JP6839767B2 - Method for manufacturing raw materials for cerium-based abrasives, and method for manufacturing cerium-based abrasives - Google Patents

Method for manufacturing raw materials for cerium-based abrasives, and method for manufacturing cerium-based abrasives Download PDF

Info

Publication number
JP6839767B2
JP6839767B2 JP2019540995A JP2019540995A JP6839767B2 JP 6839767 B2 JP6839767 B2 JP 6839767B2 JP 2019540995 A JP2019540995 A JP 2019540995A JP 2019540995 A JP2019540995 A JP 2019540995A JP 6839767 B2 JP6839767 B2 JP 6839767B2
Authority
JP
Japan
Prior art keywords
cerium
based abrasive
raw material
rare earth
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019540995A
Other languages
Japanese (ja)
Other versions
JPWO2019049932A1 (en
Inventor
知之 増田
知之 増田
正輝 深山
正輝 深山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of JPWO2019049932A1 publication Critical patent/JPWO2019049932A1/en
Application granted granted Critical
Publication of JP6839767B2 publication Critical patent/JP6839767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/241Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion containing two or more rare earth metals, e.g. NdPrO3 or LaNdPrO3
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/253Halides
    • C01F17/265Fluorides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives

Description

本発明は、液晶パネル、ハードディスク、特定周波数カット用フィルター等に使用されるガラス基板、光学レンズ用ガラス基板等のガラス材の研磨に用いられるセリウム系研磨材の製造に用いられる原料の製造方法、及びセリウム系研磨材の製造方法に関する。 The present invention relates to a method for producing a raw material used for producing a cerium-based abrasive used for polishing a glass material such as a liquid crystal panel, a hard disk, a glass substrate used for a filter for cutting a specific frequency, and a glass substrate for an optical lens. And a method for producing a cerium-based abrasive.

ガラス材は、様々な用途に用いられており、その用途によっては表面研磨が必要な場合がある。特に、液晶パネル、ハードディスク、特定周波数カット用フィルター等に使用されるガラス基板、光学レンズ用ガラス基板等のガラス材は、研磨傷等の欠陥を生じることなく、高精度かつ高効率での表面研磨が求められている。
このようなガラス材の表面研磨には、研磨効率に優れていることから、セリウム系研磨材が多用されている。
Glass materials are used for various purposes, and surface polishing may be required depending on the applications. In particular, glass materials such as liquid crystal panels, hard disks, glass substrates used for filters for cutting specific frequencies, and glass substrates for optical lenses are surface-polished with high accuracy and efficiency without causing defects such as polishing scratches. Is required.
Cerium-based abrasives are often used for surface polishing of such glass materials because of their excellent polishing efficiency.

セリウム系研磨材は、従来、混合酸化希土原料に水を加えて湿式粉砕し、その後、乾燥、焼成、解砕及び分級の各工程を順次経ることにより製造されていた(例えば、特許文献1参照)。 Conventionally, a cerium-based abrasive has been produced by adding water to a mixed rare oxide soil raw material, wet-crushing it, and then sequentially performing steps of drying, firing, crushing, and classification (for example, Patent Document 1). reference).

特開2002−224949号公報JP-A-2002-224949

セリウム系研磨材を低コストで製造するためには、より生産効率の高い方法で製造することが望ましい。このため、従来の上記のような製造方法では、原料及び水を混合して湿式粉砕する工程において、混合酸化希土原料及び水を混合したスラリーにおける固形分濃度をできるだけ高くし、さらに、その次の乾燥工程を短時間化できることが望ましい。 In order to produce a cerium-based abrasive at low cost, it is desirable to produce it by a method with higher production efficiency. Therefore, in the conventional manufacturing method as described above, in the step of mixing the raw materials and water and wet pulverizing, the solid content concentration in the slurry mixed with the mixed rare earth oxide raw material and water is made as high as possible, and further, the next step. It is desirable that the drying process can be shortened.

しかしながら、混合酸化希土原料の仕込み量を多くし、スラリー中の固形分濃度を高くすると、スラリーは粘性が高くなり、撹拌混合等により均一化することが困難となる傾向にある。
このため、湿式粉砕工程において、1バッチ当たりの混合酸化希土原料の仕込み量を増加させることは困難であり、さらに、水分含有量が多いスラリーを乾燥する工程でも、1バッチで得られる乾燥品の量を増加させることはできず、乾燥効率にも劣る等の課題を有していた。
However, when the amount of the mixed oxide rare earth raw material charged is increased and the solid content concentration in the slurry is increased, the viscosity of the slurry becomes high, and it tends to be difficult to make the slurry uniform by stirring and mixing.
Therefore, in the wet pulverization step, it is difficult to increase the amount of the mixed oxidized rare soil raw material charged per batch, and further, even in the step of drying the slurry having a high water content, the dried product obtained in one batch. It was not possible to increase the amount of the slurry, and there were problems such as inferior drying efficiency.

上記のような課題に対して、本発明者らは、湿式粉砕工程における混合酸化希土原料の仕込み量を増加させる方法について検討を重ね、混合酸化希土原料に所定の処理を施しておくことが効果的であることを見出した。 In response to the above problems, the present inventors have repeatedly studied a method for increasing the amount of the mixed rare oxide soil raw material charged in the wet pulverization step, and applied a predetermined treatment to the mixed rare oxide soil raw material. Found to be effective.

すなわち、本発明は、セリウム系研磨材の製造において、粉砕工程における1バッチ当たりの混合酸化希土の仕込み量を増加させることにより、生産効率を向上させることができるセリウム系研磨材用原料を製造する方法、及びセリウム系研磨材の製造方法を提供することを目的とする。 That is, the present invention produces a raw material for a cerium-based abrasive, which can improve production efficiency by increasing the amount of mixed rare oxide soil charged per batch in the pulverization step in the production of the cerium-based abrasive. It is an object of the present invention to provide a method for producing a cerium-based abrasive and a method for producing a cerium-based abrasive.

本発明は、セリウム系研磨材の製造において、混合酸化希土原料に乾式解砕処理を施すことにより、湿式粉砕工程における混合酸化希土の仕込み量を増加させることができ、生産効率を向上させることができることを見出したことに基づくものである。 INDUSTRIAL APPLICABILITY In the production of a cerium-based abrasive, the mixed rare earth oxide raw material is subjected to a dry crushing treatment, so that the amount of the mixed rare earth oxide charged in the wet pulverization step can be increased and the production efficiency is improved. It is based on finding out that it can be done.

すなわち、本発明は、以下の[1]〜[13]を提供するものである。
[1]全希土類元素の酸化物換算での含有量が80質量%以上であり、前記全希土類元素の酸化物換算量での含有量に対するセリウムの酸化物換算量での含有量が50質量%以上である混合酸化希土を乾式解砕処理する工程により、軽装かさ密度が0.60g/cm3超1.50g/cm3以下、かつ、体積分布50%累積値での粒子径が2μm以上20μm以下の解砕品からなるセリウム系研磨材用原料を得ることを特徴とするセリウム系研磨材用原料の製造方法。
[2]前記解砕品の軽装かさ密度が0.80g/cm3以上である、上記[1]に記載のセリウム系研磨材用原料の製造方法。
[3]前記混合酸化希土が、ランタン、ネオジム、及びプラセオジムから選ばれる1種以上を含む、上記[1]又は[2]に記載のセリウム系研磨剤用原料の製造方法。
[4]セリウム系研磨材の製造方法において、上記[1]〜[3]のいずれかに記載の製造方法により得られたセリウム系研磨材用原料を粉砕する工程を含むことを特徴とするセリウム系研磨材の製造方法。
[5]前記セリウム系研磨材用原料を粉砕する前に、前記セリウム系研磨材用原料にフッ化希土を添加する工程を含む、上記[4]に記載のセリウム系研磨材の製造方法。
[6]前記セリウム系研磨材用原料を粉砕する工程が湿式粉砕工程である、上記[4]又は[5]に記載のセリウム系研磨材の製造方法。
[7]前記湿式粉砕工程により、水を分散媒とし、固形分濃度が55質量%以上である、前記セリウム系研磨材用原料を含むスラリーを得る、上記[6]に記載のセリウム系研磨材の製造方法。
[8]前記湿式粉砕工程の後、乾燥、焼成、解砕及び分級をこの順に行う工程を含む、上記[6]又は[7]に記載のセリウム系研磨材の製造方法。
[9]前記湿式粉砕工程の後、600〜1200℃で焼成する、上記[8]に記載のセリウム系研磨剤の製造方法。
[10]前記湿式粉砕工程の後、0.1〜10時間焼成する、上記[8]又は[9]に記載のセリウム系研磨剤の製造方法。
[11]前記セリウム系研磨材用原料を粉砕する前に、前記セリウム系研磨材用原料にフッ化希土を添加する工程を含み、前記フッ化希土が、全希土類元素の酸化物換算量での含有量が80質量%以上である、上記[5]〜[10]のいずれかに記載のセリウム系研磨剤の製造方法。
[12]前記セリウム系研磨材用原料を粉砕する前に、前記セリウム系研磨材用原料にフッ化希土を添加する工程を含み、前記フッ化希土中のフッ素原子含有量が、10〜30%である、上記[5]〜[11]のいずれかに記載のセリウム系研磨剤の製造方法。
[13]前記セリウム系研磨材用原料を粉砕する前に、前記セリウム系研磨材用原料にフッ化希土を添加する工程を含み、前記フッ化希土を、前記セリウム系研磨材用原料とフッ化希土の合計100質量%のうちのフッ化希土の量が、1〜40質量%となるように添加する、上記[5]〜[12]のいずれかに記載のセリウム系研磨剤の製造方法。
That is, the present invention provides the following [1] to [13].
[1] The content of all rare earth elements in terms of oxide is 80% by mass or more, and the content of cerium in terms of oxide is 50% by mass with respect to the content of all rare earth elements in terms of oxide. By the above-mentioned step of dry crushing the mixed rare earth oxide, the light bulk density is more than 0.60 g / cm 3 and 1.50 g / cm 3 or less, and the particle size at the cumulative value of 50% volume distribution is 2 μm or more. A method for producing a raw material for a cerium-based abrasive, which comprises obtaining a raw material for a cerium-based abrasive, which is a crushed product of 20 μm or less.
[2] The method for producing a raw material for a cerium-based abrasive according to the above [1], wherein the crushed product has a light bulk density of 0.80 g / cm 3 or more.
[3] The method for producing a raw material for a cerium-based abrasive according to the above [1] or [2], wherein the mixed rare earth oxide contains at least one selected from lanthanum, neodymium, and praseodymium.
[4] The method for producing a cerium-based abrasive includes a step of pulverizing a raw material for a cerium-based abrasive obtained by the production method according to any one of the above [1] to [3]. Manufacturing method of system abrasives.
[5] The method for producing a cerium-based abrasive according to the above [4], which comprises a step of adding rare fluoride soil to the cerium-based abrasive raw material before crushing the cerium-based abrasive raw material.
[6] The method for producing a cerium-based abrasive according to the above [4] or [5], wherein the step of crushing the raw material for the cerium-based abrasive is a wet pulverization step.
[7] The cerium-based abrasive according to the above [6], wherein a slurry containing the raw material for the cerium-based abrasive, which uses water as a dispersion medium and has a solid content concentration of 55% by mass or more, is obtained by the wet pulverization step. Manufacturing method.
[8] The method for producing a cerium-based abrasive according to the above [6] or [7], which comprises a step of performing drying, firing, crushing, and classification in this order after the wet pulverization step.
[9] The method for producing a cerium-based abrasive according to the above [8], which is fired at 600 to 1200 ° C. after the wet pulverization step.
[10] The method for producing a cerium-based abrasive according to the above [8] or [9], which is fired for 0.1 to 10 hours after the wet pulverization step.
[11] A step of adding a rare earth fluoride to the raw material for a cerium-based abrasive before crushing the raw material for a cerium-based abrasive is included, and the rare earth fluoride is an oxide equivalent amount of all rare earth elements. The method for producing a cerium-based abrasive according to any one of the above [5] to [10], wherein the content in the above is 80% by mass or more.
[12] A step of adding rare fluoride soil to the raw material for cerium-based abrasive before crushing the raw material for cerium-based abrasive is included, and the fluorine atom content in the rare fluoride soil is 10 to 10. The method for producing a cerium-based abrasive according to any one of the above [5] to [11], which is 30%.
[13] A step of adding a rare earth fluoride to the raw material for a cerium-based abrasive before crushing the raw material for a cerium-based abrasive is included, and the rare earth fluoride is used as a raw material for the cerium-based abrasive. The cerium-based abrasive according to any one of the above [5] to [12], which is added so that the amount of the rare earth fluoride is 1 to 40% by mass out of the total 100% by mass of the rare earth fluoride. Manufacturing method.

本発明のセリウム系研磨材用原料の製造方法によれば、セリウム系研磨材の生産効率を向上させることができる原料を提供することができる。
また、前記セリウム系研磨材用原料を用いた本発明のセリウム系研磨材の製造方法によれば、粉砕工程における1バッチ当たりの混合酸化希土の仕込み量を増加させることができるため、生産効率を向上させることができ、さらに、生産コストの低減化も図ることができる。
According to the method for producing a raw material for a cerium-based abrasive of the present invention, it is possible to provide a raw material capable of improving the production efficiency of the cerium-based abrasive.
Further, according to the method for producing a cerium-based abrasive of the present invention using the raw material for a cerium-based abrasive, the amount of mixed rare oxide soil charged per batch in the crushing step can be increased, so that the production efficiency can be increased. It is possible to improve the production cost and further reduce the production cost.

以下、本発明を詳細に説明する。
[セリウム系研磨材用原料の製造方法]
本発明のセリウム系研磨材用原料の製造方法は、全希土類元素の酸化物換算量での含有量(以下、「TREO」(Total Rare Earth Oxideの略)とも言う。)が80質量%以上であり、前記TREOに対するセリウムの酸化物換算量での含有量が50質量%以上である混合酸化希土を乾式解砕処理する工程により、軽装かさ密度が0.60g/cm3超1.50g/cm3以下、かつ、体積分布50%累積値での粒子径が2μm以上20μm以下の解砕品からなるセリウム系研磨材用原料を得ることを特徴とするものである。
このように混合酸化希土を乾式解砕処理することにより、セリウム系研磨材の生産効率を向上させることができるセリウム系研磨材用原料が得られる。
なお、本発明で言うTREOは、シュウ酸塩沈殿、焼成及び重量法により測定することができ、具体的には、後述する実施例に記載の方法により測定することができる。
また、希土類元素の含有量は、高周波誘導結合プラズマ(ICP)分析や蛍光X線分析等の機器分析により測定することができ、本発明では、ICP発光分光分析(ICP−AES)による測定値から、希土類元素を酸化物として換算した値を酸化物換算量とする。
Hereinafter, the present invention will be described in detail.
[Manufacturing method of raw materials for cerium-based abrasives]
In the method for producing a raw material for a cerium-based abrasive of the present invention, the content of all rare earth elements in terms of oxide (hereinafter, also referred to as "TREO" (abbreviation of Total Rare Earth Oxide)) is 80% by mass or more. A light bulk density of more than 0.60 g / cm 3 is 1.50 g / cm by a step of dry crushing a mixed rare earth oxide having an oxide-equivalent content of cerium with respect to the TREO of 50% by mass or more. It is characterized in that a raw material for a cerium-based abrasive is obtained from a crushed product having a particle size of 2 μm or more and 20 μm or less in a volume distribution of 50% cumulative value of cm 3 or less.
By performing the dry crushing treatment of the mixed rare earth oxide in this way, a raw material for a cerium-based abrasive can be obtained, which can improve the production efficiency of the cerium-based abrasive.
The TREO referred to in the present invention can be measured by oxalate precipitation, calcination and gravimetric methods, and specifically, can be measured by the method described in Examples described later.
The content of rare earth elements can be measured by instrumental analysis such as high frequency inductively coupled plasma (ICP) analysis and fluorescent X-ray analysis. In the present invention, the content is measured by ICP emission spectroscopic analysis (ICP-AES). , The value obtained by converting a rare earth element as an oxide is defined as an oxide conversion amount.

(混合酸化希土)
本発明で用いる混合酸化希土は、TREOが80質量%以上であり、TREOに対するセリウムの酸化物換算量での含有量が50質量%以上である。
なお、本明細書で言う「混合酸化希土」の「混合」とは、複数種の希土類元素が含まれていることを意味する。
セリウム系研磨材の生産効率の向上の観点から、混合酸化希土中のTREOは、83質量%以上であることが好ましく、より好ましくは85質量%以上である。
上記と同様の観点から、混合酸化希土は、含有する全希土類元素のうちセリウムを主成分とし、TREOに対するセリウムの酸化物換算量での含有量は、53質量%以上であることが好ましく、より好ましくは55質量%以上である。
前記混合酸化希土には、セリウム以外の希土類元素が含まれていてもよく、前記希土類元素としては、例えば、ランタン、ネオジム、プラセオジム等が挙げられる。
(Mixed oxidized rare earth)
The mixed rare earth oxide used in the present invention has a TREO of 80% by mass or more, and the content of cerium in terms of oxide with respect to the TREO is 50% by mass or more.
The term "mixed" of "mixed rare earth" as used herein means that a plurality of kinds of rare earth elements are contained.
From the viewpoint of improving the production efficiency of the cerium-based abrasive, the TREO in the mixed rare earth oxide is preferably 83% by mass or more, more preferably 85% by mass or more.
From the same viewpoint as above, the mixed rare earth element preferably contains cerium as a main component among all the rare earth elements contained therein, and the content of cerium in terms of oxide with respect to TREO is preferably 53% by mass or more. More preferably, it is 55% by mass or more.
The mixed oxidized rare earth may contain a rare earth element other than cerium, and examples of the rare earth element include lanthanum, neodymium, and praseodymium.

前記混合酸化希土は、混合炭酸希土や混合モノオキシ炭酸希土、混合シュウ酸希土、混合水酸化希土等の混合軽希土化合物を焼成することにより得ることができる。なお、ここで言う「混合」も、上述した、混合酸化希土の「混合」と同義である。
前記混合軽希土化合物としては、アルカリ金属、アルカリ土類金属及び放射性物質等の非希土類成分の不純物成分、並びに中重希土の含有量が低減されているものが好ましく、セリウムを主成分としているものがより好ましい。混合軽希土化合物としては、例えば、TREOが45〜55質量%、前記TREOに対するセリウムの酸化物換算量での含有量が約65質量%の混合炭酸希土が好適に用いられる。
なお、本明細書で言う「中重希土」とは、プロメチウム(Pm)より原子番号が大きい希土類元素を指す。中重希土以外の希土類元素を「軽希土」と言う。
The mixed oxidized rare earth can be obtained by calcining a mixed light rare earth compound such as a mixed carbonated rare earth, a mixed monooxycarbonated rare earth, a mixed oxalic acid rare earth, and a mixed hydroxide rare earth. The "mixing" referred to here is also synonymous with the "mixing" of the mixed oxidized rare earth described above.
The mixed light rare earth compound preferably has a reduced content of impurity components of non-rare earth components such as alkali metals, alkaline earth metals and radioactive substances, and medium and heavy rare earths, and contains cerium as a main component. Is more preferable. As the mixed light rare earth compound, for example, a mixed rare earth carbonate having a TREO content of 45 to 55% by mass and a content of cerium in terms of an oxide with respect to the TREO of about 65% by mass is preferably used.
The term "medium-heavy rare earth" as used herein refers to a rare earth element having an atomic number larger than that of promethium (Pm). Rare earth elements other than medium-heavy rare earths are called "light rare earths".

混合軽希土化合物の調製方法は、特に限定されるものではない。混合軽希土化合物は、例えば、希土類元素を含む鉱石から希土類元素以外の不純物成分及び中重希土の含有量を化学的処理により分離して低減させることにより得られる。
希土類元素を含む鉱石としては、例えば、セリウムを多く含む、天然のバストネサイトやモナザイト等の原料鉱石から得られる希土精鉱等が好適に用いられる。
The method for preparing the mixed light rare earth compound is not particularly limited. The mixed light rare earth compound is obtained, for example, by separating and reducing the content of impurity components other than rare earth elements and medium and heavy rare earths from ores containing rare earth elements by chemical treatment.
As the ore containing a rare earth element, for example, a rare earth concentrate obtained from a raw material ore such as natural bastnäsite or monazite containing a large amount of cerium is preferably used.

混合軽希土化合物の調製において、不純物成分の含有量を低減させる化学的処理方法としては、硫酸培焼法が一般的な方法である。硫酸培焼法は、粉砕された前記原料鉱石を硫酸とともに焙焼して硫酸塩を生成し、この硫酸塩を水に溶解して不純物成分を不溶物として除去する方法である。不純物成分の含有量は、混合軽希土化合物中、1質量%以下にまで低減されることが好ましい。
また、中重希土の含有量を低減させる化学的処理方法としては、溶媒抽出法が一般的である。具体的には、原料鉱石の不純物成分の含有量を低減させる処理を行った後、水酸化ナトリウム等のアルカリにより混合水酸化希土とし、これを塩酸で溶解して混合塩化希土水溶液として、有機溶媒を用いて溶媒抽出することにより行うことができる。溶媒抽出においては、必要に応じて、抽出の程度の調整や添加剤等の使用等の公知の方法を用いて、セリウム及びその他の軽希土の各含有量を調整することができる。中重希土の含有量は、混合軽希土化合物中、1質量%以下にまで低減されることが好ましい。
混合軽希土化合物は、不純物成分の含有量を低減させる処理を行った後に、炭酸ナトリウムや重炭酸アンモニウム等を用いて炭酸塩とした混合炭酸希土、及び/又は、シュウ酸等用いてシュウ酸塩とした混合シュウ酸希土を含んでいてもよい。
In the preparation of mixed light rare earth compounds, the sulfuric acid cultivation method is a general method as a chemical treatment method for reducing the content of impurity components. The sulfuric acid cultivation method is a method in which the crushed raw material ore is roasted together with sulfuric acid to produce a sulfate, and the sulfate is dissolved in water to remove an impurity component as an insoluble matter. The content of the impurity component is preferably reduced to 1% by mass or less in the mixed light rare earth compound.
In addition, a solvent extraction method is generally used as a chemical treatment method for reducing the content of medium-heavy rare earths. Specifically, after performing a treatment to reduce the content of the impurity component of the raw material ore, it is made into a mixed rare hydroxide soil with an alkali such as sodium hydroxide, and this is dissolved with hydrochloric acid to prepare a mixed rare chloride soil aqueous solution. This can be done by solvent extraction using an organic solvent. In solvent extraction, if necessary, the contents of cerium and other light rare earths can be adjusted by using known methods such as adjusting the degree of extraction and using additives and the like. The content of the medium-heavy rare earth is preferably reduced to 1% by mass or less in the mixed light rare earth compound.
The mixed light rare soil compound is treated with a treatment for reducing the content of impurity components, and then mixed with sodium carbonate or ammonium bicarbonate to make a carbonate, and / or oxalic acid or the like. It may contain mixed oxalate dilute soil as an acid salt.

混合軽希土化合物を焼成して混合酸化希土を得る際の焼成温度は、混合軽希土化合物の組成に応じて適宜調整されるが、500〜1100℃であることが好ましく、より好ましくは500〜1000℃、さらに好ましくは600〜900℃である。焼成時間は、0.5〜48時間であることが好ましく、より好ましくは1〜40時間、さらに好ましくは1.5〜30時間である。焼成雰囲気は、大気中であることが好ましい。 The firing temperature at the time of firing the mixed light rare earth compound to obtain the mixed oxidized rare earth is appropriately adjusted according to the composition of the mixed light rare earth compound, but is preferably 500 to 1100 ° C., more preferably. It is 500 to 1000 ° C., more preferably 600 to 900 ° C. The firing time is preferably 0.5 to 48 hours, more preferably 1 to 40 hours, and even more preferably 1.5 to 30 hours. The firing atmosphere is preferably in the atmosphere.

なお、混合酸化希土は、市販もされており、解砕品を得るための原料として市販品を用いてもよい。市販品の混合酸化希土中には、その製造原料である混合炭酸希土や混合モノオキシ炭酸希土、混合シュウ酸希土等が残存している場合もある。 The mixed oxidized rare earth is also commercially available, and a commercially available product may be used as a raw material for obtaining a crushed product. In the mixed oxidized rare earth of a commercially available product, the mixed carbonated rare earth, the mixed monooxycarbonated rare earth, the mixed oxalic acid rare earth, etc., which are the raw materials for the production, may remain.

(乾式解砕処理工程)
本発明では、前記混合酸化希土を乾式解砕処理して、解砕品からなるセリウム系研磨材用原料を得る。
乾式解砕処理工程においては、凝集している混合酸化希土粒子を所定の軽装かさ密度及び粒子径となるようにする。
上記のようにして得られた通常の混合酸化希土の粒子径は、5〜30μm程度であり、結晶子径は、通常、30〜150Åである。結晶子径は、X線回折装置でメインピークの半価幅からシェラーの式を用いて算出することにより求められる。乾式解砕処理では、多結晶体の一次粒子の粒子径よりも大きい粒子径サイズの凝集粒子を得る。このような粒子からなる解砕品を得る乾式解砕処理は、後述する粉砕工程における「粉砕」とは区別されるものである。
乾式粉砕処理は、公知の乾式解砕(粉砕)装置を用いて行うことができる。所定の性状の粒子を得る観点から、例えば、ハンマーミル(アトマイザー)、ピンミル等が好適に用いられる。
(Dry crushing process)
In the present invention, the mixed rare earth oxide is subjected to a dry crushing treatment to obtain a raw material for a cerium-based abrasive, which is a crushed product.
In the dry crushing treatment step, the agglomerated mixed rare earth oxide particles are adjusted to have a predetermined light bulk density and particle diameter.
The particle size of the ordinary mixed rare earth oxide obtained as described above is about 5 to 30 μm, and the crystallite diameter is usually 30 to 150 Å. The crystallite diameter is obtained by calculating from the half-value width of the main peak with an X-ray diffractometer using Scheller's formula. In the dry crushing treatment, agglomerated particles having a particle size larger than the particle size of the primary particles of the polycrystalline material are obtained. The dry crushing process for obtaining a crushed product composed of such particles is distinguished from "crushing" in the crushing step described later.
The dry crushing process can be performed using a known dry crushing (crushing) device. From the viewpoint of obtaining particles having predetermined properties, for example, a hammer mill (atomizer), a pin mill, or the like is preferably used.

<軽装かさ密度>
乾式解砕処理工程により得られた解砕品は、軽装かさ密度が0.60g/cm3超1.50g/cm3以下であり、好ましくは0.80g/cm3以上である。
なお、本発明で言う「軽装かさ密度」とは、JIS R 9301−2−3:1999(アルミナ粉末−第2部:物性測定方法−3:軽装かさ密度及び重装かさ密度)の「3.軽装かさ密度の測定方法」に準拠した方法で測定された値を指す。
解砕品の軽装かさ密度が0.60g/cm3以下であると、湿式粉砕等のために該解砕品を水と混合してスラリーとする際、スラリーの粘性が高くなりやすく、均一なスラリーとするための混合酸化希土の仕込み量を増加させることができない。一方、1.50g/cm3超の場合は、取り扱いが難しく、実用上好ましくない。
湿式粉砕工程での混合酸化希土の仕込み量をより多くし、セリウム系研磨材の生産効率の向上を図る観点から、解砕品の軽装かさ密度は、0.80g/cm3以上であることが好ましく、より好ましくは0.85g/cm3以上である。また、解砕品の軽装かさ密度の上限は、取り扱い容易性の観点から、1.30g/cm3以下あることが好ましく、より好ましくは1.00g/cm3以下である。
<Light bulk density>
Solutions砕品obtained by dry crushing process is loosed bulk density of 0.60 g / cm 3 Ultra 1.50 g / cm 3 or less, preferably 0.80 g / cm 3 or more.
The "light bulk density" referred to in the present invention is defined in "3. Light bulk density and heavy bulk density" of JIS R 9301-2-3: 1999 (alumina powder-Part 2: Physical property measurement method-3: Light bulk density and heavy bulk density). It refers to the value measured by the method based on "Measuring method of light bulk density".
When the light bulk density of the crushed product is 0.60 g / cm 3 or less, the viscosity of the slurry tends to increase when the crushed product is mixed with water for wet crushing or the like to obtain a uniform slurry. It is not possible to increase the amount of mixed oxidized rare soil charged. On the other hand, if it exceeds 1.50 g / cm 3 , it is difficult to handle and is not practically preferable.
From the viewpoint of increasing the amount of mixed rare oxide soil charged in the wet pulverization step and improving the production efficiency of the cerium-based abrasive, the light bulk density of the crushed product is preferably 0.80 g / cm 3 or more. , More preferably 0.85 g / cm 3 or more. Further, the upper limit of the light bulk density of the crushed product is preferably 1.30 g / cm 3 or less, and more preferably 1.00 g / cm 3 or less, from the viewpoint of ease of handling.

<平均粒子径(D50)>
前記解砕品からなるセリウム系研磨材用原料は、平均粒子径が2〜20μmであり、好ましくは2〜18μm、より好ましくは3〜15μmである。
なお、本発明で言う「平均粒子径」とは、体積分布50%累積値での粒子径を指し、「D50」とも表す。この平均粒子径は、レーザー回折散乱法によって測定することができる。具体的には、下記実施例に記載のマイクロトラック粒度分布計で測定した値である。
解砕品の平均粒子径が2μm未満であると、粒子が細かすぎて取り扱い難く、実用上好ましくない。一方、20μmを超える場合は、粒子が粗すぎて、湿式粉砕等のために該解砕品を水と混合してスラリーとする際、沈降しやすく、均一なスラリーが得られ難く、また、後の粉砕工程で時間を多く要することとなるため、好ましくない。
<Average particle size (D50)>
The raw material for a cerium-based abrasive composed of the crushed product has an average particle size of 2 to 20 μm, preferably 2 to 18 μm, and more preferably 3 to 15 μm.
The "average particle size" referred to in the present invention refers to the particle size at a volume distribution of 50% cumulative value, and is also referred to as "D50". This average particle size can be measured by the laser diffraction / scattering method. Specifically, it is a value measured by the microtrack particle size distribution meter described in the following examples.
If the average particle size of the crushed product is less than 2 μm, the particles are too fine to handle, which is not preferable in practice. On the other hand, if it exceeds 20 μm, the particles are too coarse, and when the crushed product is mixed with water to form a slurry for wet pulverization or the like, it is easy to settle and it is difficult to obtain a uniform slurry, and later pulverization. This is not preferable because it takes a lot of time in the process.

[セリウム系研磨材の製造方法]
本発明のセリウム系研磨材の製造方法は、上記により得られたセリウム系研磨材用原料を粉砕する工程を含むことを特徴とするものである。
上述したような混合酸化希土の解砕品からなるセリウム系研磨材用原料を用いることにより、セリウム系研磨材の製造における生産効率を向上させることができる。
[Manufacturing method of cerium-based abrasive]
The method for producing a cerium-based abrasive of the present invention is characterized by including a step of pulverizing the raw material for the cerium-based abrasive obtained as described above.
By using the raw material for a cerium-based abrasive, which is a crushed product of the mixed rare oxide soil as described above, the production efficiency in the production of the cerium-based abrasive can be improved.

(粉砕工程)
本発明のセリウム系研磨材の製造方法におけるセリウム系研磨材用原料の粉砕工程は、乾式粉砕工程でも湿式粉砕工程でもよいが、下記の理由により、湿式粉砕工程が好ましい。
(Crushing process)
The pulverization step of the raw material for the cerium-based abrasive in the method for producing the cerium-based abrasive of the present invention may be a dry pulverization step or a wet pulverization step, but the wet pulverization step is preferable for the following reasons.

<湿式粉砕工程>
セリウム系研磨材の製造方法において、特に、湿式粉砕工程で、前記解砕品からなるセリウム系研磨材用原料を用いることにより、水と混合した際のスラリーの粘性の増加が抑制されるため、1バッチ当たりの混合酸化希土の仕込み量を増加させることができ、さらに、その後のスラリーの乾燥工程での乾燥効率の向上も図ることができる。すなわち、上記により得られたセリウム系研磨材用原料は、湿式粉砕工程に供されることにより、セリウム系研磨材の生産効率の向上効果に特に寄与し得る。
<Wet crushing process>
In the method for producing a cerium-based abrasive, in particular, by using the raw material for a cerium-based abrasive made of the crushed product in the wet pulverization step, an increase in the viscosity of the slurry when mixed with water is suppressed, so that one batch It is possible to increase the amount of mixed oxide rare soil charged per hit, and further to improve the drying efficiency in the subsequent drying step of the slurry. That is, the raw material for the cerium-based abrasive obtained as described above can particularly contribute to the effect of improving the production efficiency of the cerium-based abrasive by being subjected to the wet pulverization step.

湿式粉砕工程は、均質に粉砕する観点、また、後述するように、解砕品以外に他の成分を添加する場合には、均一に混合する観点から、湿式ボールミル(ビーズミル)等の媒体ミルにより行うことが好ましい。分散媒としては、水が好適に用いられるが、分散性向上の観点から、アルコール等との混合溶媒を用いてもよい。 The wet pulverization step is performed by a medium mill such as a wet ball mill (bead mill) from the viewpoint of homogeneous pulverization and, as will be described later, from the viewpoint of uniformly mixing when other components other than the crushed product are added. Is preferable. Water is preferably used as the dispersion medium, but a mixed solvent with alcohol or the like may be used from the viewpoint of improving dispersibility.

湿式粉砕工程により得られるセリウム系研磨材の原料スラリーは、生産性の向上及び製造コスト等の観点から、水を分散媒とし、固形分濃度が55質量%以上であることが好ましく、より好ましくは57質量%以上、さらに好ましくは60質量%以上である。なお、ここで言う「固形分」とは、湿式粉砕される対象が前記解砕品のみの場合は、該解砕品を指し、後述するように、解砕品以外に他の成分を添加する場合には、これらの成分の固形分及び解砕品の合計を指す。
原料スラリー中の固形分の粒子径は、後の工程での取り扱い性等の観点から、平均粒子径(D50)が0.3〜10μmであることが好ましく、より好ましくは0.5〜7μm、さらに好ましくは0.5〜5μmである。
The raw material slurry of the cerium-based abrasive obtained by the wet pulverization step preferably uses water as a dispersion medium and has a solid content concentration of 55% by mass or more, more preferably, from the viewpoint of improving productivity and manufacturing cost. It is 57% by mass or more, more preferably 60% by mass or more. The term "solid content" as used herein refers to the crushed product when the target to be wet-crushed is only the crushed product, and as will be described later, when other components are added in addition to the crushed product, these are used. Refers to the total of the solid content of the ingredients and the crushed product.
The average particle size (D50) of the solid content in the raw material slurry is preferably 0.3 to 10 μm, more preferably 0.5 to 7 μm, from the viewpoint of handleability in a later step. More preferably, it is 0.5 to 5 μm.

セリウム系研磨材は、前記解砕品の成分のみからなるものであってもよく、あるいはまた、研磨材の研磨特性の向上の観点から、前記解砕品の成分以外の成分を含んでいてもよく、例えば、フッ素成分が添加されることが好ましい。
この場合、解砕品の成分以外の成分は、解砕品と均一に混合されるように、解砕品を粉砕する前に、解砕品に添加されることが好ましい。解砕品にフッ素成分を添加する場合には、解砕品にフッ化希土を添加することが好ましい。すなわち、混合酸化希土の解砕品からなるセリウム系研磨材用原料を粉砕する前に、該セリウム系研磨材用原料にフッ化希土を添加する工程を含むことが好ましい。
The cerium-based abrasive may be composed of only the components of the crushed product, or may contain components other than the components of the crushed product from the viewpoint of improving the polishing characteristics of the abrasive, for example. It is preferable that a fluorine component is added.
In this case, components other than the components of the crushed product are preferably added to the crushed product before crushing the crushed product so that the components are uniformly mixed with the crushed product. When a fluorine component is added to the crushed product, it is preferable to add the rare earth fluoride to the crushed product. That is, it is preferable to include a step of adding the rare fluoride soil to the raw material for the cerium-based abrasive before crushing the raw material for the cerium-based abrasive, which is a crushed product of the mixed rare oxide soil.

(フッ化希土)
フッ化希土は、前記フッ素成分として、セリウム系研磨材のフッ素原子含有量を増加させる目的で添加される。
セリウム系研磨材がフッ素を含んでいることにより、研磨速度等の研磨特性を向上させることができる。フッ化希土を用いれば、フッ化アンモニウムやフッ酸等のフッ化物を直接用いるよりも、安全かつ簡便に、低コストで、フッ素を含むセリウム系研磨材を製造することができる。
(Rare earth fluoride)
Rare earth fluoride is added as the fluorine component for the purpose of increasing the fluorine atom content of the cerium-based abrasive.
Since the cerium-based abrasive contains fluorine, it is possible to improve polishing characteristics such as polishing speed. When rare fluoride soil is used, it is possible to produce a cerium-based abrasive containing fluorine safely, easily, and at low cost, as compared with directly using fluoride such as ammonium fluoride and hydrofluoric acid.

フッ化希土は、TREOが好ましくは80質量%以上、より好ましくは83質量%以上、さらに好ましくは85質量%以上である。また、フッ化希土は、含有する全希土類元素のうちセリウムを主成分とするものであることが好ましく、TREOに対するセリウムの酸化物換算量での含有量は、好ましくは50質量%以上、より好ましくは53質量%以上、さらに好ましくは55質量%以上である。また、フッ化希土中のフッ素原子含有量は、好ましくは10〜30質量%、より好ましくは15〜30質量%、さらに好ましくは20〜30質量%である。 The rare earth fluoride is preferably TREO in an amount of 80% by mass or more, more preferably 83% by mass or more, and further preferably 85% by mass or more. Further, the rare earth fluoride preferably contains cerium as a main component among all the rare earth elements contained therein, and the content of cerium in terms of oxide with respect to TREO is preferably 50% by mass or more. It is preferably 53% by mass or more, more preferably 55% by mass or more. The fluorine atom content in the rare earth fluoride is preferably 10 to 30% by mass, more preferably 15 to 30% by mass, and even more preferably 20 to 30% by mass.

このようなフッ化希土としては、上述した混合軽希土化合物に、フッ酸、フッ化アンモニウム又は酸性フッ化アンモニウム等のフッ化物を添加して、熱処理することにより得られる混合フッ化希土を用いることができる。なお、ここで言う「混合」も、上述した、混合酸化希土の「混合」と同義である。
前記熱処理は、均質で研磨特性に優れたセリウム系研磨材を得る観点から、400℃以下の温度であることが好ましい。熱処理雰囲気は、大気中であることが好ましい。
Such a rare earth fluoride is obtained by adding a fluoride such as hydrofluoric acid, ammonium fluoride or acidic ammonium fluoride to the above-mentioned mixed light rare earth compound and heat-treating the mixed rare earth fluoride. Can be used. The "mixing" referred to here is also synonymous with the above-mentioned "mixing" of the mixed oxidized rare earth.
The heat treatment is preferably at a temperature of 400 ° C. or lower from the viewpoint of obtaining a cerium-based abrasive which is homogeneous and has excellent polishing characteristics. The heat treatment atmosphere is preferably in the air.

前記解砕品からなるセリウム系研磨材用原料に添加されるフッ化希土の量は、製造するセリウム系研磨材に要求されるフッ素原子含有量に応じて適宜決定される。優れた研磨特性を得る観点から、前記解砕品とフッ化希土の合計100質量%のうちのフッ化希土の量が、1〜40質量%となるように添加されることが好ましく、より好ましくは3〜35質量%、さらに好ましくは5〜30質量%である。 The amount of rare fluoride soil added to the raw material for a cerium-based abrasive made of the crushed product is appropriately determined according to the fluorine atom content required for the cerium-based abrasive to be produced. From the viewpoint of obtaining excellent polishing properties, it is preferable and more preferably added so that the amount of the rare earth fluoride out of the total 100% by mass of the crushed product and the rare earth fluoride is 1 to 40% by mass. Is 3 to 35% by mass, more preferably 5 to 30% by mass.

(湿式粉砕工程の後工程)
本発明のセリウム系研磨材の製造方法は、前記湿式粉砕工程の後、乾燥、焼成、解砕及び分級をこの順に行う工程を含んでいることが好ましい。すなわち、前記湿式粉砕工程で得られたスラリーを乾燥した後、焼成し、解砕し、分級して、セリウム系研磨材を製造することが好ましい。
このような工程を経る製造方法によれば、前記スラリーは固形分濃度が高いため、その乾燥効率も向上し、ひいては、セリウム系研磨材の生産効率を向上させ、製造コストの低減化も図ることができる。
乾燥、焼成、解砕及び分級は、セリウム系研磨材の公知の製造方法で用いられている方法と同様に行うことができる。
なお、焼成工程においては、均質で研磨特性に優れたセリウム系研磨材を得る観点から、焼成温度は、好ましくは600〜1200℃、より好ましくは650〜1150℃、さらに好ましくは700〜1100℃である。目標設定温度での焼成時間は、好ましくは0.1〜10時間、より好ましくは0.5〜6時間、さらに好ましくは0.5〜4時間である。焼成雰囲気は、大気中であることが好ましい。
(Post-process of wet crushing process)
The method for producing a cerium-based abrasive of the present invention preferably includes a step of performing drying, firing, crushing, and classification in this order after the wet pulverization step. That is, it is preferable that the slurry obtained in the wet pulverization step is dried, then fired, pulverized, and classified to produce a cerium-based abrasive.
According to the manufacturing method through such a step, since the slurry has a high solid content concentration, the drying efficiency thereof is also improved, and thus the production efficiency of the cerium-based abrasive is improved, and the manufacturing cost is also reduced. Can be done.
Drying, firing, crushing and classification can be carried out in the same manner as those used in known manufacturing methods for cerium-based abrasives.
In the firing step, the firing temperature is preferably 600 to 1200 ° C., more preferably 650 to 1150 ° C., and further preferably 700 to 1100 ° C. from the viewpoint of obtaining a homogeneous and excellent cerium-based polishing material. is there. The firing time at the target set temperature is preferably 0.1 to 10 hours, more preferably 0.5 to 6 hours, still more preferably 0.5 to 4 hours. The firing atmosphere is preferably in the atmosphere.

(セリウム系研磨材)
本発明の製造方法により得られるセリウム系研磨材は、研磨特性の観点から、TREOが、好ましくは85質量%以上、より好ましくは90質量%以上であり、前記TREOに対するセリウムの酸化物換算量での含有量が、好ましくは55〜95質量%、より好ましくは60〜95質量%である。
また、セリウム系研磨材は、ランタン、ネオジム及びプラセオジムを含んでいるものが好ましく、この場合、TREOに対するランタンの酸化物換算量での含有量が5〜40質量%、TREOに対するネオジムの酸化物換算量での含有量が0.01〜5質量%、TREOに対するプラセオジムの酸化物換算量での含有量が0.01〜5質量%であることが好ましい。
また、セリウム系研磨材は、優れた研磨特性を有するものとする観点から、フッ素原子を含んでいることが好ましく、この場合、フッ素原子の含有量が0.5〜10質量%であることが好ましい。
(Cerium-based abrasive)
From the viewpoint of polishing characteristics, the cerium-based abrasive obtained by the production method of the present invention has a TREO of preferably 85% by mass or more, more preferably 90% by mass or more, in terms of the oxide equivalent amount of cerium with respect to the TREO. The content of is preferably 55 to 95% by mass, more preferably 60 to 95% by mass.
The cerium-based abrasive material preferably contains lanthanum, neodymium, and praseodymium. In this case, the content of lanthanum in terms of oxide in terms of TREO is 5 to 40% by mass, and the content of neodymium in terms of oxide with respect to TREO is 5 to 40% by mass. It is preferable that the content in terms of amount is 0.01 to 5% by mass, and the content of praseodymium in terms of oxide with respect to TREO is 0.01 to 5% by mass.
Further, the cerium-based abrasive preferably contains a fluorine atom from the viewpoint of having excellent polishing properties, and in this case, the content of the fluorine atom is 0.5 to 10% by mass. preferable.

セリウム系研磨材は、研磨対象や研磨条件等にもよるが、平均粒子径(D50)が0.3〜5.0μmであることが好ましく、より好ましくは0.5〜4.0μm、さらに好ましくは0.5〜3.0μmである。 The average particle size (D50) of the cerium-based abrasive is preferably 0.3 to 5.0 μm, more preferably 0.5 to 4.0 μm, and even more preferably 0.5 to 4.0 μm, although it depends on the polishing target and polishing conditions. Is 0.5 to 3.0 μm.

前記セリウム系研磨材は、通常、粉末状で取り扱われるが、研磨時には、例えば、水等の分散媒に分散させて、スラリーの状態で使用される。スラリー中の研磨材の分散濃度は、研磨対象や研磨条件等によって適宜調整されるが、通常、1〜30質量%である。分散媒としては、水や、アルコール、アセトン、テトラヒドロフラン等の水溶性有機溶媒が好適に用いられ、通常は、水が使用される。 The cerium-based abrasive is usually handled in the form of powder, but at the time of polishing, it is dispersed in a dispersion medium such as water and used in the form of a slurry. The dispersion concentration of the abrasive in the slurry is appropriately adjusted depending on the polishing target, polishing conditions, etc., but is usually 1 to 30% by mass. As the dispersion medium, water or a water-soluble organic solvent such as alcohol, acetone, or tetrahydrofuran is preferably used, and water is usually used.

また、研磨材のスラリーには、分散性向上、沈降防止、安定性向上及び作業性向上等の目的で、必要に応じて、エチレングリコール、ポリエチレングリコール等のグリコール類;トリポリリン酸、ヘキサメタリン酸塩等のリン酸塩;ポリアクリル酸塩等の高分子分散剤、メチルセルロース、カルボキシメチルセルロース等のセルロースエーテル類;ポリビニルアルコール等の水溶性高分子等の添加剤を、研磨特性を妨げない範囲内において、添加することができる。添加剤が添加される場合の各添加剤の添加量は、スラリー中の研磨材100質量部に対して、通常、0.01〜20質量部であり、好ましくは0.05〜15質量部、より好ましくは0.1〜10質量部である。 Further, in the slurry of the abrasive material, glycols such as ethylene glycol and polyethylene glycol; tripolyphosphate, hexamethaphosphate and the like, if necessary, for the purpose of improving dispersibility, preventing sedimentation, improving stability and improving workability, etc. Phosphate; polymer dispersants such as polyacrylic acid salt, cellulose ethers such as methyl cellulose and carboxymethyl cellulose; additives such as water-soluble polymers such as polyvinyl alcohol are added within a range that does not interfere with the polishing properties. can do. When the additives are added, the amount of each additive added is usually 0.01 to 20 parts by mass, preferably 0.05 to 15 parts by mass, based on 100 parts by mass of the abrasive in the slurry. More preferably, it is 0.1 to 10 parts by mass.

前記セリウム系研磨材を用いれば、ガラス基板等の研磨面に生じる研磨傷(スクラッチ)を抑制しつつ、高い研磨速度を維持することができ、効率的な研磨を行うことができる。
前記セリウム系研磨材は、特に、光ディスクや磁気ディスク用のガラス基板、液晶ディスプレイ用のガラス基板、カラーフィルターやフォトマスク用のガラス基板、光学レンズ用のガラス基板等、各種ガラス材及びガラス製品の仕上げ研磨に好適に用いられる。
By using the cerium-based polishing material, a high polishing rate can be maintained while suppressing polishing scratches (scratches) generated on the polished surface of a glass substrate or the like, and efficient polishing can be performed.
The cerium-based abrasives include, in particular, various glass materials and glass products such as glass substrates for optical disks and magnetic disks, glass substrates for liquid crystal displays, glass substrates for color filters and photomasks, and glass substrates for optical lenses. Suitable for finish polishing.

以下、本発明を実施例により具体的に説明するが、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the following Examples.

[混合酸化希土原料の調製]
(原料A)
TREOを47質量%、中重希土を酸化物換算で2質量%、ネオジムを酸化物換算で8質量%含有する原料鉱石(希土精鉱)を、硫酸培焼法及び溶媒抽出法により処理し、希土類元素以外の不純物成分を1質量%以下、中重希土を酸化物換算で1質量%以下に低減して、希土類元素の含有量を調整した混合軽希土化合物を得た。この混合軽希土化合物は、TREOに対して、セリウムの酸化物換算量([CeO2])での含有量が65質量%、ランタンの酸化物換算量([La23])での含有量が34質量%、ネオジムの酸化物換算量([Nd23])での含有量が0.6質量%、プラセオジムの酸化物換算量での含有量([Pr611])が0.1質量%であった。
この混合軽希土化合物を、重炭酸アンモニウムで処理し、混合炭酸希土を得た。なお、混合炭酸希土は、TREOが49質量%であった。
この混合炭酸希土4000kgを、シャトルキルンにて大気中で800℃で10時間熱処理し、混合酸化希土を得た。なお、混合酸化希土は、TREOが93質量%であり、該TREOに対するセリウムの酸化物換算量での含有量が65質量%であった。
[Preparation of mixed oxidized rare earth raw materials]
(Raw material A)
Raw material ores (rare earth concentrates) containing 47% by mass of TREO, 2% by mass of medium-heavy rare earth in terms of oxide, and 8% by mass of neodym in terms of oxide are treated by sulfuric acid cultivation method and solvent extraction method. Then, the impurity components other than the rare earth element were reduced to 1% by mass or less, and the medium-heavy rare earth was reduced to 1% by mass or less in terms of oxide to obtain a mixed light rare earth compound in which the content of the rare earth element was adjusted. This mixed light rare soil compound contains 65% by mass of cerium in terms of oxide ([CeO 2 ]) and lanthanum in terms of oxide ([La 2 O 3 ]) with respect to TREO. The content is 34% by mass, the content of neodymium in terms of oxide ([Nd 2 O 3 ]) is 0.6% by mass, and the content of praseodymium in terms of oxide ([Pr 6 O 11 ]). Was 0.1% by mass.
This mixed light rare earth compound was treated with ammonium bicarbonate to obtain a mixed rare earth carbonate. The mixed carbonated rare earth had a TREO content of 49% by mass.
4000 kg of this mixed rare earth carbonate was heat-treated in the air at 800 ° C. for 10 hours in a shuttle kiln to obtain a mixed rare earth oxide soil. In the mixed rare earth oxide, TREO was 93% by mass, and the content of cerium in terms of oxide with respect to the TREO was 65% by mass.

(原料B〜D)
原料Aの調製に用いたのと同様の混合軽希土化合物を用いて、その処理条件及び混合炭酸希土の熱処理条件を調整することにより、下記表1に示すようなTREO及び[CeO2]/TREOである原料B〜Dをそれぞれ調製した。
(Raw materials B to D)
By using the same mixed light rare earth compound used for the preparation of the raw material A and adjusting the treatment conditions and the heat treatment conditions of the mixed carbonated rare earth, TREO and [CeO 2 ] as shown in Table 1 below / TREO raw materials B to D were prepared respectively.

(原料E)
TREOに対して、セリウムの酸化物換算量([CeO2])での含有量が59質量%、ランタンの酸化物換算量での含有量([La23])が36質量%、ネオジムの酸化物換算量での含有量([Nd23])が0.1質量%、プラセオジムの酸化物換算量での含有量([Pr611])が4.5質量%の混合軽希土化合物を用いて、その処理条件及び混合炭酸希土の熱処理条件を調整することにより、下記表1に示すようなTREO及び[CeO2]/TREOである原料Eを調製した。
(Raw material E)
The content of cerium in terms of oxide ([CeO 2 ]) is 59% by mass, the content of lanthanum in terms of oxide ([La 2 O 3 ]) is 36% by mass, and neodymium with respect to TREO. The content of praseodymium in terms of oxide ([Nd 2 O 3 ]) is 0.1% by mass, and the content of praseodymium in terms of oxide ([Pr 6 O 11 ]) is 4.5% by mass. By adjusting the treatment conditions and the heat treatment conditions of the mixed carbonated rare earth using the light rare earth compound, TREO as shown in Table 1 below and raw material E which is [CeO 2 ] / TREO were prepared.

[解砕品の製造]
(実施例1)
原料A 1500kgを、アトマイザー(不二電機工業株式会社(現 不二パウダル株式会社)製、型番「EII7.5」)に投入し、回転数8000rpmで乾式解砕処理(1)を行った。
(実施例2〜5)
実施例1において、原料Aに代えて原料B〜Eを用いて、それ以外は実施例1と同様にして、それぞれ、乾式解砕処理(1)を行った。
(実施例6)
実施例1において、アトマイザーの回転数5000rpmとし、それ以外は実施例1と同様にして、それぞれ、乾式解砕処理(2)を行った。
(実施例7)
実施例2において、アトマイザーの回転数5000rpmとし、それ以外は実施例2と同様にして、それぞれ、乾式解砕処理(2)を行った。
[Manufacturing of crushed products]
(Example 1)
1500 kg of raw material A was put into an atomizer (manufactured by Fuji Electric Industry Co., Ltd. (currently Fuji Powder Co., Ltd.), model number "EII7.5"), and a dry crushing treatment (1) was performed at a rotation speed of 8000 rpm.
(Examples 2 to 5)
In Example 1, raw materials B to E were used instead of the raw material A, and the dry crushing treatment (1) was carried out in the same manner as in Example 1 except for the raw materials A.
(Example 6)
In Example 1, the rotation speed of the atomizer was set to 5000 rpm, and other than that, the dry crushing treatment (2) was performed in the same manner as in Example 1.
(Example 7)
In Example 2, the rotation speed of the atomizer was set to 5000 rpm, and other than that, the dry crushing treatment (2) was performed in the same manner as in Example 2.

(比較例1〜3)
原料A〜Cについて、乾式解砕処理を行わなかったものを、それぞれ、比較例1〜3とした。
(Comparative Examples 1 to 3)
The raw materials A to C that were not subjected to the dry crushing treatment were designated as Comparative Examples 1 to 3, respectively.

[解砕品及び未解砕品の物性測定]
上記実施例で得られた解砕品からなるセリウム系研磨材用原料、及び比較例の未解砕品(原料A〜C)について、軽装かさ密度及び平均粒子径(D50)を測定した。これらの測定結果を下記表1にまとめて示す。
各測定方法は、以下のとおりである。
<軽装かさ密度>
JIS R 9301−2−3:1999(アルミナ粉末−第2部:物性測定方法−3:軽装かさ密度及び重装かさ密度)の「3.軽装かさ密度の測定方法」に準拠した方法で測定した。
<平均粒子径(D50)>
マイクロトラック粒度分布計「MT3300II」(日機装株式会社製)にて、レーザー回折散乱法により粒度分布測定を行い、体積分布50%累積値での粒子径(D50)を平均粒子径とした。
[Measurement of physical properties of crushed and uncrushed products]
The light bulk density and the average particle size (D50) were measured for the cerium-based abrasive raw material made of the crushed product obtained in the above example and the uncrushed product (raw materials A to C) of the comparative example. The results of these measurements are summarized in Table 1 below.
Each measurement method is as follows.
<Light bulk density>
Measured by a method based on "3. Measurement method of light bulk density" of JIS R 9301-2-3: 1999 (alumina powder-Part 2: Physical property measurement method-3: Light bulk density and heavy bulk density). ..
<Average particle size (D50)>
The particle size distribution was measured by a laser diffraction / scattering method with a microtrack particle size distribution meter "MT3300II" (manufactured by Nikkiso Co., Ltd.), and the particle size (D50) at a cumulative value of 50% volume distribution was taken as the average particle size.

[スラリー調製評価]
上記実施例で得られた解砕品からなるセリウム系研磨材用原料、及び比較例の未解砕品(原料A〜C)の各試料について、それぞれ、水と混合し、スラリー調製評価を行った。
まず、100mlビーカーに、解砕品又は未解砕品の試料40g、及び水を加えて、それぞれ、53、57及び62質量%の濃度に調整し、ガラス棒で撹拌混合し、混合物(スラリー)の状態を目視観察にて評価した。これらの評価結果を下記表1にまとめて示す。
[Slurry preparation evaluation]
Each sample of the cerium-based abrasive raw material composed of the crushed product obtained in the above example and the uncrushed product (raw materials A to C) of the comparative example was mixed with water and evaluated for slurry preparation.
First, 40 g of a crushed or uncrushed sample and water are added to a 100 ml beaker to adjust the concentrations to 53, 57 and 62% by mass, respectively, and the mixture is stirred and mixed with a glass rod, and the state of the mixture (slurry) is visually observed. It was evaluated by observation. The results of these evaluations are summarized in Table 1 below.

評価基準は以下のとおりである。
A:手で容易に撹拌できる粘度であり、均一なスラリーになる。
B:スラリーになるが、手での撹拌がやや困難である。
C:まったく撹拌できず、スラリーにならない。
評価A及びBの場合は、湿式粉砕において均一なスラリーを得ることが可能であると言える。評価Cの場合は、湿式粉砕において均一なスラリーを得ることは困難である。
The evaluation criteria are as follows.
A: The viscosity is such that it can be easily stirred by hand, and a uniform slurry is obtained.
B: It becomes a slurry, but it is a little difficult to stir by hand.
C: It cannot be stirred at all and does not become a slurry.
In the cases of evaluations A and B, it can be said that a uniform slurry can be obtained by wet pulverization. In the case of evaluation C, it is difficult to obtain a uniform slurry by wet pulverization.

Figure 0006839767
Figure 0006839767

表1に示した結果から分かるように、乾式解砕処理された、所定の軽装かさ密度及び平均粒子径である解砕品からなるセリウム系研磨材用原料(実施例1〜7)は、スラリー中の混合酸化希土の解砕品(固形分)の濃度を高くした場合においても、均一なスラリーを得ることができる。したがって、前記セリウム系研磨材用原料を用いれば、湿式粉砕工程における混合酸化希土の仕込み量を増加させることが可能となる。 As can be seen from the results shown in Table 1, the raw materials for cerium-based abrasives (Examples 1 to 7), which are crushed products having a predetermined light bulk density and average particle size, which have been dry-crushed, are contained in the slurry. A uniform slurry can be obtained even when the concentration of the crushed product (solid content) of the mixed oxidized rare earth is increased. Therefore, if the raw material for a cerium-based abrasive is used, it is possible to increase the amount of mixed rare earth oxide charged in the wet pulverization step.

[セリウム系研磨材の製造]
(実施例8)
実施例1(原料Aの製造過程)で得られた混合軽希土化合物にフッ酸を加えて混合した後、大気中で400℃で2時間熱処理し、混合フッ化希土を得た。この混合フッ化希土は、TREOが83質量%であり、該TREOに対するセリウムの酸化物換算量([CeO2])での含有量が65質量%であり、また、フッ素原子含有量が26質量%であった。
水1000kgと、実施例2で調製した混合酸化希土の解砕品(セリウム系研磨剤用原料)及び前記混合フッ化希土の混合物(混合質量比76:24)の合計1400kgとをスラリータンクで撹拌混合した後、湿式ボールミル(媒体:直径5mmジルコニア製ボール)にて17時間混合粉砕することにより、均一な混合スラリーが得られた。
この混合スラリーを、ロータリーキルンに投入し、大気中で700℃で乾燥後、1000℃で焼成した。得られた焼成体を放冷後、解砕、分級して、セリウム系研磨材を製造した。
[Manufacturing of cerium-based abrasives]
(Example 8)
Hydrofluoric acid was added to the mixed light rare earth compound obtained in Example 1 (manufacturing process of raw material A) and mixed, and then heat-treated at 400 ° C. for 2 hours in the air to obtain a mixed rare earth fluoride. This mixed fluoride rare soil has a TREO of 83% by mass, a content of cerium in terms of oxide ([CeO 2 ]) with respect to the TREO of 65% by mass, and a fluorine atom content of 26. It was% by mass.
A total of 1400 kg of water, a crushed product of the mixed rare oxide soil prepared in Example 2 (raw material for a cerium-based abrasive), and a mixture of the mixed rare fluoride soil (mixed mass ratio 76:24) are stirred in a slurry tank. After mixing, a uniform mixed slurry was obtained by mixing and pulverizing with a wet ball mill (medium: zirconia balls having a diameter of 5 mm) for 17 hours.
This mixed slurry was put into a rotary kiln, dried in the air at 700 ° C., and then calcined at 1000 ° C. The obtained fired body was allowed to cool, then crushed and classified to produce a cerium-based abrasive.

(比較例4)
水1000kgと、比較例2の混合酸化希土の未解砕品及び実施例8と同じ混合フッ化希土の混合物(混合質量比76:24)の合計1000kgとをスラリータンクで撹拌混合した後、湿式ボールミル(媒体:直径5mmジルコニア製ボール)にて19時間混合粉砕することにより、均一な混合スラリーが得られた。
この混合スラリーを、実施例8と同様にして乾燥、焼成、解砕及び分級して、セリウム系研磨材を製造した。
(Comparative Example 4)
A total of 1000 kg of water and a total of 1000 kg of an uncrushed mixed oxidized rare soil of Comparative Example 2 and a mixture of the same mixed rare fluoride soil as in Example 8 (mixed mass ratio 76:24) were stirred and mixed in a slurry tank, and then wet. A uniform mixed slurry was obtained by mixing and pulverizing with a ball mill (medium: a ball made of zirconia having a diameter of 5 mm) for 19 hours.
This mixed slurry was dried, fired, crushed and classified in the same manner as in Example 8 to produce a cerium-based abrasive.

[セリウム系研磨材の組成分析]
上記実施例及び比較例で得られた各セリウム系研磨材について、TREO、TREOに対する各希土類元素の酸化物換算量([CeO2]、[La23]、[Nd23]、[Pr611])での含有量、及びフッ素原子(F)含有量を測定した。これらの測定結果を下記表2にまとめて示す。
各測定方法は、以下のとおりである。
<TREO>
セリウム系研磨材を酸溶解した溶液に、アンモニア水を添加した。生成した沈殿物を、ろ過、洗浄してアルカリ金属を除去した後、再び酸溶解した。この溶液にシュウ酸を添加し、生成した沈殿物を焼成して重量法にてTREOを求めた。
<TREOに対する各希土類元素の酸化物換算量での含有量>
セリウム系研磨材を酸溶解し、ICP−AES法で測定された各希土類元素量を、酸化物として換算した値を酸化物換算量とした。
<フッ素原子含有量>
セリウム系研磨材をアルカリ溶融して温水抽出して、フッ素イオン計(イオン電極法)で測定した。
[Composition analysis of cerium-based abrasives]
For each cerium-based abrasive obtained in the above Examples and Comparative Examples, the oxide conversion amount of each rare earth element with respect to TREO and TREO ([CeO 2 ], [La 2 O 3 ], [Nd 2 O 3 ], [ The content at Pr 6 O 11 ]) and the fluorine atom (F) content were measured. The results of these measurements are summarized in Table 2 below.
Each measurement method is as follows.
<TREO>
Ammonia water was added to the acid-dissolved solution of the cerium-based abrasive. The resulting precipitate was filtered and washed to remove alkali metals, and then acid-dissolved again. Oxalic acid was added to this solution, and the resulting precipitate was calcined to determine TREO by the gravimetric method.
<Content of each rare earth element with respect to TREO in terms of oxide equivalent>
The cerium-based abrasive was acid-dissolved, and the value obtained by converting the amount of each rare earth element measured by the ICP-AES method as an oxide was defined as the oxide conversion amount.
<Fluorine atom content>
The cerium-based abrasive was alkaline-melted, extracted with warm water, and measured with a fluorine ion meter (ion electrode method).

[セリウム系研磨材の物性測定]
上記実施例及び比較例で得られた各セリウム系研磨材について、粒度分布及び比表面積を測定した。これらの測定結果も表2にまとめて示す。
各測定方法は以下のとおりである。
<粒子径>
粒度分布測定装置(ベックマン・コールター株式会社製「コールターマルチサイザー」、30μm径アパチャーチューブ)にて粒度分布測定を行い、体積分布50%累積値での粒子径(D50)を求めた。
<比表面積>
JIS R 1626:1996(ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法)の「6.2 流動法 (3.5)一点法」に準拠して測定した。吸着質気体には窒素を用いた。
[Measurement of physical properties of cerium-based abrasives]
The particle size distribution and specific surface area of each cerium-based abrasive obtained in the above Examples and Comparative Examples were measured. The results of these measurements are also summarized in Table 2.
Each measurement method is as follows.
<Particle size>
The particle size distribution was measured with a particle size distribution measuring device (“Coulter Multisizer” manufactured by Beckman Coulter Co., Ltd., 30 μm diameter aperture tube), and the particle size (D50) at a volume distribution of 50% cumulative value was determined.
<Specific surface area>
The measurement was performed in accordance with "6.2 Flow Method (3.5) One-Point Method" of JIS R 1626: 1996 (Measurement method of specific surface area by gas adsorption BET method of fine ceramic powder). Nitrogen was used as the adsorbent gas.

[研磨評価]
上記実施例及び比較例で得られた各セリウム系研磨材を用いて、濃度10質量%で水に分散させた研磨材スラリーを調製した。この研磨材スラリーを用いて、下記の研磨条件で、TFT液晶ディスプレイ用無アルカリガラスの試料(50mm×50mm×厚さ1.1mm、研磨面積25cm2)を片面研磨機にて研磨し、研磨速度及び研磨傷について評価を行った。評価結果を表2にまとめて示す。
<研磨条件>
研磨パッド :発泡ポリウレタン
下定盤回転数:260rpm
研磨時圧力 :80g/cm2
研磨時間 :20分間×3枚
[Abrasion evaluation]
Using each of the cerium-based abrasives obtained in the above Examples and Comparative Examples, an abrasive slurry dispersed in water at a concentration of 10% by mass was prepared. Using this abrasive slurry, a sample of non-alkali glass for TFT liquid crystal display (50 mm x 50 mm x thickness 1.1 mm, polishing area 25 cm 2 ) is polished with a single-sided polishing machine under the following polishing conditions, and the polishing speed. And polishing scratches were evaluated. The evaluation results are summarized in Table 2.
<Polishing conditions>
Polishing pad: Polyurethane foam Lower platen rotation speed: 260 rpm
Polishing pressure: 80 g / cm 2
Polishing time: 20 minutes x 3 sheets

各評価方法は以下のとおりである。
<研磨速度>
試料1枚当たり5箇所での研磨前後の厚さをマイクロメーターで測定し、厚さの減少量の平均値(ΔT[μm])を求めた。試料3枚についての[ΔT/研磨時間(20分間)]の平均値を研磨速度とした。
<研磨傷>
微分干渉顕微鏡(オリンパス株式会社製「BX51M」)にて倍率50倍で試料の研磨面を観察して傷の本数を計測し、試料3枚についての平均値を求めた。
Each evaluation method is as follows.
<Polishing speed>
The thickness before and after polishing at 5 points per sample was measured with a micrometer, and the average value (ΔT [μm]) of the amount of decrease in thickness was determined. The average value of [ΔT / polishing time (20 minutes)] for three samples was taken as the polishing rate.
<Abrasive scratches>
The number of scratches was measured by observing the polished surface of the sample at a magnification of 50 times with a differential interference microscope (“BX51M” manufactured by Olympus Corporation), and the average value for three samples was obtained.

Figure 0006839767
Figure 0006839767

表2から分かるように、湿式粉砕工程において、混合酸化希土の未解砕品を原料として用いた場合(比較例4)は、スラリー中の固形分濃度50質量%が仕込み量のほぼ上限であったのに対して、混合酸化希土の解砕品を原料として用いた場合には(実施例8)、スラリー中の固形分濃度61質量%程度にまで、仕込み量を増加させることができ、かつ、均一な混合スラリーが得られるまでの湿式粉砕の処理時間も短縮できることが認められた。
また、混合酸化希土の解砕品を原料として用いた固形分濃度の高い混合スラリーから製造されたセリウム系研磨材(実施例8)は、混合酸化希土の未解砕品を原料として用いた従来法で製造されたセリウム系研磨材(比較例4)と比較して、組成、物性及び研磨特性(研磨評価)は、同様であることが認められた。
このことから、本発明の製造方法は、セリウム系研磨材の研磨特性を低下させることなく、生産効率を向上させることができるものであると言える。
As can be seen from Table 2, when an uncrushed mixed oxidized rare soil was used as a raw material in the wet pulverization step (Comparative Example 4), the solid content concentration in the slurry was 50% by mass, which was almost the upper limit of the charged amount. On the other hand, when a crushed product of mixed oxidized rare soil was used as a raw material (Example 8), the amount charged could be increased to a solid content concentration of about 61% by mass in the slurry, and the amount was uniform. It was found that the treatment time for wet pulverization until a good mixed slurry was obtained could be shortened.
Further, the cerium-based abrasive (Example 8) produced from a mixed slurry having a high solid content concentration using a crushed product of mixed rare soil as a raw material is a conventional method using an uncrushed product of mixed rare soil as a raw material. It was found that the composition, physical properties and polishing properties (polishing evaluation) were similar to those of the produced cerium-based abrasive (Comparative Example 4).
From this, it can be said that the production method of the present invention can improve the production efficiency without deteriorating the polishing characteristics of the cerium-based abrasive.

Claims (13)

全希土類元素の酸化物換算量での含有量が80質量%以上であり、前記全希土類元素の酸化物換算量での含有量に対するセリウムの酸化物換算量での含有量が50質量%以上である混合酸化希土を乾式解砕処理する工程により、軽装かさ密度が0.60g/cm3超1.50g/cm3以下、かつ、体積分布50%累積値での粒子径が2μm以上20μm以下の解砕品からなるセリウム系研磨材用原料を得ることを特徴とするセリウム系研磨材用原料の製造方法。The content of all rare earth elements in terms of oxide is 80% by mass or more, and the content of cerium in terms of oxide with respect to the content of all rare earth elements in terms of oxide is 50% by mass or more. By the step of dry crushing a certain mixed oxide rare earth, the light bulk density is more than 0.60 g / cm 3 and 1.50 g / cm 3 or less, and the particle size in the volume distribution 50% cumulative value is 2 μm or more and 20 μm or less. A method for producing a raw material for a cerium-based abrasive, which comprises obtaining a raw material for a cerium-based abrasive, which is a crushed product of the above. 前記解砕品の軽装かさ密度が0.80g/cm3以上である、請求項1に記載のセリウム系研磨材用原料の製造方法。The method for producing a raw material for a cerium-based abrasive according to claim 1, wherein the crushed product has a light bulk density of 0.80 g / cm 3 or more. 前記混合酸化希土が、ランタン、ネオジム、及びプラセオジムから選ばれる1種以上を含む、請求項1又は2に記載のセリウム系研磨剤用原料の製造方法。 The method for producing a raw material for a cerium-based abrasive according to claim 1 or 2, wherein the mixed rare earth oxide contains at least one selected from lanthanum, neodymium, and praseodymium. セリウム系研磨材の製造方法において、請求項1〜3のいずれかに記載の製造方法により得られたセリウム系研磨材用原料を粉砕する工程を含むことを特徴とするセリウム系研磨材の製造方法。 A method for producing a cerium-based abrasive, which comprises a step of pulverizing a raw material for a cerium-based abrasive obtained by the production method according to any one of claims 1 to 3. .. 前記セリウム系研磨材用原料を粉砕する前に、前記セリウム系研磨材用原料にフッ化希土を添加する工程を含む、請求項4に記載のセリウム系研磨材の製造方法。 The method for producing a cerium-based abrasive according to claim 4, further comprising a step of adding rare fluoride soil to the cerium-based abrasive raw material before crushing the cerium-based abrasive raw material. 前記セリウム系研磨材用原料を粉砕する工程が湿式粉砕工程である、請求項4又は5に記載のセリウム系研磨材の製造方法。 The method for producing a cerium-based abrasive according to claim 4 or 5, wherein the step of pulverizing the raw material for a cerium-based abrasive is a wet pulverization step. 前記湿式粉砕工程により、水を分散媒とし、固形分濃度が55質量%以上である、前記セリウム系研磨材用原料を含むスラリーを得る、請求項6に記載のセリウム系研磨材の製造方法。 The method for producing a cerium-based abrasive according to claim 6, wherein a slurry containing the raw material for a cerium-based abrasive having a solid content concentration of 55% by mass or more is obtained by the wet pulverization step using water as a dispersion medium. 前記湿式粉砕工程の後、乾燥、焼成、解砕及び分級をこの順に行う工程を含む、請求項6又は7に記載のセリウム系研磨材の製造方法。 The method for producing a cerium-based abrasive according to claim 6 or 7, which comprises a step of performing drying, firing, crushing, and classification in this order after the wet pulverization step. 前記湿式粉砕工程の後、600〜1200℃で焼成する、請求項8に記載のセリウム系研磨剤の製造方法。 The method for producing a cerium-based abrasive according to claim 8, wherein after the wet pulverization step, the cerium-based abrasive is fired at 600 to 1200 ° C. 前記湿式粉砕工程の後、0.1〜10時間焼成する、請求項8又は9に記載のセリウム系研磨剤の製造方法。 The method for producing a cerium-based abrasive according to claim 8 or 9, which is fired for 0.1 to 10 hours after the wet pulverization step. 前記セリウム系研磨材用原料を粉砕する前に、前記セリウム系研磨材用原料にフッ化希土を添加する工程を含み、前記フッ化希土が、全希土類元素の酸化物換算量での含有量が80質量%以上である、請求項5〜10のいずれかに記載のセリウム系研磨剤の製造方法。 A step of adding a rare earth fluoride to the raw material for a cerium-based abrasive before crushing the raw material for a cerium-based abrasive is included, and the rare earth fluoride is contained in an oxide equivalent amount of all rare earth elements. The method for producing a cerium-based abrasive according to any one of claims 5 to 10, wherein the amount is 80% by mass or more. 前記セリウム系研磨材用原料を粉砕する前に、前記セリウム系研磨材用原料にフッ化希土を添加する工程を含み、前記フッ化希土中のフッ素原子含有量が、10〜30%である、請求項5〜11のいずれかに記載のセリウム系研磨剤の製造方法。 The step of adding rare fluoride soil to the raw material for cerium-based abrasive before crushing the raw material for cerium-based abrasive is included, and the fluorine atom content in the rare fluoride soil is 10 to 30%. The method for producing a cerium-based abrasive according to any one of claims 5 to 11. 前記セリウム系研磨材用原料を粉砕する前に、前記セリウム系研磨材用原料にフッ化希土を添加する工程を含み、前記フッ化希土を、前記セリウム系研磨材用原料とフッ化希土の合計100質量%のうちのフッ化希土の量が、1〜40質量%となるように添加する、請求項5〜12のいずれかに記載のセリウム系研磨剤の製造方法。 A step of adding a rare earth fluoride to the raw material for a cerium-based abrasive is included before crushing the raw material for a cerium-based abrasive, and the rare earth fluoride is combined with the raw material for a cerium-based abrasive and a rare fluoride. The method for producing a cerium-based abrasive according to any one of claims 5 to 12, wherein the amount of rare earth fluoride out of a total of 100% by mass of soil is added so as to be 1 to 40% by mass.
JP2019540995A 2017-09-11 2018-09-06 Method for manufacturing raw materials for cerium-based abrasives, and method for manufacturing cerium-based abrasives Active JP6839767B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017173818 2017-09-11
JP2017173818 2017-09-11
PCT/JP2018/033034 WO2019049932A1 (en) 2017-09-11 2018-09-06 Manufacturing method for starting material for cerium-based abrasive agent, and manufacturing method for cerium-based abrasive agent

Publications (2)

Publication Number Publication Date
JPWO2019049932A1 JPWO2019049932A1 (en) 2020-05-28
JP6839767B2 true JP6839767B2 (en) 2021-03-10

Family

ID=65634044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019540995A Active JP6839767B2 (en) 2017-09-11 2018-09-06 Method for manufacturing raw materials for cerium-based abrasives, and method for manufacturing cerium-based abrasives

Country Status (6)

Country Link
JP (1) JP6839767B2 (en)
KR (1) KR102423338B1 (en)
CN (1) CN111051463B (en)
MY (1) MY192996A (en)
TW (1) TWI695060B (en)
WO (1) WO2019049932A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220672A1 (en) * 2020-04-27 2021-11-04 昭和電工株式会社 Cerium-based polishing slurry raw material solution, method for producing same and polishing solution
WO2024014425A1 (en) * 2022-07-12 2024-01-18 株式会社レゾナック Cerium-based abrasive material, polishing liquid, polishing liquid production method, and glass polishing method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515782B1 (en) * 1999-05-28 2005-09-23 히다치 가세고교 가부시끼가이샤 Method for producing cerium oxide, cerium oxide abrasive, method for polishing substrate using the same, and method for manufacturing semiconductor device
CN1177012C (en) * 2000-10-02 2004-11-24 三井金属鉱业株式会社 Cerium based abrasive material and method for producing cerium based abrasive material
JP3694478B2 (en) 2000-11-30 2005-09-14 昭和電工株式会社 Cerium-based abrasive and method for producing the same
TWI285674B (en) * 2000-11-30 2007-08-21 Showa Denko Kk Cerium-based abrasive and production process thereof
JP4002740B2 (en) * 2001-05-29 2007-11-07 三井金属鉱業株式会社 Method for producing cerium-based abrasive
JP4033440B2 (en) * 2001-09-17 2008-01-16 三井金属鉱業株式会社 Cerium-based abrasive slurry and method for producing cerium-based abrasive slurry
KR100575442B1 (en) * 2001-11-16 2006-05-03 쇼와 덴코 가부시키가이샤 Cerium-based polish and cerium-based polish slurry
JP4236857B2 (en) * 2002-03-22 2009-03-11 三井金属鉱業株式会社 Cerium-based abrasive and method for producing the same
KR100663781B1 (en) * 2003-01-31 2007-01-02 히다치 가세고교 가부시끼가이샤 ??? polishing compound and polishing method
WO2005000992A1 (en) * 2003-06-30 2005-01-06 Mitsui Mining & Smelting Co., Ltd. Cerium based polishing material and raw materials therefor
JP3875668B2 (en) * 2003-08-26 2007-01-31 三井金属鉱業株式会社 Cerium-based abrasive containing fluorine and method for producing the same
JP2006206870A (en) * 2004-12-28 2006-08-10 Mitsui Mining & Smelting Co Ltd Raw material for cerium type abrasive and manufacturing method of raw material for cerium type abrasive, cerium type abrasive and manufacturing method of cerium type abrasive
KR20080011044A (en) * 2006-07-28 2008-01-31 주식회사 엘지화학 Cerium oxide powder, method for preparing the same, and cmp slurry comprising the same
AT502308B1 (en) * 2005-07-20 2010-03-15 Treibacher Ind Ag CEROXID BASE GLASS COIL AND METHOD FOR THE PRODUCTION THEREOF
JP4983603B2 (en) * 2005-10-19 2012-07-25 日立化成工業株式会社 Cerium oxide slurry, cerium oxide polishing liquid, and substrate polishing method using the same
JP4756996B2 (en) * 2005-11-02 2011-08-24 三井金属鉱業株式会社 Cerium-based abrasive
WO2007055278A1 (en) * 2005-11-11 2007-05-18 Hitachi Chemical Co., Ltd. Polishing agent for silicon oxide, liquid additive, and method of polishing
CN101511538A (en) * 2006-09-15 2009-08-19 日立化成工业株式会社 CMP polishing agent, additive solution for cmp polishing agent, and method for polishing substrate by using the polishing agent and the additive solution
JP5237542B2 (en) * 2006-10-03 2013-07-17 三井金属鉱業株式会社 Cerium oxide abrasive
JP2008001907A (en) * 2007-07-26 2008-01-10 Mitsui Mining & Smelting Co Ltd Cerium-based abrasive slurry and method for producing cerium-based abrasive slurry
JP4876183B1 (en) * 2010-09-27 2012-02-15 三井金属鉱業株式会社 Cerium-based abrasive

Also Published As

Publication number Publication date
KR102423338B1 (en) 2022-07-21
CN111051463A (en) 2020-04-21
WO2019049932A1 (en) 2019-03-14
TW201917191A (en) 2019-05-01
KR20200026288A (en) 2020-03-10
TWI695060B (en) 2020-06-01
JPWO2019049932A1 (en) 2020-05-28
MY192996A (en) 2022-09-20
CN111051463B (en) 2022-01-11

Similar Documents

Publication Publication Date Title
JP6421887B2 (en) Method for producing cerium salt, cerium oxide and cerium-based abrasive
KR102090494B1 (en) Cerium abrasive and manufacturing method
US6893477B2 (en) Cerium-based abrasive material slurry and method for producing cerium-based abrasive material slurry
JP2003277729A (en) Cerium abrasive material and its preparation process
JP6839767B2 (en) Method for manufacturing raw materials for cerium-based abrasives, and method for manufacturing cerium-based abrasives
JP2002348563A (en) Method for producing cerium abrasive material
JP4131870B2 (en) Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass
JP2008088325A (en) Cerium oxide-based abrasive material
JP7400956B2 (en) Cerium-based abrasive slurry stock solution and its manufacturing method, and polishing liquid
US11912583B2 (en) Slurry with rare earth oxide particles
WO2024014425A1 (en) Cerium-based abrasive material, polishing liquid, polishing liquid production method, and glass polishing method
TW202408964A (en) Cerium-based abrasive materials, polishing fluids, manufacturing methods of polishing fluids, and glass grinding methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R150 Certificate of patent or registration of utility model

Ref document number: 6839767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350