WO2006123049A2 - Elaboration par voie electrolytique d'elements nanocomposites conducteurs auto-supportes - Google Patents

Elaboration par voie electrolytique d'elements nanocomposites conducteurs auto-supportes Download PDF

Info

Publication number
WO2006123049A2
WO2006123049A2 PCT/FR2006/001099 FR2006001099W WO2006123049A2 WO 2006123049 A2 WO2006123049 A2 WO 2006123049A2 FR 2006001099 W FR2006001099 W FR 2006001099W WO 2006123049 A2 WO2006123049 A2 WO 2006123049A2
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
nanowires
metal
cathode
composite element
Prior art date
Application number
PCT/FR2006/001099
Other languages
English (en)
Other versions
WO2006123049A3 (fr
Inventor
Patrice Simon
Pierre-Louis Taberna
Jean-Marie Tarascon
Jean-Pascal Cambronne
Thierry Lebey
Original Assignee
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique filed Critical Centre National De La Recherche Scientifique
Priority to US11/920,624 priority Critical patent/US9115438B2/en
Priority to EP06764636A priority patent/EP1885916A2/fr
Priority to JP2008511749A priority patent/JP5148481B2/ja
Publication of WO2006123049A2 publication Critical patent/WO2006123049A2/fr
Publication of WO2006123049A3 publication Critical patent/WO2006123049A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/006Nanostructures, e.g. using aluminium anodic oxidation templates [AAO]
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/045Anodisation of aluminium or alloys based thereon for forming AAO templates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/1241Nonplanar uniform thickness or nonlinear uniform diameter [e.g., L-shape]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils
    • Y10T428/12438Composite

Definitions

  • the invention relates to a method for depositing a nanostructured metal coating on an electronically conductive substrate, and the coated substrates obtained.
  • the properties of the electrodes, and in particular the current collectors that the electrodes comprise are an important element for the overall performance of the batteries.
  • a material to be used as a collector it is desirable that it has a high electronic conductivity, good electrochemical stability, and a large contact area with the active material.
  • Nanomaterials have a large surface area to volume ratio, which leads to an increase in reaction rates by decreasing diffuse limitations, and the use of nanomaterials for the elaboration of current collectors is under development.
  • nanostructured electrical conducting materials in the form of solid or hollow fibers using a porous membrane, electrochemically or chemically.
  • a chemical method is described in particular by B. Bercu, et al. [Nuclear Instruments and Methods in Physics Research B 225 (2004) 497-502].
  • the method involves activating a polycarbonate membrane and then contacting it with a copper precursor solution. After sufficient contact time for copper to be deposited on the pore walls of the membrane and further form a layer on the surface of the membrane, the membrane is removed by dissolution, and a self-supported member is obtained. consisting of a copper layer carrying on its surface nano-elements in the form of hollow copper nanotubes.
  • the copper layer forming a substrate obtained by electrochemical and / or chemical deposition for the nano-elements is necessarily porous, and the length of the nano-elements in the self-supported element final is imposed by the thickness of the membrane, since the formation of the copper film on the surface of the membrane begins only when the surface of the pores of the membrane is completely covered with copper.
  • the fact that the copper nanoelements carried by the copper substrate are hollow is unfavorable to the mechanical strength of the self-supported element, as well as to its use as current collector, the amount of current conveyed through the hollow elements being less than with full nanoelements.
  • D. Dobrev, et al. [Nuclear Instruments and Methods in Physics Research B 149 (1999) 207-212] discloses a method for electrochemically forming nanoscale metal needles using a membrane porous.
  • the method consists of PVD coating an Au conductive film on one side of a polycarbonate membrane, electrochemically depositing a layer of copper on the Au conductive film, and then depositing copper in the pores of the membrane by the face of the membrane remained free, and finally dissolve the membrane with a suitable solvent.
  • the self-supported element obtained is constituted by a copper substrate carrying nanoscale copper needles, an Au film being interposed between the copper substrate and the nanoscale needles.
  • the object of the present invention is to provide a method which makes it possible to obtain a self-supported composite element consisting of an electronically conductive substrate coated with nanostructured metal elements, which does not have the drawbacks of the processes of the prior art.
  • the subject of the present invention is a method of producing a self-supported element, the self-supported composite element obtained, as well as various applications.
  • the method according to the present invention for obtaining a self-supported composite element consisting of a non-porous conductive substrate coated with nanowires of metallic material, consists of electrolytic deposition on a substrate through a porous membrane, then to dissolve the porous membrane.
  • an electrochemical cell connected to a source of voltage and / or controlled current, and comprising: a cathode formed by the non-porous electronic conductive substrate to be coated, and connected to the negative terminal of the voltage and / or current source, one or more anodes, each connected to the positive terminal of the voltage and / or current source, an electrolyte consisting of a solution of a precursor compound of each constituent of the metallic material, said solution optionally containing an ionically conductive salt, a planar porous membrane placed on the face or faces of the cathode, a spacer element between each membrane and the anode adjacent thereto, the different parts constituting the cell being kept in contact.
  • the different parts constituting the cell can be kept in contact by pressure.
  • the contact can result from the gravity.
  • the electrolysis can be carried out at constant, pulsed, alternating or oscillating current, or under constant potential, impulse, alternating or oscillating, or under constant power, impulse, alternating or oscillating.
  • the precursor of a component of the metallic material MM constituting the nanowires may be a precursor of a metal M, said metal M being selected from Cu, Sn, Co, Fe, Pb, Ni, Cr, Au, Pd, Pt, Ag , Bi, Sb, Al or Li.
  • M is Al or Li
  • the precursor is used in solution in an organic solvent.
  • M is Cu, Sn, Co, Fe, Pb, Ni, Cr, Au, Pd, Pt, Sb, Ag or Bi
  • the precursor may be used in aqueous solution or in solution in an organic solvent.
  • the precursor is preferably chosen from sulphates, sulphamates, borates, halides (more particularly chlorides and fluorides), complexes based on cyanides or amines, and hydrides.
  • the organic solvent is preferably chosen from alkyl or dialkyl carbonates, such as, for example, propyl carbonate (PC), ethyl carbon (EC) and diethyl carbonate (DEC).
  • a complexing agent of the precursor of the metal M to be deposited is introduced into the electrolyte, in order to reduce the kinetics of the reduction of the metal M, which makes it possible to obtain a uniform and covering deposit.
  • the ionic conductive salt of the electrolyte is chosen from electrochemically stable conductive salts under the conditions of electrolysis. It can be a salt of the metal to be deposited.
  • the addition of an ionic conductive salt is not essential. However, for low precursor concentrations, the conductivity of the electrolyte is low, or even insufficient, and in this case it is useful to add a conductive salt to the electrolyte.
  • the cathode is made of a non-porous electronic conductive material selected from materials that are chemically stable to electrolysis. Mention may be made, for example, of metal materials MM 'consisting of a metal M' chosen from Li, Zn, Cu, Sn, Co, Fe, Pb, Ni, Ti, Cr, Al, noble metals such as for example Au, Ag, Pd and Pt, or a metal alloy of several elements M '. It is particularly advantageous to use as a cathode a sheet of material obtained by rolling, drawing, calendering or stamping.
  • the metal sheet may for example be in the form of a flat sheet, an accordion folded sheet. At least one of the two faces of the sheet constituting the cathode is facing an anode.
  • the electrochemical cell contains a cathode whose only one of the faces is opposite an anode.
  • the deposition of nanowires then takes place, during the electrolysis, on the face of the cathode opposite the anode.
  • the electrochemical cell contains two anodes in the form of thin sheets, located on either side of a metal sheet constituting the cathode.
  • the sheets constituting the anodes are parallel to the sheet forming the cathode.
  • the deposit nanowires are then carried out simultaneously on both sides of the cathode.
  • a cathode constituted by a metal M 'identical to the metal M of the precursor of the nanowires is used.
  • the particular case of a copper cathode and a copper precursor is particularly interesting.
  • the porous membrane may be constituted for example by a sheet of alumina, in which the pores are substantially in the form of nanometric cylinders perpendicular to the plane of the membrane, by a polycarbonate sheet (PC) or by a sheet of terephthalate (PET) .
  • Organic material sheets generally include less regular and less ordered pores than alumina sheets.
  • the length of the nanowires formed in the pores of the membrane depends in particular on the duration of the electrolysis and the content of the precursor electrolyte of the metal to be deposited.
  • the membrane will be chosen so that its thickness is greater than or equal to the desired length for the nanoparticles.
  • Alumina membranes in which the pores are substantially cylindrical, perpendicular to the surface of the member and uniformly distributed are obtained by anodic oxidation of aluminum. They are marketed in particular under the name Anodisc by the company Whatman.
  • the PC or PET membranes can be obtained by pre-sensitizing a PC or PET sheet, followed by perforation using a laser.
  • PET membranes are marketed in particular by Whatman under the names Cyclopre and Nucleopore.
  • PC membranes are sold in particular by the said company under the name Whatman Polycarbonate.
  • the polycarbonate membranes generally have sufficient mechanical strength so that the spacer element can be a simple element for creating a space between the membrane and the anode, said space containing the electrolyte.
  • the alumina membranes generally have a low mechanical strength, and it is preferable to associate them with a spacer element of the separator type, constituted by a sheet of an ionic conductive material and electronic insulator.
  • a separator there may be mentioned a porous sheet of cellulosic or polymeric material.
  • the separator has the effect not only of improving the mechanical strength of the membrane which is adjacent to it, but also of increasing the homogeneity of the deposition of nanowires, because of the penetration of the electrolyte by capillarity into the membrane, this which has the effect of preventing the drying of the membrane.
  • the use of a membrane makes it possible to have smaller inter-electrode distances than with a spacer.
  • the use of a non-continuous porous membrane makes it possible to obtain a self-supported element consisting of a non-porous electronic conductive substrate bearing a coating of nanotructured elements, in which the coating of nanowires is not continuous.
  • a porous membrane is brought into contact with said substrate in the surface of which recesses are formed, said recesses having the shape and the area of the areas of the surface of the substrate which are intended not to be coated. by the nanowires and which are masked before the electrolysis, so as not to suffer the effects of the electrolytic process.
  • the solid parts of the membrane are the image of the areas of the substrate that will be coated with nanoparticles.
  • the anode may be soluble anode type, consisting of a metal identical to the metal M of the nanowire precursor, which makes it possible to maintain a constant concentration of metal ions M in the solution and to limit the voltage across the cell.
  • the anode may also be constituted by an indestructible metallic conductor in the solution on which will then be the oxidation of the solvent.
  • the anode may also be of the soluble anode type consisting of a material other than the metal to be deposited, but in this case the conditions of the electrolysis must be adjusted so as to avoid the deposition on the cathode of an alloy. metal M and the material constituting the anode.
  • This product is a self-supported composite element constituted by a non-porous substrate of electronically conductive material which carries, on at least one of its faces, a coating constituted by nanowires of a metallic material, said nanowires being substantially oriented in a plane perpendicular to the substrate.
  • the thickness and shape of the substrate correspond to those of the cathode used for the preparation of the composite element.
  • the thickness of the substrate is preferably less than 1 mm, for example 5 ⁇ m and 500 ⁇ m.
  • the substrate may be in the form of a flat sheet, an accordion folded sheet, or a folded sheet to form the side walls of a cylinder having, for example, a triangular section or a quadrilateral section.
  • a self-supported composite element according to the present invention differs from similar elements of the prior art in which the substrate is obtained by electrochemical deposition or electroless over a porous membrane, not only by the absence of porosity, but also by grain orientation and roughness.
  • the material forming the substrate is deposited in the form of islands whose orientation is substantially perpendicular to the plane of the substrate.
  • the roughness is oriented in the direction perpendicular to the plane of the substrate.
  • the general orientation of the roughness and grains is parallel to the plane of the substrate. These substrates therefore have a particular texture oriented in the rolling plane which is not the case in other electroless or electrochemical processes.
  • the conductive material forming the substrate of the composite element is as defined above for the cathode of the electrochemical cell used during the implementation of the process for preparing the composite element.
  • the metallic material forming the nanowires is constituted by a metal M chosen from Cu, Sn, Co, Fe, Pb, Ni, Cr, Au, Pd, Pt, Ag, Bi, Sb, Al or Li, or by an alloy of several metals M.
  • the length of the nanowires depends on the one hand on the length of the pores of the membrane and on the other hand on the duration of the electrolysis. It is generally between a few hundred nanometers and a few tens of micrometers, for example from 500 nm to 100 ⁇ m.
  • a membrane constituted by an alumina sheet in which the pores are substantially cylindrical and oriented perpendicularly to the surface of the plate forming the membrane, makes it possible to obtain a substrate coated with substantially cylindrical elements oriented perpendicularly. on the surface of the substrate.
  • PC or PET membrane gives a coating consisting of cylindrical elements which are less regular and less oriented with respect to the surface of the substrate, due to a less regular pore distribution in this type of membrane.
  • the substrate may have a coating of nanowires on only one of its faces, or on both sides.
  • a face of the substrate may carry a coating of nanowires on its entire surface, or in certain areas only.
  • a composite element according to the present invention can be used either as a current collector or as an electrode, depending on the nature of the materials which constitute on the one hand the substrate and on the other hand the coating formed by the nanowires.
  • the substrate is preferably formed by a thin film of conductive material having a thickness of a few tens to a few hundred micrometers.
  • the present invention therefore has for another object, a current collector and an electrode comprising said composite element.
  • a self-supporting composite member according to the present invention wherein the metal material MM constituting the nanowires has electrode active material properties, can be used directly as an electrode, without adding additional active material.
  • a composite element there may be mentioned a composite element in which the substrate is constituted by a material MM 'chosen from Cu, Al, Li, Pb, Zn, Ni, Ti, Au, Ag Pt or Pd, and the material metallic MM constituting the nanowires is selected from Sn, Li, and the alloys Ni 3 Sn, Mg 2 Sn and Cu 2 Sb.
  • a self-supported composite member according to the present invention wherein the metal material MM constituting the nanowires does not have electrode active material properties, can be used as a current collector of an electrode.
  • the substrate and the coating of nanowires are preferably constituted by the same metal, chosen from Cu, Al, Li, Pb, Zn, Ni, Au, Ag Pt or Pd.
  • the current collector can be converted into an electrode by subjecting the nanowire coating to oxidation.
  • a self-wearing element is thus obtained constituted by the substrate of initial material MM 'and by a coating of oxide nanowires with properties of active material.
  • an electrode comprising a substrate of a material MM 'carrying a coating of tin oxide nanowires SnO or SnO 2 , iron oxide FeO, Fe 2 O 3 or Fe 3 O 4 , nickel oxide or cobalt oxide, obtained from a composite element according to the invention which comprises a substrate of the material MM 'and a coating of nanowires respectively of Sn, Fe, Ni or Co.
  • an electrode is made from a current collector according to the invention by depositing electrode active material on the nanowire coating.
  • the deposition of the electrode active material on the current collector can advantageously be carried out electrolytically in an electrochemical cell in which the composite element functions as a cathode, and the electrolyte is constituted by a precursor of the active material, in conditions that are within the reach of the skilled person.
  • an electrode comprising a collector consisting of a copper substrate coated with copper nanowires, on which an Sn film has been applied by electrolysis.
  • the deposition of active material may also be carried out by impregnation or by coating, when the size of the particles of active material is less than the distance between the nanowires.
  • the active ingredient may also be deposited by sol-gel, if the size of the particles to be deposited is less than the distance between the nanowires.
  • the active material can also be deposited physically, by growth of thin layers, for example by sputtering or laser ablation techniques.
  • Current collectors and electrodes according to the invention can be used in various electrochemical devices such as rechargeable lithium-ion batteries, rechargeable lithium-polymer batteries, non-rechargeable generators, supercapacitors, and electrochromic devices.
  • a lithium ion battery comprises a negative electrode and a positive electrode separated by a liquid or gelled electrolyte comprising a lithium salt.
  • Each of the electrodes consists of a material capable of reversibly inserting lithium ions.
  • the positive electrode of a lithium-ion battery may consist of a current collector comprising an Al substrate bearing a coating of Al nanowires, and an active material consisting of a lithiated oxide such as LiCoO 2 , LiNiO 2 or LiMn 2 O ,! , or a phosphate such as LiFePO4.
  • active substances can be deposited on the collector AI / AI advantageously by impregnation or by coating.
  • the negative electrode of a lithium-ion battery may be constituted by Cu collector, and an active material selected from Sn, SnO 2 , Bi, a Ni-Sn alloy, an Sb-based alloy, an Fe oxide, Co or Ni.
  • An electrode comprising, as Sn active material, a Ni-Sn or Bi alloy may advantageously be obtained by implementing the method of the invention with a copper substrate and an electrolyte respectively containing a Sn precursor, a mixture of a precursor of Sn and a precursor of Ni, or a precursor of Bi.
  • An electrode comprising as active material an Sn, Fe, Co or Ni oxide can advantageously be obtained by implementing the method of the invention with a copper substrate and an electrolyte respectively containing a Sn, Fe or Fe precursor. , Co or Ni or to obtain a composite element comprising a Cu substrate and metal nanowires corresponding to the precursor chosen, then subjecting the composite element to oxidation in the appropriate conditions
  • a lithium polymer battery comprises a negative electrode and a positive electrode separated by a solid polymer electrolyte comprising a lithium salt.
  • the anode consists of a metallic lithium film or a lithium alloy.
  • the cathode may advantageously be an electrode according to the invention comprising a current collector consisting of an Al substrate bearing Al nanowires and a positive electrode active material chosen from the lithiated oxides mentioned for the positive electrode of the cathode.
  • a positive electrode active material chosen from the lithiated oxides mentioned for the positive electrode of the cathode.
  • lithium-ion battery and among non-lithiated oxides, such as for example V 2 O 5 , said active material being advantageously deposited by impregnation or by coating.
  • a self-supported composite element according to the present invention may advantageously be used for producing an electrode in a non-rechargeable battery in which the electrolyte comprises a lithium salt in solution in a liquid solvent.
  • the anode consists of a metallic lithium film or a lithium alloy.
  • the cathode may advantageously be an electrode according to the invention comprising a current collector consisting of an Al substrate bearing Al nanowires and a positive electrode active material chosen from oxides, such as, for example, V 2 O 5 , WO 3 or MnO 2 , sulfides such as FeS 2 or CF x carbon fluorides.
  • a supercapacitor comprises two electrodes separated by an electrolyte.
  • One of the electrodes is preferably made of a material with a high specific surface area.
  • Such an electrode may advantageously be an electrode according to the invention comprising a current collector consisting of an Al substrate bearing Al nanowires, or a Cu substrate carrying Cu nanowires, and an active material consisting for example of carbon, or a polymer.
  • a composite element according to the present invention may furthermore be used in power electronics, and more generally in microelectronics, as part of the connection of the active components with their environment or as a heat sink element, the two functions being combinable.
  • the method of the invention is implemented using as cathode the surface of a semiconductor element with at least one * of the faces is at least partially covered by a metallization, and the membrane is placed on all or part of the metallization of the semiconductor element.
  • a mask is applied to the free surface of the membrane so as to delimit zones of the semiconductor element which will be covered with nanowires.
  • This embodiment allows the use of the method on the entire surface of a semiconductor wafer at the end of the process in a clean room (front end process).
  • the use of a membrane carrying a mask makes it possible to create the pads of connection (commonly referred to in the technical field literature as "studs” or “bumps") on a semiconductor element.
  • the semiconductor element will then be attached to another semiconductor element or element of the environment by means well known to those skilled in the art, such as glues, solders or solders, or adhesive films (commonly referred to in the technical literature as “solders” or “tapes”).
  • the attachment may further be effected by direct methods such as a thermocompression method or a thermosonic process.
  • the choice of the method of attachment will depend, among other things, on the type of metal alloy used for the manufacture of the pads and the receiving support (semiconductor element or element of the environment).
  • PCB Printed Circuit Board or Printed Circuit Board
  • PCB Printed Circuit Board or Printed Circuit Board
  • An inorganic carrier is generally referred to as a "substrate”
  • an organic carrier such as epoxy resin / fiberglass (type FR4)] is referred to as "PCB”.
  • the copper foils forming respectively the cathode and the anode have a thickness of 500 microns.
  • the alumina membrane is a membrane marketed under the name Anodisc by the company Whatman. It has a thickness of 50 ⁇ m and the diameter of the substantially cylindrical pores is 200 nm.
  • the electrolyte is an aqueous solution of CUSO 4 (100 g / L), (NH 4 ) 2 SO 4 (20 g / L) and diethylenetetetamine DETA (80 g / L).
  • the electrolysis was carried out under current pulses by repeating the sequence "deposition at 1 mA / cm 2 for 250 ms, deposition at 20 mA / cm 2 for 50 ms" for 30 minutes.
  • a diagram of the device used is shown in FIG. 1, in which (1) represents the electrolyte, (2) represents the cathode, (3) represents the membrane, (4) represents the separator, (5) represents the anode , and (6) represents the potentiostat.
  • the cell was disassembled. The assembly formed by the cathode and the alumina membrane was immersed in a 1M sodium hydroxide solution at 80 ° C. for 30 seconds. After dissolution of the membrane, the cathode was rinsed for 10 seconds in an aqueous solution of H 2 SO 4 (1 M) and CuSO 4 (1 M).
  • Figures 2 to 4 show a view of the product facing the ends of the nanocylinders, with different magnifications (x 1000, x 10000, x 100000), and Figure 5 shows a sectional view, with a magnification of 30000.
  • Example 1 The procedure of Example 1 was repeated using: • a Cu sheet having a thickness of 500 ⁇ m forming the cathode, • Anodisc alumina membrane
  • the electrolyte is an aqueous solution containing SnSO 4 (97 g / L), HSO 4 (30 g / L), tartaric acid (30 g / L), polyethylene glycol PEG 3500 (0.35 g / L) ), gelatin (1 g / L) and Na 2 SO 4 (30 g / L).
  • the electrolyte is an aqueous solution containing SnSO 4 (97 g / L), HSO 4 (30 g / L), tartaric acid (30 g / L), polyethylene glycol PEG 3500 (0.35 g / L) ), gelatin (1 g / L) and Na 2 SO 4 (30 g / L).
  • Figure 6 shows a SEM-FEG photograph of the product obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Powder Metallurgy (AREA)
  • Laminated Bodies (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

L'invention concerne un élément composite auto-supporté, et un procédé pour l'élaborer. L'élément composite est constitué par un substrat de matériau conducteur électronique revêtu de nanofils métalliques substantiellement orientés selon un plan perpendiculaire au substrat. L'épaisseur du substrat est de quelques µm à quelques centaines de µm. L'élément est élaboré dans une cellule qui comprend une cathode constituée par le substrat à revêtir, une ou plusieurs anodes, un électrolyte constitué par une solution d'un précurseur du matériau métallique, et contenant éventuellement un sel conducteur ionique, une membrane poreuse plane placée entre la cathode et chacune des anodes, un élément espaceur entre chaque membrane et l'anode qui lui est adjacente, les différentes parties constituant la cellule étant maintenues en contact.

Description

Elaboration par voie électrolytique d' éléments nanocomposites conducteurs auto-supportés
L'invention concerne un procédé pour déposer un revêtement métallique nanostructuré sur un substrat conducteur électronique, et les substrats revêtus obtenus.
Dans le domaine du stockage d'énergie à l'aide des batteries, les propriétés des électrodes, et notamment des collecteurs de courant que les électrodes comprennent, sont un élément important pour la performance globale des batteries. Pour qu'un matériau puisse être utilisé comme collecteur, il est souhaitable qu'il présente une conductivité électronique élevée, une bonne stabilité électrochimique, et une grande surface de contact avec la matière active. Les nanomatériaux ont un rapport surface / volume important, ce qui entraîne une augmentation des vitesses de réactions par diminution des limitations diffu- sionnelles, et l'utilisation des nanomatériaux pour l'élaboration des collecteurs de courant est en développement.
Il est connu de préparer des matériaux conducteurs électriques nanostructurés sous forme de fibres pleines ou creuses à l'aide d'une membrane poreuse, par voie électrochimique ou par voie chimique.
Un procédé par voie chimique est décrit notamment par B. Bercu, et al. [Nuclear Instruments and Methods in Physics Research B 225 (2004) 497-502] . Le procédé consiste à activer une membrane de polycarbonate, puis à la mettre en contact avec une solution de précurseur de cuivre. Après une durée de contact suffisante pour que du cuivre soit déposé sur les parois des pores de la membrane et forme en outre une couche à la surface de la membrane, la membrane est éliminée par dissolution, et l'on obtient une élément auto- supporté constitué par une couche de cuivre portant sur sa surface des nanoéléments sous forme de nanotubes creux de cuivre. Cependant, dans ce procédé, la couche de cuivre formant un substrat obtenue par dépôt électrochimique et/ou chimique pour les nanoéléments est nécessairement poreuse, et la longueur des nanoéléments dans l'élément auto-supporté final est imposée par l'épaisseur de la membrane, puisque la formation du film de cuivre à la surface de la membrane ne commence que lorsque la surface des pores de la membrane est recouverte totalement de cuivre. En outre, le fait que les nanoélements de cuivre portés par le substrat de cuivre sont creux est défavorable à la tenue mécanique de l'élément auto-supporté, ainsi qu'à son utilisation comme collecteur de courant, la quantité de courant véhiculée à travers les éléments creux étant moindre qu'avec des nanoélements pleins .
On connaît également des procédés visant à effectuer par voie électrochimique, un dépôt métallique d'éléments nanostructurés sur un substrat conducteur. Dans ces procédés, il est nécessaire de prétraiter la membrane qui ser- vira de support à la formation des éléments nanostructurés, afin de la rendre conductrice. Le traitement consiste généralement à appliquer un film de métal noble par PVD ou CVD sur la membrane. Cette technique est compliquée à mettre en œuvre à l'échelle industrielle et elle rend l'ensemble du processus coûteux. En outre, elle ne permet pas d'obtenir un élément auto-supporté constitué par un seul métal, lorsque le métal visé ne peut être appliqué sous forme de film par PVD ou CVD.
Par exemple, D. Dobrev, et al., [Nuclear Instruments and Methods in Physics Research B 149 (1999) 207-212] décrit un procédé pour former des aiguilles nanométriques de métal par voie électrochimique, à l'aide d'une membrane poreuse. Le procédé consiste à appliquer par PVD un film conducteur d'Au sur une face d'une membrane de polycarbonate, à déposer par voie électrochimique une couche de cuivre sur le film conducteur Au, puis déposer du cuivre dans les pores de la membrane par la face de la membrane restée libre, et finalement à dissoudre la membrane à l'aide d'un solvant approprié. L'élément auto-supporté obtenu est constitué par un substrat de cuivre portant des aiguilles nanométriques de cuivre, un film Au étant interposé entre le substrat de cuivre et les aiguilles nanométriques. Y. Konishi, et al., [Journal of Electroanalytical Chemistry 559 (2003) 149-153] décrivent un procédé pour le dépôt par voie électrochimique de nanofils de cuivre dans une membrane nanoporeuse de polycarbonate . Dans ce procédé également, un film conducteur (Pt-Pd) est déposé au préalable sur la membrane, puis un dépôt de cuivre est effectué par voie électrochimique. Lorsque les pores de la membrane sont remplies de cuivre, une couche de cuivre se forme pardessus, qui fonctionne comme substrat de cathode lors du dépôt par voie électrolytique . Après dissolution de la membrane, on obtient un élément auto-supporté constitué par un substrat de cuivre portant des nanofils de cuivre dont l'extrémité libre peut porter un film de Pt-Pd. Le matériau du substrat d'un tel élément obtenu par dépôt électrolytique est poreux, la porosité étant inhérente au procédé de dépôt.
Le but de la présente invention est de fournir un procédé qui permet d'obtenir un élément composite auto- supporté constitué par un substrat conducteur électronique revêtu d'éléments métalliques nanostructurés, qui ne présente pas les inconvénients des procédés de l'art antérieur .
C'est pourquoi la présente invention a pour objet un procédé d'élaboration d'un élément auto-supporté, l'élément composite auto-supporté obtenu, ainsi que diverses applications .
Le procédé selon la présente invention, pour l'obtention d'un élément composite auto-supporté constitué par un substrat non poreux conducteur électronique revêtu de nanofils de matériau métallique, consiste à effectuer un dépôt par électrolyse sur un substrat à travers une membrane poreuse, puis à dissoudre la membrane poreuse. Il est caractérisé en ce qu'il est mis en œuvre dans une cellule électrochimique reliée à une source de tension et/ou de courant contrôlée, et comprenant : - une cathode constituée par le substrat non poreux conducteur électronique à revêtir, et reliée à la borne négative de la source de tension et/ou de courant, une ou plusieurs anodes, chacune reliée à la borne positive de la source de tension et/ou de courant, un électrolyte constitué par une solution d'un composé précurseur de chaque constituant du matériau métallique, ladite solution contenant éventuellement un sel conducteur ionique, une membrane poreuse plane placée sur la ou les faces de la cathode, un élément espaceur entre chaque membrane et l'anode qui lui est adjacente, les différentes parties constituant la cellule étant maintenues en contact.
Les différentes parties constituant la cellule peuvent être maintenues en contact par pression. Lorsque les différentes parties sont en position horizontale et ont un poids suffisant, le contact peut résulter de la gravité.
L ' électrolyse peut être effectuée à courant constant, impulsionnel, alternatif ou oscillant, ou sous potentiel constant, impulsionnel, alternatif ou oscillant, ou sous puissance constante, impulsionnelle, alternative ou oscillante .
Le précurseur d'un composant du matériau métallique MM constituant les nanofils peut être un précurseur d'un métal M, ledit métal M étant choisi parmi Cu, Sn, Co, Fe, Pb, Ni, Cr, Au, Pd, Pt, Ag, Bi, Sb, Al ou Li. Lorsque M est Al ou Li, le précurseur est utilisé en solution dans un solvant organique. Lorsque M est Cu, Sn, Co, Fe, Pb, Ni, Cr, Au, Pd, Pt, Sb, Ag ou Bi, le précurseur peut être utilisé en solution aqueuse ou en solution dans un solvant organique. Le précurseur est choisi de préférence parmi les sulfates, les sulfamates, les borates, les halogénures (plus particulièrement les chlorures et les fluorures), les complexes à base de cyanures ou d'aminés, et les hydrures . Le solvant organique est choisi de préférence parmi les carbonates d'alkyle ou de dialkyle, tels que par exemple le carbonate de propyle (PC), le carbone d'éthyle (EC) et le carbonate de diéthyle (DEC) . Dans un mode de réalisation particulier, on introduit dans 1 ' électrolyte un complexant du précurseur du métal M à déposer, afin de diminuer la cinétique de la réduction du métal M, ce qui favorise l'obtention d'un dépôt uniforme et couvrant .
Le sel conducteur ionique de l ' électrolyte est choisi parmi les sels conducteurs électrochimiquement stables dans les conditions de l ' électrolyse . Il peut être un sel du métal à déposer. L'addition d'un sel conducteur ionique n'est pas indispensable. Cependant, pour les faibles concentrations en précurseur, la conductivité de 1 ' électrolyte est faible, voire insuffisante, et dans ce cas, il est utile d'ajouter un sel conducteur à 1 ' électrolyte .
La cathode est constituée par un matériau conducteur électronique non poreux choisi parmi les matériaux qui sont chimiquement stables vis à vis de 1 ' électrolyse . On peut citer par exemple, les matériaux métalliques MM' constitués par un métal M' choisi parmi Li, Zn, Cu, Sn, Co, Fe, Pb, Ni, Ti, Cr, Al, les métaux nobles tels que par exemple Au, Ag, Pd et Pt, ou par un alliage métallique de plusieurs éléments M'. Il est particulièrement avantageux d'utiliser comme cathode une feuille de matériau obtenue par laminage, par étirage, par calendrage ou par matriçage.
La feuille métallique peut par exemple être sous forme d'une feuille plane, d'une feuille pliée en accordéon. Au moins l'une des deux faces de le feuille constituant la cathode est en regard d'une anode.
Dans un mode de réalisation, la cellule électrochimique contient une cathode dont l'une seule des faces est en regard d'une anode. Le dépôt de nanofils s'effectue alors, au cours de 1 ' électrolyse, sur la face de la cathode en regard de l'anode.
Dans un autre mode de réalisation, la cellule électrochimique contient deux anodes sous forme de feuilles minces, situées de part et d'autre d'une feuille métallique constituant la cathode. Les feuilles constituant les anodes sont parallèles à la feuille formant la cathode. Le dépôt des nanofils s'effectue alors simultanément sur les deux faces de la cathode.
Dans un mode de réalisation préféré, on utilise une cathode constituée par un métal M' identique au métal M du précurseur des nanofils. Le cas particulier d'une cathode en cuivre et d'un précurseur de cuivre est particulièrement intéressant. On peut également citer le cas d'une cathode de nickel et d'un précurseur de nickel, d'une cathode de zinc et d'un précurseur de zinc, ou d'une cathode de plomb et d'un précurseur de plomb.
La membrane poreuse peut être constituée par exemple par une feuille d'alumine, dans laquelle les pores sont substantiellement sous forme de cylindres nanométriques perpendiculaires au plan de la membrane, par une feuille de polycarbonate (PC) ou par une feuille de téréphtalate (PET) . Les feuilles de matériau organique comprennent généralement des pores moins réguliers et moins ordonnés que les feuilles d'alumine. Lors de la mise en œuvre du procédé, la longueur des nanofils formés dans les pores de la membrane dépend notamment de la durée de l ' électrolyse et de la teneur de 1 ' électrolyte en précurseur du métal à déposer. La membrane sera choisie de telle sorte que son épaisseur soit supérieure ou égale à la longueur souhaitée pour les nanoparticules . Les membranes d'alumine dans lesquelles les pores sont substantiellement cylindriques, perpendiculaires à la surface de la membre et réparties uniformément sont obtenues par oxydation anodique d'aluminium. Elles sont commercialisées notamment sous la dénomination Anodisc par la société Whatman .
Les membranes de PC ou de PET peuvent être obtenues par une pré-sensibilisation d'une feuille de PC ou de PET, suivie d'une perforation réalisée à l'aide d'un laser. Des membranes de PET sont commercialisées notamment par la société Whatman sous les dénominations Cyclopre et Nucleopore. Les membranes de PC sont commercialisées notamment par ladite société sous la dénomination Whatman Polycarbonate. Les membranes de polycarbonate ont généralement une tenue mécanique suffisante pour que l'élément espaceur puisse être un simple élément permettant de créer un espace entre la membrane et l'anode, ledit espace contenant l'électrolyte.
Les membranes d'alumine ont généralement une tenue mécanique faible, et il est préférable de les associer à un élément espaceur du type séparateur, constitué par une feuille d'un matériau conducteur ionique et isolant électronique. Comme exemple de séparateur, on peut citer une feuille poreuse de matériau cellulosique ou polymérique.
Le séparateur a pour effet non seulement d'améliorer la tenue mécanique de la membrane qui lui est adjacente, mais aussi d'augmenter l'homogénéité du dépôt de nanofils, du fait de la pénétration de l'électrolyte par capillarité dans la membrane, ce qui a pour effet d'empêcher l'assèchement de la membrane. En outre, l'utilisation d'une membrane permet d'avoir des distances inter-électrodes plus faibles qu'avec un espaceur. L'utilisation d'une membrane poreuse non continue permet d'obtenir un élément auto-supporté constitué par un substrat non poreux conducteur électronique et portant un revêtement d'éléments nanotructurés, dans lequel le revêtement de nanofils n'est pas continu. Dans ce mode de réalisation, on met en contact avec ledit substrat, une membrane poreuse dans la surface de laquelle des évidements sont ménagés, lesdits évidements ayant la forme et la superficie des zones de la surface du substrat qui sont destinées à ne pas être revêtues par les nanofils et qui sont masquées avant 1 ' électrolyse, de manière à ne pas subir les effets du procédé électrolytique . Les parties pleines de la membrane sont l'image des zones du substrat qui seront revêtues de nanoparticules . On peut en outre obtenir un dépôt de nanofils non continu en masquant les zones de la membrane qui correspondent à la zone du substrat qui ne doit pas porter de revêtement de nanofils.
Dans la cellule électrochimique utilisée pour la mise en œuvre du procédé de l'invention, l'anode peut être du type anode soluble, constituée par un métal identique au métal M du précurseur des nanofils, ce qui permet de conserver une concentration constante en ions de métal M dans la solution et de limiter la tension aux bornes de la cellule. L'anode peut aussi être constituée par un conducteur métallique inattaquable dans la solution sur lequel se fera alors l'oxydation du solvant. L'anode peut en outre être du type anode soluble constituée par un matériau autre que le métal à déposer, mais dans ce cas, les conditions de 1 ' électrolyse doivent être ajustées de manière à éviter le dépôt sur la cathode, d'un alliage du métal M et du matériau constituant l'anode.
Un autre objet de la présente invention est le produit obtenu par le procédé défini ci-dessus. Ce produit est un élément composite auto-supporté, constitué par un substrat non poreux de matériau conducteur électronique qui porte, sur au moins l'une de ses faces, un revêtement constitué par des nanofils d'un matériau métallique, lesdits nanofils étant substantiellement orientés selon un plan perpendicu- laire au substrat. L'épaisseur et la forme du substrat correspondent à celles de la cathode utilisée pour l'élaboration de l'élément composite. L'épaisseur du substrat est de préférence inférieure à 1 mm, par exemple de 5 μm et 500 μm. Le substrat peut être sous forme d'une feuille plane, d'une feuille pliée en accordéon, ou d'une feuille pliée pour former les parois latérales d'un cylindre ayant par exemple une section triangulaire ou une section en quadrilatère.
Un élément composite auto-supporté selon la présente invention se distingue d'éléments analogues de l'art antérieur dans lesquels le substrat est obtenu par dépôt électrochimique ou electroless par-dessus une membrane poreuse, non seulement par l'absence de porosité, mais aussi par l'orientation des grains et de la rugosité. Dans un dépôt obtenu par voie chimique (électrochimique ou electroless) , le matériau formant le substrat est déposé sous forme d'ilôts dont l'orientation est substantiellement perpendiculaire au plan du substrat. De même, la rugosité est orientée dans le sens perpendiculaire au plan du substrat. [Cf. notamment Y. C. Ee, et al., "Effect of processing parameters on electroless Cu seed layer properties", Thin Solid Films 462-463 (2004) 197-201 et N. M. Hassan, et al., "Temporal Evolution of Roughness in Electroless Copper Films",
(http : //www . ene . unb .br/sbmicro/programcomplete . html) ] . Dans le substrat d'un élément auto-porté selon la présente invention, l'orientation générale de la rugosité et des grains est parallèle au plan du substrat. Ces substrats possèdent donc une texture particulière orientée dans le plan de laminage ce qui n'est pas le cas dans les autres procédés par voie electroless ou électrochimique.
Le matériau conducteur formant le substrat de l'élément composite est tel que défini ci-dessus pour la cathode de la cellule électrochimique utilisée lors de la mise en œuvre du procédé de préparation de l'élément composite. Le matériau métallique formant les nanofils est constitué par un métal M choisi parmi Cu, Sn, Co, Fe, Pb, Ni, Cr, Au, Pd, Pt, Ag, Bi, Sb, Al ou Li, ou par un alliage de plusieurs métaux M.
La longueur des nanofils, c'est-à-dire l'épaisseur du revêtement, dépend d'une part de la longueur des pores de la membrane et d'autre part de la durée de l ' électrolyse . Elle est généralement comprise entre quelques centaines de nano- mètres et quelques dizaines de micromètres, par exemple de 500 nm à 100 μm. L'utilisation d'une membrane constituée par une feuille d'alumine, dans laquelle les pores sont substantiellement cylindriques et orientés perpendiculairement à la surface de la plaque formant la membrane, permet d'obtenir un substrat revêtu d'éléments substantiellement cylindriques et orientés perpendiculairement à la surface du substrat.
L'utilisation d'une membrane de PC ou de PET donne un revêtement constitué par des éléments cylindriques moins réguliers et moins bien orientés par rapport à la surface du substrat, du fait d'une répartition des pores moins régulière dans ce type de membrane
Le substrat peut porter un revêtement de nanofils sur une seule de ses faces, ou sur les deux faces. Dans un élément composite selon l'invention, une face du substrat peut porter un revêtement de nanofils sur la totalité de sa surface, ou sur certaines zones seulement.
Un élément composite selon la présente invention peut être utilisé soit comme collecteur de courant, soit comme électrode, suivant la nature des matériaux qui constituent d'une part le substrat et d'autre part le revêtement formé par les nanofils. Dans les deux cas, le substrat est formé de préférence par un film mince de matériau conducteur, ayant une épaisseur de quelques dizaines à quelques centaines de micromètres. La présente invention a par conséquent pour autre objet, un collecteur de courant et une électrode comprenant ledit élément composite.
Un élément composite auto-supporté selon la présente invention, dans lequel le matériau métallique MM constituant les nanofils a des propriétés de matière active d'électrode, peut être utilisé directement comme électrode, sans apport de matière active supplémentaire. Comme exemple de tel élément composite, on peut citer un élément composite dans lequel le substrat est constitué par un matériau MM' choisi parmi Cu, Al, Li, Pb, Zn, Ni, Ti, Au, Ag Pt ou Pd, et le matériau métallique MM constituant les nanofils est choisi parmi Sn, Li, et les alliages Ni3Sn, Mg2Sn et Cu2Sb.
Un élément composite auto-supporté selon la présente invention, dans lequel le matériau métallique MM constituant les nanofils n'a pas de propriétés de matière active d'électrode, peut être utilisé comme collecteur de courant d'une électrode. Lorsqu'un élément composite auto-supporté selon l'invention est destiné à être utilisé comme collecteur de courant, le substrat et le revêtement de nanofils sont constitués de préférence par le même métal, choisi parmi Cu, Al, Li, Pb, Zn, Ni, Au, Ag Pt ou Pd.
Divers procédés peuvent être mis en œuvre pour élaborer une électrode à partir d'un collecteur de courant selon l'invention.
Selon un premier mode de réalisation, dans lequel le matériau MM constituant les nanofils est aisément oxydable en un oxyde ayant des propriétés de matière active d'électrode, on peut transformer le collecteur de courant en électrode en soumettant le revêtement de nanofils à une oxydation. On obtient alors un élément auto-porté constitué par le substrat de matériau MM' initial et par un revêtement de nanofils d'oxyde à propriétés de matière active. Comme exemple, on peut citer une électrode comprenant un substrat d'un matériau MM' portant un revêtement de nanofils d'oxyde d'étain SnO ou SnO2, d'oxyde de fer FeO, Fe2O3 ou Fe3O4, d'oxyde de nickel ou d'oxyde de cobalt, obtenue à partir d'un élément composite selon l'invention qui comprend un substrat du matériau MM' et un revêtement de nanofils respectivement de Sn, Fe, Ni ou Co.
Dans un autre mode de réalisation, on élabore une électrode à partir d'un collecteur de courant selon l'invention, en déposant de la matière active d'électrode sur le revêtement de nanofils.
Le dépôt de la matière active d'électrode sur le collecteur de courant peut être effectué avantageusement par voie électrolytique dans une cellule électrochimique dans laquelle l'élément composite fonctionne comme cathode, et 1 ' électrolyte est constitué par un précurseur de la matière active, dans des conditions qui sont à la portée de l'homme de métier. A titre d'exemple d'électrode qui peut être obtenue par ce procédé, on peut citer une électrode comprenant un collecteur constitué par un substrat de cuivre revêtu de nanofils de cuivre, sur lequel a été appliqué par électrolyse un film de Sn.
Le dépôt de matière active peut en outre être effectué par imprégnation ou par enduction, lorsque la dimension des particules de matière active est inférieure à la distance entre les nanofils.
La matière active peut en outre être déposée par voie sol-gel, si la dimension des particules à déposer est inférieure à la distance entre les nanofils. La matière active peut aussi être déposée par voie physique, par croissance de couches minces, par exemple par les techniques de sputtering ou d'ablation laser. Les collecteurs de courant et les électrodes selon l'invention peuvent être utilisés dans divers dispositifs électrochimiques tels que des batteries rechargeables lithium-ion, des batteries rechargeables lithium-polymère, les générateurs non rechargeables, des supercapacités, et des dispositifs électrochromes.
Une batterie aux ions lithium comprend une électrode négative et une électrode positive séparées par un électro- lyte liquide ou gélifié comprenant un sel de lithium. Chacune des électrodes est constituée par un matériau capable d'insérer de manière réversible des ions lithium.
L'électrode positive d'une batterie lithium-ion peut être constituée par un collecteur de courant comprenant un substrat en Al portant un revêtement de nanofils de Al, et une matière active constituée par un oxyde lithié tel que LiCoO2, LiNiO2 ou LiMn2O,!, ou un phosphate tel que LiFePÛ4. Ces matières actives peuvent être déposées sur le collecteur AI/AI avantageusement par imprégnation ou par enduction.
L'électrode négative d'une batterie lithium-ions peut être constituée par collecteur en Cu, et une matière active choisie parmi Sn, SnÛ2, Bi, un alliage Ni-Sn, un alliage à base de Sb, un oxyde de Fe, de Co ou de Ni.
Une électrode comprenant comme matière active Sn, un alliage Ni-Sn, ou Bi peut être obtenue avantageusement en mettant en œuvre le procédé de l'invention avec un substrat de cuivre et un électrolyte contenant respectivement un précurseur de Sn, un mélange d'un précurseur de Sn et d'un précurseur de Ni, ou un précurseur de Bi.
Une électrode comprenant comme matière active un oxyde de Sn, de Fe, de Co ou de Ni peut être obtenue avantageusement en mettant en œuvre le procédé de l'invention avec un substrat de cuivre et un électrolyte contenant respectivement un précurseur de Sn, de Fe, de Co ou de Ni ou pour obtenir un élément composite comprenant un substrat de Cu et des nanofils du métal correspondant au précurseur choisi, puis en soumettant l'élément composite à une oxydation dans les conditons appropriées Une batterie lithium-polymère comprend une électrode négative et une électrode positive séparées par un électro- lyte solide polymère comprenant un sel de lithium. L'anode est constituée par un film de lithium métallique ou d'un alliage de lithium. La cathode peut être avantageusement une électrode selon l'invention comprenant un collecteur de courant constitué par un substrat de Al portant des nanofils d'Al et une matière active d'électrode positive choisie parmi les oxydes lithiés cités pour l'électrode positive de la cathode de la batterie lithium-ion, et parmi des oxydes non lithiés, tels que par exemple V2O5, ladite matière active étant déposée avantageusement par imprégnation ou par enduction .
Un élément composite auto-supporté selon la présente invention peut avantageusement être utilisé pour l'élaboration d'une électrode dans une batterie non rechargeable dans laquelle 1-' électrolyte comprend un sel de lithium en solution dans un solvant liquide. L'anode est constituée par un film de lithium métallique ou d'un alliage de lithium. La cathode peut être avantageusement une électrode selon l'invention comprenant un collecteur de courant constitué par un substrat de Al portant des nanofils d'Al et une matière active d'électrode positive choisie parmi les oxydes, tels que par exemple V2O5, WO3 ou MnO2, les sulfures tels que FeS2 ou des fluorures de carbone CFx.
Un supercondensateur comprend deux électrodes séparées par un électrolyte. L'une des électrodes est de préférence constituée par un matériau à haute surface spécifique. Une telle électrode peut être avantageusement une électrode selon l'invention comprenant un collecteur de courant constitué par un substrat de Al portant des nanofils d'Al, ou un substrat de Cu portant des nanofils de Cu, et une matière active constituée par exemple par du carbone, ou un polymère . Un élément composite selon la présente invention peut en outre être utilisé en électronique de puissance, et plus généralement en microélectronique, en tant qu'élément assurant la connection des composants actifs avec leur environnement ou en tant qu'élément dissipateur thermique, les deux fonctions pouvant être combinées. Pour ces applications électroniques, le procédé de l'invention est mis en œuvre en utilisant comme cathode la surface d'un élément semi-conducteur dont au moins l'une* des faces est recouverte au moins partiellement par une métallisation, et la membrane est placée sur tout ou partie de la métallisation de l'élément semi-conducteur.
Dans un mode de réalisation particulier, notamment lorsque l'élément composite est destiné à un dispositif de microélectronique, on applique un masque sur la surface libre de la membrane de manière à délimiter des zones de l'élément semi-conducteur qui seront recouvertes de nanofils
(zones non masquées) et des zones de l'élément semi- conducteur qui restent libres (zones masquées) . Ce mode de réalisation permet l'utilisation du procédé sur la surface entière d'une tranche de semi-conducteur, en fin de processus en salle blanche (front end process) .
Lorsque le procédé de l'invention est mis en œuvre pour réaliser des connexions entre deux éléments semi-conducteurs ou entre un semi-conducteur et un élément de son environnement, l'utilisation d'une membrane portant un masque permet de créer les plots de connexion (désignés couramment dans la littérature du domaine technique par "studs" ou "bumps") sur un élément semi-conducteur. L'élément semi-conducteur sera ensuite fixé à un autre élément semi-conducteur ou à un élément de l'environnement par les moyens bien connus de l'homme de métier, telles que les colles, les soudures ou brasures, ou les films adhésifs (désignés couramment dans la littérature du domaine technique par "solders" ou "tapes") . La fixation peut en outre être effectuée par des méthodes directes tels qu'un procédé de thermocompression ou un procédé thermosonique . Le choix du mode de fixation dépendra entre autre du type d'alliage métallique utilisé pour la fabrication des plots et du support receveur (élément semiconducteur ou élément de l'environnement) .
Dans le domaine de l'électronique, on peut ainsi réaliser notamment des interconnexions intra substrat ou intra PCB (Printed Circuit Board ou Plaque à Circuit Imprimé). Il s'agit par exemple d'interconnecter entre elles des puces enterrées (ou enfouies) dans un même support, ou de connecter une puce avec un autre élément enterré dans le même support. Un support inorganique est généralement désigné par "substrat", et un support organique [du type résine époxy / fibre de verre (type FR4 ) par exemple] est désigné par "PCB".
Dans le domaine de la microélectronique, on peut réaliser notamment des interconnexions puce - puce, des interconnections puces - boîtiers et refroidissement de puces et/ou boîtiers. La mise en oeuvre du procédé de l'invention pour ces applications réduit les inductances et augmente la densité d' interconnection . Lorsqu'un élément composite selon l'invention est utilisé comme dissipateur thermique, la présence du revêtement de nanofils sur une ou les deux faces de l'élément semiconducteur augmente de façon substantielle la surface d'échange avec l'air. Une amélioration des performances de refroidissement est ainsi obtenue.
Il est entendu que les deux fonctions (connectique et dissipateur thermique) peuvent être combinées dans un même dispositif, dans le cadre de l'intégration 3D.
La présente invention est illustrée par les exemple de réalisation concrets décrits ci-après, auxquels elle n'est cependant pas limitée.
Exemple 1
Dépôt de nanofils de Cu sur un substrat de Cu
Le procédé a été mis en œuvre dans une cellule électrochimique contenant un électrolyte dans lequel est immergé un ensemble constitué par les éléments suivants maintenus en contact par pression et empilés dans l'ordre cité :
• feuille de cuivre, formant la cathode,
• Membrane d'alumine
• Feuille cellulosique formant le séparateur, • feuille de cuivre, formant l'anode. La cathode et l'anode sont reliées respectivement à la borne négative et à la borne positive d'un potentiostat .
Les feuilles de cuivre formant respectivement la cathode et l'anode ont une épaisseur de 500 μm. La membrane d'alumine est une membrane commercialisée sous la dénomination Anodisc par la société Whatman. Elle a une épaisseur de 50 μm et le diamètre des pores substantiellement cylindriques est de 200 nm.
L' électrolyte est une solution aqueuse de CUSO4 (100 g/L), de (NH4)2SO4 (20 g/L) et de diéthylènetrétamine DETA (80 g/L) .
L'électrolyse a été effectuée sous impulsions en courant en répétant la séquence "dépôt à 1 mA/cm2 pendant 250 ms, dépôt à 20 mA/cm2 pendant 50 ms" pendant 30 minutes. Un schéma du dispositif utilisé est représenté sur la figure 1, sur laquelle (1) représente l ' électrolyte, (2) représente la cathode, (3) représente la membrane, (4) représente le séparateur, (5) représente l'anode, et (6) représente le potentiostat. Après la fin de l'électrolyse, la cellule a été démontée. L'ensemble formé par la cathode et la membrane d'alumine a été immergé dans une solution de soude 1 M à 80°C pendant 30 secondes. Après dissolution de la membrane, la cathode a été rincée pendant 10 s dans une solution aqueuse de H2SO4 (1 M) et de CuSO4 (1 M) .
Les photographies MEB-FEG du produit obtenu sont représentées sur les figures 2 à 5.
Les figures 2 à 4 représentent une vue du produit face aux extrémités des nanocylindres, avec différents grossissements (x 1000, x 10000, x 100000), et la figure 5 représente une vue en coupe, avec un grossissement de 30000.
Exemple 2
Dépôt de nanofils de Sn sur un substrat de Cu
On a reproduit le mode opératoire de l'exemple 1, en utilisant : • une feuille de Cu ayant une épaisseur de 500 μm formant la cathode, • une membrane d'alumine Anodisc
• une feuille de Sn ayant une épaisseur de 500 μm formant l'anode
L'électrolyte est une solution aqueuse contenant SnSO4 (97 g/L) , HSO4 (30 g/L) , de l'acide tartrique (30 g/L) , un Polyéthylène glycol PEG 3500 (0,35 g/L), de la gélatine (1 g/L) et Na2SO4 (30 g/L) .
Exemple 3
Dépôt de nanofils de cuiyre sur une Puce IGBT 3300 V / 100 A On a reproduit le mode opératoire de l'exemple 1, en utilisant :
• une Puce IGBT 3300 V / 100 A formant la cathode, Insulated Gâte Bipolar Transistor, en français Transistor bipolaire à grille isolée
• une membrane d'alumine Anodisc • une feuille de Cu ayant une épaisseur de 500 μm formant 1 ' anode
L'électrolyte est une solution aqueuse contenant SnSO4 (97 g/L), HSO4 (30 g/L), de l'acide tartrique (30 g/L), un Polyéthylène glycol PEG 3500 (0,35 g/L), de la gélatine (1 g/L) et Na2SO4 (30 g/L) .
La figure 6 représente une photographie MEB-FEG du produit obtenu.

Claims

Revendications
1. Procédé d'élaboration d'un élément composite auto- supporté constitué par un substrat non poreux conducteur électronique revêtu de nanofils d'un matériau métallique, consistant à effectuer un dépôt par électrolyse sur ledit substrat à travers une membrane poreuse, puis à dissoudre la membrane poreuse, caractérisé en ce qu'il est mis en œuvre dans une cellule électrochimique reliée à une source de tension et/ou de courant contrôlée, et comprenant : une cathode constituée par le substrat non poreux conducteur électronique à revêtir, et reliée à la borne négative de ladite source, une ou plusieurs anodes, chacune reliée à la borne positive de ladite source, un électrolyte constitué par une solution d'un composé précurseur de chaque constituant du matériau métallique , ladite solution contenant éventuellement un sel conducteur ionique, une membrane poreuse plane placée sur la ou les faces de la cathode, - un élément espaceur entre chaque membrane et l'anode qui lui est adjacente, les différentes parties constituant la cellule étant maintenues en contact par pression.
2. Procédé selon la revendication 1, caractérisé en ce que l ' électrolyse est effectuée à courant constant, impulsionnel, alternatif ou oscillant, ou sous potentiel constant, impulsionnel, alternatif ou oscillant, ou sous puissance constante, alternative, impulsionnelle, alternative ou oscillante.
3. Procédé selon la revendication 1, caractérisé en ce qu'un précurseur d'un constituant du matériau métallique constituant les nanofils est un précurseur d'un métal M, ledit métal M étant choisi parmi Cu, Sn, Co, Fe, Pb, Ni, Cr, Au, Pd, Pt, Ag, Bi, Sb, Al ou Li.
4. Procédé selon la revendication 3, caractérisé en ce que lorsque M est Al ou Li, le composé précurseur est utilisé en solution dans un solvant organique, et lorsque M est Cu, Sn, Co, Fe, Pb, Ni, Cr, Au, Pd, Pt, Sb, Ag ou Bi, le précurseur est utilisé en solution aqueuse ou en solution dans un solvant organique.
5. Procédé selon la revendication 4, caractérisé en ce que le précurseur est choisi parmi les sulfates, les sulfamates, les borates, les halogénures, les complexes à base de cyanures ou d'aminés, et les hydrures.
6. Procédé selon la revendication 4, caractérisé en ce que le solvant organique est un carbonate d'alkyle ou de dialkyle.
7. Procédé selon la revendication 1, caractérisé en ce que la cathode est constituée par un matériau métallique constitué par un métal M' choisi parmi Li, Zn, Cu, Sn, Co, Fe, Pb, Ni, Ti, Cr, Al, Au, Ag, Pd et Pt, ou par un alliage métallique de plusieurs éléments M'.
8. Procédé selon la revendication 1, caractérisé en ce que la cathode est une feuille comprenant des zones de surface plane.
9. Procédé selon la revendication 1, caractérisé en ce que la cathode est constituée par un métal M1 identique au métal M du précurseur des nanofils.
10. Procédé selon la revendication 1, caractérisé en ce que l'anode est constituée par un métal identique au métal M du précurseur des nanofils.
11. Procédé selon la revendication 1, caractérisé en ce que la membrane poreuse est une feuille d'alumine dans laquelle les pores sont substantiellement sous forme de cylindres nanométriques perpendiculaires au plan de la membrane .
12. Procédé selon la revendication 1, caractérisé en ce que la membrane est une feuille poreuse de polycarbonate (PC) ou une feuille poreuse de téréphtalate (PET) .
13. Procédé selon la revendication 1, caractérisé en ce que l'élément espaceur est une feuille de matériau cellulosique ou polymérique.
14. Procédé selon la revendication 1, caractérisé en ce que la cellule électrochimique contient une anode et une cathode, les deux sous forme de film mince.
15. Procédé selon la revendication 1, caractérisé ce que la cellule électrochimique contient une cathode placée entre deux anodes, les trois sous forme de film mince.
16. Procédé selon la revendication 1, caractérisé en ce que la cathode est un élément semi-conducteur portant un film métallique sur au moins l'une de ses faces, la membrane étant placée sur ledit film métallique.
17. Procédé selon la revendication 1, caractérisé en ce qu'on applique un masque sur la surface libre de la membrane de manière à délimiter des zones du substrat qui seront recouvertes de nanofils et des zones du substrat qui restent libres.
18. Elément composite auto-supporté, constitué par un substrat de matériau conducteur électronique non poreux qui porte, sur au moins l'une de ses faces, un revêtement constitué par des nanofils d'un matériau métallique, caractérisé en ce que :
• lesdits nanofils sont substantiellement orientés selon un plan perpendiculaire au substrat ; • le substrat est une feuille plane, une feuille pliée accordéon, ou pliée pour former une pyramide ou un cylindre dont la section est triangulaire ou rectangulaire.
19. Elément composite auto-supporté selon la revendication 18, caractérisé en ce que le substrat de l'élément composite est sous forme d'une feuille plane ou sous forme d'une feuille à forme quelconque comportant des zones de surfaces plane.
20. Elément composite auto-supporté selon la revendication 18, caractérisé en ce que le substrat porte un revê- tement de nanofils sur l'une de ses faces.
21. Elément composite auto-supporté selon la revendication 18, caractérisé en ce que le substrat porte un revêtement de nanofils sur ses deux faces.
22. Elément composite selon la revendication 18, caractérisé en ce que le matériau conducteur formant le substrat est un matériau métallique constitué par un métal M' choisi parmi Li, Zn, Cu, Sn, Co, Fe, Pb, Ni, Ti, Cr, Al, Au, Ag, Pd et Pt, ou par un alliage métallique de plusieurs éléments M' .
23. Elément composite selon la revendication 18, caractérisé en ce que le matériau métallique formant les nanofils est constitué par un métal M choisi parmi Cu, Sn, Co, Fe, Pb, Ni, Cr, Au, Pd, Pt, Ag, Sb, Bi, Al ou Li, ou par un alliage de plusieurs métaux M.
24. Elément composite auto-supporté selon la revendication 18, caractérisé en ce que le substrat et les nanofils sont constitués par le même métal.
25. Elément composite selon la revendication 18, caractérisé en ce que le substrat est un élément semiconducteur portant un film métallique, les nanofils étant solidaire du film métallique.
26. Collecteur de courant pour une électrode, caractérisé en ce qu'il est constitué par un élément composite selon la revendication 18.
27. Collecteur de courant selon la revendication 26, caractérisé en ce que le substrat et les nanofils de l'élément composite sont constitué par le même matériau, choisi parmi Cu, Al, Li, Pb, Zn, Ni, Au, Ag Pt ou Pd.
28. Electrode, caractérisée en ce qu'elle comprend un collecteur de courant selon l'une des revendications 26 ou 24 et une matière active.
29. Electrode, caractérisé en ce qu'elle est constituée par un élément composite auto-supporté selon la revendication 18, dans lequel le matériau métallique constituant les nanofils a des propriétés de matière active d' électrode .
30. Electrode selon la revendication 29, caractérisée en ce que le substrat de l'élément composite est constitué par un matériau choisi parmi Cu, Al, Li, Pb, Zn, Ni, Ti, Au, Ag Pt ou Pd, et le matériau métallique constituant les nanofils est choisi parmi Sn, Li, les alliages Ni3Sn, Mg2Sn ou CuSb2, et les oxydes SnO, SnO2, FeO, Fe2O3 ou Fe3Cj, les oxydes de nickel et les oxydes de cobalt.
31. Batterie lithium-ion comprenant une électrode négative et une électrode positive séparées par un électro- lyte liquide ou gélifié comprenant un sel de lithium, caractérisée en ce que l'une au moins des électrodes est une électrode selon l'une des revendications 28 à 30.
32. Batterie selon la revendication 31, caractérisée en ce que l'électrode positive est constituée par un collecteur de courant comprenant un substrat en Al portant un revêtement de nanofils de Al, et une matière active constituée par un oxyde lithié.
33. Batterie selon la revendication 31, caractérisé en ce que l'électrode négative est constituée par collecteur en
Cu, et une matière active choisie parmi Sn, Snθ2, Bi, un alliage Ni-Sn, un alliage à base de Sb, un oxyde de Fe, de Co ou de Ni .
34. Batterie lithium-polymère comprenant une électrode négative et une électrode positive séparées par un électro- lyte solide polymère comprenant un sel de lithium, dans laquelle l'anode est constituée par un film de lithium métallique ou d'un alliage de lithium, caractérisée en ce que la cathode est une électrode selon l'une des revendications 28 à 30.
35. Batterie selon la revendication 34, caractérisé en ce que la cathode comprend un collecteur de courant constitué par un substrat de Al portant des nanofils d'Al et une matière active d'électrode positive choisie parmi les oxydes lithiés cités pour l'électrode positive de la cathode de la batterie lithium-ion, et parmi des oxydes non lithiés, tels que par exemple V2O5.
36. Batterie non rechargeable dans laquelle l'électro- lyte comprend un sel de lithium en solution dans un solvant liquide et l'anode est constituée par un film de lithium métallique ou d'un alliage de lithium, caractérisé en ce que la cathode est une électrode selon l'une des revendications 28 à 30.
37. Batterie selon la revendication 34, caractérisée en ce que la cathode comprend un collecteur de courant constitué par un substrat de Al portant des nanofils d'Al et une matière active d'électrode positive choisie parmi les oxydes, tels que par exemple V2O5, WO3 ou MnO2, les sulfures tels que FeS2 ou des fluorures de carbone CFx.
38. Supercondensateur comprenant deux électrodes séparées par un électrolyte, caractérisé en ce que l'une des électrodes est une électrode selon l'une des revendications 28 à 30.
39. Supercondensateur selon la revendication 38, caractérisé en ce que ladite électrode comprend un collecteur de courant constitué par un substrat de Al portant des nanofils d'Al, ou un substrat de Cu portant des nanofils de Cu, et une matière active constituée par du carbone, ou un polymère.
40. Application du procédé selon l'une des revendications 16 ou 17 à la réalisation d'interconnexions entre des éléments semi-conducteurs ou entre un élément semi-conducteur et un élément de son environnement.
41. Utilisation d'un élément composite selon la revendication 25 comme dissipateur de chaleur dans un disposif d'électronique ou de microélectronique.
PCT/FR2006/001099 2005-05-18 2006-05-16 Elaboration par voie electrolytique d'elements nanocomposites conducteurs auto-supportes WO2006123049A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/920,624 US9115438B2 (en) 2005-05-18 2006-05-16 Method for the electrolytic production of self-supporting conductive nanocomposite elements
EP06764636A EP1885916A2 (fr) 2005-05-18 2006-05-16 Elaboration par voie electrolytique d'elements nanocomposites conducteurs auto-supportes
JP2008511749A JP5148481B2 (ja) 2005-05-18 2006-05-16 自立伝導性ナノ複合エレメントの電解製造法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0504960A FR2885913B1 (fr) 2005-05-18 2005-05-18 Element composite comprenant un substrat conducteur et un revetement metallique nanostructure.
FR0504960 2005-05-18

Publications (2)

Publication Number Publication Date
WO2006123049A2 true WO2006123049A2 (fr) 2006-11-23
WO2006123049A3 WO2006123049A3 (fr) 2007-12-06

Family

ID=35546896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/001099 WO2006123049A2 (fr) 2005-05-18 2006-05-16 Elaboration par voie electrolytique d'elements nanocomposites conducteurs auto-supportes

Country Status (5)

Country Link
US (1) US9115438B2 (fr)
EP (1) EP1885916A2 (fr)
JP (1) JP5148481B2 (fr)
FR (1) FR2885913B1 (fr)
WO (1) WO2006123049A2 (fr)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090448A (ja) * 2007-09-21 2009-04-30 National Institute Of Advanced Industrial & Technology 貴金属ナノ構造体及び電気化学リアクター
FR2923078A1 (fr) * 2007-10-26 2009-05-01 Centre Nat Rech Scient Procede de fabrication d'un element d'interconnexion mecanique conducteur d'electricite.
JP2009200449A (ja) * 2008-02-25 2009-09-03 Chiba Univ 電気化学キャパシタ及びその製造方法。
JP2010514944A (ja) * 2007-01-05 2010-05-06 インターナショナル・ビジネス・マシーンズ・コーポレーション ゲルマニウム含有ナノ構造体および形成方法
US20100193365A1 (en) * 2009-02-04 2010-08-05 Applied Materials, Inc. Porous three dimensional copper, tin, copper-tin, copper-tin-cobalt, and copper-tin-cobalt-titanium electrodes for batteries and ultra capacitors
US20100200403A1 (en) * 2009-02-09 2010-08-12 Applied Materials, Inc. Metrology methods and apparatus for nanomaterial characterization of energy storage electrode structures
EP2191526A4 (fr) * 2007-08-10 2010-11-24 Univ Leland Stanford Junior Procédés et systèmes de fabrication de batteries à nanofils
EP2258013A2 (fr) * 2008-02-22 2010-12-08 Colorado State University Research Foundation Batterie à ions lithium
US7960653B2 (en) 2008-07-25 2011-06-14 Hewlett-Packard Development Company, L.P. Conductive nanowires for electrical interconnect
ITVI20100333A1 (it) * 2010-12-10 2012-06-11 Cr Mobility Solution System S R L Metodo di realizzazione di un elettrodo ad elevata densita' energetica ed elettrodo ottenibile con tale metodo
CN102534695A (zh) * 2010-12-29 2012-07-04 京东方科技集团股份有限公司 柔性显示器用金属基片及其制备方法
US8257866B2 (en) 2009-05-07 2012-09-04 Amprius, Inc. Template electrode structures for depositing active materials
US8450012B2 (en) 2009-05-27 2013-05-28 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
US9923201B2 (en) 2014-05-12 2018-03-20 Amprius, Inc. Structurally controlled deposition of silicon onto nanowires
US10038219B2 (en) 2010-11-15 2018-07-31 Amprius, Inc. Electrolytes for rechargeable batteries
US10090512B2 (en) 2009-05-07 2018-10-02 Amprius, Inc. Electrode including nanostructures for rechargeable cells
US10096817B2 (en) 2009-05-07 2018-10-09 Amprius, Inc. Template electrode structures with enhanced adhesion characteristics
CN110192273A (zh) * 2016-11-08 2019-08-30 开尔文热技术股份有限公司 用于在热接地平面中散布高热通量的方法和设备
US11598594B2 (en) 2014-09-17 2023-03-07 The Regents Of The University Of Colorado Micropillar-enabled thermal ground plane
US11988453B2 (en) 2014-09-17 2024-05-21 Kelvin Thermal Technologies, Inc. Thermal management planes
US11996550B2 (en) 2009-05-07 2024-05-28 Amprius Technologies, Inc. Template electrode structures for depositing active materials

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395059B (en) 2002-11-05 2005-03-16 Imp College Innovations Ltd Structured silicon anode
GB0601318D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd Method of etching a silicon-based material
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
WO2008124167A1 (fr) * 2007-04-10 2008-10-16 The Regents Of The University Of California Dispositifs de stockage de charge contenant des films de nanotubes de carbone comme électrodes et collecteurs de charge
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
GB0713896D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Method
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
GB0713895D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Production
GB2464158B (en) 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB2464157B (en) 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
KR101093364B1 (ko) * 2008-12-31 2011-12-14 고려대학교 산학협력단 다원계 나노선 제조방법
US9406985B2 (en) * 2009-01-13 2016-08-02 Nokia Technologies Oy High efficiency energy conversion and storage systems using carbon nanostructured materials
US20100178568A1 (en) * 2009-01-13 2010-07-15 Nokia Corporation Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
US20100216023A1 (en) * 2009-01-13 2010-08-26 Di Wei Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
US9163883B2 (en) 2009-03-06 2015-10-20 Kevlin Thermal Technologies, Inc. Flexible thermal ground plane and manufacturing the same
US20140370380A9 (en) * 2009-05-07 2014-12-18 Yi Cui Core-shell high capacity nanowires for battery electrodes
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
US20140342236A1 (en) * 2009-08-04 2014-11-20 Ut-Battelle, Llc Scalable fabrication of one-dimensional and three-dimensional, conducting, nanostructured templates for diverse applications such as battery electrodes for next generation batteries
US9005806B2 (en) * 2009-10-15 2015-04-14 Nokia Corporation Nano-structured lithium-sulfur battery and method of making same
EP2504467B1 (fr) * 2009-11-25 2014-12-03 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Production d'électrodes nano-organisées sur un substrat poreux
US20110143019A1 (en) * 2009-12-14 2011-06-16 Amprius, Inc. Apparatus for Deposition on Two Sides of the Web
EP2534720B1 (fr) * 2010-02-12 2017-09-06 Washington State University Batteries lithium-ion possédant des électrodes nanostructurée et procédés de fabrication associés
US9172088B2 (en) 2010-05-24 2015-10-27 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
GB201005979D0 (en) 2010-04-09 2010-05-26 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB201009519D0 (en) 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
GB201014707D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material
GB201014706D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
KR101708291B1 (ko) * 2011-06-06 2017-02-27 워싱턴 스테이트 유니버시티 나노구조형 전극이 있는 배터리 및 관련 방법
KR20130133624A (ko) * 2012-05-29 2013-12-09 (주)오렌지파워 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
WO2014126705A1 (fr) 2013-01-29 2014-08-21 Washington State University Research Foundation Batteries lithium-ion comportant des électrodes nanostructurées
US20160005599A1 (en) * 2013-02-18 2016-01-07 Postech Academy-Industry Foundation Method for forming aligned oxide semiconductor wire pattern and electronic device using same
JP6056987B2 (ja) * 2013-11-14 2017-01-11 トヨタ自動車株式会社 金属皮膜の成膜装置およびその成膜方法
WO2015071189A1 (fr) * 2013-11-14 2015-05-21 Basf Se Procédé de production de nanofils d'étain
WO2016044638A1 (fr) 2014-09-17 2016-03-24 The Regents Of The University Of Colorado, A Body Corporate Plan de sol thermique à base de micropilliers
JP6176235B2 (ja) * 2014-12-26 2017-08-09 トヨタ自動車株式会社 金属皮膜の成膜装置およびその成膜方法
KR20180030576A (ko) * 2015-07-15 2018-03-23 네덜란제 오르가니자티에 포오르 토에게파스트-나투우르베텐샤펠리즈크 온데르조에크 테엔오 고종횡비 구조를 제조하는 장치 및 방법
KR101710421B1 (ko) * 2015-09-25 2017-03-13 제주대학교 산학협력단 산화구리 나노막대/산화아연 나노가지로 구성된 광전극과 그 형성방법
CN106981650B (zh) * 2017-02-10 2020-03-13 中山大学 一种纳米级单质铋的制备方法
DE102017104902A1 (de) 2017-03-08 2018-09-13 Olav Birlem Anordnung von Halbleiterchips und Verfahren zur Herstellung davon
US10597783B2 (en) * 2017-03-28 2020-03-24 GM Global Technology Operations LLC Lithium cell electrode using surface-modified copper foil current collector
CN108196387B (zh) * 2018-01-02 2021-03-30 重庆京东方光电科技有限公司 衬底基板及其制造装置、制备方法和显示装置
US11930621B2 (en) 2020-06-19 2024-03-12 Kelvin Thermal Technologies, Inc. Folding thermal ground plane
WO2022009886A1 (fr) * 2020-07-08 2022-01-13 三井金属鉱業株式会社 Corps linéaire métallique fin
SE2250245A1 (en) * 2022-02-23 2023-08-24 Northvolt Ab Battery assembly with nanowires
CN117276476A (zh) * 2022-06-14 2023-12-22 广东小天才科技有限公司 中间结构及制备方法、锂二次电池电极及制备方法
CN117276559A (zh) * 2022-06-14 2023-12-22 广东小天才科技有限公司 模板及制作方法和应用、中间结构和锂二次电池电极
FR3138447A1 (fr) * 2022-07-28 2024-02-02 Nawatechologies Collecteur de courant pour dispositif électrochimique de stockage ou de génération d’énergie électrique

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050062033A1 (en) * 2003-08-08 2005-03-24 Canon Kabushiki Kaisha Structure and method for production of the same
US20050089638A1 (en) * 2003-09-16 2005-04-28 Koila, Inc. Nano-material thermal and electrical contact system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6511298A (fr) * 1964-10-13 1966-04-14
US4155818A (en) * 1978-07-17 1979-05-22 Monsanto Company Semi-continuous electro-hydrodimerization of acrylonitrile to adiponitrile with replating of cathode
GB8927964D0 (en) * 1989-12-11 1990-02-14 Kodak Ltd Method and apparatus for recovering silver from a photographic fixing solution
JPH1046382A (ja) * 1996-07-26 1998-02-17 Mitsubishi Materials Corp 微細金属繊維の製造方法及び該繊維を用いた導電性塗料
JP3269827B2 (ja) * 1997-04-04 2002-04-02 ユニバーシティ・オブ・サザン・カリフォルニア 電気化学製造のための物品、方法、および装置
JP4110341B2 (ja) * 1999-04-09 2008-07-02 セイコーエプソン株式会社 構造体の作成方法
JP2001207288A (ja) * 2000-01-27 2001-07-31 Canon Inc 細孔内への電着方法及び構造体
CA2404296A1 (fr) * 2000-03-22 2001-09-27 University Of Massachusetts Matrices de cylindres nanometriques
KR100878281B1 (ko) * 2001-03-14 2009-01-12 유니버시티 오브 매사츄세츠 나노 제조
SE523309E (sv) * 2001-06-15 2010-03-02 Replisaurus Technologies Ab Metod, elektrod och apparat för att skapa mikro- och nanostrukturer i ledande material genom mönstring med masterelektrod och elektrolyt
US7267859B1 (en) * 2001-11-26 2007-09-11 Massachusetts Institute Of Technology Thick porous anodic alumina films and nanowire arrays grown on a solid substrate
US6872645B2 (en) * 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
JP2004207448A (ja) * 2002-12-25 2004-07-22 Japan Atom Energy Res Inst 耐熱性イオン穿孔膜とナノ細線からなるハイブリッド素子膜とその製法
JP2004277763A (ja) * 2003-03-13 2004-10-07 Ricoh Co Ltd 帯電部材と帯電部材の表面形成方法及び画像形成装置
JP4434658B2 (ja) * 2003-08-08 2010-03-17 キヤノン株式会社 構造体及びその製造方法
JP4343616B2 (ja) * 2003-08-08 2009-10-14 キヤノン株式会社 ナノ構造体の製造方法及びナノ構造体
US8007650B2 (en) * 2003-10-24 2011-08-30 Yasuhiro Fukunaka Apparatus for manufacturing metal nanotube and process for manufacturing metal nanotube
JP3899413B2 (ja) * 2004-03-12 2007-03-28 独立行政法人物質・材料研究機構 ナノ材料作製方法
US7553401B2 (en) * 2004-03-19 2009-06-30 Faraday Technology, Inc. Electroplating cell with hydrodynamics facilitating more uniform deposition across a workpiece during plating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050062033A1 (en) * 2003-08-08 2005-03-24 Canon Kabushiki Kaisha Structure and method for production of the same
US20050089638A1 (en) * 2003-09-16 2005-04-28 Koila, Inc. Nano-material thermal and electrical contact system

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE CA CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 2002, WU XIAODONG: "Agglomeration and the surface passivating film of ag nano-brush electrode in lithium batteries" XP002363570 Database accession no. 138:6364 & XIAODONG ET AL.: "Agglomeration and the surface passivating film og Ag nano-brush electrode in lithium batteries" SOLID STATE IONICS, vol. 149, no. 3-4, 2002, pages 185-192, *
DATABASE CA CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 2003, KONISHI, Y.: "Electrodeposition of Cu nanowire arrays with a template" XP002363569 Database accession no. 140:153442 cité dans la demande & Y. KONISHI ET AL.: "Electrodeposition of Cu nanowire arrays with a template" JOURNAL OF ELECTROANALYTICAL CHEMISTRY, vol. 559, 2003, pages 149-153, *
E. J. BAE, W. B. CHOI, K. S. JEONG, J. U. CHU, G.-S. PARK, S. SONG, I. K. YOO: "Selective Growth of Carbon Nanotubes on Pre-patterned Porous Anodic Aluminium Oxide" ADVANCED MATERIALS, vol. 14, 2002, pages 277-279, XP002451123 *
J. R. LIN, J. F. WHITACRE, J.-P. FLEURIAL, C.-K. HUANG, M. A. RYAN, N. V. MYUNG: "Fabrication Method for Themoelectric Nanodevices" ADVANCED MATERIALS, vol. 17, 2005, pages 1488-1492, XP002451110 *
O. RABIN ET AL.: "Nanofabrication Using Self-Assembled Alumina Templates" MAT. RES. SOC. SYMP. PROC., vol. 636, 2001, pages D4.7.1-D4.7.6, XP008083886 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514944A (ja) * 2007-01-05 2010-05-06 インターナショナル・ビジネス・マシーンズ・コーポレーション ゲルマニウム含有ナノ構造体および形成方法
EP2191526A4 (fr) * 2007-08-10 2010-11-24 Univ Leland Stanford Junior Procédés et systèmes de fabrication de batteries à nanofils
JP2009090448A (ja) * 2007-09-21 2009-04-30 National Institute Of Advanced Industrial & Technology 貴金属ナノ構造体及び電気化学リアクター
FR2923078A1 (fr) * 2007-10-26 2009-05-01 Centre Nat Rech Scient Procede de fabrication d'un element d'interconnexion mecanique conducteur d'electricite.
WO2009090349A3 (fr) * 2007-10-26 2009-09-17 Centre National De La Recherche Scientifique Procede de fabrication d'un element d'interconnexion mecanique conducteur d'electricite
US8178416B2 (en) 2007-10-26 2012-05-15 Centre National De La Recherche Scientifique Method for making an electrically conducting mechanical interconnection member
JP2011501454A (ja) * 2007-10-26 2011-01-06 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク 導電性の機械的相互接続部材を作る方法
EP2258013A4 (fr) * 2008-02-22 2014-06-11 Univ Colorado State Res Found Batterie à ions lithium
EP2258013A2 (fr) * 2008-02-22 2010-12-08 Colorado State University Research Foundation Batterie à ions lithium
JP2009200449A (ja) * 2008-02-25 2009-09-03 Chiba Univ 電気化学キャパシタ及びその製造方法。
US7960653B2 (en) 2008-07-25 2011-06-14 Hewlett-Packard Development Company, L.P. Conductive nanowires for electrical interconnect
US20100193365A1 (en) * 2009-02-04 2010-08-05 Applied Materials, Inc. Porous three dimensional copper, tin, copper-tin, copper-tin-cobalt, and copper-tin-cobalt-titanium electrodes for batteries and ultra capacitors
US9567683B2 (en) 2009-02-04 2017-02-14 Applied Materials, Inc. Porous three dimensional copper, tin, copper-tin, copper-tin-cobalt, and copper-tin-cobalt-titanium electrodes for batteries and ultra capacitors
US8206569B2 (en) * 2009-02-04 2012-06-26 Applied Materials, Inc. Porous three dimensional copper, tin, copper-tin, copper-tin-cobalt, and copper-tin-cobalt-titanium electrodes for batteries and ultra capacitors
US8192605B2 (en) * 2009-02-09 2012-06-05 Applied Materials, Inc. Metrology methods and apparatus for nanomaterial characterization of energy storage electrode structures
US20100200403A1 (en) * 2009-02-09 2010-08-12 Applied Materials, Inc. Metrology methods and apparatus for nanomaterial characterization of energy storage electrode structures
US11024841B2 (en) 2009-05-07 2021-06-01 Amprius, Inc. Template electrode structures for depositing active materials
US10096817B2 (en) 2009-05-07 2018-10-09 Amprius, Inc. Template electrode structures with enhanced adhesion characteristics
US8556996B2 (en) 2009-05-07 2013-10-15 Amprius, Inc. Template electrode structures for depositing active materials
US10811675B2 (en) 2009-05-07 2020-10-20 Amprius, Inc. Electrode including nanostructures for rechargeable cells
US9172094B2 (en) 2009-05-07 2015-10-27 Amprius, Inc. Template electrode structures for depositing active materials
US11996550B2 (en) 2009-05-07 2024-05-28 Amprius Technologies, Inc. Template electrode structures for depositing active materials
US10230101B2 (en) 2009-05-07 2019-03-12 Amprius, Inc. Template electrode structures for depositing active materials
US8257866B2 (en) 2009-05-07 2012-09-04 Amprius, Inc. Template electrode structures for depositing active materials
US10090512B2 (en) 2009-05-07 2018-10-02 Amprius, Inc. Electrode including nanostructures for rechargeable cells
US8450012B2 (en) 2009-05-27 2013-05-28 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
US10461359B2 (en) 2009-05-27 2019-10-29 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
US10038219B2 (en) 2010-11-15 2018-07-31 Amprius, Inc. Electrolytes for rechargeable batteries
ITVI20100333A1 (it) * 2010-12-10 2012-06-11 Cr Mobility Solution System S R L Metodo di realizzazione di un elettrodo ad elevata densita' energetica ed elettrodo ottenibile con tale metodo
WO2012076963A1 (fr) * 2010-12-10 2012-06-14 Cr Mobility Solution System Procédé de fabrication d'une électrode nanostructurée et électrode nanostructurée
CN102534695A (zh) * 2010-12-29 2012-07-04 京东方科技集团股份有限公司 柔性显示器用金属基片及其制备方法
CN102534695B (zh) * 2010-12-29 2015-06-17 京东方科技集团股份有限公司 柔性显示器用金属基片及其制备方法
US9923201B2 (en) 2014-05-12 2018-03-20 Amprius, Inc. Structurally controlled deposition of silicon onto nanowires
US10707484B2 (en) 2014-05-12 2020-07-07 Amprius, Inc. Structurally controlled deposition of silicon onto nanowires
US11289701B2 (en) 2014-05-12 2022-03-29 Amprius, Inc. Structurally controlled deposition of silicon onto nanowires
US11598594B2 (en) 2014-09-17 2023-03-07 The Regents Of The University Of Colorado Micropillar-enabled thermal ground plane
US11988453B2 (en) 2014-09-17 2024-05-21 Kelvin Thermal Technologies, Inc. Thermal management planes
CN110192273B (zh) * 2016-11-08 2023-07-28 开尔文热技术股份有限公司 用于在热接地平面中散布高热通量的方法和设备
CN110192273A (zh) * 2016-11-08 2019-08-30 开尔文热技术股份有限公司 用于在热接地平面中散布高热通量的方法和设备

Also Published As

Publication number Publication date
JP5148481B2 (ja) 2013-02-20
WO2006123049A3 (fr) 2007-12-06
US9115438B2 (en) 2015-08-25
FR2885913A1 (fr) 2006-11-24
FR2885913B1 (fr) 2007-08-10
JP2008545881A (ja) 2008-12-18
US20090316335A1 (en) 2009-12-24
EP1885916A2 (fr) 2008-02-13

Similar Documents

Publication Publication Date Title
WO2006123049A2 (fr) Elaboration par voie electrolytique d'elements nanocomposites conducteurs auto-supportes
US11909024B2 (en) Multi-layer structures prepared by layer-by-layer assembly
Wang et al. A chemically polished zinc metal electrode with a ridge-like structure for cycle-stable aqueous batteries
KR102665943B1 (ko) 전기 전도성 기판 상에 기능성 재료의 층을 형성하는 방법
TWI591874B (zh) 微結構化電極結構
Nathan et al. Three-dimensional thin-film Li-ion microbatteries for autonomous MEMS
US9567683B2 (en) Porous three dimensional copper, tin, copper-tin, copper-tin-cobalt, and copper-tin-cobalt-titanium electrodes for batteries and ultra capacitors
EP2774196B1 (fr) Procede de fabrication de batteries en couches minces entierement solides
JP4921390B2 (ja) 三次元バッテリー
US20110129732A1 (en) Compressed powder 3d battery electrode manufacturing
US8546020B2 (en) Nucleation and growth of tin particles into three dimensional composite active anode for lithium high capacity energy storage device
WO2001084654A9 (fr) Electrode pour pile secondaire au lithium et pile secondaire au lithium
KR20110122177A (ko) 배터리 및 울트라 캐패시터용의 다공성 삼차원 구리, 주석, 구리―주석, 구리―주석―코발트 및 구리―주석―코발트―티타늄 전극
WO2011066568A1 (fr) Procédés pour produire un dispositif de stockage d'énergie basé sur des électrodes texturées
EP3084866B1 (fr) Compartiment anodique avec collecteur en alliage amorphe
US9293759B2 (en) Nanoscale three-dimensional battery architecture
US9972827B2 (en) Method for producing 3D-structured thin films
US20170125789A1 (en) Methods for Forming Lithium Manganese Oxide Layers
WO2018091844A1 (fr) Réalisation de batteries 3d par voie liquide
Besenhard et al. Metallized microporous polypropylene membranes as a support for thin-film electrodes
FR3105882A1 (fr) Electrode composite comprenant un métal et une membrane polymère, procédé de fabrication et batterie la contenant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2006764636

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006764636

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008511749

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWP Wipo information: published in national office

Ref document number: 2006764636

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11920624

Country of ref document: US