Cerium polishing agent

Country Status (3)

Country Link
JP (1) JP4756996B2 (en)
CN (1) CN101321841B (en)
WO (1) WO2007052555A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010118553A1 (en) 2009-04-15 2010-10-21 Rhodia (China) Co., Ltd. A cerium-based particle composition and the preparation thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051463B (en) * 2017-09-11 2022-01-11 昭和电工株式会社 Method for producing raw material for cerium-based abrasive and method for producing cerium-based abrasive

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153696A (en) * 1994-09-30 1996-06-11 Hitachi Ltd Abrasive and polishing
JPH10125638A (en) * 1996-08-29 1998-05-15 Sumitomo Chem Co Ltd Composition for polishing, and method of flattening metal film on semiconductor substrate which uses the composition
JP2001351883A (en) * 2000-06-06 2001-12-21 Toray Ind Inc Abrasive for semiconductor insulation film
JP2002097457A (en) * 2000-09-20 2002-04-02 Mitsui Mining & Smelting Co Ltd Cerium-containing abrasive material, its quality inspection method and manufacturing method thereof
JP2002356312A (en) * 2001-03-24 2002-12-13 Degussa Ag Oxide particles having core, doping component and shell, and their producing method and their use
JP2004526302A (en) * 2001-01-22 2004-08-26 キャボット マイクロエレクトロニクス コーポレイション Catalytic reactive pad for metal CMP

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3335667B2 (en) * 1992-05-26 2002-10-21 株式会社東芝 Method for manufacturing semiconductor device
JP3602670B2 (en) * 1996-12-25 2004-12-15 セイミケミカル株式会社 Manufacturing method of cerium-based abrasive
JP4033440B2 (en) * 2001-09-17 2008-01-16 三井金属鉱業株式会社 Cerium-based abrasive slurry and method for producing cerium-based abrasive slurry

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153696A (en) * 1994-09-30 1996-06-11 Hitachi Ltd Abrasive and polishing
JPH10125638A (en) * 1996-08-29 1998-05-15 Sumitomo Chem Co Ltd Composition for polishing, and method of flattening metal film on semiconductor substrate which uses the composition
JP2001351883A (en) * 2000-06-06 2001-12-21 Toray Ind Inc Abrasive for semiconductor insulation film
JP2002097457A (en) * 2000-09-20 2002-04-02 Mitsui Mining & Smelting Co Ltd Cerium-containing abrasive material, its quality inspection method and manufacturing method thereof
JP2004526302A (en) * 2001-01-22 2004-08-26 キャボット マイクロエレクトロニクス コーポレイション Catalytic reactive pad for metal CMP
JP2002356312A (en) * 2001-03-24 2002-12-13 Degussa Ag Oxide particles having core, doping component and shell, and their producing method and their use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010118553A1 (en) 2009-04-15 2010-10-21 Rhodia (China) Co., Ltd. A cerium-based particle composition and the preparation thereof
US8727833B2 (en) 2009-04-15 2014-05-20 Rhodia (China) Co., Ltd. Cerium-based particle composition and the preparation thereof

Also Published As

Publication number Publication date
CN101321841A (en) 2008-12-10
CN101321841B (en) 2012-07-18
JP4756996B2 (en) 2011-08-24
JP2007126525A (en) 2007-05-24

Similar Documents

Publication Publication Date Title
KR102090494B1 (en) Cerium abrasive and manufacturing method
JPWO2014208414A1 (en) Cerium oxide abrasive, method for producing cerium oxide abrasive and polishing method
JP4401353B2 (en) Cerium-based abrasive
US7090821B2 (en) Metal oxide powder for high precision polishing and method of preparation thereof
TWI668189B (en) Composite particle for polishing, method for producing composite particle for polishing, and slurry for polishing
JP4248889B2 (en) Abrasive particle quality evaluation method, polishing method and abrasive for polishing glass
WO2007052555A1 (en) Cerium polishing agent
JP6839767B2 (en) Method for manufacturing raw materials for cerium-based abrasives, and method for manufacturing cerium-based abrasives
JP3694478B2 (en) Cerium-based abrasive and method for producing the same
JP2002371267A (en) Method for manufacturing cerium-containing abrasive particle and cerium-containing abrasive particle
TWI410479B (en) Lanthanum abrasive
JP4128906B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP2007106890A (en) Cerium-based abrasive material
JP3875668B2 (en) Cerium-based abrasive containing fluorine and method for producing the same
TWI285674B (en) Cerium-based abrasive and production process thereof
JP5726612B2 (en) Polishing material, polishing composition and polishing method
JP5726501B2 (en) Polishing material, polishing composition and polishing method
JP6424818B2 (en) Method of manufacturing abrasive
JP4237957B2 (en) Quality evaluation method for cerium-based abrasive materials
KR100679966B1 (en) Cerium polishing agent and method for producing cerium polishing agent
TWI558802B (en) Abrasive and abrasive slurry
JP3986424B2 (en) Cerium-based abrasive, method for producing cerium-based abrasive, and quality evaluation method for cerium-based abrasive
WO2014122976A1 (en) Polishing material slurry

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680040308.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822469

Country of ref document: EP

Kind code of ref document: A1