JP4237957B2 - Quality evaluation method for cerium-based abrasive materials - Google Patents

Quality evaluation method for cerium-based abrasive materials Download PDF

Info

Publication number
JP4237957B2
JP4237957B2 JP2001302406A JP2001302406A JP4237957B2 JP 4237957 B2 JP4237957 B2 JP 4237957B2 JP 2001302406 A JP2001302406 A JP 2001302406A JP 2001302406 A JP2001302406 A JP 2001302406A JP 4237957 B2 JP4237957 B2 JP 4237957B2
Authority
JP
Japan
Prior art keywords
raw material
cerium
abrasive
rare earth
based abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001302406A
Other languages
Japanese (ja)
Other versions
JP2003105326A (en
Inventor
直義 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2001302406A priority Critical patent/JP4237957B2/en
Priority to CNB021439362A priority patent/CN1162500C/en
Publication of JP2003105326A publication Critical patent/JP2003105326A/en
Application granted granted Critical
Publication of JP4237957B2 publication Critical patent/JP4237957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セリウム系研摩材原料及びセリウム系研摩材原料の分析方法に関する。詳しくは研摩材としたときに傷の原因となる不純物粒子の少ないセリウム系研摩材原料、及び、そのようなセリウム系研摩材原料であるか否かを判断することのできる分析方法に関する。
【0002】
【従来の技術】
セリウム系研摩材は、種々のガラス材料の研摩に用いられており、特に近年では、ハードディスク等の磁気記録媒体用ガラス、液晶ディスプレイ(LCD)のガラス基板といった電気・電子機器で用いられているガラス材料の研摩にも用いられており、その応用分野が広がっている。
【0003】
このセリウム系研摩材は、主成分である酸化セリウム(CeO)粒子と、他の希土類金属酸化物粒子とからなる研摩材粒子よりなる。また、セリウム系研摩材の製造方法としては、まず、原料を粉砕した後、フッ素成分を添加するフッ化処理、異常粒成長の原因となる原料中のアルカリ金属を除去する鉱酸処理といった化学処理(湿式処理)を施す。そして、湿式処理後の原料を、濾過、乾燥後高温加熱して焙焼することにより原料粒子同士を焼結し、これを再度粉砕して分級することで所望の粒径、粒度分布を有する研摩材が製造される。
【0004】
ここで、セリウム系研摩材の原料としては、従来は、バストネサイトと呼ばれる希土鉱石を選鉱したバストネサイト精鉱という天然原料を使用することが多かったが、最近ではバストネサイト鉱や比較的安価な中国産複雑鉱より得られる希土類化合物を焙焼し、その一部又は大部分を酸化希土とする原料が用いられるようになってきている。この酸化希土含有原料は、鉱石を溶解し化学処理して希土類金属濃度を高めた炭酸希土を主成分とする希土類化合物を500℃以上の温度で焙焼することで、炭酸希土から酸化希土へと変化させるものであり、焙焼時間等の条件を調整することで酸化希土含有量を調節している。
【0005】
【発明が解決しようとする課題】
ところで、セリウム系研摩材に限らず研摩材全般には研摩面に傷を生じさせることなく高精度の研摩面を形成することができることが求められる。そして、従来のセリウム系研摩材においてはその製造工程において、研摩材粒子の粒度分布、粒径の調整や、粗大な研摩粒子の除去等を行い研摩傷の発生することないセリウム系研摩材を製造しようとする試みが多くなされている。
【0006】
これに対して、いかなる原料を適用するかも研摩材の特性に大きな影響を与え得るものと考えられる。しかし、これまでの原料に関する検討は、取り扱い性、コスト、研摩材の生産性等についてなされることが多いが、研摩材としたときの研摩特性について考慮した原料を検討された例は少ない。また、調整された原料についての評価法についても、その成分分析等は通常なされるが研摩材の傷発生の可能性のみを考慮したものは少ない。
【0007】
近年、ハードディスク等の記録媒体の高密度化、LCD等で使用される基板の高精度化・精密化に伴い、そのガラス材料の研摩に使用される研摩材にもこれまで以上に高精度の研摩が可能なものが要求されている。そして、このような用途に適用されるセリウム系研摩材については、その製造工程の管理、改良のみでは自ずと限界が生じると考えられ、原料段階からの改善が求められると考えられる。
【0008】
本発明は、以上のような背景の下になされたものであり、セリウム系研摩材に適用される原料について、研摩材とした際に傷の発生のないものを提供することを目的とする。また、そのような研摩材原料を判別することのできる分析方法をについても明らかとすることを目的とする。
【0009】
【課題を解決するための手段】
上述したように、研摩材原料の研摩特性向上の手段としては、研摩材粒子の粒度分布、粒径の調整、粗大な研摩粒子の除去といったものがある。これに対し本発明者等は、セリウム系研摩材による傷の発生を左右する要因として、研摩材粒子径の分布状態、粗大な研摩粒子の存在に加えて、被研摩材よりも硬度の高い粒子の存在を見出した。そして、本発明者等によれば、この硬質粒子による影響は、その粒径によらず生じうるものであり、微粒のものであっても傷の要因となる。
【0010】
そこで本発明者等は、この硬質粒子について、その発生要因、組成に関して検討を行った結果、このような硬質粒子は研摩材原料の製造工程において混入するものであり、特に、希土類化合物を乾燥、焙焼する際の乾燥炉、焙焼炉、焙焼皿等の構成材料が粉化して混入すると考察した。また、その組成については明らかではないが、焙焼炉の構成材料である耐火材に含まれるケイ素成分、アルミニウム成分、ジルコニウム成分又はこれらが焙焼時の加熱により変化したものよりなることを見出した。そして、本発明者等のより詳細な検討から、この硬質粒子は、酸化希土及び炭酸希土を可溶な溶液である過塩素酸水溶液及び過酸化水素水溶液中においても溶解することのなく存在し得るものであることが確認された。
【0011】
かかる検討結果から、本発明者等は研摩傷のない高精度の研摩面を形成するセリウム系研摩材の原料としては、上記した硬質粒子を含まないものが適当であるとし、その含有量との関係を鋭意検討し本発明に想到した。
【0012】
即ち、本発明は、希土類化合物を焙焼することにより得られる酸化希土を含んでなるセリウム系研摩材原料において、ケイ素、アルミニウム、ジルコニウムの少なくともいずれか一の元素を含み、且つ過塩素酸水溶液及び過酸化水素水溶液に対して溶解性を有しない粒子状物質を含有し、前記粒子状物質の含有量は重量比で200ppm以下であることを特徴とするセリウム系研摩材原料である。
【0013】
本発明において、「ケイ素、アルミニウム、ジルコニウムの少なくともいずれか一の元素を含み、且つ過塩素酸水溶液及び過酸化水素水溶液に対して溶解性を有しない粒子状物質」としたのは、本発明者等の検討結果に基づき研摩傷の原因となる硬質粒子を可能な限り特定するためである。即ち、希土類化合物を焙焼することで製造される研摩材原料には、ケイ素、アルミニウム、ジルコニウム等の元素が含有されているが、傷の原因となるのはこれらの元素を含む粒子状の物質であって硬質化したものであることを明確とすると共に、ケイ素、アルミニウム、ジルコニウムの元素を含むものであっても過塩素酸水溶液及び過酸化水素水溶液に対して溶解性を有するものについては研摩傷の原因となることはないことから、このような溶解性のある物質を排除するものである。
【0014】
一方、この硬質粒子の含有量について200ppm以下としたのは、研摩材とした際の研摩速度と傷発生の度合いとを考慮し、通常適用される研摩速度の範囲内で傷発生のおそれのない硬質粒子の量を規定するものである。つまり、研摩傷の発生は研摩速度によっても影響され、研摩速度が高い場合には、研摩材中に硬質粒子が多少存在し、それによる傷が発生してもその傷は高速研摩により短時間で除去される。しかし、現実には、このような現象を生じさせる程の高速研摩は不可能であり、工業的に十分且つ達成可能な研摩速度(0.01〜0.5μm/min)において傷発生のない原料としては、硬質粒子の含有量を200ppm以下とする必要があるとの検討結果によるものである。
【0015】
このように、本発明に係るセリウム系研摩材原料は、研摩傷の要因となる硬質粒子の含有量が低減されており、これにより、傷の発生のないセリウム系研摩材を製造することができる。そして、このセリウム系研摩材は研摩傷発生の抑制の他、表面粗さに優れた高精度の研摩面を形成することができる。
【0016】
ここで、本発明に係るセリウム系研摩材原料は、上述した希土類化合物の乾燥、焙焼時において焙焼炉等の構成材料が混入して発生する硬質粒子を排したものである。従って、本発明に係るセリウム系研摩材原料は、このような焙焼炉等の構成材料の混入を抑制することにより製造可能である。ここで、本発明の対象となるセリウム系研摩材原料は、通常、原材料となるバストネサイト鉱、中国産複雑鉱等の鉱石を塩酸等で溶解したものを炭酸塩で沈殿させ、ろ過、洗浄を行なった希土類化合物(炭酸希土)を乾燥、焙焼することで製造される。そして、本発明ではこの工程において以下の改良を行なうことで硬質粒子を排除することができる。
【0017】
まず、炭酸塩で沈殿させた希土類化合物の洗浄においてフッ素濃度が十分低減されるまで洗浄を行なうことが必要である。これは、バストネサイト等の原材料に由来するフッ素成分が残留した状態で原材料を乾燥、焙焼すると、このフッ素成分がフッ化水素として揮発し乾燥炉、焙焼炉の構成材料を侵食し、硬質粒子混入の要因となることを考慮したものである。そして、この洗浄工程は、フッ素濃度が原材料に対して0.1〜0.01重量%となるまで洗浄を行なうことが好ましい。
【0018】
また、洗浄後の乾燥、焙焼工程については、乾燥工程を100〜150℃の範囲で行なうのが好ましい。この温度範囲においては、希土類化合物中のフッ素成分がフッ化水素に変化し難く、乾燥工程における炉の侵食を抑制することができるからである。更に、焙焼工程においては焙焼温度を400℃〜800℃とするのが好ましい。400℃以上とするのは炭酸希土を酸化希土に酸化させるためであり、800℃以下とするのは希土類化合物中のフッ素成分のフッ化水素への変化を抑制するためである。また、この焙焼工程においては焙焼炉の形式を選択することで硬質粒子の混入を抑制できる。即ち、ロータリーキルンのような連続式の回転炉は、バッチ式の静置炉に比べて炉体に対する温度変化も小さいことから熱衝撃も比較的小さいことから、炉体の粉化、硬質粒子の混入が抑制されるのである。
【0019】
尚、研摩材原料への硬質粒子の混入をより確実に防止するためには、乾燥炉、焙焼炉、焙焼皿等を侵食、崩壊し難い硬質の耐火材料で製造し、これらにより希土類化合物を乾燥、焙焼するのが好ましい。例えば、炉体の研摩材原料と接触する部分をステンレス鋼のような耐熱性金属材料で製造することや、アルミナ含有量が高く耐火性の高い材料を適用することにより炉体の侵食、崩壊を抑制することができる。
【0020】
ところで、本発明者等が見出したセリウム系研摩材原料に含まれる硬質粒子は、過塩素酸水溶液及び過酸化水素水溶液に対して不溶性という特性を有する。そこで、本発明者等はこの特性を利用して、任意の工程で製造された研摩材原料について、当該研摩材原料を研摩材としたときに傷発生の可能性の有無を評価する方法を見出した。
【0021】
この分析方法は、希土類化合物を焙焼することにより得られる酸化希土を含んでなるセリウム系研摩材原料の分析方法であって、下記工程よりなるものである。
【0022】
(a)焙焼後のセリウム系研摩材原料からサンプルを採取し秤量する工程。
(b)前記サンプルに過塩素酸水溶液及び過酸化水素水溶液を添加し、添加後の溶液を加温する工程。
(c)加温後の溶液をろ過する工程。
(d)濾過後の残渣の重量を測定し、前記試料の重量と残渣の重量との比を算出する工程。
【0023】
この分析方法は、検査目的となる研摩材原料を任意量サンプリングして、過塩素酸水溶液及び過酸化水素水溶液と接触させることにより、硬質粒子を抽出し、その研摩材原料中の含有量を定量化する方法である。
【0024】
以下、この分析方法について詳細に説明する。まず、所定の工程を経て製造されたセリウム系研摩材原料から任意量をサンプルとして採取・秤量する((a)工程)。ここで、この際のサンプリング量としては、硬質粒子量が微量であることと分析の効率と併せて考慮すれば、10〜500g程度採取するのが適当である。
【0025】
次に、秤量した研摩材原料に過塩素酸水溶液及び過酸化水素水溶液を添加し、更に加温する。これにより研摩材原料中の酸化希土、炭酸希土等の主要成分は溶解し、残滓として硬質粒子が残留する((b)工程)。このとき、研摩材原料(炭酸希土、酸化希土)を溶解させるのは主に過塩素酸水溶液であり、過酸化水素水溶液は溶解補助剤、特に、研摩材原料中のセリウムを溶解性の高い4価の状態に保持する役割を有する。そして、これら溶液の濃度は、過塩素酸水溶液については5〜20重量%程度のものを用いるのが好ましい。研摩材原料を効率的に溶解させると共に試薬の無駄を考慮したものである。また、過酸化水素水溶液については、溶解補助剤としての役割から、0.1〜5重量%の物を用いるのが好ましい。尚、この工程の過塩素酸水溶液及び過酸化水素水溶液の添加の順序は特に限定されるものではなく、いずれを先に添加しても差し支えない。一方、この工程において、溶液混合後に加温を行なうのは研摩材原料の溶解を促進するためであるが、この温度については、80℃以上で混合溶液の沸点近傍(90℃)とするのが好ましい。
【0026】
そして、研摩材原料を溶解させた溶液をろ過し、硬質粒子を回収する((b)工程)。このろ過工程において適用するろ過材は、孔径0.3〜5μmのフィルター(篩)を用いるのが好ましい。
【0027】
以上の工程を経ることにより回収される硬質粒子については、その重量を測定し、サンプルの重量との比を算出することでセリウム系研摩材原料中の含有量を規定することができる((d)工程)。そして、このようにして測定される硬質粒子含有量からセリウム系研摩材原料としての適性が判断されることとなる。
【0028】
以上説明したセリウム系研摩材原料の分析方法は、複数の工程を有するものの、各工程自体は必ずしも困難な方法ではなく、全体としてみても簡便な分析方法である。従って、この分析方法によれば、任意の方法により製造されたセリウム系研摩材原料の品質(研摩傷の原因物質の有無)を簡単に評価することができる。
【0029】
【発明の実施の形態】
以下、本発明の好適な実施形態を説明する。
【0030】
ここでは、希土類鉱石を原材料とし、これを溶解、炭酸希土としたものをフッ素含有量が0.1重量%未満となるまで洗浄した原材料を乾燥後、アルミナ含有量が99重量%の炉材を用いたロータリーキルンにて600℃で焙焼することで研摩材原料を6種類製造した。また、これに対する比較例として、同様の原料を溶解、炭酸塩とし、フッ素含有量が0.5重量%となるまで洗浄し、乾燥後に静置炉で600℃で焙焼して研摩材原料を3種類製造した。
【0031】
次に、これらの研摩材原料を図1に示す工程にて硬質粒子の含有量を測定した。図1において、各研摩材原料を50g採取、秤量してサンプルとし、このサンプルに水1000ml添加した後、60重量%の過塩素酸水溶液300mlと、30重量%の過酸化水素水溶液20mlとを添加し、この混合溶液を沸騰させて5分間保持した。加温後の溶液を徐冷後、孔径0.44μmのフィルターに通過させてろ過し、メッシュ上の残渣を回収し、洗浄、100℃で乾燥しその重量を測定した。そして、この残渣(硬質粒子)重量から各原料中の硬質粒子含有量を算出した。
【0032】
次に、これらの原料を用いてセリウム系研摩材を製造した。研摩材用原料3kgと純水3lとを直径5mmの鋼製の粉砕媒体が充填された湿式ボールミル(容量5l)にて6時間粉砕し、平均粒径(マイクロトラック法D50(累積50%粒径))1μmの粉体からなるスラリーとした。その後、最終状態の研摩材中のフッ素濃度が6%となるようにすべく、粉砕スラリーに濃度1mol/lのフッ化アンモニウム溶液を添加した後に、純水で洗浄後濾過してケーキを得た。次に、このケーキを乾燥後、900℃で3時間焙焼し、再度粉砕した後分級してセリウム系研摩材とした。
【0033】
そして、製造されたセリウム系研摩材を用いて、ガラス材料の研摩試験を行い、研摩面の評価を行なった。この研摩試験は、各研摩材を水に分散させて10重量%の研摩材スラリーとし、この研摩材スラリーにて65mmφの青色ガラスを被研摩材として発泡ウレタン製の研摩パッドを用いて研摩した。研摩条件は、研摩材スラリーを5L/minの速度で供給し、研摩面に対する圧力を4.9×10Paに設定して研磨機の回転速度を120rpmとした。尚、この研摩材スラリーは研摩試験中、攪拌機にて常時攪拌し、研摩材が沈降しないようにした。研摩後のガラス材料は、純水で洗浄し無塵状態で乾燥させた。
【0034】
研摩面の評価は、研摩面の傷の有無、及び、AFM(原子間力顕微鏡)により、研摩面の任意の面(2μm×2μm)の表面粗さを測定し、その最大値Rmaxにより評価した。研摩材粒子の研摩面への残存の有無を基準として評価した。研摩面の傷の有無は、研摩後のガラスの表面に30万ルクスのハロゲンランプを照射し、反射法にてガラス表面を観察し、傷の程度(大きさ)を見極めて点数化し、100点満点からの減点方式にて評価点を定めた。
【0035】
以上の、原料中の硬質粒子の含有量の測定結果及び研摩試験の結果を表1に示す。
【0036】
【表1】

Figure 0004237957
【0037】
この表1から、実施例に係る研摩材原料は硬質粒子の含有量が200ppm以下であり、これらの原料により製造されたせリウム系研摩材による研摩試験では傷の発生も殆どみられず、また、表面粗さ(Rmax)についても、実施例に係る研摩材原料は、Rmaxが60Å以下と極めて優れた値を示した。これに対して、比較例の研摩材原料は表面粗さに劣る上、研摩後の研摩面に傷が発生しているのが確認された。
【0038】
【発明の効果】
以上説明したように本発明に係るセリウム系研摩材原料は、研摩材の傷発生の要因となる硬質粒子の含有量を所定の範囲内に規定するものである。本発明によれば、傷発生のおそれのない高精度の研摩面を形成可能なセリウム系研摩材を製造することができる。また、本発明に係るセリウム系研摩材原料の分析方法は、任意の製造工程を経たセリウム系研摩材原料について硬質粒子の含有量を簡易に測定することができる。
【図面の簡単な説明】
【図1】本実施形態におけるセリウム系研摩材原料の分析工程の概略。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cerium-based abrasive material and a method for analyzing a cerium-based abrasive material. More specifically, the present invention relates to a cerium-based abrasive raw material with few impurity particles that cause scratches when used as an abrasive, and an analysis method that can determine whether or not such a cerium-based abrasive raw material is used.
[0002]
[Prior art]
Cerium-based abrasives are used for polishing various glass materials, and in recent years, glass used in electrical and electronic equipment such as glass for magnetic recording media such as hard disks and glass substrates for liquid crystal displays (LCD). It is also used for polishing materials, and its application fields are expanding.
[0003]
This cerium-based abrasive is composed of abrasive particles composed of cerium oxide (CeO 2 ) particles as main components and other rare earth metal oxide particles. In addition, as a method for producing a cerium-based abrasive, first, after pulverizing the raw material, chemical treatment such as fluorination treatment in which a fluorine component is added and mineral acid treatment in which the alkali metal in the raw material causing abnormal grain growth is removed. (Wet treatment). Then, the raw material after the wet treatment is filtered, dried, heated to high temperature and roasted to sinter the raw material particles, and then ground again and classified to polish the particles having a desired particle size and particle size distribution. The material is manufactured.
[0004]
Here, as a raw material for cerium-based abrasives, a natural raw material called bust nesite concentrate, which is a rare earth ore called bastonite, has been used in the past. Raw materials obtained by roasting rare earth compounds obtained from relatively cheap Chinese complex ores and using a part or most of them as rare earth oxides have been used. This rare earth oxide-containing raw material is oxidized from rare earth carbonate by roasting a rare earth compound mainly composed of rare earth carbonate, which is obtained by dissolving ore and chemically treating it to increase the rare earth metal concentration at a temperature of 500 ° C. or higher. The rare earth content is adjusted by adjusting conditions such as roasting time.
[0005]
[Problems to be solved by the invention]
By the way, not only cerium-based abrasives but also abrasives in general are required to be able to form a highly accurate polished surface without causing scratches on the polished surface. In the conventional cerium-based abrasive, in the production process, the particle size distribution of the abrasive particles, adjustment of the particle size, removal of coarse abrasive particles, etc. are performed to produce a cerium-based abrasive that does not generate abrasive scratches. There have been many attempts to try.
[0006]
On the other hand, it is considered that whatever raw material is applied can greatly affect the characteristics of the abrasive. However, studies on raw materials so far are often made with respect to handling properties, cost, productivity of abrasives, and the like, but there are few examples of studying raw materials considering the polishing characteristics when used as an abrasive. In addition, regarding the evaluation method for the adjusted raw material, the component analysis and the like are usually performed, but there are few that consider only the possibility of scratches on the abrasive.
[0007]
In recent years, with the increase in the density of recording media such as hard disks and the higher precision and precision of substrates used in LCDs, etc., polishing materials used for polishing glass materials have higher precision than ever. What is possible is required. And about the cerium type abrasive | polishing material applied to such a use, it is thought that a limit will arise naturally only by management and improvement of the manufacturing process, and it is thought that the improvement from a raw material stage is calculated | required.
[0008]
The present invention has been made under the above background, and an object of the present invention is to provide a raw material applied to a cerium-based abrasive that does not cause scratches when used as an abrasive. It is another object of the present invention to clarify an analysis method that can discriminate such an abrasive material.
[0009]
[Means for Solving the Problems]
As described above, means for improving the polishing characteristics of the abrasive raw material include particle size distribution of the abrasive particles, adjustment of the particle size, and removal of coarse abrasive particles. On the other hand, the present inventors, as factors affecting the generation of scratches by cerium-based abrasives, in addition to the distribution of the abrasive particle diameter, the presence of coarse abrasive particles, particles having a hardness higher than that of the abrasive Found the existence of. According to the present inventors, the influence of the hard particles can occur regardless of the particle size, and even fine particles can cause scratches.
[0010]
Therefore, as a result of examining the generation factors and the composition of the hard particles, the present inventors have mixed such hard particles in the manufacturing process of the raw material for the abrasive, and in particular, dried the rare earth compound. It was considered that constituent materials such as a drying furnace, a roasting furnace, and a roasting dish during roasting were mixed and mixed. Moreover, although it is not clear about the composition, it discovered that the silicon component contained in the refractory material which is a constituent material of a roasting furnace, an aluminum component, a zirconium component, or these changed by the heating at the time of roasting . And, from the detailed examination by the present inventors, the hard particles exist without being dissolved even in an aqueous solution of perchloric acid and an aqueous solution of hydrogen peroxide, which are soluble solutions of rare earth oxide and rare earth carbonate. It was confirmed that this is possible.
[0011]
From these examination results, the inventors of the present invention consider that the raw material for the cerium-based abrasive that forms a high-precision polished surface free of abrasive scratches is suitable for those containing no hard particles as described above. The present invention was conceived by intensively studying the relationship.
[0012]
That is, the present invention provides a cerium-based abrasive raw material containing rare earth oxide obtained by roasting a rare earth compound, containing at least one element of silicon, aluminum, and zirconium, and an aqueous perchloric acid solution And a particulate material that is not soluble in an aqueous hydrogen peroxide solution, and the content of the particulate material is 200 ppm or less by weight, and is a cerium-based abrasive raw material.
[0013]
In the present invention, “the particulate matter containing at least one element of silicon, aluminum, and zirconium and having no solubility in an aqueous solution of perchloric acid and an aqueous solution of hydrogen peroxide” This is because the hard particles that cause abrasive scratches are identified as much as possible based on the examination results. That is, the raw material for abrasives produced by roasting rare earth compounds contains elements such as silicon, aluminum, zirconium, etc., but the cause of scratches is particulate matter containing these elements. It is clarified that the material is hardened, and even if it contains silicon, aluminum, and zirconium elements, it is polished for those that are soluble in perchloric acid aqueous solution and hydrogen peroxide aqueous solution. Since it does not cause scratches, such a soluble substance is excluded.
[0014]
On the other hand, the content of the hard particles is set to 200 ppm or less in consideration of the polishing speed and the degree of scratching when the polishing material is used, and there is no risk of scratching within the range of normally applied polishing speeds. It defines the amount of hard particles. In other words, the occurrence of polishing flaws is also affected by the polishing speed. When the polishing speed is high, some hard particles are present in the polishing material. Removed. However, in reality, high-speed polishing that causes such a phenomenon is impossible, and a raw material that does not cause scratches at an industrially sufficient and achievable polishing rate (0.01 to 0.5 μm / min). This is due to the examination result that the content of hard particles needs to be 200 ppm or less.
[0015]
Thus, the cerium-based abrasive raw material according to the present invention has a reduced content of hard particles that cause abrasive scratches, whereby a cerium-based abrasive that does not cause scratches can be produced. . And this cerium type abrasive | polishing material can form the highly accurate grinding | polishing surface excellent in surface roughness other than suppression of an abrasion crack.
[0016]
Here, the cerium-based abrasive raw material according to the present invention is one in which hard particles generated due to mixing of constituent materials such as a roasting furnace during the drying and roasting of the rare earth compound described above are eliminated. Therefore, the cerium-based abrasive raw material according to the present invention can be manufactured by suppressing the mixing of constituent materials such as a roasting furnace. Here, the cerium-based abrasive raw material that is the subject of the present invention is usually precipitated with carbonate such as bastonite ore, a Chinese complex ore dissolved in hydrochloric acid or the like, filtered, washed It is manufactured by drying and roasting the rare earth compound (carbonic acid rare earth) which performed. In the present invention, hard particles can be eliminated by making the following improvements in this step.
[0017]
First, it is necessary to perform cleaning until the fluorine concentration is sufficiently reduced in cleaning the rare earth compound precipitated with carbonate. This is because when the raw material is dried and roasted in a state where the fluorine component derived from the raw material such as bust nesite remains, this fluorine component volatilizes as hydrogen fluoride and erodes the constituent materials of the drying furnace and the roasting furnace, This is considered to be a factor of mixing hard particles. In this cleaning step, it is preferable to perform cleaning until the fluorine concentration is 0.1 to 0.01% by weight with respect to the raw material.
[0018]
Moreover, about the drying and baking process after washing | cleaning, it is preferable to perform a drying process in the range of 100-150 degreeC. This is because in this temperature range, the fluorine component in the rare earth compound hardly changes to hydrogen fluoride, and erosion of the furnace in the drying process can be suppressed. Furthermore, in the roasting step, the roasting temperature is preferably 400 ° C to 800 ° C. The reason why the temperature is set to 400 ° C. or higher is to oxidize rare earth carbonate to oxidized rare earth, and the temperature is set to 800 ° C. or lower to suppress the change of the fluorine component in the rare earth compound to hydrogen fluoride. Moreover, in this roasting process, mixing of hard particles can be suppressed by selecting the type of the roasting furnace. That is, a continuous rotary furnace such as a rotary kiln has a relatively small thermal change and a relatively small thermal shock compared to a batch-type stationary furnace, so that the furnace body is pulverized and hard particles are mixed. It is suppressed.
[0019]
In order to more reliably prevent hard particles from mixing into the abrasive material, the drying furnace, roasting furnace, roasting dish, etc. are manufactured from hard refractory materials that are less likely to erode and disintegrate. Is preferably dried and roasted. For example, the furnace body is made of a heat-resistant metal material, such as stainless steel, that is in contact with the abrasive material of the furnace body, or the furnace body is eroded or collapsed by applying a material with high alumina content and high fire resistance. Can be suppressed.
[0020]
By the way, the hard particles contained in the cerium-based abrasive raw material found by the present inventors have a property of being insoluble in a perchloric acid aqueous solution and a hydrogen peroxide aqueous solution. Therefore, the present inventors have found a method for evaluating the possibility of scratches when an abrasive material produced in an arbitrary process is used as an abrasive material by using this characteristic. It was.
[0021]
This analysis method is a method for analyzing a cerium-based abrasive raw material containing rare earth oxide obtained by roasting a rare earth compound, and includes the following steps.
[0022]
(A) A step of taking a sample from the cerium-based abrasive raw material after roasting and weighing it.
(B) A step of adding an aqueous perchloric acid solution and an aqueous hydrogen peroxide solution to the sample and heating the solution after the addition.
(C) A step of filtering the heated solution.
(D) A step of measuring the weight of the residue after filtration and calculating the ratio of the weight of the sample and the weight of the residue.
[0023]
In this analysis method, an arbitrary amount of abrasive raw material to be inspected is sampled and brought into contact with a perchloric acid aqueous solution and a hydrogen peroxide aqueous solution to extract hard particles, and the content in the abrasive raw material is quantified. It is a method to convert.
[0024]
Hereinafter, this analysis method will be described in detail. First, an arbitrary amount is collected and weighed as a sample from a cerium-based abrasive raw material produced through a predetermined step (step (a)). Here, as the sampling amount at this time, it is appropriate to collect about 10 to 500 g in consideration of the small amount of hard particles and the efficiency of analysis.
[0025]
Next, a perchloric acid aqueous solution and a hydrogen peroxide aqueous solution are added to the weighed abrasive raw material and further heated. As a result, main components such as rare earth oxide and rare earth carbonate in the raw material of the abrasive are dissolved, and hard particles remain as a residue (step (b)). At this time, it is mainly a perchloric acid aqueous solution that dissolves the abrasive raw material (carbonated rare earth, oxidized rare earth), and the hydrogen peroxide aqueous solution dissolves cerium in the abrasive raw material. It has a role of maintaining a high tetravalent state. And as for the density | concentration of these solutions, it is preferable to use a thing about 5 to 20 weight% about perchloric acid aqueous solution. The material for the abrasive is efficiently dissolved and waste of the reagent is taken into consideration. Moreover, about the hydrogen peroxide aqueous solution, it is preferable to use a 0.1 to 5 weight% thing from the role as a solubilizing agent. The order of adding the perchloric acid aqueous solution and the hydrogen peroxide aqueous solution in this step is not particularly limited, and either may be added first. On the other hand, in this step, the heating is performed after the solution is mixed in order to promote the dissolution of the abrasive raw material. This temperature should be 80 ° C. or higher and near the boiling point of the mixed solution (90 ° C.). preferable.
[0026]
Then, the solution in which the abrasive material is dissolved is filtered to collect hard particles (step (b)). It is preferable to use a filter (sieve) having a pore diameter of 0.3 to 5 μm as a filter medium applied in this filtration step.
[0027]
About the hard particle | grains collect | recovered through the above process, the content in a cerium-type abrasive raw material can be prescribed | regulated by measuring the weight and calculating a ratio with the weight of a sample ((d ) Process). And the suitability as a cerium-based abrasive raw material is judged from the hard particle content measured in this way.
[0028]
Although the cerium-based abrasive raw material analysis method described above has a plurality of steps, each step itself is not necessarily a difficult method, and is a simple analysis method as a whole. Therefore, according to this analysis method, the quality of the cerium-based abrasive material produced by any method (presence / absence of a causative substance for polishing flaws) can be easily evaluated.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
[0030]
Here, a rare earth ore is used as a raw material, and a raw material obtained by melting and dissolving the rare earth ore until the fluorine content is less than 0.1% by weight is dried, and then the furnace material having an alumina content of 99% by weight. Six kinds of abrasive raw materials were produced by roasting at 600 ° C. in a rotary kiln using a slab. As a comparative example for this, the same raw material was dissolved and carbonated, washed until the fluorine content was 0.5% by weight, dried, and then roasted at 600 ° C. in a stationary furnace to obtain an abrasive raw material 3 Kind manufactured.
[0031]
Next, the content of hard particles in these abrasive raw materials was measured in the process shown in FIG. In FIG. 1, 50 g of each abrasive material is sampled and weighed to make a sample. After adding 1000 ml of water to this sample, 300 ml of a 60 wt% aqueous perchloric acid solution and 20 ml of a 30 wt% aqueous hydrogen peroxide solution are added. The mixed solution was boiled and held for 5 minutes. The heated solution was gradually cooled and then filtered through a filter having a pore size of 0.44 μm. The residue on the mesh was collected, washed, dried at 100 ° C., and its weight was measured. And the hard particle content in each raw material was computed from this residue (hard particle) weight.
[0032]
Next, a cerium-based abrasive was produced using these raw materials. 3 kg of abrasive raw material and 3 l of pure water were pulverized for 6 hours in a wet ball mill (capacity 5 l) filled with a steel pulverization medium having a diameter of 5 mm, and the average particle size (microtrack method D50 (cumulative 50% particle size) )) A slurry made of 1 μm powder was prepared. After that, an ammonium fluoride solution having a concentration of 1 mol / l was added to the pulverized slurry so that the fluorine concentration in the final state abrasive was 6%, and then washed with pure water and filtered to obtain a cake. . Next, this cake was dried, roasted at 900 ° C. for 3 hours, ground again, and classified to obtain a cerium-based abrasive.
[0033]
And the polishing test of the glass material was performed using the manufactured cerium-type polishing material, and the polishing surface was evaluated. In this polishing test, each abrasive was dispersed in water to form a 10% by weight abrasive slurry, and this abrasive slurry was polished with a polishing pad made of urethane foam using 65 mmφ blue glass as an abrasive. The polishing conditions were such that the abrasive slurry was supplied at a rate of 5 L / min, the pressure on the polishing surface was set to 4.9 × 10 3 Pa, and the rotational speed of the polishing machine was 120 rpm. The abrasive slurry was constantly stirred with a stirrer during the polishing test so that the abrasive did not settle. The glass material after polishing was washed with pure water and dried in a dust-free state.
[0034]
The polished surface is evaluated by measuring the surface roughness of the polished surface (2 μm × 2 μm) with the presence or absence of scratches on the polished surface and AFM (atomic force microscope), and evaluating the maximum value Rmax. did. Evaluation was made based on whether or not the abrasive particles remained on the polished surface. The polished surface is checked for scratches by irradiating the surface of the polished glass with a 300,000 lux halogen lamp, observing the surface of the glass with a reflection method, and determining the degree (size) of the scratches to 100 points. Evaluation points were determined by the deduction method from the full score.
[0035]
Table 1 shows the measurement results of the hard particle content in the raw material and the results of the polishing test.
[0036]
[Table 1]
Figure 0004237957
[0037]
From Table 1, the abrasive raw material according to the example has a hard particle content of 200 ppm or less, and in the polishing test with the serium-based abrasive produced from these raw materials, almost no scratches are seen, Regarding the surface roughness (R max ), the abrasive raw material according to the example showed an extremely excellent value of R max of 60 mm or less. On the other hand, it was confirmed that the polishing material of the comparative example was inferior in surface roughness and scratched on the polished surface after polishing.
[0038]
【The invention's effect】
As described above, the cerium-based abrasive raw material according to the present invention defines the content of hard particles that causes the occurrence of scratches on the abrasive within a predetermined range. ADVANTAGE OF THE INVENTION According to this invention, the cerium type abrasive | polishing material which can form the highly accurate grinding | polishing surface without a possibility of a crack generation can be manufactured. The method for analyzing a cerium-based abrasive raw material according to the present invention can easily measure the content of hard particles in a cerium-based abrasive raw material that has undergone an arbitrary manufacturing process.
[Brief description of the drawings]
FIG. 1 is an outline of a process for analyzing a cerium-based abrasive raw material in the present embodiment.

Claims (4)

希土類化合物を焙焼することにより得られる酸化希土を含んでなるセリウム系研摩材原料の品質評価方法であって、下記工程よりなるもの。
(a)焙焼後のセリウム系研摩材原料からサンプルを採取し秤量する工程。
(b)前記サンプルに過塩素酸水溶液及び過酸化水素水溶液を添加し、添加後の溶液を加温することにより、研摩材原料中の主要成分である酸化希土及び炭酸希土を溶解し、残滓を残留させる工程。
(c)加温後の溶液をろ過する工程。
(d)濾過後の残渣の重量を測定し、前記試料の重量と残渣の重量との比を算出する工程。
(e)前記算出された試料の重量と残渣の重量との比から、前記セリウム系研摩材原料の品質を評価する工程。
A method for evaluating the quality of a cerium-based abrasive raw material comprising rare earth oxide obtained by roasting a rare earth compound, comprising the following steps.
(A) A step of collecting a sample from the cerium-based abrasive raw material after roasting and weighing it.
(B) By adding a perchloric acid aqueous solution and a hydrogen peroxide aqueous solution to the sample, and heating the solution after the addition , the rare earth oxide and rare earth carbonate, which are the main components in the abrasive raw material, are dissolved, The process of leaving a residue .
(C) A step of filtering the heated solution.
(D) A step of measuring the weight of the residue after filtration and calculating the ratio of the weight of the sample to the weight of the residue.
(E) A step of evaluating the quality of the cerium-based abrasive raw material from the ratio of the calculated weight of the sample and the weight of the residue.
過塩素酸水溶液の濃度を5〜20重量%とし、過酸化水素水溶液の濃度を0.1〜5重量%とする請求項1記載のセリウム系研摩材原料の品質評価方法The quality evaluation method for a cerium-based abrasive raw material according to claim 1, wherein the concentration of the perchloric acid aqueous solution is 5 to 20% by weight and the concentration of the hydrogen peroxide aqueous solution is 0.1 to 5% by weight. 溶液の加温温度を80℃以上、該溶液の沸点以下とする請求項1又は請求項2記載のセリウム系研摩材原料の品質評価方法The method for evaluating the quality of a cerium-based abrasive raw material according to claim 1 or 2, wherein the heating temperature of the solution is 80 ° C or higher and not higher than the boiling point of the solution. ろ過工程を、孔径0.3〜5μmのフィルターにより行なう請求項1〜請求項3載のセリウム系研摩材原料の品質評価方法The quality evaluation method for a cerium-based abrasive raw material according to claim 1, wherein the filtration step is performed with a filter having a pore diameter of 0.3 to 5 μm.
JP2001302406A 2001-09-28 2001-09-28 Quality evaluation method for cerium-based abrasive materials Expired - Lifetime JP4237957B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001302406A JP4237957B2 (en) 2001-09-28 2001-09-28 Quality evaluation method for cerium-based abrasive materials
CNB021439362A CN1162500C (en) 2001-09-28 2002-09-26 Cerium series abrasive material and analyzing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001302406A JP4237957B2 (en) 2001-09-28 2001-09-28 Quality evaluation method for cerium-based abrasive materials

Publications (2)

Publication Number Publication Date
JP2003105326A JP2003105326A (en) 2003-04-09
JP4237957B2 true JP4237957B2 (en) 2009-03-11

Family

ID=19122650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001302406A Expired - Lifetime JP4237957B2 (en) 2001-09-28 2001-09-28 Quality evaluation method for cerium-based abrasive materials

Country Status (2)

Country Link
JP (1) JP4237957B2 (en)
CN (1) CN1162500C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1849264B (en) 2003-09-12 2010-09-22 日立化成工业株式会社 Cerium salt, process for producing the same, cerium oxide, and cerium-based abrasive material
CN102559064B (en) * 2011-12-15 2014-01-29 上海华明高纳稀土新材料有限公司 Cerium-zirconium praseodymium sosoloid and preparation method thereof
CN103923602A (en) * 2013-01-15 2014-07-16 安阳市岷山有色金属有限责任公司 Manufacturing method for cerium based abrasive material

Also Published As

Publication number Publication date
JP2003105326A (en) 2003-04-09
CN1162500C (en) 2004-08-18
CN1410502A (en) 2003-04-16

Similar Documents

Publication Publication Date Title
JP4401353B2 (en) Cerium-based abrasive
KR100495774B1 (en) Cerium based abrasive material
JPWO2002028979A1 (en) Cerium-based abrasive and method for producing cerium-based abrasive
KR20180042375A (en) Cerium-based abrasive and its manufacturing method
JP4002740B2 (en) Method for producing cerium-based abrasive
JP4450424B2 (en) Cerium-based abrasive and its raw materials
JP4237957B2 (en) Quality evaluation method for cerium-based abrasive materials
JP2006206870A (en) Raw material for cerium type abrasive and manufacturing method of raw material for cerium type abrasive, cerium type abrasive and manufacturing method of cerium type abrasive
JP4128906B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP5237542B2 (en) Cerium oxide abrasive
JPWO2005114177A1 (en) Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass
JP4411251B2 (en) Cerium-based abrasive
JP3875668B2 (en) Cerium-based abrasive containing fluorine and method for producing the same
JP4070180B2 (en) Method for producing cerium-based abrasive
JP3986384B2 (en) Cerium-based abrasive and method for producing the same
JP4756996B2 (en) Cerium-based abrasive
JP3607592B2 (en) Method for producing cerium-based abrasive and cerium-based abrasive
KR100536853B1 (en) Cerium based abrasive material, method of quality examination therefor and method for production thereof
JP4394848B2 (en) Method for producing cerium-based abrasive and cerium-based abrasive
JP4290465B2 (en) Method for producing cerium-based abrasive mainly composed of cerium oxide
JP2008174625A (en) Cerium-based abrasive material
JP3986424B2 (en) Cerium-based abrasive, method for producing cerium-based abrasive, and quality evaluation method for cerium-based abrasive
JP4043230B2 (en) Cerium oxide-based abrasive and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081219

R150 Certificate of patent or registration of utility model

Ref document number: 4237957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250