WO2006098142A1 - Cap liner composition - Google Patents

Cap liner composition Download PDF

Info

Publication number
WO2006098142A1
WO2006098142A1 PCT/JP2006/303655 JP2006303655W WO2006098142A1 WO 2006098142 A1 WO2006098142 A1 WO 2006098142A1 JP 2006303655 W JP2006303655 W JP 2006303655W WO 2006098142 A1 WO2006098142 A1 WO 2006098142A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
weight
cap liner
composition
group
Prior art date
Application number
PCT/JP2006/303655
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuhiko Kimura
Hironari Nakabayashi
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2007508055A priority Critical patent/JPWO2006098142A1/en
Publication of WO2006098142A1 publication Critical patent/WO2006098142A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D53/00Sealing or packing elements; Sealings formed by liquid or plastics material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08L23/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08J2323/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08J2323/22Copolymers of isobutene; butyl rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/008Additives improving gas barrier properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Definitions

  • the present invention relates to a cap liner composition used for a sealing material for beverage caps, which is excellent in sealing properties, gas barrier properties, hygiene, and easy to open in actual use, and , And a cap liner using the same.
  • the cross-linked isobutylene polymer has excellent flexibility, resilience, and gas barrier properties, so that it does not only have a good hermetic sealing property, but also has an oxygen content due to the permeation of oxygen into soft drinks and other contents. Gas content such as carbonated beverages with high internal pressure is unlikely to escape, abnormal opening of the opening torque is prevented, easy opening during actual use, and elution from the liner material is prevented.
  • the present invention relates to a composition for a cap liner used for a sealing material for a beverage cap having excellent hygiene, and a cap liner using the same.
  • liner materials such as cork, soft PVC, polyolefin resin such as low density polyethylene, and styrene elastomer are used as liner materials for container lids such as glass bottles, metal bottles, and PET containers. It was. Of these, cork has excellent impact resilience, but is a natural material and has problems such as quality, supply stability, and dust generation. Although PVC-based materials are flexible and have excellent sealing properties, there are problems such as elution of plasticizers and generation of dioxin during low-temperature incineration. Under these circumstances, in recent years, it has been changed to a liner material such as an olefin resin having excellent hygiene and workability, such as styrene elastomer.
  • a liner material mainly composed of such a styrene elastomer is hydrogenated. It is general to use a composition having a softening power such as styrene-butadiene block copolymer, polyolefin and liquid paraffin (Patent Documents 1 to 4). By using such a composition, it is flexible and has excellent hermetic sealing properties, can withstand hot filling (hot fill) of the contents and heat sterilization (retort sterilization) after filling and sealing, and thermal deformation. In addition, a liner material has been obtained in which leakage due to heat contraction is effectively eliminated.
  • a composition having a softening power such as styrene-butadiene block copolymer, polyolefin and liquid paraffin
  • hydrogenated styrene-butadiene block copolymers have a lower gas permeation rate and a higher ability to block external force oxygen than polyolefins, which may cause acid content.
  • the period in which the flavor and aroma can be maintained immediately is short.
  • the content is a carbonated beverage
  • the period during which the internal pressure can be maintained is short because the carbon dioxide escapes quickly.
  • Patent Document 1 Japanese Patent Laid-Open No. 2-57569
  • Patent Document 2 JP-A-7-76360
  • Patent Document 3 Japanese Patent Laid-Open No. 11-106565
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-38495
  • Patent Document 5 JP 2002-160759 A
  • An object of the present invention is to provide a composition for a cap liner used for a sealing material for a beverage cap, which is excellent in sealing properties, gas noria properties, is excellent in hygiene, and can be easily opened in practical use, and The object is to provide a cap liner using the same.
  • (A) 100 parts by weight of an isobutylene polymer having an alkenyl group at the terminal is melted with (C) a hydrosilyl group-containing compound in the presence of (B) polyolefin 10 to: LOO parts by weight.
  • the present invention relates to a cap liner composition comprising a composition formed by crosslinking during kneading and (D) 0.1 to 20 parts by weight of a lubricant.
  • the present invention relates to a composition for a cap liner comprising -300 parts by weight.
  • a preferred embodiment further relates to a cap liner composition
  • a cap liner composition comprising (F) a softener 1 to LOO parts by weight.
  • the amount of hydrosilyl group in component (C) relative to the alkenyl group in component (A) (hydrosilyl group Zalkyl group) is in the range of 0.5 to 10 in molar ratio. It is related with the composition for cap liners characterized by these.
  • a preferred embodiment relates to a composition for a cap liner, which is at least one selected from the components of component (B) such as polyolefin ink, polyethylene, and polypropylene.
  • the present invention relates to a cap liner composition characterized in that it is at least one selected from the group power consisting of silicone oil.
  • an embodiment relates to a composition for a cap liner, wherein the content of the block (a) in the block copolymer of the component (E) is 10 to 40% by weight.
  • a preferred embodiment relates to a composition for a cap liner, wherein the softening agent of component (F) is polybutene.
  • the present invention also relates to a cap liner having the compositional strength.
  • the cap liner according to the composition of the present invention has an excellent isobutylene polymer. Because of its flexibility and gas noliativity, it is not only good in shape tracking when sealed, but also from the contents of oxygenated drinks such as soft drinks and carbonated drinks with internal pressure. Outgassing is difficult to occur. In addition, the addition of a lubricant prevents an abnormal increase in the opening torque and allows easy opening during actual use. Furthermore, since an alkenyl group is present at the terminal, crosslinking with a hydrosilyl group-containing compound is possible, so that elution of the components of the liner material is prevented. As a result, a cap liner excellent in hygiene can be obtained. Therefore, it is suitable as a cap liner for soft drinks, carbonated drinks, milk drinks and the like.
  • the cap liner composition of the present invention comprises (A) 100 parts by weight of an isoprene-based polymer having an alkenyl group at the terminal, (B) in the presence of 10 to 100 parts by weight of polyolefin, It is obtained by mixing a composition formed by crosslinking during melt-kneading with a drosilyl group-containing compound and (D) 0.1 to 20 parts by weight of a lubricant.
  • the isobutylene-based polymer having an alkenyl group at the terminal which is the component (A) of the present invention, has a unit derived from isoptylene in an amount of 50% by weight or more in terms of flexibility, restorability, and gas noriability. More preferred is 70% by weight or more, and more preferred is 90% by weight or more.
  • the monomer other than isopylene is not particularly limited as long as it is a monomer component that can be cationically polymerized. However, aromatic vinyls, aliphatic olefins, gens such as isoprene, butadiene, dibutenebenzene, and butyl ether. And monomers such as 13 pinene. These may be used alone or in combination of two or more.
  • the molecular weight of the component (A) is not particularly limited, but the weight average molecular weight by GPC measurement is preferably 5,000 to 500,000 ⁇ , 10,000 to 200,000 force ⁇ Especially preferred!
  • the weight average molecular weight is less than 5,000, mechanical properties and the like tend not to be sufficiently exhibited.
  • the weight average molecular weight exceeds 500,000, the melt-kneading property is lowered and the reactivity at the time of crosslinking is reduced. There is a tendency to decrease.
  • the alkenyl group in component (A) of the present invention is particularly limited as long as it is a group containing a carbon-carbon double bond that is active with respect to a crosslinking reaction by a hydrosilyl group-containing compound. is not. Specific examples include a butyl group, a aryl group, a methyl vinyl group, a probe group, a butenyl group, a pentenyl group, a hexenyl group and other aliphatic unsaturated hydrocarbon groups, a cyclopropyl group, a cyclobutyr group, Examples thereof include cyclic unsaturated hydrocarbon groups such as a cyclopentyl group and a cyclohexyl group.
  • a method for introducing an alkenyl group into the terminal of the component (A) of the present invention there is a method such as a hydroxyl group as disclosed in JP-A-3-152164 or JP-A-7-304909. Examples thereof include a method in which a compound having an unsaturated group is reacted with a polymer having a functional group to introduce the unsaturated group into the polymer.
  • a method of performing a Friedel-Crafts reaction with a alkaryl ether, or a method of performing a substitution reaction with allyltrimethylsilane in the presence of lauric acid in order to introduce an unsaturated group into a polymer having a halogen atom.
  • the amount of the alkenyl group of the component (A) of the present invention can be arbitrarily selected according to the required properties. From the viewpoint of the properties after crosslinking, at least 0.2 alkenyl groups per molecule.
  • the polymer having a terminal group is preferably 1.0 or more per molecule, and more preferably 1.5 or more per molecule. If the number is less than 2, the crosslinking reaction may not proceed sufficiently.
  • the polyolefin which is the component (B) of the present invention is a homopolymer of a-olefin, a random copolymer, a block copolymer and a mixture thereof, or ⁇ -olefin and other unsaturated monomers.
  • These random copolymers, block copolymers, graft copolymers and those obtained by oxidation, halogenation or sulfonation of these polymers can be used alone or in combination.
  • polyethylene ethylene-propylene copolymer, ethylene-propylene non-conjugated diene copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, ethylene otaten copolymer, ethylene acetate butyl copolymer, ethylene butyl Alcohol copolymer, ethylene ethyl acrylate copolymer, ethylene acrylic acid copolymer, ethylene methyl acrylate-maleic anhydride copolymer, polyethylene resin such as chlorinated polyethylene, polypropylene, propylene ethylene Random copolymer, propylene ethylene block copolymer, polypropylene resin such as chlorinated polypropylene, poly-1-butene, polyisobutylene, polymethylpentene
  • Examples thereof include (co) polymers of cyclic olefins.
  • polyethylene, polypropylene, or a mixture thereof can be preferably used from the viewpoint of balance between cost and physical properties.
  • Examples of the polyethylene include high-density polyethylene, low-density polyethylene, and linear low-density polyethylene.
  • Examples of the polypropylene include homopolypropylene, random polypropylene, and block polypropylene. Among these, polypropylene is most preferable from the viewpoint of heat resistance.
  • the melt flow rate (MFR) of the polyolefin used is not particularly limited, but is preferably 0.1 to LOO (gZlOmin) from the viewpoint of molding fluidity. g ZlOmin) is more preferable.
  • the component (B) not only functions as a crosslinking reaction field for the component (A), but imparts molding fluidity, heat resistance, mechanical strength, and unsealing properties to the final liner composition.
  • the amount of component (B) added is preferably 10 to: LOO parts by weight and 20 to 80 parts by weight per 100 parts by weight of component (A).
  • the amount of the component (B) is less than 10 parts by weight, sufficient molding fluidity tends not to be obtained.
  • the amount is more than 100 parts by weight, flexibility tends to be impaired and sufficient sealing performance tends not to be exhibited.
  • the hydrosilyl group-containing compound (C) is used as the crosslinking agent for the component (A).
  • the hydrosilyl group-containing compound there are no particular restrictions on the hydrosilyl group-containing compound that can be used, but various types of hydrosilyl group-containing polysiloxanes are preferred. Among them, a hydrosilyl group-containing polysiloxane having 3 or more hydrosilyl groups and 3 or more and 500 or less siloxane units is preferable, and a polysiloxane having 3 or more hydrosilyl groups and 10 or more and 200 or less siloxane units. Polysiloxane having 3 or more hydrosilyl groups and 20 to 100 siloxane units is more preferable.
  • the polysiloxane unit here refers to the following general formulas (1), (11), and (III).
  • hydrosilyl group-containing polysiloxane a linear polysiloxane represented by the general formula (IV) or (V);
  • R 1 and R 2 represent an alkyl group having 1 to 6 carbon atoms or a phenyl group
  • R 3 represents an alkyl group having 1 to 10 carbon atoms or an aralkyl group.
  • B represents 3 ⁇ b, a , b, c «3 ⁇ a + b + c ⁇ 500 represents an integer satisfying 00)
  • R 4 and R 5 represent an alkyl group having 1 to 6 carbon atoms or a phenyl group
  • R 6 represents an alkyl group having 1 to 10 carbon atoms or an aralkyl group.
  • E is 3 ⁇ e, d, e, and f are integers satisfying d + e + f ⁇ 500).
  • the component (A) and the hydrosilyl group-containing compound can be mixed at an arbitrary ratio.
  • the amount of hydrosilyl group relative to the alkell group is preferably in the range of 0.5 to 10 in terms of molar ratio, and more preferably 1 to 5.
  • the molar ratio is less than 0.5, crosslinking tends to be insufficient, and when it is more than 10, a large amount of active hydrosilyl groups remain even after crosslinking, and volatile matter tends to be generated. .
  • the crosslinking reaction between the component (A) and the component (C) is preferably performed by adding a hydrosilylated soot catalyst in order to advance the force reaction that proceeds by mixing and heating the two components more quickly.
  • a hydrosilylation catalyst is not particularly limited, and examples thereof include radical generators such as organic peroxides and azo compounds, and transition metal catalysts.
  • the radical generator is not particularly limited, and examples thereof include di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy).
  • the transition metal catalyst is not particularly limited.
  • a platinum solid, alumina, silica, carbon black or the like dispersed in a platinum solid, chloroplatinic acid, chloroplatinic acid and alcohol, aldehyde, Examples include complexes with ketones, platinum-olefin complexes, and platinum (0) -dialkyltetramethyldisiloxane complexes.
  • catalysts other than platinum compounds include RhCl (PPh), RhCl, RuCl, IrCl, FeCl, A1C1, PdCl ⁇ 1 O, NiCl
  • platinum vinylsiloxane is most preferred in terms of crosslinking efficiency.
  • the amount of catalyst is not particularly limited, but is 10 to 1 to 1 mol of alkenyl group (A).
  • 10 _8 mol goodness employed in the range of instrument and it is preferably employed in the range of 10 one 3 ⁇ 10 _6 mol. If the amount is less than 10 _8 moU, the crosslinking tends to be insufficient, and if the amount is more than 10 _ 1 moU, the crosslinking reaction, which is exothermic, tends to be insufficiently controlled.
  • the component (A) is dynamically mixed with the component (C) during melt kneading in the presence of the component (B).
  • Crosslink to The melt kneading temperature is preferably 130 to 240 ° C.
  • the component (B) is not sufficiently melted and the kneading tends to be uneven.
  • component (A) tends to thermally decompose.
  • component (A) and component (B) are essential, but other components such as component (D), component (E), and component (F) are added as appropriate.
  • the force may be cross-linked.
  • the component (D) inhibits the bridge reaction, it is preferable to add the component (D) after crosslinking. Further, when the crosslinking catalyst is added after being mixed with the component (F), the mixture is uniformly diffused and mixed, and the uniformity of the crosslinking reaction tends to be improved. Therefore, such a method is preferably used. In order to promote the mixing of the component (A) and the component (B) and promote the uniform progress of the cross-linking reaction, it is preferable to add the total amount or a part of the blended amount before the cross-linking. . As a method for melt-kneading, a known method without particular limitation can be applied.
  • the component (A) and the component (B), and other components blended in order to obtain predetermined physical properties are heated and kneaded, such as a single screw extruder, twin screw extruder, roll, Banbury mixer, It can be produced by melt-kneading using a Brabender, kneader, high shear mixer or the like.
  • the order of addition is as follows. After component (B) is melted, component (A) is added, and if necessary, other components are added and mixed uniformly, and then a crosslinking agent and a crosslinking catalyst are added. The method of adding and advancing a crosslinking reaction is preferable.
  • the lubricant which is the component (D) of the present invention is added mainly for the purpose of imparting unsealing property (opening property) and moldability.
  • lubricant fatty acid amide lubricants, fatty acid metal salt lubricants, fatty acid ester lubricants, fatty acid lubricants, aliphatic alcohol lubricants, partial esters of fatty acids and polyhydric alcohols, paraffin lubricants, silicone lubricants and the like are preferable. Two or more of these may be selected and used.
  • Fatty acid amide lubricants include: L-force amide, oleic acid amide, stearic acid amide, behenic acid amide, ethylene bis-stearic acid amide, ethylene bis-oleic acid amide, ethylene bis-strong acid amide, ethylene bis-lauric acid Amides, m-xylylene bis stearic acid amides, p-phenylene bis stearic acid amides, and the like.
  • the fatty acid metal salt lubricant include calcium stearate, magnesium stearate, aluminum stearate, zinc stearate, and norium stearate.
  • Fatty acid ester lubricants include methyl laurate, myris Methyl titanate, methyl palmitate, methyl stearate, methyl oleate, methyl oleate, methyl behenate, butyl laurate, butyl stearate, isopyl myristate, isopropyl palmitate, octyl palmitate, Examples include coconut fatty acid octyl ester, octyl stearate, special beef tallow fatty acid octyl ester, lauryl laurate, stearyl stearate, behenyl behenate, cetyl myristate, beef tallow hardened oil, castor hardened oil, and the like.
  • fatty acid-based lubricants include stearic acid, palmitic acid, oleic acid, linoleic acid, and linolenic acid.
  • aliphatic alcohols include stearyl alcohol, cetyl alcohol, myristyl alcohol, and lauryl alcohol.
  • the partial ester of fatty acid and polyhydric alcohol include stearic acid monoglyceride, stearic acid diglyceride, and olein-based monodalyride.
  • paraffinic lubricant include paraffin wax, liquid paraffin, polyethylene wax, oxidized polyethylene wax, and polypropylene wax.
  • montanic acid and its derivatives such as montanic acid ester, montanic acid metal salt, montanic acid partial quinoyl ester, and silicone oil are also used. These may be used alone or in combination.
  • L-acid amide is the most preferable among fatty acid amides from the viewpoint of the effect of improving the opening and molding processability and the influence on the flavor and aroma of the contents.
  • a paraffin wax such as paraffin wax, polyethylene wax, or polypropylene wax
  • silicone oil in combination, the opening performance can be further improved.
  • Silicone oil may be used in a masterbatch with polyolefin for the purpose of improving its mixing and dispersibility.
  • Silicone Concentrate BY—27 series (manufactured by Toray Dow Cowing Silicone Co., Ltd.), Silicone Master Pellet X—22 series (manufactured by Shin-Etsu Chemical Co., Ltd.), Hexa Silicone ML Series (made by Hexa Chemical Co., Ltd.) And other commercial products.
  • Component (D) is mixed in an amount of 0.1 to 20 parts by weight per 100 parts by weight of component (A).
  • a block copolymer having a polymer block (b) force mainly composed of sobutylene may be added.
  • the polymer block (a) mainly composed of an aromatic vinyl compound preferably has 60% by weight or more of units derived from the aromatic vinyl compound in terms of heat resistance. It is more preferable that the polymer block has a higher force.
  • aromatic bur compounds include styrene, o-, m- or p-methylstyrene, ⁇ -methylstyrene, 13-methylolene styrene, 2,6 dimethylstyrene, 2,4 dimethylstyrene, ex-methylolene o-methyl.
  • the polymer block (b) mainly composed of isobutylene is a polymer block in which a unit derived from isobutylene is composed of a force of 60% by weight or more, preferably 80% by weight or more.
  • V and misaligned polymer blocks also use mutual monomers as copolymerization components.
  • other cationically polymerizable monomer components can be used. Examples of such monomer components include aliphatic olefins, gens, and vinyl ethers.
  • Aliphatic olefin monomers include ethylene, propylene, 1-butene, and 2-methyl.
  • Examples include 1-butene, 3-methyl-1-butene, pentene, hexene, cyclohexene, 4-methyl pentene, butylcyclohexane, otaten, norbornene, and the like.
  • Examples of the gen-based monomer include butadiene, isoprene, hexagen, cyclopentagen, cyclohexagen, dicyclopentagen, divinylbenzene, ethylidene norbornene, and the like.
  • butyl ether monomers include methyl butyl ether, ethyl butyl ether, (n-, iso) propyl butyl ether, (n-, sec-, tert, iso) butyl benzene ether, methyl propylene. And ruether, ethyl propellate and the like.
  • silane compound examples include butyltrichlorosilane, butylmethyldichlorosilane, butyldimethylchlorosilane, vinyldimethylmethoxysilane, vinyltrimethylsilane, dibutyldichlorosilane, divininoresimethoxymethoxysilane, divininoresimethinolesilane, 1,3 dibi- Nole - 1,1,3,3 -tetramethyldisiloxane, trivinylmethylsilane, ⁇ -methacryloyloxypropyltrimethoxysilane, ⁇ -methacryloyloxypropylmethyldimethoxysilane, and the like.
  • the component (ii) of the present invention is not particularly limited in its structure as long as (a) block and (b) block force are also formed, for example, a linear, branched, star-like structure, etc. Any of a block copolymer, a diblock copolymer, a triblock copolymer, a multiblock copolymer, and the like having bismuth can be selected.
  • a preferable structure includes a triblock copolymer composed of (a)-(b)-(a) from the viewpoint of physical property balance and molding cacheability. These may be used alone or in combination of two or more in order to obtain the desired physical properties and moldability.
  • the ratio of the block (a) to the block (b) is not particularly limited! /, But from the viewpoint of flexibility and rubberity, the content of the block (a) in the component (E) is 5 ⁇ 50% by weight Is more preferably 10 to 40% by weight.
  • the weight average molecular weight by GPC measurement is 30,000 to 500,000. It is preferred to have a power of 50,000 to 300,000, especially preferred!
  • the weight average molecular weight force is lower than 30, 00 0, mechanical properties tend not to be sufficiently developed, whereas when it exceeds 500, 00 00, fluidity and workability tend to be poor. .
  • the method for producing the component (E) is not particularly limited, and can be obtained, for example, by polymerizing the monomer component in the presence of a compound represented by the following general formula (1).
  • X is a halogen atom, an alkoxy group having 1 to 6 carbon atoms or a substituent in which acyloxy group power is also selected
  • R 2 may be the same or different.
  • R 3 is a polyvalent aromatic hydrocarbon group or a polyvalent aliphatic hydrocarbon group, and n represents a natural number of 1-6.
  • the compound represented by the general formula (1) serves as an initiator, and is considered to generate a carbon cation in the presence of a Lewis acid or the like and serve as a starting point for cationic polymerization.
  • Examples of the compound of the general formula (1) used in the present invention include the following compounds.
  • a Lewis acid catalyst can be allowed to coexist.
  • Such Lewis acids are acceptable as long as they can be used for cationic polymerization.
  • Metal halides such as A1C1 and AlBr; Organometallic halides such as Et A1C1 and EtAlCl
  • TiCl, BC1, and SnCl are preferable in view of the ability as a catalyst and industrial availability.
  • the amount of Lewis acid used is particularly limited.
  • an electron donor component can be further present if necessary.
  • This electron donor component is believed to have the effect of stabilizing the growing carbon cation during cationic polymerization.
  • an electron donor By adding an electron donor, a polymer with a narrow molecular weight distribution and a controlled structure can be obtained. Can be generated.
  • the electron donor component that can be used is not particularly limited, and examples thereof include pyridines, amines, amides, sulfoxides, esters, and metal compounds having an oxygen atom bonded to a metal atom. .
  • the polymerization of the component (E) can be carried out in an organic solvent as necessary.
  • the organic solvent can be used without any particular limitation as long as it does not substantially inhibit force thione polymerization.
  • the amount of the solvent used is determined so that the concentration of the polymer is 1 to 50 wt%, preferably 5 to 35 wt%, in consideration of the viscosity of the polymer solution obtained and ease of heat removal.
  • the respective components are mixed under cooling, for example, at a temperature of 100 ° C or higher and lower than 0 ° C.
  • the temperature range is particularly preferably from 30 ° C to 80 ° C.
  • the component (E) is preferably mixed in an amount of 1 to 300 parts by weight per 100 parts by weight of the component (A), more preferably 1 to 200 parts by weight. If it exceeds 300 parts by weight, the resilience (permanent compression strain) tends to deteriorate.
  • a softening agent can be used as necessary for the purpose of imparting flexibility and molding fluidity.
  • the softening agent is not particularly limited, but generally, a liquid or liquid material is suitably used at room temperature.
  • softeners include mineral oil-based, vegetable oil-based, synthetic-based rubber or rosin softeners.
  • Mineral oils include naphthenic and paraffinic process oils.
  • Vegetable oils include castor oil, cottonseed oil, rapeseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, wood
  • the synthetic system include wax, pine oil, olive oil and the like, and polybutene, low molecular weight polybutadiene and the like.
  • polybutene is preferably used from the viewpoints of compatibility with the component (A) and gas noria.
  • Component (F) is blended in an amount of 1 to 100 parts by weight of component (A), preferably 1 to 50 parts by weight of LOO, more preferably 1 to 50 parts by weight. More preferably, it is 30 parts by weight. If it exceeds 100 parts by weight, the softening agent tends to elute into the liner material strength content, which is not preferable.
  • composition for a cap liner of the present invention can be added with an oxygen absorbent for absorbing oxygen in the container and dissolved oxygen in the contents, as well as a force excellent in gas noliativity.
  • an oxygen absorbent known ones can be used, and there is no particular limitation.
  • vitamin C asconolebic acid
  • vitamin E asconolebic acid
  • vitamin E asconolebic acid
  • asconolevate isosconolebic acid
  • isosconolebic acid Salts gallic acid, gallate, propyl gallate, isopropyl citrate, glucose, fructose and other sugars, BHT, BHA, EDTA alkali metal salts
  • tocopherol vitamin E
  • hydroquinone catechol
  • resorcin dibutylhydroxytoluene
  • Organic oxygen absorbers such as bismuth, hydroxybutanol, pyrogallol, longalit, sorbose, glucose, lignin
  • iron oxygen absorbers such as iron powder, activated iron, ferrous oxide, iron salts, sulfites, thiosulfates
  • Inorganic oxygen absorbers such as nitrite, bisulfite, polybutadiene, polyisoprene, or their copolymers,
  • the particle size is not particularly limited, but in general, it is preferably smaller in the sense of increasing the surface area.
  • Oxygen absorbers may contain other substances such as catalysts, water retention agents and hydrates to control their oxygen absorption capacity!
  • an electrolyte can be used in combination with the iron-based oxygen absorbent.
  • the electrolyte is for accelerating the oxygen absorption rate of the iron-based oxygen absorbent, and examples thereof include alkali metal or alkaline earth metal halides, carbonates, sulfates, and hydroxides. Of these, halides are particularly preferred, and CaCl, NaCl, Mg are more preferred.
  • the electrolyte is coated on the iron-based oxygen absorbent particles, or
  • the amount of the electrolyte added is generally about 0.1 to 10% by weight with respect to the iron-based oxygen absorbent.
  • a transition metal catalyst for oxidation reaction can be used in combination with the oxidation-reduction resin used as the polymeric oxygen absorbent.
  • the transition metal catalyst include metal salts such as acetic acid, naphthenic acid, stearic acid, acetylacetonate complex, or molybdenum of hydrochloric acid, iron, conoleto, rhodium, and nickel.
  • a photosensitizer can be used in combination with the redox resin.
  • the photosensitizer that can be used known ones such as a cleavage type and a hydrogen abstraction type can be used, but a hydrogen abstraction type is preferably used. Specifically, those having a benzoin derivative, benzyl ketal, ⁇ -hydroxyacetophenone, and a aminoacetophenone skeleton can be mentioned as the cleavage type.
  • the hydrogen abstraction type photosensitizer include benzophenone, Michler's ketone, anthraquinone, and thixanthone skeleton. These may be used alone or in combination.
  • the cap liner composition of the present invention can also be added with other thermoplastic resins, thermoplastic elastomers, unvulcanized rubber, etc., as long as the performance is not impaired! .
  • Thermoplastic resin includes polystyrene, acrylonitrile monostyrene copolymer, polymethyl methacrylate, polyvinyl chloride, ABS, MBS, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyamide, polyphenylene ether, polysulfone, polyamide Examples thereof include imide and polyetherimide.
  • thermoplastic elastomer examples include styrene elastomers, olefin elastomers, vinyl chloride elastomers, urethane elastomers, ester elastomers, nylon elastomers, and the like.
  • unvulcanized rubber examples include butyl rubber, natural rubber, butadiene rubber, isoprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), acrylic rubber, and silicone rubber.
  • SBR styrene butadiene rubber
  • NBR acrylonitrile butadiene rubber
  • acrylic rubber examples include silicone rubber.
  • silicone rubber examples include butyl rubber, natural rubber, butadiene rubber, isoprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), acrylic rubber, and silicone rubber.
  • polyphenylene ether is preferably used for the purpose of improving
  • Petroleum hydrocarbon resin is a resin having a molecular weight of about 300 to 10000 using petroleum unsaturated hydrocarbon as a direct raw material.
  • Petroleum hydrocarbon resin is a resin having a molecular weight of about 300 to 10000 using petroleum unsaturated hydrocarbon as a direct raw material.
  • aliphatic petroleum resin, alicyclic petroleum resin and its hydrogen Low molecular weight weight of hydrocarbon, aromatic petroleum resin and its hydride, aliphatic aromatic copolymer petroleum resin and its hydride, dicyclopentagen petroleum resin and its hydride, styrene or substituted styrene Combined, coumarone 'indene resin and the like.
  • alicyclic saturated hydrocarbon resin is preferable from the viewpoint of compatibility with the component (A).
  • the cap liner composition of the present invention can be blended with fillers for improving physical properties or for economic merit.
  • suitable fillers include clay, diatomaceous earth, silica, talc, barium sulfate, calcium carbonate, magnesium carbonate, metal oxides, my strength, dullite, aluminum hydroxide, and other kinds of inorganic fillers and various metal powders. Examples thereof include wooden pieces, glass powder, ceramic powder, carbon black, granular or powdered solid fillers such as granular or powdered polymers, and other various natural or artificial short fibers and long fibers.
  • hollow fillers such as inorganic hollow fillers such as glass balloons and silica balloons, polyvinylidene fluoride, and organic hollow fillers that also have polyvinylidene fluoride copolymer power
  • light weight can be achieved.
  • various foaming agents can be mixed to improve various physical properties such as weight reduction and shock absorption, and it is also possible to mix gas mechanically during mixing.
  • talc is preferable from the viewpoint of economy and hygiene.
  • the blending amount of the filler is 1 to 100 parts by weight of component (A): preferably 1 to 50 parts by weight of LOO, more preferably 1 to 30 parts by weight. More preferably, it is part. If it exceeds 100 parts by weight, the flexibility of the resulting composition tends to be impaired, which is not preferable.
  • the cap liner composition of the present invention may be mixed with an antioxidant and an ultraviolet absorber as necessary, and the amount of the mixture is 0 with respect to 100 parts by weight of component (A). It is preferable to be in the range of 01 to 10 parts by weight, and more preferably in the range of 0.01 to 5 parts by weight.
  • flame retardants, antibacterial agents, light stabilizers, colorants, fluidity improvers, antiblocking agents, antistatic agents, etc. can be added as other additives, each of which can be used alone or in combination of two or more. Can be used together.
  • a known method without particular limitation can be applied to the method for producing the composition for a cap liner of the present invention.
  • each of the above-mentioned components and, if necessary, the additive component are heated and kneaded using a single-screw extruder, twin-screw extruder, roll, Banbury mixer, Brabender, kneader, high shear mixer, etc. It can be manufactured by melt-kneading.
  • the kneading order of the components is not particularly limited, and can be determined according to the apparatus used, workability, or physical properties of the obtained cap liner composition.
  • the hardness of the thread liner composite for a cap liner of the present invention is a hardness measured with a spring type A durometer as defined in JIS K-6253 (hereinafter abbreviated as JIS-A hardness). 95 is preferred 50-75 is most preferred.
  • JIS-A hardness is less than 40, the liner material strength is weak and the liner tends to wear when the cap is opened and closed.
  • JIS-A hardness exceeds 90, the liner is too hard and sufficiently adheres to the container mouth. There is a tendency for the hermetic seal contents of the container contents to be damaged.
  • cap liner of the present invention there is no particular limitation.
  • Various types of molding methods and molding apparatuses generally used are used depending on the type, application, and shape of the target cap.
  • any molding method such as injection molding, extrusion molding, press molding, blow molding, calender molding, and casting molding is exemplified, and these methods may be combined.
  • the cap liner composition may be formed into a sheet having a thickness of 0.5 to 1. Omm, then punched out to a diameter suitable for the shape of the cap, and inserted into the cap for adhesion.
  • An in-shell molding method in which a certain amount of extruded molten resin is dropped inside the cap and is embossed under cooling to form a liner.
  • the in-shell mold method is an excellent molding method from the viewpoint of mass productivity.
  • the cap liner composed of the cap liner composition of the present invention may be used as a single layer or in combination with a layer having other functions.
  • the layer having other functions include an oxygen absorption layer.
  • the oxygen absorbing layer is exemplified by a layer in which the above-described oxygen absorber is dispersed in a polymer such as polyolefin.
  • Caps in which the composition for a cap liner of the present invention is used include various types of tea beverages, fruit beverages, vegetable beverages, carbonated beverages, milk beverages, coffee beverages, soft drinks, mineral water PET bottle containers and metals.
  • examples include bottle containers, bottles for beer, whiskey, wine, sake bottles such as sake, wide-mouth bottles for foods such as jam and enokitake, and small bottles for drinks.
  • it is particularly suitable for caps of containers used for PET bottle containers and metal bottle containers.
  • JIS-A hardness the hardness (hereinafter abbreviated as JIS-A hardness) was measured with a spring type A durometer. JIS-A hardness is 50 to 75, ⁇ , 40 to 50 or 75 to 95, ⁇ , less than 40 or more than 95.
  • a 1 mm thick press sheet was used as the test piece.
  • a glass whose contact surface was processed into a spherical surface with a diameter of about 5 mm was used as a sliding piece, a 200 g weight was placed on it, moved at a speed of 3 OmmZ, and the static friction coefficient was measured.
  • the coefficient of static friction is less than 0.5, it is marked as ⁇ , when 0.5 to 1.0 is marked as ⁇ , and when it exceeds 1.0.
  • the oxygen transmission coefficient was measured.
  • a lmm-thick press sheet was used as the test piece, and the differential pressure method (A method) was used.
  • test piece used was a 12. Omm thickness press sheet.
  • a cap liner composition was produced using the following raw materials.
  • Component (A) Isobutylene polymer having an alkenyl group at the terminal
  • High density polyethylene Hi-Zex 2200J manufactured by Mitsui Engineering Co., Ltd. (Density: 0.968 g / cm 3 , MFR: 5.2 gZl0min, hereinafter abbreviated as HDPE)
  • Pt catalyst 1,1,3,3-tetramethyl-1,3-dialkyldisiloxane complex of zerovalent platinum, 3 wt% xylene solution (hereinafter abbreviated as Pt catalyst)
  • Silicone oil Silicone concentrate BY27-001 manufactured by Toray Dow Cowing Silicone Co., Ltd., silicone oil content of about 50% (hereinafter abbreviated as SiMB)
  • Component (E) isobutylene block copolymer
  • Butyl dynamic cross-linking elastomer Trefsin 327 1— 65W308 (hereinafter abbreviated as TREF)
  • a 2 L separable flask was fitted with a three-way cock, thermocouple, and stirring seal, and purged with nitrogen. After nitrogen substitution, nitrogen was flowed using a three-way cock. To this, 785 ml of toluene and 265 ml of ethylcyclohexane were added using a syringe and cooled to about 70 ° C. After cooling, 277 ml (2933 mmol) of isobutylene monomer was added. After cooling to about 70 ° C.
  • the reaction solution was washed twice with water, the solvent was evaporated, and the resulting polymer was vacuum-dried at 60 ° C for 24 hours to obtain the desired block copolymer.
  • the obtained isobutylene block copolymer was subjected to GPC analysis. As a result, the weight average molecular weight was 135,000, and the polystyrene content determined by NMR was 30% by weight.
  • a dynamic crosslinking composition was produced in the same manner as in Production Example 3, except that component (B) was RPP.
  • Laboplast mill (Toyo Seiki Co., Ltd.) was prepared by using the dynamically crosslinked composition produced in Production Examples 3 and 4 and blending so that the final composition of each component was as shown in Table 1. Melt-kneaded for 5 minutes. The charged weight was adjusted to 45 g in total. The obtained kneaded material was press-molded at 170 ° C for 5 minutes, and various physical properties were evaluated. Table 1 shows the evaluation results.
  • melt-kneading was carried out in the same manner as in Production Example 3. However, since the crosslinking did not proceed, the torque did not increase, and only a kneaded product with extremely strong tack was obtained. I got it. Since the force could not be formed into a sheet shape, the physical properties could also be evaluated.
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4
  • Component (B) HDPE 25 35 45 65 85 65 65 20
  • MFR 0.10 0.10 0.15 0.20 0.20 0.25 0.30 0.25 0.25 0.20 0.20 0.20 0.40
  • Comparative Example 1 is insufficient in the force gas barrier property, which is a composition mainly composed of a hydrogenated styrene monoconjugate block copolymer (SEBS), which is a conventional technique.
  • SEBS hydrogenated styrene monoconjugate block copolymer
  • Comparative Example 2 the force of changing the softening agent to polybutene The stickiness due to the bleeding of the softening agent with poor absorbability to SEBS is strong. Along with this, the gas-opening property is not sufficient.
  • Comparative Example 3 is a composition comprising styrene-isobutylene block copolymer (SIB S) as a main component, but it can be seen that the compression set is high and the restoring property is insufficient.
  • Comparative Example 4 is a commercial product of a composition obtained by dynamically crosslinking butyl rubber, but it can be seen that there is a problem in terms of elution.
  • Example 1 to 9 of the present invention it can be seen that the composition is well balanced as the liner material of the cap without such problems.
  • the resilience tends to decrease as the amount of force added indicating the effect of addition of the isoprene-based block copolymer (SIBS) as the component (E) increases, the gas barrier It can be seen that the moldability and molding fluidity are improved.
  • silicone oil was added as the component (D), and it can be seen that the openability tends to be improved.
  • Example 7 it can be seen that the polyethylene flow is further added as the component (D), and the molding fluidity is improved.
  • Example 8 polypropylene is used as the component (B), and it can be seen that the opening performance is excellent in molding fluidity.
  • the openability after the retort sterilization treatment (121 ° C, 30 minutes) showed a tendency to be superior to that of Example 4 using polyethylene.
  • the cap liner assembly that is the object of the present invention is excellent in hermetic sealability, gas barrier property, restoration property, hygiene, and easy to open during actual use. An adult product is obtained.

Abstract

A cap liner composition for use in a sealing material of beverage cap that excels in not only hermetic sealing properties (flexibility and restoration) and gas barrier performance but also hygienic behavior, and that facilitates opening at practical use; and a cap liner making use of the composition. There is provided a cap liner composition produced by dynamic crosslinking of an isobutylene polymer having an alkenyl group at its terminal with the use of a hydrosilyl-containing compound in the presence of a polyolefin and adding a lubricant thereto.

Description

明 細 書  Specification
キャップライナー用組成物  Cap liner composition
技術分野  Technical field
[0001] 本発明は、密封性、ガスバリア性に優れ、かつ、衛生性にも優れており、実使用時 の開封も容易な、飲料用キャップのシール材に用いるキャップライナー用組成物、お よび、それを用いたキャップライナーに関するものである。さらに詳しくは、架橋された イソブチレン系重合体の有する優れた柔軟性、復元性およびガスバリア性により、密 封シール性が良いだけでなぐ清涼飲料等の内容物への酸素の透過による酸ィ匕や、 内圧の力かる炭酸飲料等の内容物力 のガス抜けが起こりにくく、開栓トルクの異常 な上昇が防止され実使用時の開封が容易で、さらに、ライナー材からの溶出物が防 止された、衛生性に優れた飲料用キャップのシール材に用いるキャップライナー用組 成物、および、それを用いたキャップライナーに関するものである。  [0001] The present invention relates to a cap liner composition used for a sealing material for beverage caps, which is excellent in sealing properties, gas barrier properties, hygiene, and easy to open in actual use, and , And a cap liner using the same. More specifically, the cross-linked isobutylene polymer has excellent flexibility, resilience, and gas barrier properties, so that it does not only have a good hermetic sealing property, but also has an oxygen content due to the permeation of oxygen into soft drinks and other contents. Gas content such as carbonated beverages with high internal pressure is unlikely to escape, abnormal opening of the opening torque is prevented, easy opening during actual use, and elution from the liner material is prevented. The present invention relates to a composition for a cap liner used for a sealing material for a beverage cap having excellent hygiene, and a cap liner using the same.
背景技術  Background art
[0002] 従来、ガラス瓶、金属ボトル、 PET容器等の容器蓋のライナー材として、コルク、軟 質 PVC、低密度ポリエチレン等のォレフィン系榭脂、スチレン系エラストマ一等のライ ナー材が用いられてきた。このうち、コルクは反発弾性等に優れているものの、天然 素材であり、品質や供給の安定性、ダスト発生などの問題がある。また、 PVC系材料 は柔軟で密封性に優れているものの、可塑剤の溶出や、低温焼却時のダイォキシン 発生などの問題がある。これらの状況から、近年では、衛生性、加工性に優れたォレ フィン系榭脂ゃスチレン系エラストマ一等のライナー材に変更されつつある。  Conventionally, liner materials such as cork, soft PVC, polyolefin resin such as low density polyethylene, and styrene elastomer are used as liner materials for container lids such as glass bottles, metal bottles, and PET containers. It was. Of these, cork has excellent impact resilience, but is a natural material and has problems such as quality, supply stability, and dust generation. Although PVC-based materials are flexible and have excellent sealing properties, there are problems such as elution of plasticizers and generation of dioxin during low-temperature incineration. Under these circumstances, in recent years, it has been changed to a liner material such as an olefin resin having excellent hygiene and workability, such as styrene elastomer.
[0003] しかし、低密度ポリエチレン等のォレフィン系榭脂をライナー材として用いた場合、 高温充填、加熱殺菌処理を要する内容物や内圧の力かる炭酸飲料等の内容物の密 封シール性には、塑性変形、永久歪みの点から漏洩等の問題が生じるし、また、輸 送時の衝撃等に対する漏洩性においても問題がある。このことから、特に上記のよう な用途には、密封シール性に優れたスチレン系エラストマ一を主成分とするライナー 材が主として用いられて 、る。  [0003] However, when an olefin-based resin such as low-density polyethylene is used as a liner material, there is a need for hermetic sealing of contents that require high-temperature filling and heat sterilization treatment or contents such as carbonated beverages that require internal pressure. In addition, there are problems such as leakage from the viewpoint of plastic deformation and permanent distortion, and there is also a problem in leakage due to impact during transportation. For this reason, liner materials mainly composed of a styrene-based elastomer having excellent hermetic sealing properties are mainly used for the above-mentioned applications.
[0004] このようなスチレン系エラストマ一を主成分とするライナー材としては、水素添加され たスチレン ブタジエン系ブロック共重合体と、ポリオレフインと、流動パラフィンなど の軟化剤力もなる組成物を用いることが一般的である(特許文献 1〜4)。このような構 成の組成物とすることで、柔軟で密封シール性に優れ、内容物の熱間充填 (ホットフ ィル)や充填密封後の加熱殺菌 (レトルト殺菌)に耐え得ると共に、熱変形ないし熱収 縮に起因する漏洩も有効に解消されたライナー材が得られている。しかし、一方で、 水素添加されたスチレン ブタジエン系ブロック共重合体はポリオレフインと比較して ガス透過率が高ぐ外部力もの酸素を遮断する性能が低いため、内容物の酸ィ匕が起 きやすぐ風味や香りを維持できる期間が短いという問題がある。また、内容物が炭酸 飲料の場合、炭酸ガスの抜けが早ぐ内圧を保持できる期間が短いという問題もある 。さらに、十分な密封シール性を発現するためには、流動パラフィンなどの軟化剤を 多量に添加して柔軟性を付与する必要があり、乳飲料等の脂肪分を含む内容物で は、軟化剤が抽出されやすぐ衛生性の面でも問題がある。 [0004] A liner material mainly composed of such a styrene elastomer is hydrogenated. It is general to use a composition having a softening power such as styrene-butadiene block copolymer, polyolefin and liquid paraffin (Patent Documents 1 to 4). By using such a composition, it is flexible and has excellent hermetic sealing properties, can withstand hot filling (hot fill) of the contents and heat sterilization (retort sterilization) after filling and sealing, and thermal deformation. In addition, a liner material has been obtained in which leakage due to heat contraction is effectively eliminated. However, on the other hand, hydrogenated styrene-butadiene block copolymers have a lower gas permeation rate and a higher ability to block external force oxygen than polyolefins, which may cause acid content. There is a problem that the period in which the flavor and aroma can be maintained immediately is short. In addition, when the content is a carbonated beverage, there is also a problem that the period during which the internal pressure can be maintained is short because the carbon dioxide escapes quickly. Furthermore, in order to develop sufficient hermetic sealing properties, it is necessary to add a large amount of a softening agent such as liquid paraffin to impart flexibility, and for contents containing fat such as milk beverages, the softening agent As soon as it is extracted, there is a problem in terms of hygiene.
[0005] 一方、ガスノリア性に優れたライナー材として、ブチル系ゴムを主成分とするライナ ー材が提案されている(特許文献 5)。しかし、そこで開示されているブチル系ゴムを 架橋するためには、フエノール榭脂ゃ酸化亜鉛などの架橋剤を使用する必要があり 、ライナー材の着色や臭いなどの問題があるだけでなぐ内容物への溶出性が高ぐ 安全性や衛生性の面で改良が望まれて 、た。 [0005] On the other hand, a liner material mainly composed of butyl rubber has been proposed as a liner material having excellent gas noria properties (Patent Document 5). However, in order to cross-link the butyl rubber disclosed there, it is necessary to use a cross-linking agent such as phenol resin, zinc oxide or the like, and the contents are not only due to problems such as coloring and odor of the liner material. Therefore, improvement in safety and hygiene was desired.
特許文献 1:特開平 2— 57569号公報  Patent Document 1: Japanese Patent Laid-Open No. 2-57569
特許文献 2:特開平 7— 76360号公報  Patent Document 2: JP-A-7-76360
特許文献 3:特開平 11― 106565号公報  Patent Document 3: Japanese Patent Laid-Open No. 11-106565
特許文献 4:特開 2000 - 38495号公報  Patent Document 4: Japanese Patent Laid-Open No. 2000-38495
特許文献 5 :特開 2002— 160759号公報  Patent Document 5: JP 2002-160759 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明の目的は、密封性、ガスノリア性に優れ、かつ、衛生性に優れており、実用 時の開封も容易な、飲料用キャップのシール材に用いるキャップライナー用組成物、 および、それを用いたキャップライナーを提供することにある。 [0006] An object of the present invention is to provide a composition for a cap liner used for a sealing material for a beverage cap, which is excellent in sealing properties, gas noria properties, is excellent in hygiene, and can be easily opened in practical use, and The object is to provide a cap liner using the same.
課題を解決するための手段 [0007] 本発明者らは、上記課題を解決するために鋭意研究を積み重ねた結果、末端にァ ルケ-ル基を有するイソブチレン系重合体を、ポリオレフインの存在下でヒドロシリル 基含有化合物により動的に架橋し、さらに滑剤を添加した組成物をライナー材として 用いることにより、前記課題を解決できることを見出し、本発明に至ったものである。 Means for solving the problem [0007] As a result of intensive studies to solve the above-mentioned problems, the present inventors have made an isobutylene polymer having a alkenyl group at the end dynamically by a hydrosilyl group-containing compound in the presence of polyolefin. The present inventors have found that the above-mentioned problems can be solved by using as a liner material a composition that has been cross-linked and further added with a lubricant.
[0008] すなわち本発明は、(A)末端にアルケニル基を有するイソブチレン系重合体 100 重量部を、(B)ポリオレフイン 10〜: LOO重量部の存在下で、(C)ヒドロシリル基含有 化合物により溶融混練中に架橋してなる組成物と、(D)滑剤 0. 1〜20重量部とを含 有してなるキャップライナー用組成物に関する。 That is, in the present invention, (A) 100 parts by weight of an isobutylene polymer having an alkenyl group at the terminal is melted with (C) a hydrosilyl group-containing compound in the presence of (B) polyolefin 10 to: LOO parts by weight. The present invention relates to a cap liner composition comprising a composition formed by crosslinking during kneading and (D) 0.1 to 20 parts by weight of a lubricant.
[0009] 好ま 、実施態様としては、さらに (E)芳香族ビニル系化合物を主体とする重合体 ブロック(a)とイソブチレンを主体とする重合体ブロック(b)力 なるブロック共重合体 1[0009] Preferably, as an embodiment, (E) a polymer block ( a ) mainly composed of an aromatic vinyl compound and a polymer block mainly composed of isobutylene (b) a powerful block copolymer 1
〜300重量部を含有してなるキャップライナー用組成物に関する。 The present invention relates to a composition for a cap liner comprising -300 parts by weight.
[0010] 好ましい実施態様としては、さらに (F)軟化剤 1〜: LOO重量部を含有してなるキヤッ プライナー用組成物に関する。 [0010] A preferred embodiment further relates to a cap liner composition comprising (F) a softener 1 to LOO parts by weight.
[0011] 好ましい実施態様としては、(A)成分中のアルケニル基に対する(C)成分中のヒド ロシリル基の量(ヒドロシリル基 Zァルケ-ル基)が、モル比で 0. 5〜10の範囲にある ことを特徴とするキャップライナー用組成物に関する。 In a preferred embodiment, the amount of hydrosilyl group in component (C) relative to the alkenyl group in component (A) (hydrosilyl group Zalkyl group) is in the range of 0.5 to 10 in molar ratio. It is related with the composition for cap liners characterized by these.
[0012] 好ましい実施態様としては、(B)成分のポリオレフインカ、ポリエチレンおよびポリプ ロピレン力も選ばれる少なくとも 1種であるキャップライナー用組成物に関する。 [0012] A preferred embodiment relates to a composition for a cap liner, which is at least one selected from the components of component (B) such as polyolefin ink, polyethylene, and polypropylene.
[0013] 好ましい実施態様としては、(D)成分の滑剤力 脂肪酸アミド、パラフィン系ワックス[0013] As a preferred embodiment, (D) component lubricant power fatty acid amide, paraffin wax
、シリコーンオイルよりなる群力も選ばれる少なくとも 1種であることを特徴とするキヤッ プライナー用組成物に関する。 In addition, the present invention relates to a cap liner composition characterized in that it is at least one selected from the group power consisting of silicone oil.
[0014] 好ま 、実施態様としては、 (E)成分のブロック共重合体における(a)ブロックの含 有量が 10〜40重量%であることを特徴とするキャップライナー用組成物に関する。 [0014] Preferably, an embodiment relates to a composition for a cap liner, wherein the content of the block (a) in the block copolymer of the component (E) is 10 to 40% by weight.
[0015] 好ましい実施態様としては、(F)成分の軟化剤が、ポリブテンであることを特徴とす るキャップライナー用組成物に関する。 [0015] A preferred embodiment relates to a composition for a cap liner, wherein the softening agent of component (F) is polybutene.
[0016] また、本発明は、前記組成物力もなるキャップライナーに関する。 [0016] The present invention also relates to a cap liner having the compositional strength.
発明の効果  The invention's effect
[0017] 本発明の組成物力 なるキャップライナーは、イソブチレン系重合体の有する優れ た柔軟性およびガスノリア性により、密封時の形状追随性が良いだけでなぐ清涼飲 料等の内容物への酸素の透過による酸ィ匕や、内圧の力かる炭酸飲料等の内容物か らのガス抜けが起こりにくい。また、滑剤の添加により、開栓トルクの異常な上昇が防 止され、実使用時の開封を容易に行うことができる。さらに、末端にアルケニル基を有 することでヒドロシリル基含有ィ匕合物による架橋が可能となるため、ライナー材カもの 成分溶出が防止される。その結果、衛生性にも優れるキャップライナーが得られるこ ととなる。従って、清涼飲料や炭酸飲料、乳飲料等のキャップライナーとして好適であ る。 [0017] The cap liner according to the composition of the present invention has an excellent isobutylene polymer. Because of its flexibility and gas noliativity, it is not only good in shape tracking when sealed, but also from the contents of oxygenated drinks such as soft drinks and carbonated drinks with internal pressure. Outgassing is difficult to occur. In addition, the addition of a lubricant prevents an abnormal increase in the opening torque and allows easy opening during actual use. Furthermore, since an alkenyl group is present at the terminal, crosslinking with a hydrosilyl group-containing compound is possible, so that elution of the components of the liner material is prevented. As a result, a cap liner excellent in hygiene can be obtained. Therefore, it is suitable as a cap liner for soft drinks, carbonated drinks, milk drinks and the like.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 本発明のキャップライナー用組成物は、(A)末端にアルケニル基を有するイソプチ レン系重合体 100重量部を、(B)ポリオレフイン 10〜 100重量部の存在下で、(C)ヒ ドロシリル基含有化合物により溶融混練中に架橋してなる組成物と、(D)滑剤 0. 1〜 20重量部とを混合することで得られる。  [0018] The cap liner composition of the present invention comprises (A) 100 parts by weight of an isoprene-based polymer having an alkenyl group at the terminal, (B) in the presence of 10 to 100 parts by weight of polyolefin, It is obtained by mixing a composition formed by crosslinking during melt-kneading with a drosilyl group-containing compound and (D) 0.1 to 20 parts by weight of a lubricant.
[0019] 本発明の (A)成分である、末端にアルケニル基を有するイソブチレン系重合体は、 柔軟性、復元性、ガスノリア性の点でイソプチレンに由来するユニットが 50重量%以 上であるのが好ましぐ 70重量%以上であるのがより好ましぐ 90重量%以上である のが更に好ましい。イソプチレン以外の単量体としては、カチオン重合可能な単量体 成分であれば特に限定されないが、芳香族ビニル類、脂肪族ォレフイン類、イソプレ ン、ブタジエン、ジビュルベンゼン等のジェン類、ビュルエーテル類、 13 ピネン等 の単量体が例示できる。これらは単独で用いてもよいし、 2種以上組み合わせて用い てもよい。  [0019] The isobutylene-based polymer having an alkenyl group at the terminal, which is the component (A) of the present invention, has a unit derived from isoptylene in an amount of 50% by weight or more in terms of flexibility, restorability, and gas noriability. More preferred is 70% by weight or more, and more preferred is 90% by weight or more. The monomer other than isopylene is not particularly limited as long as it is a monomer component that can be cationically polymerized. However, aromatic vinyls, aliphatic olefins, gens such as isoprene, butadiene, dibutenebenzene, and butyl ether. And monomers such as 13 pinene. These may be used alone or in combination of two or more.
[0020] (A)成分の分子量に特に制限はないが、 GPC測定による重量平均分子量で 5, 0 00力ら 500, 000であるの力好まし <、 10, 000力ら 200, 000力 ^特に好まし!/、。重量 平均分子量が 5, 000未満の場合、機械的な特性等が十分に発現されない傾向があ り、また、 500, 000を超える場合、溶融混練性が低下し、また、架橋時の反応性が 低下する傾向がある。  [0020] The molecular weight of the component (A) is not particularly limited, but the weight average molecular weight by GPC measurement is preferably 5,000 to 500,000 <, 10,000 to 200,000 force ^ Especially preferred! When the weight average molecular weight is less than 5,000, mechanical properties and the like tend not to be sufficiently exhibited. When the weight average molecular weight exceeds 500,000, the melt-kneading property is lowered and the reactivity at the time of crosslinking is reduced. There is a tendency to decrease.
[0021] 本発明の (A)成分中のアルケニル基とは、ヒドロシリル基含有化合物による架橋反 応に対して活性のある炭素 炭素二重結合を含む基であれば特に制限されるもの ではない。具体例としては、ビュル基、ァリル基、メチルビニル基、プロべ-ル基、ブ テニル基、ペンテニル基、へキセニル基等の脂肪族不飽和炭化水素基、シクロプロ ぺ-ル基、シクロブテュル基、シクロペンテ-ル基、シクロへキセ -ル基等の環式不 飽和炭化水素基を挙げることができる。 [0021] The alkenyl group in component (A) of the present invention is particularly limited as long as it is a group containing a carbon-carbon double bond that is active with respect to a crosslinking reaction by a hydrosilyl group-containing compound. is not. Specific examples include a butyl group, a aryl group, a methyl vinyl group, a probe group, a butenyl group, a pentenyl group, a hexenyl group and other aliphatic unsaturated hydrocarbon groups, a cyclopropyl group, a cyclobutyr group, Examples thereof include cyclic unsaturated hydrocarbon groups such as a cyclopentyl group and a cyclohexyl group.
[0022] 本発明の (A)成分の末端へのアルケニル基の導入方法としては、特開平 3— 152 164号公報ゃ特開平 7— 304909号公報に開示されているような、水酸基などの官 能基を有する重合体に不飽和基を有する化合物を反応させて重合体に不飽和基を 導入する方法が挙げられる。またハロゲン原子を有する重合体に不飽和基を導入す るためにはァルケ-ルフエ-ルエーテルとのフリーデルクラフツ反応を行う方法、ルイ ス酸存在下ァリルトリメチルシラン等との置換反応を行う方法、種々のフエノール類と のフリーデルクラフツ反応を行い水酸基を導入した上でさらに前記のアルケニル基導 入反応を行う方法などが挙げられる。この中でもァリルトリメチルシランと塩素の置換 反応により末端にァリル基を導入したものが、反応性の点力も好ましい。  [0022] As a method for introducing an alkenyl group into the terminal of the component (A) of the present invention, there is a method such as a hydroxyl group as disclosed in JP-A-3-152164 or JP-A-7-304909. Examples thereof include a method in which a compound having an unsaturated group is reacted with a polymer having a functional group to introduce the unsaturated group into the polymer. In addition, in order to introduce an unsaturated group into a polymer having a halogen atom, a method of performing a Friedel-Crafts reaction with a alkaryl ether, or a method of performing a substitution reaction with allyltrimethylsilane in the presence of lauric acid. In addition, there may be mentioned a method in which a Friedel-Crafts reaction with various phenols is performed to introduce a hydroxyl group, and then the alkenyl group introduction reaction is further performed. Among these, those in which an aryl group is introduced at the terminal by a substitution reaction of allyltrimethylsilane and chlorine are also preferable in terms of reactivity.
[0023] 本発明の (A)成分のァルケ-ル基の量は、必要とする特性によって任意に選ぶこ とができる力 架橋後の特性の観点から、 1分子あたり少なくとも 0. 2個のアルケ-ル 基を末端に有する重合体であることが好ましぐ 1分子当たり 1. 0個以上であることが さらに好ましぐ 1分子当たり 1. 5個以上であることが最も好ましい。 0. 2個未満であ ると、架橋反応が十分に進行しないおそれがある。  [0023] The amount of the alkenyl group of the component (A) of the present invention can be arbitrarily selected according to the required properties. From the viewpoint of the properties after crosslinking, at least 0.2 alkenyl groups per molecule. The polymer having a terminal group is preferably 1.0 or more per molecule, and more preferably 1.5 or more per molecule. If the number is less than 2, the crosslinking reaction may not proceed sufficiently.
[0024] 本発明の(B)成分であるポリオレフインは、 aーォレフインの単独重合体、ランダム 共重合体、ブロック共重合体及びそれらの混合物、または α—ォレフィンと他の不飽 和単量体とのランダム共重合体、ブロック共重合体、グラフト共重合体及びこれら重 合体の酸化、ハロゲンィ匕又はスルホンィ匕したもの等を 1種又は 2種以上組み合わせ て使用できる。具体的には、ポリエチレン、エチレン プロピレン共重合体、エチレン プロピレン 非共役ジェン共重合体、エチレンーブテン共重合体、エチレン一へ キセン共重合体、エチレン オタテン共重合体、エチレン 酢酸ビュル共重合体、 エチレン ビュルアルコール共重合体、エチレン ェチルアタリレート共重合体、ェ チレン アクリル酸共重合体、エチレン アクリル酸メチルー無水マレイン酸共重合 体、塩素化ポリエチレン等のポリエチレン系榭脂、ポリプロピレン、プロピレンーェチ レンランダム共重合体、プロピレン エチレンブロック共重合体、塩素化ポリプロピレ ン等のポリプロピレン系榭脂、ポリ— 1—ブテン、ポリイソブチレン、ポリメチルペンテンThe polyolefin which is the component (B) of the present invention is a homopolymer of a-olefin, a random copolymer, a block copolymer and a mixture thereof, or α-olefin and other unsaturated monomers. These random copolymers, block copolymers, graft copolymers and those obtained by oxidation, halogenation or sulfonation of these polymers can be used alone or in combination. Specifically, polyethylene, ethylene-propylene copolymer, ethylene-propylene non-conjugated diene copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, ethylene otaten copolymer, ethylene acetate butyl copolymer, ethylene butyl Alcohol copolymer, ethylene ethyl acrylate copolymer, ethylene acrylic acid copolymer, ethylene methyl acrylate-maleic anhydride copolymer, polyethylene resin such as chlorinated polyethylene, polypropylene, propylene ethylene Random copolymer, propylene ethylene block copolymer, polypropylene resin such as chlorinated polypropylene, poly-1-butene, polyisobutylene, polymethylpentene
、環状ォレフィンの(共)重合体等が例示できる。これらの中でコストと物性バランスの 点からポリエチレン、ポリプロピレン、又はこれらの混合物が好ましく使用できる。ポリ エチレンとしては、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリェチ レンなどが例示でき、ポリプロピレンとしては、ホモポリプロピレン、ランダムポリプロピ レン、ブロックポリプロピレンなどが例示できる。これらの中でも、耐熱性の点から、ポリ プロピレンが最も好ましい。 Examples thereof include (co) polymers of cyclic olefins. Among these, polyethylene, polypropylene, or a mixture thereof can be preferably used from the viewpoint of balance between cost and physical properties. Examples of the polyethylene include high-density polyethylene, low-density polyethylene, and linear low-density polyethylene. Examples of the polypropylene include homopolypropylene, random polypropylene, and block polypropylene. Among these, polypropylene is most preferable from the viewpoint of heat resistance.
[0025] 使用するポリオレフインのメルトフローレート(MFR)としては、特に制限がないもの の、成形流動性の点から、 0. 1〜: LOO (gZlOmin)であることが好ましぐ l〜100 (g ZlOmin)であることがより好ましい。  [0025] The melt flow rate (MFR) of the polyolefin used is not particularly limited, but is preferably 0.1 to LOO (gZlOmin) from the viewpoint of molding fluidity. g ZlOmin) is more preferable.
[0026] 本発明において、(B)成分は、(A)成分の架橋反応場として機能するだけでなぐ 最終的なライナー組成物に、成形流動性、耐熱性、機械強度、開封性を付与する働 きを有する。(B)成分の添加量は、(A)成分 100重量部に対し、 10〜: LOO重量部と し、 20〜80重量部とするのが好ましい。(B)成分が 10重量部より少ないと、十分な 成形流動性が得られない傾向があり、 100重量部より多くなると、柔軟性が損なわれ 、十分な密封性が発現しない傾向がある。  [0026] In the present invention, the component (B) not only functions as a crosslinking reaction field for the component (A), but imparts molding fluidity, heat resistance, mechanical strength, and unsealing properties to the final liner composition. Have a job. The amount of component (B) added is preferably 10 to: LOO parts by weight and 20 to 80 parts by weight per 100 parts by weight of component (A). When the amount of the component (B) is less than 10 parts by weight, sufficient molding fluidity tends not to be obtained. When the amount is more than 100 parts by weight, flexibility tends to be impaired and sufficient sealing performance tends not to be exhibited.
[0027] 本発明では、(A)成分の架橋剤として、ヒドロシリル基含有ィ匕合物 (C)を用いる。使 用できるヒドロシリル基含有ィ匕合物に特に制限はな 、が、ヒドロシリル基含有ポリシ口 キサンが好ましぐ各種のものを用いることができる。その中でもヒドロシリル基を 3個 以上持ち、シロキサンユニットを 3個以上 500個以下持つ、ヒドロシリル基含有ポリシ ロキサンが好ましく、ヒドロシリル基を 3個以上持ち、シロキサンユニットを 10個以上 20 0個以下持つポリシロキサンがさらに好ましぐヒドロシリル基を 3個以上持ち、シロキ サンユニットを 20個以上 100個以下持つポリシロキサンが特に好ましい。ヒドロシリル 基が 3個より少ないと、架橋によるネットワークの十分な成長が達成されず最適なゴム 弾性が得られない傾向があり、シロキサンユニットが 500個より多くなると、ポリシロキ サンの粘度が高く (A)成分中への分散性が低下し、架橋反応の進行が不十分となる 傾向がある。ここで言うポリシロキサンユニットとは以下の一般式 (1)、 (11)、 (III)を指 す。 In the present invention, the hydrosilyl group-containing compound (C) is used as the crosslinking agent for the component (A). There are no particular restrictions on the hydrosilyl group-containing compound that can be used, but various types of hydrosilyl group-containing polysiloxanes are preferred. Among them, a hydrosilyl group-containing polysiloxane having 3 or more hydrosilyl groups and 3 or more and 500 or less siloxane units is preferable, and a polysiloxane having 3 or more hydrosilyl groups and 10 or more and 200 or less siloxane units. Polysiloxane having 3 or more hydrosilyl groups and 20 to 100 siloxane units is more preferable. If the number of hydrosilyl groups is less than 3, sufficient network growth due to crosslinking tends not to be achieved and optimal rubber elasticity tends not to be obtained, and if the number of siloxane units exceeds 500, the viscosity of polysiloxane is high (A) There is a tendency for the dispersibility in the component to be reduced and the progress of the crosslinking reaction to be insufficient. The polysiloxane unit here refers to the following general formulas (1), (11), and (III). The
[SKR1) O] (I) [SKR 1 ) O] (I)
2  2
[Si(H) (R2) 0] (II) [Si (H) (R 2 ) 0] (II)
[Si(R2) (R3) 0] (III) [Si (R 2 ) (R 3 ) 0] (III)
ヒドロシリル基含有ポリシロキサンとして、一般式 (IV)または (V)で表される鎖状ポリ シロキサン;  As the hydrosilyl group-containing polysiloxane, a linear polysiloxane represented by the general formula (IV) or (V);
R1 SiO- LSKR1) O] [Si (H) (R2) 0] — [Si (R2) (R3) 0] — SiR1 (IV) R 1 SiO- LSKR 1 ) O] [Si (H) (R 2 ) 0] — [Si (R 2 ) (R 3 ) 0] — SiR 1 (IV)
3 2 a b c 3 3 2 a b c 3
HR1 SiO— [S R1) O] [Si (H) (R2) 0] — [Si (R2) (R3) 0] — SiR1 H (V)HR 1 SiO— [SR 1 ) O] [Si (H) (R 2 ) 0] — [Si (R 2 ) (R 3 ) 0] — SiR 1 H (V)
2 2 a b c 2 2 2 a b c 2
(式中、 R1および R2は炭素数 1〜6のアルキル基、または、フエ-ル基、 R3は炭素数 1 〜 10のアルキル基またはァラルキル基を示す。 bは 3≤b、 a, b, c«3≤a + b + c≤5 00を満たす整数を表す。 ) (In the formula, R 1 and R 2 represent an alkyl group having 1 to 6 carbon atoms or a phenyl group, and R 3 represents an alkyl group having 1 to 10 carbon atoms or an aralkyl group. B represents 3≤b, a , b, c «3≤a + b + c≤500 represents an integer satisfying 00)
一般式 (VI)で表される環状シロキサン;  A cyclic siloxane represented by the general formula (VI);
[0028] [化 1] [0028] [Chemical 1]
R4 H R5 R 4 HR 5
Figure imgf000008_0001
Figure imgf000008_0001
[0029] (式中、 R4および R5は炭素数 1〜6のアルキル基、または、フエ-ル基、 R6は炭素数 1 〜 10のアルキル基またはァラルキル基を示す。 eは 3≤e、 d, e, fは d + e + f≤500 を満たす整数を表す。)等の化合物を用いることができる。 (Wherein R 4 and R 5 represent an alkyl group having 1 to 6 carbon atoms or a phenyl group, and R 6 represents an alkyl group having 1 to 10 carbon atoms or an aralkyl group. E is 3≤ e, d, e, and f are integers satisfying d + e + f≤500).
[0030] (A)成分とヒドロシリル基含有ィ匕合物は任意の割合で混合することができるが、架 橋速度の面から、ァルケ-ル基に対するヒドロシリル基の量 (ヒドロシリル基 Zァルケ -ル基)が、モル比で 0. 5〜10の範囲にあることが好ましぐさらに、 1〜5であること が特に好ましい。モル比が 0. 5より小さくなると、架橋が不十分となる傾向があり、ま た、 10より大きいと、架橋後も活性なヒドロシリル基が大量に残るので、揮発分が発生 しゃすい傾向がある。 [0031] (A)成分と (C)成分との架橋反応は、 2成分を混合して加熱することにより進行する 力 反応をより迅速に進めるために、ヒドロシリルイ匕触媒を添加することが好ましい。こ のようなヒドロシリルイ匕触媒としては特に限定されず、例えば、有機過酸化物やァゾ化 合物等のラジカル発生剤、および遷移金属触媒が挙げられる。 [0030] The component (A) and the hydrosilyl group-containing compound can be mixed at an arbitrary ratio. However, from the viewpoint of the bridge speed, the amount of hydrosilyl group relative to the alkell group (hydrosilyl group Z alkell The group) is preferably in the range of 0.5 to 10 in terms of molar ratio, and more preferably 1 to 5. When the molar ratio is less than 0.5, crosslinking tends to be insufficient, and when it is more than 10, a large amount of active hydrosilyl groups remain even after crosslinking, and volatile matter tends to be generated. . [0031] The crosslinking reaction between the component (A) and the component (C) is preferably performed by adding a hydrosilylated soot catalyst in order to advance the force reaction that proceeds by mixing and heating the two components more quickly. . Such a hydrosilylation catalyst is not particularly limited, and examples thereof include radical generators such as organic peroxides and azo compounds, and transition metal catalysts.
[0032] ラジカル発生剤としては特に限定されず、例えば、ジー t ブチルペルォキシド、 2 , 5 ジメチルー 2, 5 ジ(t—ブチルペルォキシ)へキサン、 2, 5 ジメチルー 2, 5 ージ(t ブチルペルォキシ) 3—へキシン、ジクミルペルォキシド、 t ブチルタミル ペルォキシド、 a , α,—ビス(t ブチルペルォキシ)イソプロピルベンゼンのようなジ アルキルペルォキシド、ベンゾィルペルォキシド、 p クロ口ベンゾィルペルォキシド、 m—クロ口ベンゾィルペルォキシド、 2, 4 ジクロ口ベンゾィルペルォキシド、ラウロイ ルペルォキシドのようなジァシルペルォキシド、過安息香酸 t ブチルのような過 酸エステル、過ジ炭酸ジイソプロピル、過ジ炭酸ジー 2—ェチルへキシルのようなぺ ルォキシジカーボネート、 1, 1ージ(t—ブチルペルォキシ)シクロへキサン、 1, 1 ジ(t ブチルペルォキシ)ー 3, 3, 5—トリメチルシクロへキサンのようなペルォキシケ タール等を挙げることができる。  [0032] The radical generator is not particularly limited, and examples thereof include di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy). ) 3-Hexine, Dicumyl peroxide, t-Butyltamyl peroxide, Dialkylperoxides such as a, α, -bis (t-butylperoxy) isopropylbenzene, Benzylperoxide, p-Chronobenzoyl Peroxide, m-cyclobenzoyl peroxide, 2, 4 dicyclobenzoyl peroxide, diacyl peroxide such as lauroyl peroxide, peroxide esters such as t-butyl perbenzoate , Diisopropyl percarbonate, di-percarbonate diperoxydicarbonate such as 2-ethylhexyl, 1,1-di (t-butylperoxy) cyclo Examples include hexane, peroxyketals such as 1,1 di (t-butylperoxy) -3,3,5-trimethylcyclohexane, and the like.
[0033] また、遷移金属触媒としても特に限定されず、例えば、白金単体、アルミナ、シリカ、 カーボンブラック等の担体に白金固体を分散させたもの、塩化白金酸、塩化白金酸 とアルコール、アルデヒド、ケトン等との錯体、白金ーォレフイン錯体、白金(0)—ジァ ルケ二ルテトラメチルジシロキサン錯体が挙げられる。 白金化合物以外の触媒の例と しては、 RhCl (PPh ) , RhCl , RuCl , IrCl , FeCl , A1C1 , PdCl ·Η O, NiCl  [0033] The transition metal catalyst is not particularly limited. For example, a platinum solid, alumina, silica, carbon black or the like dispersed in a platinum solid, chloroplatinic acid, chloroplatinic acid and alcohol, aldehyde, Examples include complexes with ketones, platinum-olefin complexes, and platinum (0) -dialkyltetramethyldisiloxane complexes. Examples of catalysts other than platinum compounds include RhCl (PPh), RhCl, RuCl, IrCl, FeCl, A1C1, PdCl · 1 O, NiCl
3 3 3 3 3 3 3 2 2 2 3 3 3 3 3 3 3 2 2 2
, TiCl等が挙げられる。これらの触媒は単独で用いてもよぐ 2種類以上を併用して, TiCl and the like. These catalysts can be used alone or in combination of two or more.
4 Four
も力まわない。これらのうち、架橋効率の点で、白金ビニルシロキサンが最も好ましい  Does not help. Of these, platinum vinylsiloxane is most preferred in terms of crosslinking efficiency.
[0034] 触媒量としては特に制限はないが、(A)成分のアルケニル基 lmolに対し、 10一1[0034] The amount of catalyst is not particularly limited, but is 10 to 1 to 1 mol of alkenyl group (A).
10_8molの範囲で用いるのが良ぐ好ましくは 10一3〜 10_6molの範囲で用いるのが よい。 10_8moUり少ないと架橋の進行が不十分となる傾向があり、 10_ 1moUり多く なると、発熱が激しぐ架橋反応が十分に制御できない傾向がある。 10 _8 mol goodness employed in the range of instrument and it is preferably employed in the range of 10 one 3 ~ 10 _6 mol. If the amount is less than 10 _8 moU, the crosslinking tends to be insufficient, and if the amount is more than 10 _ 1 moU, the crosslinking reaction, which is exothermic, tends to be insufficiently controlled.
[0035] 本発明では、(A)成分を (B)成分の存在下で、溶融混練中に (C)成分により動的 に架橋する。溶融混練の温度は、 130〜240°C温度が好ましい。 130°Cよりも低い温 度では、(B)成分の溶融が不十分となり、混練が不均一となる傾向がある。 240°Cよ りも高い温度では、(A)成分の熱分解が起こる傾向がある。この動的架橋の工程に おいては、(A)成分と (B)成分が必須であるが、適宜、(D)成分、(E)成分、(F)成 分などの他の成分を添加して力も架橋を行っても良い。ただし、(D)成分の中には架 橋反応を阻害するものもあるため、(D)成分は架橋後に添加する方が好ましい。また 、架橋触媒を (F)成分に混合してから添加すると、均一に拡散混合し、架橋反応の 均一性が向上する傾向があることから、このような方法が好ましく用いられる。(E)成 分は、(A)成分および (B)成分の混合を促進し、架橋反応の均一な進行を促すため 、配合量の全量または一部を架橋前に添加しておくことが好ましい。溶融混練するた めの方法としては、特に制限はなぐ公知の方法を適用することができる。例えば、( A)成分および (B)成分、さらに、所定の物性を得るために配合される他の成分を、 加熱混練機、例えば、一軸押出機、二軸押出機、ロール、バンバリ一ミキサー、ブラ ベンダー、ニーダー、高剪断型ミキサー等を用いて溶融混練することで製造すること ができる。また、その添加の順序としては、(B)成分が溶融した後に (A)成分を添カロ し、さらに必要であれば他の成分を追加し、均一に混合した後、架橋剤および架橋 触媒を添加し、架橋反応を進行させる方法が好ましい。 [0035] In the present invention, the component (A) is dynamically mixed with the component (C) during melt kneading in the presence of the component (B). Crosslink to The melt kneading temperature is preferably 130 to 240 ° C. When the temperature is lower than 130 ° C, the component (B) is not sufficiently melted and the kneading tends to be uneven. At temperatures higher than 240 ° C, component (A) tends to thermally decompose. In this dynamic crosslinking step, component (A) and component (B) are essential, but other components such as component (D), component (E), and component (F) are added as appropriate. Thus, the force may be cross-linked. However, since some of the component (D) inhibits the bridge reaction, it is preferable to add the component (D) after crosslinking. Further, when the crosslinking catalyst is added after being mixed with the component (F), the mixture is uniformly diffused and mixed, and the uniformity of the crosslinking reaction tends to be improved. Therefore, such a method is preferably used. In order to promote the mixing of the component (A) and the component (B) and promote the uniform progress of the cross-linking reaction, it is preferable to add the total amount or a part of the blended amount before the cross-linking. . As a method for melt-kneading, a known method without particular limitation can be applied. For example, the component (A) and the component (B), and other components blended in order to obtain predetermined physical properties are heated and kneaded, such as a single screw extruder, twin screw extruder, roll, Banbury mixer, It can be produced by melt-kneading using a Brabender, kneader, high shear mixer or the like. The order of addition is as follows. After component (B) is melted, component (A) is added, and if necessary, other components are added and mixed uniformly, and then a crosslinking agent and a crosslinking catalyst are added. The method of adding and advancing a crosslinking reaction is preferable.
本発明の (D)成分である滑剤は、主に開封性 (開栓性)と成形加工性を付与する 目的で添加する。滑剤としては、脂肪酸アミド系滑剤、脂肪酸金属塩系滑剤、脂肪酸 エステル系滑剤、脂肪酸系滑剤、脂肪族アルコール系滑剤、脂肪酸と多価アルコー ルの部分エステル、パラフィン系滑剤、シリコーン系滑剤などが好ましく用いられ、こ れらの中から 2種以上を選択して用いてもよい。脂肪酸アミド系滑剤としては、エル力 酸アミド、ォレイン酸アミド、ステアリン酸アミド、ベへニン酸アミド、エチレンビスステア リン酸アミド、エチレンビスォレイン酸アミド、エチレンビスエル力酸アミド、エチレンビ スラウリン酸アミド、 m—キシリレンビスステアリン酸アミド、 p—フエ二レンビスステアリン 酸アミドなどが挙げられる。脂肪酸金属塩系滑剤としては、ステアリン酸カルシウム、 ステアリン酸マグネシウム、ステアリン酸アルミニウム、ステアリン酸亜鉛、ステアリン酸 ノリウムなどが挙げられる。脂肪酸エステル系滑剤としては、ラウリン酸メチル、ミリス チン酸メチル、パルミチン酸メチル、ステアリン酸メチル、ォレイン酸メチル、エル力酸 メチル、ベへ-ン酸メチル、ラウリン酸ブチル、ステアリン酸プチル、ミリスチン酸イソプ 口ピル、パルミチン酸イソプロピル、パルミチン酸ォクチル、ヤシ脂肪酸ォクチルエス テル、ステアリン酸ォクチル、特殊牛脂脂肪酸ォクチルエステル、ラウリン酸ラウリル、 ステアリン酸ステアリル、ベへニン酸べへ-ル、ミリスチン酸セチル、牛脂硬化油、ヒマ シ硬化油などが挙げられる。脂肪酸系滑剤としては、ステアリン酸、パルミチン酸、ォ レイン酸、リノール酸、リノレン酸などが挙げられる。脂肪族アルコールとしては、ステ ァリルアルコール、セチルアルコール、ミリスチルアルコール、ラウリルアルコールなど が挙げられる。脂肪酸と多価アルコールの部分エステルとしては、ステアリン酸モノグ リセライド、ステアリン酸ジグリセライド、ォレイン系モノダリセライドなどが挙げられる。 パラフィン系滑剤としては、パラフィンワックス、流動パラフィン、ポリエチレンワックス、 酸化ポリエチレンワックス、ポリプロピレンワックスなどが挙げられる。この他、モンタン 酸およびその誘導体である、モンタン酸エステル、モンタン酸金属塩、モンタン酸部 分ケンィ匕エステルなど、また、シリコーンオイルなども用いられる。これらは、単独で用 いても、複数を併用してもよい。これらの中でも、開栓性および成形加工性の改良効 果と内容物の風味や香りへの影響の点から、脂肪酸アミドが好ましぐ中でもエル力 酸アミドが最も好ましい。また、パラフィンワックスやポリエチレンワックス、ポリプロピレ ンワックスなどのパラフィン系ワックスを併用することで、成形流動性を大きく改良する ことができ、シリコーンオイルを併用することで、さらに開栓性を改良することもできる。 シリコーンオイルは、その混合分散性を改良する目的で、ポリオレフインとのマスター バッチを使用しても良い。例えば、シリコーンコンセントレート BY— 27シリーズ (東レ ダウコーユングシリコーン株式会社製)、シリコーンマスターペレット X— 22シリーズ( 信越ィ匕学工業株式会社製)、へキサシリコンク MLシリーズ (株式会社へキサケミカ ル製)などの市販品があげられる。 The lubricant which is the component (D) of the present invention is added mainly for the purpose of imparting unsealing property (opening property) and moldability. As the lubricant, fatty acid amide lubricants, fatty acid metal salt lubricants, fatty acid ester lubricants, fatty acid lubricants, aliphatic alcohol lubricants, partial esters of fatty acids and polyhydric alcohols, paraffin lubricants, silicone lubricants and the like are preferable. Two or more of these may be selected and used. Fatty acid amide lubricants include: L-force amide, oleic acid amide, stearic acid amide, behenic acid amide, ethylene bis-stearic acid amide, ethylene bis-oleic acid amide, ethylene bis-strong acid amide, ethylene bis-lauric acid Amides, m-xylylene bis stearic acid amides, p-phenylene bis stearic acid amides, and the like. Examples of the fatty acid metal salt lubricant include calcium stearate, magnesium stearate, aluminum stearate, zinc stearate, and norium stearate. Fatty acid ester lubricants include methyl laurate, myris Methyl titanate, methyl palmitate, methyl stearate, methyl oleate, methyl oleate, methyl behenate, butyl laurate, butyl stearate, isopyl myristate, isopropyl palmitate, octyl palmitate, Examples include coconut fatty acid octyl ester, octyl stearate, special beef tallow fatty acid octyl ester, lauryl laurate, stearyl stearate, behenyl behenate, cetyl myristate, beef tallow hardened oil, castor hardened oil, and the like. Examples of fatty acid-based lubricants include stearic acid, palmitic acid, oleic acid, linoleic acid, and linolenic acid. Examples of aliphatic alcohols include stearyl alcohol, cetyl alcohol, myristyl alcohol, and lauryl alcohol. Examples of the partial ester of fatty acid and polyhydric alcohol include stearic acid monoglyceride, stearic acid diglyceride, and olein-based monodalyride. Examples of the paraffinic lubricant include paraffin wax, liquid paraffin, polyethylene wax, oxidized polyethylene wax, and polypropylene wax. In addition, montanic acid and its derivatives, such as montanic acid ester, montanic acid metal salt, montanic acid partial quinoyl ester, and silicone oil are also used. These may be used alone or in combination. Among these, L-acid amide is the most preferable among fatty acid amides from the viewpoint of the effect of improving the opening and molding processability and the influence on the flavor and aroma of the contents. In addition, by using a paraffin wax such as paraffin wax, polyethylene wax, or polypropylene wax, the molding fluidity can be greatly improved, and by using silicone oil in combination, the opening performance can be further improved. . Silicone oil may be used in a masterbatch with polyolefin for the purpose of improving its mixing and dispersibility. For example, Silicone Concentrate BY—27 series (manufactured by Toray Dow Cowing Silicone Co., Ltd.), Silicone Master Pellet X—22 series (manufactured by Shin-Etsu Chemical Co., Ltd.), Hexa Silicone ML Series (made by Hexa Chemical Co., Ltd.) And other commercial products.
(D)成分は、(A)成分 100重量部に対して 0. 1〜20重量部混合する。好ましくは 0 . 1〜: LO重量部、さらに好ましくは 0. 1〜5重量部混合する。 20重量部を超えると分 散性が不十分となり、(D)成分がブリードアウトする傾向があるとともに、得られる組成 物の機械強度が低下する傾向もあり、好ましくない。一方、 0. 1重量部より少なくなる と、開栓性ゃ成形加工性の改良効果が不十分となる傾向がある。 Component (D) is mixed in an amount of 0.1 to 20 parts by weight per 100 parts by weight of component (A). Preferably 0.1 to: LO parts by weight, more preferably 0.1 to 5 parts by weight. If it exceeds 20 parts by weight, the dispersibility becomes insufficient, the component (D) tends to bleed out, and the mechanical strength of the resulting composition tends to decrease, such being undesirable. On the other hand, less than 0.1 parts by weight And, there is a tendency that the improvement effect of the moldability is not sufficient.
[0038] 本発明では、成形流動性やガスバリア性、機械特性などを改良する目的で、必要 に応じ、(E)成分として、芳香族ビニル系化合物を主体とする重合体ブロック (a)とィ ソブチレンを主体とする重合体ブロック(b)力 なるブロック共重合体を添加すること ができる。  [0038] In the present invention, for the purpose of improving molding fluidity, gas barrier properties, mechanical properties, and the like, a polymer block (a) and a polymer block mainly comprising an aromatic vinyl compound as the component (E) as necessary. A block copolymer having a polymer block (b) force mainly composed of sobutylene may be added.
[0039] 芳香族ビニル系化合物を主体とする重合体ブロック (a)は、耐熱性の点で芳香族ビ ニル系化合物に由来するユニットが 60重量%以上であるのが好ましぐ 80重量%以 上力も構成される重合体ブロックであるのがより好ましい。  [0039] The polymer block (a) mainly composed of an aromatic vinyl compound preferably has 60% by weight or more of units derived from the aromatic vinyl compound in terms of heat resistance. It is more preferable that the polymer block has a higher force.
[0040] 芳香族ビュル系化合物としては、スチレン、 o—、 m—又は p—メチルスチレン、 α ーメチルスチレン、 13ーメチノレスチレン、 2, 6 ジメチルスチレン、 2, 4 ジメチルス チレン、 exーメチノレー ο—メチノレスチレン、 exーメチノレー m—メチノレスチレン、 exーメ チルー p—メチルスチレン、 13ーメチルー o—メチルスチレン、 13ーメチルー m—メチ ルスチレン、 13ーメチルー p—メチルスチレン、 2, 4, 6 トリメチルスチレン、 α—メチ ルー 2, 6 ジメチルスチレン、 α—メチルー 2, 4 ジメチルスチレン、 β—メチルー 2, 6 ジメチルスチレン、 13ーメチルー 2, 4 ジメチルスチレン、 ο—、 m—又は ρ— クロロスチレン、 2, 6 ジクロロスチレン、 2, 4 ジクロロスチレン、 α クロロー ο ク ロロスチレン、 α クロロー クロロスチレン、 α クロロー p クロロスチレン、 β— クロロー ο クロロスチレン、 j8—クロロー m—クロロスチレン、 j8—クロロー p—クロ口 スチレン、 2, 4, 6 トリクロロスチレン、 α クロロー 2, 6 ジクロロスチレン、 α—ク ロロ 2, 4 ジクロロスチレン、 β クロロー 2, 6 ジクロロスチレン、 β クロロー 2 , 4—ジクロロスチレン、 o—、 m—又は p— t—ブチルスチレン、 o—、 m—又は p—メト キシスチレン、 o—、 m—又は p—クロロメチノレスチレン、 o—、 m—又は p ブロモメチ ルスチレン、シリル基で置換されたスチレン誘導体、インデン、ビュルナフタレン等が 挙げられる。これらの中でも、工業的な入手性やガラス転移温度の点から、スチレン、 aーメチルスチレン、および、これらの混合物が好ましい。 [0040] Examples of aromatic bur compounds include styrene, o-, m- or p-methylstyrene, α-methylstyrene, 13-methylolene styrene, 2,6 dimethylstyrene, 2,4 dimethylstyrene, ex-methylolene o-methyl. No-styrene, ex-methylolene m-methylenostyrene, ex-methyl-p-methylstyrene, 13-methyl-o-methylstyrene, 13-methyl-m-methylstyrene, 13-methyl-p-methylstyrene, 2, 4, 6 trimethylstyrene, α —Methyl 2,6 Dimethylstyrene, α-Methyl-2,4 Dimethylstyrene, β-Methyl-2,6 Dimethylstyrene, 13-Methyl-2,4 Dimethylstyrene, ο—, m— or ρ—Chlorostyrene, 2,6 Dichloromethane styrene, 2, 4-dichloro styrene, alpha-chloro ο click Rorosuchiren, alpha-chloro-chlorostyrene, alpha black Over p-chlorostyrene, beta-chloro ο chlorostyrene, J8- chloro m - chlorostyrene, J8- chloro p- black port styrene, 2, 4, 6-trichloro styrene, alpha-chloro 2, 6-dichloro styrene, alpha-click Lolo 2 , 4 dichlorostyrene, β chloro-2, 6 dichlorostyrene, β chloro-2, 4-dichlorostyrene, o-, m- or p-t-butylstyrene, o-, m- or p-methoxystyrene, o-, m -Or p-chloromethylenostyrene, o-, m- or p bromomethylstyrene, styrene derivatives substituted with a silyl group, indene, urnaphthalene and the like. Among these, styrene, a-methylstyrene, and a mixture thereof are preferable from the viewpoint of industrial availability and glass transition temperature.
[0041] イソブチレンを主体とする重合体ブロック(b)は、イソブチレンに由来するユニットが 60重量%以上、好ましくは 80重量%以上力も構成される重合体ブロックである。  [0041] The polymer block (b) mainly composed of isobutylene is a polymer block in which a unit derived from isobutylene is composed of a force of 60% by weight or more, preferably 80% by weight or more.
[0042] (a)、 (b) V、ずれの重合体ブロックも、共重合成分として、相互の単量体を使用する ことができるほか、その他のカチオン重合可能な単量体成分を使用することができる 。このような単量体成分としては、脂肪族ォレフイン類、ジェン類、ビニルエーテル類[0042] (a), (b) V and misaligned polymer blocks also use mutual monomers as copolymerization components. In addition, other cationically polymerizable monomer components can be used. Examples of such monomer components include aliphatic olefins, gens, and vinyl ethers.
、シラン類、ビュルカルバゾール、 13 ビネン、ァセナフチレン等の単量体が例示で きる。これらはそれぞれ単独で又は 2種以上を組み合わせて使用することができる。 And monomers such as silanes, bullcarbazole, 13 binene, and acenaphthylene. These can be used alone or in combination of two or more.
[0043] 脂肪族ォレフイン系単量体としては、エチレン、プロピレン、 1ーブテン、 2 メチル  [0043] Aliphatic olefin monomers include ethylene, propylene, 1-butene, and 2-methyl.
1ーブテン、 3—メチルー 1ーブテン、ペンテン、へキセン、シクロへキセン、 4ーメチ ルー 1 ペンテン、ビュルシクロへキサン、オタテン、ノルボルネン等が挙げられる。  Examples include 1-butene, 3-methyl-1-butene, pentene, hexene, cyclohexene, 4-methyl pentene, butylcyclohexane, otaten, norbornene, and the like.
[0044] ジェン系単量体としては、ブタジエン、イソプレン、へキサジェン、シクロペンタジェ ン、シクロへキサジェン、ジシクロペンタジェン、ジビニルベンゼン、ェチリデンノルボ ルネン等が挙げられる。  [0044] Examples of the gen-based monomer include butadiene, isoprene, hexagen, cyclopentagen, cyclohexagen, dicyclopentagen, divinylbenzene, ethylidene norbornene, and the like.
[0045] ビュルエーテル系単量体としては、メチルビ-ルエーテル、ェチルビ-ルエーテル 、(n—、イソ)プロピルビュルエーテル、(n—、 sec—、 tert 、イソ)ブチルビ-ルェ 一テル、メチルプロぺ-ルエーテル、ェチルプロぺ-ルエーテル等が挙げられる。  [0045] Examples of butyl ether monomers include methyl butyl ether, ethyl butyl ether, (n-, iso) propyl butyl ether, (n-, sec-, tert, iso) butyl benzene ether, methyl propylene. And ruether, ethyl propellate and the like.
[0046] シラン化合物としては、ビュルトリクロロシラン、ビュルメチルジクロロシラン、ビュル ジメチルクロロシラン、ビニルジメチルメトキシシラン、ビニルトリメチルシラン、ジビュル ジクロロシラン、ジビニノレジメトキシシラン、ジビニノレジメチノレシラン、 1, 3 ジビ-ノレ —1, 1, 3, 3—テトラメチルジシロキサン、トリビニルメチルシラン、 γ—メタクリロイル ォキシプロピルトリメトキシシラン、 Ίーメタクリロイルォキシプロピルメチルジメトキシシ ラン等が挙げられる。 [0046] Examples of the silane compound include butyltrichlorosilane, butylmethyldichlorosilane, butyldimethylchlorosilane, vinyldimethylmethoxysilane, vinyltrimethylsilane, dibutyldichlorosilane, divininoresimethoxymethoxysilane, divininoresimethinolesilane, 1,3 dibi- Nole - 1,1,3,3 -tetramethyldisiloxane, trivinylmethylsilane, γ-methacryloyloxypropyltrimethoxysilane, Ί -methacryloyloxypropylmethyldimethoxysilane, and the like.
[0047] 本発明の (Ε)成分は、(a)ブロックと (b)ブロック力も構成されている限り、その構造 には特に制限はなぐ例えば、直鎖状、分岐状、星状等の構造を有するブロック共重 合体、ジブロック共重合体、トリブロック共重合体、マルチブロック共重合体等のいず れも選択可能である。好ましい構造としては、物性バランス及び成形カ卩ェ性の点から 、 (a) - (b) - (a)で構成されるトリブロック共重合体が挙げられる。これらは所望の物 性 ·成形加工性を得る為に、それぞれ単独で又は 2種以上を組み合わせて使用する ことができる。  [0047] The component (ii) of the present invention is not particularly limited in its structure as long as (a) block and (b) block force are also formed, for example, a linear, branched, star-like structure, etc. Any of a block copolymer, a diblock copolymer, a triblock copolymer, a multiblock copolymer, and the like having bismuth can be selected. A preferable structure includes a triblock copolymer composed of (a)-(b)-(a) from the viewpoint of physical property balance and molding cacheability. These may be used alone or in combination of two or more in order to obtain the desired physical properties and moldability.
[0048] (a)ブロックと (b)ブロックの割合に関しては、特に制限はな!/、が、柔軟性およびゴ ム弹性の点から、 (E)成分における(a)ブロックの含有量が 5〜50重量%であること が好ましぐ 10〜40重量%であることがさらに好ましい。 [0048] The ratio of the block (a) to the block (b) is not particularly limited! /, But from the viewpoint of flexibility and rubberity, the content of the block (a) in the component (E) is 5 ~ 50% by weight Is more preferably 10 to 40% by weight.
[0049] また (E)成分の分子量にも特に制限はな!/、が、流動性、成形加工性、ゴム弾性等 の面から、 GPC測定による重量平均分子量で 30, 000〜500, 000であることが好 ましく、 50, 000〜300, 000であること力特に好まし!/、。重量平均分子量力 30, 00 0よりも低い場合には機械的な物性が十分に発現されない傾向があり、一方 500, 0 00を超える場合には流動性、加工性が悪ィ匕する傾向がある。  [0049] In addition, there is no particular restriction on the molecular weight of component (E)! /, But in terms of fluidity, molding processability, rubber elasticity, etc., the weight average molecular weight by GPC measurement is 30,000 to 500,000. It is preferred to have a power of 50,000 to 300,000, especially preferred! When the weight average molecular weight force is lower than 30, 00 0, mechanical properties tend not to be sufficiently developed, whereas when it exceeds 500, 00 00, fluidity and workability tend to be poor. .
[0050] (E)成分の製造方法については特に制限はないが、例えば、下記一般式(1)で表 される化合物の存在下に、単量体成分を重合させることにより得られる。  [0050] The method for producing the component (E) is not particularly limited, and can be obtained, for example, by polymerizing the monomer component in the presence of a compound represented by the following general formula (1).
(CR'^X) R3 (1) (CR '^ X) R 3 (1)
[式中 Xはハロゲン原子、炭素数 1〜6のアルコキシ基またはァシロキシ基力も選ばれ る置換基、
Figure imgf000014_0001
[Wherein X is a halogen atom, an alkoxy group having 1 to 6 carbon atoms or a substituent in which acyloxy group power is also selected,
Figure imgf000014_0001
R2は同一であっても異なっていても良ぐ R3は多価芳香族炭化水素基または多価脂 肪族炭化水素基であり、 nは 1〜6の自然数を示す。 ] R 2 may be the same or different. R 3 is a polyvalent aromatic hydrocarbon group or a polyvalent aliphatic hydrocarbon group, and n represents a natural number of 1-6. ]
上記一般式(1)で表わされる化合物は開始剤となるものでルイス酸等の存在下炭 素陽イオンを生成し、カチオン重合の開始点になると考えられる。本発明で用いられ る一般式(1)の化合物の例としては、次のような化合物等が挙げられる。  The compound represented by the general formula (1) serves as an initiator, and is considered to generate a carbon cation in the presence of a Lewis acid or the like and serve as a starting point for cationic polymerization. Examples of the compound of the general formula (1) used in the present invention include the following compounds.
[0051] (1—クロル一 1—メチルェチル)ベンゼン [C H C (CH ) Cl]、 1, 4 ビス(1—ク [0051] (1-Chloro- 1-methylethyl) benzene [C H C (CH) Cl], 1, 4 Bis (1-c
6 5 3 2  6 5 3 2
ロル— 1—メチルェチル)ベンゼン [1, 4-Cl (CH ) CC H C (CH ) Cl]、 1, 3—  Lol— 1-methylethyl) benzene [1, 4-Cl (CH) CC H C (CH) Cl], 1, 3—
3 2 6 4 3 2  3 2 6 4 3 2
ビス(1—クロル— 1—メチルェチル)ベンゼン [1, 3-Cl (CH ) CC H C (CH ) CI  Bis (1-chloro-1-methylethyl) benzene [1, 3-Cl (CH) CC H C (CH) CI
3 2 6 4 3 2 3 2 6 4 3 2
]、 1, 3, 5 トリス(1—クロル— 1—メチルェチル)ベンゼン [1, 3, 5— (C1C (CH ) ], 1, 3, 5 Tris (1-chloro-1-methylethyl) benzene [1, 3, 5— (C1C (CH)
3 2 3 2
) C H ]、 1, 3 ビス(1 クロルー1 メチルェチル)—5—(tert—ブチル)ベンゼ) C H], 1, 3 Bis (1 chloro 1 methylethyl) -5- (tert-butyl) benze
3 6 3 3 6 3
ン [1, 3— (C (CH ) C1) —5— (C (CH ) ) C H ]  [1, 3— (C (CH) C1) —5— (C (CH)) C H]
3 2 2 3 3 6 3  3 2 2 3 3 6 3
これらの中でも特に好まし!ヽのはビス(1—クロル一 1—メチルェチル)ベンゼン [C  Of these, bis (1-chloro-1-methylethyl) benzene [C
6 6
H (C (CH ) C1) ]、トリス(1 クロルー1ーメチルェチル)ベンゼン [ (C1C (CH ) )H (C (CH) C1)], tris (1 chloro 1-methylethyl) benzene [(C1C (CH))
4 3 2 2 3 2 34 3 2 2 3 2 3
C H ]である。 [なおビス(1—クロル一 1—メチルェチル)ベンゼンは、ビス(α クロC H]. [In addition, bis (1-chloro-1,1-methylethyl) benzene is bis (α
6 3 6 3
口イソプロピル)ベンゼン、ビス(2—クロ口 2—プロピル)ベンゼンある!/、はジクミルク 口ライドとも呼ばれ、トリス(1—クロル一 1—メチルェチル)ベンゼンは、トリス(α クロ 口イソプロピル)ベンゼン、トリス(2—クロ口一 2—プロピル)ベンゼンある!/、はトリクミノレ クロライドとも呼ばれる]。 Isopropyl) benzene, bis (2-chloro-2-propyl) benzene! /, Is also called dicmilk mouthride, tris (1-chloro-1-methylethyl) benzene is tris (α-chloroisopropyl) benzene, Tris (2—black mouth 2-propyl) benzene! Also called chloride].
[0052] (E)成分を製造する際には、さらにルイス酸触媒を共存させることもできる。このよう なルイス酸としてはカチオン重合に使用できるものであれば良ぐ TiCl、 TiBr、 BC1 [0052] When the component (E) is produced, a Lewis acid catalyst can be allowed to coexist. Such Lewis acids are acceptable as long as they can be used for cationic polymerization. TiCl, TiBr, BC1
4 4 4 4
、 BF、 BF -OEt、 SnCl、 SbCl、 SbF、 WC1、 TaCl、 VC1、 FeCl、 ZnBr、, BF, BF -OEt, SnCl, SbCl, SbF, WC1, TaCl, VC1, FeCl, ZnBr,
3 3 3 2 4 5 5 6 5 5 3 23 3 3 2 4 5 5 6 5 5 3 2
A1C1、 AlBr等の金属ハロゲン化物; Et A1C1、 EtAlCl等の有機金属ハロゲンィ匕Metal halides such as A1C1 and AlBr; Organometallic halides such as Et A1C1 and EtAlCl
3 3 2 2 3 3 2 2
物を好適に使用することができる。中でも触媒としての能力、工業的な入手の容易さ を考えた場合、 TiCl、 BC1、 SnClが好ましい。ルイス酸の使用量は、特に限定され  A thing can be used conveniently. Of these, TiCl, BC1, and SnCl are preferable in view of the ability as a catalyst and industrial availability. The amount of Lewis acid used is particularly limited.
4 3 4  4 3 4
ないが、使用する単量体の重合特性あるいは重合濃度等を鑑みて設定することがで きる。通常は一般式(1)で表される化合物に対して 0. 1〜: L00モル当量使用すること ができ、好ましくは 1〜50モル当量の範囲である。  However, it can be set in consideration of the polymerization characteristics or polymerization concentration of the monomer used. Usually, 0.1 to L00 molar equivalent can be used with respect to the compound represented by the general formula (1), and the range is preferably 1 to 50 molar equivalent.
[0053] (E)成分の製造に際しては、さらに必要に応じて電子供与体成分を共存させること もできる。この電子供与体成分は、カチオン重合に際して、成長炭素カチオンを安定 化させる効果があるものと考えられており、電子供与体の添カ卩によって、分子量分布 の狭い、構造が制御された重合体を生成することができる。使用可能な電子供与体 成分としては特に限定されないが、例えば、ピリジン類、アミン類、アミド類、スルホキ シド類、エステル類、または金属原子に結合した酸素原子を有する金属化合物等を 挙げることができる。 [0053] In the production of the component (E), an electron donor component can be further present if necessary. This electron donor component is believed to have the effect of stabilizing the growing carbon cation during cationic polymerization. By adding an electron donor, a polymer with a narrow molecular weight distribution and a controlled structure can be obtained. Can be generated. The electron donor component that can be used is not particularly limited, and examples thereof include pyridines, amines, amides, sulfoxides, esters, and metal compounds having an oxygen atom bonded to a metal atom. .
[0054] (E)成分の重合は必要に応じて有機溶媒中で行うことができ、有機溶媒としては力 チオン重合を本質的に阻害しなければ、特に制約なく使用することができる。具体的 には、塩化メチル、ジクロロメタン、クロ口ホルム、塩化工チル、ジクロロェタン、 n—プ 口ピルクロライド、 n—ブチルクロライド、クロ口ベンゼン等のハロゲン化炭化水素;ベン ゼン、トノレェン、キシレン、ェチルベンゼン、プロピルベンゼン、ブチノレベンゼン等の アルキルベンゼン類;ェタン、プロパン、ブタン、ペンタン、へキサン、ヘプタン、ォクタ ン、ノナン、デカン等の直鎖式脂肪族炭化水素類; 2—メチルプロパン、 2—メチルブ タン、 2, 3, 3—トリメチルペンタン、 2, 2, 5—トリメチルへキサン等の分岐式脂肪族 炭化水素類;シクロへキサン、メチルシクロへキサン、ェチルシクロへキサン等の環式 脂肪族炭化水素類;石油留分を水添精製したパラフィン油等を挙げることができる。 [0054] The polymerization of the component (E) can be carried out in an organic solvent as necessary. The organic solvent can be used without any particular limitation as long as it does not substantially inhibit force thione polymerization. Specifically, methyl chloride, dichloromethane, black hole Holm, chloride Engineering chill, Jikuroroetan, n - flop port Pirukuroraido, n- butyl chloride, such as black hole benzene halogenated hydrocarbons; benzene, Tonoreen, xylene, Echirubenzen Alkyl benzenes such as ethane, propane, butynolebenzene; linear aliphatic hydrocarbons such as ethane, propane, butane, pentane, hexane, heptane, octane, nonane, decane; 2-methylpropane, 2-methylbutane Branched aliphatic hydrocarbons such as tan, 2, 3, 3-trimethylpentane, 2, 2, 5-trimethylhexane; cyclic aliphatic hydrocarbons such as cyclohexane, methylcyclohexane, ethylcyclohexane, etc. And paraffin oil obtained by hydrorefining a petroleum fraction.
[0055] これらの溶媒は、 (E)成分を構成する単量体の重合特性及び生成する重合体の溶 解性等のノ ランスを考慮して、それぞれ単独で又は 2種以上を組み合わせて使用す ることがでさる。 [0055] These solvents are used for the polymerization characteristics of the monomer constituting the component (E) and the solubility of the resulting polymer. It is possible to use them singly or in combination of two or more in consideration of the non-resolvability.
[0056] 上記溶媒の使用量は、得られる重合体溶液の粘度や除熱の容易さを考慮して、重 合体の濃度が l〜50wt%、好ましくは 5〜35wt%となるように決定される。  [0056] The amount of the solvent used is determined so that the concentration of the polymer is 1 to 50 wt%, preferably 5 to 35 wt%, in consideration of the viscosity of the polymer solution obtained and ease of heat removal. The
[0057] 実際の重合を行うに当たっては、各成分を冷却下例えば 100°C以上 0°C未満の 温度で混合する。エネルギーコストと重合の安定性を釣り合わせるために、特に好ま し 、温度範囲は一 30°C〜一 80°Cである。  [0057] In carrying out the actual polymerization, the respective components are mixed under cooling, for example, at a temperature of 100 ° C or higher and lower than 0 ° C. In order to balance the energy cost and the stability of the polymerization, the temperature range is particularly preferably from 30 ° C to 80 ° C.
[0058] (E)成分は、(A)成分 100重量部に対して 1〜300重量部混合するのが好ましぐ 1〜200重量部混合するのがより好ましい。 300重量部を超えると、復元性 (圧縮永 久歪み)が悪ィ匕する傾向がある。  [0058] The component (E) is preferably mixed in an amount of 1 to 300 parts by weight per 100 parts by weight of the component (A), more preferably 1 to 200 parts by weight. If it exceeds 300 parts by weight, the resilience (permanent compression strain) tends to deteriorate.
[0059] 本発明では、 (F)成分として、柔軟性と成形流動性を付与する目的で、軟化剤も必 要に応じて使用することができる。軟化剤としては、特に限定されないが、一般的に、 室温で液体又は液状の材料が好適に用いられる。このような軟化剤としては鉱物油 系、植物油系、合成系等の各種ゴム用又は榭脂用軟化剤が挙げられる。鉱物油系と しては、ナフテン系、パラフィン系等のプロセスオイル等力 植物油系としては、ひま し油、綿実油、あまみ油、なたね油、大豆油、パーム油、やし油、落花生油、木ろう、 パインオイル、ォリーブ油等が、合成系としてはポリブテン、低分子量ポリブタジエン 等が例示できる。これらの中でも (A)成分との相溶性およびガスノリア性の点から、 ポリブテンが好ましく用いられる。これら軟化剤は、所望の硬度および溶融粘度を得 るために 2種以上を適宜組み合わせて使用することが可能である。  [0059] In the present invention, as the component (F), a softening agent can be used as necessary for the purpose of imparting flexibility and molding fluidity. The softening agent is not particularly limited, but generally, a liquid or liquid material is suitably used at room temperature. Examples of such softeners include mineral oil-based, vegetable oil-based, synthetic-based rubber or rosin softeners. Mineral oils include naphthenic and paraffinic process oils. Vegetable oils include castor oil, cottonseed oil, rapeseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, wood Examples of the synthetic system include wax, pine oil, olive oil and the like, and polybutene, low molecular weight polybutadiene and the like. Among these, polybutene is preferably used from the viewpoints of compatibility with the component (A) and gas noria. These softeners can be used in an appropriate combination of two or more in order to obtain the desired hardness and melt viscosity.
[0060] (F)成分の配合量は、(A)成分 100重量部に対して 1〜: LOO重量部とするのが好ま しぐ 1〜50重量部とするのがより好ましぐ 1〜30重量部とするのが更に好ましい。 1 00重量部を超えると、ライナー材力 内容物へ軟化剤が溶出しやすくなる傾向があり 、好ましくない。 [0060] Component (F) is blended in an amount of 1 to 100 parts by weight of component (A), preferably 1 to 50 parts by weight of LOO, more preferably 1 to 50 parts by weight. More preferably, it is 30 parts by weight. If it exceeds 100 parts by weight, the softening agent tends to elute into the liner material strength content, which is not preferable.
[0061] 本発明のキャップライナー用組成物は、ガスノリア性に優れる力 さらに容器内の 酸素や内容物中の溶存酸素を吸収するための、酸素吸収剤を添加することができる 。このような酸素吸収剤としては公知のものが使用でき、特に制限はない。例えば、ァ スコノレビン酸(ビタミン C)、ァスコノレビン酸塩、イソァスコノレビン酸、イソァスコノレビン酸 塩、没食子酸、没食子酸塩、没食子酸プロピル、クェン酸イソプロピル、グルコース、 フラクトースなどの糖類、 BHT、 BHA、 EDTAのアルカリ金属塩、トコフエロール(ビ タミン E)、ヒドロキノン、カテコール、レゾルシン、ジブチルヒドロキシトルエン、ジブチ ルヒドロキシァ二ノール、ピロガロール、ロンガリット、ソルボース、グルコース、リグニン などの有機系酸素吸収剤、鉄粉、活性鉄、酸化第一鉄、鉄塩などの鉄系酸素吸収 剤、亜硫酸塩、チォ硫酸塩、亜ニチオン酸塩、亜硫酸水素塩などの無機系酸素吸 収剤や、ポリブタジエン、ポリイソプレン、またはこれらの共重合体、ポリ(メタ キシレ ンジァミン アジピン酸)(例えば、三菱ガス化学株式会社製の MXD6が市販されて いる)、および、ポリ(エチレン一メチルアタリレート一ベンジルアタリレート)、ポリ(ェチ レン メチルアタリレートーテトラヒドロフルフリルアタリレート)、ポリ(エチレン メチル アタリレートーシクロへキセ-ルメチルアタリレート)、多価フエノール含有フエノール' アルデヒド榭脂などの、被酸化性 (還元性)の活性基を有する酸化還元榭脂、あるい は、高分子金属錯体などの高分子系酸素吸収剤、ゼォライト、活性炭などの酸素吸 着剤から選ばれる一種ある 、は二種以上の混合物が使用条件に従 、適宜用いられ る。酸素吸収剤が粉末状である場合、その粒径は特に制限を受けるものではないが 、一般には表面積を大きくする意味で小さい方が好ましい。酸素吸収剤は、その酸 素吸収能を制御するために触媒、保水剤や水和物などの他の物質を含んで!/、てもよ い。例えば、鉄系酸素吸収剤には、電解質を併用することができる。電解質は、鉄系 酸素吸収剤の酸素吸収速度を促進するためのものであり、アルカリ金属またはアル カリ土類金属のハロゲン化物、炭酸塩、硫酸塩、水酸ィ匕物などが挙げられる。これら の中で、特に好ましいのはハロゲン化物であり、さらに好ましくは CaCl、 NaCl、 Mg [0061] The composition for a cap liner of the present invention can be added with an oxygen absorbent for absorbing oxygen in the container and dissolved oxygen in the contents, as well as a force excellent in gas noliativity. As such an oxygen absorbent, known ones can be used, and there is no particular limitation. For example, asconolebic acid (vitamin C), asconolevate, isosconolebic acid, isosconolebic acid Salts, gallic acid, gallate, propyl gallate, isopropyl citrate, glucose, fructose and other sugars, BHT, BHA, EDTA alkali metal salts, tocopherol (vitamin E), hydroquinone, catechol, resorcin, dibutylhydroxytoluene Organic oxygen absorbers such as bismuth, hydroxybutanol, pyrogallol, longalit, sorbose, glucose, lignin, iron oxygen absorbers such as iron powder, activated iron, ferrous oxide, iron salts, sulfites, thiosulfates Inorganic oxygen absorbers such as nitrite, bisulfite, polybutadiene, polyisoprene, or their copolymers, poly (metaxylenediamine adipic acid) (for example, MXD6 manufactured by Mitsubishi Gas Chemical Company, Inc.) Is commercially available), and poly (ethylene monomethyl attareido) Benzyl benzylate), poly (ethylene methyl acrylate relay to tetrahydrofurfuryl acrylate), poly (ethylene methyl acrylate relay cyclohexyl methyl acrylate), polyphenol-containing phenol 'aldehyde resin, There is a kind selected from a redox resin having an oxidizable (reducing) active group, or a polymer oxygen absorber such as a polymer metal complex, or an oxygen adsorbent such as zeolite or activated carbon. Two or more types of mixtures are used as appropriate according to the conditions of use. When the oxygen absorbent is in a powder form, the particle size is not particularly limited, but in general, it is preferably smaller in the sense of increasing the surface area. Oxygen absorbers may contain other substances such as catalysts, water retention agents and hydrates to control their oxygen absorption capacity! For example, an electrolyte can be used in combination with the iron-based oxygen absorbent. The electrolyte is for accelerating the oxygen absorption rate of the iron-based oxygen absorbent, and examples thereof include alkali metal or alkaline earth metal halides, carbonates, sulfates, and hydroxides. Of these, halides are particularly preferred, and CaCl, NaCl, Mg are more preferred.
2  2
CIなどである。電解質は前記鉄系酸素吸収剤の粒子にコーティングしたり、あるい CI and so on. The electrolyte is coated on the iron-based oxygen absorbent particles, or
2 2
はブレンドしたりして使用することができる。電解質の添加量は、鉄系酸素吸収剤に 対して通常、 0. 1〜10重量%程度が一般的である。この他、高分子系酸素吸収剤と して使用される酸化還元樹脂には、酸化反応用の遷移金属触媒を併用することがで きる。この遷移金属触媒としては、酢酸、ナフテン酸、ステアリン酸、ァセチルァセトナ ートコンプレックスもしくは塩酸のモリブデン、鉄、コノ レト、ロジウム、ニッケルなどの 金属塩が挙げられる。さらに、酸化還元樹脂には、光増感剤を併用することもできる。 使用できる光増感剤は、開裂型のもの、及び水素引き抜き型のものなど、公知のもの が使用できるが、水素引き抜き型のものが好ましく用いられる。具体的には、開裂型 のものとして、ベンゾイン誘導体、ベンジルケタール、 α—ヒドロキシァセトフエノン、 a アミノアセトフヱノン骨格を有するものが挙げられる。水素引き抜き型光増感剤と しては、ベンゾフエノン、ミヒラーケトン、アントラキノン、チォキサントン骨格を有するも のが挙げられる。これらは単独用いても、また、複数を合わせて用いてもよい。 Can be blended and used. The amount of the electrolyte added is generally about 0.1 to 10% by weight with respect to the iron-based oxygen absorbent. In addition, a transition metal catalyst for oxidation reaction can be used in combination with the oxidation-reduction resin used as the polymeric oxygen absorbent. Examples of the transition metal catalyst include metal salts such as acetic acid, naphthenic acid, stearic acid, acetylacetonate complex, or molybdenum of hydrochloric acid, iron, conoleto, rhodium, and nickel. Furthermore, a photosensitizer can be used in combination with the redox resin. As the photosensitizer that can be used, known ones such as a cleavage type and a hydrogen abstraction type can be used, but a hydrogen abstraction type is preferably used. Specifically, those having a benzoin derivative, benzyl ketal, α-hydroxyacetophenone, and a aminoacetophenone skeleton can be mentioned as the cleavage type. Examples of the hydrogen abstraction type photosensitizer include benzophenone, Michler's ketone, anthraquinone, and thixanthone skeleton. These may be used alone or in combination.
[0062] また、本発明のキャップライナー用組成物には、その性能を損なわな!/、範囲で、他 の熱可塑性榭脂ゃ熱可塑性エラストマ一、未加硫ゴムなどを添加することもできる。 熱可塑性榭脂としては、ポリスチレン、アクリロニトリル一スチレン共重合体、ポリメタク リル酸メチル、ポリ塩化ビニル、 ABS、 MBS、ポリカーボネート、ポリエチレンテレフタ レート、ポリブチレンテレフタレート、ポリアミド、ポリフエ-レンエーテル、ポリスルホン 、ポリアミドイミド、ポリエーテルイミドなどが挙げられる。また、熱可塑性エラストマ一と しては、スチレン系エラストマ一、ォレフィン系エラストマ一、塩ビ系エラストマ一、ウレ タン系エラストマ一、エステル系エラストマ一、ナイロン系エラストマ一などが挙げられ る。さらに、未加硫ゴムとしては、ブチルゴム、天然ゴム、ブタジエンゴム、イソプレンゴ ム、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、アクリル ゴム、シリコーンゴムなどが挙げられる。これらの中でも、(E)成分を使用する場合に は、その耐熱性を改善する目的で、ポリフエ-レンエーテルが好ましく用いられる。ま た、成形性や開栓性を調節する目的で、 SEBSや SEPSなどの水添型スチレン系ェ ラストマーも好ましく用いられる。 [0062] The cap liner composition of the present invention can also be added with other thermoplastic resins, thermoplastic elastomers, unvulcanized rubber, etc., as long as the performance is not impaired! . Thermoplastic resin includes polystyrene, acrylonitrile monostyrene copolymer, polymethyl methacrylate, polyvinyl chloride, ABS, MBS, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyamide, polyphenylene ether, polysulfone, polyamide Examples thereof include imide and polyetherimide. Examples of the thermoplastic elastomer include styrene elastomers, olefin elastomers, vinyl chloride elastomers, urethane elastomers, ester elastomers, nylon elastomers, and the like. Further, examples of the unvulcanized rubber include butyl rubber, natural rubber, butadiene rubber, isoprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), acrylic rubber, and silicone rubber. Among these, when the component (E) is used, polyphenylene ether is preferably used for the purpose of improving its heat resistance. In addition, hydrogenated styrene elastomers such as SEBS and SEPS are also preferably used for the purpose of adjusting moldability and openability.
[0063] また、成形流動性を改良する目的で、必要に応じて、石油系炭化水素榭脂を添カロ することもできる。石油系炭化水素榭脂は、石油系不飽和炭化水素を直接原料とす る分子量 300〜10000程度の榭脂であり、例えば、脂肪族系石油榭脂、脂環族系 石油榭脂及びその水素化物、芳香族系石油榭脂及びその水素化物、脂肪族芳香 族共重合系石油榭脂及びその水素化物、ジシクロペンタジェン系石油榭脂及びそ の水素化物、スチレンまたは置換スチレンの低分子量重合体、クマロン'インデン榭 脂などがあげられる。これらの中でも、(A)成分との相溶性の観点から、脂環族飽和 炭化水素榭脂が好ましい。 [0064] さらに本発明のキャップライナー用組成物には、物性改良あるいは経済上のメリット 力も充填材を配合することができる。好適な充填材としては、クレー、珪藻土、シリカ、 タルク、硫酸バリウム、炭酸カルシウム、炭酸マグネシウム、金属酸化物、マイ力、ダラ ファイト、水酸化アルミニウム等の麟片状無機充填材、各種の金属粉、木片、ガラス 粉、セラミックス粉、カーボンブラック、粒状ないし粉末ポリマー等の粒状ないし粉末 状固体充填材、その他の各種の天然又は人工の短繊維、長繊維等が例示できる。 また中空フィラー、例えば、ガラスバルーン、シリカバルーン等の無機中空フィラー、 ポリフッ化ビ-リデン、ポリフッ化ビ-リデン共重合体力もなる有機中空フィラーを配合 することにより、軽量ィ匕を図ることができる。更に軽量化、衝撃吸収性等の各種物性 の改善のために、各種発泡剤を混入させることも可能であり、また、混合時等に機械 的に気体を混ぜ込むことも可能である。これらの中でも、経済性および衛生性の点か ら、タルクが好ましい。 [0063] For the purpose of improving the molding fluidity, petroleum-based hydrocarbon resin can be added as necessary. Petroleum hydrocarbon resin is a resin having a molecular weight of about 300 to 10000 using petroleum unsaturated hydrocarbon as a direct raw material. For example, aliphatic petroleum resin, alicyclic petroleum resin and its hydrogen Low molecular weight weight of hydrocarbon, aromatic petroleum resin and its hydride, aliphatic aromatic copolymer petroleum resin and its hydride, dicyclopentagen petroleum resin and its hydride, styrene or substituted styrene Combined, coumarone 'indene resin and the like. Among these, alicyclic saturated hydrocarbon resin is preferable from the viewpoint of compatibility with the component (A). [0064] Further, the cap liner composition of the present invention can be blended with fillers for improving physical properties or for economic merit. Suitable fillers include clay, diatomaceous earth, silica, talc, barium sulfate, calcium carbonate, magnesium carbonate, metal oxides, my strength, dullite, aluminum hydroxide, and other kinds of inorganic fillers and various metal powders. Examples thereof include wooden pieces, glass powder, ceramic powder, carbon black, granular or powdered solid fillers such as granular or powdered polymers, and other various natural or artificial short fibers and long fibers. Further, by blending hollow fillers, such as inorganic hollow fillers such as glass balloons and silica balloons, polyvinylidene fluoride, and organic hollow fillers that also have polyvinylidene fluoride copolymer power, light weight can be achieved. . Furthermore, various foaming agents can be mixed to improve various physical properties such as weight reduction and shock absorption, and it is also possible to mix gas mechanically during mixing. Among these, talc is preferable from the viewpoint of economy and hygiene.
[0065] 充填材の配合量は、(A)成分 100重量部に対して 1〜: LOO重量部とするのが好ま しぐ 1〜50重量部とするのがより好ましぐ 1〜30重量部とするのが更に好ましい。 1 00重量部を超えると、得られる組成物の柔軟性が損なわれる傾向があり、好ましくな い。  [0065] The blending amount of the filler is 1 to 100 parts by weight of component (A): preferably 1 to 50 parts by weight of LOO, more preferably 1 to 30 parts by weight. More preferably, it is part. If it exceeds 100 parts by weight, the flexibility of the resulting composition tends to be impaired, which is not preferable.
[0066] また本発明のキャップライナー用組成物には、必要に応じて、酸化防止剤および紫 外線吸収剤を混合することができ、混合量は、(A)成分 100重量部に対して 0. 01〜 10重量部とするのが好ましぐ 0. 01〜5重量部とするのがより好ましい。さらに他の 添加剤として難燃剤、抗菌剤、光安定剤、着色剤、流動性改良剤、ブロッキング防止 剤、帯電防止剤等を添加することができ、これらはそれぞれ単独で又は 2種以上を組 み合わせて使用することができる。  [0066] In addition, the cap liner composition of the present invention may be mixed with an antioxidant and an ultraviolet absorber as necessary, and the amount of the mixture is 0 with respect to 100 parts by weight of component (A). It is preferable to be in the range of 01 to 10 parts by weight, and more preferably in the range of 0.01 to 5 parts by weight. In addition, flame retardants, antibacterial agents, light stabilizers, colorants, fluidity improvers, antiblocking agents, antistatic agents, etc. can be added as other additives, each of which can be used alone or in combination of two or more. Can be used together.
[0067] 本発明のキャップライナー用組成物の製造方法には、特に制限はなぐ公知の方 法を適用することができる。例えば、前記の各成分、および、所望により添加剤成分 を、加熱混練機、例えば、一軸押出機、二軸押出機、ロール、バンバリ一ミキサー、 ブラベンダー、ニーダー、高剪断型ミキサー等を用いて溶融混練することで製造する ことができる。また各成分の混練順序は特に限定されず、使用する装置、作業性ある いは得られるキャップライナー用組成物の物性に応じて決定することができる。 [0068] 本発明のキャップライナー用糸且成物の硬度としては、 JIS K— 6253で規定される スプリング式のタイプ Aデュロメータで測定した硬度(以下、 JIS— A硬度と略す)力 4 0〜95であることが好ましぐ 50〜75であることが最も好ましい。 JIS—A硬度が 40未 満では、ライナーの材料強度が弱くキャップの開閉時にライナーの摩耗が生じる傾向 があり、 JIS— A硬度が 90を超えると、硬すぎて容器の口部に充分に密着しにくぐ容 器内容物の密封シール性が損なわれる傾向がある。 [0067] A known method without particular limitation can be applied to the method for producing the composition for a cap liner of the present invention. For example, each of the above-mentioned components and, if necessary, the additive component are heated and kneaded using a single-screw extruder, twin-screw extruder, roll, Banbury mixer, Brabender, kneader, high shear mixer, etc. It can be manufactured by melt-kneading. The kneading order of the components is not particularly limited, and can be determined according to the apparatus used, workability, or physical properties of the obtained cap liner composition. [0068] The hardness of the thread liner composite for a cap liner of the present invention is a hardness measured with a spring type A durometer as defined in JIS K-6253 (hereinafter abbreviated as JIS-A hardness). 95 is preferred 50-75 is most preferred. When the JIS-A hardness is less than 40, the liner material strength is weak and the liner tends to wear when the cap is opened and closed. When the JIS-A hardness exceeds 90, the liner is too hard and sufficiently adheres to the container mouth. There is a tendency for the hermetic seal contents of the container contents to be damaged.
[0069] 本発明のキャップライナーを製造するにあたっては、特に制限されるものではない 力 目的とするキャップの種類、用途、形状に応じて、一般的に用いられる種々の成 形方法や成形装置が使用でき、例えば射出成形、押出成形、プレス成形、ブロー成 形、カレンダー成形、流延成形等の任意の成形法が例示され、これらの方法を組み 合わせてもよい。  [0069] In producing the cap liner of the present invention, there is no particular limitation. Various types of molding methods and molding apparatuses generally used are used depending on the type, application, and shape of the target cap. For example, any molding method such as injection molding, extrusion molding, press molding, blow molding, calender molding, and casting molding is exemplified, and these methods may be combined.
[0070] 例えば、キャップライナー用組成物を 0. 5〜1. Ommの厚みのシートに成形した後 、キャップの形状に合った径に打ち抜き、キャップ内に挿入して接着する方法や、あ るいは、押し出された一定量の溶融榭脂をキャップの内側に落下させ、冷却下に型 押ししてライナー形状にするインシェルモールド法等を挙げることができる。なお、量 産性の点からインシェルモールド法は優れた成形法である。  [0070] For example, the cap liner composition may be formed into a sheet having a thickness of 0.5 to 1. Omm, then punched out to a diameter suitable for the shape of the cap, and inserted into the cap for adhesion. An in-shell molding method in which a certain amount of extruded molten resin is dropped inside the cap and is embossed under cooling to form a liner. The in-shell mold method is an excellent molding method from the viewpoint of mass productivity.
[0071] 本発明のキャップライナー用組成物で構成されるキャップライナーは、単層で用い てもよいし、他の機能を有する層と複合して用いてもよい。他の機能を有する層として は、酸素吸収層などが挙げられる。酸素吸収層とは、前述の酸素吸収剤をポリオレフ インなどのポリマー中に分散させた層が例示される。  [0071] The cap liner composed of the cap liner composition of the present invention may be used as a single layer or in combination with a layer having other functions. Examples of the layer having other functions include an oxygen absorption layer. The oxygen absorbing layer is exemplified by a layer in which the above-described oxygen absorber is dispersed in a polymer such as polyolefin.
[0072] 本発明のキャップライナー用組成物が用いられるキャップとしては、各種お茶飲料、 果実飲料、野菜飲料、炭酸飲料、乳飲料、コーヒー飲料、清涼飲料、ミネラルウォー ター等の PETボトル容器や金属ボトル容器、ビール、ウィスキー、ワイン、日本酒等 の酒類用瓶、ジャム、エノキタケ等の食品用広口瓶、ドリンク剤用等の小型瓶等に用 V、られる容器のキャップを挙げることができる。これらの中でも PETボトル容器や金属 ボトル容器に用いられる容器のキャップに、特に適している。  [0072] Caps in which the composition for a cap liner of the present invention is used include various types of tea beverages, fruit beverages, vegetable beverages, carbonated beverages, milk beverages, coffee beverages, soft drinks, mineral water PET bottle containers and metals. Examples include bottle containers, bottles for beer, whiskey, wine, sake bottles such as sake, wide-mouth bottles for foods such as jam and enokitake, and small bottles for drinks. Among these, it is particularly suitable for caps of containers used for PET bottle containers and metal bottle containers.
実施例  Example
[0073] 以下実施例により本発明をさらに具体的に説明する。尚、本発明はこれらの実施例 によって何ら限定されるものではなぐその要旨を変更しない範囲において適宜変更 実施可能である。 [0073] The present invention will be described more specifically with reference to the following examples. The present invention is not limited to these examples. However, the present invention is not limited in any way, and modifications can be made as appropriate without departing from the spirit of the invention.
[0074] 本実施例に示すブロック共重合体の分子量及びキャップライナー用組成物の物性 は以下に示す方法で測定した。  [0074] The molecular weight of the block copolymer and the physical properties of the cap liner composition shown in this example were measured by the following methods.
[0075] (分子量) [0075] (Molecular weight)
Waters社製 GPCシステム(カラム:昭和電工 (株)製 Shodex K— 804 (ポリスチレ ンゲル)、移動相:クロ口ホルム)を使用し、重量平均分子量はポリスチレン換算したも のを用いた。  Waters GPC system (column: Shodex K-804 (polystyrene gel) manufactured by Showa Denko KK, mobile phase: black mouth form) was used, and the weight average molecular weight was converted to polystyrene.
[0076] (密封シール性) [0076] (Seal sealability)
JIS K 6253に準拠し、 2mm厚のプレスシートを 3枚重ねて、スプリング式のタイ プ Aデュロメータで硬度(以下、 JIS— A硬度と略す)を測定した。 JIS— A硬度が 50〜 75の場合を〇、 40〜50または 75〜95の場合を△、 40未満または 95を超える場合 を Xとした。  In accordance with JIS K 6253, three 2 mm thick press sheets were stacked, and the hardness (hereinafter abbreviated as JIS-A hardness) was measured with a spring type A durometer. JIS-A hardness is 50 to 75, △, 40 to 50 or 75 to 95, △, less than 40 or more than 95.
[0077] (開栓性) [0077] (Openability)
JIS K— 7125に準拠し、試験片には lmm厚のプレスシートを用いた。滑り片とし て接触面を直径約 5mmの球面に加工したガラスを用い、 200gのおもりを載せて、 3 OmmZ分の速度で移動させ、静摩擦係数を測定した。静摩擦係数が 0. 5未満を〇 、 0. 5〜1. 0を△、 1. 0を超える場合を Xとした。  In accordance with JIS K-7125, a 1 mm thick press sheet was used as the test piece. A glass whose contact surface was processed into a spherical surface with a diameter of about 5 mm was used as a sliding piece, a 200 g weight was placed on it, moved at a speed of 3 OmmZ, and the static friction coefficient was measured. When the coefficient of static friction is less than 0.5, it is marked as ◯, when 0.5 to 1.0 is marked as Δ, and when it exceeds 1.0.
[0078] (ガスバリア性) [0078] (Gas barrier properties)
JIS K 7126に準拠し、酸素の透過係数を測定した。試験片としては lmm厚の プレスシートを用い、差圧法 (A法)を用いた。酸素透過係数が l X 10_15mol'mZm 2' sec 'Pa未満を〇、 1〜2 10_1511101'11171112 ' 56。 &を 、 2 X 10_15mol'mZ m2 · sec · Paを超える場合を Xとした。 In accordance with JIS K 7126, the oxygen transmission coefficient was measured. A lmm-thick press sheet was used as the test piece, and the differential pressure method (A method) was used. Oxygen permeability coefficient l X 10 _15 mol'mZm 2 'sec ' less than Pa 〇 1-2 10 _15 11101'1117111 2 '56. & Was defined as X when exceeding 2 X 10 _15 mol'mZ m 2 · sec · Pa.
[0079] (圧縮永久歪み) [0079] (Compression set)
JIS K 6262〖こ準拠し、試験片は 12. Omm厚さプレスシートを使用した。  The test piece used was a 12. Omm thickness press sheet.
70°C X 22時間、 25%変形の条件にて測定した。本条件で 50%以上となる場合、復 元性が不足し、ホットフィルやレトルト殺菌後に密封性が損なわれることとなる。 50% より小さい場合を〇、 50〜59%の場合を△、 60%以上の場合を Xとした。 [0080] (溶出性) It was measured at 70 ° CX for 22 hours under 25% deformation conditions. If it is 50% or more under these conditions, the restoration will be insufficient, and the sealability will be impaired after hot fill or retort sterilization. The case of less than 50% is marked as ◯, the case of 50-59% is marked as △, and the case of 60% or more is marked as X. [0080] (Elution)
2mm厚のプレスシートを 20g精秤し、 10倍量の水を加えて密栓し、 121°Cで 1時間 加熱した。室温まで放冷し、溶出液 100mlを正確に測り取り、水浴上で蒸発乾固した 後、 105°Cで 1時間乾燥してから、残留物の重量を測定した。本条件で 2mg以上の 溶出物があるものを X、 l〜2mgのものを△、 lmg以下のものを〇とした。  20 g of a 2 mm-thick press sheet was precisely weighed, 10 times the amount of water was added and sealed, and heated at 121 ° C for 1 hour. The mixture was allowed to cool to room temperature, 100 ml of the eluate was accurately measured, evaporated to dryness in a water bath, dried at 105 ° C for 1 hour, and the weight of the residue was measured. Under these conditions, X is defined as 2 mg or more of eluate, △ is defined as 1 to 2 mg, and ◯ is defined as 1 mg or less.
[0081] (成形流動性) [0081] (Molding fluidity)
JIS K— 7210の A法に準拠し、 230°Cにおいて、 2. 16kgf荷重で、 10分あたりの 流出量 (MFR)を測定した。本条件で流動しない場合、成形流動性は不十分である  In accordance with JIS K-7210, Method A, the flow rate (MFR) per 10 minutes was measured at 230 ° C with 2.16 kgf load. If it does not flow under these conditions, molding fluidity is insufficient.
[0082] 下記の原料を使用して、キャップライナー用組成物を製造した。 [0082] A cap liner composition was produced using the following raw materials.
成分 (A)末端にアルケニル基を有するイソブチレン系重合体  Component (A) Isobutylene polymer having an alkenyl group at the terminal
下記製造例 1で製造したもの  Made in Production Example 1 below
成分(B)ポリオレフイン  Ingredient (B) Polyolefin
高密度ポリエチレン:三井ィ匕学株式会社製ハイゼックス 2200J (密度: 0. 968g/c m3、 MFR: 5. 2gZl0min、以下 HDPEと略す) High density polyethylene: Hi-Zex 2200J manufactured by Mitsui Engineering Co., Ltd. (Density: 0.968 g / cm 3 , MFR: 5.2 gZl0min, hereinafter abbreviated as HDPE)
ポリプロピレン (ホモタイプ):三井ィ匕学株式会社製三井ポリプロ J105G (MFR: 9g ZlOmin、、以下 HPPと略す)  Polypropylene (homotype): Mitsui Polypro J105G (MFR: 9g ZlOmin, hereinafter abbreviated as HPP)
ポリプロピレン (ランダムタイプ):三井ィ匕学株式会社製三井ポリプロ J215W(M FR: 9gZlOmin、以下 RPPと略す)  Polypropylene (Random type): Mitsui Polypro J215W (M FR: 9gZlOmin, hereinafter abbreviated as RPP)
成分 (C)ヒドロシリル基含有化合物 (架橋剤)  Component (C) Hydrosilyl group-containing compound (crosslinking agent)
ヒドロシリル基含有ポリシロキサン 下記の化学式で表されるポリシロキサン (以下、 Hydrosilyl group-containing polysiloxane Polysiloxane represented by the following chemical formula (hereinafter,
H—オイルと略す) H—abbreviated as oil)
(CH ) SiO- [Si(H) (CH ) 0] — Si (CH )  (CH) SiO- [Si (H) (CH) 0] — Si (CH)
3 3 3 48 3 3  3 3 3 48 3 3
架橋触媒  Cross-linking catalyst
0価白金の 1, 1, 3, 3—テトラメチルー 1, 3—ジァルケ-ルジシロキサン錯体、 3重量%キシレン溶液 (以下、 Pt触媒と略す)  1,1,3,3-tetramethyl-1,3-dialkyldisiloxane complex of zerovalent platinum, 3 wt% xylene solution (hereinafter abbreviated as Pt catalyst)
成分 (D)滑剤  Ingredient (D) Lubricant
エル力酸アミド:日本精化株式会社製-ユートロン— S (以下 EAと略す) ポリエチレンワックス:クラリアントジャパン株式会社製リコワックス PE520 (以下 PE5 20と略す) L Power Acid Amide: Nippon Seika Co., Ltd.-Utron® S (hereinafter abbreviated as EA) Polyethylene wax: Rico wax manufactured by Clariant Japan Co., Ltd. PE520 (hereinafter abbreviated as PE5 20)
シリコーンオイル:東レダウコーユングシリコーン株式会社製シリコーンコンセントレ ート BY27— 001、シリコーンオイル含量約 50% (以下 SiMBと略す)  Silicone oil: Silicone concentrate BY27-001 manufactured by Toray Dow Cowing Silicone Co., Ltd., silicone oil content of about 50% (hereinafter abbreviated as SiMB)
成分(E)イソブチレン系ブロック共重合体 Component (E) Isobutylene block copolymer
下記製造例 2で製造したもの  Made in Production Example 2 below
成分 (F)軟化剤 Ingredient (F) Softener
ポリブテン:出光興産株式会社製出光ポリブテン 100R (以下 100Rと略す) パラフィン系オイル:出光興産株式会社製ダイアナプロセス PW— 90 (以下 PW90 と略す)熱可塑性エラストマ一  Polybutene: Idemitsu Kosan Co., Ltd. Idemitsu Polybutene 100R (hereinafter abbreviated as 100R) Paraffin oil: Idemitsu Kosan Co., Ltd. Diana Process PW-90 (hereinafter abbreviated as PW90) Thermoplastic elastomer
水素添加スチレン—ブタジエン系ブロック共重合体:クレイトンポリマージャパン株 式会社製クレイトン G1650 (スチレン含量 29%、以下 SEBSと略す)  Hydrogenated styrene-butadiene block copolymer: Clayton G1650 manufactured by Kraton Polymer Japan Ltd. (styrene content 29%, hereinafter abbreviated as SEBS)
ブチル系動的架橋エラストマ一:エーィーエス'ジャパン株式会社製トレフシン 327 1— 65W308 (以下 TREFと略す)  Butyl dynamic cross-linking elastomer: Trefsin 327 1— 65W308 (hereinafter abbreviated as TREF)
(製造例 1) (A)末端にァルケ-ル基を有するイソブチレン系共重合体 (以下、 API Bと略す)  (Production Example 1) (A) Isobutylene copolymer having a alkenyl group at the terminal (hereinafter abbreviated as API B)
2Lセパラブルフラスコに三方コック、および熱電対、攪拌シールをつけ、窒素置換 を行った。窒素置換後、三方コックを用いて窒素をフローした。これにシリンジを用い てトルエン 785ml、ェチルシクロへキサン 265mlをカ卩え、 70°C程度まで冷却した。 冷却後、イソブチレンモノマー 277ml (2933mmol)を加えた。再度— 70°C程度まで 冷却後、 P ジクミルク口ライド 0. 85g (3. 7mmol)およびピコリン 0. 68g (7. 4mmol )をトルエン 10mlに溶解して加えた。反応系の内温が— 74°Cとなり安定した時点で 四塩化チタン 19. 3ml (175. 6mmol)をカロえ重合を開始した。重合反応が終了した 時点(90分)で、 75% ァリルトリメチルシラン Zトルエン溶液 1. 68g (l l. Ommol) を添加し、さらに 2時間反応させた。その後、 50°C程度に加熱した純水で失活し、さ らに有機層を純水(70°C〜80°C)で 3回洗浄し、有機溶剤を減圧下 80°Cにて除去し APIBを得た。 GPC測定による重量平均分子量は 50, 000、 — NMRにより求め た含有ァリル基は 2. OZmolであった。 [0083] (製造例 2) (E)イソブチレン系ブロック共重合体、スチレン含量 30%のトリブロック 構造 (以下、 SIBSと略す) A 2 L separable flask was fitted with a three-way cock, thermocouple, and stirring seal, and purged with nitrogen. After nitrogen substitution, nitrogen was flowed using a three-way cock. To this, 785 ml of toluene and 265 ml of ethylcyclohexane were added using a syringe and cooled to about 70 ° C. After cooling, 277 ml (2933 mmol) of isobutylene monomer was added. After cooling to about 70 ° C. again, 0.85 g (3.7 mmol) of P dicmilk mouthride and 0.68 g (7.4 mmol) of picoline were dissolved in 10 ml of toluene and added. When the internal temperature of the reaction system became -74 ° C and stabilized, 19.3 ml (175.6 mmol) of titanium tetrachloride was calored and polymerization was started. When the polymerization reaction was completed (90 minutes), 1.68 g (l l. Ommol) of 75% allyltrimethylsilane Z toluene solution was added, and the mixture was further reacted for 2 hours. After that, it was deactivated with pure water heated to about 50 ° C, and the organic layer was washed three times with pure water (70 ° C to 80 ° C), and the organic solvent was removed at 80 ° C under reduced pressure. And got APIB. The weight average molecular weight measured by GPC was 50,000, and the contained aryl group determined by NMR was 2. OZmol. [0083] (Production Example 2) (E) Isobutylene block copolymer, triblock structure having a styrene content of 30% (hereinafter abbreviated as SIBS)
500mLのセパラブルフラスコの重合容器内を窒素置換した後、注射器を用いて、 n—へキサン(モレキュラーシーブスで乾燥したもの) 97. 6mL及び塩化ブチル(モレ キュラーシーブスで乾燥したもの) 140. 5mLを加え、重合容器を— 70°Cのドライア イス Zメタノールバス中につけて冷却した後、イソブチレンモノマー 47. 7mL (505. 3mmol)が入っている三方コック付耐圧ガラス製液ィ匕採取管にテフロン (登録商標) 製の送液チューブを接続し、重合容器内にイソプチレンモノマーを窒素圧により送液 した。 p—ジクミルク口ライド 0. 097g (0. 42mmol)及び N, N—ジメチルァセトアミド 0 . 073g (0. 84mmol)をカロえた。次にさらに四塩ィ匕チタン 1. 66mL (15. 12mmol) を加えて重合を開始した。重合開始から 75分撹拌を行った後、重合溶液からサンプ リング用として重合溶液約 lmLを抜き取った。続いて、スチレンモノマー 13. 71g (l 31. 67mmol)を重合容器内に添加した。該混合溶液を添加してから 75分後に、大 量の水にカ卩えて反応を終了させた。  After replacing the inside of the polymerization vessel of the 500 mL separable flask with nitrogen, using a syringe, n-hexane (dried with molecular sieves) 97.6 mL and butyl chloride (dried with molecular sieves) 140. 5 mL After adding the polymerization vessel to a 70 ° C dry ice Z methanol bath and cooling, place Teflon in a pressure-resistant glass liquid container with a three-way cock containing 47.7 mL (505.3 mmol) of isobutylene monomer. A liquid feeding tube made of (registered trademark) was connected, and isoprene monomer was fed into the polymerization vessel by nitrogen pressure. p-Dicmilk mouthride 0.097 g (0.42 mmol) and N, N-dimethylacetamide 0.073 g (0.84 mmol) were calories. Next, 1.66 mL (15. 12 mmol) of tetrasalt-titanium was added to initiate polymerization. After stirring for 75 minutes from the start of polymerization, about 1 mL of the polymerization solution was withdrawn from the polymerization solution for sampling. Subsequently, 13.71 g (l 31. 67 mmol) of styrene monomer was added into the polymerization vessel. 75 minutes after adding the mixed solution, the reaction was terminated by adding a large amount of water.
[0084] 反応溶液を 2回水洗し、溶媒を蒸発させ、得られた重合体を 60°Cで 24時間真空乾 燥することにより目的のブロック共重合体を得た。得られたイソブチレン系ブロック共 重合体の GPC分析を行ったところ、重量平均分子量は 135, 000であり、 — NM Rにより求めたポリスチレンの含有量は 30重量%であった。  [0084] The reaction solution was washed twice with water, the solvent was evaporated, and the resulting polymer was vacuum-dried at 60 ° C for 24 hours to obtain the desired block copolymer. The obtained isobutylene block copolymer was subjected to GPC analysis. As a result, the weight average molecular weight was 135,000, and the polystyrene content determined by NMR was 30% by weight.
[0085] (製造例 3) (A)成分、 (B)成分、および (F)成分からなる動的架橋組成物( (B)成 分が HDPEで、(A)Z(B)Z(F) =100ZllZ40重量部の例(以下 TPV— 1と略 す))  [0085] (Production Example 3) Dynamically crosslinked composition comprising (A) component, (B) component, and (F) component ((B) component is HDPE, and (A) Z (B) Z (F ) = 100ZllZ40 parts by weight (hereinafter abbreviated as TPV-1))
製造例 1で得られた APIB ( (A)成分)を 26. 3g、 HDPE ( (B)成分)を 2. 9g計量し 、 170°Cに設定したラボプラストミル ( (株)東洋精機製作所)を用 、て 2分間溶融混練 し、 100R( (F)成分)を 10. 5g追加して、さらに 2分間混練した。次いでヒドロシリル 基含有化合物である H—オイルを 0. 32g ( (A)成分中のアルケニル基に対する(C) 成分中のヒドロシリル基の量 (ヒドロシリル基 Zァルケ-ル基)は 4当量)添カ卩し、 1分 間混練した後、架橋触媒を 14. 8 1添加して、架橋が進行してトルクの値が最高値 を示すまでさらに溶融混練した。トルクの値が最高値を示してから 3分間混練後、動 的架橋組成物を取り出した。 Lab Plast Mill (Toyo Seiki Seisakusho Co., Ltd.) weighing 26.3 g of APIB (component (A)) and 2.9 g of HDPE (component (B)) obtained in Production Example 1 Then, 10.5 g of 100R (component (F)) was added and kneaded for another 2 minutes. Next, 0.32 g of H-oil, which is a hydrosilyl group-containing compound (the amount of hydrosilyl group in component (C) (hydrosilyl group Z-alkenyl group) is 4 equivalents relative to the alkenyl group in component (A)). Then, after kneading for 1 minute, 14.81 was added to the cross-linking catalyst and further melt-kneaded until the cross-linking progressed and the torque value reached the maximum value. After kneading for 3 minutes after the torque reaches the maximum value, The cross-linking composition was removed.
[0086] (製造例 4) (A)成分、(B)成分、および (F)成分からなる動的架橋組成物( (B)成 分力 PPで、 (A) / (B) / (F) = lOOZl 1Z40重量部の例(以下 TPV— 2と略す) )  [0086] (Production Example 4) Dynamic cross-linking composition comprising (A) component, (B) component, and (F) component ((B) component force PP, (A) / (B) / (F ) = lOOZl 1Z40 parts by weight (hereinafter abbreviated as TPV-2))
(B)成分を RPPとした以外は、製造例 3と同様に動的架橋組成物を製造した。  A dynamic crosslinking composition was produced in the same manner as in Production Example 3, except that component (B) was RPP.
[0087] (実施例 1〜9) [0087] (Examples 1 to 9)
製造例 3および 4で製造した動的架橋組成物を用い、各成分の最終的な組成が表 1のようになるように配合し、 180°Cに設定したラボプラストミル( (株)東洋精機製作所 製)を用いて、 5分間溶融混練した。仕込み重量は合計で 45gとなるように調整した。 得られた混練物を 170°Cで 5分間プレス成形し、各種物性を評価した。評価結果を 表 1に示す。  Laboplast mill (Toyo Seiki Co., Ltd.) was prepared by using the dynamically crosslinked composition produced in Production Examples 3 and 4 and blending so that the final composition of each component was as shown in Table 1. Melt-kneaded for 5 minutes. The charged weight was adjusted to 45 g in total. The obtained kneaded material was press-molded at 170 ° C for 5 minutes, and various physical properties were evaluated. Table 1 shows the evaluation results.
[0088] (比較例 1〜4) [0088] (Comparative Examples 1 to 4)
配合組成を表 1のようにした以外は、実施例 1〜9と同様の評価を行った。結果を表 1に示す。  Except that the formulation was as shown in Table 1, the same evaluation as in Examples 1 to 9 was performed. The results are shown in Table 1.
[0089] (比較例 5) [0089] (Comparative Example 5)
ヒドロシリル基含有化合物を添加しな ヽ以外は、製造例 3と同様に溶融混練を行つ たが、架橋が進行しないため、トルクが上昇せず、非常にベタツキの強い混練物しか 得られな力つた。シート形状に成形できな力 たため、物性評価も行えな力つた。  Except for the addition of the hydrosilyl group-containing compound, melt-kneading was carried out in the same manner as in Production Example 3. However, since the crosslinking did not proceed, the torque did not increase, and only a kneaded product with extremely strong tack was obtained. I got it. Since the force could not be formed into a sheet shape, the physical properties could also be evaluated.
[0090] [表 1] [0090] [Table 1]
実施例 1実施例 2実施例 3実施例 4実施例 5実施例 6実施例 7実施例 8実施例 9比較例 1比較例 2比較例 3比較例 4Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4
(A)成分 APIB 100 100 100 100 100 100 100 100 100 (A) component APIB 100 100 100 100 100 100 100 100 100
(B)成分 HDPE 25 35 45 65 85 65 65 20  Component (B) HDPE 25 35 45 65 85 65 65 20
RPP 65 38  RPP 65 38
HPP 27 30 30  HPP 27 30 30
(D)成分 EA 1.65 2.25 2.85 4.05 5.25 4.05 4.05 4.05 4.05 2 2 1.2  Component (D) EA 1.65 2.25 2.85 4.05 5.25 4.05 4.05 4.05 4.05 2 2 1.2
PE520 8.1  PE520 8.1
SiMB 4.05 4.05  SiMB 4.05 4.05
(E)成分 SIBS 50 100 200 300 200 200 200 200 100  (E) component SIBS 50 100 200 300 200 200 200 200 100
(F)成分 100R 40 40 40 40 40 40 40 40 40 80  (F) component 100R 40 40 40 40 40 40 40 40 40 80
PW90 80  PW90 80
その他 SEBS 100 100  Other SEBS 100 100
TREF 100 TREF 100
JIS-A硬度 66 61 61 59 59 62 64 65 70 60 70 60 75 密封シール性 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 Δ 静摩擦係数 0.49 0.43 0.42 0.48 0.37 0.44 0.43 0.31 0.26 0.35 0.62 0.38 0.33 開栓性 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 X 〇 〇 酸素透過係数 7.9 7.3 6.8 6.1 5.2 6.2 6.3 5.5 5.1 1 10 95 4.1 8.5 ガスバリア性 〇 〇 〇 〇 〇 〇 〇 〇 〇 X X 〇 〇 圧縮永久歪み 27 33 36 44 49 45 48 47 49 40 55 60 40 復元性 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 Δ X 〇 溶出性 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 XJIS-A hardness 66 61 61 59 59 62 64 65 70 60 70 60 75 Hermetic seal ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Δ Static friction coefficient 0.49 0.43 0.42 0.48 0.37 0.44 0.43 0.31 0.26 0.35 0.62 0.38 0.33 O O O O O O O O O O X O O Oxygen permeability 7.9 7.3 6.8 6.1 5.2 6.2 6.3 5.5 5.1 1 10 95 4.1 8.5 Gas barrier property O O O O O O O O O O XX O O Compression permanent 27 33 36 44 49 45 48 47 49 40 55 60 40 Restorability ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Δ X ○ Elution property ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ X
MFR 0.10 0.10 0.15 0.20 0.20 0.25 0.30 0.25 0.25 0.20 0.20 0.20 0.40MFR 0.10 0.10 0.15 0.20 0.20 0.25 0.30 0.25 0.25 0.20 0.20 0.20 0.40
*気体透過係数の単位は いずれも、 X 10"1 omol - m/m2 - sec - Pa * All units of gas permeability coefficient are X 10 " 1 o mol-m / m 2 -sec-Pa
[0091] 比較例 1は、従来の技術である水添型スチレン一共役ジェン系ブロック共重合体( SEBS)を主成分とする組成物である力 ガスバリア性が不十分であることがわかる。 比較例 2では軟化剤をポリブテンに変更している力 SEBSへの吸収性が悪ぐ軟ィ匕 剤のブリードによるベタツキが強い。これにともない、ガスノ リア性だけでなぐ開栓性 も不十分となっている。比較例 3は、スチレン—イソブチレン系ブロック共重合体(SIB S)を主成分とする組成物であるが、圧縮永久歪みが高ぐ復元性が不十分であるこ とがわかる。また、比較例 4は、ブチルゴムを動的架橋した組成物の市販品であるが 、溶出性の点で問題があることがわかる。 [0091] It can be seen that Comparative Example 1 is insufficient in the force gas barrier property, which is a composition mainly composed of a hydrogenated styrene monoconjugate block copolymer (SEBS), which is a conventional technique. In Comparative Example 2, the force of changing the softening agent to polybutene The stickiness due to the bleeding of the softening agent with poor absorbability to SEBS is strong. Along with this, the gas-opening property is not sufficient. Comparative Example 3 is a composition comprising styrene-isobutylene block copolymer (SIB S) as a main component, but it can be seen that the compression set is high and the restoring property is insufficient. Further, Comparative Example 4 is a commercial product of a composition obtained by dynamically crosslinking butyl rubber, but it can be seen that there is a problem in terms of elution.
[0092] 本発明の実施例 1〜9では、このような問題がなぐキャップのライナー材としてバラ ンスのとれた組成物であることがわかる。実施例 1〜5では、(E)成分であるイソプチ レン系ブロック共重合体(SIBS)の添加効果を示している力 添カ卩量が増えるにつれ 、復元性は低下する傾向があるものの、ガスバリア性や成形流動性が改善されること がわかる。また、実施例 6では、(D)成分としてシリコーンオイルを添加しており、開栓 性が改善される傾向がわかる。実施例 7では、(D)成分として、さらにポリエチレンヮ ックスを添加しており、成形流動性が改善されることがわかる。実施例 8、 9では、(B) 成分としてポリプロピレンを使用しており、開栓性ゃ成形流動性に優れていることがわ かる。また、レトルト殺菌処理(121°C、 30分)を行った後の開栓性では、ポリエチレン を使用した実施例 4よりも優れて ヽる傾向も見られた。  [0092] In Examples 1 to 9 of the present invention, it can be seen that the composition is well balanced as the liner material of the cap without such problems. In Examples 1 to 5, although the resilience tends to decrease as the amount of force added indicating the effect of addition of the isoprene-based block copolymer (SIBS) as the component (E) increases, the gas barrier It can be seen that the moldability and molding fluidity are improved. Further, in Example 6, silicone oil was added as the component (D), and it can be seen that the openability tends to be improved. In Example 7, it can be seen that the polyethylene flow is further added as the component (D), and the molding fluidity is improved. In Examples 8 and 9, polypropylene is used as the component (B), and it can be seen that the opening performance is excellent in molding fluidity. In addition, the openability after the retort sterilization treatment (121 ° C, 30 minutes) showed a tendency to be superior to that of Example 4 using polyethylene.
[0093] 以上のように、本発明による実施例では、本発明の目的である、密封シール性、ガ スバリア性、復元性、衛生性に優れ、実使用時の開封も容易なキャップライナー用組 成物が得られている。  [0093] As described above, in the examples according to the present invention, the cap liner assembly that is the object of the present invention is excellent in hermetic sealability, gas barrier property, restoration property, hygiene, and easy to open during actual use. An adult product is obtained.

Claims

請求の範囲 The scope of the claims
[1] (A)末端にァルケ-ル基を有するイソブチレン系重合体 100重量部を、(B)ポリオ レフイン 10〜: L00重量部の存在下で、(C)ヒドロシリル基含有ィ匕合物により溶融混練 中に架橋してなる組成物と、(D)滑剤 0. 1〜20重量部とを含有してなるキャップライ ナー用組成物。  [1] (A) 100 parts by weight of an isobutylene polymer having a alkenyl group at the terminal is added with (C) a hydrosilyl group-containing compound in the presence of 10 parts by weight of (B) polyolefin. A composition for a cap liner comprising a composition formed by crosslinking during melt-kneading and (D) 0.1 to 20 parts by weight of a lubricant.
[2] 請求項 1に記載の組成物に、さらに (E)芳香族ビニル系化合物を主体とする重合 体ブロック(a)とイソブチレンを主体とする重合体ブロック(b)力 なるブロック共重合 体 1〜300重量部を含有してなるキャップライナー用組成物。 [2] The composition according to claim 1, further comprising (E) a polymer block ( a ) mainly composed of an aromatic vinyl compound and a polymer block mainly composed of isobutylene (b) a block copolymer having a force. A cap liner composition comprising 1 to 300 parts by weight.
[3] 請求項 1または 2に記載の組成物に、さらに (F)軟化剤 1〜: LOO重量部を含有して なるキャップライナー用組成物。 [3] A composition for a cap liner, further comprising (F) a softening agent 1 to: LOO parts by weight of the composition according to claim 1 or 2.
[4] (A)成分中のアルケ-ル基に対する(C)成分中のヒドロシリル基の量(ヒドロシリル 基 Zァルケ-ル基)が、モル比で 0. 5〜10の範囲にあることを特徴とする請求項 1か ら 3のいずれかに記載のキャップライナー用組成物。 [4] The amount of hydrosilyl group in component (C) relative to the alkenyl group in component (A) (hydrosilyl group Z-alkyl group) is in the range of 0.5 to 10 in molar ratio. The cap liner composition according to any one of claims 1 to 3.
[5] (B)成分のポリオレフインカ、ポリエチレンおよびポリプロピレン力も選ばれる少なく とも 1種であることを特徴とする請求項 1から 4のいずれかに記載のキャップライナー 用組成物。 [5] The composition for a cap liner according to any one of claims 1 to 4, wherein the component (B) is at least one selected from polyolefin, polyethylene and polypropylene strength.
[6] (D)成分の滑剤が、脂肪酸アミド、パラフィン系ワックス、シリコーンオイルよりなる群 力 選ばれる少なくとも 1種であることを特徴とする請求項 1から 5のいずれかに記載 のキャップライナー用糸且成物。  [6] The cap liner according to any one of claims 1 to 5, wherein the lubricant of component (D) is at least one selected from the group consisting of fatty acid amides, paraffinic waxes, and silicone oils. Yarn and adult product.
[7] (E)成分のブロック共重合体における(a)ブロックの含有量が 10〜40重量%である ことを特徴とする請求項 2から 6のいずれかに記載のキャップライナー用組成物。 [7] The cap liner composition according to any one of claims 2 to 6, wherein the content of the block (a) in the block copolymer of the component (E) is 10 to 40% by weight.
[8] (F)成分の軟化剤が、ポリブテンであることを特徴とする請求項 3から 7のいずれか に記載のキャップライナー用組成物。 [8] The cap liner composition according to any one of claims 3 to 7, wherein the softening agent of the component (F) is polybutene.
[9] 請求項 1から 8の 、ずれかに記載の組成物力 なるキャップライナー。 [9] The cap liner according to any one of claims 1 to 8, wherein the cap liner has a composition strength.
PCT/JP2006/303655 2005-03-15 2006-02-28 Cap liner composition WO2006098142A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007508055A JPWO2006098142A1 (en) 2005-03-15 2006-02-28 Cap liner composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005073702 2005-03-15
JP2005-073702 2005-03-15

Publications (1)

Publication Number Publication Date
WO2006098142A1 true WO2006098142A1 (en) 2006-09-21

Family

ID=36991495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303655 WO2006098142A1 (en) 2005-03-15 2006-02-28 Cap liner composition

Country Status (2)

Country Link
JP (1) JPWO2006098142A1 (en)
WO (1) WO2006098142A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091770A (en) * 2005-09-27 2007-04-12 Kaneka Corp Composition for cap liner
JP2007119528A (en) * 2005-10-25 2007-05-17 Kaneka Corp Composition for cap liner
EP2006328A1 (en) * 2006-04-13 2008-12-24 Kaneka Corporation Composition for rubber stoppers and rubber stoppers for medical use
WO2009013945A1 (en) 2007-07-25 2009-01-29 Daikyo Seiko, Ltd. Rubber compound and molded article
JP2009249404A (en) * 2008-04-01 2009-10-29 Toyo Seikan Kaisha Ltd Molded article excellent in stress crack-proof property and slipping property at low temperature
JP2010189601A (en) * 2009-02-20 2010-09-02 Daiwa Can Co Ltd Liner resin composition for metallic pp cap
JP2010536967A (en) * 2007-08-22 2010-12-02 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ Soft polyolefin composition with improved processability
JP2015232095A (en) * 2014-06-10 2015-12-24 三菱化学株式会社 Thermoplastic elastomer composition, molded body and cap liner
JP2016150980A (en) * 2015-02-18 2016-08-22 リケンテクノス株式会社 Thermoplastic elastomer resin composition
JP2016196601A (en) * 2015-04-06 2016-11-24 リケンテクノス株式会社 Thermoplastic elastomer resin composition
JP2018104572A (en) * 2016-12-27 2018-07-05 東洋ゴム工業株式会社 Dynamically crosslinked product, low air-permeable film, and pneumatic tire
JP2018123174A (en) * 2017-01-30 2018-08-09 三井化学株式会社 Resin composition and molded body of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298357A (en) * 1997-04-22 1998-11-10 Tosoh Corp Cap liner material composition
JPH11106565A (en) * 1997-10-02 1999-04-20 Shibasaki Seisakusho:Kk Elastomer composition for cap liner and cap liner made therefrom
JP2004161816A (en) * 2002-11-11 2004-06-10 Kanegafuchi Chem Ind Co Ltd Thermoplastic elastomer composition
JP2004204181A (en) * 2002-12-26 2004-07-22 Kanegafuchi Chem Ind Co Ltd Thermoplastic elastomer composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298357A (en) * 1997-04-22 1998-11-10 Tosoh Corp Cap liner material composition
JPH11106565A (en) * 1997-10-02 1999-04-20 Shibasaki Seisakusho:Kk Elastomer composition for cap liner and cap liner made therefrom
JP2004161816A (en) * 2002-11-11 2004-06-10 Kanegafuchi Chem Ind Co Ltd Thermoplastic elastomer composition
JP2004204181A (en) * 2002-12-26 2004-07-22 Kanegafuchi Chem Ind Co Ltd Thermoplastic elastomer composition

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091770A (en) * 2005-09-27 2007-04-12 Kaneka Corp Composition for cap liner
JP2007119528A (en) * 2005-10-25 2007-05-17 Kaneka Corp Composition for cap liner
EP2006328A1 (en) * 2006-04-13 2008-12-24 Kaneka Corporation Composition for rubber stoppers and rubber stoppers for medical use
EP2006328A4 (en) * 2006-04-13 2011-03-02 Kaneka Corp Composition for rubber stoppers and rubber stoppers for medical use
JP5551437B2 (en) * 2007-07-25 2014-07-16 株式会社大協精工 Rubber compounds and molded products
WO2009013945A1 (en) 2007-07-25 2009-01-29 Daikyo Seiko, Ltd. Rubber compound and molded article
JPWO2009013945A1 (en) * 2007-07-25 2010-09-30 株式会社大協精工 Rubber compounds and molded products
US8101674B2 (en) 2007-07-25 2012-01-24 Daikyo Seiko, Ltd. Rubber compound and molded article
US9029455B2 (en) 2007-08-22 2015-05-12 Basell Poliolefine Italia S.R.L. Soft polyolefin compositions with improved processability
JP2010536967A (en) * 2007-08-22 2010-12-02 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ Soft polyolefin composition with improved processability
JP2009249404A (en) * 2008-04-01 2009-10-29 Toyo Seikan Kaisha Ltd Molded article excellent in stress crack-proof property and slipping property at low temperature
JP2010189601A (en) * 2009-02-20 2010-09-02 Daiwa Can Co Ltd Liner resin composition for metallic pp cap
JP2015232095A (en) * 2014-06-10 2015-12-24 三菱化学株式会社 Thermoplastic elastomer composition, molded body and cap liner
JP2016150980A (en) * 2015-02-18 2016-08-22 リケンテクノス株式会社 Thermoplastic elastomer resin composition
JP2016196601A (en) * 2015-04-06 2016-11-24 リケンテクノス株式会社 Thermoplastic elastomer resin composition
JP2018104572A (en) * 2016-12-27 2018-07-05 東洋ゴム工業株式会社 Dynamically crosslinked product, low air-permeable film, and pneumatic tire
JP2018123174A (en) * 2017-01-30 2018-08-09 三井化学株式会社 Resin composition and molded body of the same

Also Published As

Publication number Publication date
JPWO2006098142A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
WO2006098142A1 (en) Cap liner composition
WO2007119687A1 (en) Composition for rubber stoppers and rubber stoppers for medical use
WO2006051672A1 (en) Composition for cap liner
JP5551437B2 (en) Rubber compounds and molded products
JP4922944B2 (en) Synthetic cork stopper
JP4875876B2 (en) Cap liner composition
EP1243615B1 (en) Thermoplastic crosslinked rubber compositions
JP4781777B2 (en) Cap liner composition
JP2009132759A (en) Foamable thermoplastic resin composition, and foamed molded body and synthesized cork using the same
JP5350922B2 (en) Thermoplastic elastomer resin composition
JP4686118B2 (en) Thermoplastic elastomer composition with excellent gas barrier properties
JP4177186B2 (en) Thermoplastic elastomer composition
WO2006046408A1 (en) Thermoplastic resin composition
JP4705279B2 (en) Thermoplastic elastomer composition
JP2008007587A (en) Synthetic cork
JP4556625B2 (en) Oxygen absorber
JP4354800B2 (en) Thermoplastic elastomer composition and molded article
JP2006152030A (en) Method for producing thermoplastic elastomer composition
MXPA05005627A (en) Thermoplastic elastomer composition.
WO2023022028A1 (en) Thermoplastic elastomer composition
JP2004196844A (en) Method for producing thermoplastic elastomer composition
JP2004204183A (en) Thermoplastic elastomer composition
JP3864101B2 (en) Thermoplastic polymer composition having excellent gas barrier properties
JP2004204108A (en) Method for producing thermoplastic elastomer
JP4023161B2 (en) Method for crosslinking polymer compound and composition for crosslinking

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007508055

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06714792

Country of ref document: EP

Kind code of ref document: A1