WO2006098176A1 - アクティブマトリクス基板およびそれを備えた表示装置 - Google Patents

アクティブマトリクス基板およびそれを備えた表示装置 Download PDF

Info

Publication number
WO2006098176A1
WO2006098176A1 PCT/JP2006/304255 JP2006304255W WO2006098176A1 WO 2006098176 A1 WO2006098176 A1 WO 2006098176A1 JP 2006304255 W JP2006304255 W JP 2006304255W WO 2006098176 A1 WO2006098176 A1 WO 2006098176A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
effect transistor
field effect
pixel circuit
active matrix
Prior art date
Application number
PCT/JP2006/304255
Other languages
English (en)
French (fr)
Inventor
Yuhko Hisada
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US11/908,499 priority Critical patent/US7612839B2/en
Publication of WO2006098176A1 publication Critical patent/WO2006098176A1/ja
Priority to US12/561,296 priority patent/US8325286B2/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/13606Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit having means for reducing parasitic capacitance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0847Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory without any storage capacitor, i.e. with use of parasitic capacitances as storage elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present invention relates to an active matrix substrate used in a matrix type liquid crystal display device, an EL (Electroluminescenece) display device, and the like. More specifically, the present invention relates to a plurality of data signal lines and a plurality of data signal lines.
  • a pixel circuit including a field effect transistor such as a thin film transistor serving as a switch element and a voltage holding capacitor is arranged in a matrix so that the scanning signal lines are arranged so as to intersect with each other.
  • the present invention relates to an active matrix substrate formed in a tassel shape and a display device including the active matrix substrate.
  • Active matrix substrates are widely used for active matrix display devices such as liquid crystal display devices and EL display devices, various active matrix sensors, and the like.
  • a liquid crystal display device in which a switch element such as a thin film transistor (hereinafter referred to as “TFT ⁇ ”), which is a kind of field effect transistor, is provided for each display pixel is adjacent even if the number of display pixels increases. It has attracted particular attention because it can obtain an excellent display image without crosstalk between display pixels.
  • TFT ⁇ thin film transistor
  • Such an active matrix type liquid crystal display device includes a liquid crystal display panel and a drive circuit thereof as main parts.
  • the liquid crystal display panel is a pair of electrode substrates sandwiching a liquid crystal layer, and a polarizing plate is attached to the outer surface of each electrode substrate.
  • One of the pair of electrode substrates is an active matrix substrate called a TFT substrate.
  • a TFT substrate a plurality of data signal lines and a plurality of scanning signal lines intersect each other on an insulating substrate such as glass.
  • a plurality of storage capacitor lines are formed so as to extend in parallel with the plurality of scanning signal lines.
  • a plurality of pixel circuits are formed in a matrix corresponding to the intersections of the plurality of data signal lines and the scanning signal lines, and each pixel circuit is a pixel corresponding to a pixel constituting an image to be displayed.
  • a pixel capacitor formed by the electrode, the pixel electrode and a counter electrode described later, and a switch element Includes TFT as a child.
  • the other of the pair of electrode substrates is called a counter substrate, and a counter electrode and an alignment film are sequentially laminated over the entire surface of a transparent insulating substrate such as glass.
  • the active matrix liquid crystal display device includes a scanning signal line driving circuit connected to the plurality of scanning signal lines and a plurality of data signal lines as a driving circuit for the liquid crystal display panel having the above-described configuration.
  • a data signal line driving circuit to be connected; an auxiliary capacitance line driving circuit connected to the plurality of auxiliary capacitance lines; and a counter electrode driving circuit connected to the counter electrode.
  • the data signal line driving circuit is configured with a plurality of analog voltages corresponding to the pixel values in the horizontal scanning lines of the image to be displayed on the liquid crystal display panel, based on the video signal that has received the external signal source and the like. Are sequentially generated, and these data signals are respectively applied to a plurality of data signal lines in the liquid crystal display panel.
  • the scanning signal line driving circuit sequentially selects and selects a plurality of scanning signal lines in the liquid crystal display panel by one horizontal scanning period in each frame period (each vertical scanning period) for displaying an image on the liquid crystal display panel. Apply an active scanning signal (a voltage to turn on the TFT included in the pixel circuit) to the scanned signal line.
  • the auxiliary capacitance line driving circuit and the counter electrode driving circuit apply signals to the plurality of auxiliary capacitance lines and the counter electrode, respectively, for applying a potential serving as a reference for the voltage to be applied to the liquid crystal layer of the liquid crystal display panel.
  • a plurality of data signals are respectively applied to the plurality of data signal lines, and a plurality of scanning signals are respectively applied to the plurality of scanning signal lines, whereby each pixel circuit in the liquid crystal display panel A voltage corresponding to the value of the corresponding pixel of the image to be displayed is applied to the pixel electrode in the pixel circuit through the TFT with the potential of the counter electrode as a reference, and held in the pixel capacitance in each pixel circuit. As a result, a voltage corresponding to the potential difference between each pixel electrode and the counter electrode is applied to the liquid crystal layer.
  • the liquid crystal display panel controls the light transmittance of the liquid crystal layer with this applied voltage, thereby displaying an image represented by the video signal received by the external signal source.
  • a scanning signal line and data are formed on an insulating substrate such as glass by using a photolithography technique. Patterns for electrodes, wiring, insulating films, etc. for realizing signal lines and TFTs are formed.
  • the regions on the insulating substrate on which the various patterns are to be formed are divided into a plurality of regions and divided exposure is performed. Done.
  • the relative position (positional relationship) between various patterns (layers) that are actually formed varies mainly depending on the positioning accuracy of the stage and the degree of focus in an exposure apparatus such as a stepper. Therefore, the degree and direction of the relative position shift (hereinafter referred to as “pattern shift”) between the patterns of different layers differ between the divided areas corresponding to the divided exposure.
  • FIG. 22 shows a configuration of one pixel circuit in a TFT substrate as an active matrix substrate used in the liquid crystal display device as described above.
  • Each pixel circuit P (i, j) is provided corresponding to one of the intersections of the plurality of data signal lines and the plurality of scanning signal lines, and the data signal line S (i ) Includes a TFT 16 having a gate electrode connected to the scanning signal line G (j) passing through the corresponding intersection and a pixel electrode 18 connected to the drain electrode of the TFT 16.
  • a liquid crystal capacitor Clc is formed by the pixel electrode 18 and the counter electrode Ec, and an auxiliary capacitor Cs is formed by the pixel electrode 18 and the auxiliary capacitor line CS (j) provided along the scanning signal line G (j).
  • a parasitic capacitance Cgd is formed between the electrode 18 and the scanning signal line G (j).
  • This parasitic capacitance Cgd is the capacitance existing between the gate electrode and the drain electrode of the TFT 16a in each pixel circuit P (i, j) (hereinafter, this parasitic capacitance Cgd is referred to as "gate-drain capacitance").
  • the value is the gate electrode (or gate wiring as a scanning signal line) for realizing TFT16 among the various patterns formed using the lithography technique in the manufacturing process as described above. It depends on the area of the portion where the drain electrode (or pixel electrode 18) overlaps with the insulating layer (hereinafter referred to as “overlapping area”). By the way, as described above, the degree and direction of the pattern shift differs for each divided area corresponding to divided exposure. Therefore, the overlapping area is different for each divided region, and the value of the parasitic capacitance Cgd in each pixel circuit is different for each divided region.
  • Vd (Vgh-Vgl) Cgd / (Clc + Cs + Cgd) (1)
  • the level shift AVd is also different for each divided region.
  • the transmittance (brightness on display) of the liquid crystal layer differs for each of the divided regions even for the same data signal, and “block division ”(Or“ unsatisfactory ”) occurs and the display quality deteriorates.
  • the driving force is applied so that the polarity of the voltage applied to the liquid crystal layer is reversed every predetermined period.
  • the voltage applied to the liquid crystal is almost symmetric with respect to positive and negative. Therefore, if the level shift AVd differs for each divided area, there will always be an area where the asymmetry cannot be completely adjusted, and flickering force (flickering of the screen) will occur here, and the display quality will deteriorate.
  • Patent Document 1 As a background art of the patented invention, one pixel formation portion (hereinafter, also simply referred to as “pixel”) is composed of two subpixels, and each of the two subpixels. TFTs as switching elements are provided in the two sub-pixels so that the capacitance corresponding to the parasitic capacitance Cgd is increased or decreased in reverse with respect to the pattern deviation in the same direction.
  • An active matrix substrate having two TFTs is described (see, for example, Fig. 8 of Patent Document 1).
  • each pixel is compensated for a change due to a pattern shift of the parasitic capacitance corresponding to the parasitic capacitance Cgd.
  • the configured new capacitor (called “compensation capacitor” etc.) is formed to be connected in parallel with the parasitic capacitance.
  • the sum of the new capacity value is made constant (see, for example, Patent Documents 1, 2, and 3 below).
  • the TFT channel region is formed by self-alignment, so that unnecessary parasitic capacitance is reduced and the parasitic capacitance does not vary due to divided exposure or the like!
  • a delta-aligned liquid crystal display panel including an active matrix substrate has been proposed.
  • the width of the portion of the TFT of each pixel that straddles the semiconductor layer and the gate electrode end of the drain wiring that overlaps the TFT is determined from the drain electrode width that is the channel width of the TFT.
  • a TFT array substrate has been proposed as an active matrix substrate, which is characterized by being narrowly provided.
  • Patent Document 1 U.S. Pat.No. 5,285,302
  • Patent Document 2 Japanese Unexamined Patent Publication No. 6-27487
  • Patent Document 3 Japanese Unexamined Patent Publication No. 6-110081
  • Patent Document 4 Japanese Unexamined Patent Publication No. 8-87026
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2002-14371
  • each pixel is configured by a plurality of subpixels each including a TFT, thereby forming a gate as a parasitic capacitance due to pattern deviation.
  • 'New capacitance compensation capacitance
  • the area of the light-shielding portion per pixel increases due to the formation of TFTs for each sub-pixel and the formation of new capacitors in each pixel. As a result, the aperture ratio of the liquid crystal display panel using the active matrix substrate is lowered.
  • the parasitic capacitance Cgd per pixel increases due to the formation of the TFT and the formation of a new capacitance in each pixel.
  • the level shift ⁇ Vd (absolute value) represented by the above formula (1) also increases and is applied to the counter electrode Ec. It becomes difficult to correct the level shift AVd by the applied potential Vcom.
  • the deterioration of the liquid crystal due to the application of a direct current component to the liquid crystal layer causes the display quality to deteriorate due to the generation of flaw force.
  • the parasitic capacitance Cgd increases, the propagation delay of the scanning signal in the scanning signal line and the data signal in the data signal line also increases, which causes the display quality to deteriorate.
  • An increase in parasitic capacitance per pixel also leads to an increase in power consumption in the drive circuit of the active matrix substrate.
  • the formation of TFTs for each sub-pixel and the formation of new capacitors in each pixel lead to the complexity of the mask pattern for manufacturing the active matrix substrate, which causes a decrease in the manufacturing yield of the active matrix substrate. It becomes.
  • the color arrangement is limited to the delta arrangement, and the TFT channel region is manufactured by cell fragmentation. Requires a different manufacturing process.
  • the present invention provides an active matrix substrate capable of suppressing the flicking force if blocks are divided due to divided exposure while avoiding a decrease in aperture ratio, an increase in parasitic capacitance, and complexity in the manufacturing process.
  • An object of the present invention is to provide a display device including
  • a first aspect of the present invention is an active matrix substrate
  • a plurality of data signal lines are A plurality of data signal lines
  • a pixel array having a plurality of pixel circuit power arranged in a matrix corresponding to intersections of the plurality of data signal lines and the plurality of scanning signal lines,
  • Each pixel circuit A field effect transistor having a source electrode connected directly or via a predetermined element to a data signal line passing through the corresponding intersection and a gate electrode connected to a scanning signal line passing through the corresponding intersection;
  • a voltage holding electrode connected to the drain electrode of the field effect transistor directly or via a predetermined element and constituting a predetermined voltage holding capacitor
  • the pixel array is
  • the first type of the field effect transistor in which the capacitance between the drain electrode and the gate electrode increases as the positional relationship between the drain electrode pattern and the gate electrode pattern deviates in a predetermined direction.
  • a pixel circuit including a field effect transistor;
  • the pixel circuit including the first type field effect transistor and the pixel circuit including the second type field effect transistor are arranged so as to be substantially evenly distributed in the pixel array.
  • a second aspect of the present invention is the first aspect of the present invention.
  • the first type field effect transistor has an area where a gate electrode and a drain electrode overlap with each other through a predetermined insulating layer as the positional relationship in the first type field effect transistor is shifted in the predetermined direction. Is configured to be large,
  • the second type field effect transistor has an area in which a gate electrode and a drain electrode overlap through a predetermined insulating layer as the positional relationship in the second type field effect transistor is shifted in the predetermined direction. It is characterized in that it is structured so as to reduce power.
  • a third aspect of the present invention is the first aspect of the present invention.
  • a fourth aspect of the present invention is the first aspect of the present invention.
  • the pixel circuit including the first type field effect transistor and the pixel circuit including the second type field effect transistor are alternately arranged in the pixel array by a predetermined number in the extending direction of the data signal line and the scanning.
  • a predetermined number of the signal lines are alternately arranged in the extending direction of the signal lines.
  • a fifth aspect of the present invention is the fourth aspect of the present invention.
  • a pixel circuit including the first type field effect transistor and a pixel circuit including the second type field effect transistor are arranged in the pixel array in a direction in which the data signal line extends and a direction in which the scanning signal line extends. One of them is alternately arranged on both sides.
  • a sixth aspect of the present invention is the fourth aspect of the present invention.
  • the pixel circuit including the first type field effect transistor and the pixel circuit including the second type field effect transistor are alternately arranged in the extending direction of the data signal line, and the pixel circuit includes the second type field effect transistor.
  • Two scanning signal lines are arranged alternately in the extending direction of the scanning signal line.
  • a seventh aspect of the present invention is the fourth aspect of the present invention.
  • two pixel circuits each including the first type field effect transistor and two pixel circuits including the second type field effect transistor are alternately arranged in the extending direction of the data signal line and the pixel circuit. It is characterized in that the scanning signal lines are alternately arranged in the extending direction.
  • An eighth aspect of the present invention is an active matrix substrate
  • a plurality of data signal lines are A plurality of data signal lines
  • Each of the two pixel circuits is A field effect transistor having a source electrode connected directly or via a predetermined element to a data signal line passing through the corresponding intersection and a gate electrode connected to a scanning signal line passing through the corresponding intersection;
  • a voltage holding electrode connected to the drain electrode of the field effect transistor directly or via a predetermined element and constituting a predetermined voltage holding capacitor
  • One pixel circuit includes the field effect transistor in which the capacitance between the drain electrode and the gate electrode increases as the positional relationship between the drain electrode pattern and the gate electrode pattern shifts in a predetermined direction.
  • the other pixel circuit includes a second type field effect transistor which is the field effect transistor in which the electrostatic capacity is reduced as the positional relationship is shifted in the predetermined direction.
  • a ninth aspect of the present invention provides any one of the first to eighth aspects of the present invention.
  • the field effect transistor is a thin film transistor.
  • a tenth aspect of the present invention is a display device, comprising a display panel including the active matrix substrate according to the ninth aspect of the present invention.
  • An eleventh aspect of the present invention is a display device comprising a display panel including an active matrix substrate according to any one of the first to eighth aspects of the present invention.
  • a twelfth aspect of the present invention is a display device
  • a liquid crystal display panel including the active matrix substrate according to the first or second aspect of the present invention.
  • a driving circuit that drives the liquid crystal display panel so that the positive and negative polarity of the voltage held in the voltage holding capacitors in the plurality of pixel circuits is distributed in the pixel array in each frame of display by the liquid crystal display panel.
  • the same-polarity pixel circuit which is a pixel circuit including a voltage holding capacitor for holding a voltage of the same polarity in the same frame of display by the liquid crystal display panel.
  • the pixel circuit including one type of field effect transistor and the pixel circuit including the second type field effect transistor among the same polarity pixel circuits are arranged so as to be distributed substantially evenly in the pixel array. It is characterized by that.
  • a thirteenth aspect of the present invention is a display device
  • a color liquid crystal display panel including an active matrix substrate according to any one of the first to eighth aspects of the present invention.
  • a driving circuit that drives the liquid crystal display panel so that the positive and negative polarity of the voltage held in the voltage holding capacitors in the plurality of pixel circuits is distributed in the pixel array in each frame of display by the liquid crystal display panel.
  • the same polarity pixel circuit as the pixel circuit including the first type field effect transistor among the same polarity pixel circuit which is a pixel circuit including a voltage holding capacitor for holding the same polarity voltage in the same frame of display by the liquid crystal display panel.
  • the pixel circuit including the second type field effect transistor among the polar pixel circuits is distributed substantially evenly in a pixel circuit group for forming pixels corresponding to the three primary colors for color display. It is characterized by being arranged in.
  • the pixel circuit including the first type field effect transistor and the pixel circuit including the second type field effect transistor are distributed substantially evenly across the pixel array.
  • the drain electrode and the gate electrode when the positional relationship between the drain electrode pattern and the gate electrode pattern deviates in a predetermined direction, the drain electrode and the gate electrode The parasitic capacitance Cgd changes so that the increase / decrease in the parasitic capacitance Cgd, which is the capacitance between and, is opposite to each other.
  • the direction and degree of the pattern shift differ for each region corresponding to the divided exposure due to the divided exposure at the time of manufacturing the active matrix substrate, and accordingly, even if the variation of the parasitic capacitance Cgd differs for each region, The variation of the parasitic capacitance Cgd is averaged for each region.
  • the voltage applied to the gate electrode of the field effect transistor of each pixel circuit is generated when the gate-on voltage (voltage for turning on the transistor) falls to the gate-off voltage (voltage for turning off the transistor).
  • Pixel potential level shift AVd Averaging is performed for each area, and the average state in the entire pixel array is the same as in the case where there is no pattern deviation.
  • the first and second type field effect transistors arranged so as to be evenly distributed in the pixel array include the pattern of the drain electrode and the gate electrode.
  • the overlapping area between the drain electrode and the gate electrode increases and decreases in opposite directions.
  • the parasitic capacitance Cgd changes so that the increase / decrease in the parasitic capacitance Cgd between the gate and drain is opposite to each other with respect to the above-described pattern shift. The effect in 1 aspect is acquired.
  • the positional relationship between the drain electrode pattern and the gate electrode pattern is perpendicular to the predetermined direction.
  • the overlapping area between the drain electrode and the gate electrode does not change.
  • the increase / decrease in the parasitic capacitance Cgd between the gate and drain is opposite to each other, or the parasitic capacitance Cgd does not change at all, regardless of the direction of pattern deviation. Therefore, the effect as in the first aspect of the present invention can be obtained.
  • the pixel circuit including the first type field effect transistor and the pixel circuit including the second type field effect transistor are arranged in a direction in which the data signal line extends in the pixel array.
  • the lines are distributed substantially evenly, and the same effect as that of the first aspect of the present invention can be obtained.
  • the first pixel of the same polarity pixel circuit that is a pixel circuit including a voltage holding capacitor that holds the same polarity voltage in the same frame.
  • the pixel circuit including the type field effect transistor and the pixel circuit including the second type field effect transistor among the pixel circuits having the same polarity are arranged so as to be distributed substantially evenly in the pixel array. . Therefore, the fifth aspect of the present invention is effective in suppressing the flitz force if the blocks are separated in the liquid crystal display device adopting the line inversion driving method.
  • a pixel circuit including a first type field effect transistor and a pixel circuit including a second type field effect transistor are arranged in a direction in which a data signal line extends in the pixel array. Are alternately arranged one by one and two in the direction in which the scanning signal lines extend, so that they are distributed substantially evenly, and the same effect as in the first aspect of the present invention is obtained. It is done.
  • a pixel circuit including a first-type field-effect transistor in the same polarity pixel circuit that is a pixel circuit including a voltage holding capacitor that holds a voltage having the same polarity in the same frame, and a first pixel in the same polarity pixel circuit.
  • the pixel circuits including the two types of field effect transistors are arranged so as to be distributed substantially evenly in the pixel array. Therefore, according to the sixth aspect of the present invention, if the dot inversion driving method is adopted and the liquid crystal display device is divided into blocks, it is free. It is effective in suppressing the power.
  • the pixel circuit including the first type field effect transistor and the pixel circuit including the second type field effect transistor are arranged in a direction in which the data signal line extends in the pixel array. Are alternately arranged two by two and one by one in the direction in which the scanning signal lines extend, so that they are distributed substantially evenly, and the same effect as in the first aspect of the present invention is obtained. It is done.
  • a liquid crystal display device using an active matrix substrate hereinafter referred to as “active matrix substrate of 1 signal 2 pixel drive system” in which two pixel circuits adjacent in the horizontal direction are driven by the same data signal.
  • the first pixel circuit of the same polarity which is a pixel circuit including a voltage holding capacitor for holding the same polarity voltage in the same frame.
  • the pixel circuit including the type field effect transistor and the pixel circuit including the second type field effect transistor among the pixel circuits having the same polarity are arranged so as to be distributed substantially evenly in the pixel array. . Therefore, the seventh aspect of the present invention is effective in suppressing the flitz force if the blocks are separated in a liquid crystal display device using an active matrix substrate of a 1-signal 2-pixel drive system.
  • the seventh aspect of the present invention is effective for the same reason even when the line inversion driving method is adopted in the liquid crystal display device regardless of whether the active matrix substrate is a one-signal two-pixel driving method. It is.
  • a scanning signal line includes a pixel array that is a plurality of pairs of pixel circuits arranged in a matrix, and each of the plurality of pairs of pixel circuits passes through a corresponding intersection.
  • An active matrix substrate having a structure of two pixel circuits arranged to sandwich each other constitutes each pair of the plurality of pairs of pixel circuits.
  • One of the two pixel circuits includes a first type field effect transistor and the other includes a second type field effect transistor. Therefore, the pixel circuit including the first type field effect transistor and the pixel circuit including the second type field effect transistor are arranged so as to be substantially evenly distributed, and is the same as in the first aspect of the present invention. The effect is obtained.
  • a thin film transistor is used as a field effect transistor of each pixel circuit.
  • the same effect as in the first aspect of the present invention can be obtained.
  • the same effect as in the ninth aspect of the present invention can be obtained for a display device including an active matrix substrate.
  • the same polarity pixel circuit which is a pixel circuit including a voltage holding capacitor for holding a voltage of the same polarity in the same frame of display by the liquid crystal display panel
  • the pixel circuit including the first type field effect transistor and the pixel circuit including the second type field effect transistor in the same polarity pixel circuit are arranged so as to be distributed substantially evenly in the pixel array. Therefore, in a display device having a drive circuit for driving a liquid crystal display panel so that the positive / negative polarity of the voltage held in the voltage holding capacitor in the pixel circuit is dispersed in the pixel array in each frame.
  • the same effect as in the first aspect can be obtained, and if the blocks are divided, the flits force can be suppressed.
  • the pixel circuit of the same polarity which is a pixel circuit including a voltage holding capacitor that holds a voltage of the same polarity in the same frame of display by the color liquid crystal display panel.
  • a pixel circuit including one type of field effect transistor and a pixel circuit including a second type field effect transistor of the same polarity pixel circuit form pixels corresponding to the three primary colors for color display. Are arranged so as to be distributed substantially evenly in the pixel circuit group.
  • a display device having a drive circuit for driving a liquid crystal display panel so that the positive and negative polarity of the voltage held in the voltage holding capacitor in the pixel circuit in each frame is dispersed in the pixel array V,
  • the same effect as in the first aspect of the present invention can be obtained, and if the blocks are separated, the flicker force can be suppressed.
  • FIG. 1 is a block diagram showing an overall configuration of a liquid crystal display device using a TFT substrate which is an active matrix substrate according to a first embodiment of the present invention.
  • 2 A partial plan view showing the structure of the active matrix substrate according to the first embodiment.
  • FIG. 3 is an enlarged plan view (A) showing the structure of a first type TFT (thin film transistor) in the active matrix substrate according to the first embodiment, and the structure of the second type TFT in the active matrix substrate. It is an enlarged plan view (B) which shows.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3 (A), and a cross-sectional view taken along line BB in FIG. 3 (B).
  • FIG. 5 is a circuit diagram showing a pixel circuit (an equivalent circuit of a pixel forming unit) in the active matrix substrate according to the first embodiment.
  • FIG. 6 is a diagram for explaining pattern misalignment due to divided exposure when manufacturing an active matrix substrate.
  • FIG. 7 is a diagram for explaining an effect of suppressing block division in the active matrix substrate according to the first embodiment.
  • FIG. 8 is a block diagram showing an overall configuration of a liquid crystal display device using a TFT substrate which is an active matrix substrate according to a second embodiment of the present invention.
  • FIG. 5C is an enlarged plan view (C) showing the structure of the second type TFT on the matrix substrate.
  • FIG. 6C is an enlarged plan view (C) showing the structure of the second type TFT in the active matrix substrate.
  • ⁇ 12 Partial plan view showing the structure of the active matrix substrate according to the fourth embodiment of the present invention (A), enlarged plan view showing the structure of the first type TFT in the active matrix substrate (B), And the structure of the second type TFT on the active matrix substrate. It is an enlarged plan view (C) which shows structure.
  • FIG. 13 Partial plan views (A, B) showing the structure of another active matrix substrate according to a modification to which the present invention is applicable.
  • FIG. 14 Partial plan views (A, B) showing the structure of another active matrix substrate according to a modification to which the present invention is applicable.
  • FIG. 16 is a plan view (AD) showing various TFT structures that can be used when the present invention is applied to an active matrix substrate having a center source structure.
  • FIG. 2C is a schematic diagram (C) showing a TFT arrangement pattern.
  • Waveform diagram (A) showing the waveform of the scanning signal in the liquid crystal display device using the active matrix substrate having the structure as in the first to fourth embodiments, and the line inversion driving method in the liquid crystal display device.
  • Timing chart (B) showing the polarity of the data signal when adopting the 1)
  • timing chart (C) showing the polarity of the data signal when adopting the 1H dot inversion driving method in the liquid crystal display device
  • FIG. 20 Schematic diagram showing the layout pattern of the preferred U ⁇ TFT when the line inversion drive method is adopted in a liquid crystal display device using an active matrix substrate with a center gate structure as in the above modification (A )
  • the liquid crystal FIG. 2C is a schematic diagram (C) showing a TFT arrangement pattern, preferably when the 2H dot inversion driving method is adopted in the display device.
  • FIG. 5C is a schematic diagram (C) showing a TFT arrangement pattern when a line inversion driving method is adopted in a display device.
  • FIG. 22 is a circuit diagram showing a pixel circuit in a conventional active matrix substrate used in a liquid crystal display device.
  • FIG. 23 is a schematic voltage waveform diagram (A to C) of signals and pixel potentials for driving the conventional active matrix substrate.
  • FIG. 1 is a block diagram showing an overall configuration of a liquid crystal display device using a TFT substrate which is an active matrix substrate according to the first embodiment of the present invention.
  • This liquid crystal display device includes a liquid crystal display panel 1, a drive circuit including a data signal line drive circuit 200, a scanning signal line drive circuit 300 and a counter electrode drive circuit COM, and a control circuit 600.
  • the liquid crystal display panel 1 also has a pair of electrode substrate forces that sandwich the liquid crystal layer, and a polarizing plate is attached to the outer surface of each electrode substrate.
  • One of the pair of electrode substrates is an active matrix substrate called a TFT substrate.
  • a TFT substrate 100 a plurality of data signal lines S (1) to S (N) are formed on an insulating substrate such as glass. And a plurality of scanning signal lines G (1) to G (M) are formed in a lattice shape so as to cross each other.
  • a plurality of data signal lines S (l) to A plurality (NXM) of pixel forming portions P (i, j) are formed in a matrix corresponding to the intersections of S (N) and the plurality of scanning signal lines G (1) to G (M).
  • the plurality of pixel forming portions P (i, j) correspond to the pixels constituting the image to be displayed, respectively.
  • An alignment film is installed so as to cover these signal lines S (l) to S (N), G (l) to G (M) and the pixel forming portion P (i, j) almost over the entire surface. Has been.
  • the other of the pair of electrode substrates is called a counter substrate 101, and a counter electrode Ec and an alignment film are sequentially laminated over the entire surface on a transparent insulating substrate such as glass.
  • a pixel circuit when the above-described pixel formation portion is referred from a circuit viewpoint, it is referred to as a “pixel circuit”.
  • “Pixel” means the minimum unit of an image formed using an active matrix substrate, and “Pixel formation unit” is used to form an image portion as the minimum unit of the active matrix substrate. A component. Therefore, even if the component for forming the image portion as the minimum unit has two or more pixel electrodes and TFTs, the component is one pixel forming portion or one pixel circuit.
  • the constituent element corresponds to the minimum unit of the image represented by the image signal supplied from the outside to the display device using the active matrix substrate, the constituent element corresponds to two or more pixel electrodes and it.
  • the component includes a plurality of pixel capacitors. It is regarded as a pixel forming part.
  • the active matrix substrate for color display can be considered to have three structural elements corresponding to R (red), G (blue), and B (blue) as one structural unit. According to the above, each of the three components is a pixel forming portion or a pixel circuit.
  • the structure of the TFT substrate 100 according to this embodiment and the TFT included therein will be described.
  • the pattern configuration of each component in the TFT substrate 100 is different from that of the conventional TFT substrate, the manufacturing process and materials are the same as the conventional one without requiring any special process, and detailed description thereof is omitted.
  • FIG. 2 is a partial plan view showing the structure of the TFT substrate 100 according to this embodiment.
  • the pixel forming portions Pla and P2a both include TFTs formed in the vicinity of the intersection of the gate wiring 12a corresponding to the scanning signal line G (j) and the source wiring 14a corresponding to the data signal line S (i).
  • each pixel forming portion Pla, P2a has an adjacent gate wiring (a scanning signal line G (j ⁇ 1) adjacent to a scanning signal line G (j) passing through an intersection corresponding to the pixel forming portion).
  • the auxiliary capacitance electrode 32a is provided so as to face the corresponding 12a via the insulating layer, and the auxiliary capacitance electrode 32a and the adjacent gate wiring 12a form an auxiliary capacitance Cs.
  • FIG. 3 (A) shows the structure of the first type TFT 16al, which is a TFT in the first pixel formation portion Pla
  • Fig. 3 (B) shows the second type, which is a TFT in the second pixel formation portion P2a.
  • FIG. 4 is an enlarged plan view showing the structure of the TFT16a2.
  • 4A is a cross-sectional view taken along the line AA in FIG. 3A
  • FIG. 4B is a cross-sectional view taken along the line BB in FIG. 3B.
  • the gate electrode G1 of the first type TFT 16al is formed on the transparent insulating substrate 50 as a pattern branched from the gate wiring 12a extending in the row direction.
  • a gate insulating layer 52 is formed so as to cover the gate electrode G1
  • a semiconductor layer SC1 is formed so as to cover a predetermined portion of the gate electrode G1 via the gate insulating layer 52.
  • This semiconductor layer SC1 also has, for example, amorphous silicon doped with n-type impurities.
  • a TFT16al source electrode S1 is formed as a pattern branched from the source wiring 14a so as to partially overlap the semiconductor layer SC1, and a predetermined distance (corresponding to the channel length of the TFT16al) is provided between the TFT16al and the source electrode S1.
  • the drain electrode D1 of the TFT 16al is formed so as to be opposed to and partially overlap the semiconductor layer SC1.
  • a protective film 54 is formed to cover the source electrode S1 and the drain electrode D1.
  • the pixel electrode 18 in the first pixel formation portion Pla is formed by laminating ITO (Indium Tin Oxide), which is a transparent conductive material, on the protective film 54, and is a contact opened in the protective film 54.
  • the drain electrode D1 is electrically connected via CT1.
  • Each of the constituent elements such as the gate electrode Gl, the source electrode Sl, the drain electrode D1, and the semiconductor layer SC1 constituting the first type TFT 16al as described above is formed by a plasma CVD (Chemical Vapor Deposition) method or the like. It is manufactured by stacking and patterning by photolithography. The overlapping area of the gate electrode G1 and the drain electrode D1 (the area corresponding to the portion indicated by “OL1” in FIG. 4A) varies due to the pattern shift that occurs in this manufacturing process. Variation (increase / decrease) in the value of capacitance Cgd occurs.
  • a plasma CVD Chemical Vapor Deposition
  • the drain electrode D1 is the source electrode S1 in the portion that passes through the edge of the gate electrode G1.
  • the gate electrode G2 of the second type TFT 16a2 is also formed on the transparent insulating substrate 50 as a pattern branched from the gate wiring 12a extending in the row direction (however, the branching position of the gate electrode G2 is the first type). Slightly different from TFT16a 1).
  • the gate insulating layer 52 is formed so as to cover the gate electrode G2
  • the semiconductor layer SC2 is formed so as to cover a predetermined portion of the gate electrode G2 via the gate insulating layer 52. ing.
  • a source electrode S2 of the TFT 16a2 is formed as a pattern branched from the source wiring 14a so as to partially overlap the semiconductor layer SC2, and a predetermined interval (corresponding to the channel length of the TFT 16a2) is formed.
  • the drain electrode D2 of the TFT 16a2 is formed so as to face each other and partially overlap the semiconductor layer SC2.
  • the positional relationship between the gate electrode G2 and the drain electrode D2 in the second type TFT 16a2 is The positional relationship between the gate electrode G 1 and the drain electrode D 1 in 16a 1 is opposite. That is, in the first type TFT16al, the drain electrode D1 is located on the upper side (in FIG. 3) of the gate electrode G1 while partially overlapping the gate electrode G1.
  • the drain electrode D2 partially overlaps the gate electrode G2 and is positioned below the gate electrode G2 (in FIG. 3).
  • the protective film 54 is formed after the drain electrode D2 and the source electrode S2 having such an arrangement are formed.
  • the pixel electrode 18 in the second pixel formation portion P2a is also formed by laminating ITO or the like, which is a transparent conductive material, on the protective film 54, and is described above via a contact CT2 opened in the protective film 54. Is electrically connected to the drain electrode D2.
  • the drain electrode D2 is located below the gate electrode G2, and the positional relationship between the drain electrode D2 and the gate electrode G2 is the same as that of the drain electrode D1 and the gate electrode G1 in the first type TFT16al. Since it is opposite to the positional relationship (Fig.
  • the increase and decrease of the parasitic capacitance Cgd between the gate and the drain due to the pattern shift is opposite to that of the first type TFT16al. That is, when the pattern of the drain electrodes Dl and D2 is shifted upward (in FIG. 3) with respect to the pattern of the gate electrodes Gl and G2, the first type TFT16al has a gate electrode G1 and a drain electrode D1. While the overlap area decreases and the parasitic capacitance Cgd decreases, in the second type TFT16a2, the overlap area between the gate electrode G2 and the drain electrode D2 increases and the parasitic capacitance Cgd increases (up and down). The parasitic capacitance Cgd does not change for pattern deviations less than a predetermined amount in the direction perpendicular to the direction, that is, in the left-right direction).
  • MXN pixel circuits P (i, j) (hereinafter referred to as “pixel array”) arranged in a matrix form are of the first type as described above.
  • the TFT16al and the second type TFT16a2 are included in almost the same number, and the two types of TFTs are arranged so as to be evenly distributed in the pixel array. That is, the first pixel formation portion Pla and the second pixel formation portion P2a each including the first type TFT 16al and the second type TFT 16a2 as described above are arranged in the row direction (direction in which the gate wiring 12a extends) and Alternatingly arranged in both the column direction (direction in which the source wiring 14a extends)!
  • FIG. 5 shows a configuration of a pixel circuit P (i, j) corresponding to these pixel formation portions Pla and P2a.
  • This pixel circuit P (i, j) is formed by a TFT 16a corresponding to the first and second types of TFTs 16al and 16a2 and a pixel electrode 18 and a counter electrode Ec facing it through a liquid crystal layer.
  • the gate terminal (gate electrode), source terminal (source electrode), and drain terminal (drain electrode) of TFT16a are connected to scanning signal line G (j), data signal line S (i), and pixel electrode 18, respectively. It has been.
  • the drain terminal of the TFT 16a is connected to the counter electrode Ec through the liquid crystal capacitor Clc and is also connected to the adjacent scanning signal line G (j ⁇ 1) through the auxiliary capacitor Cs.
  • the pixel circuit P (i, j) in the present embodiment has the same configuration as the pixel circuit shown in FIG. 22 referred to in the description of the background art of the present invention. Therefore, also in the pixel circuit P (i, j) in this embodiment, as shown in FIGS. 23A to 23C, the voltage Vg (j) of the scanning signal line G (j) is gate-on.
  • Vd (Vgh-Vgl) Cgd / (Clc + Cs + Cgd) (2)
  • the pattern shift as shown in FIG. 6 occurs due to the divided exposure in the manufacture of the TFT substrate 100 as the active matrix substrate according to the above embodiment.
  • the TFT substrate 100 is divided into three regions A region, B region, and C region shown in FIG. 6 corresponding to the divided exposure, and the direction and degree of pattern deviation differ for each region.
  • the pattern of the drain electrodes Dl and D2 in each pixel formation portion (each pixel circuit P (i, j)) is shifted upward with respect to the pattern of the gate electrodes Gl and G2 in the A region,
  • the pattern of the drain electrodes Dl and D2 is different from the pattern of the gate electrodes Gl and G2.
  • the parasitic capacitance Cgd in the first type TFT 16al is smaller in the A region, unchanged in the B region, and larger in the C region than when there is no turn deviation.
  • the parasitic capacitance Cgd in the second type TFT 16a2 is larger in the A region, does not change in the B region, and is smaller in the C region than when there is no misalignment.
  • the first type TFT 16al and the second type as described above are used.
  • the two types of TFT16a2 and! Are arranged so that they are evenly distributed. Therefore, in the area A, the first pixel formation portion Pla in which the level shift ⁇ Vd (absolute value) of the pixel potential is smaller and the level shift AVd (absolute value) of the pixel potential is larger than in the case where there is no pattern deviation.
  • the second pixel formation portion P2a exists evenly distributed, and in the B region, the level shift AVd of the pixel potential is the same as in the case where there is no pattern shift in any pixel formation portion, and in the C region, Compared to the case where there is no pattern deviation, the first pixel formation portion Pla where the pixel potential level shift AVd (absolute value) is large and the second pixel formation portion P2a where the pixel potential level shift AVd (absolute value) is small Exist evenly distributed. As a result, the average value of the level shift AVd (average value in the region) in each of the A region, the B region, and the C region is equal to the level shift AVdO when there is no pattern shift.
  • the liquid crystal display device using the TFT substrate 100 even when the same gradation should be displayed on the entire surface, if the gradation is different for each area in the actual display, there is no problem, and there is no flicker in each area. There is no power. That is, according to the present embodiment, by averaging the two types of TFTs 16al and 16a2 so as to be evenly distributed in the pixel array, the parasitic capacitance Cgd is averaged (therefore, the average of the level shift AVd). If the blocks are divided due to the divided exposure in the manufacturing process, the generation of the flick force is suppressed.
  • the parasitic capacitance Cgd does not change. Therefore, regardless of the direction of the pattern shift, the parasitic capacitance Cgd increases or decreases with respect to the two types of TFTs, or the parasitic capacitance Cgd changes. do not do. Therefore, if the block is separated for any pattern deviation in any direction, the generation of flickering force is suppressed.
  • the generation of flicking force can be suppressed if the blocks are separated by using only two types of TFTs included in each pixel forming unit.
  • TFTs or add capacitance to compensate for variations in parasitic capacitance, and no additional components need to be added, so the area of the light shielding part in each pixel formation area is increased! ]do not do. Therefore, the aperture ratio does not decrease unlike the prior art described above.
  • the parasitic capacitance per pixel does not increase, the pixel signal level shift AVd increases and the display quality does not deteriorate. Does not increase.
  • FIG. 8 is a block diagram showing an overall configuration of a liquid crystal display device using a TFT substrate which is an active matrix substrate according to the second embodiment of the present invention.
  • the liquid crystal display device includes a plurality of auxiliary capacitors extending in parallel to the plurality of scanning signal lines G (1) to G (M) formed on the TFT substrate 100b.
  • Two auxiliary capacitance line drive circuits that are provided with lines CS (1) to CS (M) and that supply the common electrode potential Vcs to each auxiliary capacitance line CS (1) to CS (M) from one end and the other end, respectively.
  • TFT substrate 100b the pattern configuration of each component is different from that of the first embodiment, but the manufacturing process and materials are the same as those of the first embodiment, and thus the description is omitted (described later). The same applies to a TFT substrate as an active matrix substrate according to another embodiment).
  • FIG. 9A is a partial plan view showing the structure of the TFT substrate 100b according to this embodiment.
  • Each pixel circuit P (i, j) in the liquid crystal display device shown in FIG. 8 is realized by the pixel formation portion Plb or P2b having the structure shown in FIG.
  • the pixel formation portions Plb and P2b both include TFTs formed in the vicinity of the intersection of the gate wiring 12b corresponding to the scanning signal line G (j) and the source wiring 14b corresponding to the data signal line S (i).
  • the TFT 16bl of the first pixel formation portion Plb and the TFT 16b2 of the second pixel formation portion P2b have different structures (details will be described later).
  • an auxiliary capacitance electrode 32b that is electrically connected to the pixel electrode 18 is provided at the center of each pixel formation portion Plb, P2b in the present embodiment, and each auxiliary capacitance electrode 32b is connected to the auxiliary capacitance line.
  • the auxiliary capacitor wiring 15b corresponding to CS (j) is disposed so as to face the insulating layer.
  • the auxiliary capacitance Cs is formed by the auxiliary capacitance electrode 32b and the auxiliary capacitance wiring 15b.
  • Fig. 9 (B) shows the structure of the first type TFT 16bl, which is a TFT in the first pixel formation portion Plb
  • Fig. 9 (C) shows the second type, which is a TFT in the second pixel formation portion P2b.
  • 2 is an enlarged plan view showing the structure of TFT16b2.
  • the cross-sectional structure of these TFT16bl and 16b2 is clear from FIGS. 4A and 4B showing the cross-sectional structure of TFT16al and 16a2 in the first embodiment. Omitted (the same applies to other embodiments).
  • the first type TF Tl 6b 1 in the present embodiment is the first type TFT 16a in the first embodiment.
  • the structure (pattern configuration) is the same as that in Fig. 1, and the same or corresponding parts are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the second type TFT 16b2 in this embodiment is also the same as the second type TFT 16a2 in the first embodiment.
  • the same reference numerals are used for the same or corresponding parts, and the detailed description is omitted.
  • the drain electrode D1 partially overlaps the gate electrode G1, while the gate electrode G1 In the second type TFT16b2, the drain electrode D2 partially overlaps the gate electrode G2, while being located above the gate electrode G2 (in FIG. 9). Located on the side. Therefore, when a vertical pattern shift occurs in manufacturing (in Fig. 9), the parasitic capacitance Cgd between the source and drain of TFT16bl and 16b2 increases and decreases compared to the case without pattern shift, and the parasitic capacitance Cgd increases and decreases.
  • the parasitic capacitance Cgd does not change for pattern deviations less than a predetermined amount in the left-right direction. That is, when the pattern of the drain electrodes Dl and D2 is shifted upward (for example, in FIG. 9) with respect to the pattern of the gate electrodes Gl and G2, the first type TFT 16bl overlaps the gate electrode G1 and the drain electrode D1. While the double area decreases and the parasitic capacitance Cgd decreases, in the second type TFT16b2, the overlap area between the gate electrode G2 and the drain electrode D2 increases and the parasitic capacitance Cgd increases.
  • the pixel array that is the MXN pixel circuits P (i, j) arranged in a matrix is the first type TFT16bl as described above.
  • the second type TFT16b2 each including approximately the same number, and the two types of TFTs are arranged so as to be evenly distributed in the pixel array. That is, the first pixel formation portion Plb and the second pixel formation portion P2b each including the first type TFT 16bl and the second type TFT 16b2 as described above are arranged in the row direction (direction in which the gate wiring 12b extends) and Alternatingly arranged in both the column direction (direction in which the source wiring 14b extends)!
  • the first pixel formation portion Plb including the first type TFT 16bl and the second pixel formation portion P2b including the second type TFT 16b2 have the same circuit configuration.
  • FIG. 10 shows a configuration of a pixel circuit P (i, j) corresponding to these pixel formation portions Plb and P2b.
  • the pixel circuit P (i, j) includes a TFT 16b corresponding to the first and second types TFT 16bl and 16b2, a liquid crystal capacitor Clc, an auxiliary capacitor Cs, and a gate and drain. Includes parasitic capacitance Cgd.
  • the auxiliary capacitance Cs in this embodiment is formed by the auxiliary capacitance electrode 32b corresponding to the auxiliary capacitance line CS (j) and the auxiliary capacitance line 15b, and the drain of the TFT 16b.
  • the terminal (drain electrode) is connected to the auxiliary capacitance line CS (j) via the auxiliary capacitance Cs, but the other configuration is the same as that of the pixel circuit P (i, j) in the first embodiment. Therefore, the explanation is omitted (Fig. 5).
  • Vd (Vgh-Vgl) Cgd / (Clc + Cs + Cgd) (3)
  • the first type TFT 16bl and the second type TF T16b2 as described above.
  • the types of TFTs are arranged to be evenly distributed. Therefore, by dividing the parasitic capacitance Cgd based on the two types of TFTs 16bl and 16b2 being evenly distributed (thus, the average of the level shift AVd), the divided exposure in the manufacturing process. If the blocks resulting from the above are separated, the generation of flicking force is suppressed, and the same effect as in the first embodiment can be obtained.
  • each pixel circuit P (i, j) in this embodiment is the same as that of the pixel circuit P (i, j) in the second embodiment shown in FIG.
  • the same reference numerals are assigned to the parts to be described, and the description is omitted.
  • FIG. 11A is a partial plan view showing a structure of a TFT substrate 100c which is an active matrix substrate according to the present embodiment.
  • the pixel circuit P (i, j) in the present embodiment includes a first pixel forming portion Plc including the first type TFT 16cl or a second type TFT 16c2. This is realized by the second pixel formation portion P2c.
  • the TFT substrate 10 Oc differs from the second embodiment in the size of the auxiliary capacitance electrode 32c, the shape of the auxiliary capacitance wiring 15c, and the connection pattern between the drain electrodes Dl and D2 of the TFT16cl and 16c2 and the auxiliary capacitance electrode 32c.
  • FIG. 11 (A) shows the structure of the first type TFT16cl, which is a TFT in the first pixel formation portion Pic
  • Fig. 11 (C) shows the second type, which is a TFT in the second pixel formation portion P2c.
  • FIG. 3 is an enlarged plan view showing the structure of the TFT16c2. As can be seen by comparing FIG. 11 (B) with FIG.
  • the first type TFT 16cl in the present embodiment has the same structure as the first type TFT 16bl in the second embodiment ( The same reference numerals are assigned to the same or corresponding parts, and detailed description is omitted.
  • the second type TFT 16c2 in this embodiment has the same structure as the second type TFT 16b2 in the second embodiment, as compared with FIG. 9C. (Pattern configuration), the same or corresponding parts are denoted by the same reference numerals, and detailed description is omitted.
  • the drain electrode D1 partially overlaps the gate electrode G1, and the gate electrode G 1 In the second type TFT16c2, the drain electrode D2 partially overlaps the gate electrode G2 and is positioned below the gate electrode G2 (in FIG. 11). is doing. Therefore, the increase / decrease in the parasitic capacitance Cgd between the gate and drain due to pattern shift during manufacturing is reversed between the first type TFT16cl and the second type TFT16c2. That is, when the pattern of the drain electrodes Dl and D2 is shifted upward (for example, in FIG.
  • the first type TFT 16c 1 has a gap between the gate electrode G1 and the drain electrode D1. While the overlap area decreases and the parasitic capacitance Cgd decreases, in the second type TFT16c2, the overlap area between the gate electrode G2 and the drain electrode D2 increases and the parasitic capacitance Cgd increases.
  • the pixel array includes the first type TFT 16c 1 and the second type TFT 16c 2 as described above, and substantially the same number of two types of TFTs. These two types of TFTs are arranged so as to be evenly distributed over the pixel array.
  • the first pixel formation portion Pic and the second pixel formation portion P2c each including the first type TFT 16cl and the second type TFT 16c2 as described above are alternately arranged in both the row direction and the column direction.
  • the parasitic capacitance based on such two types of TFTs 16c 1 and 16c2 being arranged so as to be evenly distributed in the pixel array.
  • each pixel circuit P (i, j) in the present embodiment is the same as that of the pixel circuit P (i, j) in the second embodiment shown in FIG.
  • the same reference numerals are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 12A is a partial plan view showing a structure of a TFT substrate 100d which is an active matrix substrate according to this embodiment.
  • the pixel circuit P (i, j) in the present embodiment includes a first pixel forming portion Pld including the first type TFT 16dl or a second type TFT 16d2. 2 pixel formation portion P2d, and a source wiring 14d corresponding to the data signal line S (i) is formed so as to extend in the column direction at the center of each pixel formation portion Pld, P2d (hereinafter referred to as TFT)
  • TFT Such a structure on the substrate is referred to as a “center source structure”), which is different from the first to third embodiments in this respect.
  • the size and position of the auxiliary capacitance electrode 32d, the shape of the auxiliary capacitance wiring 15d, and the pattern configuration of the TFT16dl and 16d2 are also different from those of the first to third embodiments, but as described above, the circuit configuration is the second embodiment. Is the same.
  • the gate wiring 12d, source wiring 14d, and auxiliary capacitance wiring 15d shown in FIG. 12 (A) are the scanning signal line G (i), data signal line S (j), and auxiliary capacitance line CS (j) shown in FIG. Respectively.
  • FIG. 12B shows the structure of the first type TFT 16dl in the first pixel formation portion Pld
  • FIG. 12C shows the structure of the second type TFT 16d2 in the second pixel formation portion P2d. It is an enlarged plan view respectively shown.
  • the first type TFT16dl in this embodiment rotates the first type TFT 16bl in the second embodiment by 90 degrees.
  • the structure (pattern configuration) is as described above, and corresponding parts are denoted by the same reference numerals, and detailed description thereof is omitted.
  • Figure 12 (C) is compared with Figure 9 (C).
  • the second type TFT16d2 in this embodiment also has a structure (pattern configuration) that rotates the second type TFT16d2 in the second embodiment by 90 degrees.
  • pattern configuration a structure that rotates the second type TFT16d2 in the second embodiment by 90 degrees.
  • the drain electrode D1 partially overlaps the gate electrode G1, while the gate electrode G1 In the second type TFT16d2, the drain electrode D2 is located on the right side (in FIG. 12) of the gate electrode G2 while partially overlapping the gate electrode G2 in the second type TFT16d2. Yes. Therefore, if a pattern shift in the left-right direction (in Fig. 12) occurs during manufacturing, the parasitic capacitance Cgd between the source and drain in TFT16dl and 16d2 increases and decreases compared to the case without pattern shift, and the parasitic capacitance Cgd increases and decreases.
  • the parasitic capacitance Cgd does not change for pattern deviations below a certain amount in the vertical direction. That is, when the pattern of the drain electrodes Dl and D2 is shifted to the left (for example in FIG. 12) with respect to the pattern of the gate electrodes Gl and G2, the gate electrode G1 and the drain electrode D1 in the first type TFT16dl The parasitic area Cgd is reduced by reducing the overlapping area with the second type TFT16d2, whereas the overlapping area between the gate electrode G2 and the drain electrode D2 is increased in the second type TFT 16d2, and the parasitic capacity Cgd is increased.
  • the pixel array includes approximately the same number of two types of TFTs, the first type TFT 16dl and the second type TFT 16d2, as described above.
  • the two types of TFTs are arranged so as to be evenly distributed over the pixel array. That is, the first pixel formation portion Pld and the second pixel formation portion P2d each including the first type TFT 16dl and the second type TFT 16c2 as described above are interchanged both in the row direction and the column direction. Is arranged.
  • the parasitic capacitance Cgd is averaged based on the fact that these two types of TFT1 6dl and 16d2 are arranged so as to be evenly distributed in the pixel array (therefore, the pixel potential level shift AVd average) As a result, the generation of flicking force due to divided exposure in the manufacturing process is suppressed, and the same effect as in the first to third embodiments can be obtained. [0082] ⁇ 5.Variation>
  • FIG. 13 (A) is a diagram showing a pixel structure of a multi-domain vertical aligned mode (MVA mode) liquid crystal display device described in Japanese Patent Application Laid-Open No. 2004-78157.
  • One pixel forming portion is configured by the first subpixel including the electrode 118a and the first TFTl 16a and the second subpixel including the second pixel electrode 118b and the second TFTl 16b.
  • a scanning line (gate wiring) 112 is disposed between the first subpixel and the second subpixel.
  • a TFT substrate which is an active matrix substrate having a structure in which one pixel portion is divided into two sub-pixels by a gate wiring 112 passing through the center thereof (hereinafter referred to as “center gate structure” t). Also, the present invention can be applied.
  • each of the first and second subpixels corresponds to one pixel formation portion in each of the above embodiments. Therefore, in the example shown in FIG. 13 (A), the first type TFTs 16al to 16dl are used as the first TFT 116a and the second type TFTs 16a2 to 16d2 are used as the second TFT 116b.
  • the same effect as the embodiment can be obtained.
  • FIG. 13 (A) the first type TFTs 16al to 16dl are used as the first TFT 116a and the second type TFTs 16a2 to 16d2 are used as the second TFT 116b.
  • reference numeral “114” refers to the signal line (source wiring)
  • reference numeral “118s” refers to the slit formed in the first and second pixel electrodes 118a and 118b.
  • Reference numeral “124” indicates the auxiliary capacitor wiring
  • reference numeral “132” indicates the auxiliary capacitor electrode
  • reference numeral “116E” indicates the drain electrode extension of the first TFT 116a
  • reference numeral “1160” indicates the second TFT 16b. Each drain electrode extension is shown.
  • FIG. 13B is a diagram showing a pixel structure of an axially symmetric alignment mode (AS M mode) liquid crystal display device described in Japanese Patent Application Laid-Open No. 2004-78157.
  • substrate is shown.
  • the voltage applied to the liquid crystal capacitance Clcl formed by the first pixel electrode 218a and the counter electrode, and the second pixel electrode 118b and the counter electrode are formed.
  • each of the first and second sub-pixels in each of the above embodiments is used.
  • the present invention is applicable to a single pixel formation portion.
  • the first type TFTs 16a 1 to 16dl are used as the first TFTs 216a included in the first pixel unit, and the second TFTs 216b included in the second pixel unit are used as the second TFTs 216b.
  • the TFTs 16a2 to 16d2 of the type it is possible to obtain the same effects as those of the above embodiments.
  • reference numeral “212” denotes a scanning line (gate wiring)
  • reference numeral “214” denotes a signal line (source wiring)
  • reference numeral “218s” denotes first and second pixels.
  • reference numeral “219” refers to the convex portion corresponding to the rib
  • reference numeral “224” refers to the auxiliary capacitance wiring
  • reference numeral “232” refers to the auxiliary capacitance electrode
  • Reference numeral “216E” indicates the drain electrode extension of the first TFT 216a
  • reference numeral “2160” indicates the drain electrode extension of the second TFT 216b.
  • FIG. 14 (A) is a diagram showing another pixel structure of the MVA mode liquid crystal display device described in Japanese Patent Laid-Open No. 2004-78157, and shows another pixel structure of the center gate structure TFT substrate.
  • the drain electrode extensions 116E ′ and 1160 ′ that increase the aperture ratio are arranged so that most of them overlap with the slits 118s of the corresponding subpixel electrodes 118a ′ and 118b ′.
  • the voltage applied to the liquid crystal capacitor Clcl formed by the first pixel electrode 118a ′ and the counter electrode, and the second pixel electrode 118b ′ and the counter electrode are formed.
  • each of the first and second subpixels corresponds to one pixel formation portion in each of the above embodiments, and the present invention can be applied.
  • the first type TFTs 16al to 16dl are used as the first TFTs 116a 'included in the first pixel unit, and the second TFTs 116b included in the second pixel unit are described above.
  • the second type TFTs 16a2 to 16d2 it is possible to obtain the same effects as those of the above embodiments.
  • reference numeral “112” indicates a scanning line (gate wiring)
  • reference numeral “114” indicates a signal line (source wiring)
  • reference numeral “124” indicates an auxiliary capacitance wiring.
  • Reference numeral “132” denotes a storage capacitor electrode.
  • FIG. 14B is a diagram showing a pixel structure of an in-plane switching 'mode (IPS mode) liquid crystal display device described in Japanese Unexamined Patent Application Publication No. 2004-78157, which is a center gate.
  • the other example of the TFT substrate of a structure is shown.
  • sub-pixel electrode 318a and An electric field (lateral electric field) substantially parallel to the liquid crystal layer surface is generated in the liquid crystal layer located at 319 between 318b and the counter electrodes 317a and 317b.
  • the TFT316a of the first subpixel and the TFT316b of the second subpixel of the two subpixels constituting one pixel portion have a TFT on-gate structure, and are signal lines as source wirings.
  • reference numeral “312” indicates a scanning line (gate wiring)
  • reference numeral “314” indicates a signal line (source wiring)
  • reference numeral “324” indicates an auxiliary capacitance wiring
  • reference numeral “332” indicates the auxiliary capacitance electrode
  • reference numeral “316E” indicates the drain electrode extension of the first TFT 316a
  • reference numeral “3160” indicates the drain electrode extension of the second TFT 316b! / RU
  • one pixel unit includes two sub-pixels. Even in the case of three or more sub-pixels, the increase and decrease of the parasitic capacitance Cgd with respect to the pattern shift in the predetermined direction, which are the first and second type TFTs in the above embodiments, are opposite to each other. By arranging the two types of TFTs so as to be distributed substantially evenly in the pixel array, the same effects as in the above embodiments can be obtained. Further, in the above-described modifications shown in FIGS.
  • TFT structure in the TFT substrate as the active matrix substrate various structures other than the TFT structures shown in the above embodiments and modifications can be adopted.
  • two types of TFTs with the structure described below are used in the pixel array.
  • the same effects as those of the above-described embodiments can be obtained also by a configuration in which they are arranged so as to be distributed substantially evenly.
  • Fig. 15 (A) shows two types of TFT26al and 26a2
  • Fig. 15 (B) shows two types of TFT26bl and 26b2
  • Fig. 15 (C) shows two types of TFT26cl and 26c2
  • Fig. 15 (D) Either of the two types of TFT26dl and 26d2 shown here can be used.
  • FIGS. 1, 9A, 11A Two types of TFTs (first type TFT16al-16cl and second type TFT16a2-16c2) in the first to third embodiments
  • Fig. 15 (A) shows two types of TFT26al and 26a2
  • Fig. 15 (B) shows two types of TFT26bl and 26b2
  • Fig. 15 (C) shows two types of TFT26cl and 26c2
  • Fig. 15 (D) Either of the two types of TFT26dl and 26d2 shown here can be used.
  • the drain electrode, the source electrode, the gate electrode, and the semiconductor layer constituting one of the two types of TFTs 26al to 26dl are respectively denoted by a reference sign “Dl "D1", “S1", “G1” and “SCI”
  • the drain electrode, the source electrode, the gate electrode and the semiconductor layer constituting the other TFT 26a2 to 26d2 are denoted by “D2", “S2", respectively.
  • FIG. 12A Two types of TFT36al and 36a2 shown in (A), two types of TFT36 bl and 36b2 shown in Fig. 16 (B), Fig. 16 (C) [Two types of TFT36cl and 36c2 shown in Fig. 16 (D)] Both types of TFT36dl and 36d2 can be used.
  • the drain electrode, the source electrode, the gate electrode, and the semiconductor layer constituting one of the two types of TFTs 36al to 36dl are respectively denoted by “Dl”.
  • TFT 116a and TFT 116a in the center gate structure TFT substrate (FIGS. 13A, 13B, 14A, and 14B) as in the modification example described above.
  • TFT116b etc. two types of TFT46al and 46a2 shown in Fig. 17 (A), two types of TFT46bl and 46b2 shown in Fig. 17 (B), two types of TFT46cl and 46c2 shown in Fig. 17 (C), and Fig. 17 ( D)
  • 17A to 17C is a force described in Japanese Unexamined Patent Publication No. 2004-78157.
  • the problem of the present invention that is, the suppression of fretting force if the blocks are divided due to the divided exposure at the time of manufacture, and the solution thereof).
  • the two types of TFT46al and 46a2 shown in Fig. 17 (A), the two types of TFT46bl and 46b2 shown in Fig. 17 (B), and the two types of TFT46cl and 46c2 shown in Fig. 17 (C) have an on-gate structure.
  • the gate electrode G, the source electrode S, and the semiconductor layer SC are shared, and in FIGS.
  • TFT46dl and 46d2 shown in Fig. 17 (D) and the two types of TF T46el and 46e2 shown in Fig. 17 (E) share the gate electrode G and the semiconductor layer SC (Fig. 17 (E) ) TFT46el and 46e2 also share the source electrode S and the semiconductor layer SC).
  • the drain electrode, source electrode, and semiconductor layer constituting one TFT46dl of the two types of TFT are The drain electrode, the source electrode, and the semiconductor layer constituting the other TFT 46d2 are denoted by reference characters “Dl”, “SI”, and “SCI”, respectively, and denoted by reference characters “D2”, “S2”, and
  • the drain electrode constituting one TFT 46e 1 is indicated by reference numeral “D 1” and the drain constituting the other TFT 46e2 in FIG. 17E.
  • the electrodes are indicated by the reference sign “D2”!
  • the first type TFTs 16al to 16dl and the second type TFTs 16a2 to 16d2 are arranged in the row direction and the column direction. Although they are alternately arranged on both sides (Fig. 2, Fig. 9 (A), Fig. 11 (A)), depending on the driving method of the TFT substrate as the active matrix substrate according to each embodiment, the first type Two types of TFTs such as TFTs 16al to 16dl and second type TFTs 16a2 to 16d2 are preferably arranged so as to be evenly distributed in the pixel array.
  • TFTs 16al to 16dl and the second type TFTs 16a2 to 16d2 are preferably arranged so as to be evenly distributed in the pixel array.
  • FIGS. 18A to 18C show pixel structures (sensors as in the first to fourth embodiments described above). Schematic diagram showing the preferred TFT layout pattern when the line inversion drive method, 1H dot inversion drive method, and 2H dot inversion drive method are adopted in a liquid crystal display device using an active matrix substrate (including a multi-source structure). It is. 18 (A) to 18 (C) schematically show the pixel array, and “R”, “G”, and “B” written in the vicinity of the upper side of the pixel array are pixels in which the row immediately below is red. The green pixel and blue pixel forces are also configured. In addition, in FIG. 18 (A) to FIG.
  • the applied voltages of the black display pixels are all in one polarity of positive and negative polarity (eg, positive polarity), and the applied voltages of the white display pixels are all in the other polarity (eg, negative polarity).
  • the expression method similar to the expression method in FIGS. 18A to 18C as described above is also adopted in FIGS. 20 and 21 described later.
  • the polarity of the data signal Vs (i) applied to each data signal line S (i) (based on the counter electrode Ec) is inverted as shown in FIG. 19 (B).
  • the polarity of the voltage applied to the liquid crystal layer and hence the voltage applied to the pixel capacitor or the liquid crystal capacitor
  • the polarity of the applied voltage to the black display pixels is the same (for example, the polarity of the applied voltage to the white display pixel is the same (for example, the negative polarity) and the polarity of the applied voltage to each pixel capacitor is inverted every frame period.
  • the potential is not positive or negative due to the pattern deviation, it is recognized as a flickering force in the display (hereinafter, the “flicking force” is likely to occur for a certain driving method! /, The turn is referred to as the “flitz force pattern” of the drive system).
  • each scanning signal line G is adopted in the liquid crystal display device.
  • the increase or decrease in the parasitic capacitance Cgd due to the pattern shift and the level shift AVd of the pixel potential based on the increase or decrease are averaged in the white display area. It becomes. This prevents humans from perceiving flickering forces, and block perception.
  • each scanning signal line G is adopted in the liquid crystal display device.
  • the voltage applied to the liquid crystal layer and hence the pixel capacitance or The polarity of (applied voltage to the liquid crystal capacitor) is reversed every two scanning signal lines and every data signal line just by reversing every frame period.
  • the deformed pinecone pattern as shown in FIG.
  • two 1st type TFTs and 2nd type TFTs are alternately arranged in the row direction as in the case where the 1H inversion driving method is adopted in the pixel array. If they are arranged and arranged alternately one by one in the column direction, even if a pattern shift occurs in each divided area corresponding to the divided exposure at the time of manufacture, the parasitic capacitance Cgd increases or decreases due to the pattern shift and the pixel potential based on it The level shift AVd is averaged in the white display area. As a result, humans cannot perceive the flick force and block separation is not perceived.
  • the same liquid crystal display panel may be used for both the 1H dot inversion method and the 2H dot inversion method, but the same TFT arrangement as shown in Fig. 18 (B) and Fig. 18 (C). By using a pattern, such a case can be handled.
  • Figures 20 (A) to 20 (C) show an active matrix substrate with a center gate structure as shown in the modified example ( Figures 13 (A), 13 (B), and 14 (A).
  • FIG. 14B is a schematic diagram showing a preferable TFT arrangement pattern when the line inversion driving method, 1H dot inversion driving method, and 2H dot inversion driving method are respectively employed in the liquid crystal display device using FIG. 14 (B)).
  • the center gate structure one pixel in the first to fourth embodiments is vertically divided into two subpixels.
  • the increase or decrease in parasitic capacitance Cgd due to pattern misalignment and the level shift AVd of the pixel potential based on the increase or decrease of the parasitic potential Cgd is a white display area compared to the display of the flicker force pattern. Is averaged. As a result, human beings cannot perceive flitz force, and block separation is not perceived.
  • one of two pixels of the same color driven by the same data signal includes the first type TFT, and the other includes the second type.
  • the first type TFT and the second type TFT are alternately arranged one by one in the row direction and two by two in the column direction.
  • the parasitic capacitance Cgd increases or decreases due to the shift of the no turn and the pixel potential level shift AVd based on the increase or decrease of the pixel potential in the white display region as compared with the display of the flitz force pattern. Averaged. As a result, human beings cannot perceive flickering force, and block separation is not perceived.
  • the line inversion driving method or the 2H dot inversion driving method is adopted.
  • the line inversion drive method is used, as shown in Fig. 21 (B), the first type TFT and the second type TFT are alternately arranged in both the row and column directions. You may be made to do.
  • the TFT arrangement pattern shown in FIG. 21 (B) when the dot inversion driving method is adopted, the white or black display area is compared with the frit force pattern shown in FIG. 21 (A). The same type of TFT will be gathered close together. Therefore, the TFT arrangement pattern shown in FIG. 21B is not suitable for the dot inversion driving method.
  • the TFT arrangement pattern in which the first type TFT and the second type TFT are alternately arranged one by one in the row direction and two by two in the column direction is This is effective for the same reason when the line inversion driving method is adopted regardless of whether the active matrix substrate has a one-signal two-pixel driving method (see FIG. 21C).
  • RGB one color (for example, red) or two colors (for example, red and blue) are displayed on the entire screen.
  • the first type TFT and the second type TFT are evenly distributed in the area consisting of the one-color or two-color pixels. Humans do not perceive flicker, nor do they perceive block separation.
  • the force described with reference to the TFT substrate as an active matrix substrate used in the liquid crystal display device as an example.
  • the same voltage as the pixel capacitance formed by the pixel electrode and other electrodes Pixels (pixel formation section or pixel circuit) including capacitance (voltage holding capacitor) having a holding function and TFTs are arranged in a matrix, and scanning signal lines and data signal lines are latticed as described above.
  • the active matrix substrate is arranged in the form of a liquid crystal display device, for example, an active matrix substrate used in an organic EL (Electroluminescenece) display device may be divided into blocks due to divided exposure during manufacturing.
  • the present invention can be applied as a means for suppressing.
  • the voltage holding electrode (corresponding to the pixel electrode) connected to the TFT drain electrode in the capacitor capacitor pixel forming portion having an electrostatic capacity for holding the voltage corresponding to the pixel value and the auxiliary It consists of electrodes on the power supply line or ground line corresponding to the capacitor line.
  • a TFT as a switch element is further interposed between the source electrode of the TFT and the data signal line.
  • a TFT and a capacitive element (capacitor) as a switch element are further interposed in series between the switch and the data signal line.
  • a pixel circuit of an organic EL display device for example, a circuit having a configuration as shown in Fig. 24 is used (see Japanese Patent Laid-Open No. 2001-147659).
  • this pixel circuit when scan lines scan A and scan B are selected, TFT3 and TFT4 are turned on, the current of current source CS flows to TFT1, and the gate-source voltage corresponding to the current flowing to TFT1 Is charged into the holding capacitor C. Thereafter, when the scanning line scanB is in a non-selected state, the TFT 4 is turned off, and the voltage charged in the holding capacitor C is held.
  • the driving TFT 2 a current corresponding to the charging voltage of the holding capacitor C flows to the driving TFT 2, and the light emitting element OLED emits light by the current.
  • the division area is divided by division exposure at the time of manufacture.
  • the portion indicated by “A” corresponds to the voltage holding electrode constituting the voltage holding capacitor C, and the data line data is connected to the voltage holding electrode (A) via TFT3 and TFT4 as switch elements. ing.
  • the TFT 4 is turned on / off by the scanning line scanB, and the parasitic capacitance Cpa in the TFT 4 corresponds to the parasitic capacitance Cgd of the TFT 102 in the pixel circuit in the first and second embodiments. Therefore, even for an active matrix substrate in an organic EL display device having a pixel circuit having the configuration shown in FIG. 24, the increase / decrease in the parasitic capacitance Cpa due to pattern deviation during manufacturing and the increase / decrease in the level shift due to this are averaged for each block area. It is possible to apply the present invention.
  • a circuit having a configuration as shown in FIG. 25 may be used as a pixel circuit of an organic EL display device (see Japanese Laid-Open Patent Publication No. 2002-156923).
  • the TFT 24 when the scanning line 25 (scan) is selected, the TFT 24 is turned on, and the data voltage on the data line 26 (data) is held in the holding capacitor 23 (Cs). After that, when the scanning line 26 is deselected, the TFT 24 is turned off, the data voltage held in the holding capacitor 23 is maintained, and a current corresponding to the voltage flows to the driving TFT 22, The organic EL element 21 emits light.
  • the on-state force of the TFT 24 changes to the off-state, a level shift occurs as in the above-described embodiment due to the parasitic capacitance Cgs2 of the TFT 24. Therefore, when different pattern shifts occur in each divided area due to divided exposure at the time of manufacture, phenomena such as emission luminance differing in each divided area (block division) occur, and the display quality is deteriorated.
  • the portion indicated by the symbol “A” corresponds to the voltage holding electrode constituting the holding capacitor 23, and the data line data is connected to the voltage holding electrode (A) via the TFT 24. ing.
  • the TFT 24 is turned on and off by the scanning line 25, and the parasitic capacitance Cgs2 of the TFT 24 corresponds to the parasitic capacitance Cgd of the TFT 102 in the pixel circuit in the first and second embodiments. Therefore, even for an active matrix substrate in an organic EL display device having a pixel circuit having the configuration shown in FIG. 25, the increase / decrease in the parasitic capacitance Cgs2 due to pattern deviation during manufacture and the increase / decrease in the level shift due to this are changed for each block region. It is possible to apply the present invention that averages sliding The
  • the active matrix substrate used in the liquid crystal display device is driven by alternating current as in each of the above-described embodiments, but this is the case where it is driven by direct current like the active matrix substrate used in the organic EL display device, for example.
  • the present invention can be applied, and the increase or decrease of the parasitic capacitance Cgd due to the pattern shift and the increase or decrease of the level shift AVd of the pixel potential caused thereby can be averaged to suppress block division or the like.
  • the present invention is not limited to an active matrix substrate used in a display device, but can be applied to an active matrix used in an image sensor, a fingerprint sensor, or the like.
  • the block caused by the pattern shift in the divided exposure at the time of production is used. Occurrence of a phenomenon corresponding to the division can be suppressed.
  • the present invention is applied to an active matrix substrate used in a display device, a sensor, or the like or a drive circuit thereof, and is particularly suitable for an active matrix substrate in a liquid crystal display device or an EL display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 本発明は、アクティブマトリクス基板において、開口率の低下や、寄生容量の増大、製造工程の複雑化等を回避しつつ分割露光に起因するブロック分かれやフリッカを抑制することを目的とする。  アクティブマトリクス基板において、第1タイプのTFT(16a1)と第2タイプのTFT(16a2)とをそれぞれ含む第1の画素回路(P1a)と第2の画素回路(P2a)が行方向及び列方向の双方に交互に配置される。第1及び第2タイプのTFT(16a1),(16a2)は、ゲート電極に対するドレイン電極の上下方向のパターンずれに対してゲート・ドレイン間の寄生容量Cgdの増減が互いに逆になる構造となっている。このような2種類のTFTが均等に分散するように配置されることにより、製造時のパターンずれによる寄生容量Cgdの増減が平均化される。  本発明は、液晶表示装置等において使用されるアクティブマトリクス基板に適する。                                                                                 

Description

明 細 書
アクティブマトリクス基板およびそれを備えた表示装置
技術分野
[0001] 本発明は、マトリクス型の液晶表示装置や EL (Electroluminescenece:エレクト口ルミ ネッセンス)表示装置等に用いられるアクティブマトリクス基板に関するものであり、更 に詳しくは、複数のデータ信号線と複数の走査信号線が交差するように格子状に配 置され、それらの交差点にそれぞれ対応するように、スィッチ素子としての薄膜トラン ジスタ等の電界効果トランジスタと電圧保持用のキャパシタとを含む画素回路がマトリ タス状に形成されたアクティブマトリクス基板、および、それを備えた表示装置に関す る。
背景技術
[0002] アクティブマトリクス基板は、液晶表示装置および EL表示装置等のアクティブマトリ タス型表示装置や、アクティブマトリクス型の各種センサ等にぉ 、て幅広く用いられて いる。特に、電界効果トランジスタの一種である薄膜トランジスタ(Thin Film Transisto r。以下「TFT^略記する。)等のスィッチ素子が表示画素毎に設けられた液晶表示 装置は、表示画素数が増大しても隣接表示画素間でのクロストークのない優れた表 示画像を得ることができるため、特に注目を集めている。
[0003] このようなアクティブマトリクス型の液晶表示装置は、液晶表示パネルとその駆動回 路とから主要部が構成されている。そして液晶表示パネルは、液晶層を挟持する 1対 の電極基板カゝらなり、各電極基板の外表面には偏光板が貼り付けられている。
[0004] 上記 1対の電極基板の一方は TFT基板と呼ばれるアクティブマトリクス基板であり、 この TFT基板では、ガラス等の絶縁性基板上に、複数のデータ信号線と複数の走査 信号線が互いに交差するように格子状に形成され、さらに、複数の走査信号線と平 行に延在するように複数の補助容量線が形成されている。また、複数のデータ信号 線と走査信号線との交差点にそれぞれ対応して複数の画素回路がマトリクス状に形 成されており、各画素回路は、表示すべき画像を構成する画素に対応する画素電極 と、その画素電極と後述の対向電極等とによって形成される画素容量と、スィッチ素 子としての TFTとを含んでいる。上記 1対の電極基板の他方は対向基板と呼ばれ、 ガラス等の透明な絶縁性基板上に、全面にわたって対向電極、配向膜が順次積層さ れている。
[0005] アクティブマトリクス型液晶表示装置は、上記構成の液晶表示パネルの駆動回路と して、上記複数の走査信号線に接続される走査信号線駆動回路と、上記複数のデ ータ信号線に接続されるデータ信号線駆動回路と、上記複数の補助容量線に接続 される補助容量線駆動回路と、上記対向電極に接続される対向電極駆動回路とを備 えている。
[0006] データ信号線駆動回路は、外部の信号源等力も受け取った映像信号に基づき、液 晶表示パネルに表示すべき画像の各水平走査線における画素値に相当するアナ口 グ電圧として複数個のデータ信号を順次生成し、これらのデータ信号を液晶表示パ ネルにおける複数のデータ信号線にそれぞれ印加する。走査信号線駆動回路は、 液晶表示パネルに画像を表示するための各フレーム期間(各垂直走査期間)におい て、液晶表示パネルにおける複数の走査信号線を 1水平走査期間ずつ順次に選択 し、選択した走査信号線にアクティブな走査信号 (画素回路に含まれる TFTをオンさ せる電圧)を印加する。補助容量線駆動回路および対向電極駆動回路は、液晶表 示パネルの液晶層に印加すべき電圧の基準となる電位を与えるための信号を上記 の複数の補助容量線および対向電極にそれぞれ印加する。
[0007] 上記のように、複数のデータ信号線には複数のデータ信号がそれぞれ印加され、 複数の走査信号線には複数の走査信号がそれぞれ印加されることにより、液晶表示 パネルにおける各画素回路における画素電極には、対向電極の電位を基準として、 表示すべき画像の対応画素の値に応じた電圧が TFTを介して与えられ、各画素回 路内の画素容量に保持される。これにより、液晶層には、各画素電極と対向電極との 電位差に相当する電圧が印加される。液晶表示パネルは、この印加電圧によって液 晶層の光透過率を制御することにより、外部の信号源等力 受け取った映像信号の 表す画像を表示する。
[0008] 上記のような液晶表示装置に使用されるアクティブマトリクス基板の製造工程では、 フォトリソグラフィ技術を利用して、ガラス等の絶縁基板上に走査信号線およびデータ 信号線や TFT等を実現するための電極および配線や絶縁膜等のパターンが形成さ れる。そして、大画面の液晶表示装置において使用されるような大型のアクティブマト リクス基板を製造する際には、上記各種のパターンを形成すべき絶縁基板上の領域 を複数の領域に分けて分割露光が行われる。一般に、この露光工程では、主として、 ステッパーなどの露光装置におけるステージの位置決め精度やフォーカスの度合い によって、実際に形成される各種パターン間 (層間)の相対位置 (位置関係)がばらつ く。したがって、異なる層のパターン間での相対位置のずれ (以下「パターンずれ」と いう)の程度や方向は、分割露光に対応する分割領域の間で相違することになる。
[0009] 図 22は、上記のような液晶表示装置に使用されるアクティブマトリクス基板としての TFT基板における 1つの画素回路の構成を示している。各画素回路 P (i, j)は、上記 複数のデータ信号線と上記複数の走査信号線との交差点のいずれか 1つに対応し て設けられ、対応交差点を通過するデータ信号線 S (i)にソース電極が接続されると 共に対応交差点を通過する走査信号線 G (j)にゲート電極が接続された TFT16と、 その TFT16のドレイン電極に接続された画素電極 18とを含んでおり、画素電極 18と 対向電極 Ecとによって液晶容量 Clcが形成され、画素電極 18と走査信号線 G (j)に 沿って設けられた補助容量線 CS (j)とによって補助容量 Csが形成され、画素電極 1 8と走査信号線 G (j)との間に寄生容量 Cgdが形成されている。
[0010] この寄生容量 Cgdは、各画素回路 P (i, j)における TFT16aのゲート電極とドレイン 電極との間に存在する静電容量 (以下、この寄生容量 Cgdを「ゲート'ドレイン間容量 」ともいう)であり、その値は、上記のように製造工程においてリソグラフィ技術を利用し て形成される各種パターンのうち、 TFT16を実現するためのゲート電極 (または走査 信号線としてのゲート配線)とドレイン電極 (または画素電極 18)とが絶縁層を介して 重なる部分の面積 (以下「重なり面積」という)に依存する。ところで既述のように、バタ ーンずれの程度や方向は、分割露光に対応する分割領域毎に異なる。したがって、 それら分割領域毎に上記の重なり面積が異なり、各画素回路における上記寄生容量 Cgdの値は、それら分割領域毎に異なることになる。
[0011] また、図 22に示したように、各画素回路 P (i, j)における走査信号線 G (j)と画素電 極 18との間に上記の寄生容量 Cgdが存在することから、図 23 (B)に示すようなデー タ信号 Vs (i)がデータ信号線 S (i)に印加されて ヽるものとすると、図 23 (A)に示すよ うに走査信号 Vg (j)の電圧がゲートオン電圧 Vghからゲートオフ電圧 Vglへと立ち下 力 ¾時に、図 23 (C)に示すように画素電極の電位 (画素電位) Vdには寄生容量 Cgd に起因するレベルシフト AVdが生じる(この Δ Vdは「フィールドスルー電圧」とも呼ば れる)。このレベルシフト AVdは次式で表される。
Δ Vd = (Vgh - Vgl) · Cgd/ (Clc + Cs + Cgd) · · · ( 1 )
上式における寄生容量 Cgdすなわちゲート'ドレイン間容量 Cgdは、既述のように分 割露光に対応する分割領域毎に異なるので、レベルシフト AVdもそれら分割領域毎 に異なる。その結果、このようなアクティブマトリクス基板を使用した液晶表示装置に おいて、液晶層の透過率 (表示上の輝度)が同一のデータ信号に対してもそれら分 割領域毎に異なり、「ブロック分かれ」(または「面落ち」)と呼ばれる現象が生じて表 示品質を低下させることになる。さらに液晶表示装置では、液晶層に印加される電圧 の極性を所定期間毎に反転するように駆動させている力 このとき対向電極電位を データ信号線の中心電位に対して上記レベルシフト分だけ低く設定することによって 、液晶に印加される電圧をほぼ正負対称にしている。したがって、分割領域毎にレべ ルシフト AVdが異なると、非対称性が調整しきれない領域が必ず生じ、ここでフリツ力 (画面のちらつき)が発生し、表示品質を低下させることになる。
[0012] このような問題を解決すべく従来より種々の提案がなされている。例えば下記の特 許文献 1には、当該特許発明の背景技術として、 1つの画素形成部 (以下、単に「画 素」ともいう)が 2つのサブ画素から構成され、当該 2つのサブ画素のそれぞれにスィ ツチ素子としての TFTが設けられており、上記の寄生容量 Cgdに相当する容量が同 一方向のパターンずれに対して容量値の増減が互いに逆になるように当該 2つのサ ブ画素における 2つの TFTが構成されたアクティブマトリクス基板が説明されている( 例えば特許文献 1の Fig. 8参照)。
[0013] また、上記問題を解決すべく提案された他のアクティブマトリクス型の表示装置では 、各画素に対し、上記の寄生容量 Cgdに相当する寄生容量のパターンずれによる変 化を補償するように構成された新たな容量(「補償容量」等と呼ばれる)が当該寄生容 量に並列接続されるように形成され、パターンずれがあっても当該寄生容量の値と当 該新たな容量の値との和が一定となるようにされている(例えば下記の特許文献 1、 2 、 3参照)。
[0014] さらに、下記の特許文献 4には、 TFTのチャネル領域をセルファライメントによって 形成することで、不要な寄生容量を低減し、寄生容量が分割露光などによってばら つかな!/、ようにしたアクティブマトリクス基板を含むデルタ配列の液晶表示パネルが 提案されている。
[0015] さらにまた、下記の特許文献 5には、各画素の TFTにっき、半導体層およびこれに 重なるドレイン配線のゲート電極端を跨ぐ部分の幅を、 TFTのチャネル幅であるドレ イン電極幅よりも狭く設けたことを特徴とするアクティブマトリクス基板としての TFTァ レイ基板が提案されている。
特許文献 1 :米国特許第 5, 285, 302号明細書
特許文献 2 :日本の特開平 6— 27487号公報
特許文献 3 :日本の特開平 6— 110081号公報
特許文献 4:日本の特開平 8— 87026号公報
特許文献 5 :日本の特開 2002— 14371号公報
発明の開示
発明が解決しょうとする課題
[0016] しかし、上記特許文献 1〜3に記載されたアクティブマトリクス基板のように、それぞ れが TFTを備える複数のサブ画素によって各画素を構成することでパターンずれに よる寄生容量としてのゲート'ドレイン間容量 Cgdの増減を 1画素内で抑制する場合 や、各画素にお 、て寄生容量としてのゲート ·ドレイン間容量 Cgdのパターンずれに よる増減を補償するような新たな容量 (補償容量等)を設けた場合には、サブ画素毎 の TFTの形成や各画素における新たな容量の形成により 1画素当たりの遮光部分の 面積 (TFTの面積等)が増大する。これにより、当該アクティブマトリクス基板を使用し た液晶表示パネルの開口率が低下する。
[0017] また、上記従来のアクティブマトリクス基板では、 TFTの形成や各画素における新 たな容量の形成により 1画素当たりの寄生容量 Cgdが増大する。このため、上記式(1 )で表される(画素電位の)レベルシフト Δ Vd (絶対値)も増大し、対向電極 Ecに印加 される電位 Vcomによるレベルシフト AVdの補正が困難となる。その結果、直流成分 の液晶層への印加による液晶の劣化ゃフリツ力の発生等による表示品位の低下が問 題となる。また、寄生容量 Cgdが増大すると、走査信号線における走査信号やデータ 信号線におけるデータ信号の伝搬遅延も大きくなり、このことも表示品位低下の原因 となる。そして、 1画素当たりの寄生容量の増大は、アクティブマトリクス基板の駆動回 路における消費電力の増大を招くことにもなる。さらに、サブ画素毎の TFTの形成や 各画素における新たな容量の形成は、アクティブマトリクス基板を製造するためのマ スクパターンの複雑ィ匕を招くので、アクティブマトリクス基板の製造歩留まりが低下す る原因となる。
[0018] また、上記特許文献 4に記載の液晶表示パネルを構成するアクティブマトリクス基板 では、色配列がデルタ配列に限られ、し力も TFTのチャネル領域はセルファライメン トにより作製されるので、通常とは異なる製造工程を必要とする。
[0019] そして、上記特許文献 5に記載のアクティブマトリクス基板としての TFT基板では、 TFT形成のためのパターン上の工夫によって寄生容量を小さくすることで、パターン ずれによる当該寄生容量のばらつきが抑制される。しかし、このような工夫のみでは、 上記従来の技術に比べても寄生容量のばらつきは十分に小さなものとはならず、そ の結果、ブロック分かれゃフリツ力が目立つという問題を十分に解決することはできな い。
[0020] そこで本発明は、開口率の低下や、寄生容量の増大、製造工程における複雑ィ匕を 回避しつつ分割露光に起因するブロック分かれゃフリツ力を抑制できるアクティブマト リクス基板、および、それを備えた表示装置を提供することを目的とする。
課題を解決するための手段
[0021] 本発明の第 1の局面は、アクティブマトリクス基板であって、
複数のデータ信号線と、
前記複数のデータ信号線と交差する複数の走査信号線と、
前記複数のデータ信号線と当該複数の走査信号線との交差点にそれぞれ対応し てマトリクス状に配置された複数の画素回路力 なる画素アレイとを備え、
各画素回路は、 対応する前記交差点を通過するデータ信号線にソース電極が直接にまたは所定 素子を介して接続されるとともに対応する前記交差点を通過する走査信号線にゲー ト電極が接続された電界効果トランジスタと、
当該電界効果トランジスタのドレイン電極に直接にまたは所定素子を介して接続 され所定の電圧保持用キャパシタを構成する電圧保持用電極とを含み、
前記画素アレイは、
ドレイン電極のパターンとゲート電極のパターンとの間の位置関係が所定方向に ずれるにしたがって当該ドレイン電極と当該ゲート電極との間の静電容量が大きくな る前記電界効果トランジスタである第 1タイプの電界効果トランジスタを含む画素回路 と、
前記位置関係が前記所定方向にずれるにしたがって前記静電容量が小さくなる 前記電界効果トランジスタである第 2タイプの電界効果トランジスタを含む画素回路と を略同数ずつ備え、
前記第 1タイプの電界効果トランジスタを含む画素回路と前記第 2タイプの電界効 果トランジスタを含む画素回路とは、前記画素アレイにぉ 、て略均等に分散するよう に配置されて 、ることを特徴とする。
[0022] 本発明の第 2の局面は、本発明の第 1の局面において、
前記第 1タイプの電界効果トランジスタは、前記第 1タイプの電界効果トランジスタに おける前記位置関係が前記所定方向にずれるにしたがって、ゲート電極とドレイン電 極とが所定の絶縁層を介して重複する面積が大きくなるように構成され、
前記第 2タイプの電界効果トランジスタは、前記第 2タイプの電界効果トランジスタに おける前記位置関係が前記所定方向にずれるにしたがって、ゲート電極とドレイン電 極とが所定の絶縁層を介して重複する面積力 、さくなるように構成されていることを 特徴とする。
[0023] 本発明の第 3の局面は、本発明の第 1の局面において、
前記第 1および第 2タイプの電界効果トランジスタは、前記位置関係が前記所定方 向と垂直な方向にずれた場合に、ゲート電極とドレイン電極とが所定の絶縁層を介し て重複する面積が変化しな 、ように構成されて 、ることを特徴とする。 [0024] 本発明の第 4の局面は、本発明の第 1の局面において、
前記第 1タイプの電界効果トランジスタを含む画素回路と前記第 2タイプの電界効 果トランジスタを含む画素回路とが、前記画素アレイにおいて、前記データ信号線の 延びる方向につき所定個数ずつ交互にかつ前記走査信号線の延びる方向に所定 個数ずつ交互に配置されて 、ることを特徴とする。
[0025] 本発明の第 5の局面は、本発明の第 4の局面において、
前記第 1タイプの電界効果トランジスタを含む画素回路と前記第 2タイプの電界効 果トランジスタを含む画素回路とが、前記画素アレイにおいて、前記データ信号線の 延びる方向および前記走査信号線の延びる方向の双方に 1個ずつ交互に配置され ていることを特徴とする。
[0026] 本発明の第 6の局面は、本発明の第 4の局面において、
前記第 1タイプの電界効果トランジスタを含む画素回路と前記第 2タイプの電界効 果トランジスタを含む画素回路とが、前記画素アレイにおいて、前記データ信号線の 延びる方向には 1個ずつ交互にかつ前記走査信号線の延びる方向には 2個ずつ交 互に配置されて ヽることを特徴とする。
[0027] 本発明の第 7の局面は、本発明の第 4の局面において、
前記第 1タイプの電界効果トランジスタを含む画素回路と前記第 2タイプの電界効 果トランジスタを含む画素回路とが、前記画素アレイにおいて、前記データ信号線の 延びる方向には 2個ずつ交互にかつ前記走査信号線の延びる方向には 1個ずつ交 互に配置されて ヽることを特徴とする。
[0028] 本発明の第 8の局面は、アクティブマトリクス基板であって、
複数のデータ信号線と、
前記複数のデータ信号線と交差する複数の走査信号線と、
前記複数のデータ信号線と当該複数の走査信号線との交差点にそれぞれ対応し てマトリクス状に配置された複数対の画素回路力 なる画素アレイとを備え、 前記複数対の画素回路のそれぞれは、対応する交差点を通過する走査信号線を 挟むように配置された 2つの画素回路からなり、
前記 2つの画素回路のそれぞれは、 対応する前記交差点を通過するデータ信号線にソース電極が直接にまたは所定 素子を介して接続されるとともに対応する前記交差点を通過する走査信号線にゲー ト電極が接続された電界効果トランジスタと、
当該電界効果トランジスタのドレイン電極に直接にまたは所定素子を介して接続 され所定の電圧保持用キャパシタを構成する電圧保持用電極とを含み、
前記 2つの画素回路のうち、
一方の画素回路は、ドレイン電極のパターンとゲート電極のパターンとの間の位 置関係が所定方向にずれるにしたがって当該ドレイン電極と当該ゲート電極との間 の静電容量が大きくなる前記電界効果トランジスタである第 1タイプの電界効果トラン ジスタを含み、
他方の画素回路は、前記位置関係が前記所定方向にずれるにしたがって前記静 電容量が小さくなる前記電界効果トランジスタである第 2タイプの電界効果トランジス タを含むことを特徴とする。
[0029] 本発明の第 9の局面は、本発明の第 1から第 8の局面のいずれかにおいて、
前記電界効果トランジスタは薄膜トランジスタであることを特徴とする。
[0030] 本発明の第 10の局面は、表示装置であって、本発明の第 9の局面に係るァクティ ブマトリクス基板を含む表示パネルを備えたことを特徴とする。
[0031] 本発明の第 11の局面は、表示装置であって、本発明の第 1から第 8の局面のいず れかの局面に係るアクティブマトリクス基板を含む表示パネルを備えたことを特徴とす る。
[0032] 本発明の第 12の局面は、表示装置であって、
本発明の第 1または第 2の局面の係るアクティブマトリクス基板を含む液晶表示パネ ルと、
前記液晶表示パネルによる表示の各フレームにおいて前記複数の画素回路内の 電圧保持用キャパシタに保持される電圧の正負極性が前記画素アレイにおいて分 散するように前記液晶表示パネルを駆動する駆動回路とを備え、
前記液晶表示パネルによる表示の同一フレームにおいて同一極性の電圧が保持 される電圧保持用キャパシタを含む画素回路である同一極性画素回路のうち前記第 1タイプの電界効果トランジスタを含む画素回路と、当該同一極性画素回路のうち前 記第 2タイプの電界効果トランジスタを含む画素回路とが、前記画素アレイにおいて 略均等に分散するように配置されて 、ることを特徴とする。
[0033] 本発明の第 13の局面は、表示装置であって、
本発明の第 1から第 8の局面のいずれかの局面に係るアクティブマトリクス基板を含 むカラー液晶表示パネルと、
前記液晶表示パネルによる表示の各フレームにおいて前記複数の画素回路内の 電圧保持用キャパシタに保持される電圧の正負極性が前記画素アレイにおいて分 散するように前記液晶表示パネルを駆動する駆動回路とを備え、
前記液晶表示パネルによる表示の同一フレームにおいて同一極性の電圧が保持 される電圧保持用キャパシタを含む画素回路である同一極性画素回路のうち前記第 1タイプの電界効果トランジスタを含む画素回路と、当該同一極性画素回路のうち前 記第 2タイプの電界効果トランジスタを含む画素回路とが、カラー表示のための 3原 色の各色に相当する画素を形成するための画素回路群において略均等に分散する ように配置されて 、ることを特徴とする。
発明の効果
[0034] 本発明の第 1の局面によれば、第 1タイプの電界効果トランジスタを含む画素回路と 第 2タイプの電界効果トランジスタを含む画素回路とが、画素アレイにぉ 、て略均等 に分散するように配置されており、第 1および第 2タイプの電界効果トランジスタにお いて、ドレイン電極のパターンとゲート電極のパターンとの間の位置関係が所定方向 にずれた場合にドレイン電極とゲート電極との間の静電容量である寄生容量 Cgdの 増減が互いに逆になるように当該寄生容量 Cgdが変化する。したがって、アクティブ マトリクス基板の製造時の分割露光によって当該分割露光に対応する領域毎に上記 パターンずれの方向や程度が異なり、それによつて当該領域毎に寄生容量 Cgdのば らつきが異なっても、その寄生容量 Cgdのばらつきは当該領域毎に平均化される。こ れにより、各画素回路の電界効果トランジスタのゲート電極に印加される電圧がゲー トオン電圧(当該トランジスタをオンさせる電圧)カゝらゲートオフ電圧(当該トランジスタ をオフさせる電圧)へと立ち下がる時に生じる画素電位のレベルシフト AVdも上記領 域毎に平均化され、画素アレイ全体において平均的には上記パターンずれが無い 場合と同様の状態となる。このようにして、上記第 1および第 2タイプの電界効果トラン ジスタが画素アレイにおいて均等に分散するように配置されることに基づく寄生容量 Cgdの平均化により、アクティブマトリクス基板を使用した表示装置やセンサ等におい て、製造時の分割露光に起因するブロック分かれゃフリツ力の発生を抑制することが できる。し力も、各画素回路に対する TFTの追加や寄生容量のばらつき補償のため の容量の追加等のような新たな構成要素の追カ卩は不要であるので、各画素形成部 における遮光部分の面積は増加しない。したがって、既述の先行技術とは異なり、開 口率が低下することはない。また、各画素回路への新たな構成要素の追加が不要で あることから、アクティブマトリクス基板の製造工程の複雑ィ匕およびそれによる歩留まり の低下を招くこともない。さらに、 1画素当たりの寄生容量も増大しないので、画素電 位のレベルシフト AVdが増大して表示品位が低下することもなぐ走査信号等の伝 搬遅延や駆動回路の消費電力も増大しない。
[0035] 本発明の第 2の局面によれば、画素アレイにぉ 、て均等に分散するように配置され る第 1および第 2タイプの電界効果トランジスタは、ドレイン電極のパターンとゲート電 極のパターンとの間の位置関係が所定方向にずれた場合にドレイン電極とゲート電 極との間の重複面積の増減が互いに逆になる構成とされている。これにより第 1およ び第 2タイプの電界効果トランジスタにおいて上記のパターンずれに対しゲート'ドレ イン間の寄生容量 Cgdの増減が互いに逆になるよう当該寄生容量 Cgdが変化し、本 発明の第 1の局面におけるような効果が得られる。
[0036] 本発明の第 3の局面によれば、第 1および第 2タイプの電界効果トランジスタは、ドレ イン電極のパターンとゲート電極のパターンとの間の位置関係が所定方向に垂直な 方向にずれた場合にドレイン電極とゲート電極との間の重複面積が変化しな 、ように 構成されている。これにより第 1および第 2タイプの電界効果トランジスタは、どの方向 にパターンずれが起きても、ゲート ·ドレイン間の寄生容量 Cgdの増減が互いに逆に なるか、または当該寄生容量 Cgdが全く変化しないため、本発明の第 1の局面にお けるような効果が得られる。
[0037] 本発明の第 4の局面によれば、第 1タイプの電界効果トランジスタを含む画素回路と 第 2タイプの電界効果トランジスタを含む画素回路とが、画素アレイにおいて、データ 信号線の延びる方向につき所定個数ずつ交互に且つ走査信号線の延びる方向に 所定個数ずつ交互に配置されることにより、略均等に分散することになり、本発明の 第 1の局面と同様の効果が得られる。
[0038] 本発明の第 5の局面によれば、第 1タイプの電界効果トランジスタを含む画素回路と 第 2タイプの電界効果トランジスタを含む画素回路とが、画素アレイにおいて、データ 信号線の延びる方向および走査信号線の延びる方向の双方に 1個ずつ交互に配置 されことによって、略均等に分散することになり、本発明の第 1の局面と同様の効果が 得られる。そして、本発明に係るアクティブマトリクス基板の使用される液晶表示装置 にお!/、てライン反転駆動方式が採用されて 、る場合には、同一フレームにお 、て同 一極性の電圧が保持される電圧保持用キャパシタを含む画素回路である同一極性 画素回路のうち第 1タイプの電界効果トランジスタを含む画素回路と、当該同一極性 画素回路のうち第 2タイプの電界効果トランジスタを含む画素回路とが、画素アレイに おいて略均等に分散するように配置されることになる。したがって、本発明の第 5の局 面は、ライン反転駆動方式が採用されている液晶表示装置においてブロック分かれ ゃフリツ力を抑制する上で有効である。
[0039] 本発明の第 6の局面によれば、第 1タイプの電界効果トランジスタを含む画素回路と 第 2タイプの電界効果トランジスタを含む画素回路とが、画素アレイにおいて、データ 信号線の延びる方向には 1個ずつ交互にかつ走査信号線の延びる方向には 2個ず つ交互に配置されることによって、略均等に分散することになり、本発明の第 1の局面 と同様の効果が得られる。そして、本発明に係るアクティブマトリクス基板の使用され る液晶表示装置にお!、てドット反転駆動方式(1Hドット反転駆動方式と 2Hドット反転 駆動方式の双方を含む)が採用されている場合には、同一フレームにおいて同一極 性の電圧が保持される電圧保持用キャパシタを含む画素回路である同一極性画素 回路のうち第 1タイプの電界効果トランジスタを含む画素回路と、当該同一極性画素 回路のうち第 2タイプの電界効果トランジスタを含む画素回路とが、画素アレイにおい て略均等に分散するように配置されることになる。したがって、本発明の第 6の局面は 、ドット反転駆動方式が採用されて 、る液晶表示装置にぉ 、てブロック分かれゃフリ ッカを抑制する上で有効である。
[0040] 本発明の第 7の局面によれば、第 1タイプの電界効果トランジスタを含む画素回路と 第 2タイプの電界効果トランジスタを含む画素回路とが、画素アレイにおいて、データ 信号線の延びる方向には 2個ずつ交互にかつ走査信号線の延びる方向には 1個ず つ交互に配置されることによって、略均等に分散することになり、本発明の第 1の局面 と同様の効果が得られる。そして、水平方向に近接する 2つの画素回路を同一のデ ータ信号で駆動するようにしたアクティブマトリクス基板 (以下「 1信号 2画素駆動方式 のアクティブマトリクス基板」という)の使用される液晶表示装置においてライン反転駆 動方式やドット反転駆動方式が採用されている場合には、同一フレームにおいて同 一極性の電圧が保持される電圧保持用キャパシタを含む画素回路である同一極性 画素回路のうち第 1タイプの電界効果トランジスタを含む画素回路と、当該同一極性 画素回路のうち第 2タイプの電界効果トランジスタを含む画素回路とが、画素アレイに おいて略均等に分散するように配置されることになる。したがって、本発明の第 7の局 面は、 1信号 2画素駆動方式のアクティブマトリクス基板の使用される液晶表示装置 においてブロック分かれゃフリツ力を抑制する上で有効である。
さらに、本発明の第 7の局面は、アクティブマトリクス基板が 1信号 2画素駆動方式か 否かに拘わらず、液晶表示装置においてライン反転駆動方式が採用されている場合 においても、同様の理由により有効である。
[0041] 本発明の第 8の局面によれば、マトリクス状に配置された複数対の画素回路力 な る画素アレイを備え、当該複数対の画素回路のそれぞれが対応交差点を通過する 走査信号線を挟むように配置された 2つの画素回路力 なる構造のアクティブマトリク ス基板 (後述のように当該構造は「センターゲート構造」と呼ばれる)において、当該 複数対の画素回路のそれぞれの対を構成する 2つの画素回路の一方は第 1タイプの 電界効果トランジスタを含み、他方は第 2タイプの電界効果トランジスタを含んで 、る 。したがって、第 1タイプの電界効果トランジスタを含む画素回路と第 2タイプの電界 効果トランジスタを含む画素回路とが略均等に分散するように配置されることになり、 本発明の第 1の局面と同様の効果が得られる。
[0042] 本発明の第 9の局面によれば、各画素回路の電界効果トランジスタとして薄膜トラン ジスタを使用したアクティブマトリクス基板につき、本発明の第 1の局面と同様の効果 が得られる。
[0043] 本発明の第 10の局面によれば、アクティブマトリクス基板を備えた表示装置につき 本発明の第 9の局面と同様の効果が得られる。
[0044] 本発明の第 11の局面によれば、アクティブマトリクス基板を備えた表示装置につき 本発明の第 1から第 8までの局面と同様の効果が得られる。
[0045] 本発明の第 12の局面によれば、液晶表示パネルによる表示の同一フレームにお いて同一極性の電圧が保持される電圧保持用キャパシタを含む画素回路である同 一極性画素回路のうち第 1タイプの電界効果トランジスタを含む画素回路と、当該同 一極性画素回路のうち第 2タイプの電界効果トランジスタを含む画素回路とが、画素 アレイにおいて略均等に分散するように配置される。したがって、各フレームにおい て画素回路内の電圧保持用キャパシタに保持される電圧の正負極性が画素アレイ において分散するように液晶表示パネルを駆動する駆動回路を備えた表示装置に おいて、本発明の第 1の局面と同様の効果が得られ、ブロック分かれゃフリツ力を抑 ff¾することができる。
[0046] 本発明の第 13の局面によれば、カラー液晶表示パネルによる表示の同一フレーム において同一極性の電圧が保持される電圧保持用キャパシタを含む画素回路であ る同一極性画素回路のうち第 1タイプの電界効果トランジスタを含む画素回路と、当 該同一極性画素回路のうち第 2タイプの電界効果トランジスタを含む画素回路とが、 カラー表示のための 3原色の各色に相当する画素を形成するための画素回路群に おいて略均等に分散するように配置されている。したがって、各フレームにおいて画 素回路内の電圧保持用キャパシタに保持される電圧の正負極性が画素アレイにお V、て分散するように液晶表示パネルを駆動する駆動回路を備えた表示装置にぉ 、 て、上記 3原色の各色を単色で表示する場合であっても、本発明の第 1の局面と同様 の効果が得られ、ブロック分かれゃフリツ力を抑制することができる。
図面の簡単な説明
[0047] [図 1]本発明の第 1の実施形態に係るアクティブマトリクス基板である TFT基板を用い た液晶表示装置の全体構成を示すブロック図である。 圆 2]上記第 1の実施形態に係るアクティブマトリクス基板の構造を示す部分平面図 である。
[図 3]上記第 1の実施形態に係るアクティブマトリクス基板における第 1タイプの TFT( 薄膜トランジスタ)の構造を示す拡大平面図 (A)、および、当該アクティブマトリクス基 板における第 2タイプの TFTの構造を示す拡大平面図(B)である。
[図 4]図 3 (A)の A— A線における断面図(A)、および、図 3 (B)の B— B線における 断面図(B)である。
圆 5]上記第 1の実施形態に係るアクティブマトリクス基板における画素回路 (画素形 成部の等価回路)を示す回路図である。
圆 6]アクティブマトリクス基板を作製する際の分割露光によるパターンずれを説明す るための図である。
[図 7]上記第 1の実施形態に係るアクティブマトリクス基板におけるブロック分かれの 抑制効果を説明するための図である。
圆 8]本発明の第 2の実施形態に係るアクティブマトリクス基板である TFT基板を用い た液晶表示装置の全体構成を示すブロック図である。
圆 9]上記第 2の実施形態に係るアクティブマトリクス基板の構造を示す部分平面図( A)、当該アクティブマトリクス基板における第 1タイプの TFTの構造を示す拡大平面 図(B)、および、当該アクティブマトリクス基板における第 2タイプの TFTの構造を示 す拡大平面図 (C)である。
圆 10]上記第 2の実施形態に係るアクティブマトリクス基板における画素回路を示す 回路図である。
圆 11]本発明の第 3の実施形態に係るアクティブマトリクス基板の構造を示す部分平 面図 (A)、当該アクティブマトリクス基板における第 1タイプの TFTの構造を示す拡 大平面図(B)、および、当該アクティブマトリクス基板における第 2タイプの TFTの構 造を示す拡大平面図(C)である。
圆 12]本発明の第 4の実施形態に係るアクティブマトリクス基板の構造を示す部分平 面図 (A)、当該アクティブマトリクス基板における第 1タイプの TFTの構造を示す拡 大平面図(B)、および、当該アクティブマトリクス基板における第 2タイプの TFTの構 造を示す拡大平面図(C)である。
圆 13]本発明の適用可能な変形例に係る他のアクティブマトリクス基板の構造を示す 部分平面図 (A、 B)である。
圆 14]本発明の適用可能な変形例に係る他のアクティブマトリクス基板の構造を示す 部分平面図 (A、 B)である。
圆 15]上記第 1〜第 3の実施形態に係るアクティブマトリクス基板において使用できる 各種の TFTの構造を示す平面図(A〜D)である。
[図 16]センターソース構造のアクティブマトリクス基板に本発明を適用する場合に使 用可能な各種の TFTの構造を示す平面図 (A〜D)である。
圆 17]センターゲート構造のアクティブマトリクス基板に本発明を適用する場合に使 用可能な各種の TFTの構造を示す平面図 (A〜E)である。
圆 18]上記第 1〜第 4の実施形態におけるような構造のアクティブマトリクス基板を使 用した液晶表示装置にぉ ヽてライン反転駆動方式を採用した場合の好ま ヽ TFT の配置パターンを示す模式図 (A)、当該液晶表示装置において 1Hドット反転駆動 方式を採用した場合の好ましい TFTの配置パターンを示す模式図(B)、および、当 該液晶表示装置にお!、て 2Hドット反転駆動方式を採用した場合の好ま 、TFTの 配置パターンを示す模式図 (C)である。
圆 19]上記第 1〜第 4の実施形態におけるような構造のアクティブマトリクス基板を使 用した液晶表示装置における走査信号の波形を示す波形図 (A)、当該液晶表示装 置においてライン反転駆動方式を採用した場合のデータ信号の極性を示すタイミン グチャート (B)、当該液晶表示装置にお!、て 1Hドット反転駆動方式を採用した場合 のデータ信号の極性を示すタイミングチャート (C)、および、当該液晶表示装置にお Vヽて 2Hドット反転駆動方式を採用した場合のデータ信号の極性を示すタイミングチ ヤー HD)である。
[図 20]上記変形例のようなセンターゲート構造のアクティブマトリクス基板を使用した 液晶表示装置にお!ヽてライン反転駆動方式を採用した場合の好ま Uヽ TFTの配置 パターンを示す模式図 (A)、当該液晶表示装置において 1Hドット反転駆動方式を 採用した場合の好ましい TFTの配置パターンを示す模式図(B)、および、当該液晶 表示装置にぉ 、て 2Hドット反転駆動方式を採用した場合の好ま 、TFTの配置パ ターンを示す模式図(C)である。
圆 21]同色 2画素が同一の信号で駆動されるアクティブマトリクス基板を使用した液 晶表示装置にぉ 、てドット反転駆動方式を採用した場合の好まし 、TFTの配置バタ ーンを示す模式図 (A)、当該液晶表示装置においてライン反転駆動方式を採用した 場合の好ましい TFTの配置パターンを示す模式図(B)、および、アクティブマトリクス 基板が 1信号 2画素駆動方式力否かに拘わらず液晶表示装置においてライン反転駆 動方式を採用した場合の好ま ヽ TFTの配置パターンを示す模式図(C)である。
[図 22]液晶表示装置に使用される従来のアクティブマトリクス基板における画素回路 を示す回路図である。
[図 23]上記従来のアクティブマトリクス基板を駆動するための信号および画素電位の 概略的な電圧波形図 (A〜C)である。
圆 24]有機 EL表示装置への本発明の適用を説明するための回路図である。
圆 25]有機 EL表示装置への本発明の適用を説明するための回路図である。
符号の説明
12a〜 12d …ゲート配線
14a〜 14d …ソース配線
15b〜 15d …補助容量配線
16al- -16dl • · ·第 1タイプの TFT (薄膜トランジスタ)
16a2- -16d2 • · ·第 2タイプの TFT (薄膜トランジスタ)
18 • · ·画素電極 (電圧保持用電極)
100 • · -TFT基板 (アクティブマトリクス基板)
101 …対向基板
200 …データ信号線駆動回路
300 …走査信号線駆動回路
CS …補助容量線駆動回路
Ec …対向電極
P (i, j) '画素回路(i= 1〜N、 j = 1〜M) CS (j) …補助容量線 (j = l〜M)
G (j) …走査信号線 (j = l〜M)
S (i) …データ信号線 (i= l〜N)
Pla〜Pld …第 1の画素形成部 (第 1の画素回路)
P2a〜P2d • ··第 2の画素形成部 (第 2の画素回路)
D, Dl, D2 …ドレイン電極
G, Gl, G2 …ゲート電極
S, SI, S2 …ソース電極
SC, SCI, SC2- "半導体層
Cgd …ゲート'ドレイン間の寄生容量
Cs …補助容量
Clc …液晶容量
Vg (j) …走査信号 (j = l〜M)
Vth 〜TFTの閾値電圧
Vs (i) …データ信号 (i= l〜N)
AVd • · -画素電位のレベルシフト
発明を実施するための最良の形態
[0049] < 1.第 1の実施形態 >
く 1.1 全体構成〉
図 1は、本発明の第 1の実施形態に係るアクティブマトリクス基板である TFT基板を 用いた液晶表示装置の全体構成を示すブロック図である。この液晶表示装置は、液 晶表示パネル 1と、データ信号線駆動回路 200、走査信号線駆動回路 300および対 向電極駆動回路 COMを含む駆動回路と、コントロール回路 600とを備えている。
[0050] 液晶表示パネル 1は、液晶層を挟持する 1対の電極基板力もなり、各電極基板の外 表面には偏光板が貼り付けられている。上記 1対の電極基板の一方は TFT基板と呼 ばれるアクティブマトリクス基板であり、この TFT基板 100では、ガラス等の絶縁性基 板上に、複数のデータ信号線 S (1)〜S (N)と複数の走査信号線 G (1)〜G (M)が 互いに交差するように格子状に形成されている。また、複数のデータ信号線 S (l)〜 S (N)と複数の走査信号線 G (1)〜G (M)との交差点にそれぞれ対応して複数 (N X M個)の画素形成部 P (i, j)がマトリクス状に形成されており、これら複数の画素形成 部 P (i, j)は、表示すべき画像を構成する画素にそれぞれ対応する。そして、これら の信号線S (l)〜S (N)、G (l)〜G (M)ぉょび画素形成部P (i, j)をほぼ全面にわ たって覆うように配向膜が設置されている。一方、上記 1対の電極基板の他方は対向 基板 101と呼ばれ、ガラス等の透明な絶縁性基板上に、全面にわたって対向電極 E c、配向膜が順次積層されている。なお本明細書では、上記の画素形成部に回路的 観点から言及する場合には、これを「画素回路」と呼ぶものとする。また、「画素」とは アクティブマトリクス基板を使用して形成される画像の最小単位を意味し、「画素形成 部」は、アクティブマトリクス基板のうち当該最小単位としての画像部分を形成するた めの構成要素をいう。したがって、当該最小単位としての画像部分を形成するための 構成要素が 2つ以上の画素電極や TFTを有して 、ても、その構成要素は 1つの画素 形成部または 1つの画素回路である。一方、当該アクティブマトリクス基板を使用した 表示装置に外部から供給される画像信号の表す画像の最小単位に対応する構成要 素であっても、当該構成要素が 2つ以上の画素電極とそれに対応する画素容量を含 み、かつ当該 2つ以上の画素容量のそれぞれに異なる電圧が印加されるような場合 ( 例えば面積階調に対応した構成となっている場合)には、当該構成要素は複数の画 素形成部とみなされる。なお、カラー表示用のアクティブマトリクス基板は、 R (赤)、 G (青)、 B (青)にそれぞれ対応する 3つの構成要素を 1つの構成単位としていると考え ることもできるが、上記定義によれば、当該 3つの構成要素のそれぞれが画素形成部 または画素回路となる。
[0051] く 1.2 TFT基板および TFTの構造 >
次に、本実施形態に係る TFT基板 100およびそれに含まれる TFTの構造にっ ヽ て説明する。なお、 TFT基板 100における各構成要素のパターン構成は従来の TF T基板と異なるが、製造工程や材料については、特別なものを必要とせず従来と同 様でよいので、詳しい説明を省略する。
[0052] 図 2は、本実施形態に係る TFT基板 100の構造を示す部分平面図である。図 1に 示した液晶表示装置における各画素回路 P (i, j)は、図 2に示す構造の画素形成部 P 1 aまたは P2a (図にぉ 、て点線で囲まれた部分)で実現されて!、る(i = 1〜N, j = 1〜M)。画素形成部 Plaおよび P2aは、共に、走査信号線 G (j)に相当するゲート配 線 12aとデータ信号線 S (i)に相当するソース配線 14aとの交差点の近傍に形成され た TFTを含んで!/、るが、第 1の画素形成部 P 1 aの TFT16a 1と第 2の画素形成部 P2 aの TFT16a2とは、構造が互いに異なる(詳細は後述)。なお、本実施形態における 各画素形成部 Pla, P2aには、隣接ゲート配線(当該画素形成部に対応する交差点 を通る走査信号線 G (j)の隣の走査信号線 G (j— 1)に相当するゲート配線) 12aと絶 縁層を介して対向するように補助容量電極 32aが設けられており、この補助容量電 極 32aと隣接ゲート配線 12aとによって補助容量 Csが形成されている。
[0053] 図 3 (A)は第 1の画素形成部 Plaにおける TFTである第 1タイプの TFT16alの構 造を、図 3 (B)は第 2の画素形成部 P2aにおける TFTである第 2タイプの TFT16a2 の構造を、それぞれ示す拡大平面図である。また、図 4 (A)は図 3 (A)の A— A線に おける断面図であり、図 4 (B)は図 3 (B)の B— B線における断面図である。
[0054] まず、図 3 (A)および図 4 (A)を参照して、第 1の画素形成部 Plaにおける第 1タイ プの TFT16alの構造について説明する。第 1タイプの TFT16alのゲート電極 G1 は、行方向に延びるゲート配線 12aから分岐したパターンとして透明の絶縁性基板 5 0上に形成されている。そして、そのゲート電極 G1を覆うようにゲート絶縁層 52が形 成され、そのゲート絶縁層 52を介してゲート電極 G1の所定部分を覆うように半導体 層 SC1が形成されている。この半導体層 SC1は、例えば n型不純物をドープしたァ モルファスシリコン等力もなる。この半導体層 SC1に部分的に重なるようにソース配線 14aから分岐したパターンとして TFT16alのソース電極 S1が形成されると共に、こ のソース電極 S 1と (TFT16alのチャネル長に相当する)所定間隔を空けて対向しか つ半導体層 SC1に部分的に重なるように TFT16alのドレイン電極 D1が形成されて いる。さら〖こ、これらのソース電極 S1やドレイン電極 D1を覆う保護膜 54が形成されて いる。第 1の画素形成部 Plaにおける画素電極 18は、この保護膜 54の上に透明導 電性物質である ITO (Indium Tin Oxide)等を積層することによって形成され、保護膜 54に開けられたコンタクト CT1を介して上記のドレイン電極 D1と電気的に接続され ている。 [0055] 上記のような第 1タイプの TFT16alを構成するゲート電極 Gl、ソース電極 Sl、ドレ イン電極 D1および半導体層 SC1等の各構成要素は、プラズマ CVD (Chemical Vap our Deposition)法等による各層の積層とフォトリソグラフィ法によるパターユングとによ つて作製される。この作製工程において生じるパターンずれによってゲート電極 G1と ドレイン電極 D1との重なり面積(図 4 (A)において" OL1"で示す部分に相当する面 積)がばらつき、このばらつきによってゲート'ドレイン間の寄生容量 Cgdの値にばら つき (増減)が生じる。特に大型の TFT基板の製造におけるように分割露光が行われ る場合には、その分割露光に対応する分割領域毎に異なるばらつきが生じやすぐ このようなばらつきは、当該 TFT基板を使用した表示装置においては既述のブロック 分かれゃフリツ力発生等の表示上の問題を生じさせる。なお本実施形態では、バタ ーンずれによる寄生容量 Cgdの増減を緩和すベぐ図 3 (A)に示すように、ドレイン電 極 D1はゲート電極 G1の縁部を通過する部分においてソース電極 S1に比べて幅が 狭くなつている(この点は下記の第 2タイプの TFT16a2においても同様)。
[0056] 次に、図 3 (B)および図 4 (B)を参照して、第 2の画素形成部 P2aにおける第 2タイ プの TFT16a2の構造について説明する。第 2タイプの TFT16a2のゲート電極 G2も 、行方向に延びるゲート配線 12aから分岐したパターンとして透明の絶縁性基板 50 上に形成されている(ただし、このゲート電極 G2の分岐位置は第 1タイプの TFT16a 1と若干異なる)。そして、第 1タイプの TFT16alと同様、ゲート電極 G2を覆うように ゲート絶縁層 52が形成され、そのゲート絶縁層 52を介してゲート電極 G2の所定部 分を覆うように半導体層 SC2が形成されている。この半導体層 SC2に部分的に重な るようにソース配線 14aから分岐したパターンとして TFT16a2のソース電極 S2が形 成されると共に、このソース電極 S2と (TFT16a2のチャネル長に相当する)所定間 隔を空けて対向しかつ半導体層 SC2に部分的に重なるように TFT16a2のドレイン 電極 D2が形成されている。ここで、図 3 (B)を図 3 (A)と比較すればわ力るように、こ の第 2タイプの TFT16a2におけるゲート電極 G2とドレイン電極 D2との位置関係が、 第 1タイプの TFT 16a 1におけるゲート電極 G 1とドレイン電極 D 1との位置関係とは逆 になっている。すなわち、第 1タイプの TFT16alでは、ドレイン電極 D1はゲート電極 G 1に部分的に重なりつつ当該ゲート電極 G 1の(図 3における)上側に位置するのに 対し、第 2タイプの TFT16a2では、ドレイン電極 D2はゲート電極 G2に部分的に重な りつつ当該ゲート電極 G2の(図 3における)下側に位置している。このような配置のド レイン電極 D2やソース電極 S2の形成後に保護膜 54が形成される。第 2の画素形成 部 P2aにおける画素電極 18も、この保護膜 54の上に透明導電性物質である ITO等 を積層することによって形成され、保護膜 54に開けられたコンタクト CT2を介して上 記のドレイン電極 D2と電気的に接続されている。
[0057] 上記のような第 2タイプの TFT16aにおいても、製造工程におけるパターンずれに より、ゲート電極 G2とドレイン電極 D2との重なり面積(図 4 (B)において" OL2"で示 す部分に相当する面積)がばらつき、このばらつきによってゲート'ドレイン間の寄生 容量 Cgdの値にばらつき(増減)が生じる。しかし、第 2タイプの TFT16a2では、ドレ イン電極 D2がゲート電極 G2の下側に位置し、ドレイン電極 D2とゲート電極 G2との 位置関係が第 1タイプの TFT16alにおけるドレイン電極 D1とゲート電極 G1の位置 関係と逆になつているので(図 3)、パターンずれによるゲート'ドレイン間の寄生容量 Cgdの増減が第 1タイプの TFT16alとは逆になる。すなわち、ゲート電極 Gl, G2の パターンに対してドレイン電極 Dl, D2のパターンが例えば(図 3における)上方にず れた場合には、第 1タイプの TFT16alではゲート電極 G1とドレイン電極 D1との重複 面積が減少して寄生容量 Cgdが減少するのに対し、第 2タイプの TFT16a2ではゲ ート電極 G2とドレイン電極 D2との重複面積が増大して寄生容量 Cgdが増大する(な お、上下方向に垂直な方向すなわち左右方向の所定量以下のパターンずれに対し ては寄生容量 Cgdは変化しな 、)。
[0058] 本実施形態では、図 2に示すように、マトリクス状に配置された M X N個の画素回路 P (i, j) (以下「画素アレイ」という)は、上記のような第 1タイプの TFT16alと第 2タイ プの TFT16a2という 2種類の TFTを略同数ずつ含み、当該 2種類の TFTが画素ァ レイにおいて均等に分散するように配置されている。すなわち、上記のような第 1タイ プの TFT16alと第 2タイプの TFT16a2とをそれぞれ含む第 1の画素形成部 Plaと 第 2の画素形成部 P2aとが行方向(ゲート配線 12aの延びる方向)および列方向(ソ ース配線 14aの延びる方向)の双方に交互に配置されて!、る。
[0059] < 1.3 画素回路 > 上記第 1タイプの TFT16a 1を含む第 1の画素形成部 P 1 aおよび上記第 2タイプの TFT16a2を含む第 2の画素形成部 P2aは、回路的には同様の構成である。図 5は、 これら画素形成部 Plaおよび P2aに相当する画素回路 P (i, j)の構成を示している。 この画素回路 P (i, j)は、上記第 1および第 2タイプの TFT16al, 16a2に相当する T FT16aと、画素電極 18とそれに液晶層を介して対向する対向電極 Ecとによって形 成される液晶容量 Clcと、補助容量電極 32aと走査信号線 G (j— 1)に相当する隣接 ゲート配線 12aとによって形成される補助容量 Csと、 TFT16aのゲート端子に相当す るゲート電極 Gl, G2とドレイン端子に相当するドレイン電極 Dl, D2とによって形成 されるゲート'ドレイン間寄生容量 Cgdとを含んでいる。そして、 TFT16aのゲート端 子 (ゲート電極)、ソース端子 (ソース電極)およびドレイン端子 (ドレイン電極)は、走 查信号線 G (j)、データ信号線 S (i)および画素電極 18にそれぞれ接続されて 、る。 したがって、 TFT16aのドレイン端子は、液晶容量 Clcを介して対向電極 Ecに接続さ れると共に、補助容量 Csを介して隣接走査信号線 G (j— 1)〖こ接続されること〖こなる。 このようにして本実施形態における画素回路 P (i, j)は、本発明の背景技術の説明に おいて参照した図 22に示した画素回路と同様の構成となっている。したがって、本実 施形態における画素回路 P (i, j)においても、図 23 (A)〜図 23 (C)に示したように、 走査信号線 G (j)の電圧 Vg (j)がゲートオン電圧 Vghからゲートオフ電圧 Vglへと立 ち下がる時に、画素電極 18の電位(画素電位) Vdには寄生容量 Cgdに起因するレ ベルシフト Δ Vdが生じ、このレベルシフト AVdは次式で表される。
Δ Vd = (Vgh - Vgl) · Cgd/ (Clc + Cs + Cgd) · · · ( 2)
< 1.4 作用および効果 >
、ま、上記実施形態に係るアクティブマトリクス基板としての TFT基板 100の製造に おける分割露光に起因して、図 6に示すようなパターンずれが生じたものとする。すな わち TFT基板 100は、分割露光に対応して、図 6に示す A領域, B領域, C領域の 3 つの領域に分かれ、それぞれの領域毎にパターンずれの方向や程度が異なる。ここ で図 6は、 A領域では各画素形成部(各画素回路 P (i, j) )におけるドレイン電極 Dl, D2のパターンがゲート電極 Gl, G2のパターンに対して上方にずれ、 B領域では当 該ゲート電極 Gl, G2のパターンに対して当該ドレイン電極 Dl, D2のパターンのず れが無く(または無視できる程度であり)、 C領域では当該ドレイン電極 Dl, D2のパ ターンが当該ゲート電極 Gl, G2のパターンに対して下方にずれていることを示して いる。この場合、図 7に示すように、第 1タイプの TFT16alにおける寄生容量 Cgdは 、ノターンずれが無い場合に比べて、 A領域では小さくなり、 B領域では変化せず、 C領域では大きくなる。これに対し、第 2タイプの TFT16a2における寄生容量 Cgdは 、ノターンずれが無い場合に比べて、 A領域では大きくなり、 B領域では変化せず、 C領域では小さくなる。そして上記式 (2)より、各画素回路 P (i, j)では、寄生容量 Cg dが大きくなると画素電位のレベルシフト AVd (絶対値)も大きくなり、寄生容量 Cgd 力 S小さくなると画素電位のレベルシフト AVd (絶対値)も小さくなる。
ところで本実施形態に係る TFT基板 100における画素アレイ (マトリクス状に配置さ れた M X N個の画素形成部)では、図 2に示すように、上記のような第 1タイプの TFT 16alと第 2タイプの TFT16a2と!、う 2種類の TFTが均等に分散するように配置され ている。したがって、 A領域では、パターンずれが無い場合に比べて画素電位のレべ ルシフト Δ Vd (絶対値)の小さくなる第 1の画素形成部 Plaと画素電位のレベルシフト AVd (絶対値)の大きくなる第 2の画素形成部 P2aとが均等に分散して存在し、 B領 域では、いずれの画素形成部においても画素電位のレベルシフト AVdはパターン ずれの無い場合と同様であり、 C領域では、パターンずれが無い場合に比べて画素 電位のレベルシフト AVd (絶対値)の大きくなる第 1の画素形成部 Plaと画素電位の レベルシフト AVd (絶対値)の小さくなる第 2の画素形成部 P2aとが均等に分散して 存在する。その結果、 A領域、 B領域、 C領域の各領域でのレベルシフト AVdの平均 値 (領域内平均値)は、いずれも、パターンずれが無い場合のレベルシフト AVdOに 等しくなる。よって、この TFT基板 100を使用した液晶表示装置では、全面に同一階 調を表示すべき場合にぉ 、て実際の表示で領域毎に階調が異なると 、うことはなく、 領域単位でフリツ力が生じるということもない。すなわち、本実施形態によれば、 2種類 の TFT16alおよび 16a2が画素アレイにおいて均等に分散するように配置されるこ とに基づく寄生容量 Cgdの平均化(したがってレベルシフト AVdの平均ィ匕)により、 製造工程における分割露光に起因するブロック分かれゃフリツ力の発生が抑制され る。なお、上下方向に垂直な方向すなわち左右方向の(所定量以下の)パターンず れに対しては寄生容量 Cgdは変化しな 、ので、どの方向にパターンずれが生じても 、上記 2種類の TFTについて寄生容量 Cgdの増減が互いに逆になる力、または当該 寄生容量 Cgdが変化しない。したがって、どの方向のパターンずれに対しても、ブロ ック分かれゃフリツ力の発生が抑制される。
[0062] しかも本実施形態によれば、各画素形成部に含まれる TFTとして 2種類の TFTを 使用するだけでブロック分かれゃフリツ力の発生を抑制することができ、各画素形成 部に対して TFTを追加したり寄生容量のばらつき補償のための容量を追加したりす ることはなく、新たな構成要素の追カ卩は不要であるので、各画素形成部における遮 光部分の面積は増力!]しない。したがって、既述の先行技術とは異なり、開口率が低 下することはない。また、上記のように各画素形成部において構成要素の追力卩は不 要であるので、アクティブマトリクス基板 (TFT基板)の製造工程の複雑化およびそれ による歩留まりの低下を招くこともない。さらに、同様の理由で、 1画素当たりの寄生 容量も増大しないので、画素電位のレベルシフト AVdが増大して表示品位が低下す ることもなぐ走査信号などの伝搬遅延や駆動回路の消費電力も増大しない。
[0063] < 2.第 2の実施形態 >
図 8は、本発明の第 2の実施形態に係るアクティブマトリクス基板である TFT基板を 用いた液晶表示装置の全体構成を示すブロック図である。この液晶表示装置は、上 記第 1の実施形態とは異なり、 TFT基板 100bに形成された複数の走査信号線 G (1 )〜G (M)にそれぞれ平行して延在する複数の補助容量線 CS (1)〜CS (M)を備え るとともに、各補助容量線CS (1)〜CS (M)にその一端および他端から共通電極電 位 Vcsをそれぞれ与える 2つの補助容量線駆動回路 CSを備えている。これら以外の 構成は第 1の実施形態に係る TFT基板 100bを用いた液晶表示装置(図 1)と同様で あるので、同一または対応する部分に同一の参照符号を付して詳しい説明を省略す る。また、この TFT基板 100bについては、各構成要素のパターン構成が上記第 1の 実施形態と異なるが、製造工程や材料は前記第 1の実施形態と同様であるので、説 明を省略する(後述の他の実施形態に係るアクティブマトリクス基板としての TFT基 板についても同様である)。
[0064] < 2.1 TFT基板および TFTの構造 > 図 9 (A)は、本実施形態に係る TFT基板 100bの構造を示す部分平面図である。 図 8に示した液晶表示装置における各画素回路 P (i, j)は、図 9 (A)に示す構造の画 素形成部 Plbまたは P2bで実現されている。画素形成部 Plbおよび P2bは、共に、 走査信号線 G (j)に相当するゲート配線 12bとデータ信号線 S (i)に相当するソース配 線 14bとの交差点の近傍に形成された TFTを含んでいるが、第 1の画素形成部 Plb の TFT16blと第 2の画素形成部 P2bの TFT16b2とは、構造が互いに異なる(詳細 は後述)。なお、本実施形態における各画素形成部 Plb, P2bの中央部には、画素 電極 18と電気的に接続された補助容量電極 32bが設けられており、各補助容量電 極 32bは、補助容量線 CS (j)に相当する補助容量配線 15bと絶縁層を介して対向 するように配置されている。これにより、各画素形成部 Plb、 P2bにおいて、補助容量 電極 32bと補助容量配線 15bとによって補助容量 Csが形成されている。
[0065] 図 9 (B)は第 1の画素形成部 Plbにおける TFTである第 1タイプの TFT16blの構 造を、図 9 (C)は第 2の画素形成部 P2bにおける TFTである第 2タイプの TFT16b2 の構造を、それぞれ示す拡大平面図である。なお、これらの TFT16bl, 16b2の断 面構造については、上記第 1の実施形態における TFT16al, 16a2の断面構造を 示す図 4 (A)および図 4 (B)より明らかであるので、図示および説明を省略する(他の 実施形態においても同様)。
[0066] 図 9 (B)を図 3 (A)と比較すればわ力るように、本実施形態における第 1タイプの TF Tl 6b 1は、上記第 1の実施形態における第 1タイプの TFT16a 1と同様の構造 (パタ ーン構成)となっており、同一または対応する部分に同一の参照符号を付して詳しい 説明を省略する。また、図 9 (C)を図 3 (B)と比較すればわ力るように、本実施形態に おける第 2タイプの TFT16b2も、上記第 1の実施形態における第 2タイプの TFT16 a2と同様の構造 (パターン構成)となっており、同一または対応する部分に同一の参 照符号を付して詳 ヽ説明を省略する。
[0067] 図 9 (B)および図 9 (C)に示すように本実施形態においても、第 1タイプの TFT16b 1では、ドレイン電極 D1はゲート電極 G1に部分的に重なりつつ当該ゲート電極 G1 の(図 9における)上側に位置するのに対し、第 2タイプの TFT16b2では、ドレイン電 極 D2はゲート電極 G2に部分的に重なりつつ当該ゲート電極 G2の(図 9における)下 側に位置している。したがって、製造時において(図 9における)上下方向のパターン ずれが生じると、パターンずれが無い場合に比べて TFT16bl, 16b2におけるソー ス 'ドレイン間の寄生容量 Cgdが増減し、その寄生容量 Cgdの増減は、第 1タイプの T FT16blと第 2タイプの TFT16b2とで逆になる(なお、左右方向の所定量以下のパ ターンずれに対しては寄生容量 Cgdは変化しない)。すなわち、ゲート電極 Gl, G2 のパターンに対してドレイン電極 Dl, D2のパターンが例えば(図 9における)上方に ずれた場合には、第 1タイプの TFT16blではゲート電極 G1とドレイン電極 D1との重 複面積が減少して寄生容量 Cgdが減少するのに対し、第 2タイプの TFT16b2では ゲート電極 G2とドレイン電極 D2との重複面積が増大して寄生容量 Cgdが増大する。
[0068] 図 9 (A)に示すように本実施形態においても、マトリクス状に配置された M X N個の 画素回路 P (i, j)である画素アレイは、上記のような第 1タイプの TFT16blと第 2タイ プの TFT16b2という 2種類の TFTを略同数ずつ含み、当該 2種類の TFTが画素ァ レイにおいて均等に分散するように配置されている。すなわち、上記のような第 1タイ プの TFT16blと第 2タイプの TFT16b2とをそれぞれ含む第 1の画素形成部 Plbと 第 2の画素形成部 P2bとが行方向(ゲート配線 12bの延びる方向)および列方向(ソ ース配線 14bの延びる方向)の双方に交互に配置されて!、る。
[0069] く 2.2 画素回路 >
上記第 1タイプの TFT16blを含む第 1の画素形成部 Plbおよび上記第 2タイプの TFT16b2を含む第 2の画素形成部 P2bは、回路的には同様の構成である。図 10は 、これら画素形成部 Plbおよび P2bに相当する画素回路 P (i, j)の構成を示している 。この画素回路 P (i, j)は、第 1の実施形態と同様、第 1および第 2タイプの TFT16bl , 16b2に相当する TFT16bと、液晶容量 Clcと、補助容量 Csと、ゲート'ドレイン間の 寄生容量 Cgdとを含んでいる。ただし、本実施形態における補助容量 Csは、第 1の 実施形態とは異なり、補助容量線 CS (j)に相当する補助容量電極 32bと補助容量配 線 15bとによって形成されており、 TFT16bのドレイン端子(ドレイン電極)は補助容 量 Csを介して補助容量線 CS (j)に接続されているが、その他の構成については第 1 の実施形態における画素回路 P (i, j)と同様であるので(図 5)説明を省略する。
[0070] 本実施形態における画素回路 P (i, j)においても、図 23 (A)〜図 23 (C)に示したよ うに、走査信号線 G (j)の電圧 Vg (j)がゲートオン電圧 Vgh力もゲートオフ電圧 Vglへ と立ち下がる時に、画素電極 18の電位 (画素電位) Vdには寄生容量 Cgdに起因す るレベルシフト AVdが生じ、このレベルシフト AVdは次式で表される。
Δ Vd = (Vgh-Vgl) · Cgd/ (Clc + Cs + Cgd) · · · (3)
[0071] < 2.3 作用および効果 >
本実施形態に係る TFT基板 100における画素アレイにおいても、第 1の実施形態 と同様、図 9 (A)に示すように、上記のような第 1タイプの TFT16blと第 2タイプの TF T16b2という 2種類の TFTが均等に分散するように配置されている。したがって、こ のような 2種類の TFT16blおよび 16b2が均等に分散するように配置されることに基 づく寄生容量 Cgdの平均化(したがってレベルシフト AVdの平均ィ匕)により、製造ェ 程における分割露光に起因するブロック分かれゃフリツ力の発生が抑制され、第 1の 実施形態と同様の効果が得られる。
[0072] < 3.第 3の実施形態 >
次に、本発明の第 3の実施形態に係るアクティブマトリクス基板である TFT基板を 用いた液晶表示装置について説明する。この液晶表示装置の全体構成は、第 2の 実施形態と同様であるので (図 8)、同一または対応する部分に同一の参照符号を付 して詳しい説明を省略する。また、本実施形態における各画素回路 P (i, j)の回路構 成も、図 10に示した第 2の実施形態における画素回路 P (i, j)と同様であるので、同 一または対応する部分に同一の参照符号を付して説明を省略する。
[0073] 図 11 (A)は、本実施形態に係るアクティブマトリクス基板である TFT基板 100cの 構造を示す部分平面図である。本実施形態における画素回路 P (i, j)は、図 11 (A) に示すように、第 1タイプの TFT16clを含む第 1の画素形成部 Plc、または、第 2タ イブの TFT16c2を含む第 2の画素形成部 P2cで実現されている。この TFT基板 10 Ocは、補助容量電極 32cのサイズや補助容量配線 15cの形状、 TFT16cl, 16c2 のドレイン電極 Dl, D2と補助容量電極 32cとの接続パターンが第 2の実施形態と異 なるが、全体的な構造は同様であり、図 11 (A)に示すゲート配線 12c、ソース配線 1 4c、補助容量配線 15cは、図 8に示す走査信号線 G (i)、データ信号線 S (j)、補助 容量線 CS (j)にそれぞれ相当する。 [0074] 図 11 (B)は第 1の画素形成部 Picにおける TFTである第 1タイプの TFT16clの構 造を、図 11 (C)は第 2の画素形成部 P2cにおける TFTである第 2タイプの TFT16c2 の構造を、それぞれ示す拡大平面図である。図 11 (B)を図 9 (B)と比較すればわか るように、本実施形態における第 1タイプの TFT16clは、上記第 2の実施形態にお ける第 1タイプの TFT16blと同様の構造 (パターン構成)となっており、同一または 対応する部分に同一の参照符号を付して詳しい説明を省略する。また、図 11 (C)を 図 9 (C)と比較すればわ力るように、本実施形態における第 2タイプの TFT16c2も、 上記第 2の実施形態における第 2タイプの TFT16b2と同様の構造 (パターン構成)と なっており、同一または対応する部分に同一の参照符号を付して詳しい説明を省略 する。
[0075] 図 11 (B)および図 11 (C)に示すように本実施形態においても、第 1タイプの TFT1 6clでは、ドレイン電極 D1はゲート電極 G1に部分的に重なりつつ当該ゲート電極 G 1の(図 11における)上側に位置するのに対し、第 2タイプの TFT16c2では、ドレイン 電極 D2はゲート電極 G2に部分的に重なりつつ当該ゲート電極 G2の(図 11におけ る)下側に位置している。したがって、製造時におけるパターンずれによるゲート'ドレ イン間の寄生容量 Cgdの増減は、第 1タイプの TFT16clと第 2タイプの TFT16c2と で逆になる。すなわち、ゲート電極 Gl, G2のパターンに対してドレイン電極 Dl, D2 のパターンが例えば(図 11における)上方にずれた場合には、第 1タイプの TFT16c 1ではゲート電極 G1とドレイン電極 D1との重複面積が減少して寄生容量 Cgdが減少 するのに対し、第 2タイプの TFT16c2ではゲート電極 G2とドレイン電極 D2との重複 面積が増大して寄生容量 Cgdが増大する。
[0076] 図 11 (A)に示すように本実施形態においても、画素アレイは、上記のような第 1タイ プの TFT16c 1と第 2タイプの TFT16c2と!、う 2種類の TFTを略同数ずつ含み、当 該 2種類の TFTが画素アレイにぉ 、て均等に分散するように配置されて 、る。すなわ ち、上記のような第 1タイプの TFT16clと第 2タイプの TFT16c2をそれぞれ含む第 1の画素形成部 Picと第 2の画素形成部 P2cとが行方向および列方向の双方に交互 に配置されている。したがって、本実施形態においても、このような 2種類の TFT16c 1および 16c2が画素アレイに均等に分散するように配置されることに基づく寄生容量 Cgdの平均化(したがって画素電位のレベルシフト AVdの平均ィ匕)により、製造工程 における分割露光に起因するブロック分かれゃフリツ力の発生が抑制され、第 1およ び第 2の実施形態と同様の効果が得られる。
[0077] <4.第 4の実施形態 >
次に、本発明の第 4の実施形態に係るアクティブマトリクス基板である TFT基板を 用いた液晶表示装置について説明する。この液晶表示装置の全体構成も、第 2の実 施形態と同様であるので (図 8)、同一または対応する部分に同一の参照符号を付し て詳しい説明を省略する。また、本実施形態における各画素回路 P (i, j)の回路構成 も、図 10に示した第 2の実施形態における画素回路 P (i, j)と同様であるので、同一 または対応する部分に同一の参照符号を付して説明を省略する。
[0078] 図 12 (A)は、本実施形態に係るアクティブマトリクス基板である TFT基板 100dの 構造を示す部分平面図である。本実施形態における画素回路 P (i, j)は、図 12 (A) に示すように、第 1タイプの TFT16dlを含む第 1の画素形成部 Pld、または、第 2タ イブの TFT16d2を含む第 2の画素形成部 P2dで実現されており、データ信号線 S (i )に相当するソース配線 14dが各画素形成部 Pld, P2dの中央を列方向に延びるよう に形成されており(以下、 TFT基板におけるこのような構造を「センターソース構造」と いう)、この点で第 1〜第 3の実施形態と相違する。また、補助容量電極 32dのサイズ および位置や補助容量配線 15dの形状、 TFT16dl, 16d2のパターン構成も第 1〜 第 3の実施形態と異なるが、上述のように回路構成としては第 2の実施形態と同様で ある。なお、図 12 (A)に示すゲート配線 12d、ソース配線 14d、補助容量配線 15dは 、図 8に示す走査信号線 G (i)、データ信号線 S (j)、補助容量線 CS (j)にそれぞれ相 当する。
[0079] 図 12 (B)は第 1の画素形成部 Pldにおける第 1タイプの TFT16dlの構造を、図 1 2 (C)は第 2の画素形成部 P2dにおける第 2タイプの TFT16d2の構造を、それぞれ 示す拡大平面図である。図 12 (B)を図 9 (B)と比較すればわ力るように、本実施形態 における第 1タイプの TFT16dlは、上記第 2の実施形態における第 1タイプの TFT 16blを 90度だけ回転させたような構造 (パターン構成)となっており、対応する部分 に同一の参照符号を付して詳しい説明を省略する。また、図 12 (C)を図 9 (C)と比較 すればわ力るように、本実施形態における第 2タイプの TFT16d2も、上記第 2の実 施形態における第 2タイプの TFT16d2を 90度だけ回転させたような構造 (パターン 構成)となっており、対応する部分に同一の参照符号を付して詳しい説明を省略する
[0080] 図 12 (B)および図 12 (C)に示すように本実施形態では、第 1タイプの TFT16dlに おいて、ドレイン電極 D1はゲート電極 G1に部分的に重なりつつ当該ゲート電極 G1 の(図 12における)左側に位置するのに対し、第 2タイプの TFT16d2において、ドレ イン電極 D2はゲート電極 G2に部分的に重なりつつ当該ゲート電極 G2の(図 12に おける)右側に位置している。したがって、製造時において(図 12における)左右方 向のパターンずれが生じると、パターンずれが無い場合に比べて TFT16dl, 16d2 におけるソース ·ドレイン間の寄生容量 Cgdが増減し、その寄生容量 Cgdの増減は、 第 1タイプの TFT16dlと第 2タイプの TFT16d2とで逆になる(なお、上下方向の所 定量以下のパターンずれに対しては寄生容量 Cgdは変化しない)。すなわち、ゲート 電極 Gl, G2のパターンに対してドレイン電極 Dl, D2のパターンが例えば(図 12に おける)左方にずれた場合には、第 1タイプの TFT16dlではゲート電極 G1とドレイ ン電極 D1との重複面積が減少して寄生容量 Cgdが減少するのに対し、第 2タイプの TFT16d2ではゲート電極 G2とドレイン電極 D2との重複面積が増大して寄生容量 C gdが増大する。
[0081] 図 12 (C)に示すように本実施形態においても、画素アレイは、上記のような第 1タイ プの TFT16dlと第 2タイプの TFT16d2という 2種類の TFTを略同数ずつ含み、当 該 2種類の TFTが画素アレイにぉ 、て均等に分散するように配置されて 、る。すなわ ち、上記のような第 1タイプの TFT16dlと第 2タイプの TFT16c2とをそれぞれ含む 第 1の画素形成部 Pldと第 2の画素形成部 P2dとが行方向および列方向の双方に交 互に配置されている。したがって、本実施形態においても、このような 2種類の TFT1 6dlおよび 16d2が画素アレイに均等に分散するように配置されることに基づく寄生 容量 Cgdの平均化(したがって画素電位のレベルシフト AVdの平均ィ匕)により、製造 工程における分割露光に起因するブロック分かれゃフリツ力の発生が抑制され、第 1 〜第 3の実施形態と同様の効果が得られる。 [0082] < 5.変形例 >
< 5.1 画素構造 >
図 13 (A)は、 日本の特開 2004 - 78157号公報に記載のマルチ ·ドメイン ·バーテ ィカル ·ァラインド ·モード (MVAモード)の液晶表示装置の画素構造を示す図であり 、第 1の画素電極 118aおよび第 1の TFTl 16aを含む第 1の副画素と、第 2の画素電 極 118bおよび第 2の TFTl 16bを含む第 2の副画素とによって 1つの画素形成部が 構成されており、第 1の副画素と第 2の副画素との間には走査線 (ゲート配線) 112が 配設されて 、る。このように 1つの画素部がその中央を通過するゲート配線 112によ つて 2つの副画素に分割されて 、る構造 (以下「センターゲート構造」 t 、う)のァクテ イブマトリクス基板である TFT基板に対しても、本発明の適用が可能である。すなわ ち、 1つの画素部において、第 1の画素電極 118aと対向電極とによって形成される 液晶容量 Clclに印加される電圧と、第 2の画素電極 118bと対向電極とによって形成 される液晶容量 Clc2に印加される電圧が異なる場合には、第 1および第 2の副画素 のそれぞれが上記各実施形態における 1つの画素形成部に相当する。したがって、 図 13 (A)に示す例において、第 1の TFT116aとして上記第 1タイプの TFT16al〜 16dlを使用し、第 2の TFT116bとして上記第 2タイプの TFT16a2〜16d2を使用 することにより、上記各実施形態と同様の効果を得ることができる。なお、図 13 (A)に おいて、参照符号" 114"は信号線 (ソース配線)を、参照符号" 118s"は第 1および 第 2の画素電極 118a, 118bに形成されたスリットを、参照符号" 124"は補助容量配 線を、参照符号" 132"は補助容量電極を、参照符号" 116E"は第 1の TFT116aの ドレイン電極延長部を、参照符号" 1160"は第 2の TFTl 16bのドレイン電極延長部 を、それぞれ示している。
[0083] 図 13 (B)は、日本の特開 2004— 78157号公報に記載の軸対称配向モード (AS Mモード)の液晶表示装置の画素構造を示す図であって、センターゲート構造の TF T基板の他の例を示している。この例についても、 1つの画素部において、第 1の画 素電極 218aと対向電極とによって形成される液晶容量 Clclに印加される電圧と、第 2の画素電極 118bと対向電極とによって形成される液晶容量 Clc2に印加される電 圧が異なる場合には、第 1および第 2の副画素のそれぞれが上記各実施形態におけ る 1つの画素形成部に相当し、本発明の適用が可能である。すなわち、この例におい て、第 1の画素部に含まれる第 1の TFT216aとして上記第 1タイプの TFT16a 1〜 1 6dlを使用し、第 2の画素部に含まれる第 2の TFT216bとして上記第 2タイプの TFT 16a2〜16d2を使用することにより、上記各実施形態と同様の効果を得ることができ る。なお、図 13 (B)において、参照符号" 212"は走査線 (ゲート配線)を、参照符号" 214"は信号線 (ソース配線)を、参照符号" 218s"は第 1および第 2の画素電極 218 a, 218bに形成されたスリットを、参照符号" 219"はリブに相当する凸部を、参照符 号" 224"は補助容量配線を、参照符号" 232"は補助容量電極を、参照符号" 216E "は第 1の TFT216aのドレイン電極延長部を、参照符号" 2160"は第 2の TFT216 bのドレイン電極延長部を、それぞれ示している。
[0084] 図 14 (A)は、 日本の特開 2004— 78157号公報に記載の MVAモードの液晶表示 装置の他の画素構造を示す図であって、センターゲート構造の TFT基板の更に他 の例を示している。この例では、開口率を高めるベぐドレイン電極延長部 116E'お よび 1160'は、それぞれ対応する副画素電極 118a'および 118b'が有するスリット 118sとその大部分が重なるように配置されている。この例についても、 1つの画素部 において、第 1の画素電極 118a'と対向電極とによって形成される液晶容量 Clclに 印加される電圧と、第 2の画素電極 118b'と対向電極とによって形成される液晶容量 Clc2に印加される電圧が異なる場合には、第 1および第 2の副画素のそれぞれが上 記各実施形態における 1つの画素形成部に相当し、本発明の適用が可能である。す なわち、この例において、第 1の画素部に含まれる第 1の TFT116a'として上記第 1 タイプの TFT16al〜16dlを使用し、第 2の画素部に含まれる第 2の TFT116b,とし て上記第 2タイプの TFT16a2〜16d2を使用することにより、上記各実施形態と同様 の効果を得ることができる。なお、図 14 (A)において、参照符号" 112"は走査線 (ゲ ート配線)を、参照符号" 114"は信号線 (ソース配線)を、参照符号" 124"は補助容 量配線を、参照符号" 132"は補助容量電極を、それぞれ示している。
[0085] 図 14 (B)は、日本の特開 2004— 78157号公報に記載のインプレイン ·スィッチン グ'モード (IPSモード)の液晶表示装置の画素構造を示す図であって、センターゲー ト構造の TFT基板の更に他の例を示している。この例では、副画素電極 318aおよび 318bと対向電極 317aおよび 317bとの間 319に位置する液晶層に液晶層面に略平 行な電界 (横電界)が生成される。この例では、 1つの画素部を構成する 2つの副画 素のうち、第 1の副画素の TFT316aおよび第 2の副画素の TFT316bは、 TFTオン ゲート構造を有し、ソース配線としての信号線と一体的に形成されたソース電極を共 有している。このような TFTオンゲート構造を有する TFT基板においても、所定方向 のパターンずれに対する寄生容量 Cgdの増減が互いに逆となる 2種類の TFTが画 素アレイにおいて均等に分散するように配置されることになるので、本発明の適用例 と考えることができ、上記各実施形態と同様の効果を得ることができる。なお、図 14 ( B)において、参照符号" 312"は走査線 (ゲート配線)を、参照符号" 314"は信号線( ソース配線)を、参照符号" 324"は補助容量配線を、参照符号" 332"は補助容量電 極を、参照符号" 316E"は第 1の TFT316aのドレイン電極延長部を、参照符号" 31 60"は第 2の TFT316bのドレイン電極延長部を、それぞれ示して!/、る。
[0086] 図 13 (A)、図 13 (B)、図 14 (A)および図 14 (B)に示した上記変形例では、 1つの 画素部が 2つの副画素から構成されて 、るが、 3つ以上の副画素から構成される場 合であっても、上記各実施形態における第 1および第 2タイプの TFTという、所定方 向のパターンずれに対する寄生容量 Cgdの増減が互いに逆となる 2種類の TFTが 画素アレイにおいて略均等に分散するように配置されることにより、上記各実施形態 と同様の効果を得ることができる。また、図 13 (A)、図 13 (B)、図 14 (A)および図 14 (B)に示した上記変形例において、 1つの画素部を構成する 2つの副画素(より一般 的には複数の副画素)に対応する液晶容量に同一の電圧が印加される場合であつ ても、アクティブマトリクス基板としての TFT基板を使用して形成される画像の最小単 位としての 1画素当たりの開口率や寄生容量や広視野角モードの表示品位等の点で 上記各実施形態に比べて不利ではあるが、製造時の分割露光に起因するブロック別 れゃフリツ力の抑制という点では同様の効果を得ることができる。
[0087] < 5.2 TFT構造 >
本発明に係るアクティブマトリクス基板としての TFT基板における TFTの構造として は、上記各実施形態や変形例において示した TFT構造以外にも各種の構造を採用 することができる。例えば下記に述べるような構造の 2種類の TFTを画素アレイにお いて略均等に分散するように配置する構成によっても、上記各実施形態と同様の効 果を得ることができる。
[0088] 上記第 1〜第 3の実施形態(図 2、図 9 (A)、図 11 (A) )における 2種類の TFT (第 1 タイプの TFT16al〜16clおよび第 2タイプの TFT16a2〜16c2)として、図 15 (A) に示す 2種類の TFT26alおよび 26a2、図 15 (B)に示す 2種類の TFT26blおよび 26b2、図 15 (C)〖こ示す 2種類の TFT26clおよび 26c2、図 15 (D)〖こ示す 2種類の TFT26dlおよび 26d2のいずれをも使用することができる。なお、図 15 (A)〜図 15 (D)において、上記 2種類の TFTのうち一方の TFT26al〜26dlを構成するドレイ ン電極、ソース電極、ゲート電極および半導体層は、それぞれ、参照符号" Dl"、 "S 1"、 "G1"および" SCI"で示され、他方の TFT26a2〜26d2を構成するドレイン電 極、ソース電極、ゲート電極および半導体層は、それぞれ、参照符号" D2"、 "S2"、 " G2"および" SC2"で示されており、ゲート配線は参照符号" 12"で示されている。
[0089] また、上記第 4の実施形態のようなセンターソース構造の TFT基板(図 12 (A) )に おける 2種類の TFT (第 1タイプの TFT16dlおよび第 2タイプの TFT16d2)として、 図 16 (A)に示す 2種類の TFT36alおよび 36a2、図 16 (B)に示す 2種類の TFT36 blおよび 36b2、図 16 (C)【こ示す 2種類の TFT36clおよび 36c2、図 16 (D)【こ示 す 2種類の TFT36dlおよび 36d2のいずれをも使用することができる。なお、図 16 ( A)〜図 16 (D)において、上記 2種類の TFTのうち一方の TFT36al〜36dlを構成 するドレイン電極、ソース電極、ゲート電極および半導体層は、それぞれ、参照符号" Dl"、 "Sl"、 "G1"および" SCI"で示され、他方の TFT36a2〜36d2を構成するド レイン電極、ソース電極、ゲート電極および半導体層は、それぞれ、参照符号" D2"、 "S2"、 "G2"および" SC2"で示されており、ゲート配線は参照符号" 12"で、ソース 配線は参照符号" 14"でそれぞれ示されて ヽる。
[0090] さらに、上記変形例のようなセンターゲート構造の TFT基板(図 13 (A)、図 13 (B) 、図 14 (A)および図 14 (B) )における 2種類の TFT(TFT116aおよび TFT116b等 )として、図 17 (A)に示す 2種類の TFT46alおよび 46a2、図 17 (B)に示す 2種類の TFT46blおよび 46b2、図 17 (C)に示す 2種類の TFT46clおよび 46c2、図 17 (D )に示す 2種類の TFT46dlおよび 46d2、図 17 (E)に示す 2種類の TFT46elおよ び 46e2のいずれをも使用することができる(図 17 (A)〜図 17 (C)に示した構造の T FTは日本の特開 2004— 78157号公報に記載されている力 同公報には、製造時 の分割露光に起因するブロック分かれゃフリツ力の抑制という本発明の課題やその解 決に関しては言及されていない)。なお、図 17 (A)に示す 2種類の TFT46alおよび 46a2、図 17 (B)【こ示す 2種類の TFT46blおよび 46b2、図 17 (C)【こ示す 2種類の TFT46clおよび 46c2は、オンゲート構造であって、ゲート電極 G、ソース電極 Sおよ び半導体層 SCを共通にしており、図 17 (A)〜図 17 (C)において、 2種類の TFTの うち一方の TFT46al〜46clを構成するドレイン電極は参照符号" D1"で示され、他 方の TFT46a2〜46c2を構成するドレイン電極は参照符号" D2"で示されて!/、る。ま た、図 17 (D)に示す 2種類の TFT46dlおよび 46d2、図 17 (E)に示す 2種類の TF T46elおよび 46e2は、ゲート電極 Gおよび半導体層 SCを共通にしており(図 17 (E )の TFT46elおよび 46e2はソース電極 Sおよび半導体層 SCも共通にしている)、図 17 (D)において、 2種類の TFTのうち一方の TFT46dlを構成するドレイン電極、ソ ース電極および半導体層は、それぞれ、参照符号" Dl"、 "SI"および" SCI"で示さ れ、他方の TFT46d2を構成するドレイン電極、ソース電極および半導体層は、それ ぞれ、参照符号" D2"、 "S2"および" SC2"で示されており、図 17 (E)において、 2種 類の TFTのうち一方の TFT46e 1を構成するドレイン電極は参照符号" D 1 "で示され 、他方の TFT46e2を構成するドレイン電極は参照符号" D2"で示されて!/、る。
[0091] < 5.3 TFTの配置パターン >
上記各実施形態では、第 1タイプの TFT16al〜16dlと第 2タイプの TFT16a2〜 16d2 (をそれぞれ含む第 1の画素形成部 PIと第 2の画素形成部 P2)とが行方向お よび列方向の双方に交互に配置されているが(図 2、図 9 (A)、図 11 (A) )、各実施 形態に係るアクティブマトリクス基板としての TFT基板の駆動方式に応じて、第 1タイ プの TFT16al〜16dlと第 2タイプの TFT16a2〜16d2のような 2種類の TFTを画 素アレイにおいて均等に分散するように配置するのが好ましい。以下、上記各実施 形態や変形例に係る TFT基板を使用した液晶表示装置における各種駆動方式に 対する好まし 、配置パターンにつ 、て説明する。
[0092] 図 18 (A)〜図 18 (C)は、上記第 1〜第 4の実施形態におけるような画素構造 (セン ターソース構造を含む)のアクティブマトリクス基板を使用した液晶表示装置において ライン反転駆動方式、 1Hドット反転駆動方式、および 2Hドット反転駆動方式をそれ ぞれ採用した場合の好ましい TFTの配置パターンを示す模式図である。図 18 (A) 〜図 18 (C)は、画素アレイを模式的に示しており、その上辺近傍に記された" R"、 " G"、 "B"は、直下の列が赤の画素、緑の画素、青の画素力もそれぞれ構成されること を示している。また、図 18 (A)〜図 18 (C)において小矩形で示される各画素に"(1) "または" (2) "が付されており、 "(1) "が付された画素 (画素形成部)における TFTは 第 1タイプの TFTであり、 " (2) "が付された画素における TFTは第 2タイプの TFTで あることを示している。なお、以上において説明したように、第 1タイプの TFTと第 2タ イブの TFTとは、所定方向のパターンずれに対して寄生容量 Cgdの増減が互いに 逆になる。また、図 18 (A)〜図 18 (C)においてハッチングの付された小矩形は黒表 示の画素を、ハッチングの付されていない小矩形は画素は白表示の画素を、それぞ れ表している。そして、黒表示の画素の印加電圧は全て正負極性の一方の極性 (例 えば正極性)であり、白表示の画素の印加電圧は全て他方の極性 (例えば負極性) である。以上のような図 18 (A)〜図 18 (C)における表現方法と同様の表現方法は、 後述の図 20および図 21においても採用するものとする。
液晶表示装置においてライン反転駆動方式が採用される場合、各走査信号線 G (j )には図 19 (A)に示すような走査信号 Vg (j)が印加され (j = l〜M)、各データ信号 線 S (i)に印加されるデータ信号 Vs (i)の(対向電極 Ecを基準とする)極性は、図 19 ( B)に示すように反転される。これにより、液晶層への印加電圧(したがって画素容量 または液晶容量への印加電圧)の極性が、 1フレーム期間毎に反転するだけでなぐ 1走査信号線毎に (空間的に)反転する。この場合、黒と白の横ラインが交互に現れ るパターン (以下「水平方向ストライプパターン」 、う)が従来の液晶表示装置で表 示されると、黒表示の画素に対する印加電圧の極性が同一(例えば正極性)となると 共に、白表示の画素に対する印加電圧の極性が同一(例えば負極性)となり、かつ各 画素容量への印加電圧の極性が 1フレーム期間毎に反転するので、それぞれの画 素電位がパターンずれのために正負不均等であれば、その表示においてフリツ力と して認識される(以下、このように或る駆動方式に対して「フリツ力」の発生しやす!/、パ ターンをその駆動方式の「フリツ力パターン」という)。これに対し、図 18 (A)に示すよ うに画素アレイにおいて、第 1タイプの TFTと第 2タイプの TFTとが行方向および列 方向の双方に交互に配置されると、製造時の分割露光に対応する分割領域毎にパ ターンずれ生じても、そのパターンずれによる寄生容量 Cgdの増減およびそれに基 づく画素電位のレベルシフト AVdは、白表示の領域において平均化される(黒表示 の領域においても平均化される力 本質的に見えない)。これにより、人間にはフリツ 力が知覚されない。また、画素電極毎の輝度変化も隣接画素間で平均化されるため 、ブロック分かれも知覚されない。
[0094] 液晶表示装置において 1Hドット反転駆動方式が採用される場合、各走査信号線 G
(j)には図 19 (A)に示すような走査信号 Vg (j)が印加され (j = l〜M)、各データ信 号線 S (i)に印加されるデータ信号 Vs (i)の(対向電極を基準とする)極性は、図 19 ( C)に示すように反転される。これにより、液晶層への印加電圧(したがって画素容量 または液晶容量への印加電圧)の極性が 1フレーム期間毎に反転するだけでなぐ 1 走査信号線毎かつ 1データ信号線毎に (空間的に)反転する。この場合、図 18 (B) に示すように黒と白が行方向と列方向に画素単位で交互に現れるパターン (以下「巿 松パターン」という)が従来の液晶表示装置で表示されると、その表示においてフリツ 力が発生しやすい。すなわち、 1Hドット反転駆動方式が採用された場合、市松バタ 一ンがフリツ力パターンとなる。これに対し、図 18 (B)に示すように画素アレイにおい て、第 1タイプの TFTと第 2タイプの TFTとが行方向に 2個ずつ交互に配置されかつ 列方向に 1個ずつ交互に配置されると、製造時の分割露光に対応する分割領域毎 にパターンずれ生じても、そのパターンずれによる寄生容量 Cgdの増減およびそれ に基づく画素電位のレベルシフト AVdは、白表示の領域において平均化される。こ れにより、人間にはフリツ力が知覚されなくなり、また、ブロック分かれも知覚されない
[0095] 液晶表示装置において 2Hドット反転駆動方式が採用される場合、各走査信号線 G
(j)には 19 (A)に示すような走査信号 Vg (j)が印加され (j = l〜M)、各データ信号 線 S (i)に印加されるデータ信号 Vs (i)の(対向電極を基準とする)極性は、図 19 (D) に示すように反転される。これにより、液晶層への印加電圧(したがって画素容量また は液晶容量への印加電圧)の極性が 1フレーム期間毎に反転するだけでなぐ 2走査 信号線毎かつ 1データ信号線毎に (空間的に)反転する。この場合、図 18 (C)に示 すような変形の巿松パターンがフリツ力パターンである。これに対し、図 18 (C)に示す ように画素アレイにおいて、 1H反転駆動方式が採用された場合と同様、第 1タイプの TFTと第 2タイプの TFTとが行方向に 2個ずつ交互に配置されかつ列方向に 1個ず つ交互に配置されると、製造時の分割露光に対応する分割領域毎にパターンずれ 生じても、そのパターンずれによる寄生容量 Cgdの増減およびそれに基づく画素電 位のレベルシフト AVdは、白表示の領域において平均化される。これにより、人間に はフリツ力が知覚されなくなり、また、ブロック分かれも知覚されない。なお、同一の液 晶表示パネルが 1Hドット反転方式用としても 2Hドット反転方式用としても使用される 場合があるが、図 18 (B)および図 18 (C)に示すような同一の TFT配置パターンとす ることでそのような場合にも対応できることになる。
[0096] 図 20 (A)〜図 20 (C)は、既述の変形例のようなセンターゲート構造のアクティブマ トリタス基板(図 13 (A)、図 13 (B)、図 14 (A)および図 14 (B) )を使用した液晶表示 装置においてライン反転駆動方式、 1Hドット反転駆動方式、および 2Hドット反転駆 動方式をそれぞれ採用した場合の好ましい TFTの配置パターンを示す模式図であ る。センターゲート構造の場合、上記第 1〜第 4の実施形態における 1画素が上下に 2つの副画素に分割されている。したがって、各画素を構成する 2つの副画素の一方 に第 1タイプの TFTが含まれ、他方に第 2タイプの TFTが含まれるように配置すれば 、ライン反転駆動、 1Hドット反転駆動、および 2Hドット反転駆動のいずれの駆動方 式が採用される場合においても、パターンずれによる寄生容量 Cgdの増減およびそ れに基づく画素電位のレベルシフト AVdは、フリツ力パターンの表示に対し、白表示 の領域において平均化される。これにより、人間にはフリツ力が知覚されなくなり、また 、ブロック分かれも知覚されない。
[0097] ところで、液晶表示装置における画素サイズによっては粒状の不自然な表示が人 間に知覚される場合、もしくは、カラー液晶表示装置のカラーフィルターの色毎の透 過率の差と視感度の差が認識されてしまうために、白画面を表示してもあた力も白黒 の縦ストライプを表示しているかのように見える場合がある。そこで、これに対処すべく 、図 21 (A)および図 21 (B)に示すように、各画素の水平方向(行方向)のサイズを 1 Z2にして、水平方向に近接する 2つの画素を同一のデータ信号で駆動(したがって 同一階調で表示)するようにしたアクティブマトリクス基板( 1信号 2画素駆動方式のァ クティブマトリクス基板)を使用した液晶表示装置が存在する。このような構成の場合 には、図 21 (A)に示すように、同一のデータ信号で駆動される 2つの同色画素のうち の一方に第 1タイプの TFTが含まれ、他方に第 2タイプの TFTが含まれるように配置 すれば (すなわち第 1タイプの TFTと第 2タイプの TFTとが行方向に 1個ずつ交互に 配置されかつ列方向に 2個ずつ交互に配置されるようにすれば)、 1Hドット反転駆動 方式が採用されている場合において、ノターンずれによる寄生容量 Cgdの増減およ びそれに基づく画素電位のレベルシフト AVdは、フリツ力パターンの表示に対し、白 表示の領域において平均化される。これにより、人間にはフリツ力が知覚されなくなり 、また、ブロック分かれも知覚されない。このことは、ライン反転駆動方式や 2Hドット反 転駆動方式が採用されている場合においても同様である。また、ライン反転駆動方 式が採用されている場合には、図 21 (B)に示すように、第 1タイプの TFTと第 2タイプ の TFTとが行方向および列方向の双方に交互に配置されるようにしてもよい。なお、 図 21 (B)に示した TFTの配置パターンの場合、ドット反転駆動方式が採用されると、 図 21 (A)に示すフリツ力パターンに対し、白または黒のそれぞれの表示領域におい て同一タイプの TFTが近接して集まることになる。したがって、図 21 (B)に示した TF Tの配置パターンは、ドット反転駆動方式には不適である。
さらに、図 21 (A)に示すように第 1タイプの TFTと第 2タイプの TFTとが行方向に 1 個ずつ交互に配置されかつ列方向に 2個ずつ交互に配置される TFT配置パターン は、アクティブマトリクス基板が 1信号 2画素駆動方式力否かに拘わらず、ライン反転 駆動方式が採用されている場合において、同様の理由により有効である(図 21 (C) 参照)。
なお、上記のように、駆動方式に応じて図 18〜図 21に示した TFTの配置パターン を採用すると、全画面に RGBの 、ずれか一色 (例えば赤色)または二色 (例えば赤 色と青色)のみが表示される場合においても、当該一色または二色の画素からなる領 域において第 1タイプの TFTと第 2タイプの TFTとが均等に分散して存在するので、 人間にはフリッカーは知覚されず、ブロック分かれも知覚されない。
[0099] < 5.4 本発明の他の適用例 >
上記各実施形態については、液晶表示装置において使用されるアクティブマトリク ス基板としての TFT基板を例に挙げて説明されている力 画素電極と他の電極とに よって形成される画素容量と同様の電圧保持機能を有する静電容量 (電圧保持用キ ャパシタ)と TFTとを含む画素 (画素形成部または画素回路)がマトリクス状に配置さ れるとともに走査信号線およびデータ信号線等が上記のように格子状に配置された アクティブマトリクス基板であれば、液晶表示装置以外の表示装置、例えば有機 EL ( Electroluminescenece)表示装置で使用されるアクティブマトリクス基板にも、製造時 の分割露光に起因するブロック分かれ等を抑制するための手段として本発明の適用 が可能である。この場合、画素値に相当する電圧を保持するための静電容量を有す るキャパシタカ 画素形成部における TFTのドレイン電極に接続された電圧保持用 電極 (上記画素電極に対応)と上記の補助容量線に相当する電源ラインまたは接地 ラインの電極とによって構成される。ただし、有機 EL表示装置の駆動方式によっては 、当該 TFTのソース電極とデータ信号線との間にスィッチ素子としての TFTが更に 介在する構成が採用される場合もあり、また、当該 TFTのソース電極とデータ信号線 との間にスィッチ素子としての TFTと容量素子 (キャパシタ)が直列に接続された状態 で更に介在する構成が採用される場合もある。
[0100] 有機 EL表示装置の画素回路として、例えば図 24に示すような構成の回路が使用 される(日本の特開 2001— 147659号公報参照)。この画素回路では、走査線 scan Aおよび scanBが選択されているときに、 TFT3および TFT4がオン状態となり、電流 源 CSの電流が TFT1に流れ、 TFT1に流れる当該電流に対応するゲート ·ソース間 電圧が保持キャパシタ Cに充電される。その後、走査線 scanBが非選択状態となると 、 TFT4がオフ状態となり、保持キャパシタ Cに充電された電圧は保持される。駆動用 TFT2には、保持キャパシタ Cの充電電圧に応じた電流が駆動用 TFT2に流れ、そ の電流によって発光素子 OLEDが発光する。この動作にぉ 、て TFT4がオン状態か らオフ状態へと変化するときに、当該 TFT4の寄生容量 Cpaに起因して、上記実施 形態と同様、レベルシフトが生じる。したがって、製造時の分割露光によって分割領 域毎に異なるパターンずれが生じると、発光輝度が分割領域毎に異なる (ブロック分 かれ)等の現象が生じて表示品位の低下を招く。このような画素回路において、符号
"A"で示す部分は、電圧保持用キャパシタ Cを構成する電圧保持用電極に相当し、 データ線 dataは、スィッチ素子としての TFT3および TFT4を介してその電圧保持用 電極 (A)に接続されている。そして TFT4は走査線 scanBによってオン/オフされ、 当該 TFT4における寄生容量 Cpaは、第 1および第 2の実施形態における画素回路 内の TFT102の寄生容量 Cgdに相当する。したがって、図 24に示した構成の画素 回路を有する有機 EL表示装置におけるアクティブマトリクス基板についても、製造時 のパターンずれによる寄生容量 Cpaの増減及びそれによる上記レベルシフトの増減 をブロック領域毎に平均化すべぐ本発明を適用することが可能である。
また、有機 EL表示装置の画素回路として、例えば図 25に示すような構成の回路が 使用されることもある(日本の特開 2002— 156923号公報参照)。この画素回路では 、走査線 25 (scan)が選択されているときに、 TFT24がオン状態となり、データ線 26 (data)におけるデータ電圧が保持容量 23 (Cs)に保持される。その後に走査線 26 が非選択状態となると、 TFT24がオフ状態となり、保持容量 23に保持されたデータ 電圧は維持され、その電圧に応じた電流が駆動用 TFT22に流れ、その電流によつ て有機 EL素子 21が発光する。ただし、 TFT24がオン状態力もオフ状態へと変化す るときに、当該 TFT24の寄生容量 Cgs2に起因して、上記実施形態と同様、レベル シフトが生じる。したがって、製造時の分割露光によって分割領域毎に異なるパター ンずれが生じると、発光輝度が分割領域毎に異なる(ブロック分かれ)等の現象が生 じて表示品位の低下を招く。このような画素回路において、符号" A"で示す部分は、 保持容量 23を構成する電圧保持用電極に相当し、データ線 dataは、 TFT24を介し てその電圧保持用電極 (A)に接続されている。そして TFT24は走査線 25によって オン Zオフされ、当該 TFT24の寄生容量 Cgs2は、第 1および第 2の実施形態にお ける画素回路内の TFT102の寄生容量 Cgdに相当する。したがって、図 25に示した 構成の画素回路を有する有機 EL表示装置におけるアクティブマトリクス基板につい ても、製造時のパターンずれによる寄生容量 Cgs2の増減及びそれによる上記レべ ルシフトの増減をブロック領域毎に平均化すべぐ本発明を適用することが可能であ る。
[0102] 上記の各実施形態のように液晶表示装置で使用されるアクティブマトリクス基板は 交流駆動されるが、例えば有機 EL表示装置で使用されるアクティブマトリクス基板の ように直流駆動される場合であっても、本発明は適用可能であり、パターンずれによ る寄生容量 Cgdの増減およびそれによる画素電位のレベルシフト AVdの増減を平 均化してブロック分かれ等を抑制することができる。さらに、本発明は、表示装置で使 用されるアクティブマトリクス基板に限定されるものではなぐイメージセンサや指紋セ ンサ等に使用されるアクティブマトリクスにも適用可能である。この場合、本発明の適 用によって、上記のような複数の(M X N個の)画素回路からなる画素アレイによって イメージ等を読みとる際に、作製時の分割露光でのパターンずれに起因する上記ブ ロック分かれに相当する現象の発生を抑制することができる。
産業上の利用可能性
[0103] 本発明は、表示装置やセンサ等で使用されるアクティブマトリクス基板またはその駆 動回路に適用されるものであって、特に、液晶表示装置や EL表示装置におけるァク ティブマトリクス基板に適して 、る。

Claims

請求の範囲
[1] 複数のデータ信号線と、
前記複数のデータ信号線と交差する複数の走査信号線と、
前記複数のデータ信号線と当該複数の走査信号線との交差点にそれぞれ対応し てマトリクス状に配置された複数の画素回路力 なる画素アレイとを備え、
各画素回路は、
対応する前記交差点を通過するデータ信号線にソース電極が直接にまたは所定 素子を介して接続されるとともに対応する前記交差点を通過する走査信号線にゲー ト電極が接続された電界効果トランジスタと、
当該電界効果トランジスタのドレイン電極に直接にまたは所定素子を介して接続 され所定の電圧保持用キャパシタを構成する電圧保持用電極とを含み、
前記画素アレイは、
ドレイン電極のパターンとゲート電極のパターンとの間の位置関係が所定方向に ずれるにしたがって当該ドレイン電極と当該ゲート電極との間の静電容量が大きくな る前記電界効果トランジスタである第 1タイプの電界効果トランジスタを含む画素回路 と、
前記位置関係が前記所定方向にずれるにしたがって前記静電容量が小さくなる 前記電界効果トランジスタである第 2タイプの電界効果トランジスタを含む画素回路と を略同数ずつ備え、
前記第 1タイプの電界効果トランジスタを含む画素回路と前記第 2タイプの電界効 果トランジスタを含む画素回路とは、前記画素アレイにぉ 、て略均等に分散するよう に配置されていることを特徴とする、アクティブマトリクス基板。
[2] 前記第 1タイプの電界効果トランジスタは、前記第 1タイプの電界効果トランジスタに おける前記位置関係が前記所定方向にずれるにしたがって、ゲート電極とドレイン電 極とが所定の絶縁層を介して重複する面積が大きくなるように構成され、
前記第 2タイプの電界効果トランジスタは、前記第 2タイプの電界効果トランジスタに おける前記位置関係が前記所定方向にずれるにしたがって、ゲート電極とドレイン電 極とが所定の絶縁層を介して重複する面積力 、さくなるように構成されていることを 特徴とする、請求項 1に記載のアクティブマトリクス基板。
[3] 前記第 1および第 2タイプの電界効果トランジスタは、前記位置関係が前記所定方 向と垂直な方向にずれた場合に、ゲート電極とドレイン電極とが所定の絶縁層を介し て重複する面積が変化しな 、ように構成されて 、ることを特徴とする、請求項 1に記 載のアクティブマトリクス基板。
[4] 前記第 1タイプの電界効果トランジスタを含む画素回路と前記第 2タイプの電界効 果トランジスタを含む画素回路とが、前記画素アレイにおいて、前記データ信号線の 延びる方向に所定個数ずつ交互にかつ前記走査信号線の延びる方向に所定個数 ずつ交互に配置されていることを特徴とする、請求項 1に記載のアクティブマトリクス 基板。
[5] 前記第 1タイプの電界効果トランジスタを含む画素回路と前記第 2タイプの電界効 果トランジスタを含む画素回路とが、前記画素アレイにおいて、前記データ信号線の 延びる方向および前記走査信号線の延びる方向の双方に 1個ずつ交互に配置され て ヽることを特徴とする、請求項 4に記載のアクティブマトリクス基板。
[6] 前記第 1タイプの電界効果トランジスタを含む画素回路と前記第 2タイプの電界効 果トランジスタを含む画素回路とが、前記画素アレイにおいて、前記データ信号線の 延びる方向に 1個ずつ交互にかつ前記走査信号線の延びる方向に 2個ずつ交互に 配置されて ヽることを特徴とする、請求項 4に記載のアクティブマトリクス基板。
[7] 前記第 1タイプの電界効果トランジスタを含む画素回路と前記第 2タイプの電界効 果トランジスタを含む画素回路とが、前記画素アレイにおいて、前記データ信号線の 延びる方向には 2個ずつ交互にかつ前記走査信号線の延びる方向には 1個ずつ交 互に配置されていることを特徴とする、請求項 4に記載のアクティブマトリクス基板。
[8] 複数のデータ信号線と、
前記複数のデータ信号線と交差する複数の走査信号線と、
前記複数のデータ信号線と当該複数の走査信号線との交差点にそれぞれ対応し てマトリクス状に配置された複数対の画素回路力 なる画素アレイとを備え、 前記複数対の画素回路のそれぞれは、対応する交差点を通過する走査信号線を 挟むように配置された 2つの画素回路からなり、 前記 2つの画素回路のそれぞれは、
対応する前記交差点を通過するデータ信号線にソース電極が直接にまたは所定 素子を介して接続されるとともに対応する前記交差点を通過する走査信号線にゲー ト電極が接続された電界効果トランジスタと、
当該電界効果トランジスタのドレイン電極に直接にまたは所定素子を介して接続 され所定の電圧保持用キャパシタを構成する電圧保持用電極とを含み、
前記 2つの画素回路のうち、
一方の画素回路は、ドレイン電極のパターンとゲート電極のパターンとの間の位 置関係が所定方向にずれるにしたがって当該ドレイン電極と当該ゲート電極との間 の静電容量が大きくなる前記電界効果トランジスタである第 1タイプの電界効果トラン ジスタを含み、
他方の画素回路は、前記位置関係が前記所定方向にずれるにしたがって前記静 電容量が小さくなる前記電界効果トランジスタである第 2タイプの電界効果トランジス タを含むことを特徴とする、アクティブマトリクス基板。
[9] 前記電界効果トランジスタは薄膜トランジスタであることを特徴とする、請求項 1から 請求項 8までのいずれか 1項に記載のアクティブマトリクス基板。
[10] 請求項 9に記載のアクティブマトリクス基板を含む表示パネルを備えたことを特徴と する表示装置。
[11] 請求項 1から請求項 8までのいずれか 1項に記載のアクティブマトリクス基板を含む 表示パネルを備えたことを特徴とする表示装置。
[12] 請求項 1または請求項 2に記載のアクティブマトリクス基板を含む液晶表示パネルと 前記液晶表示パネルによる表示の各フレームにおいて前記複数の画素回路内の 電圧保持用キャパシタに保持される電圧の正負極性が前記画素アレイにおいて分 散するように前記液晶表示パネルを駆動する駆動回路とを備え、
前記液晶表示パネルによる表示の同一フレームにおいて同一極性の電圧が保持 される電圧保持用キャパシタを含む画素回路である同一極性画素回路のうち前記第 1タイプの電界効果トランジスタを含む画素回路と、当該同一極性画素回路のうち前 記第 2タイプの電界効果トランジスタを含む画素回路とが、前記画素アレイにおいて 略均等に分散するように配置されていることを特徴とする、表示装置。
請求項 1から請求項 8までのいずれか 1項に記載のアクティブマトリクス基板を含む カラー液晶表示パネルと、
前記液晶表示パネルによる表示の各フレームにおいて前記複数の画素回路内の 電圧保持用キャパシタに保持される電圧の正負極性が前記画素アレイにおいて分 散するように前記液晶表示パネルを駆動する駆動回路をと備え、
前記液晶表示パネルによる表示の同一フレームにおいて同一極性の電圧が保持 される電圧保持用キャパシタを含む画素回路である同一極性画素回路のうち前記第 1タイプの電界効果トランジスタを含む画素回路と、当該同一極性画素回路のうち前 記第 2タイプの電界効果トランジスタを含む画素回路とが、カラー表示のための 3原 色の各色に相当する画素を形成するための画素回路群において略均等に分散する ように配置されていることを特徴とする、表示装置。
PCT/JP2006/304255 2005-03-15 2006-03-06 アクティブマトリクス基板およびそれを備えた表示装置 WO2006098176A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/908,499 US7612839B2 (en) 2005-03-15 2006-03-06 Active matrix substance and display device including the same
US12/561,296 US8325286B2 (en) 2005-03-15 2009-09-17 Active matrix substrate and display device including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005072847 2005-03-15
JP2005-072847 2005-03-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/908,499 A-371-Of-International US7612839B2 (en) 2005-03-15 2006-03-06 Active matrix substance and display device including the same
US12/561,296 Continuation US8325286B2 (en) 2005-03-15 2009-09-17 Active matrix substrate and display device including the same

Publications (1)

Publication Number Publication Date
WO2006098176A1 true WO2006098176A1 (ja) 2006-09-21

Family

ID=36991524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304255 WO2006098176A1 (ja) 2005-03-15 2006-03-06 アクティブマトリクス基板およびそれを備えた表示装置

Country Status (2)

Country Link
US (2) US7612839B2 (ja)
WO (1) WO2006098176A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661948A (zh) * 2008-08-26 2010-03-03 乐金显示有限公司 有机发光二极管显示器及其制造方法
US8153459B2 (en) 2008-08-26 2012-04-10 Lg Display Co., Ltd. Organic light emitting diode display and fabricating method thereof
CN106940505A (zh) * 2017-05-08 2017-07-11 深圳市华星光电技术有限公司 液晶显示面板及液晶显示装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5521270B2 (ja) * 2007-02-21 2014-06-11 凸版印刷株式会社 薄膜トランジスタアレイ、薄膜トランジスタアレイの製造方法、および薄膜トランジスタアレイを用いたアクティブマトリクス型ディスプレイ
KR101545639B1 (ko) * 2008-12-12 2015-08-20 삼성디스플레이 주식회사 표시기판, 이의 제조방법 및 이를 갖는 액정표시장치
TWI412851B (zh) * 2009-04-10 2013-10-21 Chunghwa Picture Tubes Ltd 畫素結構、薄膜電晶體陣列基板、顯示面板以及顯示裝置
EP2511871B1 (en) * 2009-12-09 2018-05-09 Fujitsu Limited Capacitance sensor and biological image forming method
TWI408477B (zh) * 2009-12-30 2013-09-11 Au Optronics Corp 畫素陣列以及聚合物穩定配向液晶顯示面板
TWI410726B (zh) 2010-05-04 2013-10-01 Au Optronics Corp 主動元件陣列基板
KR101839533B1 (ko) 2010-12-28 2018-03-19 삼성디스플레이 주식회사 유기 발광 표시 장치, 이의 구동 방법 및 그 제조 방법
KR20130016938A (ko) * 2011-08-09 2013-02-19 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR102092703B1 (ko) * 2012-05-18 2020-03-25 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 리페어 방법
CN102800692A (zh) * 2012-08-09 2012-11-28 深圳市华星光电技术有限公司 具有大通道宽度的薄膜晶体管构造及薄膜晶体管基板电路
CN102916051B (zh) 2012-10-11 2015-09-02 京东方科技集团股份有限公司 一种薄膜晶体管及其制作方法、阵列基板和显示装置
US9626046B2 (en) 2013-09-24 2017-04-18 Apple Inc. Devices and methods for reduction of display to touch crosstalk
KR20170102668A (ko) * 2016-03-02 2017-09-12 삼성전자주식회사 지문 감지 센서, 이를 포함하는 전자 장치 및 지문 감지 센서의 동작 방법
CN106647078A (zh) * 2017-01-11 2017-05-10 深圳市华星光电技术有限公司 像素结构及液晶显示器
JP6771401B2 (ja) * 2017-02-09 2020-10-21 株式会社Joled アクティブマトリクス表示装置
KR20200017608A (ko) * 2018-08-08 2020-02-19 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
CN109300920B (zh) * 2018-11-05 2020-04-17 惠科股份有限公司 阵列基板、显示面板和显示装置
CN109638035B (zh) * 2018-11-13 2021-02-26 武汉华星光电半导体显示技术有限公司 像素排列结构及有机发光二极管显示装置
CN111403455B (zh) * 2020-03-27 2022-11-11 京东方科技集团股份有限公司 显示面板及显示装置
CN112991941B (zh) * 2021-02-01 2022-09-06 深圳英伦科技股份有限公司 ePanel个性化尺寸的阵列基板及加工方法
CN114038917A (zh) * 2021-11-30 2022-02-11 业成科技(成都)有限公司 薄膜晶体管阵列基板和显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475030A (ja) * 1990-07-17 1992-03-10 Sharp Corp アクティブマトリクス表示装置
JPH10268349A (ja) * 1997-03-26 1998-10-09 Advanced Display:Kk 液晶表示素子及びこれを用いた液晶表示装置
JPH11249169A (ja) * 1998-03-04 1999-09-17 Mitsubishi Electric Corp 液晶表示装置及びその製造方法
JP2001264818A (ja) * 1999-12-24 2001-09-26 Matsushita Electric Ind Co Ltd 液晶装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2662290B1 (fr) * 1990-05-15 1992-07-24 France Telecom Procede de realisation d'un ecran d'affichage a matrice active et a condensateurs de stockage et ecran obtenu par ce procede.
US5285302A (en) 1992-03-30 1994-02-08 Industrial Technology Research Institute TFT matrix liquid crystal display with compensation capacitance plus TFT stray capacitance constant irrespective of mask misalignment during patterning
JPH0627487A (ja) 1992-07-08 1994-02-04 Fujitsu Ltd 薄膜トランジスタマトリックス及びその製造方法
JP2859051B2 (ja) 1992-09-28 1999-02-17 三洋電機株式会社 液晶表示装置
JPH0887026A (ja) 1994-09-16 1996-04-02 Casio Comput Co Ltd 液晶表示パネル
KR100336884B1 (ko) * 1998-06-30 2003-06-09 주식회사 현대 디스플레이 테크놀로지 박막트랜지스터액정표시소자
JP2001147659A (ja) 1999-11-18 2001-05-29 Sony Corp 表示装置
KR20010111265A (ko) 1999-12-24 2001-12-17 모리시타 요이찌 액정장치
JP3881160B2 (ja) 2000-06-27 2007-02-14 株式会社アドバンスト・ディスプレイ Tftアレイ基板およびこれを用いた液晶表示装置
JP2002156923A (ja) 2000-11-21 2002-05-31 Sony Corp アクティブマトリクス型表示装置およびアクティブマトリクス型有機エレクトロルミネッセンス表示装置
JP4072332B2 (ja) * 2001-01-09 2008-04-09 シャープ株式会社 液晶表示装置およびその駆動方法
JP4248306B2 (ja) 2002-06-17 2009-04-02 シャープ株式会社 液晶表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475030A (ja) * 1990-07-17 1992-03-10 Sharp Corp アクティブマトリクス表示装置
JPH10268349A (ja) * 1997-03-26 1998-10-09 Advanced Display:Kk 液晶表示素子及びこれを用いた液晶表示装置
JPH11249169A (ja) * 1998-03-04 1999-09-17 Mitsubishi Electric Corp 液晶表示装置及びその製造方法
JP2001264818A (ja) * 1999-12-24 2001-09-26 Matsushita Electric Ind Co Ltd 液晶装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661948A (zh) * 2008-08-26 2010-03-03 乐金显示有限公司 有机发光二极管显示器及其制造方法
US8153459B2 (en) 2008-08-26 2012-04-10 Lg Display Co., Ltd. Organic light emitting diode display and fabricating method thereof
USRE45235E1 (en) 2008-08-26 2014-11-11 Lg Display Co., Ltd. Organic light emitting diode display and fabricating method thereof
CN106940505A (zh) * 2017-05-08 2017-07-11 深圳市华星光电技术有限公司 液晶显示面板及液晶显示装置

Also Published As

Publication number Publication date
US20100001279A1 (en) 2010-01-07
US7612839B2 (en) 2009-11-03
US20090009673A1 (en) 2009-01-08
US8325286B2 (en) 2012-12-04

Similar Documents

Publication Publication Date Title
WO2006098176A1 (ja) アクティブマトリクス基板およびそれを備えた表示装置
US20210103307A1 (en) Active-matrix substrate, display panel and display device including the same
US7656372B2 (en) Method for driving liquid crystal display device having a display pixel region and a dummy pixel region
JP4932823B2 (ja) アクティブマトリクス基板、表示装置及びテレビジョン受像機
JP3688786B2 (ja) トランジスタマトリクス装置
JP5314155B2 (ja) 液晶表示装置
JP5102848B2 (ja) アクティブマトリクス基板及び液晶表示装置
JP2008058941A (ja) 表示パネル
JPWO2011049106A1 (ja) 液晶表示装置
WO2011048843A1 (ja) 表示装置
US20100045884A1 (en) Liquid Crystal Display
USRE47907E1 (en) Liquid crystal display
US20070279487A1 (en) Display device
KR100964761B1 (ko) 액정 표시 장치
AU2010344521B2 (en) Liquid crystal display device
KR20150077579A (ko) 표시 장치 및 그 구동 방법
US7567324B2 (en) Liquid crystal display device and fabrication method thereof
US20120025198A1 (en) Thin film transistor array substrate
JP5589018B2 (ja) 液晶表示装置
JP4071247B2 (ja) トランジスタマトリクス装置の駆動方法
JP7092914B2 (ja) 表示装置
KR20030029218A (ko) 액정 표시 장치용 박막 트랜지스터 기판
JP4118900B2 (ja) トランジスタマトリクス装置
JPH0829803A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11908499

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06715275

Country of ref document: EP

Kind code of ref document: A1