JPH10125638A - Composition for polishing, and method of flattening metal film on semiconductor substrate which uses the composition - Google Patents

Composition for polishing, and method of flattening metal film on semiconductor substrate which uses the composition

Info

Publication number
JPH10125638A
JPH10125638A JP23089097A JP23089097A JPH10125638A JP H10125638 A JPH10125638 A JP H10125638A JP 23089097 A JP23089097 A JP 23089097A JP 23089097 A JP23089097 A JP 23089097A JP H10125638 A JPH10125638 A JP H10125638A
Authority
JP
Japan
Prior art keywords
oxide
polishing composition
slurry
polishing
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23089097A
Other languages
Japanese (ja)
Inventor
Yoshiaki Sakatani
能彰 酒谷
Kazumasa Ueda
和正 上田
Yoshiaki Takeuchi
美明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP23089097A priority Critical patent/JPH10125638A/en
Publication of JPH10125638A publication Critical patent/JPH10125638A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To polish, at a high speed, a metal film formed on a semiconductor substrate, without generating defect by using aluminum oxide, wherein cerium oxide of specific wt% of Ce reduction is contained and the average grain diameter is at most a specific value. SOLUTION: The average grain diameter (mean secondary grain diameter) of abrasives is at most about 2μm which is measured by a light-scattering method (micro track). Preferably aluminum oxide powder of about 0.2-1.5μm diameter is used. To the aluminum oxide powder or titnium oxide powder (also referred to as base metal oxide), 5-40wt% of cerium oxide based on the base metal oxide is added). More preferably, cerium oxide of about 8-30wt% is contained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体基板上に形成
された金属膜を、欠陥を発生させずに高速に研磨し、し
かも金属膜/絶縁膜の研磨選択性に優れ、絶縁膜表面の
欠陥の発生を抑制し得る研磨用組成物、ならびにかかる
研磨用組成物を用い半導体基板上に形成された金属膜を
平坦化することを特徴とする、半導体基板上の金属膜の
平坦化方法に関するものである。
The present invention relates to a method for polishing a metal film formed on a semiconductor substrate at a high speed without causing defects, and further, has excellent polishing selectivity of a metal film / insulating film and a defect on the surface of the insulating film. The present invention relates to a polishing composition capable of suppressing the occurrence of the polishing, and a method for flattening a metal film formed on a semiconductor substrate using the polishing composition. It is.

【0002】[0002]

【従来の技術】LSI技術の急速な進展により、集積回
路はますます微細化や多層配線化の傾向にある。集積回
路に於ける多層配線化は半導体表面の凹凸を極めて大き
くし、かかる凹凸による段差の存在が、配線の段切れや
抵抗値の増大を招き、集積回路の微細化とも相まって断
線や電流容量の低下、エレクトロマイグレーションの発
生などをもたらし、歩留まりの低下や信頼性上の問題を
きたす原因となっている。この為、多層配線基板におけ
る金属配線や層間絶縁膜を平坦化し、各層間の凹凸を無
くす平坦化技術が必要となってきている。平坦化加工技
術は種々開発されてきており、その一つにCMP(ケミ
カルメカニカルポリッシング)技術がある。この技術は
半導体製造において、層間絶縁膜の平坦化、埋め込み配
線形成、プラグ形成等に必要となる技術である。
2. Description of the Related Art With the rapid development of LSI technology, integrated circuits are becoming more and more miniaturized and multilayered. Multilayer wiring in integrated circuits greatly increases the unevenness of the semiconductor surface, and the presence of steps due to such unevenness causes disconnection of the wiring and an increase in the resistance value. This leads to lowering, occurrence of electromigration, etc., which causes a reduction in yield and a problem in reliability. For this reason, a flattening technique for flattening the metal wiring and the interlayer insulating film in the multilayer wiring board and eliminating unevenness between the respective layers is required. Various flattening processing techniques have been developed, and one of them is a CMP (chemical mechanical polishing) technique. This technique is necessary for flattening an interlayer insulating film, forming an embedded wiring, forming a plug, and the like in semiconductor manufacturing.

【0003】CMPは、通常半導体材料からなる平坦な
ウェハーを、湿ったポリッシングパッドに対して下方に
一定の圧力をかけながら保持し、ポリッシングパッドを
貼りつけたポリッシングプラテンおよびウェハーを保持
したウェハーキャリアーが各々回転することにより行わ
れる。またこの時ウェハーとポリッシングパットの間に
導入される研磨剤により、配線や絶縁膜の凸部を研磨し
平坦化を行う。導入される研磨材の材質・粒度・添加剤
などにより研磨速度や研磨面の表面状態が大きく影響さ
れる。
In CMP, a flat wafer, usually made of a semiconductor material, is held while applying a certain pressure downward to a wet polishing pad. A polishing platen to which the polishing pad is attached and a wafer carrier holding the wafer are used. It is performed by rotating each. At this time, the protrusions of the wiring and the insulating film are polished and flattened by an abrasive introduced between the wafer and the polishing pad. The polishing rate and the surface condition of the polished surface are greatly affected by the material, particle size, additives and the like of the abrasive to be introduced.

【0004】図1に従来のCMP技術を用いた埋め込み
金属配線の形成の一例(断面図)を示す。まずはじめに
図1(A)のようにシリコン基板等の半導体基板1上
に、絶縁膜2を形成しこれを平坦化する。絶縁膜用の研
磨材組成物としては、コロイダルシリカにKOH等のア
ルカリ性成分を混合したものや、酸化セリウムなどが一
般に用いられる。次に図1(B)に示すようにフォトリ
ソグラフィー法およびエッチング法で、絶縁膜2に金属
配線用の溝、あるいは接続配線用の開口部を形成する。
次に図1(C)に示すように絶縁膜2に形成した溝ある
いは開口部に、溝や開口部に埋め込んだ金属膜とシリコ
ン基板との接触抵抗を低下させる目的で、更には金属膜
と絶縁膜が相互拡散や反応をしないように、スパッタリ
ングやCVD等の方法により、チタニウムTi等よりな
るコンタクトメタル層3、更に必要に応じて窒化チタニ
ウムTiN等よりなるバリヤーメタル層4を形成する。
次に図1(D)に示すように厚みが絶縁膜2に形成した
溝や開口部の高さ以上となるように、配線用の金属膜5
を埋め込む。金属膜として、タングステンW、アルミニ
ウムAl、銅Cu等が用いられる。次に図1(E)に示
すように溝または開口部以外の余分な金属膜を研磨によ
り取り除く。金属膜の研磨には、通常、酸化アルミニウ
ム又は酸化ケイ素等の研磨材に水と過酸化水素等の酸化
剤よりなる研磨用組成物が使用されている。
FIG. 1 shows an example (cross-sectional view) of forming a buried metal wiring using a conventional CMP technique. First, an insulating film 2 is formed on a semiconductor substrate 1 such as a silicon substrate as shown in FIG. As the abrasive composition for the insulating film, a mixture of colloidal silica and an alkaline component such as KOH, cerium oxide, and the like are generally used. Next, as shown in FIG. 1B, a groove for metal wiring or an opening for connection wiring is formed in the insulating film 2 by photolithography and etching.
Next, as shown in FIG. 1C, in order to reduce the contact resistance between the silicon film and the metal film embedded in the groove or opening in the groove or opening formed in the insulating film 2, A contact metal layer 3 made of titanium Ti or the like and a barrier metal layer 4 made of titanium nitride TiN or the like are formed by a method such as sputtering or CVD so that the insulating film does not cause mutual diffusion or reaction.
Next, as shown in FIG. 1D, the metal film 5 for wiring is formed so that the thickness is equal to or greater than the height of the groove or opening formed in the insulating film 2.
Embed As the metal film, tungsten W, aluminum Al, copper Cu, or the like is used. Next, as shown in FIG. 1E, an unnecessary metal film other than the groove or the opening is removed by polishing. For polishing a metal film, a polishing composition comprising water and an oxidizing agent such as hydrogen peroxide is usually used for an abrasive such as aluminum oxide or silicon oxide.

【0005】金属膜5の研磨材として酸化アルミニウ
ム、例えば結晶形がα型の酸化アルミニウムを用いた場
合には硬度が高く、高い研磨速度を示す反面、金属膜5
や絶縁膜2の表面にマイクロスクラッチやオレンジピー
ル等の欠陥を発生させるとの不都合が生じる。他方α型
に比べ軟らかいγ型等の酸化アルミニウム(遷移アルミ
ナ)や酸化ケイ素を用いた場合では、金属膜5や絶縁膜
2の表面にマイクロスクラッチやオレンジピール等の欠
陥の発生を抑えることはできるものの、金属膜5の研磨
に際して十分な研磨速度が得られないとの不都合が生じ
る。
When aluminum oxide, for example, aluminum oxide having an α-type crystal form, is used as an abrasive for the metal film 5, the hardness is high and the polishing rate is high.
And defects such as micro scratches and orange peel on the surface of the insulating film 2. On the other hand, when aluminum oxide (transition alumina) such as γ-type or silicon oxide, which is softer than α-type, is used, it is possible to suppress the occurrence of defects such as micro scratches and orange peel on the surfaces of the metal film 5 and the insulating film 2. However, there is a disadvantage that a sufficient polishing rate cannot be obtained when polishing the metal film 5.

【0006】研磨材として酸化セリウムは絶縁膜2の研
磨に高い研磨速度を示すことが知られているが、金属膜
5、コンタクトメタル層3及びバリヤーメタル層4を研
磨した場合、金属膜/絶縁膜の研磨選択性が悪く、研磨
終点において絶縁膜2も研磨してしまう。そのため絶縁
膜2の平坦化が損なわれることや、絶縁膜2上にマイク
ロスクラッチやオレンジピールが発生する可能性がある
ことから金属膜5、コンタクトメタル層3及びバリヤー
メタル層4の研磨には適さないとされている。また酸化
セリウムの低純度品は放射性同位元素を含むため、研磨
材がデバイス上に残留した場合、該放射性同位元素から
放射されるα線によりソフトエラーが発生するという問
題がある。高純度品ではコストが高くなるとの問題があ
る。
It is known that cerium oxide as a polishing material exhibits a high polishing rate for polishing the insulating film 2. However, when the metal film 5, the contact metal layer 3, and the barrier metal layer 4 are polished, The polishing selectivity of the film is poor, and the insulating film 2 is also polished at the polishing end point. Therefore, the flattening of the insulating film 2 is impaired, and micro-scratch or orange peel may occur on the insulating film 2. Therefore, it is suitable for polishing the metal film 5, the contact metal layer 3 and the barrier metal layer 4. It is not. In addition, since the low-purity cerium oxide contains a radioisotope, if the abrasive remains on the device, there is a problem that a soft error occurs due to α rays emitted from the radioisotope. There is a problem that high-purity products increase costs.

【0007】[0007]

【発明が解決しようとする課題】半導体製造工程におけ
る金属膜の平坦化方法において、従来の研磨材を用いた
研磨では、研磨面に欠陥が発生する、研磨速度が遅い、
金属膜/絶縁膜の研磨選択性が低い、α線を放射する不
純物の残留等の問題があった。本発明の課題は、半導体
基板上に形成された金属膜を欠陥を発生させずに高速に
研磨し、しかも金属膜/絶縁膜の研磨選択性に優れ、絶
縁膜表面の欠陥の発生を抑え且つα線放射の少ない研磨
用組成物、ならびにかかる研磨用組成物を用い半導体基
板上に形成された金属膜の平坦化方法を提供するもので
ある。
In the method of flattening a metal film in a semiconductor manufacturing process, a conventional polishing method using a polishing material causes defects on a polished surface, a low polishing rate,
There have been problems such as low polishing selectivity of the metal film / insulating film and the residual impurities emitting α-rays. An object of the present invention is to polish a metal film formed on a semiconductor substrate at a high speed without generating defects, and to have excellent polishing selectivity for a metal film / insulating film, to suppress the occurrence of defects on the insulating film surface, and An object of the present invention is to provide a polishing composition that emits less α-rays, and a method for planarizing a metal film formed on a semiconductor substrate using the polishing composition.

【0008】[0008]

【課題を解決するための手段】すなわち、本発明は酸化
セリウムをCeに換算し5重量%〜40重量%含有して
なる平均粒子径が2μm以下の酸化アルミニウム、酸化
ケイ素および酸化チタンより選ばれた少なくとも1種の
金属酸化物よりなる研磨材(A)および酸化剤(B)よ
りなることを特徴とする研磨用組成物を提供するにあ
る。
That is, the present invention is selected from aluminum oxide, silicon oxide and titanium oxide containing cerium oxide in an amount of 5 to 40% by weight in terms of Ce and having an average particle size of 2 μm or less. Another object of the present invention is to provide a polishing composition comprising an abrasive (A) comprising at least one metal oxide and an oxidizing agent (B).

【0009】更に本発明は、半導体基板上に形成された
金属膜を、酸化セリウムをCeに換算し5重量%〜40
重量%含有してなる平均粒子径が2μm以下の酸化アル
ミニウム、酸化ケイ素および酸化チタンより選ばれた少
なくとも1種の金属酸化物よりなる研磨材(A)、およ
び酸化剤(B)よりなる研磨用組成物スラリーをpH7
以下で用い、研磨することを特徴とする半導体基板上の
金属膜の平坦化方法を提供するにある。
Further, according to the present invention, a metal film formed on a semiconductor substrate may be formed by converting cerium oxide to Ce by 5 wt% to 40 wt%.
Abrasive (A) comprising at least one metal oxide selected from aluminum oxide, silicon oxide and titanium oxide having an average particle diameter of not more than 2 μm and containing an oxidizing agent (B). The composition slurry was adjusted to pH 7
An object of the present invention is to provide a method for planarizing a metal film on a semiconductor substrate, which is used and polished below.

【0010】[0010]

【発明の実施の形態】本発明の研磨用組成物は研磨材お
よび酸化剤を必須成分とするもので、本発明に用いる研
磨材は、光散乱法(マイクロトラック)により測定し
た、平均粒子径(平均二次粒子径)が約2μm以下、好
ましくは約0.2〜約1.5μmの酸化アルミニウム粉
末、酸化ケイ素粉末或いは酸化チタン粉末(以下、総称
してベース金属酸化物と称する場合がある)に、酸化セ
リウムをベース金属酸化物に対しCeに換算し約5〜約
40重量%、好ましくは約8重量%〜約30重量%含有
してなる。
BEST MODE FOR CARRYING OUT THE INVENTION The polishing composition of the present invention comprises an abrasive and an oxidizing agent as essential components. The abrasive used in the present invention has an average particle diameter measured by a light scattering method (Microtrack). Aluminum oxide powder, silicon oxide powder or titanium oxide powder having an (average secondary particle diameter) of about 2 μm or less, preferably about 0.2 to about 1.5 μm (hereinafter sometimes referred to collectively as a base metal oxide) )), Contains cerium oxide in an amount of about 5 to about 40% by weight, preferably about 8% to about 30% by weight in terms of Ce, based on the base metal oxide.

【0011】ベース金属酸化物に対する酸化セリウムの
含有量がCeとしてベース金属酸化物に対し約5重量%
未満の場合には、所望とする研磨速度の改良効果が見ら
れない。他方、酸化セリウムの含有量を40重量%より
多くしても研磨速度の向上効果は飽和し、製造コストが
高くなる。ベース金属酸化物に対する酸化セリウムはベ
ース金属酸化物中に存在してもよく、またベース金属酸
化物に付着、或いはベース金属酸化物表面を被覆してな
るいずれのものであってもよいが、ベース金属酸化物粉
末と酸化セリウム粉末を混合するのみでは、研磨速度を
向上することは殆どできない。
The content of cerium oxide in the base metal oxide is about 5% by weight based on the base metal oxide as Ce.
If less, the desired effect of improving the polishing rate cannot be obtained. On the other hand, even if the content of cerium oxide is more than 40% by weight, the effect of improving the polishing rate is saturated and the production cost increases. The cerium oxide for the base metal oxide may be present in the base metal oxide, or may be attached to the base metal oxide or coated on the base metal oxide surface. The polishing rate can hardly be improved only by mixing the metal oxide powder and the cerium oxide powder.

【0012】本発明の研磨用組成物はスラリー状であ
り、その適用時のスラリーのpHは7以下、好ましくは
5以下で用いる。スラリーpHが7を越えると、研磨後
の金属膜の表面状態が悪化するとの不都合を生じる。ス
ラリーのpHは、添加する酸化剤の種類、量に依存する
が、当該酸化剤が安定なpH領域において、公知の酸、
アルカリ成分によりpHを調整することが可能である。
The polishing composition of the present invention is in the form of a slurry, and the pH of the slurry when applied is 7 or less, preferably 5 or less. If the slurry pH exceeds 7, there is a problem that the surface state of the metal film after polishing deteriorates. The pH of the slurry depends on the type and amount of the oxidizing agent to be added, but in a pH range where the oxidizing agent is stable, a known acid,
The pH can be adjusted by an alkali component.

【0013】本発明の研磨用組成物において酸化剤は必
須である。酸化剤を添加することにより難削性の金属膜
の表面を酸化しながら研磨し研磨速度を向上させること
ができる。用いられる酸化剤としては公知の酸化剤、例
えば過酸化水素、硝酸鉄、沃素酸、沃素酸塩、過塩素
酸、過塩素酸塩等が挙げられる。就中、過酸化水素や硝
酸鉄の適用が推奨される。添加量としては研磨用組成物
に対しては約0.5重量%または容量%〜約15重量%
または容量%の範囲で添加するのが望ましい。また添加
の時期であるが、酸化剤の変質等が無ければ特に制限を
受けないが、研磨直前に添加するのが望ましい。
An oxidizing agent is essential in the polishing composition of the present invention. By adding the oxidizing agent, the surface of the hard-to-cut metal film is polished while being oxidized, and the polishing rate can be improved. Examples of the oxidizing agent used include known oxidizing agents such as hydrogen peroxide, iron nitrate, iodic acid, iodate, perchloric acid, and perchlorate. Above all, the application of hydrogen peroxide or iron nitrate is recommended. The amount of addition is about 0.5% by weight or about 15% by weight to about 0.5% by weight based on the polishing composition.
Or it is desirable to add in the range of volume%. The timing of addition is not particularly limited as long as there is no alteration of the oxidizing agent, but it is desirable to add immediately before polishing.

【0014】本発明の研磨剤は、通常約40〜約150
2 /g、好ましくは約50〜約130m2 /gのBE
T比表面積を有するものを用いる。40m2 /g以下の
場合には、一次粒子径が大きくなりすぎ、研磨面にスク
ラッチやオレンジピールなどの欠陥が発生しやすい。他
方150m2 /gを越える場合には、150m2 /g以
下のものに比較し一次粒子が小さく結晶化度が低いた
め、一般的に研磨速度の改良効果も低くなる。
The abrasive of the present invention usually contains about 40 to about 150.
m 2 / g, preferably from about 50 to about 130 m 2 / g BE
One having a T specific surface area is used. If it is less than 40 m 2 / g, the primary particle size becomes too large, and defects such as scratches and orange peel are likely to occur on the polished surface. On the other hand, if it exceeds 150 m 2 / g, the primary particles are small and the degree of crystallinity is low as compared with those of 150 m 2 / g or less, so that the effect of improving the polishing rate is generally low.

【0015】本発明の研磨材としてCeを含有させる酸
化物に酸化アルミニウムを用いる場合には、結晶形が遷
移アルミナ或いは非晶質の酸化アルミニウムを用いるこ
とが推奨される。α型の酸化アルミニウムが存在する場
合には、研磨面に欠陥が発生する場合がある。
In the case where aluminum oxide is used as the oxide containing Ce as the abrasive of the present invention, it is recommended to use transition alumina or amorphous aluminum oxide in a crystalline form. When α-type aluminum oxide is present, a defect may occur on the polished surface.

【0016】本発明の研磨材は、平均粒子径が約2μm
以下である酸化アルミニウムおよび/または酸化ケイ
素、或いは焼成後平均粒子径が約2μm以下の酸化アル
ミニウムおよび/または酸化ケイ素となる該金属酸化物
前駆体物質を水やアルコール、例えばメチルアルコー
ル、エチルアルコール、イソプロピルアルコール等の溶
媒に懸濁させた後、該懸濁液に、焼成後ベース金属酸化
物に対しCe換算で約5重量%〜約40重量%、好まし
くは約8重量%〜約30重量%の酸化セリウムとなる量
のセリウム化合物を添加し、均一に混合した後、乾燥、
焼成することにより製造することができる。
The abrasive of the present invention has an average particle diameter of about 2 μm.
The following aluminum oxide and / or silicon oxide, or the metal oxide precursor substance which becomes aluminum oxide and / or silicon oxide having an average particle diameter of about 2 μm or less after firing is treated with water or an alcohol such as methyl alcohol, ethyl alcohol, After suspending in a solvent such as isopropyl alcohol, the suspension is added with about 5% to about 40% by weight, preferably about 8% to about 30% by weight in terms of Ce, based on the base metal oxide after firing. The amount of cerium compound that will become cerium oxide is added, mixed uniformly, dried,
It can be manufactured by firing.

【0017】上記金属酸化物前駆体物質としては、例え
ば各金属水和物、硝酸塩、酢酸塩、硫酸塩、シュウ酸
塩、アンモニウム塩あるいは炭酸塩が挙げられるが、中
でも水酸化物が好適に用いられる。平均粒子径が2μm
以下の金属酸化物あるいは焼成後金属酸化物となる金属
酸化物前駆体物質の製造方法としては、公知の方法が適
用できるが、それらの中でも金属アルコキシド(例え
ば、アルミニウムイソプロポキシド、アルミニウムエト
キシド、アルミニウムn−イソプロポキシド、アルミニ
ウムn−ブトキシド等)をアルコール中で加水分解する
アルコキシド法、アルミニウムハライドやシリコンハラ
イド(例えば、塩化アルミニウム、臭化アルミニウム、
沃化アルミニウム、塩化ケイ素、臭化ケイ素、沃化ケイ
素等)の金属化合物を気化させ、酸水素炎中で焼成加水
分解する気相法等を挙げることができる。これらの方法
により得られた酸化アルミニウムや酸化ケイ素粉末は約
0.5μm以下、通常約0.01μm〜約0.2μmの
平均粒子径を有する一次粒子が凝集したものであり、研
磨に際し研磨圧により一次粒子近傍まで解砕される。
Examples of the metal oxide precursor include metal hydrates, nitrates, acetates, sulfates, oxalates, ammonium salts and carbonates. Among them, hydroxides are preferably used. Can be Average particle size is 2μm
Known methods can be applied as a method for producing the following metal oxide or a metal oxide precursor substance that becomes a metal oxide after firing. Among them, metal alkoxides (for example, aluminum isopropoxide, aluminum ethoxide, Alkoxide method of hydrolyzing aluminum n-isopropoxide, aluminum n-butoxide, etc. in alcohol, aluminum halide and silicon halide (for example, aluminum chloride, aluminum bromide,
A gas phase method in which a metal compound such as aluminum iodide, silicon chloride, silicon bromide, and silicon iodide is vaporized and calcined and hydrolyzed in an oxyhydrogen flame can be used. The aluminum oxide or silicon oxide powder obtained by these methods is an aggregate of primary particles having an average particle diameter of about 0.5 μm or less, usually about 0.01 μm to about 0.2 μm. Crushed to near primary particles.

【0018】セリウム化合物としては、金属酸化物或い
は金属酸化物の前駆体を分散した溶媒中に溶解、或いは
均一に分散するセリウム化合物(III 価かIV 価)であ
れば特に制限されるものではなく、例えば硝酸セリウ
ム、酢酸セリウム、硫酸セリウム、塩化セリウム、シュ
ウ酸セリウム、炭酸セリウム、硫酸セリウムアンモニウ
ムおよび硝酸セリウムアンモニウム等の硝酸塩、酢酸
塩、硫酸塩、シュウ酸塩、アンモニウム塩あるいは炭酸
等を挙げることができる。好ましくはセリウム化合物と
しては硝酸セリウム、酢酸セリウム、硫酸セリウム、塩
化セリウム等が挙げられる。
The cerium compound is not particularly limited as long as it is a cerium compound (III valence or IV valence) which is dissolved or uniformly dispersed in a solvent in which a metal oxide or a precursor of a metal oxide is dispersed. For example, nitrates, acetates, sulfates, oxalates, ammonium salts or carbonates such as cerium nitrate, cerium acetate, cerium sulfate, cerium chloride, cerium oxalate, cerium carbonate, cerium ammonium sulfate and cerium ammonium nitrate Can be. Preferably, the cerium compound includes cerium nitrate, cerium acetate, cerium sulfate, cerium chloride and the like.

【0019】セリウム化合物を添加、混合した金属酸化
物或いは金属酸化物前駆体を分散した溶媒は、次いで乾
燥し、溶媒を除去した後、約600〜約1100℃、1
分以上、通常約10分〜約5時間焼成する。該溶媒の乾
燥は、フラッシュ乾燥機或いは気流乾燥機の使用が推奨
されるが、凝集力の小さい微粒の乾燥粉末体が得られる
ならば特に制限されるものではない。
The solvent in which the metal oxide or the metal oxide precursor to which the cerium compound is added and mixed is dispersed is then dried and the solvent is removed.
Baking for at least 10 minutes, usually about 10 minutes to about 5 hours. For the drying of the solvent, use of a flash dryer or a flash dryer is recommended, but there is no particular limitation as long as a fine dry powder having a small cohesive force can be obtained.

【0020】乾燥後の焼成温度が上記より低いとセリウ
ム源であるセリウム化合物が酸化セリウムになりえず、
またこの温度を超える場合には粒径が大きくなりすぎ研
磨材としての使用時に欠陥の発生の原因となりうる。ま
た、金属酸化物が酸化アルミニウムの場合には、焼成後
の酸化アルミニウムの結晶形が主としてγ−アルミナ等
の遷移アルミナや非晶質アルミナであるように焼成す
る。かかる焼成条件は上記焼成温度ならびに時間の範囲
から適宜選択すればよい。
If the firing temperature after drying is lower than the above, the cerium compound as the cerium source cannot be cerium oxide,
On the other hand, if the temperature is higher than this, the particle size becomes too large, which may cause defects when used as an abrasive. When the metal oxide is aluminum oxide, firing is performed so that the crystal form of the aluminum oxide after firing is mainly transition alumina such as γ-alumina or amorphous alumina. Such firing conditions may be appropriately selected from the ranges of the firing temperature and time.

【0021】焼成装置としてはロータリーキルン、瞬間
仮焼炉、充填式焼成炉、流動式焼成炉、トンネル炉、真
空焼成炉、シャトル炉等の公知の焼成炉が使用可能であ
り、特に制限されないが、通常、生産性と材質の耐熱性
等の点からロータリーキルン、トンネル炉、シャトル炉
等が好適である。
As the sintering apparatus, known sintering furnaces such as a rotary kiln, a flash calciner, a filling sintering furnace, a fluidized sintering furnace, a tunnel furnace, a vacuum sintering furnace, and a shuttle furnace can be used. Usually, a rotary kiln, a tunnel furnace, a shuttle furnace, and the like are preferable in terms of productivity and heat resistance of the material.

【0022】上記方法で得られる酸化セリウムを含有す
る金属酸化物(酸化アルミニウム、酸化ケイ素または酸
化チタン)は、その表面状態を透過型電子顕微鏡で観察
した場合、金属酸化物表面を酸化セリウムで被覆したも
の、金属酸化物表面の一部を被覆したもの、あるいは金
属酸化物粒子内に酸化セリウムを内包したいずれかの状
態を呈している。酸化セリウムを含有する金属酸化物の
平均粒子径は約2μm以下、好ましくは約0.2〜約
1.5μmである。
When the surface state of a metal oxide containing cerium oxide (aluminum oxide, silicon oxide or titanium oxide) obtained by the above method is observed with a transmission electron microscope, the surface of the metal oxide is coated with cerium oxide. In this case, the metal oxide particles have a state in which cerium oxide is included in the metal oxide particles, or a state in which cerium oxide is included in the metal oxide particles. The average particle size of the metal oxide containing cerium oxide is about 2 μm or less, preferably about 0.2 to about 1.5 μm.

【0023】当該研磨材を半導体基板上に形成された金
属膜の平坦化に用いる場合には、当該研磨材と酸化剤、
必要に応じて水よりなる研磨用組成物をスラリー状で用
いる。研磨用組成物の形成は研磨材と酸化剤、必要に応
じて水を同時に混合・分散してもよいし、研磨材と水、
研磨材と酸化剤、酸化剤と水を予め混合しておいた後、
研磨剤としての適用時に不足する他の成分を混合し、分
散使用することもできる。スラリーにする分散方法とし
ては、例えば、ホモジナイザー、超音波、湿式媒体ミル
等による分散方法が挙げられる。スラリー濃度としては
通常約1〜約30重量%(研磨用組成物中の研磨材含有
量)で用いられる。本発明の研磨用組成物には必要に応
じて分散剤、沈降防止剤および消泡剤等の公知の添加剤
を添加し使用することは勿論可能である。
When the polishing material is used for flattening a metal film formed on a semiconductor substrate, the polishing material and an oxidizing agent are used.
If necessary, a polishing composition comprising water is used in the form of a slurry. The formation of the polishing composition, the abrasive and the oxidizing agent, if necessary, water may be mixed and dispersed simultaneously, the abrasive and water,
After pre-mixing abrasive and oxidizer, oxidizer and water,
Other components that are insufficient when applied as an abrasive can be mixed and dispersed. Examples of the dispersion method for forming a slurry include a dispersion method using a homogenizer, ultrasonic waves, a wet medium mill, or the like. The slurry concentration is usually about 1 to about 30% by weight (the content of the abrasive in the polishing composition). It is of course possible to add known additives such as a dispersant, an antisettling agent and an antifoaming agent to the polishing composition of the present invention, if necessary.

【0024】このようにして調整された本発明の研磨用
組成物は半導体基板上に形成された金属膜の平坦化に適
用される。この場合の研磨用組成物のスラリーpHは、
通常約7以下、好ましくは約5以下で使用される。研磨
対象となる半導体基板上の金属膜は、特に制限されない
が、例えば、タングステンW,アルミニウムAl, 銅C
u、チタニウムTiやこれらの合金等の公知の配線、プ
ラグ用、コンタクトメタル用の金属膜が挙げられる。
The polishing composition of the present invention prepared as described above is applied to flatten a metal film formed on a semiconductor substrate. The slurry pH of the polishing composition in this case is
Usually, about 7 or less, preferably about 5 or less is used. The metal film on the semiconductor substrate to be polished is not particularly limited. For example, tungsten W, aluminum Al, copper C
and known metal films for wiring, plugs, and contact metals such as u, titanium Ti, and alloys thereof.

【0025】[0025]

【発明の効果】以上詳述した本発明によれば、酸化アル
ミニウム、酸化ケイ素或いは酸化チタンに酸化セリウム
を含有させて得られた研磨材に酸化剤を混合するという
簡単な方法で、金属膜/絶縁膜の研磨選択性に優れ、高
速で金属膜を研磨し、かつソフトエラーの原因となるα
線放射量の少ない研磨用組成物を見い出したものであ
り、半導体基板上の金属膜の研磨は勿論のこと、磁気デ
ィスク基板や金属の表面処理用の研磨用組成物として、
その産業上における利用価値は頗る大なるものである。
According to the present invention described in detail above, a metal film / aluminum, silicon oxide or titanium oxide is mixed with an oxidizing agent in a polishing material obtained by adding cerium oxide to the metal film. Α which is excellent in polishing selectivity of insulating film, polish metal film at high speed, and causes soft error
A polishing composition with a small amount of linear radiation has been found, and as well as polishing a metal film on a semiconductor substrate, as a polishing composition for surface treatment of a magnetic disk substrate or metal,
The utility value in the industry is very large.

【0026】[0026]

【実施例】以下、本発明を実施例を挙げて説明するが、
本発明はこれらによって限定されるものではない。尚、
本発明に於ける測定は以下の方法により実施した。
The present invention will be described below with reference to examples.
The present invention is not limited by these. still,
The measurement in the present invention was performed by the following method.

【0027】平均粒子径(二次粒子径):マイクロトラ
ックMKII粒度分析計(SPAモデル7997−20
日機装株式会社製)により累積50%径を測定した。
Average particle size (secondary particle size): Microtrac MKII particle size analyzer (SPA model 7997-20)
(Nikkiso Co., Ltd.)).

【0028】BET比表面積:流動式比表面積自動測定
装置(フローソーブII 2300PC−1A、株式会
社島津製作所製)により測定した。
BET specific surface area: BET specific surface area was measured with a flow-type specific surface area automatic measuring device (Flowsorb II 2300PC-1A, manufactured by Shimadzu Corporation).

【0029】α線放出量:α線量が0.1c/cm2
hr以上はアロカ社製(モデルZDS−451)のα線
量測定装置、α線量が0.1c/cm2 ・hr未満のも
のは住友化学工業製(LACS−4000M)低レベル
α線測定装置にて測定した。
Α-ray emission amount: α dose is 0.1 c / cm 2 ·
For hr or more, use α-dose measuring device manufactured by Aloka (Model ZDS-451), and for α-dose less than 0.1 c / cm 2 · hr, use low-level α-ray measuring device manufactured by Sumitomo Chemical (LACS-4000M). It was measured.

【0030】実施例1 アルミニウムアルコキシドの加水分解により製造された
平均粒子0.6μmの水酸化アルミニウム250gをイ
ソプロピルアルコール(以下IPAと称する)940m
l中に懸濁させてなるスラリー中に、IPA170gに
硝酸セリウム[Ce(NO3 3 ・6H2 O]52.6
9g(酸化アルミニウムに対しCeとして10重量%に
相当する)を溶解させた液を滴下、撹拌混合し、更にこ
の混合液を2時間加熱還流した後、乾燥させた。この乾
燥粉末を1050℃で3時間焼成を行った。得られた粉
末のX線回折によりみた酸化アルミニウムの結晶形はγ
−アルミナであり、平均粒子径は0.8μm、BET比
表面積は56m2 /gであり、透過型電子顕微鏡での元
素分析(TEM−EDX)結果から、アルミナの一次粒
子各々にセリウムが含有されていることも確認された。
このようにして得られた酸化セリウム含有酸化アルミニ
ウム粉末9gを水141gに分散させ6重量%濃度のス
ラリーとした湿式粉砕した(湿式粉砕後の平均粒子径は
0.51μm、BET比表面積は57m2 /gであっ
た)後、酸化剤として硝酸鉄九水和物の10重量%水溶
液150gを酸化セリウム含有酸化アルミニウムスラリ
ーに混合し(混合比1:1、スラリー濃度3重量%、p
H=1.1)研磨組成物を形成した後、これを用いて、
タングステン膜、チタニウム膜及びシリコン酸化膜を研
磨した。タングステン膜およびチタニウム膜の場合、膜
厚約0.8μmの膜を加工圧力300g/cm2 、定盤
回転数200rpmの条件下で、研磨布にSUBA80
0(商品名、ロデール社)を用いて行った。一方シリコ
ン酸化膜の場合、膜厚約1μmの膜を加工圧力300g
/cm2 、定盤回転数140rpmの条件下で、研磨布
にSUBA800(商品名、ロデール社)を用いて行っ
た。研磨速度および研磨後の表面状態(欠陥の有無)を
測定した。測定条件を表1、測定結果を表2に示す。ま
た研磨材のα線量を測定したところ、α線量は0.00
7c/cm2 ・hrであった。
Example 1 250 g of aluminum hydroxide having an average particle size of 0.6 μm produced by hydrolysis of aluminum alkoxide was mixed with 940 m of isopropyl alcohol (hereinafter referred to as IPA).
cerium nitrate [Ce (NO 3 ) 3 .6H 2 O] 52.6 in 170 g of IPA in a slurry suspended in
A solution in which 9 g (corresponding to 10% by weight as Ce with respect to aluminum oxide) was dissolved was added dropwise, stirred and mixed, and the mixed solution was heated under reflux for 2 hours and then dried. The dried powder was fired at 1050 ° C. for 3 hours. The crystal form of aluminum oxide as determined by X-ray diffraction of the obtained powder is γ
-Alumina, average particle diameter is 0.8 μm, BET specific surface area is 56 m 2 / g, and elemental analysis with a transmission electron microscope (TEM-EDX) shows that each primary particle of alumina contains cerium. It was also confirmed that.
9 g of the cerium oxide-containing aluminum oxide powder thus obtained was dispersed in 141 g of water and wet-pulverized into a slurry having a concentration of 6% by weight (average particle diameter after wet pulverization is 0.51 μm, BET specific surface area is 57 m 2). / G), and 150 g of a 10% by weight aqueous solution of iron nitrate nonahydrate as an oxidizing agent was mixed with the cerium oxide-containing aluminum oxide slurry at a mixing ratio of 1: 1 and a slurry concentration of 3% by weight.
H = 1.1) After forming the polishing composition, it was used to
The tungsten film, titanium film and silicon oxide film were polished. In the case of a tungsten film and a titanium film, a film having a thickness of about 0.8 μm is formed on a polishing pad under the conditions of a processing pressure of 300 g / cm 2 and a platen rotation speed of 200 rpm.
0 (trade name, Rodale). On the other hand, in the case of a silicon oxide film, a film having a thickness of about 1 μm is processed at a processing pressure of 300 g.
The polishing was performed using SUBA800 (trade name, Rodale) as a polishing cloth under the conditions of / cm 2 and a platen rotation speed of 140 rpm. The polishing rate and the surface state after polishing (the presence or absence of defects) were measured. Table 1 shows the measurement conditions and Table 2 shows the measurement results. When the α dose of the abrasive was measured, the α dose was 0.00
It was 7 c / cm 2 · hr.

【0031】実施例2 硝酸セリウムの使用量105.38g(酸化アルミニウ
ムに対しCeとして20重量%に相当する)に変えた他
は実施例1と同様にして酸化セリウム含有酸化アルミニ
ウム粉末を得た。この粉末の結晶形はγ−アルミナであ
り、平均粒子径は0.8μm、BET比表面積は51m
2 /gであった。得られた酸化セリウム含有酸化アルミ
ニウム粉末を実施例1と同様の方法で研磨スラリー(湿
式粉砕後の平均粒子径は0.53μm、BET比表面積
は56m 2 /gであった)150gを得、このスラリー
に酸化剤として硝酸鉄九水和物の10重量%水溶液15
0gを混合した後(混合比1:1、スラリー濃度3重量
%)、実施例1と同条件でタングステン膜、チタニウム
膜及びシリコン酸化膜を研磨した。測定条件を表1、測
定結果を表2に示す。
Example 2 The amount of cerium nitrate used was 105.38 g (aluminum oxide)
(Equivalent to 20% by weight as Ce)
Is a cerium oxide-containing aluminum oxide in the same manner as in Example 1.
Powder was obtained. The crystal form of this powder is γ-alumina.
Average particle diameter is 0.8 μm, BET specific surface area is 51 m
Two/ G. The obtained cerium oxide-containing aluminum oxide
Polishing slurry (wet) was prepared in the same manner as in Example 1.
Average particle size after formula pulverization is 0.53 μm, BET specific surface area
Is 56m Two/ G) of the slurry
10% by weight aqueous solution of iron nitrate nonahydrate as an oxidizing agent
After mixing 0 g (mixing ratio 1: 1, slurry concentration 3 weight
%), Tungsten film and titanium under the same conditions as in Example 1.
The film and the silicon oxide film were polished. Table 1 shows the measurement conditions.
The results are shown in Table 2.

【0032】実施例3 実施例2と同じ酸化剤添加前のスラリー150gに、酸
化剤として30%過酸化水素水を97.05g、水を5
2.95g(過酸化水素添加量約10容量%、スラリー
濃度3重量%)を混合し、硝酸によりpHを3.8に調
整後、実施例1と同条件でタングステン膜、チタニウム
膜及びシリコン酸化膜を研磨した。測定条件を表1、測
定結果を表2に示す。
Example 3 To 150 g of the same slurry as in Example 2 before adding the oxidizing agent, 97.05 g of a 30% hydrogen peroxide solution as an oxidizing agent and 5
After mixing 2.95 g (addition amount of hydrogen peroxide of about 10% by volume and slurry concentration of 3% by weight) and adjusting the pH to 3.8 with nitric acid, a tungsten film, a titanium film and a silicon oxide film were formed under the same conditions as in Example 1. The film was polished. Table 1 shows the measurement conditions and Table 2 shows the measurement results.

【0033】実施例4 実施例2と同じ酸化剤添加前のスラリー150gに、酸
化剤として30%過酸化水素水を97.05g、水を5
2.95g(過酸化水素添加量約10容量%、スラリー
濃度3重量%)を混合し、硝酸によりpHを7.0に調
整後、実施例1と同条件でタングステン膜、チタニウム
膜及びシリコン酸化膜を研磨した。測定条件を表1、測
定結果を表2に示す。
Example 4 The same oxidizing agent as in Example 2 was added to 150 g of the slurry before addition of 97.05 g of 30% aqueous hydrogen peroxide and 5 parts of water as an oxidizing agent.
2.95 g (about 10% by volume of hydrogen peroxide added, slurry concentration of 3% by weight) were mixed, and the pH was adjusted to 7.0 with nitric acid. Then, under the same conditions as in Example 1, the tungsten film, titanium film and silicon oxide were used. The film was polished. Table 1 shows the measurement conditions and Table 2 shows the measurement results.

【0034】実施例5 焼成温度を850℃で3時間行う他は、実施例2と同様
にして酸化セリウム含有酸化アルミニウム粉末を得た。
この粉末の結晶形は非晶質であり、平均粒子径は2.1
μm、BET比表面積は128m2 /gであった。この
ようにして得られた酸化セリウム含有酸化アルミニウム
粉末9gを水141gに分散させ6重量%濃度のスラリ
ーとし、湿式粉砕した後(湿式粉砕後の平均粒子径は
0.39μm、BET比表面積は129m2 /gであっ
た)、酸化剤として硝酸鉄九水和物の10重量%水溶液
150gを酸化セリウム含有酸化アルミニウムスラリー
に混合し(混合比1:1、スラリー濃度3重量%、pH
=1.1)研磨用組成物を形成した後、実施例1と同条
件でタングステン膜、チタニウム膜及びシリコン酸化膜
を研磨した。測定条件を表1、測定結果を表2に示す。
Example 5 A cerium oxide-containing aluminum oxide powder was obtained in the same manner as in Example 2, except that the firing temperature was 850 ° C. for 3 hours.
The crystal form of this powder is amorphous, and the average particle size is 2.1.
μm, and the BET specific surface area was 128 m 2 / g. 9 g of the cerium oxide-containing aluminum oxide powder thus obtained was dispersed in 141 g of water to form a slurry having a concentration of 6% by weight, and wet-pulverized (the average particle diameter after wet pulverization was 0.39 μm, and the BET specific surface area was 129 m). 2 / g), and 150 g of a 10% by weight aqueous solution of iron nitrate nonahydrate as an oxidizing agent was mixed with the cerium oxide-containing aluminum oxide slurry at a mixing ratio of 1: 1, a slurry concentration of 3% by weight, and a pH of
= 1.1) After forming the polishing composition, the tungsten film, the titanium film, and the silicon oxide film were polished under the same conditions as in Example 1. Table 1 shows the measurement conditions and Table 2 shows the measurement results.

【0035】比較例1 酸化セリウム含有酸化アルミニウムスラリーに代え、平
均粒子径0.40μm、BET比表面積150m2 /g
のγ−アルミナ粉末を用いた他は実施例1と同様の方法
で研磨スラリー150gを得、このスラリーに酸化剤と
して硝酸鉄九水和物の10重量%水溶液150gを混合
した後(混合比1:1、スラリー濃度3重量%)、実施
例1と同条件でタングステン膜、チタニウム膜及びシリ
コン酸化膜を研磨した。測定条件を表1、測定結果を表
2に示す。
Comparative Example 1 The average particle diameter was 0.40 μm and the BET specific surface area was 150 m 2 / g in place of the cerium oxide-containing aluminum oxide slurry.
A polishing slurry of 150 g was obtained in the same manner as in Example 1 except that γ-alumina powder was used, and 150 g of a 10% by weight aqueous solution of iron nitrate nonahydrate was mixed as an oxidizing agent with the slurry (mixing ratio: 1). : 1, slurry concentration 3% by weight) under the same conditions as in Example 1 to polish the tungsten film, titanium film and silicon oxide film. Table 1 shows the measurement conditions and Table 2 shows the measurement results.

【0036】比較例2 酸化セリウム含有酸化アルミニウムスラリーに代え、平
均粒子径0.39μm、 BET比表面積25m2 /g
のα−アルミナ粉末を用いた他は実施例1と同様の方法
で研磨スラリー150gを得、このスラリーに酸化剤と
して硝酸鉄九水和物の10重量%水溶液150gを混合
した後(混合比1:1、スラリー濃度3重量%)、実施
例1と同条件でタングステン膜、チタニウム膜及びシリ
コン酸化膜を研磨した。測定条件を表1、測定結果を表
2に示す。
Comparative Example 2 The average particle diameter was 0.39 μm and the BET specific surface area was 25 m 2 / g in place of the cerium oxide-containing aluminum oxide slurry.
A polishing slurry (150 g) was obtained in the same manner as in Example 1 except that α-alumina powder was used, and 150 g of a 10% by weight aqueous solution of iron nitrate nonahydrate was mixed as an oxidizing agent (mixing ratio: 1). : 1, slurry concentration 3% by weight) under the same conditions as in Example 1 to polish the tungsten film, titanium film and silicon oxide film. Table 1 shows the measurement conditions and Table 2 shows the measurement results.

【0037】比較例3 酸化セリウム含有酸化アルミニウムスラリーに代え、平
均粒子径0.40μm、BET比表面積150m2 /g
のγ−アルミナ粉末7.2gに、平均粒子径0.3μ
m、BET比表面積105.5m2 /gの酸化セリウム
粉末1.8g(γ−アルミナに対しCeとして20重量
%)混合し、この混合粉末を用いた他は実施例1と同様
の方法で研磨スラリー150gを得、このスラリーに硝
酸鉄九水和物の10重量%水溶液150gを混合比1:
1で混合した後(3重量%、pH=1.1)、実施例1
と同条件でタングステン膜、チタニウム膜及びシリコン
酸化膜を研磨した。測定条件を表1、測定結果を表2に
示す。
Comparative Example 3 An average particle diameter of 0.40 μm and a BET specific surface area of 150 m 2 / g were used instead of the cerium oxide-containing aluminum oxide slurry.
To 7.2 g of γ-alumina powder of
m, 1.8 g of cerium oxide powder having a BET specific surface area of 105.5 m 2 / g (20% by weight as Ce with respect to γ-alumina), and polished in the same manner as in Example 1 except that this mixed powder was used. 150 g of a slurry was obtained, and 150 g of a 10% by weight aqueous solution of iron nitrate nonahydrate was added to the slurry at a mixing ratio of 1:
Example 1 after mixing with 1 (3% by weight, pH = 1.1)
The tungsten film, titanium film and silicon oxide film were polished under the same conditions as described above. Table 1 shows the measurement conditions and Table 2 shows the measurement results.

【0038】比較例4 実施例2と同じ酸化セリウム含有酸化アルミニウム粉末
9gを水291gに分散させ3重量%とした後、硝酸に
よりpHを1.1に調整後、実施例1と同条件でタング
ステン膜、チタニウム膜及びシリコン酸化膜を研磨し
た。測定条件を表1、測定結果を表2に示す。
Comparative Example 4 9 g of the same cerium oxide-containing aluminum oxide powder as in Example 2 was dispersed in 291 g of water to 3% by weight, and the pH was adjusted to 1.1 with nitric acid. The film, titanium film and silicon oxide film were polished. Table 1 shows the measurement conditions and Table 2 shows the measurement results.

【0039】比較例5 硝酸セリウムの使用量15.81g(酸化アルミニウム
に対しCeとして3重量%に相当する)に変えた他は実
施例1と同様にして酸化セリウム含有酸化アルミニウム
粉末を得た。この粉末の結晶形はγ−アルミナであり、
平均粒子径は0.9μm、BET比表面積は55m2
gであった。得られた酸化セリウム含有酸化アルミニウ
ム粉末を実施例1と同様の方法で研磨スラリー150g
を得、このスラリーに酸化剤として硝酸鉄九水和物の1
0重量%水溶液150gを混合した後(混合比1:1、
スラリー濃度3重量%)、実施例1と同条件でタングス
テン膜、チタニウム膜及びシリコン酸化膜を研磨した。
測定条件を表1、測定結果を表2に示す。
Comparative Example 5 A cerium oxide-containing aluminum oxide powder was obtained in the same manner as in Example 1, except that the amount of cerium nitrate used was changed to 15.81 g (corresponding to 3% by weight of Ce based on aluminum oxide). The crystal form of this powder is γ-alumina,
The average particle diameter is 0.9 μm, and the BET specific surface area is 55 m 2 /
g. The obtained cerium oxide-containing aluminum oxide powder was polished to 150 g in the same manner as in Example 1.
Was obtained, and 1 part of iron nitrate nonahydrate was added to this slurry as an oxidizing agent.
After mixing 150 g of a 0% by weight aqueous solution (mixing ratio 1: 1,
Under the same conditions as in Example 1, the tungsten film, the titanium film, and the silicon oxide film were polished under the same conditions as in Example 1.
Table 1 shows the measurement conditions and Table 2 shows the measurement results.

【0040】比較例6 実施例1の方法において、平均粒子径0.6μmの水酸
化アルミニウムに代え、同法により得られた平均粒子径
2.1μmの水酸化アルミニウムを用いた他は実施例1
と同様にして酸化セリウム含有酸化アルミニウム粉末を
得た。この粉末の結晶形はγ−アルミナであり、平均粒
子径は2.5μm、BET比表面積は82m2 /gであ
った。得られた酸化セリウム含有酸化アルミニウム粉末
を実施例1と同様の方法で研磨スラリー150gを得、
このスラリーに酸化剤として硝酸鉄九水和物の10重量
%水溶液150gを混合した後(混合比1:1、スラリ
ー濃度3重量%)、実施例1と同条件でタングステン
膜、チタニウム膜及びシリコン酸化膜を研磨した。測定
条件を表1、測定結果を表2に示す。
Comparative Example 6 The procedure of Example 1 was repeated, except that the aluminum hydroxide having an average particle size of 2.1 μm was used instead of the aluminum hydroxide having an average particle size of 0.6 μm.
In the same manner as in the above, a cerium oxide-containing aluminum oxide powder was obtained. The crystal form of this powder was γ-alumina, the average particle size was 2.5 μm, and the BET specific surface area was 82 m 2 / g. The obtained cerium oxide-containing aluminum oxide powder was used in the same manner as in Example 1 to obtain a polishing slurry (150 g).
This slurry was mixed with 150 g of a 10% by weight aqueous solution of iron nitrate nonahydrate as an oxidizing agent (mixing ratio 1: 1, slurry concentration 3% by weight), and then subjected to the same conditions as in Example 1 such as tungsten film, titanium film and silicon film. The oxide film was polished. Table 1 shows the measurement conditions and Table 2 shows the measurement results.

【0041】比較例7 酸化セリウム含有酸化アルミニウムスラリーに代え、平
均粒子径3.5μm、BET比表面積5.8m2 /gの
酸化セリウム粉末を用いた他は実施例1と同様の方法で
研磨スラリー150gを得、このスラリーに酸化剤とし
て硝酸鉄九水和物の10重量%水溶液150gを混合し
た後(混合比1:1、スラリー濃度3重量%)、実施例
1と同条件でタングステン膜、チタニウム膜及びシリコ
ン酸化膜を研磨した。測定条件を表1、測定結果を表2
に示す。また研磨材のα線量を測定したところ、α線量
は250c/cm2 ・hrであった。
Comparative Example 7 A polishing slurry was prepared in the same manner as in Example 1, except that a cerium oxide-containing aluminum oxide slurry was replaced by a cerium oxide powder having an average particle size of 3.5 μm and a BET specific surface area of 5.8 m 2 / g. 150 g of a 10% by weight aqueous solution of iron nitrate nonahydrate as an oxidizing agent was mixed with the slurry (mixing ratio 1: 1, slurry concentration 3% by weight). The titanium film and the silicon oxide film were polished. Table 1 shows the measurement conditions and Table 2 shows the measurement results.
Shown in When the α dose of the abrasive was measured, the α dose was 250 c / cm 2 · hr.

【0042】比較例8 実施例2と同じ酸化剤添加前のスラリー150gに、酸
化剤として30%過酸化水素水を97.05g、水を5
2.95g(過酸化水素添加量約10容量%、スラリー
濃度3重量%)を混合し、硝酸によりpHを9.0に調
整後、実施例1と同条件でタングステン膜、チタニウム
膜及びシリコン酸化膜を研磨した。測定条件を表1、測
定結果を表2に示す。
Comparative Example 8 To 150 g of the same slurry as in Example 2 before adding the oxidizing agent, 97.05 g of a 30% hydrogen peroxide solution as an oxidizing agent and 5
After mixing 2.95 g (addition amount of hydrogen peroxide of about 10% by volume and slurry concentration of 3% by weight) and adjusting the pH to 9.0 with nitric acid, a tungsten film, a titanium film and a silicon oxide film were obtained under the same conditions as in Example 1. The film was polished. Table 1 shows the measurement conditions and Table 2 shows the measurement results.

【0043】比較例9 酸化セリウム含有酸化アルミニウムスラリーに代え、平
均粒子径0.40μm、BET比表面積150m2 /g
のγ−アルミナ粉末を用いた他は実施例1と同様の方法
で酸化剤添加前の研磨スラリー150gを得、このスラ
リーに酸化剤として30%過酸化水素水を97.05
g、水を52.95g(過酸化水素添加量約10容量
%、スラリー濃度3重量%)を混合し、硝酸によりpH
を3.8に調整後、実施例1と同条件でタングステン
膜、チタニウム膜及びシリコン酸化膜を研磨した。測定
条件を表1、測定結果を表2に示す。
Comparative Example 9 An average particle diameter of 0.40 μm and a BET specific surface area of 150 m 2 / g were used instead of the cerium oxide-containing aluminum oxide slurry.
In the same manner as in Example 1 except that γ-alumina powder was used, 150 g of a polishing slurry before addition of an oxidizing agent was obtained, and 30% hydrogen peroxide water as an oxidizing agent was added to the slurry at 97.05.
g, water, and 52.95 g of water (addition amount of hydrogen peroxide: about 10% by volume, slurry concentration: 3% by weight).
Was adjusted to 3.8, and the tungsten film, titanium film, and silicon oxide film were polished under the same conditions as in Example 1. Table 1 shows the measurement conditions and Table 2 shows the measurement results.

【0044】比較例10 酸化セリウム含有酸化アルミニウムスラリーに代え、平
均粒子径0.39μm、BET比表面積25m2 /gの
α−アルミナ粉末を用いた他は実施例1と同様の方法で
酸化剤添加前の研磨スラリー150gを得、このスラリ
ーに酸化剤として30%過酸化水素水を97.05g、
水を52.95g(過酸化水素添加量約10容量%、ス
ラリー濃度3重量%)を混合し、硝酸によりpHを3.
8に調整後、実施例1と同条件でタングステン膜、チタ
ニウム膜及びシリコン酸化膜を研磨した。測定条件を表
1、測定結果を表2に示す。
Comparative Example 10 An oxidizing agent was added in the same manner as in Example 1 except that α-alumina powder having an average particle diameter of 0.39 μm and a BET specific surface area of 25 m 2 / g was used instead of the cerium oxide-containing aluminum oxide slurry. 150 g of the previous polishing slurry was obtained, and 97.05 g of a 30% hydrogen peroxide solution as an oxidizing agent was added to the slurry.
Water was mixed with 52.95 g (about 10% by volume of hydrogen peroxide added, slurry concentration of 3% by weight), and the pH was adjusted to 3.
After adjustment to 8, the tungsten film, the titanium film, and the silicon oxide film were polished under the same conditions as in Example 1. Table 1 shows the measurement conditions and Table 2 shows the measurement results.

【0045】比較例11 実施例2と同じ酸化セリウム含有酸化アルミニウム粉末
9gを水291gに分散させ3重量%とした後、硝酸に
よりpHを3.8に調整後、実施例1と同条件でタング
ステン膜、チタニウム膜及びシリコン酸化膜を研磨し
た。測定条件を表1、測定結果を表2に示す。
Comparative Example 11 The same 9 g of cerium oxide-containing aluminum oxide powder as in Example 2 was dispersed in 291 g of water to 3 wt%, and the pH was adjusted to 3.8 with nitric acid. The film, titanium film and silicon oxide film were polished. Table 1 shows the measurement conditions and Table 2 shows the measurement results.

【0046】比較例12 実施例5と同じ酸化セリウム含有酸化アルミニウム粉末
9gを水291gに分散させ3重量%とした後、硝酸に
よりpHを1.1に調整後、実施例1と同条件でタング
ステン膜、チタニウム膜及びシリコン酸化膜を研磨し
た。測定条件を表1、測定結果を表2に示す。
Comparative Example 12 The same 9 g of cerium oxide-containing aluminum oxide powder as in Example 5 was dispersed in 291 g of water to 3 wt%, and the pH was adjusted to 1.1 with nitric acid. The film, titanium film and silicon oxide film were polished. Table 1 shows the measurement conditions and Table 2 shows the measurement results.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】表1、2より本発明で得られる研磨用組成
物を用いると、半導体基板上に形成された金属膜を欠陥
を発生させずに高速に研磨し、しかも金属膜/絶縁膜の
研磨選択性に優れ、絶縁膜表面の欠陥の発生を抑えるこ
とがわかる。
From Tables 1 and 2, when the polishing composition obtained by the present invention is used, a metal film formed on a semiconductor substrate is polished at high speed without generating defects, and a metal film / insulating film is polished. It can be seen that the selectivity is excellent and the generation of defects on the surface of the insulating film is suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】CMP技術を用いた金属配線の形成例を示す概
略断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of forming a metal wiring using a CMP technique.

【符号の説明】[Explanation of symbols]

1.半導体基板 2.絶縁膜 3.コンタクトメタル層 4.バリヤーメタル層 5.金属膜 1. Semiconductor substrate 2. 2. Insulating film Contact metal layer 4. 4. barrier metal layer Metal film

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】酸化セリウムをCeに換算し5重量%〜4
0重量%含有してなる平均粒子径が2μm以下の酸化ア
ルミニウム、酸化ケイ素および酸化チタンより選ばれた
少なくとも1種の金属酸化物よりなる研磨材(A)およ
び酸化剤(B)よりなることを特徴とする研磨用組成
物。
1. Cerium oxide is converted to Ce in an amount of 5% by weight to 4% by weight.
An abrasive (A) comprising at least one metal oxide selected from aluminum oxide, silicon oxide and titanium oxide having an average particle diameter of 2 μm or less and containing 0% by weight, and an oxidizing agent (B). Characteristic polishing composition.
【請求項2】研磨材のBET比表面積が約40〜約15
0m2 /gであることを特徴とする請求項1記載の研磨
用組成物。
2. The abrasive has a BET specific surface area of about 40 to about 15
2. The polishing composition according to claim 1, wherein the composition is 0 m 2 / g.
【請求項3】酸化アルミニウムの結晶形が遷移アルミナ
および/または非晶質アルミナであることを特徴とする
請求項1記載の研磨用組成物。
3. The polishing composition according to claim 1, wherein the crystal form of the aluminum oxide is transition alumina and / or amorphous alumina.
【請求項4】酸化剤が過酸化水素、硝酸鉄、沃素酸、沃
素酸塩、過塩素酸および過塩素酸塩の少なくとも1種で
あることを特徴とする請求項1記載の研磨用組成物。
4. The polishing composition according to claim 1, wherein the oxidizing agent is at least one of hydrogen peroxide, iron nitrate, iodic acid, iodate, perchloric acid and perchlorate. .
【請求項5】研磨材(A)が、平均粒子径が2μm以下
である酸化アルミニウム、酸化ケイ素および酸化チタン
より選ばれた少なくとも1種の金属酸化物、あるいは焼
成後の平均粒子径が2μm以下となる酸化アルミニウ
ム、酸化ケイ素および酸化チタンより選ばれた少なくと
も1種の金属酸化物の前駆体物質を、溶媒に懸濁させ、
これに焼成後酸化セリウムとなるセリウム化合物を添加
混合し、乾燥し、焼成して得た金属酸化物であることを
特徴とする請求項1記載の研磨用組成物。
5. The abrasive (A) has at least one metal oxide selected from aluminum oxide, silicon oxide and titanium oxide having an average particle size of 2 μm or less, or has an average particle size after firing of 2 μm or less. Aluminum oxide, silicon oxide and at least one metal oxide precursor substance selected from titanium oxide to be suspended in a solvent,
The polishing composition according to claim 1, wherein the metal oxide is a metal oxide obtained by adding and mixing a cerium compound which becomes cerium oxide after firing, drying and firing.
【請求項6】スラリー状態で用いることを特徴とする請
求項1記載の研磨用組成物。
6. The polishing composition according to claim 1, wherein the polishing composition is used in a slurry state.
【請求項7】焼成後酸化セリウムとなるセリウム化合物
が、硝酸塩、酢酸塩、硫酸塩、シュウ酸塩、アンモニウ
ム塩あるいは炭酸塩から選ばれた少なくとも1種である
ことを特徴とする請求項5記載の研磨用組成物。
7. The cerium compound which becomes cerium oxide after firing is at least one selected from nitrates, acetates, sulfates, oxalates, ammonium salts and carbonates. Polishing composition.
【請求項8】スラリーのpHが7以下であることを特徴
とする請求項6記載の研磨用組成物。
8. The polishing composition according to claim 6, wherein the pH of the slurry is 7 or less.
【請求項9】スラリー濃度(スラリー中に含有される研
磨材の量)が、1〜30重量%であることを特徴とする
請求項6または8記載の研磨用組成物。
9. The polishing composition according to claim 6, wherein the slurry concentration (the amount of the abrasive contained in the slurry) is 1 to 30% by weight.
【請求項10】半導体基板上に形成された金属膜を、酸
化セリウムをCeに換算し5重量%〜40重量%含有し
てなる平均粒子径が2μm以下の酸化アルミニウム、酸
化ケイ素および酸化チタンより選ばれた少なくとも1種
の金属酸化物よりなる研磨材(A)、および酸化剤
(B)よりなる研磨用組成物スラリーをpH7以下で用
い、研磨することを特徴とする半導体基板上の金属膜の
平坦化方法。
10. A metal film formed on a semiconductor substrate, comprising cerium oxide in an amount of from 5 to 40% by weight in terms of Ce and having an average particle diameter of 2 μm or less, comprising aluminum oxide, silicon oxide and titanium oxide. A metal film on a semiconductor substrate, which is polished by using a polishing composition slurry comprising at least one selected metal oxide (A) and an oxidizing agent (B) at a pH of 7 or less. Flattening method.
【請求項11】研磨用組成物を構成する酸化剤が過酸化
水素、硝酸鉄、沃素酸、沃素酸塩、過塩素酸、過塩素酸
塩の少なくとも1種であることを特徴とする請求項10
記載の半導体基板上の金属膜の平坦化方法。
11. The polishing composition according to claim 1, wherein the oxidizing agent is at least one of hydrogen peroxide, iron nitrate, iodic acid, iodate, perchloric acid and perchlorate. 10
The flattening method of a metal film on a semiconductor substrate according to the above.
【請求項12】研磨に用いる研磨用組成物のスラリーp
Hが5以下であることを特徴とする請求項11記載の半
導体基板上の金属膜の平坦化方法。
12. A slurry p of a polishing composition used for polishing.
The method according to claim 11, wherein H is 5 or less.
JP23089097A 1996-08-29 1997-08-27 Composition for polishing, and method of flattening metal film on semiconductor substrate which uses the composition Pending JPH10125638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23089097A JPH10125638A (en) 1996-08-29 1997-08-27 Composition for polishing, and method of flattening metal film on semiconductor substrate which uses the composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22818696 1996-08-29
JP8-228186 1996-08-29
JP23089097A JPH10125638A (en) 1996-08-29 1997-08-27 Composition for polishing, and method of flattening metal film on semiconductor substrate which uses the composition

Publications (1)

Publication Number Publication Date
JPH10125638A true JPH10125638A (en) 1998-05-15

Family

ID=26528104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23089097A Pending JPH10125638A (en) 1996-08-29 1997-08-27 Composition for polishing, and method of flattening metal film on semiconductor substrate which uses the composition

Country Status (1)

Country Link
JP (1) JPH10125638A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001511468A (en) * 1997-07-25 2001-08-14 インフィネオン テクノロジース アクチエンゲゼルシャフト Abrasives for semiconductor substrates
KR20010109098A (en) * 2000-06-01 2001-12-08 가지와라 야스시 Molded body for polishing and surface plate for polishing using the same
WO2007052555A1 (en) * 2005-11-02 2007-05-10 Mitsui Mining & Smelting Co., Ltd. Cerium polishing agent
CN100369211C (en) * 2002-07-22 2008-02-13 清美化学股份有限公司 Semiconductor polishing compound, process for its production and polishing method
JP2009511719A (en) * 2005-10-14 2009-03-19 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Abrasive particle material and method for planarizing a workpiece using the abrasive particle material
JP2013062522A (en) * 2012-11-02 2013-04-04 Daikin Ind Ltd Residue removing liquid after semiconductor dry process and residue removing method using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001511468A (en) * 1997-07-25 2001-08-14 インフィネオン テクノロジース アクチエンゲゼルシャフト Abrasives for semiconductor substrates
KR20010109098A (en) * 2000-06-01 2001-12-08 가지와라 야스시 Molded body for polishing and surface plate for polishing using the same
CN100369211C (en) * 2002-07-22 2008-02-13 清美化学股份有限公司 Semiconductor polishing compound, process for its production and polishing method
JP2009511719A (en) * 2005-10-14 2009-03-19 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Abrasive particle material and method for planarizing a workpiece using the abrasive particle material
US8685123B2 (en) 2005-10-14 2014-04-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particulate material, and method of planarizing a workpiece using the abrasive particulate material
WO2007052555A1 (en) * 2005-11-02 2007-05-10 Mitsui Mining & Smelting Co., Ltd. Cerium polishing agent
JP2013062522A (en) * 2012-11-02 2013-04-04 Daikin Ind Ltd Residue removing liquid after semiconductor dry process and residue removing method using the same

Similar Documents

Publication Publication Date Title
US5697992A (en) Abrasive particle, method for producing the same, and method of use of the same
US5804513A (en) Abrasive composition and use of the same
JP5761234B2 (en) Polishing liquid for CMP and polishing method using the same
JP5963822B2 (en) Abrasive particles, polishing slurry, and method of manufacturing semiconductor device using the same
JP4554363B2 (en) Abrasive for semiconductor, manufacturing method thereof and polishing method
TWI283008B (en) Slurry for CMP and method of producing the same
JPH09321003A (en) Abrasive, its manufacturing method and insulating film flattening method on semiconductor substrate using the abrasive
JP6030145B2 (en) Polishing slurry and substrate polishing method using the same
JPWO2004023539A1 (en) Insulating film abrasive composition for semiconductor integrated circuit and method for producing semiconductor integrated circuit
JPH10125638A (en) Composition for polishing, and method of flattening metal film on semiconductor substrate which uses the composition
WO2017085904A1 (en) Polishing composition and polishing method
EP0826756A1 (en) Abrasive composition for polishing a metal layer on a semiconductor substrate, and use of the same
US6770218B1 (en) Composition for polishing metal on semiconductor wafer and method of using same
JP2010087454A (en) Cmp abrasive, and polishing method using the same
KR20220060342A (en) Method for producing composite particles in which the core is coated with cerium oxide particles, and composite particles manufactured thereby
JPH10135163A (en) Compd. for polishing metal film on semiconductor substrate and method of palnarizing the metal film on semiconductor substrate
JP2019196467A (en) Cmp abrasive and method for producing the same, and cmp polishing method
JPH1088111A (en) Composition for grinding use
CN113122146B (en) Chemical mechanical polishing solution and application method thereof
JP2011243789A (en) Polishing solution for cmp, and polishing method using the same
KR20040059572A (en) Slurry Composition for Chemical Mechanical Polishing of Tungsten with Improved Removal Rate and Dispersability
JP2007154156A (en) Metallic oxide microparticle, abrasive, and method for grinding substrate and method for producing semiconductor device using the abrasive,
KR102544609B1 (en) Polishing slurry composition for tungsten layer
JP2002280334A (en) Cerium oxide polishing agent and polishing of substrate using the same
KR20040059573A (en) Slurry Composition for Chemical Mechanical Polishing of Aluminium with Improved Removal Rate and Dispersability